paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/coqq-foundational-verification-of-quantum
|
CoqQ: Foundational Verification of Quantum Programs
|
2207.11350
|
https://arxiv.org/abs/2207.11350v1
|
https://arxiv.org/pdf/2207.11350v1.pdf
|
https://github.com/math-comp/analysis
| true | true | true |
none
|
https://paperswithcode.com/paper/towards-compact-3d-representations-via-point
|
Towards Compact 3D Representations via Point Feature Enhancement Masked Autoencoders
|
2312.10726
|
https://arxiv.org/abs/2312.10726v1
|
https://arxiv.org/pdf/2312.10726v1.pdf
|
https://github.com/zyh16143998882/aaai24-pointfemae
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/energy-guided-diffusion-for-generating
|
Energy Guided Diffusion for Generating Neurally Exciting Images
| null |
https://openreview.net/forum?id=1moStpWGUj
|
https://openreview.net/pdf?id=1moStpWGUj
|
https://github.com/sinzlab/energy-guided-diffusion
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/deep-reinforcement-learning-based
|
Deep Reinforcement Learning based Recommendation with Explicit User-Item Interactions Modeling
|
1810.12027
|
https://arxiv.org/abs/1810.12027v3
|
https://arxiv.org/pdf/1810.12027v3.pdf
|
https://github.com/sb-ai-lab/RePlay
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/an-uncertainty-aware-shareable-and
|
An Uncertainty-Aware, Shareable and Transparent Neural Network Architecture for Brain-Age Modeling
|
2107.07977
|
https://arxiv.org/abs/2107.07977v1
|
https://arxiv.org/pdf/2107.07977v1.pdf
|
https://github.com/wwu-mmll/uncertainty-brain-age
| true | false | false |
tf
|
https://paperswithcode.com/paper/wide-deep-learning-for-recommender-systems
|
Wide & Deep Learning for Recommender Systems
|
1606.07792
|
http://arxiv.org/abs/1606.07792v1
|
http://arxiv.org/pdf/1606.07792v1.pdf
|
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow2/Recommendation/WideAndDeep
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/lazy-and-fast-greedy-map-inference-for
|
Lazy and Fast Greedy MAP Inference for Determinantal Point Process
|
2206.05947
|
https://arxiv.org/abs/2206.05947v1
|
https://arxiv.org/pdf/2206.05947v1.pdf
|
https://github.com/Alnusjaponica/DPP-MAP-Inference
| true | false | true |
none
|
https://paperswithcode.com/paper/improving-multi-domain-generalization-through
|
Automated Domain Discovery from Multiple Sources to Improve Zero-Shot Generalization
|
2112.09802
|
https://arxiv.org/abs/2112.09802v3
|
https://arxiv.org/pdf/2112.09802v3.pdf
|
https://github.com/kowshikthopalli/DREAME
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/in-search-of-lost-domain-generalization
|
In Search of Lost Domain Generalization
|
2007.01434
|
https://arxiv.org/abs/2007.01434v1
|
https://arxiv.org/pdf/2007.01434v1.pdf
|
https://github.com/kowshikthopalli/DREAME
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/fact-saboteurs-a-taxonomy-of-evidence
|
Fact-Saboteurs: A Taxonomy of Evidence Manipulation Attacks against Fact-Verification Systems
|
2209.03755
|
https://arxiv.org/abs/2209.03755v4
|
https://arxiv.org/pdf/2209.03755v4.pdf
|
https://github.com/s-abdelnabi/fact-saboteurs
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deep-multitask-neural-networks-for-solving
|
Deep multitask neural networks for solving some stochastic optimal control problems
|
2401.12923
|
https://arxiv.org/abs/2401.12923v2
|
https://arxiv.org/pdf/2401.12923v2.pdf
|
https://github.com/ChristianYeo/MultiTask_Swing
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/mplug-2-a-modularized-multi-modal-foundation
|
mPLUG-2: A Modularized Multi-modal Foundation Model Across Text, Image and Video
|
2302.00402
|
https://arxiv.org/abs/2302.00402v1
|
https://arxiv.org/pdf/2302.00402v1.pdf
|
https://github.com/x-plug/mplug-owl
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/select-and-trade-towards-unified-pair-trading
|
Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning
|
2301.10724
|
https://arxiv.org/abs/2301.10724v2
|
https://arxiv.org/pdf/2301.10724v2.pdf
|
https://github.com/chancefocus/trials
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/guided-prompting-in-sam-for-weakly-supervised
|
Guided Prompting in SAM for Weakly Supervised Cell Segmentation in Histopathological Images
|
2311.17960
|
https://arxiv.org/abs/2311.17960v1
|
https://arxiv.org/pdf/2311.17960v1.pdf
|
https://github.com/dair-iitd/guided-prompting-sam
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/topological-neural-discrete-representation
|
Self-Organising Neural Discrete Representation Learning à la Kohonen
|
2302.07950
|
https://arxiv.org/abs/2302.07950v2
|
https://arxiv.org/pdf/2302.07950v2.pdf
|
https://github.com/lucidrains/vector-quantize-pytorch
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/towards-optimal-sorting-of-16-elements
|
Towards Optimal Sorting of 16 Elements
|
1108.0866
|
http://arxiv.org/abs/1108.0866v1
|
http://arxiv.org/pdf/1108.0866v1.pdf
|
https://github.com/decidedlyso/merge-insertion-sort
| false | false | true |
none
|
https://paperswithcode.com/paper/kinematic-aware-prompting-for-generalizable
|
Kinematic-aware Prompting for Generalizable Articulated Object Manipulation with LLMs
|
2311.02847
|
https://arxiv.org/abs/2311.02847v4
|
https://arxiv.org/pdf/2311.02847v4.pdf
|
https://github.com/gewu-lab/llm_articulated_object_manipulation
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/seasonal-performance-evaluation-of-a-hybrid
|
Seasonal Performance Evaluation of a Hybrid PV-Wind-Battery Power System for a Mars Base
|
2410.00066
|
https://arxiv.org/abs/2410.00066v2
|
https://arxiv.org/pdf/2410.00066v2.pdf
|
https://github.com/abdollahmasoud/epecs-2024
| true | true | true |
none
|
https://paperswithcode.com/paper/perceptual-score-what-data-modalities-does
|
Perceptual Score: What Data Modalities Does Your Model Perceive?
|
2110.14375
|
https://arxiv.org/abs/2110.14375v1
|
https://arxiv.org/pdf/2110.14375v1.pdf
|
https://github.com/MindCode-4/code-8/tree/main/perceptual-score
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/last-layer-re-training-is-sufficient-for
|
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
|
2204.02937
|
https://arxiv.org/abs/2204.02937v2
|
https://arxiv.org/pdf/2204.02937v2.pdf
|
https://github.com/polinakirichenko/deep_feature_reweighting
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/charm-program-of-na61shine-motivation-and
|
Charm Program of NA61/SHINE: Motivation and Measurements
|
1803.01692
|
http://arxiv.org/abs/1803.01692v1
|
http://arxiv.org/pdf/1803.01692v1.pdf
|
https://github.com/mortarsynth/CNN_for_centrality_classification_SCRIPTS
| false | false | true |
tf
|
https://paperswithcode.com/paper/dc-based-security-constraints-formulation-a
|
DC-based Security Constraints Formulation: A Perspective of Primal-Dual Interior Point Method
|
2303.01810
|
https://arxiv.org/abs/2303.01810v1
|
https://arxiv.org/pdf/2303.01810v1.pdf
|
https://github.com/busy-bob/security-constraints-ipm
| true | true | false |
none
|
https://paperswithcode.com/paper/quantitative-evaluation-of-methods-to-analyze
|
Quantitative evaluation of methods to analyze motion changes in single-particle experiments
|
2311.18100
|
https://arxiv.org/abs/2311.18100v2
|
https://arxiv.org/pdf/2311.18100v2.pdf
|
https://github.com/AnDiChallenge/ANDI_datasets
| true | true | false |
none
|
https://paperswithcode.com/paper/sparsetir-composable-abstractions-for-sparse
|
SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning
|
2207.04606
|
https://arxiv.org/abs/2207.04606v4
|
https://arxiv.org/pdf/2207.04606v4.pdf
|
https://github.com/uwsampl/sparsetir-artifact
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/grasping-field-learning-implicit
|
Grasping Field: Learning Implicit Representations for Human Grasps
|
2008.04451
|
https://arxiv.org/abs/2008.04451v3
|
https://arxiv.org/pdf/2008.04451v3.pdf
|
https://github.com/zerchen/AlignSDF
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/heterogeneous-graph-learning-for-acoustic
|
Heterogeneous Graph Learning for Acoustic Event Classification
|
2303.02665
|
https://arxiv.org/abs/2303.02665v2
|
https://arxiv.org/pdf/2303.02665v2.pdf
|
https://github.com/amirsh15/cross_modality_graph
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/compact-graph-architecture-for-speech-emotion
|
Compact Graph Architecture for Speech Emotion Recognition
|
2008.02063
|
https://arxiv.org/abs/2008.02063v4
|
https://arxiv.org/pdf/2008.02063v4.pdf
|
https://github.com/amirsh15/cross_modality_graph
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/deepvats-deep-visual-analytics-for-time
|
DeepVATS: Deep Visual Analytics for Time Series
|
2302.03858
|
https://arxiv.org/abs/2302.03858v2
|
https://arxiv.org/pdf/2302.03858v2.pdf
|
https://github.com/vrodriguezf/deepvats
| true | true | true |
tf
|
https://paperswithcode.com/paper/fast-bayesian-analysis-of-individual-binaries
|
Fast Bayesian analysis of individual binaries in pulsar timing array data
|
2204.07160
|
https://arxiv.org/abs/2204.07160v2
|
https://arxiv.org/pdf/2204.07160v2.pdf
|
https://github.com/nanograv/quickcw
| false | false | true |
none
|
https://paperswithcode.com/paper/pair-diffusion-object-level-image-editing
|
PAIR-Diffusion: A Comprehensive Multimodal Object-Level Image Editor
|
2303.17546
|
https://arxiv.org/abs/2303.17546v3
|
https://arxiv.org/pdf/2303.17546v3.pdf
|
https://github.com/picsart-ai-research/pair-diffusion
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/hybridpoint-point-cloud-registration-based-on
|
HybridPoint: Point Cloud Registration Based on Hybrid Point Sampling and Matching
|
2303.16526
|
https://arxiv.org/abs/2303.16526v2
|
https://arxiv.org/pdf/2303.16526v2.pdf
|
https://github.com/liyih/hybridpoint
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/oceanbench-the-sea-surface-height-edition-1
|
OceanBench: The Sea Surface Height Edition
|
2309.15599
|
https://arxiv.org/abs/2309.15599v1
|
https://arxiv.org/pdf/2309.15599v1.pdf
|
https://github.com/jejjohnson/oceanbench
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/logical-message-passing-networks-with-one-hop
|
Logical Message Passing Networks with One-hop Inference on Atomic Formulas
|
2301.08859
|
https://arxiv.org/abs/2301.08859v4
|
https://arxiv.org/pdf/2301.08859v4.pdf
|
https://github.com/hkust-knowcomp/lmpnn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/explaining-and-harnessing-adversarial
|
Explaining and Harnessing Adversarial Examples
|
1412.6572
|
http://arxiv.org/abs/1412.6572v3
|
http://arxiv.org/pdf/1412.6572v3.pdf
|
https://github.com/arobey1/advbench
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/adversarial-logit-pairing
|
Adversarial Logit Pairing
|
1803.06373
|
http://arxiv.org/abs/1803.06373v1
|
http://arxiv.org/pdf/1803.06373v1.pdf
|
https://github.com/arobey1/advbench
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/towards-real-world-streaming-speech
|
Towards Real-World Streaming Speech Translation for Code-Switched Speech
|
2310.12648
|
https://arxiv.org/abs/2310.12648v2
|
https://arxiv.org/pdf/2310.12648v2.pdf
|
https://github.com/apple/ml-codeswitching-translations
| true | true | false |
none
|
https://paperswithcode.com/paper/badge-badminton-report-generation-and
|
BADGE: BADminton report Generation and Evaluation with LLM
|
2406.18116
|
https://arxiv.org/abs/2406.18116v1
|
https://arxiv.org/pdf/2406.18116v1.pdf
|
https://github.com/andychiangsh/badge
| true | true | true |
none
|
https://paperswithcode.com/paper/fast-path-planning-through-large-collections
|
Fast Path Planning Through Large Collections of Safe Boxes
|
2305.01072
|
https://arxiv.org/abs/2305.01072v2
|
https://arxiv.org/pdf/2305.01072v2.pdf
|
https://github.com/cvxgrp/fastpathplanning
| true | true | false |
none
|
https://paperswithcode.com/paper/logic-against-bias-textual-entailment
|
Logic Against Bias: Textual Entailment Mitigates Stereotypical Sentence Reasoning
|
2303.05670
|
https://arxiv.org/abs/2303.05670v1
|
https://arxiv.org/pdf/2303.05670v1.pdf
|
https://github.com/luohongyin/esp
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/generative-disco-text-to-video-generation-for
|
Generative Disco: Text-to-Video Generation for Music Visualization
|
2304.08551
|
https://arxiv.org/abs/2304.08551v2
|
https://arxiv.org/pdf/2304.08551v2.pdf
|
https://github.com/hellovivian/generative-disco
| true | false | true |
jax
|
https://paperswithcode.com/paper/luck-skill-and-depth-of-competition-in-games
|
Luck, skill, and depth of competition in games and social hierarchies
|
2312.04711
|
https://arxiv.org/abs/2312.04711v1
|
https://arxiv.org/pdf/2312.04711v1.pdf
|
https://github.com/maxjerdee/pairwise-ranking
| true | true | true |
none
|
https://paperswithcode.com/paper/ttv-constraints-on-additional-planets-in-the
|
TTV Constraints on Additional Planets in the WD 1856+534 system
|
2303.06157
|
https://arxiv.org/abs/2303.06157v1
|
https://arxiv.org/pdf/2303.06157v1.pdf
|
https://github.com/sarahkubiak/wd-1856-ttvs-kubiak-et-al.-2023
| true | true | false |
none
|
https://paperswithcode.com/paper/a-new-complex-variable-solution-on
|
A new complex variable solution on noncircular shallow tunnelling with reasonable far-field displacement
|
2310.12737
|
https://arxiv.org/abs/2310.12737v2
|
https://arxiv.org/pdf/2310.12737v2.pdf
|
https://github.com/luobinlin987/noncircular-shallow-tunnelling-reasonable-displacement
| true | true | false |
none
|
https://paperswithcode.com/paper/adaptive-sparse-pairwise-loss-for-object-re
|
Adaptive Sparse Pairwise Loss for Object Re-Identification
|
2303.18247
|
https://arxiv.org/abs/2303.18247v1
|
https://arxiv.org/pdf/2303.18247v1.pdf
|
https://github.com/astaxanthin/adasp
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/taming-diffusion-models-for-audio-driven-co
|
Taming Diffusion Models for Audio-Driven Co-Speech Gesture Generation
|
2303.09119
|
https://arxiv.org/abs/2303.09119v2
|
https://arxiv.org/pdf/2303.09119v2.pdf
|
https://github.com/advocate99/diffgesture
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cross-head-supervision-for-crowd-counting
|
Cross-head Supervision for Crowd Counting with Noisy Annotations
|
2303.09245
|
https://arxiv.org/abs/2303.09245v1
|
https://arxiv.org/pdf/2303.09245v1.pdf
|
https://github.com/raccoondml/chsnet
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/comparison-of-evaluation-metrics-for-landmark
|
Comparison of Evaluation Metrics for Landmark Detection in CMR Images
|
2201.10410
|
https://arxiv.org/abs/2201.10410v2
|
https://arxiv.org/pdf/2201.10410v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-6/tree/main/cmr
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/dream-to-control-learning-behaviors-by-latent
|
Dream to Control: Learning Behaviors by Latent Imagination
|
1912.01603
|
https://arxiv.org/abs/1912.01603v3
|
https://arxiv.org/pdf/1912.01603v3.pdf
|
https://github.com/kc-ml2/SimpleDreamer
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/structured-sparse-r-cnn-for-direct-scene
|
Structured Sparse R-CNN for Direct Scene Graph Generation
|
2106.10815
|
https://arxiv.org/abs/2106.10815v2
|
https://arxiv.org/pdf/2106.10815v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-6/tree/main/cnn_direction_model
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/openpose-realtime-multi-person-2d-pose
|
OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
|
1812.08008
|
https://arxiv.org/abs/1812.08008v2
|
https://arxiv.org/pdf/1812.08008v2.pdf
|
https://github.com/Zero-nnkn/ml-utils/blob/main/cv/pose/openpose_predictor.py
| false | false | false |
none
|
https://paperswithcode.com/paper/bayesian-calibration-of-the-intelligent
|
Bayesian Calibration of the Intelligent Driver Model
|
2210.03571
|
https://arxiv.org/abs/2210.03571v2
|
https://arxiv.org/pdf/2210.03571v2.pdf
|
https://github.com/chengyuan-zhang/idm_bayesian_calibration
| true | true | true |
none
|
https://paperswithcode.com/paper/deformable-convolutional-networks
|
Deformable Convolutional Networks
|
1703.06211
|
http://arxiv.org/abs/1703.06211v3
|
http://arxiv.org/pdf/1703.06211v3.pdf
|
https://github.com/metaphorz/deep-image-prior-hqskipnet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/hypergraph-neural-networks
|
Hypergraph Neural Networks
|
1809.09401
|
http://arxiv.org/abs/1809.09401v3
|
http://arxiv.org/pdf/1809.09401v3.pdf
|
https://github.com/imoonlab/deephypergraph
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/exploring-the-limits-of-transfer-learning
|
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
|
1910.10683
|
https://arxiv.org/abs/1910.10683v4
|
https://arxiv.org/pdf/1910.10683v4.pdf
|
https://github.com/google-research/text-to-text-transfer-transformer
| false | true | true |
tf
|
https://paperswithcode.com/paper/flow-of-gas-detected-from-beyond-the
|
Flow of gas detected from beyond the filaments to protostellar scales in Barnard 5
|
2307.14337
|
https://arxiv.org/abs/2307.14337v2
|
https://arxiv.org/pdf/2307.14337v2.pdf
|
https://github.com/tere-valdivia/barnard_5_infall
| true | true | false |
none
|
https://paperswithcode.com/paper/parameter-free-fista-by-adaptive-restart-and
|
Parameter-Free FISTA by Adaptive Restart and Backtracking
|
2307.14323
|
https://arxiv.org/abs/2307.14323v1
|
https://arxiv.org/pdf/2307.14323v1.pdf
|
https://github.com/hippolytelbrrr/benchmarking_free_fista
| true | true | false |
none
|
https://paperswithcode.com/paper/seesaw-loss-for-long-tailed-instance
|
Seesaw Loss for Long-Tailed Instance Segmentation
|
2008.10032
|
https://arxiv.org/abs/2008.10032v4
|
https://arxiv.org/pdf/2008.10032v4.pdf
|
https://github.com/MindCode-4/code-9/tree/main/Scalable-Sharpness-Aware-Minimization
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/faster-diffusion-rethinking-the-role-of-unet
|
Faster Diffusion: Rethinking the Role of the Encoder for Diffusion Model Inference
|
2312.09608
|
https://arxiv.org/abs/2312.09608v2
|
https://arxiv.org/pdf/2312.09608v2.pdf
|
https://github.com/hutaihang/faster-diffusion
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/stochastic-segmentation-with-conditional
|
Stochastic Segmentation with Conditional Categorical Diffusion Models
|
2303.08888
|
https://arxiv.org/abs/2303.08888v5
|
https://arxiv.org/pdf/2303.08888v5.pdf
|
https://github.com/larsdoorenbos/ccdm-stochastic-segmentation
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/end-to-end-speech-translation-for-code
|
End-to-End Speech Translation for Code Switched Speech
|
2204.05076
|
https://arxiv.org/abs/2204.05076v1
|
https://arxiv.org/pdf/2204.05076v1.pdf
|
https://github.com/apple/ml-codeswitching-translations
| false | false | true |
none
|
https://paperswithcode.com/paper/forecasting-sql-query-cost-at-twitter
|
Forecasting SQL Query Cost at Twitter
|
2204.05529
|
https://arxiv.org/abs/2204.05529v1
|
https://arxiv.org/pdf/2204.05529v1.pdf
|
https://github.com/prestodb/presto-query-predictor
| true | false | true |
tf
|
https://paperswithcode.com/paper/estimating-the-volumes-of-correlations-sets
|
Estimating the volumes of correlations sets in causal networks
|
2311.08574
|
https://arxiv.org/abs/2311.08574v1
|
https://arxiv.org/pdf/2311.08574v1.pdf
|
https://github.com/giuhcs/relative_volumes_tripartite
| true | true | false |
none
|
https://paperswithcode.com/paper/exploring-the-role-of-mean-teachers-in-self
|
Exploring The Role of Mean Teachers in Self-supervised Masked Auto-Encoders
|
2210.02077
|
https://arxiv.org/abs/2210.02077v1
|
https://arxiv.org/pdf/2210.02077v1.pdf
|
https://github.com/youngwanLEE/rc-mae
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/transfer-learning-and-bias-correction-with
|
Transfer Learning and Bias Correction with Pre-trained Audio Embeddings
|
2307.10834
|
https://arxiv.org/abs/2307.10834v1
|
https://arxiv.org/pdf/2307.10834v1.pdf
|
https://github.com/changhongw/audio-embedding-bias
| true | true | true |
tf
|
https://paperswithcode.com/paper/instant-neural-radiance-fields-stylization
|
Instant Photorealistic Neural Radiance Fields Stylization
|
2303.16884
|
https://arxiv.org/abs/2303.16884v2
|
https://arxiv.org/pdf/2303.16884v2.pdf
|
https://github.com/lsx0101/Instant-NeRF-Stylization
| true | false | true |
none
|
https://paperswithcode.com/paper/trusted-multi-view-classification-with
|
Trusted Multi-View Classification with Dynamic Evidential Fusion
|
2204.11423
|
https://arxiv.org/abs/2204.11423v3
|
https://arxiv.org/pdf/2204.11423v3.pdf
|
https://github.com/2023-MindSpore-4/Code13/tree/main/zhangchangqing/MpTMC-main
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/mailex-email-event-and-argument-extraction
|
MAILEX: Email Event and Argument Extraction
|
2305.13469
|
https://arxiv.org/abs/2305.13469v2
|
https://arxiv.org/pdf/2305.13469v2.pdf
|
https://github.com/salokr/email-event-extraction
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/temperature-fluctuations-in-quasar-accretion
|
Temperature Fluctuations in Quasar Accretion Discs from Spectroscopic Monitoring Data
|
2210.07452
|
https://arxiv.org/abs/2210.07452v3
|
https://arxiv.org/pdf/2210.07452v3.pdf
|
https://github.com/zstone19/tempmap
| true | true | true |
none
|
https://paperswithcode.com/paper/an-open-source-gloss-based-baseline-for
|
An Open-Source Gloss-Based Baseline for Spoken to Signed Language Translation
|
2305.17714
|
https://arxiv.org/abs/2305.17714v1
|
https://arxiv.org/pdf/2305.17714v1.pdf
|
https://github.com/zurichnlp/spoken-to-signed-translation
| true | true | true |
none
|
https://paperswithcode.com/paper/rethinking-the-role-of-llms-for-document
|
Rethinking the Role of LLMs for Document-level Relation Extraction: a Refiner with Task Distribution and Probability Fusion
| null |
https://aclanthology.org/2025.naacl-long.319/
|
https://aclanthology.org/2025.naacl-long.319.pdf
|
https://github.com/MindSpore-scientific-2/code-7/tree/main/DocREfiner
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/benchmarking-detection-transfer-learning-with
|
Benchmarking Detection Transfer Learning with Vision Transformers
|
2111.11429
|
https://arxiv.org/abs/2111.11429v1
|
https://arxiv.org/pdf/2111.11429v1.pdf
|
https://github.com/youngwanLEE/rc-mae
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/dreambooth-fine-tuning-text-to-image
|
DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation
|
2208.12242
|
https://arxiv.org/abs/2208.12242v2
|
https://arxiv.org/pdf/2208.12242v2.pdf
|
https://github.com/google/dreambooth
| false | false | true |
none
|
https://paperswithcode.com/paper/extend-and-explain-interpreting-very-long
|
Extend and Explain: Interpreting Very Long Language Models
|
2209.01174
|
https://arxiv.org/abs/2209.01174v3
|
https://arxiv.org/pdf/2209.01174v3.pdf
|
https://github.com/mim-solutions/roberta_for_longer_texts
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/pattern-mining-for-anomaly-detection-in
|
Pattern Mining for Anomaly Detection in Graphs: Application to Fraud in Public Procurement
|
2306.10857
|
https://arxiv.org/abs/2306.10857v1
|
https://arxiv.org/pdf/2306.10857v1.pdf
|
https://github.com/compnet/pang
| true | true | false |
tf
|
https://paperswithcode.com/paper/partially-ionised-two-fluid-shocks-with
|
Partially-ionised two-fluid shocks with collisional and radiative ionisation and recombination -- multi-level hydrogen model
|
2308.12802
|
https://arxiv.org/abs/2308.12802v1
|
https://arxiv.org/pdf/2308.12802v1.pdf
|
https://github.com/AstroSnow/PIP
| true | true | false |
none
|
https://paperswithcode.com/paper/multi-modal-representation-learning-for-1
|
Multi-Modal Representation Learning for Molecular Property Prediction: Sequence, Graph, Geometry
|
2401.03369
|
https://arxiv.org/abs/2401.03369v2
|
https://arxiv.org/pdf/2401.03369v2.pdf
|
https://github.com/vencent-won/sggrl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/vapor-holonomic-legged-robot-navigation-in
|
VAPOR: Legged Robot Navigation in Outdoor Vegetation Using Offline Reinforcement Learning
|
2309.07832
|
https://arxiv.org/abs/2309.07832v2
|
https://arxiv.org/pdf/2309.07832v2.pdf
|
https://github.com/kasunweerkoon/VAPOR
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/pymgrid-an-open-source-python-microgrid
|
pymgrid: An Open-Source Python Microgrid Simulator for Applied Artificial Intelligence Research
|
2011.08004
|
https://arxiv.org/abs/2011.08004v1
|
https://arxiv.org/pdf/2011.08004v1.pdf
|
https://github.com/bhushan318/pymgridbhu
| false | false | true |
none
|
https://paperswithcode.com/paper/using-rational-filters-to-uncover-the-first
|
Using rational filters to uncover the first ringdown overtone in GW150914
|
2301.06639
|
https://arxiv.org/abs/2301.06639v2
|
https://arxiv.org/pdf/2301.06639v2.pdf
|
https://github.com/sizheng-ma/qnm_filter
| false | false | true |
none
|
https://paperswithcode.com/paper/towards-robust-monocular-depth-estimation
|
Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer
|
1907.01341
|
https://arxiv.org/abs/1907.01341v3
|
https://arxiv.org/pdf/1907.01341v3.pdf
|
https://github.com/picsart-ai-research/text2video-zero
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/neat-neural-artistic-tracing-for-beautiful
|
NeAT: Neural Artistic Tracing for Beautiful Style Transfer
|
2304.05139
|
https://arxiv.org/abs/2304.05139v1
|
https://arxiv.org/pdf/2304.05139v1.pdf
|
https://github.com/danruta/neat
| true | true | false |
none
|
https://paperswithcode.com/paper/scalable-educational-question-generation-with
|
Scalable Educational Question Generation with Pre-trained Language Models
|
2305.07871
|
https://arxiv.org/abs/2305.07871v1
|
https://arxiv.org/pdf/2305.07871v1.pdf
|
https://github.com/hmuus01/educational_qg
| true | true | false |
jax
|
https://paperswithcode.com/paper/multilingual-translation-with-extensible
|
Multilingual Translation with Extensible Multilingual Pretraining and Finetuning
|
2008.00401
|
https://arxiv.org/abs/2008.00401v1
|
https://arxiv.org/pdf/2008.00401v1.pdf
|
https://github.com/xhlulu/dl-translate
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/qwen-vl-a-frontier-large-vision-language
|
Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond
|
2308.12966
|
https://arxiv.org/abs/2308.12966v3
|
https://arxiv.org/pdf/2308.12966v3.pdf
|
https://github.com/qwenlm/qwen-vl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/simulation-efficient-marginal-posterior
|
Simulation-efficient marginal posterior estimation with swyft: stop wasting your precious time
|
2011.13951
|
https://arxiv.org/abs/2011.13951v1
|
https://arxiv.org/pdf/2011.13951v1.pdf
|
https://github.com/undark-lab/swyft
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fast-and-credible-likelihood-free-cosmology
|
Fast and Credible Likelihood-Free Cosmology with Truncated Marginal Neural Ratio Estimation
|
2111.08030
|
https://arxiv.org/abs/2111.08030v2
|
https://arxiv.org/pdf/2111.08030v2.pdf
|
https://github.com/undark-lab/swyft
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/estimating-the-warm-dark-matter-mass-from
|
Estimating the warm dark matter mass from strong lensing images with truncated marginal neural ratio estimation
|
2205.09126
|
https://arxiv.org/abs/2205.09126v2
|
https://arxiv.org/pdf/2205.09126v2.pdf
|
https://github.com/undark-lab/swyft
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cleanmel-mel-spectrogram-enhancement-for
|
CleanMel: Mel-Spectrogram Enhancement for Improving Both Speech Quality and ASR
|
2502.20040
|
https://arxiv.org/abs/2502.20040v1
|
https://arxiv.org/pdf/2502.20040v1.pdf
|
https://github.com/Audio-WestlakeU/CleanMel
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/uni-sign-toward-unified-sign-language
|
Uni-Sign: Toward Unified Sign Language Understanding at Scale
|
2501.15187
|
https://arxiv.org/abs/2501.15187v2
|
https://arxiv.org/pdf/2501.15187v2.pdf
|
https://github.com/zechengli19/uni-sign
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/decide-less-communicate-more-on-the-construct
|
Decide less, communicate more: On the construct validity of end-to-end fact-checking in medicine
|
2506.20876
|
https://arxiv.org/abs/2506.20876v1
|
https://arxiv.org/pdf/2506.20876v1.pdf
|
https://github.com/sebajoe/decide-less-communicate-more
| true | true | true |
none
|
https://paperswithcode.com/paper/restorer-solving-multiple-image-restoration
|
Restorer: Removing Multi-Degradation with All-Axis Attention and Prompt Guidance
|
2406.12587
|
https://arxiv.org/abs/2406.12587v2
|
https://arxiv.org/pdf/2406.12587v2.pdf
|
https://github.com/Talented-Q/Restorer
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/diatrend-a-dataset-from-advanced-diabetes
|
DiaTrend: A dataset from advanced diabetes technology to enable development of novel analytic solutions
|
2304.06506
|
https://arxiv.org/abs/2304.06506v1
|
https://arxiv.org/pdf/2304.06506v1.pdf
|
https://github.com/augmented-health-lab/diatrend
| true | true | false |
none
|
https://paperswithcode.com/paper/how-much-knowledge-can-you-pack-into-the
|
How Much Knowledge Can You Pack Into the Parameters of a Language Model?
|
2002.08910
|
https://arxiv.org/abs/2002.08910v4
|
https://arxiv.org/pdf/2002.08910v4.pdf
|
https://github.com/google/seqio
| false | false | true |
tf
|
https://paperswithcode.com/paper/scaling-up-models-and-data-with-texttt-t5x
|
Scaling Up Models and Data with $\texttt{t5x}$ and $\texttt{seqio}$
|
2203.17189
|
https://arxiv.org/abs/2203.17189v1
|
https://arxiv.org/pdf/2203.17189v1.pdf
|
https://github.com/google/seqio
| true | true | true |
tf
|
https://paperswithcode.com/paper/berkeley-open-extended-reality-recordings
|
Berkeley Open Extended Reality Recordings 2023 (BOXRR-23): 4.7 Million Motion Capture Recordings from 105,852 Extended Reality Device Users
|
2310.00430
|
https://arxiv.org/abs/2310.00430v1
|
https://arxiv.org/pdf/2310.00430v1.pdf
|
https://github.com/metaguard/metaguard
| true | true | false |
none
|
https://paperswithcode.com/paper/double-infogan-for-contrastive-analysis
|
Double InfoGAN for Contrastive Analysis
|
2401.17776
|
https://arxiv.org/abs/2401.17776v1
|
https://arxiv.org/pdf/2401.17776v1.pdf
|
https://github.com/florence-c/double_infogan
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/sentiment-analysis-in-the-era-of-large
|
Sentiment Analysis in the Era of Large Language Models: A Reality Check
|
2305.15005
|
https://arxiv.org/abs/2305.15005v1
|
https://arxiv.org/pdf/2305.15005v1.pdf
|
https://github.com/damo-nlp-sg/llm-sentiment
| true | true | true |
none
|
https://paperswithcode.com/paper/topic-modelling-of-swedish-newspaper-articles
|
Topic Modelling of Swedish Newspaper Articles about Coronavirus: a Case Study using Latent Dirichlet Allocation Method
|
2301.03029
|
https://arxiv.org/abs/2301.03029v6
|
https://arxiv.org/pdf/2301.03029v6.pdf
|
https://github.com/aaronlifenghan/swed_covid_tm
| true | true | true |
none
|
https://paperswithcode.com/paper/fitting-an-ellipsoid-to-random-points
|
Fitting an ellipsoid to random points: predictions using the replica method
|
2310.01169
|
https://arxiv.org/abs/2310.01169v2
|
https://arxiv.org/pdf/2310.01169v2.pdf
|
https://github.com/anmaillard/fitting_ellipsoid_replicas
| true | true | false |
none
|
https://paperswithcode.com/paper/zhijian-a-unifying-and-rapidly-deployable
|
ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model Reuse
|
2308.09158
|
https://arxiv.org/abs/2308.09158v1
|
https://arxiv.org/pdf/2308.09158v1.pdf
|
https://github.com/zhangyikaii/lamda-zhijian
| true | true | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.