paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/piquasso-a-photonic-quantum-computer
|
Piquasso: A Photonic Quantum Computer Simulation Software Platform
|
2403.04006
|
https://arxiv.org/abs/2403.04006v3
|
https://arxiv.org/pdf/2403.04006v3.pdf
|
https://github.com/budapest-quantum-computing-group/piquasso
| true | true | false |
none
|
https://paperswithcode.com/paper/rcdt-relational-remote-sensing-change
|
RCDT: Relational Remote Sensing Change Detection with Transformer
|
2212.04869
|
https://arxiv.org/abs/2212.04869v1
|
https://arxiv.org/pdf/2212.04869v1.pdf
|
https://github.com/lukxuan/RCDT
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/sepal-sepsis-alerts-on-low-power-wearables
|
SepAl: Sepsis Alerts On Low Power Wearables With Digital Biomarkers and On-Device Tiny Machine Learning
|
2408.08316
|
https://arxiv.org/abs/2408.08316v1
|
https://arxiv.org/pdf/2408.08316v1.pdf
|
https://github.com/mgiordy/sepsis-prediction
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/fastspeech-fast-robust-and-controllable-text
|
FastSpeech: Fast, Robust and Controllable Text to Speech
|
1905.09263
|
https://arxiv.org/abs/1905.09263v5
|
https://arxiv.org/pdf/1905.09263v5.pdf
|
https://github.com/jkyunnng/happyquokka_system_for_eeg_challenge
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/happyquokka-system-for-icassp-2023-auditory
|
HappyQuokka System for ICASSP 2023 Auditory EEG Challenge
|
2305.06806
|
https://arxiv.org/abs/2305.06806v1
|
https://arxiv.org/pdf/2305.06806v1.pdf
|
https://github.com/jkyunnng/happyquokka_system_for_eeg_challenge
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/motif-learning-motion-trajectories-with-local
|
MoTIF: Learning Motion Trajectories with Local Implicit Neural Functions for Continuous Space-Time Video Super-Resolution
|
2307.07988
|
https://arxiv.org/abs/2307.07988v2
|
https://arxiv.org/pdf/2307.07988v2.pdf
|
https://github.com/sichun233746/motif
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/vision-language-model-based-handwriting
|
Vision-Language Model Based Handwriting Verification
|
2407.21788
|
https://arxiv.org/abs/2407.21788v1
|
https://arxiv.org/pdf/2407.21788v1.pdf
|
https://github.com/Abhishek0057/vlm-hv
| false | false | true |
none
|
https://paperswithcode.com/paper/scireviewgen-a-large-scale-dataset-for
|
SciReviewGen: A Large-scale Dataset for Automatic Literature Review Generation
|
2305.15186
|
https://arxiv.org/abs/2305.15186v1
|
https://arxiv.org/pdf/2305.15186v1.pdf
|
https://github.com/tetsu9923/scireviewgen
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/locality-sensitive-hashing-in-fourier
|
Locality Sensitive Hashing in Fourier Frequency Domain For Soft Set Containment Search
| null |
https://openreview.net/forum?id=rUf0GV5CuU
|
https://openreview.net/pdf?id=rUf0GV5CuU
|
https://github.com/structlearning/fhashnet
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/one-shot-learning-for-semantic-segmentation
|
One-Shot Learning for Semantic Segmentation
|
1709.03410
|
http://arxiv.org/abs/1709.03410v1
|
http://arxiv.org/pdf/1709.03410v1.pdf
|
https://github.com/zwzheng98/qclnet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/quaternion-valued-correlation-learning-for
|
Quaternion-valued Correlation Learning for Few-Shot Semantic Segmentation
|
2305.07283
|
https://arxiv.org/abs/2305.07283v3
|
https://arxiv.org/pdf/2305.07283v3.pdf
|
https://github.com/zwzheng98/qclnet
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/open-wikitable-dataset-for-open-domain
|
Open-WikiTable: Dataset for Open Domain Question Answering with Complex Reasoning over Table
|
2305.07288
|
https://arxiv.org/abs/2305.07288v1
|
https://arxiv.org/pdf/2305.07288v1.pdf
|
https://github.com/sean0042/open_wikitable
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/enhanced-graph-neural-networks-with-ego
|
Enhanced Graph Neural Networks with Ego-Centric Spectral Subgraph Embeddings Augmentation
|
2310.12169
|
https://arxiv.org/abs/2310.12169v1
|
https://arxiv.org/pdf/2310.12169v1.pdf
|
https://github.com/anwar-said/esgea
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/local-implicit-normalizing-flow-for-arbitrary
|
Local Implicit Normalizing Flow for Arbitrary-Scale Image Super-Resolution
|
2303.05156
|
https://arxiv.org/abs/2303.05156v3
|
https://arxiv.org/pdf/2303.05156v3.pdf
|
https://github.com/JNNNNYao/LINF
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-framework-for-interpretation-and-testing-of
|
A framework for interpretation and testing of sparse canonical correlations
|
2310.02169
|
https://arxiv.org/abs/2310.02169v2
|
https://arxiv.org/pdf/2310.02169v2.pdf
|
https://github.com/nuria-sv/toscca
| true | true | false |
none
|
https://paperswithcode.com/paper/the-boosted-dc-algorithm-for-clustering-with
|
The Boosted DC Algorithm for Clustering with Constraints
|
2310.14148
|
https://arxiv.org/abs/2310.14148v1
|
https://arxiv.org/pdf/2310.14148v1.pdf
|
https://github.com/tuyentdtran/bdcaclustering
| true | true | false |
none
|
https://paperswithcode.com/paper/mprnet-multi-path-residual-network-for
|
MPRNet: Multi-Path Residual Network for Lightweight Image Super Resolution
|
2011.04566
|
https://arxiv.org/abs/2011.04566v1
|
https://arxiv.org/pdf/2011.04566v1.pdf
|
https://github.com/swz30/MPRNet
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/global-selector-a-new-benchmark-dataset-and
|
Uni-Encoder: A Fast and Accurate Response Selection Paradigm for Generation-Based Dialogue Systems
|
2106.01263
|
https://arxiv.org/abs/2106.01263v5
|
https://arxiv.org/pdf/2106.01263v5.pdf
|
https://github.com/dll-wu/uni-encoder
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/songdriver2-real-time-emotion-based-music
|
REMAST: Real-time Emotion-based Music Arrangement with Soft Transition
|
2305.08029
|
https://arxiv.org/abs/2305.08029v3
|
https://arxiv.org/pdf/2305.08029v3.pdf
|
https://github.com/carlwangchina/songdriver2-real-time-emotion-based-music-arrangement-with-soft-transition
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/palm-open-fundus-photograph-dataset-with
|
PALM: Open Fundus Photograph Dataset with Pathologic Myopia Recognition and Anatomical Structure Annotation
|
2305.07816
|
https://arxiv.org/abs/2305.07816v1
|
https://arxiv.org/pdf/2305.07816v1.pdf
|
https://github.com/tianyizheming/ichallenge_baseline
| true | true | false |
paddle
|
https://paperswithcode.com/paper/unsupervised-semantic-variation-prediction
|
Unsupervised Semantic Variation Prediction using the Distribution of Sibling Embeddings
|
2305.08654
|
https://arxiv.org/abs/2305.08654v1
|
https://arxiv.org/pdf/2305.08654v1.pdf
|
https://github.com/a1da4/svp-gauss
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/hierarchical-control-and-learning-of-a
|
Hierarchical control and learning of a foraging CyberOctopus
|
2302.05811
|
https://arxiv.org/abs/2302.05811v1
|
https://arxiv.org/pdf/2302.05811v1.pdf
|
https://github.com/GazzolaLab/PyElastica
| true | true | true |
none
|
https://paperswithcode.com/paper/uniformerv2-spatiotemporal-learning-by-arming
|
UniFormerV2: Spatiotemporal Learning by Arming Image ViTs with Video UniFormer
| null |
https://openreview.net/forum?id=d77RVuVg-Mf
|
https://openreview.net/pdf?id=d77RVuVg-Mf
|
https://github.com/innat/UniFormerV2
| false | false | false |
tf
|
https://paperswithcode.com/paper/insights-from-hst-into-ultra-massive-galaxies
|
Insights from HST into Ultra-Massive Galaxies and Early-Universe Cosmology
|
2305.07049
|
https://arxiv.org/abs/2305.07049v2
|
https://arxiv.org/pdf/2305.07049v2.pdf
|
https://github.com/nnssa/gallumi_public
| true | true | false |
none
|
https://paperswithcode.com/paper/global-context-vision-transformers
|
Global Context Vision Transformers
|
2206.09959
|
https://arxiv.org/abs/2206.09959v5
|
https://arxiv.org/pdf/2206.09959v5.pdf
|
https://github.com/nvlabs/gcvit
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/establishing-shared-query-understanding-in-an
|
Establishing Shared Query Understanding in an Open Multi-Agent System
|
2305.09349
|
https://arxiv.org/abs/2305.09349v1
|
https://arxiv.org/pdf/2305.09349v1.pdf
|
https://github.com/kondilidisn/shared_query_understanding
| true | true | false |
none
|
https://paperswithcode.com/paper/omnisafe-an-infrastructure-for-accelerating
|
OmniSafe: An Infrastructure for Accelerating Safe Reinforcement Learning Research
|
2305.09304
|
https://arxiv.org/abs/2305.09304v1
|
https://arxiv.org/pdf/2305.09304v1.pdf
|
https://github.com/pku-alignment/omnisafe
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/resurrecting-recurrent-neural-networks-for
|
Resurrecting Recurrent Neural Networks for Long Sequences
|
2303.06349
|
https://arxiv.org/abs/2303.06349v1
|
https://arxiv.org/pdf/2303.06349v1.pdf
|
https://github.com/sustcsonglin/pytorch_linear_rnn
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/discriminative-graph-level-anomaly-detection
|
Discriminative Graph-level Anomaly Detection via Dual-students-teacher Model
|
2308.01947
|
https://arxiv.org/abs/2308.01947v1
|
https://arxiv.org/pdf/2308.01947v1.pdf
|
https://github.com/whb605/gladst
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/emergent-world-representations-exploring-a
|
Emergent World Representations: Exploring a Sequence Model Trained on a Synthetic Task
|
2210.13382
|
https://arxiv.org/abs/2210.13382v5
|
https://arxiv.org/pdf/2210.13382v5.pdf
|
https://github.com/likenneth/othello_world
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mgcamb-with-massive-neutrinos-and-dynamical
|
MGCAMB with massive neutrinos and dynamical dark energy
|
1901.05956
|
http://arxiv.org/abs/1901.05956v1
|
http://arxiv.org/pdf/1901.05956v1.pdf
|
https://github.com/sfu-cosmo/MGCAMB
| true | true | true |
none
|
https://paperswithcode.com/paper/unpaired-image-to-image-translation-using
|
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
|
1703.10593
|
https://arxiv.org/abs/1703.10593v7
|
https://arxiv.org/pdf/1703.10593v7.pdf
|
https://github.com/MindSpore-paper-code-3/code9/tree/main/CycleGAN
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/metric-space-spread-intrinsic-dimension-and
|
Metric Space Spread, Intrinsic Dimension and the Manifold Hypothesis
|
2308.01382
|
https://arxiv.org/abs/2308.01382v1
|
https://arxiv.org/pdf/2308.01382v1.pdf
|
https://github.com/dk-gh/metric_space_spread
| true | true | false |
none
|
https://paperswithcode.com/paper/ethics-in-rotten-apples-a-network
|
Ethics in rotten apples: A network epidemiology approach for active cyber defense
|
2306.17533
|
https://arxiv.org/abs/2306.17533v1
|
https://arxiv.org/pdf/2306.17533v1.pdf
|
https://github.com/frappan/c72h-whiteworms
| true | true | false |
none
|
https://paperswithcode.com/paper/neural-group-recommendation-based-on-a
|
Neural Group Recommendation Based on a Probabilistic Semantic Aggregation
|
2303.07001
|
https://arxiv.org/abs/2303.07001v1
|
https://arxiv.org/pdf/2303.07001v1.pdf
|
https://github.com/knodis-research-group/neural-cf-for-groups
| true | true | true |
tf
|
https://paperswithcode.com/paper/instructscore-towards-explainable-text
|
INSTRUCTSCORE: Explainable Text Generation Evaluation with Finegrained Feedback
|
2305.14282
|
https://arxiv.org/abs/2305.14282v3
|
https://arxiv.org/pdf/2305.14282v3.pdf
|
https://github.com/xu1998hz/sescore3
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/uncertainty-aware-contour-proposal-networks
|
Uncertainty-Aware Contour Proposal Networks for Cell Segmentation in Multi-Modality High-Resolution Microscopy Images
| null |
https://openreview.net/forum?id=YtgRjBw-7GJ
|
https://openreview.net/pdf?id=YtgRjBw-7GJ
|
https://github.com/FZJ-INM1-BDA/celldetection
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/towards-ssh3-how-http-3-improves-secure
|
Towards SSH3: how HTTP/3 improves secure shells
|
2312.08396
|
https://arxiv.org/abs/2312.08396v1
|
https://arxiv.org/pdf/2312.08396v1.pdf
|
https://github.com/francoismichel/ssh3
| true | true | false |
none
|
https://paperswithcode.com/paper/doc2graph-a-task-agnostic-document
|
Doc2Graph: a Task Agnostic Document Understanding Framework based on Graph Neural Networks
|
2208.11168
|
https://arxiv.org/abs/2208.11168v1
|
https://arxiv.org/pdf/2208.11168v1.pdf
|
https://github.com/andreagemelli/doc2graph
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/logicity-advancing-neuro-symbolic-ai-with
|
LogiCity: Advancing Neuro-Symbolic AI with Abstract Urban Simulation
|
2411.00773
|
https://arxiv.org/abs/2411.00773v1
|
https://arxiv.org/pdf/2411.00773v1.pdf
|
https://github.com/Jaraxxus-Me/LogiCity
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/lobsdice-offline-imitation-learning-from
|
LobsDICE: Offline Learning from Observation via Stationary Distribution Correction Estimation
|
2202.13536
|
https://arxiv.org/abs/2202.13536v2
|
https://arxiv.org/pdf/2202.13536v2.pdf
|
https://github.com/kaist-ailab/imitation-dice
| false | false | true |
tf
|
https://paperswithcode.com/paper/windowshap-an-efficient-framework-for
|
WindowSHAP: An Efficient Framework for Explaining Time-series Classifiers based on Shapley Values
|
2211.06507
|
https://arxiv.org/abs/2211.06507v2
|
https://arxiv.org/pdf/2211.06507v2.pdf
|
https://github.com/vsubbian/windowshap
| true | true | true |
none
|
https://paperswithcode.com/paper/glitch-in-the-matrix-a-large-scale-benchmark
|
Glitch in the Matrix: A Large Scale Benchmark for Content Driven Audio-Visual Forgery Detection and Localization
|
2305.01979
|
https://arxiv.org/abs/2305.01979v3
|
https://arxiv.org/pdf/2305.01979v3.pdf
|
https://github.com/ControlNet/LAV-DF
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/make-a-video-text-to-video-generation-without
|
Make-A-Video: Text-to-Video Generation without Text-Video Data
|
2209.14792
|
https://arxiv.org/abs/2209.14792v1
|
https://arxiv.org/pdf/2209.14792v1.pdf
|
https://github.com/lucidrains/make-a-video-pytorch
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/combinatorial-bandits-for-maximum-value
|
Combinatorial Bandits for Maximum Value Reward Function under Max Value-Index Feedback
|
2305.16074
|
https://arxiv.org/abs/2305.16074v1
|
https://arxiv.org/pdf/2305.16074v1.pdf
|
https://github.com/sketch-exp/kmax
| true | true | false |
none
|
https://paperswithcode.com/paper/testing-the-ability-of-language-models-to-1
|
Testing the Ability of Language Models to Interpret Figurative Language
|
2204.12632
|
https://arxiv.org/abs/2204.12632v2
|
https://arxiv.org/pdf/2204.12632v2.pdf
|
https://github.com/simran-khanuja/multilingual-fig-qa
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/synthrad2023-grand-challenge-dataset
|
SynthRAD2023 Grand Challenge dataset: generating synthetic CT for radiotherapy
|
2303.16320
|
https://arxiv.org/abs/2303.16320v1
|
https://arxiv.org/pdf/2303.16320v1.pdf
|
https://github.com/synthrad2023/preprocessing
| true | true | false |
none
|
https://paperswithcode.com/paper/nasgec-a-multi-domain-chinese-grammatical
|
NaSGEC: a Multi-Domain Chinese Grammatical Error Correction Dataset from Native Speaker Texts
|
2305.16023
|
https://arxiv.org/abs/2305.16023v1
|
https://arxiv.org/pdf/2305.16023v1.pdf
|
https://github.com/hillzhang1999/nasgec
| true | true | false |
none
|
https://paperswithcode.com/paper/scalearn-simple-and-highly-parameter
|
ScaLearn: Simple and Highly Parameter-Efficient Task Transfer by Learning to Scale
|
2310.01217
|
https://arxiv.org/abs/2310.01217v3
|
https://arxiv.org/pdf/2310.01217v3.pdf
|
https://github.com/cpjku/scalearn
| true | true | true |
jax
|
https://paperswithcode.com/paper/towards-open-temporal-graph-neural-networks
|
Towards Open Temporal Graph Neural Networks
|
2303.15015
|
https://arxiv.org/abs/2303.15015v2
|
https://arxiv.org/pdf/2303.15015v2.pdf
|
https://github.com/tulerfeng/OTGNet
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/fascinating-supervisory-signals-and-where-to
|
Fascinating Supervisory Signals and Where to Find Them: Deep Anomaly Detection with Scale Learning
|
2305.16114
|
https://arxiv.org/abs/2305.16114v1
|
https://arxiv.org/pdf/2305.16114v1.pdf
|
https://github.com/xuhongzuo/scale-learning
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/an-evaluation-of-cfear-radar-odometry
|
An evaluation of CFEAR Radar Odometry
|
2404.01781
|
https://arxiv.org/abs/2404.01781v2
|
https://arxiv.org/pdf/2404.01781v2.pdf
|
https://github.com/dan11003/CFEAR_Radarodometry_code_public
| true | true | false |
none
|
https://paperswithcode.com/paper/more-convnets-in-the-2020s-scaling-up-kernels
|
More ConvNets in the 2020s: Scaling up Kernels Beyond 51x51 using Sparsity
|
2207.03620
|
https://arxiv.org/abs/2207.03620v3
|
https://arxiv.org/pdf/2207.03620v3.pdf
|
https://github.com/vita-group/slak
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/are-large-kernels-better-teachers-than
|
Are Large Kernels Better Teachers than Transformers for ConvNets?
|
2305.19412
|
https://arxiv.org/abs/2305.19412v1
|
https://arxiv.org/pdf/2305.19412v1.pdf
|
https://github.com/vita-group/slak
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/easily-accessible-text-to-image-generation
|
Easily Accessible Text-to-Image Generation Amplifies Demographic Stereotypes at Large Scale
|
2211.03759
|
https://arxiv.org/abs/2211.03759v2
|
https://arxiv.org/pdf/2211.03759v2.pdf
|
https://github.com/vinid/text-to-image-bias
| true | true | false |
none
|
https://paperswithcode.com/paper/bokehornot-transforming-bokeh-effect-with
|
BokehOrNot: Transforming Bokeh Effect with Image Transformer and Lens Metadata Embedding
|
2306.04032
|
https://arxiv.org/abs/2306.04032v1
|
https://arxiv.org/pdf/2306.04032v1.pdf
|
https://github.com/indicator0/bokehornot
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/policy-based-self-competition-for-planning
|
Policy-Based Self-Competition for Planning Problems
|
2306.04403
|
https://arxiv.org/abs/2306.04403v1
|
https://arxiv.org/pdf/2306.04403v1.pdf
|
https://github.com/grimmlab/policy-based-self-competition
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/the-feniks-survey-multi-wavelength
|
The FENIKS Survey: Multi-wavelength Photometric Catalog in the UDS Field, and Catalogs of Photometric Redshifts and Stellar Population Properties
|
2401.03107
|
https://arxiv.org/abs/2401.03107v3
|
https://arxiv.org/pdf/2401.03107v3.pdf
|
https://zenodo.org/record/11002299
| true | false | false |
none
|
https://paperswithcode.com/paper/incremental-learning-of-structured-memory-via
|
Incremental Learning of Structured Memory via Closed-Loop Transcription
|
2202.05411
|
https://arxiv.org/abs/2202.05411v3
|
https://arxiv.org/pdf/2202.05411v3.pdf
|
https://github.com/tsb0601/i-ctrl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/sound-event-localization-and-detection-of
|
Sound Event Localization and Detection of Overlapping Sources Using Convolutional Recurrent Neural Networks
|
1807.00129
|
http://arxiv.org/abs/1807.00129v3
|
http://arxiv.org/pdf/1807.00129v3.pdf
|
https://github.com/sharathadavanne/seld-dcase2023
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/video-diffusion-models
|
Video Diffusion Models
|
2204.03458
|
https://arxiv.org/abs/2204.03458v2
|
https://arxiv.org/pdf/2204.03458v2.pdf
|
https://github.com/lucidrains/make-a-video-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/defsent-improving-sentence-embeddings-of
|
DefSent+: Improving sentence embeddings of language models by projecting definition sentences into a quasi-isotropic or isotropic vector space of unlimited dictionary entries
|
2405.16153
|
https://arxiv.org/abs/2405.16153v4
|
https://arxiv.org/pdf/2405.16153v4.pdf
|
https://github.com/ryuliuxiaodong/DefSent-Plus
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/gms-3dqa-projection-based-grid-mini-patch
|
GMS-3DQA: Projection-based Grid Mini-patch Sampling for 3D Model Quality Assessment
|
2306.05658
|
https://arxiv.org/abs/2306.05658v2
|
https://arxiv.org/pdf/2306.05658v2.pdf
|
https://github.com/zzc-1998/gms-3dqa
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/gradual-domain-adaptation-theory-and
|
Gradual Domain Adaptation: Theory and Algorithms
|
2310.13852
|
https://arxiv.org/abs/2310.13852v2
|
https://arxiv.org/pdf/2310.13852v2.pdf
|
https://github.com/uiuctml/goat
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/understanding-gradual-domain-adaptation
|
Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path and Beyond
|
2204.08200
|
https://arxiv.org/abs/2204.08200v2
|
https://arxiv.org/pdf/2204.08200v2.pdf
|
https://github.com/uiuctml/goat
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/grad-cam-improved-visual-explanations-for
|
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
|
1710.11063
|
http://arxiv.org/abs/1710.11063v3
|
http://arxiv.org/pdf/1710.11063v3.pdf
|
https://github.com/adityac94/Grad_CAM_plus_plus
| true | true | false |
tf
|
https://paperswithcode.com/paper/transcendental-idealism-of-planner-evaluating
|
Transcendental Idealism of Planner: Evaluating Perception from Planning Perspective for Autonomous Driving
|
2306.07276
|
https://arxiv.org/abs/2306.07276v1
|
https://arxiv.org/pdf/2306.07276v1.pdf
|
https://github.com/qcraftai/tip
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/aladdin-zero-shot-hallucination-of-stylized
|
Aladdin: Zero-Shot Hallucination of Stylized 3D Assets from Abstract Scene Descriptions
|
2306.06212
|
https://arxiv.org/abs/2306.06212v1
|
https://arxiv.org/pdf/2306.06212v1.pdf
|
https://github.com/ianhuang0630/aladdin
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/one-pass-distribution-sketch-for-measuring
|
One-Pass Distribution Sketch for Measuring Data Heterogeneity in Federated Learning
| null |
https://openreview.net/forum?id=KMxRQO7P98
|
https://openreview.net/pdf?id=KMxRQO7P98
|
https://github.com/lzcemma/race_distance
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/ink-injecting-knn-knowledge-in-nearest
|
INK: Injecting kNN Knowledge in Nearest Neighbor Machine Translation
|
2306.06381
|
https://arxiv.org/abs/2306.06381v1
|
https://arxiv.org/pdf/2306.06381v1.pdf
|
https://github.com/owennju/ink
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/efficient-reduced-order-quadrature
|
Efficient Reduced Order Quadrature Construction Algorithms for Fast Gravitational Wave Inference
|
2307.16610
|
https://arxiv.org/abs/2307.16610v1
|
https://arxiv.org/pdf/2307.16610v1.pdf
|
https://github.com/gmorras/eigroq
| true | true | false |
none
|
https://paperswithcode.com/paper/noma-aided-joint-communication-sensing-and
|
NOMA-aided Joint Communication, Sensing, and Multi-tier Computing Systems
|
2205.08272
|
https://arxiv.org/abs/2205.08272v2
|
https://arxiv.org/pdf/2205.08272v2.pdf
|
https://github.com/zhaolin820/noma-aided-joint-communication-sensing-and-multi-tier-computing-systems
| true | false | true |
none
|
https://paperswithcode.com/paper/geometric-transformer-for-end-to-end-molecule
|
Geometric Transformer for End-to-End Molecule Properties Prediction
|
2110.13721
|
https://arxiv.org/abs/2110.13721v3
|
https://arxiv.org/pdf/2110.13721v3.pdf
|
https://github.com/yoniLc/GeometricTransformerMolecule
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/experimental-standards-for-deep-learning
|
Experimental Standards for Deep Learning in Natural Language Processing Research
|
2204.06251
|
https://arxiv.org/abs/2204.06251v2
|
https://arxiv.org/pdf/2204.06251v2.pdf
|
https://github.com/kaleidophon/experimental-standards-deep-learning-research
| true | true | true |
none
|
https://paperswithcode.com/paper/joint-species-distribution-models-with
|
Joint species distribution models with imperfect detection for high-dimensional spatial data
|
2204.02707
|
https://arxiv.org/abs/2204.02707v2
|
https://arxiv.org/pdf/2204.02707v2.pdf
|
https://github.com/doserjef/doser_et_al_2022
| true | true | true |
none
|
https://paperswithcode.com/paper/verified-completeness-in-henkin-style-for
|
Verified completeness in Henkin-style for intuitionistic propositional logic
|
2310.01916
|
https://arxiv.org/abs/2310.01916v1
|
https://arxiv.org/pdf/2310.01916v1.pdf
|
https://github.com/bbentzen/ipl
| true | true | false |
none
|
https://paperswithcode.com/paper/emotion-recognition-using-transformers-with
|
Emotion Recognition Using Transformers with Masked Learning
|
2403.13731
|
https://arxiv.org/abs/2403.13731v2
|
https://arxiv.org/pdf/2403.13731v2.pdf
|
https://github.com/msjae/abaw
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/seeing-is-not-always-believing-benchmarking
|
Seeing is not always believing: Benchmarking Human and Model Perception of AI-Generated Images
| null |
https://openreview.net/forum?id=Xoi31wJ5iI
|
https://openreview.net/pdf?id=Xoi31wJ5iI
|
https://github.com/inf-imagine/sentry
| true | true | false |
none
|
https://paperswithcode.com/paper/unit-scaling-out-of-the-box-low-precision
|
Unit Scaling: Out-of-the-Box Low-Precision Training
|
2303.11257
|
https://arxiv.org/abs/2303.11257v2
|
https://arxiv.org/pdf/2303.11257v2.pdf
|
https://github.com/graphcore-research/unit-scaling-demo
| true | true | true |
tf
|
https://paperswithcode.com/paper/pre-trained-speech-processing-models-contain
|
Pre-trained Speech Processing Models Contain Human-Like Biases that Propagate to Speech Emotion Recognition
|
2310.18877
|
https://arxiv.org/abs/2310.18877v1
|
https://arxiv.org/pdf/2310.18877v1.pdf
|
https://github.com/isaaconline/speat
| true | true | false |
none
|
https://paperswithcode.com/paper/pe-yolo-pyramid-enhancement-network-for-dark
|
PE-YOLO: Pyramid Enhancement Network for Dark Object Detection
|
2307.10953
|
https://arxiv.org/abs/2307.10953v1
|
https://arxiv.org/pdf/2307.10953v1.pdf
|
https://github.com/xiangchenyin/pe-yolo
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/overcoming-data-limitations-a-few-shot
|
Overcoming Data Limitations: A Few-Shot Specific Emitter Identification Method Using Self-Supervised Learning and Adversarial Augmentation
| null |
https://ieeexplore.ieee.org/abstract/document/10285131
|
https://ieeexplore.ieee.org/abstract/document/10285131
|
https://github.com/LIUC-000/SA2SEI
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/fourier-neural-differential-equations-for
|
Fourier Neural Differential Equations for learning Quantum Field Theories
|
2311.17250
|
https://arxiv.org/abs/2311.17250v1
|
https://arxiv.org/pdf/2311.17250v1.pdf
|
https://github.com/2357e2/fnde
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/consistency-trajectory-models-learning
|
Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion
|
2310.02279
|
https://arxiv.org/abs/2310.02279v3
|
https://arxiv.org/pdf/2310.02279v3.pdf
|
https://github.com/Kim-Dongjun/ctm-cifar10
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/learning-to-design-rna
|
Learning to Design RNA
|
1812.11951
|
http://arxiv.org/abs/1812.11951v2
|
http://arxiv.org/pdf/1812.11951v2.pdf
|
https://github.com/2023-MindSpore-4/Code6/tree/main/RNA
| false | false | false |
none
|
https://paperswithcode.com/paper/unlocking-the-power-of-large-language-models
|
Unlocking the Power of Large Language Models for Entity Alignment
|
2402.15048
|
https://arxiv.org/abs/2402.15048v2
|
https://arxiv.org/pdf/2402.15048v2.pdf
|
https://github.com/jxh4945777/ChatEA
| true | false | false |
none
|
https://paperswithcode.com/paper/accelerating-multiframe-blind-deconvolution
|
Accelerating Multiframe Blind Deconvolution via Deep Learning
|
2306.12078
|
https://arxiv.org/abs/2306.12078v1
|
https://arxiv.org/pdf/2306.12078v1.pdf
|
https://github.com/aasensio/neural-mfbd
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/unconstrained-dynamic-regret-via-sparse
|
Unconstrained Dynamic Regret via Sparse Coding
| null |
https://openreview.net/forum?id=lT9n36RH1w
|
https://openreview.net/pdf?id=lT9n36RH1w
|
https://github.com/zhiyuzz/neurips2023-sparse-coding
| true | true | false |
none
|
https://paperswithcode.com/paper/visual-chain-of-thought-diffusion-models
|
Visual Chain-of-Thought Diffusion Models
|
2303.16187
|
https://arxiv.org/abs/2303.16187v2
|
https://arxiv.org/pdf/2303.16187v2.pdf
|
https://github.com/plai-group/vcdm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/elucidating-the-design-space-of-diffusion
|
Elucidating the Design Space of Diffusion-Based Generative Models
|
2206.00364
|
https://arxiv.org/abs/2206.00364v2
|
https://arxiv.org/pdf/2206.00364v2.pdf
|
https://github.com/plai-group/vcdm
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/deeprobust-a-pytorch-library-for-adversarial
|
DeepRobust: A PyTorch Library for Adversarial Attacks and Defenses
|
2005.06149
|
https://arxiv.org/abs/2005.06149v1
|
https://arxiv.org/pdf/2005.06149v1.pdf
|
https://github.com/I-am-Bot/RobustTorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/adversarial-attacks-and-defenses-on-graphs-a
|
Adversarial Attacks and Defenses on Graphs: A Review, A Tool and Empirical Studies
|
2003.00653
|
https://arxiv.org/abs/2003.00653v3
|
https://arxiv.org/pdf/2003.00653v3.pdf
|
https://github.com/I-am-Bot/RobustTorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/adversarial-attacks-and-defenses-in-images
|
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
|
1909.08072
|
https://arxiv.org/abs/1909.08072v2
|
https://arxiv.org/pdf/1909.08072v2.pdf
|
https://github.com/I-am-Bot/RobustTorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/auxiliary-losses-for-learning-generalizable
|
Auxiliary Losses for Learning Generalizable Concept-based Models
| null |
https://openreview.net/forum?id=jvYXln6Gzn
|
https://openreview.net/pdf?id=jvYXln6Gzn
|
https://github.com/ivaxi0s/coop-cbm
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/an-escape-from-vardanyan-s-theorem
|
An Escape from Vardanyan's Theorem
|
2102.13091
|
https://arxiv.org/abs/2102.13091v3
|
https://arxiv.org/pdf/2102.13091v3.pdf
|
https://gitlab.com/ana-borges/QRC1-Coq
| true | true | true |
none
|
https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1
|
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
|
2010.11929
|
https://arxiv.org/abs/2010.11929v2
|
https://arxiv.org/pdf/2010.11929v2.pdf
|
https://github.com/woctezuma/steam-CLIP
| false | false | true |
none
|
https://paperswithcode.com/paper/won-t-get-fooled-again-answering-questions
|
Won't Get Fooled Again: Answering Questions with False Premises
|
2307.02394
|
https://arxiv.org/abs/2307.02394v1
|
https://arxiv.org/pdf/2307.02394v1.pdf
|
https://github.com/thunlp/falseqa
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/mot16-a-benchmark-for-multi-object-tracking
|
MOT16: A Benchmark for Multi-Object Tracking
|
1603.00831
|
http://arxiv.org/abs/1603.00831v2
|
http://arxiv.org/pdf/1603.00831v2.pdf
|
https://github.com/cheind/py-motmetrics
| false | false | true |
none
|
https://paperswithcode.com/paper/handling-communication-via-apis-for
|
Handling Communication via APIs for Microservices
|
2308.01302
|
https://arxiv.org/abs/2308.01302v1
|
https://arxiv.org/pdf/2308.01302v1.pdf
|
https://github.com/ridhij93/coderefactor
| true | true | false |
none
|
https://paperswithcode.com/paper/graph-representation-learning-for-parameter
|
Graph Representation Learning for Parameter Transferability in Quantum Approximate Optimization Algorithm
|
2401.06655
|
https://arxiv.org/abs/2401.06655v2
|
https://arxiv.org/pdf/2401.06655v2.pdf
|
https://github.com/joseluisfalla/qptransfer
| true | true | false |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.