paper_url
stringlengths
36
81
paper_title
stringlengths
1
242
paper_arxiv_id
stringlengths
9
16
paper_url_abs
stringlengths
18
314
paper_url_pdf
stringlengths
21
935
repo_url
stringlengths
26
200
is_official
bool
2 classes
mentioned_in_paper
bool
2 classes
mentioned_in_github
bool
2 classes
framework
stringclasses
9 values
https://paperswithcode.com/paper/piquasso-a-photonic-quantum-computer
Piquasso: A Photonic Quantum Computer Simulation Software Platform
2403.04006
https://arxiv.org/abs/2403.04006v3
https://arxiv.org/pdf/2403.04006v3.pdf
https://github.com/budapest-quantum-computing-group/piquasso
true
true
false
none
https://paperswithcode.com/paper/rcdt-relational-remote-sensing-change
RCDT: Relational Remote Sensing Change Detection with Transformer
2212.04869
https://arxiv.org/abs/2212.04869v1
https://arxiv.org/pdf/2212.04869v1.pdf
https://github.com/lukxuan/RCDT
true
false
true
pytorch
https://paperswithcode.com/paper/sepal-sepsis-alerts-on-low-power-wearables
SepAl: Sepsis Alerts On Low Power Wearables With Digital Biomarkers and On-Device Tiny Machine Learning
2408.08316
https://arxiv.org/abs/2408.08316v1
https://arxiv.org/pdf/2408.08316v1.pdf
https://github.com/mgiordy/sepsis-prediction
true
true
false
pytorch
https://paperswithcode.com/paper/fastspeech-fast-robust-and-controllable-text
FastSpeech: Fast, Robust and Controllable Text to Speech
1905.09263
https://arxiv.org/abs/1905.09263v5
https://arxiv.org/pdf/1905.09263v5.pdf
https://github.com/jkyunnng/happyquokka_system_for_eeg_challenge
false
false
true
pytorch
https://paperswithcode.com/paper/happyquokka-system-for-icassp-2023-auditory
HappyQuokka System for ICASSP 2023 Auditory EEG Challenge
2305.06806
https://arxiv.org/abs/2305.06806v1
https://arxiv.org/pdf/2305.06806v1.pdf
https://github.com/jkyunnng/happyquokka_system_for_eeg_challenge
true
true
false
pytorch
https://paperswithcode.com/paper/motif-learning-motion-trajectories-with-local
MoTIF: Learning Motion Trajectories with Local Implicit Neural Functions for Continuous Space-Time Video Super-Resolution
2307.07988
https://arxiv.org/abs/2307.07988v2
https://arxiv.org/pdf/2307.07988v2.pdf
https://github.com/sichun233746/motif
true
true
true
pytorch
https://paperswithcode.com/paper/vision-language-model-based-handwriting
Vision-Language Model Based Handwriting Verification
2407.21788
https://arxiv.org/abs/2407.21788v1
https://arxiv.org/pdf/2407.21788v1.pdf
https://github.com/Abhishek0057/vlm-hv
false
false
true
none
https://paperswithcode.com/paper/scireviewgen-a-large-scale-dataset-for
SciReviewGen: A Large-scale Dataset for Automatic Literature Review Generation
2305.15186
https://arxiv.org/abs/2305.15186v1
https://arxiv.org/pdf/2305.15186v1.pdf
https://github.com/tetsu9923/scireviewgen
true
true
true
pytorch
https://paperswithcode.com/paper/locality-sensitive-hashing-in-fourier
Locality Sensitive Hashing in Fourier Frequency Domain For Soft Set Containment Search
null
https://openreview.net/forum?id=rUf0GV5CuU
https://openreview.net/pdf?id=rUf0GV5CuU
https://github.com/structlearning/fhashnet
true
true
false
pytorch
https://paperswithcode.com/paper/one-shot-learning-for-semantic-segmentation
One-Shot Learning for Semantic Segmentation
1709.03410
http://arxiv.org/abs/1709.03410v1
http://arxiv.org/pdf/1709.03410v1.pdf
https://github.com/zwzheng98/qclnet
false
false
true
pytorch
https://paperswithcode.com/paper/quaternion-valued-correlation-learning-for
Quaternion-valued Correlation Learning for Few-Shot Semantic Segmentation
2305.07283
https://arxiv.org/abs/2305.07283v3
https://arxiv.org/pdf/2305.07283v3.pdf
https://github.com/zwzheng98/qclnet
true
true
false
pytorch
https://paperswithcode.com/paper/open-wikitable-dataset-for-open-domain
Open-WikiTable: Dataset for Open Domain Question Answering with Complex Reasoning over Table
2305.07288
https://arxiv.org/abs/2305.07288v1
https://arxiv.org/pdf/2305.07288v1.pdf
https://github.com/sean0042/open_wikitable
true
true
true
pytorch
https://paperswithcode.com/paper/enhanced-graph-neural-networks-with-ego
Enhanced Graph Neural Networks with Ego-Centric Spectral Subgraph Embeddings Augmentation
2310.12169
https://arxiv.org/abs/2310.12169v1
https://arxiv.org/pdf/2310.12169v1.pdf
https://github.com/anwar-said/esgea
true
true
false
pytorch
https://paperswithcode.com/paper/local-implicit-normalizing-flow-for-arbitrary
Local Implicit Normalizing Flow for Arbitrary-Scale Image Super-Resolution
2303.05156
https://arxiv.org/abs/2303.05156v3
https://arxiv.org/pdf/2303.05156v3.pdf
https://github.com/JNNNNYao/LINF
true
true
true
pytorch
https://paperswithcode.com/paper/a-framework-for-interpretation-and-testing-of
A framework for interpretation and testing of sparse canonical correlations
2310.02169
https://arxiv.org/abs/2310.02169v2
https://arxiv.org/pdf/2310.02169v2.pdf
https://github.com/nuria-sv/toscca
true
true
false
none
https://paperswithcode.com/paper/the-boosted-dc-algorithm-for-clustering-with
The Boosted DC Algorithm for Clustering with Constraints
2310.14148
https://arxiv.org/abs/2310.14148v1
https://arxiv.org/pdf/2310.14148v1.pdf
https://github.com/tuyentdtran/bdcaclustering
true
true
false
none
https://paperswithcode.com/paper/mprnet-multi-path-residual-network-for
MPRNet: Multi-Path Residual Network for Lightweight Image Super Resolution
2011.04566
https://arxiv.org/abs/2011.04566v1
https://arxiv.org/pdf/2011.04566v1.pdf
https://github.com/swz30/MPRNet
true
false
false
pytorch
https://paperswithcode.com/paper/global-selector-a-new-benchmark-dataset-and
Uni-Encoder: A Fast and Accurate Response Selection Paradigm for Generation-Based Dialogue Systems
2106.01263
https://arxiv.org/abs/2106.01263v5
https://arxiv.org/pdf/2106.01263v5.pdf
https://github.com/dll-wu/uni-encoder
true
true
true
pytorch
https://paperswithcode.com/paper/songdriver2-real-time-emotion-based-music
REMAST: Real-time Emotion-based Music Arrangement with Soft Transition
2305.08029
https://arxiv.org/abs/2305.08029v3
https://arxiv.org/pdf/2305.08029v3.pdf
https://github.com/carlwangchina/songdriver2-real-time-emotion-based-music-arrangement-with-soft-transition
true
true
false
pytorch
https://paperswithcode.com/paper/palm-open-fundus-photograph-dataset-with
PALM: Open Fundus Photograph Dataset with Pathologic Myopia Recognition and Anatomical Structure Annotation
2305.07816
https://arxiv.org/abs/2305.07816v1
https://arxiv.org/pdf/2305.07816v1.pdf
https://github.com/tianyizheming/ichallenge_baseline
true
true
false
paddle
https://paperswithcode.com/paper/unsupervised-semantic-variation-prediction
Unsupervised Semantic Variation Prediction using the Distribution of Sibling Embeddings
2305.08654
https://arxiv.org/abs/2305.08654v1
https://arxiv.org/pdf/2305.08654v1.pdf
https://github.com/a1da4/svp-gauss
true
true
false
pytorch
https://paperswithcode.com/paper/hierarchical-control-and-learning-of-a
Hierarchical control and learning of a foraging CyberOctopus
2302.05811
https://arxiv.org/abs/2302.05811v1
https://arxiv.org/pdf/2302.05811v1.pdf
https://github.com/GazzolaLab/PyElastica
true
true
true
none
https://paperswithcode.com/paper/uniformerv2-spatiotemporal-learning-by-arming
UniFormerV2: Spatiotemporal Learning by Arming Image ViTs with Video UniFormer
null
https://openreview.net/forum?id=d77RVuVg-Mf
https://openreview.net/pdf?id=d77RVuVg-Mf
https://github.com/innat/UniFormerV2
false
false
false
tf
https://paperswithcode.com/paper/insights-from-hst-into-ultra-massive-galaxies
Insights from HST into Ultra-Massive Galaxies and Early-Universe Cosmology
2305.07049
https://arxiv.org/abs/2305.07049v2
https://arxiv.org/pdf/2305.07049v2.pdf
https://github.com/nnssa/gallumi_public
true
true
false
none
https://paperswithcode.com/paper/global-context-vision-transformers
Global Context Vision Transformers
2206.09959
https://arxiv.org/abs/2206.09959v5
https://arxiv.org/pdf/2206.09959v5.pdf
https://github.com/nvlabs/gcvit
true
true
true
pytorch
https://paperswithcode.com/paper/establishing-shared-query-understanding-in-an
Establishing Shared Query Understanding in an Open Multi-Agent System
2305.09349
https://arxiv.org/abs/2305.09349v1
https://arxiv.org/pdf/2305.09349v1.pdf
https://github.com/kondilidisn/shared_query_understanding
true
true
false
none
https://paperswithcode.com/paper/omnisafe-an-infrastructure-for-accelerating
OmniSafe: An Infrastructure for Accelerating Safe Reinforcement Learning Research
2305.09304
https://arxiv.org/abs/2305.09304v1
https://arxiv.org/pdf/2305.09304v1.pdf
https://github.com/pku-alignment/omnisafe
false
true
false
pytorch
https://paperswithcode.com/paper/resurrecting-recurrent-neural-networks-for
Resurrecting Recurrent Neural Networks for Long Sequences
2303.06349
https://arxiv.org/abs/2303.06349v1
https://arxiv.org/pdf/2303.06349v1.pdf
https://github.com/sustcsonglin/pytorch_linear_rnn
false
false
true
pytorch
https://paperswithcode.com/paper/discriminative-graph-level-anomaly-detection
Discriminative Graph-level Anomaly Detection via Dual-students-teacher Model
2308.01947
https://arxiv.org/abs/2308.01947v1
https://arxiv.org/pdf/2308.01947v1.pdf
https://github.com/whb605/gladst
true
true
false
pytorch
https://paperswithcode.com/paper/emergent-world-representations-exploring-a
Emergent World Representations: Exploring a Sequence Model Trained on a Synthetic Task
2210.13382
https://arxiv.org/abs/2210.13382v5
https://arxiv.org/pdf/2210.13382v5.pdf
https://github.com/likenneth/othello_world
true
true
true
pytorch
https://paperswithcode.com/paper/mgcamb-with-massive-neutrinos-and-dynamical
MGCAMB with massive neutrinos and dynamical dark energy
1901.05956
http://arxiv.org/abs/1901.05956v1
http://arxiv.org/pdf/1901.05956v1.pdf
https://github.com/sfu-cosmo/MGCAMB
true
true
true
none
https://paperswithcode.com/paper/unpaired-image-to-image-translation-using
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
1703.10593
https://arxiv.org/abs/1703.10593v7
https://arxiv.org/pdf/1703.10593v7.pdf
https://github.com/MindSpore-paper-code-3/code9/tree/main/CycleGAN
false
false
false
mindspore
https://paperswithcode.com/paper/metric-space-spread-intrinsic-dimension-and
Metric Space Spread, Intrinsic Dimension and the Manifold Hypothesis
2308.01382
https://arxiv.org/abs/2308.01382v1
https://arxiv.org/pdf/2308.01382v1.pdf
https://github.com/dk-gh/metric_space_spread
true
true
false
none
https://paperswithcode.com/paper/ethics-in-rotten-apples-a-network
Ethics in rotten apples: A network epidemiology approach for active cyber defense
2306.17533
https://arxiv.org/abs/2306.17533v1
https://arxiv.org/pdf/2306.17533v1.pdf
https://github.com/frappan/c72h-whiteworms
true
true
false
none
https://paperswithcode.com/paper/neural-group-recommendation-based-on-a
Neural Group Recommendation Based on a Probabilistic Semantic Aggregation
2303.07001
https://arxiv.org/abs/2303.07001v1
https://arxiv.org/pdf/2303.07001v1.pdf
https://github.com/knodis-research-group/neural-cf-for-groups
true
true
true
tf
https://paperswithcode.com/paper/instructscore-towards-explainable-text
INSTRUCTSCORE: Explainable Text Generation Evaluation with Finegrained Feedback
2305.14282
https://arxiv.org/abs/2305.14282v3
https://arxiv.org/pdf/2305.14282v3.pdf
https://github.com/xu1998hz/sescore3
true
true
false
pytorch
https://paperswithcode.com/paper/uncertainty-aware-contour-proposal-networks
Uncertainty-Aware Contour Proposal Networks for Cell Segmentation in Multi-Modality High-Resolution Microscopy Images
null
https://openreview.net/forum?id=YtgRjBw-7GJ
https://openreview.net/pdf?id=YtgRjBw-7GJ
https://github.com/FZJ-INM1-BDA/celldetection
false
false
false
pytorch
https://paperswithcode.com/paper/towards-ssh3-how-http-3-improves-secure
Towards SSH3: how HTTP/3 improves secure shells
2312.08396
https://arxiv.org/abs/2312.08396v1
https://arxiv.org/pdf/2312.08396v1.pdf
https://github.com/francoismichel/ssh3
true
true
false
none
https://paperswithcode.com/paper/doc2graph-a-task-agnostic-document
Doc2Graph: a Task Agnostic Document Understanding Framework based on Graph Neural Networks
2208.11168
https://arxiv.org/abs/2208.11168v1
https://arxiv.org/pdf/2208.11168v1.pdf
https://github.com/andreagemelli/doc2graph
true
false
true
pytorch
https://paperswithcode.com/paper/logicity-advancing-neuro-symbolic-ai-with
LogiCity: Advancing Neuro-Symbolic AI with Abstract Urban Simulation
2411.00773
https://arxiv.org/abs/2411.00773v1
https://arxiv.org/pdf/2411.00773v1.pdf
https://github.com/Jaraxxus-Me/LogiCity
true
false
false
pytorch
https://paperswithcode.com/paper/lobsdice-offline-imitation-learning-from
LobsDICE: Offline Learning from Observation via Stationary Distribution Correction Estimation
2202.13536
https://arxiv.org/abs/2202.13536v2
https://arxiv.org/pdf/2202.13536v2.pdf
https://github.com/kaist-ailab/imitation-dice
false
false
true
tf
https://paperswithcode.com/paper/windowshap-an-efficient-framework-for
WindowSHAP: An Efficient Framework for Explaining Time-series Classifiers based on Shapley Values
2211.06507
https://arxiv.org/abs/2211.06507v2
https://arxiv.org/pdf/2211.06507v2.pdf
https://github.com/vsubbian/windowshap
true
true
true
none
https://paperswithcode.com/paper/glitch-in-the-matrix-a-large-scale-benchmark
Glitch in the Matrix: A Large Scale Benchmark for Content Driven Audio-Visual Forgery Detection and Localization
2305.01979
https://arxiv.org/abs/2305.01979v3
https://arxiv.org/pdf/2305.01979v3.pdf
https://github.com/ControlNet/LAV-DF
true
true
true
pytorch
https://paperswithcode.com/paper/make-a-video-text-to-video-generation-without
Make-A-Video: Text-to-Video Generation without Text-Video Data
2209.14792
https://arxiv.org/abs/2209.14792v1
https://arxiv.org/pdf/2209.14792v1.pdf
https://github.com/lucidrains/make-a-video-pytorch
false
false
false
pytorch
https://paperswithcode.com/paper/combinatorial-bandits-for-maximum-value
Combinatorial Bandits for Maximum Value Reward Function under Max Value-Index Feedback
2305.16074
https://arxiv.org/abs/2305.16074v1
https://arxiv.org/pdf/2305.16074v1.pdf
https://github.com/sketch-exp/kmax
true
true
false
none
https://paperswithcode.com/paper/testing-the-ability-of-language-models-to-1
Testing the Ability of Language Models to Interpret Figurative Language
2204.12632
https://arxiv.org/abs/2204.12632v2
https://arxiv.org/pdf/2204.12632v2.pdf
https://github.com/simran-khanuja/multilingual-fig-qa
false
false
true
pytorch
https://paperswithcode.com/paper/synthrad2023-grand-challenge-dataset
SynthRAD2023 Grand Challenge dataset: generating synthetic CT for radiotherapy
2303.16320
https://arxiv.org/abs/2303.16320v1
https://arxiv.org/pdf/2303.16320v1.pdf
https://github.com/synthrad2023/preprocessing
true
true
false
none
https://paperswithcode.com/paper/nasgec-a-multi-domain-chinese-grammatical
NaSGEC: a Multi-Domain Chinese Grammatical Error Correction Dataset from Native Speaker Texts
2305.16023
https://arxiv.org/abs/2305.16023v1
https://arxiv.org/pdf/2305.16023v1.pdf
https://github.com/hillzhang1999/nasgec
true
true
false
none
https://paperswithcode.com/paper/scalearn-simple-and-highly-parameter
ScaLearn: Simple and Highly Parameter-Efficient Task Transfer by Learning to Scale
2310.01217
https://arxiv.org/abs/2310.01217v3
https://arxiv.org/pdf/2310.01217v3.pdf
https://github.com/cpjku/scalearn
true
true
true
jax
https://paperswithcode.com/paper/towards-open-temporal-graph-neural-networks
Towards Open Temporal Graph Neural Networks
2303.15015
https://arxiv.org/abs/2303.15015v2
https://arxiv.org/pdf/2303.15015v2.pdf
https://github.com/tulerfeng/OTGNet
true
true
false
pytorch
https://paperswithcode.com/paper/fascinating-supervisory-signals-and-where-to
Fascinating Supervisory Signals and Where to Find Them: Deep Anomaly Detection with Scale Learning
2305.16114
https://arxiv.org/abs/2305.16114v1
https://arxiv.org/pdf/2305.16114v1.pdf
https://github.com/xuhongzuo/scale-learning
true
true
true
pytorch
https://paperswithcode.com/paper/an-evaluation-of-cfear-radar-odometry
An evaluation of CFEAR Radar Odometry
2404.01781
https://arxiv.org/abs/2404.01781v2
https://arxiv.org/pdf/2404.01781v2.pdf
https://github.com/dan11003/CFEAR_Radarodometry_code_public
true
true
false
none
https://paperswithcode.com/paper/more-convnets-in-the-2020s-scaling-up-kernels
More ConvNets in the 2020s: Scaling up Kernels Beyond 51x51 using Sparsity
2207.03620
https://arxiv.org/abs/2207.03620v3
https://arxiv.org/pdf/2207.03620v3.pdf
https://github.com/vita-group/slak
true
true
true
pytorch
https://paperswithcode.com/paper/are-large-kernels-better-teachers-than
Are Large Kernels Better Teachers than Transformers for ConvNets?
2305.19412
https://arxiv.org/abs/2305.19412v1
https://arxiv.org/pdf/2305.19412v1.pdf
https://github.com/vita-group/slak
true
true
true
pytorch
https://paperswithcode.com/paper/easily-accessible-text-to-image-generation
Easily Accessible Text-to-Image Generation Amplifies Demographic Stereotypes at Large Scale
2211.03759
https://arxiv.org/abs/2211.03759v2
https://arxiv.org/pdf/2211.03759v2.pdf
https://github.com/vinid/text-to-image-bias
true
true
false
none
https://paperswithcode.com/paper/bokehornot-transforming-bokeh-effect-with
BokehOrNot: Transforming Bokeh Effect with Image Transformer and Lens Metadata Embedding
2306.04032
https://arxiv.org/abs/2306.04032v1
https://arxiv.org/pdf/2306.04032v1.pdf
https://github.com/indicator0/bokehornot
true
true
false
pytorch
https://paperswithcode.com/paper/policy-based-self-competition-for-planning
Policy-Based Self-Competition for Planning Problems
2306.04403
https://arxiv.org/abs/2306.04403v1
https://arxiv.org/pdf/2306.04403v1.pdf
https://github.com/grimmlab/policy-based-self-competition
true
true
false
pytorch
https://paperswithcode.com/paper/the-feniks-survey-multi-wavelength
The FENIKS Survey: Multi-wavelength Photometric Catalog in the UDS Field, and Catalogs of Photometric Redshifts and Stellar Population Properties
2401.03107
https://arxiv.org/abs/2401.03107v3
https://arxiv.org/pdf/2401.03107v3.pdf
https://zenodo.org/record/11002299
true
false
false
none
https://paperswithcode.com/paper/incremental-learning-of-structured-memory-via
Incremental Learning of Structured Memory via Closed-Loop Transcription
2202.05411
https://arxiv.org/abs/2202.05411v3
https://arxiv.org/pdf/2202.05411v3.pdf
https://github.com/tsb0601/i-ctrl
true
true
true
pytorch
https://paperswithcode.com/paper/sound-event-localization-and-detection-of
Sound Event Localization and Detection of Overlapping Sources Using Convolutional Recurrent Neural Networks
1807.00129
http://arxiv.org/abs/1807.00129v3
http://arxiv.org/pdf/1807.00129v3.pdf
https://github.com/sharathadavanne/seld-dcase2023
false
false
true
pytorch
https://paperswithcode.com/paper/video-diffusion-models
Video Diffusion Models
2204.03458
https://arxiv.org/abs/2204.03458v2
https://arxiv.org/pdf/2204.03458v2.pdf
https://github.com/lucidrains/make-a-video-pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/defsent-improving-sentence-embeddings-of
DefSent+: Improving sentence embeddings of language models by projecting definition sentences into a quasi-isotropic or isotropic vector space of unlimited dictionary entries
2405.16153
https://arxiv.org/abs/2405.16153v4
https://arxiv.org/pdf/2405.16153v4.pdf
https://github.com/ryuliuxiaodong/DefSent-Plus
true
true
false
pytorch
https://paperswithcode.com/paper/gms-3dqa-projection-based-grid-mini-patch
GMS-3DQA: Projection-based Grid Mini-patch Sampling for 3D Model Quality Assessment
2306.05658
https://arxiv.org/abs/2306.05658v2
https://arxiv.org/pdf/2306.05658v2.pdf
https://github.com/zzc-1998/gms-3dqa
true
true
false
pytorch
https://paperswithcode.com/paper/gradual-domain-adaptation-theory-and
Gradual Domain Adaptation: Theory and Algorithms
2310.13852
https://arxiv.org/abs/2310.13852v2
https://arxiv.org/pdf/2310.13852v2.pdf
https://github.com/uiuctml/goat
true
true
true
pytorch
https://paperswithcode.com/paper/understanding-gradual-domain-adaptation
Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path and Beyond
2204.08200
https://arxiv.org/abs/2204.08200v2
https://arxiv.org/pdf/2204.08200v2.pdf
https://github.com/uiuctml/goat
false
false
true
pytorch
https://paperswithcode.com/paper/grad-cam-improved-visual-explanations-for
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
1710.11063
http://arxiv.org/abs/1710.11063v3
http://arxiv.org/pdf/1710.11063v3.pdf
https://github.com/adityac94/Grad_CAM_plus_plus
true
true
false
tf
https://paperswithcode.com/paper/transcendental-idealism-of-planner-evaluating
Transcendental Idealism of Planner: Evaluating Perception from Planning Perspective for Autonomous Driving
2306.07276
https://arxiv.org/abs/2306.07276v1
https://arxiv.org/pdf/2306.07276v1.pdf
https://github.com/qcraftai/tip
true
true
true
pytorch
https://paperswithcode.com/paper/aladdin-zero-shot-hallucination-of-stylized
Aladdin: Zero-Shot Hallucination of Stylized 3D Assets from Abstract Scene Descriptions
2306.06212
https://arxiv.org/abs/2306.06212v1
https://arxiv.org/pdf/2306.06212v1.pdf
https://github.com/ianhuang0630/aladdin
true
true
false
pytorch
https://paperswithcode.com/paper/one-pass-distribution-sketch-for-measuring
One-Pass Distribution Sketch for Measuring Data Heterogeneity in Federated Learning
null
https://openreview.net/forum?id=KMxRQO7P98
https://openreview.net/pdf?id=KMxRQO7P98
https://github.com/lzcemma/race_distance
true
true
false
pytorch
https://paperswithcode.com/paper/ink-injecting-knn-knowledge-in-nearest
INK: Injecting kNN Knowledge in Nearest Neighbor Machine Translation
2306.06381
https://arxiv.org/abs/2306.06381v1
https://arxiv.org/pdf/2306.06381v1.pdf
https://github.com/owennju/ink
true
true
false
pytorch
https://paperswithcode.com/paper/efficient-reduced-order-quadrature
Efficient Reduced Order Quadrature Construction Algorithms for Fast Gravitational Wave Inference
2307.16610
https://arxiv.org/abs/2307.16610v1
https://arxiv.org/pdf/2307.16610v1.pdf
https://github.com/gmorras/eigroq
true
true
false
none
https://paperswithcode.com/paper/noma-aided-joint-communication-sensing-and
NOMA-aided Joint Communication, Sensing, and Multi-tier Computing Systems
2205.08272
https://arxiv.org/abs/2205.08272v2
https://arxiv.org/pdf/2205.08272v2.pdf
https://github.com/zhaolin820/noma-aided-joint-communication-sensing-and-multi-tier-computing-systems
true
false
true
none
https://paperswithcode.com/paper/geometric-transformer-for-end-to-end-molecule
Geometric Transformer for End-to-End Molecule Properties Prediction
2110.13721
https://arxiv.org/abs/2110.13721v3
https://arxiv.org/pdf/2110.13721v3.pdf
https://github.com/yoniLc/GeometricTransformerMolecule
true
false
true
pytorch
https://paperswithcode.com/paper/experimental-standards-for-deep-learning
Experimental Standards for Deep Learning in Natural Language Processing Research
2204.06251
https://arxiv.org/abs/2204.06251v2
https://arxiv.org/pdf/2204.06251v2.pdf
https://github.com/kaleidophon/experimental-standards-deep-learning-research
true
true
true
none
https://paperswithcode.com/paper/joint-species-distribution-models-with
Joint species distribution models with imperfect detection for high-dimensional spatial data
2204.02707
https://arxiv.org/abs/2204.02707v2
https://arxiv.org/pdf/2204.02707v2.pdf
https://github.com/doserjef/doser_et_al_2022
true
true
true
none
https://paperswithcode.com/paper/verified-completeness-in-henkin-style-for
Verified completeness in Henkin-style for intuitionistic propositional logic
2310.01916
https://arxiv.org/abs/2310.01916v1
https://arxiv.org/pdf/2310.01916v1.pdf
https://github.com/bbentzen/ipl
true
true
false
none
https://paperswithcode.com/paper/emotion-recognition-using-transformers-with
Emotion Recognition Using Transformers with Masked Learning
2403.13731
https://arxiv.org/abs/2403.13731v2
https://arxiv.org/pdf/2403.13731v2.pdf
https://github.com/msjae/abaw
true
true
false
pytorch
https://paperswithcode.com/paper/seeing-is-not-always-believing-benchmarking
Seeing is not always believing: Benchmarking Human and Model Perception of AI-Generated Images
null
https://openreview.net/forum?id=Xoi31wJ5iI
https://openreview.net/pdf?id=Xoi31wJ5iI
https://github.com/inf-imagine/sentry
true
true
false
none
https://paperswithcode.com/paper/unit-scaling-out-of-the-box-low-precision
Unit Scaling: Out-of-the-Box Low-Precision Training
2303.11257
https://arxiv.org/abs/2303.11257v2
https://arxiv.org/pdf/2303.11257v2.pdf
https://github.com/graphcore-research/unit-scaling-demo
true
true
true
tf
https://paperswithcode.com/paper/pre-trained-speech-processing-models-contain
Pre-trained Speech Processing Models Contain Human-Like Biases that Propagate to Speech Emotion Recognition
2310.18877
https://arxiv.org/abs/2310.18877v1
https://arxiv.org/pdf/2310.18877v1.pdf
https://github.com/isaaconline/speat
true
true
false
none
https://paperswithcode.com/paper/pe-yolo-pyramid-enhancement-network-for-dark
PE-YOLO: Pyramid Enhancement Network for Dark Object Detection
2307.10953
https://arxiv.org/abs/2307.10953v1
https://arxiv.org/pdf/2307.10953v1.pdf
https://github.com/xiangchenyin/pe-yolo
true
true
false
pytorch
https://paperswithcode.com/paper/overcoming-data-limitations-a-few-shot
Overcoming Data Limitations: A Few-Shot Specific Emitter Identification Method Using Self-Supervised Learning and Adversarial Augmentation
null
https://ieeexplore.ieee.org/abstract/document/10285131
https://ieeexplore.ieee.org/abstract/document/10285131
https://github.com/LIUC-000/SA2SEI
false
true
false
pytorch
https://paperswithcode.com/paper/fourier-neural-differential-equations-for
Fourier Neural Differential Equations for learning Quantum Field Theories
2311.17250
https://arxiv.org/abs/2311.17250v1
https://arxiv.org/pdf/2311.17250v1.pdf
https://github.com/2357e2/fnde
true
true
false
pytorch
https://paperswithcode.com/paper/consistency-trajectory-models-learning
Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion
2310.02279
https://arxiv.org/abs/2310.02279v3
https://arxiv.org/pdf/2310.02279v3.pdf
https://github.com/Kim-Dongjun/ctm-cifar10
true
false
false
pytorch
https://paperswithcode.com/paper/learning-to-design-rna
Learning to Design RNA
1812.11951
http://arxiv.org/abs/1812.11951v2
http://arxiv.org/pdf/1812.11951v2.pdf
https://github.com/2023-MindSpore-4/Code6/tree/main/RNA
false
false
false
none
https://paperswithcode.com/paper/unlocking-the-power-of-large-language-models
Unlocking the Power of Large Language Models for Entity Alignment
2402.15048
https://arxiv.org/abs/2402.15048v2
https://arxiv.org/pdf/2402.15048v2.pdf
https://github.com/jxh4945777/ChatEA
true
false
false
none
https://paperswithcode.com/paper/accelerating-multiframe-blind-deconvolution
Accelerating Multiframe Blind Deconvolution via Deep Learning
2306.12078
https://arxiv.org/abs/2306.12078v1
https://arxiv.org/pdf/2306.12078v1.pdf
https://github.com/aasensio/neural-mfbd
true
true
false
pytorch
https://paperswithcode.com/paper/unconstrained-dynamic-regret-via-sparse
Unconstrained Dynamic Regret via Sparse Coding
null
https://openreview.net/forum?id=lT9n36RH1w
https://openreview.net/pdf?id=lT9n36RH1w
https://github.com/zhiyuzz/neurips2023-sparse-coding
true
true
false
none
https://paperswithcode.com/paper/visual-chain-of-thought-diffusion-models
Visual Chain-of-Thought Diffusion Models
2303.16187
https://arxiv.org/abs/2303.16187v2
https://arxiv.org/pdf/2303.16187v2.pdf
https://github.com/plai-group/vcdm
true
true
true
pytorch
https://paperswithcode.com/paper/elucidating-the-design-space-of-diffusion
Elucidating the Design Space of Diffusion-Based Generative Models
2206.00364
https://arxiv.org/abs/2206.00364v2
https://arxiv.org/pdf/2206.00364v2.pdf
https://github.com/plai-group/vcdm
false
false
true
pytorch
https://paperswithcode.com/paper/deeprobust-a-pytorch-library-for-adversarial
DeepRobust: A PyTorch Library for Adversarial Attacks and Defenses
2005.06149
https://arxiv.org/abs/2005.06149v1
https://arxiv.org/pdf/2005.06149v1.pdf
https://github.com/I-am-Bot/RobustTorch
false
false
true
pytorch
https://paperswithcode.com/paper/adversarial-attacks-and-defenses-on-graphs-a
Adversarial Attacks and Defenses on Graphs: A Review, A Tool and Empirical Studies
2003.00653
https://arxiv.org/abs/2003.00653v3
https://arxiv.org/pdf/2003.00653v3.pdf
https://github.com/I-am-Bot/RobustTorch
false
false
true
pytorch
https://paperswithcode.com/paper/adversarial-attacks-and-defenses-in-images
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
1909.08072
https://arxiv.org/abs/1909.08072v2
https://arxiv.org/pdf/1909.08072v2.pdf
https://github.com/I-am-Bot/RobustTorch
false
false
true
pytorch
https://paperswithcode.com/paper/auxiliary-losses-for-learning-generalizable
Auxiliary Losses for Learning Generalizable Concept-based Models
null
https://openreview.net/forum?id=jvYXln6Gzn
https://openreview.net/pdf?id=jvYXln6Gzn
https://github.com/ivaxi0s/coop-cbm
true
true
false
pytorch
https://paperswithcode.com/paper/an-escape-from-vardanyan-s-theorem
An Escape from Vardanyan's Theorem
2102.13091
https://arxiv.org/abs/2102.13091v3
https://arxiv.org/pdf/2102.13091v3.pdf
https://gitlab.com/ana-borges/QRC1-Coq
true
true
true
none
https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
2010.11929
https://arxiv.org/abs/2010.11929v2
https://arxiv.org/pdf/2010.11929v2.pdf
https://github.com/woctezuma/steam-CLIP
false
false
true
none
https://paperswithcode.com/paper/won-t-get-fooled-again-answering-questions
Won't Get Fooled Again: Answering Questions with False Premises
2307.02394
https://arxiv.org/abs/2307.02394v1
https://arxiv.org/pdf/2307.02394v1.pdf
https://github.com/thunlp/falseqa
true
true
false
pytorch
https://paperswithcode.com/paper/mot16-a-benchmark-for-multi-object-tracking
MOT16: A Benchmark for Multi-Object Tracking
1603.00831
http://arxiv.org/abs/1603.00831v2
http://arxiv.org/pdf/1603.00831v2.pdf
https://github.com/cheind/py-motmetrics
false
false
true
none
https://paperswithcode.com/paper/handling-communication-via-apis-for
Handling Communication via APIs for Microservices
2308.01302
https://arxiv.org/abs/2308.01302v1
https://arxiv.org/pdf/2308.01302v1.pdf
https://github.com/ridhij93/coderefactor
true
true
false
none
https://paperswithcode.com/paper/graph-representation-learning-for-parameter
Graph Representation Learning for Parameter Transferability in Quantum Approximate Optimization Algorithm
2401.06655
https://arxiv.org/abs/2401.06655v2
https://arxiv.org/pdf/2401.06655v2.pdf
https://github.com/joseluisfalla/qptransfer
true
true
false
none