paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/ifseg-image-free-semantic-segmentation-via
|
IFSeg: Image-free Semantic Segmentation via Vision-Language Model
|
2303.14396
|
https://arxiv.org/abs/2303.14396v1
|
https://arxiv.org/pdf/2303.14396v1.pdf
|
https://github.com/alinlab/ifseg
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/comet-m-reasoning-about-multiple-events-in
|
COMET-M: Reasoning about Multiple Events in Complex Sentences
|
2305.14617
|
https://arxiv.org/abs/2305.14617v2
|
https://arxiv.org/pdf/2305.14617v2.pdf
|
https://github.com/sahithyaravi/comet-m
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/learned-1-d-advection-solver-to-accelerate
|
Learned 1-D advection solver to accelerate air quality modeling
|
2211.03906
|
https://arxiv.org/abs/2211.03906v1
|
https://arxiv.org/pdf/2211.03906v1.pdf
|
https://github.com/manozzing/Learned-1-D-advection-solver-with-grid-spacing-physics
| true | true | true |
none
|
https://paperswithcode.com/paper/a-systematic-comparison-of-contextualized
|
A Systematic Comparison of Contextualized Word Embeddings for Lexical Semantic Change
|
2402.12011
|
https://arxiv.org/abs/2402.12011v3
|
https://arxiv.org/pdf/2402.12011v3.pdf
|
https://github.com/francescoperiti/cssdetection
| true | true | true |
none
|
https://paperswithcode.com/paper/vision-based-fall-detection-with
|
Vision-Based Fall Detection with Convolutional Neural Networks
| null |
https://www.hindawi.com/journals/wcmc/2017/9474806/
|
https://downloads.hindawi.com/journals/wcmc/2017/9474806.pdf
|
https://github.com/AdrianNunez/Fall-Detection-with-CNNs-and-Optical-Flow
| false | false | false |
none
|
https://paperswithcode.com/paper/drag-reduction-strategies-in-wall-bounded
|
Drag-reduction strategies in wall-bounded turbulent flows using deep reinforcement learning
|
2309.02943
|
https://arxiv.org/abs/2309.02943v1
|
https://arxiv.org/pdf/2309.02943v1.pdf
|
https://github.com/kth-flowai/marl-drag-reduction-in-wall-bounded-flows
| true | true | false |
none
|
https://paperswithcode.com/paper/generative-modeling-through-the-semi-dual-1
|
Generative Modeling through the Semi-dual Formulation of Unbalanced Optimal Transport
|
2305.14777
|
https://arxiv.org/abs/2305.14777v3
|
https://arxiv.org/pdf/2305.14777v3.pdf
|
https://github.com/Jae-Moo/UOTM
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/prompt-based-grouping-transformer-for-nucleus
|
Prompt-based Grouping Transformer for Nucleus Detection and Classification
|
2310.14176
|
https://arxiv.org/abs/2310.14176v1
|
https://arxiv.org/pdf/2310.14176v1.pdf
|
https://github.com/lhaof/pgt
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/federated-learning-of-large-language-models
|
Federated Learning of Large Language Models with Parameter-Efficient Prompt Tuning and Adaptive Optimization
|
2310.15080
|
https://arxiv.org/abs/2310.15080v3
|
https://arxiv.org/pdf/2310.15080v3.pdf
|
https://github.com/llm-eff/fedpeptao
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/an-optimal-control-method-to-compute-the-most
|
An Optimal Control Method to Compute the Most Likely Transition Path for Stochastic Dynamical Systems with Jumps
|
2203.16874
|
https://arxiv.org/abs/2203.16874v2
|
https://arxiv.org/pdf/2203.16874v2.pdf
|
https://github.com/chenxiaolichen/most-likely-transition-path-with-levy-noise
| true | true | false |
none
|
https://paperswithcode.com/paper/a-multi-aspect-framework-for-counter
|
A Multi-Aspect Framework for Counter Narrative Evaluation using Large Language Models
|
2402.11676
|
https://arxiv.org/abs/2402.11676v2
|
https://arxiv.org/pdf/2402.11676v2.pdf
|
https://github.com/osu-nlp-group/llm-cn-eval
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/inductive-relation-prediction-on-knowledge
|
Inductive Relation Prediction by Subgraph Reasoning
|
1911.06962
|
https://arxiv.org/abs/1911.06962v2
|
https://arxiv.org/pdf/1911.06962v2.pdf
|
https://github.com/lars-research/red-gnn
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/crop-conservative-reward-for-model-based
|
CROP: Conservative Reward for Model-based Offline Policy Optimization
|
2310.17245
|
https://arxiv.org/abs/2310.17245v1
|
https://arxiv.org/pdf/2310.17245v1.pdf
|
https://github.com/g0k0ururi/crop
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/symbolic-planning-and-code-generation-for
|
Symbolic Planning and Code Generation for Grounded Dialogue
|
2310.17140
|
https://arxiv.org/abs/2310.17140v1
|
https://arxiv.org/pdf/2310.17140v1.pdf
|
https://github.com/justinchiu/onecommon-gpt
| true | true | false |
none
|
https://paperswithcode.com/paper/learning-interpretable-deep-disentangled
|
Learning Interpretable Deep Disentangled Neural Networks for Hyperspectral Unmixing
|
2310.02340
|
https://arxiv.org/abs/2310.02340v1
|
https://arxiv.org/pdf/2310.02340v1.pdf
|
https://github.com/ricardoborsoi/IDNet_release
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/manipulating-large-language-models-to
|
Manipulating Large Language Models to Increase Product Visibility
|
2404.07981
|
https://arxiv.org/abs/2404.07981v2
|
https://arxiv.org/pdf/2404.07981v2.pdf
|
https://github.com/aounon/llm-rank-optimizer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/influence-of-the-neutron-skin-effect-on
|
Influence of the neutron-skin effect on nuclear isobar collisions at RHIC
|
1908.10231
|
http://arxiv.org/abs/1908.10231v2
|
http://arxiv.org/pdf/1908.10231v2.pdf
|
https://github.com/mluzum/isobar-sampler
| false | false | true |
none
|
https://paperswithcode.com/paper/3d-human-pose-estimation-with-occlusions
|
3D Human Pose Estimation with Occlusions: Introducing BlendMimic3D Dataset and GCN Refinement
|
2404.16136
|
https://arxiv.org/abs/2404.16136v1
|
https://arxiv.org/pdf/2404.16136v1.pdf
|
https://github.com/filipalino/blendmimic3d
| true | true | false |
none
|
https://paperswithcode.com/paper/hybrid-quantum-neural-network-advantage-for
|
Hybrid Quantum Neural Network Advantage for Radar-Based Drone Detection and Classification in Low Signal-to-Noise Ratio
|
2403.02080
|
https://arxiv.org/abs/2403.02080v1
|
https://arxiv.org/pdf/2403.02080v1.pdf
|
https://github.com/AishSweety/hybrid-quantum-classical-Neural-Network-for-radar-data
| true | true | true |
none
|
https://paperswithcode.com/paper/can-encrypted-images-still-train-neural
|
Can Encrypted Images Still Train Neural Networks? Investigating Image Information and Random Vortex Transformation
|
2411.16207
|
https://arxiv.org/abs/2411.16207v2
|
https://arxiv.org/pdf/2411.16207v2.pdf
|
https://github.com/caoxiaokai/random_vortex_transformation
| true | true | false |
none
|
https://paperswithcode.com/paper/principled-weight-initialisation-for-input-1
|
Principled Weight Initialisation for Input-Convex Neural Networks
|
2312.12474
|
https://arxiv.org/abs/2312.12474v1
|
https://arxiv.org/pdf/2312.12474v1.pdf
|
https://github.com/ml-jku/convex-init
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/quantized-distillation-optimizing-driver
|
Quantized Distillation: Optimizing Driver Activity Recognition Models for Resource-Constrained Environments
|
2311.05970
|
https://arxiv.org/abs/2311.05970v1
|
https://arxiv.org/pdf/2311.05970v1.pdf
|
https://github.com/calvintanama/qd-driver-activity-reco
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/revisiting-restarts-of-cdcl-should-the-search
|
Revisiting Restarts of CDCL: Should the Search Information be Preserved?
|
2404.16387
|
https://arxiv.org/abs/2404.16387v2
|
https://arxiv.org/pdf/2404.16387v2.pdf
|
https://github.com/cdcl-cold-restart/cold-restart
| true | true | false |
none
|
https://paperswithcode.com/paper/visual-cropping-improves-zero-shot-question
|
Towards Perceiving Small Visual Details in Zero-shot Visual Question Answering with Multimodal LLMs
|
2310.16033
|
https://arxiv.org/abs/2310.16033v3
|
https://arxiv.org/pdf/2310.16033v3.pdf
|
https://github.com/saccharomycetes/visual_crop_zsvqa
| true | true | true |
none
|
https://paperswithcode.com/paper/sim-suction-learning-a-suction-grasp-policy
|
Sim-Suction: Learning a Suction Grasp Policy for Cluttered Environments Using a Synthetic Benchmark
|
2305.16378
|
https://arxiv.org/abs/2305.16378v2
|
https://arxiv.org/pdf/2305.16378v2.pdf
|
https://github.com/junchengli1/Sim-Suction-API
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/elasticvit-conflict-aware-supernet-training
|
ElasticViT: Conflict-aware Supernet Training for Deploying Fast Vision Transformer on Diverse Mobile Devices
|
2303.09730
|
https://arxiv.org/abs/2303.09730v2
|
https://arxiv.org/pdf/2303.09730v2.pdf
|
https://github.com/microsoft/moonlit
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/spaceevo-hardware-friendly-search-space
|
SpaceEvo: Hardware-Friendly Search Space Design for Efficient INT8 Inference
|
2303.08308
|
https://arxiv.org/abs/2303.08308v1
|
https://arxiv.org/pdf/2303.08308v1.pdf
|
https://github.com/microsoft/moonlit
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/constraint-aware-and-ranking-distilled-token
|
Constraint-aware and Ranking-distilled Token Pruning for Efficient Transformer Inference
|
2306.14393
|
https://arxiv.org/abs/2306.14393v1
|
https://arxiv.org/pdf/2306.14393v1.pdf
|
https://github.com/microsoft/moonlit
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/local-linear-forests
|
Local Linear Forests
|
1807.11408
|
https://arxiv.org/abs/1807.11408v4
|
https://arxiv.org/pdf/1807.11408v4.pdf
|
https://github.com/swager/grf
| true | true | true |
none
|
https://paperswithcode.com/paper/neftune-noisy-embeddings-improve-instruction
|
NEFTune: Noisy Embeddings Improve Instruction Finetuning
|
2310.05914
|
https://arxiv.org/abs/2310.05914v2
|
https://arxiv.org/pdf/2310.05914v2.pdf
|
https://github.com/neelsjain/neftune
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/multi-spacecraft-magnetic-field
|
Multi-Spacecraft Magnetic Field Reconstructions: A Cross-Scale Comparison of Methods
|
2310.15187
|
https://arxiv.org/abs/2310.15187v1
|
https://arxiv.org/pdf/2310.15187v1.pdf
|
https://github.com/ammarhakim/gkyl-paper-inp
| true | true | false |
none
|
https://paperswithcode.com/paper/ircoco-immediate-rewards-guided-deep
|
IRCoCo: Immediate Rewards-Guided Deep Reinforcement Learning for Code Completion
|
2401.16637
|
https://arxiv.org/abs/2401.16637v3
|
https://arxiv.org/pdf/2401.16637v3.pdf
|
https://github.com/libolun-star/ircoco
| true | true | false |
jax
|
https://paperswithcode.com/paper/a-phase-field-discrete-element-method-to
|
A Phase-Field Discrete Element Method to study chemo-mechanical coupling in granular materials
|
2310.15718
|
https://arxiv.org/abs/2310.15718v1
|
https://arxiv.org/pdf/2310.15718v1.pdf
|
https://github.com/alexsacmorane/pfdem_acs_multigrains
| true | true | false |
none
|
https://paperswithcode.com/paper/lidar-level-localization-with-radar-the-cfear
|
Lidar-level localization with radar? The CFEAR approach to accurate, fast and robust large-scale radar odometry in diverse environments
|
2211.02445
|
https://arxiv.org/abs/2211.02445v3
|
https://arxiv.org/pdf/2211.02445v3.pdf
|
https://github.com/dan11003/CFEAR_Radarodometry_code_public
| true | false | true |
none
|
https://paperswithcode.com/paper/towards-efficient-and-scalable-sharpness
|
Towards Efficient and Scalable Sharpness-Aware Minimization
|
2203.02714
|
https://arxiv.org/abs/2203.02714v1
|
https://arxiv.org/pdf/2203.02714v1.pdf
|
https://github.com/Leminhbinh0209/LookSAM
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/efficient-and-scalable-graph-generation
|
Efficient and Scalable Graph Generation through Iterative Local Expansion
|
2312.11529
|
https://arxiv.org/abs/2312.11529v4
|
https://arxiv.org/pdf/2312.11529v4.pdf
|
https://github.com/andreasbergmeister/graph-generation
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/earl-an-elliptical-distribution-aided
|
EARL: An Elliptical Distribution aided Adaptive Rotation Label Assignment for Oriented Object Detection in Remote Sensing Images
|
2301.05856
|
https://arxiv.org/abs/2301.05856v2
|
https://arxiv.org/pdf/2301.05856v2.pdf
|
https://github.com/justlovesmile/earl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/automatic-error-type-annotation-for-arabic
|
Automatic Error Type Annotation for Arabic
|
2109.08068
|
https://arxiv.org/abs/2109.08068v1
|
https://arxiv.org/pdf/2109.08068v1.pdf
|
https://github.com/camel-lab/arabic-gec
| false | false | true |
jax
|
https://paperswithcode.com/paper/hifi-codec-group-residual-vector-quantization
|
HiFi-Codec: Group-residual Vector quantization for High Fidelity Audio Codec
|
2305.02765
|
https://arxiv.org/abs/2305.02765v2
|
https://arxiv.org/pdf/2305.02765v2.pdf
|
https://github.com/lucidrains/vector-quantize-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/graph-partitioning-based-diffusion
|
Graph-Partitioning-Based Diffusion Convolutional Recurrent Neural Network for Large-Scale Traffic Forecasting
|
1909.11197
|
https://arxiv.org/abs/1909.11197v4
|
https://arxiv.org/pdf/1909.11197v4.pdf
|
https://github.com/2023-MindSpore-4/Code2/tree/main/dcrnn
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/model-selection-for-bayesian-autoencoders
|
Model Selection for Bayesian Autoencoders
|
2106.06245
|
https://arxiv.org/abs/2106.06245v1
|
https://arxiv.org/pdf/2106.06245v1.pdf
|
https://github.com/tranbahien/bae-prior
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/mixnet-towards-effective-and-efficient-uhd
|
MixNet: Efficient Global Modeling for Ultra-High-Definition Image Restoration
|
2401.10666
|
https://arxiv.org/abs/2401.10666v2
|
https://arxiv.org/pdf/2401.10666v2.pdf
|
https://github.com/zzr-idam/mixnet
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/radarays-real-time-simulation-of-rotating
|
RadaRays: Real-time Simulation of Rotating FMCW Radar for Mobile Robotics via Hardware-accelerated Ray Tracing
|
2310.03505
|
https://arxiv.org/abs/2310.03505v2
|
https://arxiv.org/pdf/2310.03505v2.pdf
|
https://github.com/dan11003/CFEAR_Radarodometry_code_public
| false | false | true |
none
|
https://paperswithcode.com/paper/compresso-structured-pruning-with
|
Compresso: Structured Pruning with Collaborative Prompting Learns Compact Large Language Models
|
2310.05015
|
https://arxiv.org/abs/2310.05015v2
|
https://arxiv.org/pdf/2310.05015v2.pdf
|
https://github.com/microsoft/moonlit
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/qasina-religious-domain-question-answering
|
QASiNa: Religious Domain Question Answering using Sirah Nabawiyah
|
2310.08102
|
https://arxiv.org/abs/2310.08102v1
|
https://arxiv.org/pdf/2310.08102v1.pdf
|
https://github.com/rizquuula/QASiNa
| true | true | false |
none
|
https://paperswithcode.com/paper/unipad-a-universal-pre-training-paradigm-for
|
UniPAD: A Universal Pre-training Paradigm for Autonomous Driving
|
2310.08370
|
https://arxiv.org/abs/2310.08370v2
|
https://arxiv.org/pdf/2310.08370v2.pdf
|
https://github.com/Nightmare-n/UniPAD
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/crashtranslator-automatically-reproducing
|
CrashTranslator: Automatically Reproducing Mobile Application Crashes Directly from Stack Trace
|
2310.07128
|
https://arxiv.org/abs/2310.07128v1
|
https://arxiv.org/pdf/2310.07128v1.pdf
|
https://github.com/wuchiuwong/crashtranslator
| true | true | false |
none
|
https://paperswithcode.com/paper/unipose-detecting-any-keypoints
|
X-Pose: Detecting Any Keypoints
|
2310.08530
|
https://arxiv.org/abs/2310.08530v2
|
https://arxiv.org/pdf/2310.08530v2.pdf
|
https://github.com/IDEA-Research/UniPose
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/glancevad-exploring-glance-supervision-for
|
GlanceVAD: Exploring Glance Supervision for Label-efficient Video Anomaly Detection
|
2403.06154
|
https://arxiv.org/abs/2403.06154v2
|
https://arxiv.org/pdf/2403.06154v2.pdf
|
https://github.com/pipixin321/glancevad
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/projective-transformation-rectification-for
|
Image Projective Transformation Rectification with Synthetic Data for Smartphone-captured Chest X-ray Photos Classification
|
2210.05954
|
https://arxiv.org/abs/2210.05954v2
|
https://arxiv.org/pdf/2210.05954v2.pdf
|
https://github.com/maxium0526/ptrn
| true | false | true |
tf
|
https://paperswithcode.com/paper/extreme-coverage-in-5g-narrowband-iot-a-lut
|
Extreme coverage in 5G Narrowband IoT: a LUT-based strategy to optimize shared channels
|
1908.02798
|
http://arxiv.org/abs/1908.02798v2
|
http://arxiv.org/pdf/1908.02798v2.pdf
|
https://gitlab.com/csc-smart-grid/nbiot-uplink-sched
| true | true | false |
none
|
https://paperswithcode.com/paper/data-to-text-bilingual-generation
|
Data-to-Text Bilingual Generation
|
2311.14808
|
https://arxiv.org/abs/2311.14808v1
|
https://arxiv.org/pdf/2311.14808v1.pdf
|
https://github.com/rali-udem/JSrealB
| true | true | true |
none
|
https://paperswithcode.com/paper/collaborative-target-search-with-a-visual
|
Collaborative Target Search with a Visual Drone Swarm: An Adaptive Curriculum Embedded Multistage Reinforcement Learning Approach
|
2204.12181
|
https://arxiv.org/abs/2204.12181v3
|
https://arxiv.org/pdf/2204.12181v3.pdf
|
https://github.com/ntu-uavg/cts-visual-drone-swarm
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/autoeval-video-an-automatic-benchmark-for
|
AutoEval-Video: An Automatic Benchmark for Assessing Large Vision Language Models in Open-Ended Video Question Answering
|
2311.14906
|
https://arxiv.org/abs/2311.14906v2
|
https://arxiv.org/pdf/2311.14906v2.pdf
|
https://github.com/xiuyuan-chen/autoeval-video
| true | true | true |
none
|
https://paperswithcode.com/paper/convergence-of-edge-computing-and-deep
|
Convergence of Edge Computing and Deep Learning: A Comprehensive Survey
|
1907.08349
|
https://arxiv.org/abs/1907.08349v3
|
https://arxiv.org/pdf/1907.08349v3.pdf
|
https://github.com/umitkacar/ai-edge-computing
| false | false | true |
tf
|
https://paperswithcode.com/paper/machine-learning-at-the-network-edge-a-survey
|
Machine Learning at the Network Edge: A Survey
|
1908.00080
|
https://arxiv.org/abs/1908.00080v4
|
https://arxiv.org/pdf/1908.00080v4.pdf
|
https://github.com/umitkacar/ai-edge-computing
| false | false | true |
tf
|
https://paperswithcode.com/paper/an-ultra-low-power-tinyml-system-for-real
|
An Ultra-low Power TinyML System for Real-time Visual Processing at Edge
|
2207.04663
|
https://arxiv.org/abs/2207.04663v2
|
https://arxiv.org/pdf/2207.04663v2.pdf
|
https://github.com/umitkacar/ai-edge-computing
| false | false | true |
tf
|
https://paperswithcode.com/paper/pp-picodet-a-better-real-time-object-detector
|
PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices
|
2111.00902
|
https://arxiv.org/abs/2111.00902v1
|
https://arxiv.org/pdf/2111.00902v1.pdf
|
https://github.com/umitkacar/ai-edge-computing
| false | false | true |
tf
|
https://paperswithcode.com/paper/uni-mis-united-multiple-intent-spoken
|
Uni-MIS: United Multiple Intent Spoken Language Understanding via Multi-View Intent-Slot Interaction
| null |
https://ojs.aaai.org/index.php/AAAI/article/view/29910
|
https://ojs.aaai.org/index.php/AAAI/article/view/29910/31590
|
https://github.com/SJY8460/Uni-MIS
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/a-central-limit-theorem-for-intransitive-dice
|
A Central Limit Theorem for intransitive dice
|
2310.17083
|
https://arxiv.org/abs/2310.17083v2
|
https://arxiv.org/pdf/2310.17083v2.pdf
|
https://github.com/nontransitivedices/nontransitivedices
| true | true | false |
none
|
https://paperswithcode.com/paper/optimization-of-image-processing-algorithms
|
Optimization of Image Processing Algorithms for Character Recognition in Cultural Typewritten Documents
|
2311.15740
|
https://arxiv.org/abs/2311.15740v1
|
https://arxiv.org/pdf/2311.15740v1.pdf
|
https://github.com/feup-infolab/archmine
| true | true | false |
none
|
https://paperswithcode.com/paper/a-practical-guide-to-implementing-off-axis
|
A Practical Guide to Implementing Off-Axis Stereo Projection Using Existing Ray Tracing Libraries
|
2311.05887
|
https://arxiv.org/abs/2311.05887v2
|
https://arxiv.org/pdf/2311.05887v2.pdf
|
https://github.com/szellmann/anari-offaxis-sample-code
| true | true | false |
none
|
https://paperswithcode.com/paper/testa-temporal-spatial-token-aggregation-for
|
TESTA: Temporal-Spatial Token Aggregation for Long-form Video-Language Understanding
|
2310.19060
|
https://arxiv.org/abs/2310.19060v1
|
https://arxiv.org/pdf/2310.19060v1.pdf
|
https://github.com/renshuhuai-andy/testa
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/hessian-aware-low-rank-weight-perturbation
|
Hessian Aware Low-Rank Perturbation for Order-Robust Continual Learning
|
2311.15161
|
https://arxiv.org/abs/2311.15161v5
|
https://arxiv.org/pdf/2311.15161v5.pdf
|
https://github.com/lijiaqi/halrp
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-motion-refinement-for-unsupervised
|
Learning Motion Refinement for Unsupervised Face Animation
| null |
https://openreview.net/forum?id=m9uHv1Pxq7
|
https://openreview.net/pdf?id=m9uHv1Pxq7
|
https://github.com/jialetao/mrfa
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/tlm-token-level-masking-for-transformers
|
TLM: Token-Level Masking for Transformers
|
2310.18738
|
https://arxiv.org/abs/2310.18738v1
|
https://arxiv.org/pdf/2310.18738v1.pdf
|
https://github.com/young1993/tlm
| true | true | false |
jax
|
https://paperswithcode.com/paper/champ-efficient-annotation-and-consolidation
|
CHAMP: Efficient Annotation and Consolidation of Cluster Hierarchies
|
2311.11301
|
https://arxiv.org/abs/2311.11301v1
|
https://arxiv.org/pdf/2311.11301v1.pdf
|
https://github.com/ariecattan/champ
| true | true | true |
none
|
https://paperswithcode.com/paper/distance-weighted-supervised-learning-for
|
Distance Weighted Supervised Learning for Offline Interaction Data
|
2304.13774
|
https://arxiv.org/abs/2304.13774v1
|
https://arxiv.org/pdf/2304.13774v1.pdf
|
https://github.com/jhejna/dwsl
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/simulation-based-frequentist-inference-with
|
Amortized Simulation-Based Frequentist Inference for Tractable and Intractable Likelihoods
|
2306.07769
|
https://arxiv.org/abs/2306.07769v2
|
https://arxiv.org/pdf/2306.07769v2.pdf
|
https://github.com/AliAlkadhim/ALFFI
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object
|
YOLOv4: Optimal Speed and Accuracy of Object Detection
|
2004.10934
|
https://arxiv.org/abs/2004.10934v1
|
https://arxiv.org/pdf/2004.10934v1.pdf
|
https://github.com/MindSpore-paper-code-3/code8/tree/main/cspdarknet53
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/towards-trustworthy-reranking-a-simple-yet
|
Towards Trustworthy Reranking: A Simple yet Effective Abstention Mechanism
|
2402.12997
|
https://arxiv.org/abs/2402.12997v5
|
https://arxiv.org/pdf/2402.12997v5.pdf
|
https://github.com/hgissbkh/abstention-reranker
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/detection-fusion-for-knowledge-graph
|
Detection-Fusion for Knowledge Graph Extraction from Videos
|
2501.00136
|
https://arxiv.org/abs/2501.00136v1
|
https://arxiv.org/pdf/2501.00136v1.pdf
|
https://github.com/Taniya-Das/video_annotation
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/computational-smocking-through-fabric-thread
|
Computational Smocking through Fabric-Thread Interaction
|
2401.05533
|
https://arxiv.org/abs/2401.05533v2
|
https://arxiv.org/pdf/2401.05533v2.pdf
|
https://github.com/nifzhou/italiansmocking
| true | true | false |
none
|
https://paperswithcode.com/paper/homotopy-io-a-proof-assistant-for-finitely
|
homotopy.io: a proof assistant for finitely-presented globular $n$-categories
|
2402.13179
|
https://arxiv.org/abs/2402.13179v1
|
https://arxiv.org/pdf/2402.13179v1.pdf
|
https://github.com/homotopy-io/homotopy-rs
| true | true | true |
none
|
https://paperswithcode.com/paper/zero-noise-extrapolation-on-logical-qubits-by
|
Zero noise extrapolation on logical qubits by scaling the error correction code distance
|
2304.14985
|
https://arxiv.org/abs/2304.14985v2
|
https://arxiv.org/pdf/2304.14985v2.pdf
|
https://github.com/unitaryfund/research
| true | true | false |
none
|
https://paperswithcode.com/paper/lumen-shape-reconstruction-using-a-soft
|
Lumen Shape Reconstruction using a Soft Robotic Balloon Catheter and Electrical Impedance Tomography
|
2207.12536
|
https://arxiv.org/abs/2207.12536v2
|
https://arxiv.org/pdf/2207.12536v2.pdf
|
https://github.com/eit-team/balloon_catheter_sizing
| true | true | true |
none
|
https://paperswithcode.com/paper/momentum-sam-sharpness-aware-minimization
|
Momentum-SAM: Sharpness Aware Minimization without Computational Overhead
|
2401.12033
|
https://arxiv.org/abs/2401.12033v2
|
https://arxiv.org/pdf/2401.12033v2.pdf
|
https://github.com/marlonbecker/msam
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/towards-reliable-ai-model-deployments
|
Towards Reliable AI Model Deployments: Multiple Input Mixup for Out-of-Distribution Detection
|
2312.15514
|
https://arxiv.org/abs/2312.15514v1
|
https://arxiv.org/pdf/2312.15514v1.pdf
|
https://github.com/ndb796/multipleinputmixup
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/diet-odin-a-novel-framework-for-opioid-misuse
|
Diet-ODIN: A Novel Framework for Opioid Misuse Detection with Interpretable Dietary Patterns
|
2403.08820
|
https://arxiv.org/abs/2403.08820v1
|
https://arxiv.org/pdf/2403.08820v1.pdf
|
https://github.com/jasonzhangzy1757/diet-odin
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/directpose-direct-end-to-end-multi-person
|
DirectPose: Direct End-to-End Multi-Person Pose Estimation
|
1911.07451
|
https://arxiv.org/abs/1911.07451v2
|
https://arxiv.org/pdf/1911.07451v2.pdf
|
https://github.com/IDEA-Research/UniPose
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/asynchronous-parallel-reinforcement-learning
|
Asynchronous Parallel Reinforcement Learning for Optimizing Propulsive Performance in Fin Ray Control
|
2401.11349
|
https://arxiv.org/abs/2401.11349v1
|
https://arxiv.org/pdf/2401.11349v1.pdf
|
https://github.com/jx-wang-s-group/apt-rl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/single-seed-generation-of-brownian-paths-and
|
Single-seed generation of Brownian paths and integrals for adaptive and high order SDE solvers
|
2405.06464
|
https://arxiv.org/abs/2405.06464v3
|
https://arxiv.org/pdf/2405.06464v3.pdf
|
https://github.com/andyelking/diffrax_stla
| true | true | false |
jax
|
https://paperswithcode.com/paper/handling-data-heterogeneity-via-architectural
|
Handling Data Heterogeneity via Architectural Design for Federated Visual Recognition
| null |
https://openreview.net/forum?id=LGKxz9clGG
|
https://openreview.net/pdf?id=LGKxz9clGG
|
https://github.com/sarapieri/fed_het
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/m5hisdoc-a-large-scale-multi-style-chinese
|
M5HisDoc: A Large-scale Multi-style Chinese Historical Document Analysis Benchmark
| null |
https://openreview.net/forum?id=uJT68uPtC0
|
https://openreview.net/pdf?id=uJT68uPtC0
|
https://github.com/hciilab/m5hisdoc
| true | true | false |
none
|
https://paperswithcode.com/paper/similarity-of-neural-network-representations
|
Similarity of Neural Network Representations Revisited
|
1905.00414
|
https://arxiv.org/abs/1905.00414v4
|
https://arxiv.org/pdf/1905.00414v4.pdf
|
https://github.com/nanzhaogang/contrib/tree/master/application/similarity-of-neural-network-representations-revisited
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/lmdrive-closed-loop-end-to-end-driving-with
|
LMDrive: Closed-Loop End-to-End Driving with Large Language Models
|
2312.07488
|
https://arxiv.org/abs/2312.07488v2
|
https://arxiv.org/pdf/2312.07488v2.pdf
|
https://github.com/opendilab/lmdrive
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/finding-order-in-chaos-a-novel-data-1
|
Finding Order in Chaos: A Novel Data Augmentation Method for Time Series in Contrastive Learning
|
2309.13439
|
https://arxiv.org/abs/2309.13439v2
|
https://arxiv.org/pdf/2309.13439v2.pdf
|
https://github.com/eth-siplab/Finding_Order_in_Chaos
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/robustft-robust-supervised-fine-tuning-for
|
RobustFT: Robust Supervised Fine-tuning for Large Language Models under Noisy Response
|
2412.14922
|
https://arxiv.org/abs/2412.14922v1
|
https://arxiv.org/pdf/2412.14922v1.pdf
|
https://github.com/luo-junyu/robustft
| true | true | true |
none
|
https://paperswithcode.com/paper/a-python-library-for-efficient-computation-of
|
A Python library for efficient computation of molecular fingerprints
|
2403.19718
|
https://arxiv.org/abs/2403.19718v1
|
https://arxiv.org/pdf/2403.19718v1.pdf
|
https://github.com/arch4ngel21/scikit-fingerprints
| true | true | false |
none
|
https://paperswithcode.com/paper/mixehr-surg-a-joint-proportional-hazard-and
|
MixEHR-SurG: a joint proportional hazard and guided topic model for inferring mortality-associated topics from electronic health records
|
2312.13454
|
https://arxiv.org/abs/2312.13454v3
|
https://arxiv.org/pdf/2312.13454v3.pdf
|
https://github.com/li-lab-mcgill/mixehr-surg
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/distributed-quantum-neural-networks-via
|
Distributed Quantum Neural Networks via Partitioned Features Encoding
|
2312.13650
|
https://arxiv.org/abs/2312.13650v2
|
https://arxiv.org/pdf/2312.13650v2.pdf
|
https://github.com/puyokw/distributedqnns
| true | true | false |
none
|
https://paperswithcode.com/paper/shallow-cross-encoders-for-low-latency
|
Shallow Cross-Encoders for Low-Latency Retrieval
|
2403.20222
|
https://arxiv.org/abs/2403.20222v1
|
https://arxiv.org/pdf/2403.20222v1.pdf
|
https://github.com/asash/shallow-cross-encoders
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/ct-xcov-a-ct-scan-based-explainable-framework
|
CT-xCOV: a CT-scan based Explainable Framework for COVid-19 diagnosis
|
2311.14462
|
https://arxiv.org/abs/2311.14462v1
|
https://arxiv.org/pdf/2311.14462v1.pdf
|
https://github.com/ismailelbouknify/ct-xcov
| true | true | false |
tf
|
https://paperswithcode.com/paper/invariant-learning-via-probability-of-1
|
Invariant Learning via Probability of Sufficient and Necessary Causes
|
2309.12559
|
https://arxiv.org/abs/2309.12559v5
|
https://arxiv.org/pdf/2309.12559v5.pdf
|
https://github.com/ymy4323460/casn
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/wasserstein-adversarially-regularized-graph
|
Wasserstein Adversarially Regularized Graph Autoencoder
|
2111.04981
|
https://arxiv.org/abs/2111.04981v1
|
https://arxiv.org/pdf/2111.04981v1.pdf
|
https://github.com/LeonResearch/WARGA
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/safe-offline-reinforcement-learning-with
|
Safe Offline Reinforcement Learning with Feasibility-Guided Diffusion Model
|
2401.10700
|
https://arxiv.org/abs/2401.10700v1
|
https://arxiv.org/pdf/2401.10700v1.pdf
|
https://github.com/zhengyinan-air/fisor
| true | true | true |
jax
|
https://paperswithcode.com/paper/a-simple-and-effective-pruning-approach-for
|
A Simple and Effective Pruning Approach for Large Language Models
|
2306.11695
|
https://arxiv.org/abs/2306.11695v3
|
https://arxiv.org/pdf/2306.11695v3.pdf
|
https://github.com/crystaleye42/eval-safety
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/towards-the-generation-of-synchronized-and
|
Towards the generation of synchronized and believable non-verbal facial behaviors of a talking virtual agent
|
2311.12804
|
https://arxiv.org/abs/2311.12804v1
|
https://arxiv.org/pdf/2311.12804v1.pdf
|
https://github.com/aldelb/non_verbal_facial_animation
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/aspects-of-human-memory-and-large-language
|
Aspects of human memory and Large Language Models
|
2311.03839
|
https://arxiv.org/abs/2311.03839v3
|
https://arxiv.org/pdf/2311.03839v3.pdf
|
https://github.com/rmldj/memory-llm-paper
| true | true | false |
none
|
https://paperswithcode.com/paper/exploring-jiu-jitsu-argumentation-for-writing
|
Exploring Jiu-Jitsu Argumentation for Writing Peer Review Rebuttals
|
2311.03998
|
https://arxiv.org/abs/2311.03998v1
|
https://arxiv.org/pdf/2311.03998v1.pdf
|
https://github.com/ukplab/emnlp2023_jiu_jitsu_argumentation_for_rebuttals
| true | true | false |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.