paper_url
stringlengths
36
81
paper_title
stringlengths
1
242
paper_arxiv_id
stringlengths
9
16
paper_url_abs
stringlengths
18
314
paper_url_pdf
stringlengths
21
935
repo_url
stringlengths
26
200
is_official
bool
2 classes
mentioned_in_paper
bool
2 classes
mentioned_in_github
bool
2 classes
framework
stringclasses
9 values
https://paperswithcode.com/paper/parallel-and-external-memory-construction-of
Parallel and External-Memory Construction of Minimal Perfect Hash Functions with PTHash
2106.02350
https://arxiv.org/abs/2106.02350v2
https://arxiv.org/pdf/2106.02350v2.pdf
https://github.com/jermp/pthash
true
true
true
none
https://paperswithcode.com/paper/open-amp-synthetic-data-framework-for-audio
Open-Amp: Synthetic Data Framework for Audio Effect Foundation Models
2411.14972
https://arxiv.org/abs/2411.14972v1
https://arxiv.org/pdf/2411.14972v1.pdf
https://github.com/Alec-Wright/OpenAmp
true
false
false
pytorch
https://paperswithcode.com/paper/efficient-sequence-transduction-by-jointly
Efficient Sequence Transduction by Jointly Predicting Tokens and Durations
2304.06795
https://arxiv.org/abs/2304.06795v2
https://arxiv.org/pdf/2304.06795v2.pdf
https://github.com/chimechallenge/C8DASR-Baseline-NeMo
false
false
true
pytorch
https://paperswithcode.com/paper/investigating-the-corruption-robustness-of
Investigating the Corruption Robustness of Image Classifiers with Random Lp-norm Corruptions
2305.05400
https://arxiv.org/abs/2305.05400v4
https://arxiv.org/pdf/2305.05400v4.pdf
https://github.com/georgsiedel/lp-norm-corruption-robustness
true
true
true
pytorch
https://paperswithcode.com/paper/high-expectations-an-observational-study-of
High Expectations: An Observational Study of Programming and Cannabis Intoxication
2402.19194
https://arxiv.org/abs/2402.19194v1
https://arxiv.org/pdf/2402.19194v1.pdf
https://github.com/cellocorgi/cannabisobservationalstudy
true
true
false
none
https://paperswithcode.com/paper/how-to-evaluate-your-medical-time-series
How to evaluate your medical time series classification?
2410.03057
https://arxiv.org/abs/2410.03057v1
https://arxiv.org/pdf/2410.03057v1.pdf
https://github.com/dl4mhealth/medts_evaluation
true
true
false
pytorch
https://paperswithcode.com/paper/oneformer-one-transformer-to-rule-universal
OneFormer: One Transformer to Rule Universal Image Segmentation
2211.06220
https://arxiv.org/abs/2211.06220v2
https://arxiv.org/pdf/2211.06220v2.pdf
https://github.com/yangyucheng000/University/tree/main/model-1/oneformer
false
false
false
mindspore
https://paperswithcode.com/paper/generalized-out-of-distribution-detection-a
Generalized Out-of-Distribution Detection: A Survey
2110.11334
https://arxiv.org/abs/2110.11334v3
https://arxiv.org/pdf/2110.11334v3.pdf
https://github.com/antoinedemathelin/openood
false
false
true
pytorch
https://paperswithcode.com/paper/openood-benchmarking-generalized-out-of
OpenOOD: Benchmarking Generalized Out-of-Distribution Detection
2210.07242
https://arxiv.org/abs/2210.07242v1
https://arxiv.org/pdf/2210.07242v1.pdf
https://github.com/antoinedemathelin/openood
false
false
true
pytorch
https://paperswithcode.com/paper/icassp-2023-acoustic-echo-cancellation
ICASSP 2023 Acoustic Echo Cancellation Challenge
2309.12553
https://arxiv.org/abs/2309.12553v1
https://arxiv.org/pdf/2309.12553v1.pdf
https://github.com/microsoft/AEC-Challenge
true
true
false
none
https://paperswithcode.com/paper/rsc-snn-exploring-the-trade-off-between
RSC-SNN: Exploring the Trade-off Between Adversarial Robustness and Accuracy in Spiking Neural Networks via Randomized Smoothing Coding
2407.20099
https://arxiv.org/abs/2407.20099v1
https://arxiv.org/pdf/2407.20099v1.pdf
https://github.com/KemingWu/RSC-SNN
true
true
false
none
https://paperswithcode.com/paper/on-the-efficacy-of-sampling-adapters
On the Efficacy of Sampling Adapters
2307.03749
https://arxiv.org/abs/2307.03749v2
https://arxiv.org/pdf/2307.03749v2.pdf
https://github.com/rycolab/sampling-adapters
true
true
false
pytorch
https://paperswithcode.com/paper/parcorfull2-0-a-parallel-corpus-annotated
ParCorFull2.0: a Parallel Corpus Annotated with Full Coreference
null
https://aclanthology.org/2022.lrec-1.85
https://aclanthology.org/2022.lrec-1.85.pdf
https://github.com/chardmeier/parcor-full
true
true
false
none
https://paperswithcode.com/paper/cracking-the-code-of-negative-transfer-a
Cracking the Code of Negative Transfer: A Cooperative Game Theoretic Approach for Cross-Domain Sequential Recommendation
2311.13188
https://arxiv.org/abs/2311.13188v1
https://arxiv.org/pdf/2311.13188v1.pdf
https://github.com/cpark88/CGRec
true
false
false
pytorch
https://paperswithcode.com/paper/dataset-level-attribute-leakage-in
Leakage of Dataset Properties in Multi-Party Machine Learning
2006.07267
https://arxiv.org/abs/2006.07267v3
https://arxiv.org/pdf/2006.07267v3.pdf
https://github.com/epfl-dlab/property-inference-attacks
false
false
true
pytorch
https://paperswithcode.com/paper/the-deep-generative-decoder-using-map-1
The Deep Generative Decoder: MAP estimation of representations improves modeling of single-cell RNA data
2110.06672
https://arxiv.org/abs/2110.06672v3
https://arxiv.org/pdf/2110.06672v3.pdf
https://github.com/center-for-health-data-science/dgd_paper
false
true
true
pytorch
https://paperswithcode.com/paper/seer-language-instructed-video-prediction
Seer: Language Instructed Video Prediction with Latent Diffusion Models
2303.14897
https://arxiv.org/abs/2303.14897v3
https://arxiv.org/pdf/2303.14897v3.pdf
https://github.com/seervideodiffusion/SeerVideoLDM
false
false
true
pytorch
https://paperswithcode.com/paper/fast-model-inference-and-training-on-board-of
Fast model inference and training on-board of Satellites
2307.08700
https://arxiv.org/abs/2307.08700v1
https://arxiv.org/pdf/2307.08700v1.pdf
https://github.com/previtus/ravaen-unibap-dorbit
true
true
true
pytorch
https://paperswithcode.com/paper/unifying-token-and-span-level-supervisions
Unifying Token and Span Level Supervisions for Few-Shot Sequence Labeling
2307.07946
https://arxiv.org/abs/2307.07946v2
https://arxiv.org/pdf/2307.07946v2.pdf
https://github.com/zifengcheng/cdap
true
true
false
pytorch
https://paperswithcode.com/paper/nonlinear-wave-damping-by-kelvin-helmholtz
Nonlinear wave damping by Kelvin-Helmholtz instability induced turbulence
2308.02217
https://arxiv.org/abs/2308.02217v2
https://arxiv.org/pdf/2308.02217v2.pdf
https://github.com/AstroSnow/PIP
true
true
false
none
https://paperswithcode.com/paper/sample-factory-egocentric-3d-control-from
Sample Factory: Egocentric 3D Control from Pixels at 100000 FPS with Asynchronous Reinforcement Learning
2006.11751
https://arxiv.org/abs/2006.11751v2
https://arxiv.org/pdf/2006.11751v2.pdf
https://github.com/pervasive-ai-lab/nle-language-wrapper
false
false
true
pytorch
https://paperswithcode.com/paper/gradient-free-training-of-neural-odes-for
Gradient-free training of neural ODEs for system identification and control using ensemble Kalman inversion
2307.07882
https://arxiv.org/abs/2307.07882v1
https://arxiv.org/pdf/2307.07882v1.pdf
https://gitlab.com/computationalscience/eki-neural-ode
true
true
false
pytorch
https://paperswithcode.com/paper/pomdp-inference-and-robust-solution-via-deep
POMDP inference and robust solution via deep reinforcement learning: An application to railway optimal maintenance
2307.08082
https://arxiv.org/abs/2307.08082v1
https://arxiv.org/pdf/2307.08082v1.pdf
https://github.com/giarcieri/robust-optimal-maintenance-planning-through-reinforcement-learning-and-rllib
true
true
false
none
https://paperswithcode.com/paper/energy-dependent-implementation-of-secondary
Energy-dependent implementation of secondary electron emission models in continuum kinetic sheath simulations
2311.02689
https://arxiv.org/abs/2311.02689v2
https://arxiv.org/pdf/2311.02689v2.pdf
https://github.com/ammarhakim/gkyl-paper-inp
true
true
false
none
https://paperswithcode.com/paper/spiral-an-efficient-algorithm-for-the
SPIRAL: An Efficient Algorithm for the Integration of the Equation of Rotational Motion
2311.04106
https://arxiv.org/abs/2311.04106v1
https://arxiv.org/pdf/2311.04106v1.pdf
https://github.com/cdelv/algorithmsforrotationalmotion
true
true
false
none
https://paperswithcode.com/paper/disentangling-writer-and-character-styles-for
Disentangling Writer and Character Styles for Handwriting Generation
2303.14736
https://arxiv.org/abs/2303.14736v2
https://arxiv.org/pdf/2303.14736v2.pdf
https://github.com/dailenson/sdt
true
true
true
pytorch
https://paperswithcode.com/paper/carousel-phase-retrieval-algorithm-for-3d
Real time 3D coherent X-ray diffraction imaging
2402.05283
https://arxiv.org/abs/2402.05283v3
https://arxiv.org/pdf/2402.05283v3.pdf
https://github.com/UCSD-CEM/Carousel-Phase-Retrieval-Algorithm
true
true
false
none
https://paperswithcode.com/paper/improving-transformer-based-image-matching-by
Improving Transformer-based Image Matching by Cascaded Capturing Spatially Informative Keypoints
2303.02885
https://arxiv.org/abs/2303.02885v2
https://arxiv.org/pdf/2303.02885v2.pdf
https://github.com/ewrfcas/casmtr
true
true
true
pytorch
https://paperswithcode.com/paper/the-sequence-to-sequence-baseline-for-the
The Sequence-to-Sequence Baseline for the Voice Conversion Challenge 2020: Cascading ASR and TTS
2010.02434
https://arxiv.org/abs/2010.02434v1
https://arxiv.org/pdf/2010.02434v1.pdf
https://github.com/MindSpore-paper-code-3/code2/tree/main/crnn_seq2seq_ocr
false
false
false
mindspore
https://paperswithcode.com/paper/a-survey-on-learning-from-imbalanced-data
A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework
2204.03719
https://arxiv.org/abs/2204.03719v2
https://arxiv.org/pdf/2204.03719v2.pdf
https://github.com/canoalberto/imbalanced-streams
true
true
true
none
https://paperswithcode.com/paper/variable-importance-for-causal-forests
Variable importance for causal forests: breaking down the heterogeneity of treatment effects
2308.03369
https://arxiv.org/abs/2308.03369v1
https://arxiv.org/pdf/2308.03369v1.pdf
https://gitlab.com/cbenard/grf-vimp
true
true
false
none
https://paperswithcode.com/paper/generalization-error-of-generalized-linear
Generalization Error of Generalized Linear Models in High Dimensions
2005.00180
https://arxiv.org/abs/2005.00180v1
https://arxiv.org/pdf/2005.00180v1.pdf
https://github.com/crowd-ai-lab/generating-figure-captions-as-a-text-summarization-task
false
false
true
none
https://paperswithcode.com/paper/measure-theoretic-time-delay-embedding
Measure-Theoretic Time-Delay Embedding
2409.08768
https://arxiv.org/abs/2409.08768v1
https://arxiv.org/pdf/2409.08768v1.pdf
https://github.com/jrbotvinick/Measure-Theoretic-Time-Delay-Embedding
true
false
false
pytorch
https://paperswithcode.com/paper/cross-domain-product-representation-learning
Cross-Domain Product Representation Learning for Rich-Content E-Commerce
2308.05550
https://arxiv.org/abs/2308.05550v1
https://arxiv.org/pdf/2308.05550v1.pdf
https://github.com/adxcreative/cope
true
true
false
pytorch
https://paperswithcode.com/paper/revisiting-domain-adaptive-3d-object
Revisiting Domain-Adaptive 3D Object Detection by Reliable, Diverse and Class-balanced Pseudo-Labeling
2307.07944
https://arxiv.org/abs/2307.07944v3
https://arxiv.org/pdf/2307.07944v3.pdf
https://github.com/zhuoxiao-chen/redb-da-3ddet
true
true
true
pytorch
https://paperswithcode.com/paper/haplotype-based-variant-detection-from-short
Haplotype-based variant detection from short-read sequencing
1207.3907
http://arxiv.org/abs/1207.3907v2
http://arxiv.org/pdf/1207.3907v2.pdf
https://github.com/ekg/freebayes
true
true
true
none
https://paperswithcode.com/paper/towards-understanding-adversarial
Why Does Little Robustness Help? A Further Step Towards Understanding Adversarial Transferability
2307.07873
https://arxiv.org/abs/2307.07873v7
https://arxiv.org/pdf/2307.07873v7.pdf
https://github.com/cgcl-codes/transferattacksurrogates
true
true
false
pytorch
https://paperswithcode.com/paper/trojdiff-trojan-attacks-on-diffusion-models
TrojDiff: Trojan Attacks on Diffusion Models with Diverse Targets
2303.05762
https://arxiv.org/abs/2303.05762v1
https://arxiv.org/pdf/2303.05762v1.pdf
https://github.com/mikiyaxi/watermark-audio-diffusion
false
false
true
pytorch
https://paperswithcode.com/paper/progressive-distillation-for-fast-sampling-of-1
Progressive Distillation for Fast Sampling of Diffusion Models
2202.00512
https://arxiv.org/abs/2202.00512v2
https://arxiv.org/pdf/2202.00512v2.pdf
https://github.com/viniciusmikuni/caloscorev2
false
false
true
tf
https://paperswithcode.com/paper/caloscore-v2-single-shot-calorimeter-shower
CaloScore v2: Single-shot Calorimeter Shower Simulation with Diffusion Models
2308.03847
https://arxiv.org/abs/2308.03847v1
https://arxiv.org/pdf/2308.03847v1.pdf
https://github.com/viniciusmikuni/caloscorev2
true
true
false
tf
https://paperswithcode.com/paper/dynamic-landslide-susceptibility-mapping-over
Dynamic landslide susceptibility mapping over recent three decades to uncover variations in landslide causes in subtropical urban mountainous areas
2308.11929
https://arxiv.org/abs/2308.11929v1
https://arxiv.org/pdf/2308.11929v1.pdf
https://github.com/cli-de/d_lsm
true
true
true
tf
https://paperswithcode.com/paper/circuit-as-set-of-points-1
Circuit as Set of Points
2310.17418
https://arxiv.org/abs/2310.17418v1
https://arxiv.org/pdf/2310.17418v1.pdf
https://github.com/hustvl/circuitformer
true
true
false
pytorch
https://paperswithcode.com/paper/quantifying-nonradiative-recombination-and
Quantifying Nonradiative Recombination and Resistive Losses in Perovskite Photovoltaics: A Modified Diode Model Approach
2311.17442
https://arxiv.org/abs/2311.17442v2
https://arxiv.org/pdf/2311.17442v2.pdf
https://github.com/wpt-lab124/modified-diode-model
true
true
false
none
https://paperswithcode.com/paper/contrastive-latent-variable-models-for-neural
Contrastive Latent Variable Models for Neural Text Generation
null
https://proceedings.mlr.press/v180/teng22a.html
https://proceedings.mlr.press/v180/teng22a.html
https://github.com/2024-MindSpore-1/Code2/tree/main/tengzhiyang/contrastive_vae_mindspore-main
false
false
false
mindspore
https://paperswithcode.com/paper/what-to-do-when-things-get-crowded-scalable
What to do when things get crowded? Scalable joint analysis of overlapping gravitational wave signals
2308.06318
https://arxiv.org/abs/2308.06318v1
https://arxiv.org/pdf/2308.06318v1.pdf
https://github.com/undark-lab/swyft
true
true
false
pytorch
https://paperswithcode.com/paper/taming-differentiable-logics-with-coq
Taming Differentiable Logics with Coq Formalisation
2403.13700
https://arxiv.org/abs/2403.13700v2
https://arxiv.org/pdf/2403.13700v2.pdf
https://github.com/math-comp/analysis
true
true
false
none
https://paperswithcode.com/paper/ravss-robust-audio-visual-speech-separation
RAVSS: Robust Audio-Visual Speech Separation in Multi-Speaker Scenarios with Missing Visual Cues
2407.19224
https://arxiv.org/abs/2407.19224v2
https://arxiv.org/pdf/2407.19224v2.pdf
https://github.com/pantianrui/RAVSS
true
true
false
pytorch
https://paperswithcode.com/paper/notation3-as-an-existential-rule-language
Existential Notation3 Logic
2308.07332
https://arxiv.org/abs/2308.07332v2
https://arxiv.org/pdf/2308.07332v2.pdf
https://github.com/smennicke/n32rules
true
true
false
none
https://paperswithcode.com/paper/a-unified-query-based-paradigm-for
A Unified Query-based Paradigm for Camouflaged Instance Segmentation
2308.07392
https://arxiv.org/abs/2308.07392v2
https://arxiv.org/pdf/2308.07392v2.pdf
https://github.com/dongbo811/uqformer
true
true
false
none
https://paperswithcode.com/paper/jwst-early-release-science-program-templates
JWST Early Release Science Program TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and their Extended Star formation
2312.10465
https://arxiv.org/abs/2312.10465v1
https://arxiv.org/pdf/2312.10465v1.pdf
https://github.com/jwst-templates/notebooks
true
true
true
none
https://paperswithcode.com/paper/deep-learning-with-plasma-plume-image
Deep learning with plasma plume image sequences for anomaly detection and prediction of growth kinetics during pulsed laser deposition
2312.09133
https://arxiv.org/abs/2312.09133v1
https://arxiv.org/pdf/2312.09133v1.pdf
https://github.com/sumner-harris/Deep-Learning-with-ICCD-Images
true
false
false
pytorch
https://paperswithcode.com/paper/empowering-large-language-model-for-continual
Empowering Large Language Model for Continual Video Question Answering with Collaborative Prompting
2410.00771
https://arxiv.org/abs/2410.00771v2
https://arxiv.org/pdf/2410.00771v2.pdf
https://github.com/caicch/colpro
true
true
false
pytorch
https://paperswithcode.com/paper/monocular-human-object-reconstruction-in-the
Monocular Human-Object Reconstruction in the Wild
2407.20566
https://arxiv.org/abs/2407.20566v2
https://arxiv.org/pdf/2407.20566v2.pdf
https://github.com/huochf/WildHOI
true
false
false
pytorch
https://paperswithcode.com/paper/deep-symbolic-regression-for-physics-guided
Deep symbolic regression for physics guided by units constraints: toward the automated discovery of physical laws
2303.03192
https://arxiv.org/abs/2303.03192v2
https://arxiv.org/pdf/2303.03192v2.pdf
https://github.com/wassimtenachi/physo
true
true
true
pytorch
https://paperswithcode.com/paper/self-supervised-learning-for-visual
Self-Supervised Learning for Visual Relationship Detection through Masked Bounding Box Reconstruction
2311.04834
https://arxiv.org/abs/2311.04834v1
https://arxiv.org/pdf/2311.04834v1.pdf
https://github.com/deeplab-ai/selfsupervisedvrd
true
true
false
pytorch
https://paperswithcode.com/paper/a-truly-concurrent-semantics-for-reversible
A Truly Concurrent Semantics for Reversible CCS
2309.14011
https://arxiv.org/abs/2309.14011v4
https://arxiv.org/pdf/2309.14011v4.pdf
https://github.com/hmelgra/reversible-ccs-as-nets
true
true
false
none
https://paperswithcode.com/paper/depth-self-supervision-for-single-image-novel
Depth self-supervision for single image novel view synthesis
2308.14108
https://arxiv.org/abs/2308.14108v1
https://arxiv.org/pdf/2308.14108v1.pdf
https://github.com/johnminelli/twowaysynth
true
true
false
pytorch
https://paperswithcode.com/paper/brain-like-representational-straightening-of
Brain-like representational straightening of natural movies in robust feedforward neural networks
2308.13870
https://arxiv.org/abs/2308.13870v1
https://arxiv.org/pdf/2308.13870v1.pdf
https://github.com/toosi/brainlike_straightening
true
true
false
none
https://paperswithcode.com/paper/time-to-pattern-information-theoretic
Time-to-Pattern: Information-Theoretic Unsupervised Learning for Scalable Time Series Summarization
2308.13722
https://arxiv.org/abs/2308.13722v1
https://arxiv.org/pdf/2308.13722v1.pdf
https://github.com/alirezaghods/t2p-time-to-pattern
true
true
false
pytorch
https://paperswithcode.com/paper/spiking-pointnet-spiking-neural-networks-for-1
Spiking PointNet: Spiking Neural Networks for Point Clouds
2310.06232
https://arxiv.org/abs/2310.06232v1
https://arxiv.org/pdf/2310.06232v1.pdf
https://github.com/dayongren/spiking-pointnet
true
true
false
pytorch
https://paperswithcode.com/paper/investigation-of-tearing-mode-stability-near
Investigation of Tearing Mode Stability Near Ideal Stability Boundaries Via Asymptotic Matching Techniques
2503.24184
https://arxiv.org/abs/2503.24184v1
https://arxiv.org/pdf/2503.24184v1.pdf
https://github.com/rfitzp/TJ
true
false
false
none
https://paperswithcode.com/paper/response-emergent-analogical-reasoning-in
Response: Emergent analogical reasoning in large language models
2308.16118
https://arxiv.org/abs/2308.16118v2
https://arxiv.org/pdf/2308.16118v2.pdf
https://github.com/hodeld/emergent_analogies_llm_fork
true
true
false
none
https://paperswithcode.com/paper/emergent-analogical-reasoning-in-large
Emergent Analogical Reasoning in Large Language Models
2212.09196
https://arxiv.org/abs/2212.09196v3
https://arxiv.org/pdf/2212.09196v3.pdf
https://github.com/hodeld/emergent_analogies_llm_fork
false
false
true
none
https://paperswithcode.com/paper/adaptive-multi-modalities-fusion-in
Adaptive Multi-Modalities Fusion in Sequential Recommendation Systems
2308.15980
https://arxiv.org/abs/2308.15980v1
https://arxiv.org/pdf/2308.15980v1.pdf
https://github.com/holdenhu/mmsr
true
true
true
pytorch
https://paperswithcode.com/paper/robust-affine-feature-matching-via-quadratic
Robust affine point matching via quadratic assignment on Grassmannians
2303.02698
https://arxiv.org/abs/2303.02698v5
https://arxiv.org/pdf/2303.02698v5.pdf
https://github.com/sashakolpakov/rag
true
true
false
none
https://paperswithcode.com/paper/on-the-pareto-front-of-multilingual-neural
On the Pareto Front of Multilingual Neural Machine Translation
null
https://openreview.net/forum?id=G7sQlfTzmY
https://openreview.net/pdf?id=G7sQlfTzmY
https://github.com/pkunlp-icler/paretomnmt
true
true
false
pytorch
https://paperswithcode.com/paper/fcos-fully-convolutional-one-stage-object
FCOS: Fully Convolutional One-Stage Object Detection
1904.01355
https://arxiv.org/abs/1904.01355v5
https://arxiv.org/pdf/1904.01355v5.pdf
https://github.com/MindSpore-paper-code-3/code6/tree/main/adelaide_ea
false
false
false
mindspore
https://paperswithcode.com/paper/semi-supervised-semantic-segmentation-with-7
Semi-supervised Semantic Segmentation with Mutual Knowledge Distillation
2208.11499
https://arxiv.org/abs/2208.11499v3
https://arxiv.org/pdf/2208.11499v3.pdf
https://github.com/jianlong-yuan/semi-mmseg
true
true
false
pytorch
https://paperswithcode.com/paper/multi-robot-rendezvous-in-unknown-environment
Multi-Robot Rendezvous in Unknown Environment with Limited Communication
2405.08345
https://arxiv.org/abs/2405.08345v2
https://arxiv.org/pdf/2405.08345v2.pdf
https://github.com/KunSong-L/Distributed-Multi-Robot-Topological-Map
true
true
false
pytorch
https://paperswithcode.com/paper/one-phase-batch-update-on-sparse-merkle-trees
One-Phase Batch Update on Sparse Merkle Trees for Rollups
2310.13328
https://arxiv.org/abs/2310.13328v1
https://arxiv.org/pdf/2310.13328v1.pdf
https://github.com/boqian-ma/one-phase-batch-update-smt
true
true
true
none
https://paperswithcode.com/paper/a-critical-evaluation-of-ai-feedback-for
A Critical Evaluation of AI Feedback for Aligning Large Language Models
2402.12366
https://arxiv.org/abs/2402.12366v1
https://arxiv.org/pdf/2402.12366v1.pdf
https://github.com/architsharma97/dpo-rlaif
true
true
true
pytorch
https://paperswithcode.com/paper/weakly-supervised-learning-for-breast-cancer
Case-level Breast Cancer Prediction for Real Hospital Settings
2310.12677
https://arxiv.org/abs/2310.12677v2
https://arxiv.org/pdf/2310.12677v2.pdf
https://github.com/shreyasipathak/multiinstance-learning-mammography
true
true
true
pytorch
https://paperswithcode.com/paper/aniportrait-audio-driven-synthesis-of
AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animation
2403.17694
https://arxiv.org/abs/2403.17694v1
https://arxiv.org/pdf/2403.17694v1.pdf
https://github.com/zejun-yang/aniportrait
false
false
true
pytorch
https://paperswithcode.com/paper/unlocking-fine-grained-details-with-wavelet
Unlocking Fine-Grained Details with Wavelet-based High-Frequency Enhancement in Transformers
2308.13442
https://arxiv.org/abs/2308.13442v2
https://arxiv.org/pdf/2308.13442v2.pdf
https://github.com/mindflow-institue/ssct
false
false
true
pytorch
https://paperswithcode.com/paper/efficient-multi-view-graph-clustering-with
Efficient Multi-View Graph Clustering with Local and Global Structure Preservation
2309.00024
https://arxiv.org/abs/2309.00024v1
https://arxiv.org/pdf/2309.00024v1.pdf
https://github.com/wy1019/emvgc-lg
true
true
false
none
https://paperswithcode.com/paper/nemig-a-bilingual-news-collection-and
NeMig -- A Bilingual News Collection and Knowledge Graph about Migration
2309.00550
https://arxiv.org/abs/2309.00550v1
https://arxiv.org/pdf/2309.00550v1.pdf
https://github.com/andreeaiana/nemig
true
true
false
none
https://paperswithcode.com/paper/chart-what-i-say-exploring-cross-modality
Chart What I Say: Exploring Cross-Modality Prompt Alignment in AI-Assisted Chart Authoring
2404.05103
https://arxiv.org/abs/2404.05103v1
https://arxiv.org/pdf/2404.05103v1.pdf
https://github.com/cookielab-uoft/voice-chart-authoring-instructions-dataset
true
true
true
none
https://paperswithcode.com/paper/an-automatic-system-for-acoustic-microphone
An Automatic System for Acoustic Microphone Geometry Calibration based on Minimal Solvers
1610.02392
https://arxiv.org/abs/1610.02392v1
https://arxiv.org/pdf/1610.02392v1.pdf
https://github.com/kalleastrom/structurefromsound2
false
false
true
none
https://paperswithcode.com/paper/layout-and-task-aware-instruction-prompt-for
Layout and Task Aware Instruction Prompt for Zero-shot Document Image Question Answering
2306.00526
https://arxiv.org/abs/2306.00526v4
https://arxiv.org/pdf/2306.00526v4.pdf
https://github.com/wenjinw/latin-prompt
true
true
true
pytorch
https://paperswithcode.com/paper/knowledge-graph-reasoning-with-relational
Knowledge Graph Reasoning with Relational Digraph
2108.06040
https://arxiv.org/abs/2108.06040v2
https://arxiv.org/pdf/2108.06040v2.pdf
https://github.com/lars-research/red-gnn
false
false
true
pytorch
https://paperswithcode.com/paper/disentangling-long-short-term-state-under
Disentangling Long-Short Term State Under Unknown Interventions for Online Time Series Forecasting
2502.12603
https://arxiv.org/abs/2502.12603v1
https://arxiv.org/pdf/2502.12603v1.pdf
https://github.com/DMIRLAB-Group/LSTD
true
false
false
pytorch
https://paperswithcode.com/paper/anovl-adapting-vision-language-models-for
Bootstrap Fine-Grained Vision-Language Alignment for Unified Zero-Shot Anomaly Localization
2308.15939
https://arxiv.org/abs/2308.15939v2
https://arxiv.org/pdf/2308.15939v2.pdf
https://github.com/hq-deng/AnoVL
true
false
true
pytorch
https://paperswithcode.com/paper/gmai-vl-r1-harnessing-reinforcement-learning
GMAI-VL-R1: Harnessing Reinforcement Learning for Multimodal Medical Reasoning
2504.01886
https://arxiv.org/abs/2504.01886v1
https://arxiv.org/pdf/2504.01886v1.pdf
https://github.com/uni-medical/gmai-vl-r1
true
true
true
none
https://paperswithcode.com/paper/large-window-based-mamba-unet-for-medical
LKM-UNet: Large Kernel Vision Mamba UNet for Medical Image Segmentation
2403.07332
https://arxiv.org/abs/2403.07332v2
https://arxiv.org/pdf/2403.07332v2.pdf
https://github.com/wjh892521292/lkm-unet
true
true
true
pytorch
https://paperswithcode.com/paper/toward-deep-drum-source-separation
Toward Deep Drum Source Separation
2312.09663
https://arxiv.org/abs/2312.09663v3
https://arxiv.org/pdf/2312.09663v3.pdf
https://github.com/polimi-ispl/larsnet
true
true
true
pytorch
https://paperswithcode.com/paper/mila-memory-based-instance-level-adaptation-1
MILA: Memory-Based Instance-Level Adaptation for Cross-Domain Object Detection
2309.01086
https://arxiv.org/abs/2309.01086v1
https://arxiv.org/pdf/2309.01086v1.pdf
https://github.com/hitachi-rd-cv/MILA
false
false
true
pytorch
https://paperswithcode.com/paper/conda-contrastive-domain-adaptation-for-ai
ConDA: Contrastive Domain Adaptation for AI-generated Text Detection
2309.03992
https://arxiv.org/abs/2309.03992v2
https://arxiv.org/pdf/2309.03992v2.pdf
https://github.com/amritabh/conda-gen-text-detection
true
true
true
pytorch
https://paperswithcode.com/paper/scalable-learning-of-intrusion-responses
Scalable Learning of Intrusion Responses through Recursive Decomposition
2309.03292
https://arxiv.org/abs/2309.03292v2
https://arxiv.org/pdf/2309.03292v2.pdf
https://github.com/limmen/csle
true
true
true
none
https://paperswithcode.com/paper/complex-yolo-real-time-3d-object-detection-on
Complex-YOLO: Real-time 3D Object Detection on Point Clouds
1803.06199
http://arxiv.org/abs/1803.06199v2
http://arxiv.org/pdf/1803.06199v2.pdf
https://github.com/wwooo/tensorflow_complex_yolo
false
false
true
tf
https://paperswithcode.com/paper/generalized-policy-improvement-algorithms
Generalized Policy Improvement Algorithms with Theoretically Supported Sample Reuse
2206.13714
https://arxiv.org/abs/2206.13714v3
https://arxiv.org/pdf/2206.13714v3.pdf
https://github.com/jqueeney/gpi
true
true
true
tf
https://paperswithcode.com/paper/fibinet-combining-feature-importance-and
FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction
1905.09433
https://arxiv.org/abs/1905.09433v1
https://arxiv.org/pdf/1905.09433v1.pdf
https://github.com/HaSai666/rec_pangu
false
false
true
pytorch
https://paperswithcode.com/paper/masknet-introducing-feature-wise
MaskNet: Introducing Feature-Wise Multiplication to CTR Ranking Models by Instance-Guided Mask
2102.07619
https://arxiv.org/abs/2102.07619v2
https://arxiv.org/pdf/2102.07619v2.pdf
https://github.com/HaSai666/rec_pangu
false
false
true
pytorch
https://paperswithcode.com/paper/effective-lstms-for-target-dependent
Effective LSTMs for Target-Dependent Sentiment Classification
1512.01100
http://arxiv.org/abs/1512.01100v2
http://arxiv.org/pdf/1512.01100v2.pdf
https://github.com/mindspore-courses/ABSA-MindSpore
false
false
true
mindspore
https://paperswithcode.com/paper/interactive-attention-networks-for-aspect
Interactive Attention Networks for Aspect-Level Sentiment Classification
1709.00893
http://arxiv.org/abs/1709.00893v1
http://arxiv.org/pdf/1709.00893v1.pdf
https://github.com/mindspore-courses/ABSA-MindSpore
false
false
true
mindspore
https://paperswithcode.com/paper/aspect-level-sentiment-classification-with-1
Aspect Level Sentiment Classification with Deep Memory Network
1605.08900
http://arxiv.org/abs/1605.08900v2
http://arxiv.org/pdf/1605.08900v2.pdf
https://github.com/mindspore-courses/ABSA-MindSpore
false
false
true
mindspore
https://paperswithcode.com/paper/structured-stochastic-gradient-mcmc
Structured Stochastic Gradient MCMC
2107.09028
https://arxiv.org/abs/2107.09028v4
https://arxiv.org/pdf/2107.09028v4.pdf
https://github.com/ajboyd2/pytorch_lvi
true
true
true
pytorch
https://paperswithcode.com/paper/lora-low-rank-adaptation-of-large-language
LoRA: Low-Rank Adaptation of Large Language Models
2106.09685
https://arxiv.org/abs/2106.09685v2
https://arxiv.org/pdf/2106.09685v2.pdf
https://github.com/qwenlm/qwen-vl
false
false
true
pytorch
https://paperswithcode.com/paper/ctrsvdd-a-benchmark-dataset-and-baseline
CtrSVDD: A Benchmark Dataset and Baseline Analysis for Controlled Singing Voice Deepfake Detection
2406.02438
https://arxiv.org/abs/2406.02438v2
https://arxiv.org/pdf/2406.02438v2.pdf
https://github.com/svddchallenge/ctrsvdd2024_baseline
true
false
false
pytorch
https://paperswithcode.com/paper/tilp-differentiable-learning-of-temporal
TILP: Differentiable Learning of Temporal Logical Rules on Knowledge Graphs
2402.12309
https://arxiv.org/abs/2402.12309v1
https://arxiv.org/pdf/2402.12309v1.pdf
https://github.com/xiongsiheng/tilp
true
true
false
none
https://paperswithcode.com/paper/men-also-do-laundry-multi-attribute-bias
Men Also Do Laundry: Multi-Attribute Bias Amplification
2210.11924
https://arxiv.org/abs/2210.11924v3
https://arxiv.org/pdf/2210.11924v3.pdf
https://github.com/sonyresearch/multi_bias_amp
true
true
true
pytorch