paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/forecasting-human-trajectory-from-scene
|
Forecasting Human Trajectory from Scene History
|
2210.08732
|
https://arxiv.org/abs/2210.08732v1
|
https://arxiv.org/pdf/2210.08732v1.pdf
|
https://github.com/makaruinah/shenet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/streaming-sparse-gaussian-process
|
Streaming Sparse Gaussian Process Approximations
|
1705.07131
|
http://arxiv.org/abs/1705.07131v2
|
http://arxiv.org/pdf/1705.07131v2.pdf
|
https://github.com/tyliu22/online_pacgp
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/kernel-interpolation-for-scalable-structured
|
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
|
1503.01057
|
http://arxiv.org/abs/1503.01057v1
|
http://arxiv.org/pdf/1503.01057v1.pdf
|
https://github.com/tyliu22/online_pacgp
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/efficientdreamer-high-fidelity-and-robust-3d
|
EfficientDreamer: High-Fidelity and Robust 3D Creation via Orthogonal-view Diffusion Prior
|
2308.13223
|
https://arxiv.org/abs/2308.13223v2
|
https://arxiv.org/pdf/2308.13223v2.pdf
|
https://github.com/EfficientDreamer/EfficientDreamer
| true | false | true |
none
|
https://paperswithcode.com/paper/factorized-contrastive-learning-going-beyond
|
Factorized Contrastive Learning: Going Beyond Multi-view Redundancy
|
2306.05268
|
https://arxiv.org/abs/2306.05268v2
|
https://arxiv.org/pdf/2306.05268v2.pdf
|
https://github.com/pliang279/factorcl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/distributionally-robust-neural-networks-for
|
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
|
1911.08731
|
https://arxiv.org/abs/1911.08731v2
|
https://arxiv.org/pdf/1911.08731v2.pdf
|
https://github.com/yangarbiter/dp-dg
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/mipi-2022-challenge-on-under-display-camera
|
MIPI 2022 Challenge on Under-Display Camera Image Restoration: Methods and Results
|
2209.07052
|
https://arxiv.org/abs/2209.07052v2
|
https://arxiv.org/pdf/2209.07052v2.pdf
|
https://github.com/mipi-challenge/mipi2022
| true | true | true |
none
|
https://paperswithcode.com/paper/detection-recovery-in-online-multi-object
|
Detection Recovery in Online Multi-Object Tracking with Sparse Graph Tracker
|
2205.00968
|
https://arxiv.org/abs/2205.00968v3
|
https://arxiv.org/pdf/2205.00968v3.pdf
|
https://github.com/hyunjs/sgt
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/surrogate-infeasible-fitness-acquirement-fi
|
Surrogate Infeasible Fitness Acquirement FI-2Pop for Procedural Content Generation
|
2205.05834
|
https://arxiv.org/abs/2205.05834v1
|
https://arxiv.org/pdf/2205.05834v1.pdf
|
https://github.com/arayabrain/space-engineers-ai-spaceship-generator
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/analytic-and-numerical-demonstration-of
|
Analytic and numerical demonstration of quantum self-correction in the 3D Cubic Code
|
1112.3252
|
https://arxiv.org/abs/1112.3252v1
|
https://arxiv.org/pdf/1112.3252v1.pdf
|
https://github.com/Jonsm/ClusterDecoders
| false | false | true |
none
|
https://paperswithcode.com/paper/extracting-temporal-event-relation-with
|
Extracting Temporal Event Relation with Syntax-guided Graph Transformer
|
2104.09570
|
https://arxiv.org/abs/2104.09570v2
|
https://arxiv.org/pdf/2104.09570v2.pdf
|
https://github.com/vt-nlp/syntax-guided-graph-transformer
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/the-generalized-green-s-function-cluster
|
The Generalized Green's function Cluster Expansion: A Python package for simulating polarons
|
2210.12260
|
https://arxiv.org/abs/2210.12260v1
|
https://arxiv.org/pdf/2210.12260v1.pdf
|
https://github.com/x94carbone/ggce
| true | true | false |
none
|
https://paperswithcode.com/paper/optimal-energy-system-scheduling-using-a
|
Optimal Energy System Scheduling Using A Constraint-Aware Reinforcement Learning Algorithm
|
2305.05484
|
https://arxiv.org/abs/2305.05484v1
|
https://arxiv.org/pdf/2305.05484v1.pdf
|
https://github.com/ShengrenHou/Energy-management-MIP-Deep-Reinforcement-Learning
| true | true | true |
none
|
https://paperswithcode.com/paper/towards-online-domain-adaptive-object
|
Towards Online Domain Adaptive Object Detection
|
2204.05289
|
https://arxiv.org/abs/2204.05289v2
|
https://arxiv.org/pdf/2204.05289v2.pdf
|
https://github.com/vibashan/memxformer-online-da
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/numerical-rank-of-singular-kernel-functions
|
HODLR$d$D: A new Black-box fast algorithm for $N$-body problems in $d$-dimensions with guaranteed error bounds
|
2209.05819
|
https://arxiv.org/abs/2209.05819v4
|
https://arxiv.org/pdf/2209.05819v4.pdf
|
https://github.com/safran-lab/hodlrdd
| true | true | true |
none
|
https://paperswithcode.com/paper/meim-multi-partition-embedding-interaction
|
MEIM: Multi-partition Embedding Interaction Beyond Block Term Format for Efficient and Expressive Link Prediction
|
2209.15597
|
https://arxiv.org/abs/2209.15597v2
|
https://arxiv.org/pdf/2209.15597v2.pdf
|
https://github.com/tranhungnghiep/AnalyzeKGE
| false | false | true |
tf
|
https://paperswithcode.com/paper/the-training-process-of-many-deep-networks
|
The Training Process of Many Deep Networks Explores the Same Low-Dimensional Manifold
|
2305.01604
|
https://arxiv.org/abs/2305.01604v3
|
https://arxiv.org/pdf/2305.01604v3.pdf
|
https://github.com/grasp-lyrl/low-dimensional-deepnets
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/laplacian-convolutional-representation-for
|
Laplacian Convolutional Representation for Traffic Time Series Imputation
|
2212.01529
|
https://arxiv.org/abs/2212.01529v3
|
https://arxiv.org/pdf/2212.01529v3.pdf
|
https://github.com/xinychen/transdim
| true | true | true |
tf
|
https://paperswithcode.com/paper/neural-directional-distance-field-object
|
Neural directional distance field object representation for uni-directional path-traced rendering
|
2306.16142
|
https://arxiv.org/abs/2306.16142v1
|
https://arxiv.org/pdf/2306.16142v1.pdf
|
https://github.com/smlab-niser/23ddf
| true | true | false |
none
|
https://paperswithcode.com/paper/graph-convolutional-neural-networks-with
|
Graph Convolutional Neural Networks with Diverse Negative Samples via Decomposed Determinant Point Processes
|
2212.02055
|
https://arxiv.org/abs/2212.02055v3
|
https://arxiv.org/pdf/2212.02055v3.pdf
|
https://github.com/Wei9711/NegGCNs
| true | true | false |
none
|
https://paperswithcode.com/paper/tracking-anything-in-high-quality
|
Tracking Anything in High Quality
|
2307.13974
|
https://arxiv.org/abs/2307.13974v1
|
https://arxiv.org/pdf/2307.13974v1.pdf
|
https://github.com/jiawen-zhu/hqtrack
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/almost-optimal-variance-constrained-best-arm
|
Almost Optimal Variance-Constrained Best Arm Identification
|
2201.10142
|
https://arxiv.org/abs/2201.10142v2
|
https://arxiv.org/pdf/2201.10142v2.pdf
|
https://github.com/y-hou/va-bai
| true | true | false |
none
|
https://paperswithcode.com/paper/the-interactive-modeling-of-a-binary-star
|
The Interactive Modeling of a Binary Star System
|
2210.14227
|
https://arxiv.org/abs/2210.14227v1
|
https://arxiv.org/pdf/2210.14227v1.pdf
|
https://github.com/kamesankaro/the-interactive-modeling-of-a-binary-star-system---supplementary-code
| true | true | false |
none
|
https://paperswithcode.com/paper/vitpose-simple-vision-transformer-baselines
|
ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
|
2204.12484
|
https://arxiv.org/abs/2204.12484v3
|
https://arxiv.org/pdf/2204.12484v3.pdf
|
https://github.com/jaehyunnn/ViTPose_pytorch
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/ttrisk-tensor-train-decomposition-algorithm
|
TTRISK: Tensor Train Decomposition Algorithm for Risk Averse Optimization
|
2111.05180
|
https://arxiv.org/abs/2111.05180v2
|
https://arxiv.org/pdf/2111.05180v2.pdf
|
https://github.com/dolgov/ttrisk
| true | true | true |
none
|
https://paperswithcode.com/paper/sparse-autoencoders-find-highly-interpretable
|
Sparse Autoencoders Find Highly Interpretable Features in Language Models
|
2309.08600
|
https://arxiv.org/abs/2309.08600v3
|
https://arxiv.org/pdf/2309.08600v3.pdf
|
https://github.com/hoagyc/sparse_coding
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/revisiting-pseudo-dirac-neutrino-scenario
|
Revisiting pseudo-Dirac neutrino scenario after recent solar neutrino data
|
2211.09105
|
https://arxiv.org/abs/2211.09105v2
|
https://arxiv.org/pdf/2211.09105v2.pdf
|
https://github.com/saeedansarifard/solarneutrinos-pseudodirac
| true | true | true |
none
|
https://paperswithcode.com/paper/medtsllm-leveraging-llms-for-multimodal
|
MedTsLLM: Leveraging LLMs for Multimodal Medical Time Series Analysis
|
2408.07773
|
https://arxiv.org/abs/2408.07773v1
|
https://arxiv.org/pdf/2408.07773v1.pdf
|
https://github.com/flixpar/med-ts-llm
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/asap-reconciling-asynchronous-real-time
|
ASAP: Reconciling Asynchronous Real-Time Operations and Proofs of Execution in Simple Embedded Systems
|
2206.02894
|
https://arxiv.org/abs/2206.02894v1
|
https://arxiv.org/pdf/2206.02894v1.pdf
|
https://github.com/rit-chaos-sec/asap
| true | true | true |
none
|
https://paperswithcode.com/paper/s-2-flow-joint-semantic-and-style-editing-of
|
$S^2$-Flow: Joint Semantic and Style Editing of Facial Images
|
2211.12209
|
https://arxiv.org/abs/2211.12209v1
|
https://arxiv.org/pdf/2211.12209v1.pdf
|
https://github.com/visinf/s2-flow
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/supporting-dnn-safety-analysis-and-retraining
|
Supporting DNN Safety Analysis and Retraining through Heatmap-based Unsupervised Learning
|
2002.00863
|
https://arxiv.org/abs/2002.00863v4
|
https://arxiv.org/pdf/2002.00863v4.pdf
|
https://github.com/SNTSVV/HUDD-Toolset
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/model-agnostic-and-scalable-counterfactual
|
Model-agnostic and Scalable Counterfactual Explanations via Reinforcement Learning
|
2106.02597
|
https://arxiv.org/abs/2106.02597v1
|
https://arxiv.org/pdf/2106.02597v1.pdf
|
https://github.com/SeldonIO/alibi
| true | true | true |
tf
|
https://paperswithcode.com/paper/hudd-a-tool-to-debug-dnns-for-safety-analysis
|
HUDD: A tool to debug DNNs for safety analysis
|
2210.08356
|
https://arxiv.org/abs/2210.08356v1
|
https://arxiv.org/pdf/2210.08356v1.pdf
|
https://github.com/SNTSVV/HUDD-Toolset
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/self-improving-slam-in-dynamic-environments
|
Self-Improving SLAM in Dynamic Environments: Learning When to Mask
|
2210.08350
|
https://arxiv.org/abs/2210.08350v3
|
https://arxiv.org/pdf/2210.08350v3.pdf
|
https://github.com/adrianbojko/consinv-dataset
| true | true | false |
none
|
https://paperswithcode.com/paper/accelerated-motion-correction-for-mri-using
|
Accelerated Motion Correction with Deep Generative Diffusion Models
|
2211.00199
|
https://arxiv.org/abs/2211.00199v2
|
https://arxiv.org/pdf/2211.00199v2.pdf
|
https://github.com/utcsilab/motion_score_mri
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/tbdm-net-bidirectional-dense-networks-with
|
TBDM-Net: Bidirectional Dense Networks with Gender Information for Speech Emotion Recognition
|
2409.10056
|
https://arxiv.org/abs/2409.10056v1
|
https://arxiv.org/pdf/2409.10056v1.pdf
|
https://github.com/adrianastan/tbdm-net
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/pangu-a-large-scale-autoregressive-pretrained
|
PanGu-$α$: Large-scale Autoregressive Pretrained Chinese Language Models with Auto-parallel Computation
|
2104.12369
|
https://arxiv.org/abs/2104.12369v1
|
https://arxiv.org/pdf/2104.12369v1.pdf
|
https://github.com/2023-MindSpore-1/ms-code-162
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/instance-relation-graph-guided-source-free
|
Instance Relation Graph Guided Source-Free Domain Adaptive Object Detection
|
2203.15793
|
https://arxiv.org/abs/2203.15793v4
|
https://arxiv.org/pdf/2203.15793v4.pdf
|
https://github.com/vibashan/irg-sfda
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/multilingual-machine-translation-with-hyper
|
Multilingual Machine Translation with Hyper-Adapters
|
2205.10835
|
https://arxiv.org/abs/2205.10835v2
|
https://arxiv.org/pdf/2205.10835v2.pdf
|
https://github.com/cbaziotis/fairseq
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/named-entity-and-relation-extraction-with
|
Named Entity and Relation Extraction with Multi-Modal Retrieval
|
2212.01612
|
https://arxiv.org/abs/2212.01612v1
|
https://arxiv.org/pdf/2212.01612v1.pdf
|
https://github.com/modelscope/adaseq
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/modeling-label-correlations-for-ultra-fine
|
Modeling Label Correlations for Ultra-Fine Entity Typing with Neural Pairwise Conditional Random Field
|
2212.01581
|
https://arxiv.org/abs/2212.01581v1
|
https://arxiv.org/pdf/2212.01581v1.pdf
|
https://github.com/modelscope/adaseq
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-transient-thermal-model-for-power
|
A Transient Thermal Model for Power Electronics Systems
|
2403.03268
|
https://arxiv.org/abs/2403.03268v2
|
https://arxiv.org/pdf/2403.03268v2.pdf
|
https://github.com/neelp-87/rom-transient-thermal-model-for-power-electronics-
| true | true | false |
none
|
https://paperswithcode.com/paper/a-unified-survey-on-anomaly-novelty-open-set
|
A Unified Survey on Anomaly, Novelty, Open-Set, and Out-of-Distribution Detection: Solutions and Future Challenges
|
2110.14051
|
https://arxiv.org/abs/2110.14051v5
|
https://arxiv.org/pdf/2110.14051v5.pdf
|
https://github.com/taslimisina/osr-ood-ad-methods
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/representation-power-of-graph-convolutions
|
Analysis of Convolutions, Non-linearity and Depth in Graph Neural Networks using Neural Tangent Kernel
|
2210.09809
|
https://arxiv.org/abs/2210.09809v4
|
https://arxiv.org/pdf/2210.09809v4.pdf
|
https://github.com/mahalakshmi-sabanayagam/NTK_GCN
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/the-operational-meaning-of-min-and-max
|
The operational meaning of min- and max-entropy
|
0807.1338
|
http://arxiv.org/abs/0807.1338v2
|
http://arxiv.org/pdf/0807.1338v2.pdf
|
https://github.com/isaacdsmith/min-entropy_and_mbqc
| false | false | true |
none
|
https://paperswithcode.com/paper/comparison-of-home-detection-algorithms-using
|
Comparison of home detection algorithms using smartphone GPS data
|
2401.06154
|
https://arxiv.org/abs/2401.06154v1
|
https://arxiv.org/pdf/2401.06154v1.pdf
|
https://github.com/rvanxer/home_detection
| true | true | false |
none
|
https://paperswithcode.com/paper/predicting-long-timescale-kinetics-under
|
Predicting long timescale kinetics under variable experimental conditions with Kinetica.jl
|
2403.08657
|
https://arxiv.org/abs/2403.08657v1
|
https://arxiv.org/pdf/2403.08657v1.pdf
|
https://github.com/Kinetica-jl/Kinetica.jl
| true | true | true |
none
|
https://paperswithcode.com/paper/towards-pac-multi-object-detection-and
|
Towards PAC Multi-Object Detection and Tracking
|
2204.07482
|
https://arxiv.org/abs/2204.07482v1
|
https://arxiv.org/pdf/2204.07482v1.pdf
|
https://github.com/leoandeol/cods
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/lefl-low-entropy-client-sampling-in-federated
|
LEFL: Low Entropy Client Sampling in Federated Learning
|
2312.17430
|
https://arxiv.org/abs/2312.17430v2
|
https://arxiv.org/pdf/2312.17430v2.pdf
|
https://github.com/wmabebe/lefl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/semantic-flow-learning-semantic-field-of
|
Semantic Flow: Learning Semantic Field of Dynamic Scenes from Monocular Videos
|
2404.05163
|
https://arxiv.org/abs/2404.05163v1
|
https://arxiv.org/pdf/2404.05163v1.pdf
|
https://github.com/tianfr/semantic-flow
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-survey-of-learning-causality-with-data
|
A Survey of Learning Causality with Data: Problems and Methods
|
1809.09337
|
https://arxiv.org/abs/1809.09337v4
|
https://arxiv.org/pdf/1809.09337v4.pdf
|
https://github.com/rguo12/awesome-causality-algorithms
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/which-quantum-circuit-mutants-shall-be-used
|
Quantum Circuit Mutants: Empirical Analysis and Recommendations
|
2311.16913
|
https://arxiv.org/abs/2311.16913v5
|
https://arxiv.org/pdf/2311.16913v5.pdf
|
https://github.com/enautmendi/which-quantum-circuit-mutants-shall-be-used
| true | true | false |
none
|
https://paperswithcode.com/paper/recall-expand-and-multi-candidate-cross
|
Recall, Expand and Multi-Candidate Cross-Encode: Fast and Accurate Ultra-Fine Entity Typing
|
2212.09125
|
https://arxiv.org/abs/2212.09125v1
|
https://arxiv.org/pdf/2212.09125v1.pdf
|
https://github.com/modelscope/adaseq
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/inferring-stellar-parameters-from-iodine
|
Inferring Stellar Parameters from Iodine-Imprinted Keck/HIRES Spectra with Machine Learning
|
2401.06839
|
https://arxiv.org/abs/2401.06839v1
|
https://arxiv.org/pdf/2401.06839v1.pdf
|
https://github.com/jgussman/chip
| true | true | false |
none
|
https://paperswithcode.com/paper/clustering-by-mining-density-distributions
|
Clustering by Mining Density Distributions and Splitting Manifold Structure
|
2408.10493
|
https://arxiv.org/abs/2408.10493v2
|
https://arxiv.org/pdf/2408.10493v2.pdf
|
https://github.com/SWJTU-ML/MDMSC
| true | false | false |
none
|
https://paperswithcode.com/paper/a-3d-molecule-generative-model-for-structure
|
A 3D Generative Model for Structure-Based Drug Design
|
2203.10446
|
https://arxiv.org/abs/2203.10446v2
|
https://arxiv.org/pdf/2203.10446v2.pdf
|
https://github.com/yanliang3612/nucleusdiff
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/exploring-the-potential-of-machine
|
Exploring the Potential of Machine Translation for Generating Named Entity Datasets: A Case Study between Persian and English
|
2302.09611
|
https://arxiv.org/abs/2302.09611v1
|
https://arxiv.org/pdf/2302.09611v1.pdf
|
https://github.com/amirsartipi13/translated-english-benchmarks-to-persian
| true | true | true |
none
|
https://paperswithcode.com/paper/redmule-a-mixed-precision-matrix-matrix
|
RedMule: A Mixed-Precision Matrix-Matrix Operation Engine for Flexible and Energy-Efficient On-Chip Linear Algebra and TinyML Training Acceleration
|
2301.03904
|
https://arxiv.org/abs/2301.03904v2
|
https://arxiv.org/pdf/2301.03904v2.pdf
|
https://github.com/pulp-platform/redmule
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/ethp2psim-evaluating-and-deploying-privacy
|
ethp2psim: Evaluating and deploying privacy-enhanced peer-to-peer routing protocols for the Ethereum network
|
2306.15024
|
https://arxiv.org/abs/2306.15024v1
|
https://arxiv.org/pdf/2306.15024v1.pdf
|
https://github.com/ferencberes/ethp2psim
| true | true | true |
none
|
https://paperswithcode.com/paper/explainable-multimodal-emotion-reasoning
|
Explainable Multimodal Emotion Recognition
|
2306.15401
|
https://arxiv.org/abs/2306.15401v6
|
https://arxiv.org/pdf/2306.15401v6.pdf
|
https://github.com/zeroqiaoba/explainable-multimodal-emotion-reasoning
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/exploring-model-misspecification-in
|
Exploring Model Misspecification in Statistical Finite Elements via Shallow Water Equations
|
2307.05334
|
https://arxiv.org/abs/2307.05334v1
|
https://arxiv.org/pdf/2307.05334v1.pdf
|
https://github.com/connor-duffin/sswfe
| true | true | false |
none
|
https://paperswithcode.com/paper/colosseum-as-a-digital-twin-bridging-real
|
Colosseum as a Digital Twin: Bridging Real-World Experimentation and Wireless Network Emulation
|
2303.17063
|
https://arxiv.org/abs/2303.17063v6
|
https://arxiv.org/pdf/2303.17063v6.pdf
|
https://github.com/wineslab/cast
| true | true | false |
none
|
https://paperswithcode.com/paper/focus-your-attention-when-few-shot
|
Focus Your Attention when Few-Shot Classification
| null |
https://openreview.net/forum?id=uFlE0qgtRO
|
https://openreview.net/pdf?id=uFlE0qgtRO
|
https://github.com/haoqing-wang/fort
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/generation-of-artificial-ct-images-using
|
Generation of Artificial CT Images using Patch-based Conditional Generative Adversarial Networks
|
2205.09842
|
https://arxiv.org/abs/2205.09842v1
|
https://arxiv.org/pdf/2205.09842v1.pdf
|
https://github.com/mhabijan/medical_images_generation
| true | true | true |
tf
|
https://paperswithcode.com/paper/representation-deficiency-in-masked-language
|
Representation Deficiency in Masked Language Modeling
|
2302.02060
|
https://arxiv.org/abs/2302.02060v2
|
https://arxiv.org/pdf/2302.02060v2.pdf
|
https://github.com/yumeng5/mae-lm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/equalised-odds-is-not-equal-individual-odds
|
Equalised Odds is not Equal Individual Odds: Post-processing for Group and Individual Fairness
|
2304.09779
|
https://arxiv.org/abs/2304.09779v3
|
https://arxiv.org/pdf/2304.09779v3.pdf
|
https://github.com/teddyzander/mcgif
| true | true | false |
none
|
https://paperswithcode.com/paper/masked-autoencoders-as-image-processors
|
Masked Autoencoders as Image Processors
|
2303.17316
|
https://arxiv.org/abs/2303.17316v1
|
https://arxiv.org/pdf/2303.17316v1.pdf
|
https://github.com/duanhuiyu/maeip_csformer
| true | true | true |
none
|
https://paperswithcode.com/paper/transformers-for-limit-order-books
|
Transformers for Limit Order Books
|
2003.00130
|
https://arxiv.org/abs/2003.00130v1
|
https://arxiv.org/pdf/2003.00130v1.pdf
|
https://github.com/LeonardoBerti07/TransLOB---Transformers-for-limit-order-books-
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/the-super-weight-in-large-language-models
|
The Super Weight in Large Language Models
|
2411.07191
|
https://arxiv.org/abs/2411.07191v1
|
https://arxiv.org/pdf/2411.07191v1.pdf
|
https://github.com/mengxiayu/llmsuperweight
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/pv-rcnn-point-voxel-feature-set-abstraction
|
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
|
1912.13192
|
https://arxiv.org/abs/1912.13192v2
|
https://arxiv.org/pdf/1912.13192v2.pdf
|
https://github.com/open-mmlab/OpenPCDet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cross-lingual-visual-pre-training-for
|
Cross-lingual Visual Pre-training for Multimodal Machine Translation
|
2101.10044
|
https://arxiv.org/abs/2101.10044v2
|
https://arxiv.org/pdf/2101.10044v2.pdf
|
https://github.com/imperialnlp/vtlm
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/2407-21024
|
An Autonomous GIS Agent Framework for Geospatial Data Retrieval
|
2407.21024
|
https://arxiv.org/abs/2407.21024v2
|
https://arxiv.org/pdf/2407.21024v2.pdf
|
https://github.com/gladcolor/llm-find
| true | true | false |
none
|
https://paperswithcode.com/paper/duat-dual-aggregation-transformer-network-for
|
DuAT: Dual-Aggregation Transformer Network for Medical Image Segmentation
|
2212.11677
|
https://arxiv.org/abs/2212.11677v1
|
https://arxiv.org/pdf/2212.11677v1.pdf
|
https://github.com/Barrett-python/DuAT
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/transforming-sentiment-analysis-in-the
|
Transforming Sentiment Analysis in the Financial Domain with ChatGPT
|
2308.07935
|
https://arxiv.org/abs/2308.07935v1
|
https://arxiv.org/pdf/2308.07935v1.pdf
|
https://github.com/giorgosfatouros/Financial-Sentiment-Analysis-with-ChatGPT
| true | false | false |
none
|
https://paperswithcode.com/paper/proximal-policy-optimization-algorithms
|
Proximal Policy Optimization Algorithms
|
1707.06347
|
http://arxiv.org/abs/1707.06347v2
|
http://arxiv.org/pdf/1707.06347v2.pdf
|
https://github.com/bay3s/ppo-rl
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/deep-metric-learning-for-open-world-semantic
|
Deep Metric Learning for Open World Semantic Segmentation
|
2108.04562
|
https://arxiv.org/abs/2108.04562v1
|
https://arxiv.org/pdf/2108.04562v1.pdf
|
https://github.com/Jun-CEN/Open-World-Semantic-Segmentation
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/improved-algorithms-for-neural-active
|
Improved Algorithms for Neural Active Learning
|
2210.00423
|
https://arxiv.org/abs/2210.00423v3
|
https://arxiv.org/pdf/2210.00423v3.pdf
|
https://github.com/matouk98/i-neural
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/providers-clients-robots-framework-for
|
Providers-Clients-Robots: Framework for spatial-semantic planning for shared understanding in human-robot interaction
|
2206.10767
|
https://arxiv.org/abs/2206.10767v1
|
https://arxiv.org/pdf/2206.10767v1.pdf
|
https://github.com/umich-curly/spatial_interaction
| true | true | true |
none
|
https://paperswithcode.com/paper/a-just-in-time-networking-framework-for
|
A Just-In-Time Networking Framework for Minimizing Request-Response Latency of Wireless Time-Sensitive Applications
|
2109.03032
|
https://arxiv.org/abs/2109.03032v2
|
https://arxiv.org/pdf/2109.03032v2.pdf
|
https://github.com/leo-cheung-cuhk/openwifi-jit
| true | true | true |
none
|
https://paperswithcode.com/paper/faster-r-cnn-towards-real-time-object
|
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
|
1506.01497
|
http://arxiv.org/abs/1506.01497v3
|
http://arxiv.org/pdf/1506.01497v3.pdf
|
https://github.com/lyqcom/fasterrcnn-fpn-dcn
| false | false | true |
mindspore
|
https://paperswithcode.com/paper/fast-full-resolution-target-adaptive-cnn
|
Fast Full-Resolution Target-Adaptive CNN-Based Pansharpening Framework
| null |
https://www.mdpi.com/2072-4292/15/2/319
|
https://www.mdpi.com/2072-4292/15/2/319/pdf?version=1673404470
|
https://github.com/matciotola/fast-z-pnn
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/deformable-convnets-v2-more-deformable-better
|
Deformable ConvNets v2: More Deformable, Better Results
|
1811.11168
|
http://arxiv.org/abs/1811.11168v2
|
http://arxiv.org/pdf/1811.11168v2.pdf
|
https://github.com/lyqcom/fasterrcnn-fpn-dcn
| false | false | true |
mindspore
|
https://paperswithcode.com/paper/riemannian-geometry-and-molecular-similarity
|
Riemannian Geometry and Molecular Similarity II: Kähler Quantization
|
2301.04424
|
https://arxiv.org/abs/2301.04424v1
|
https://arxiv.org/pdf/2301.04424v1.pdf
|
https://github.com/rpirie96/kqmolsa
| true | true | true |
none
|
https://paperswithcode.com/paper/typical-correlation-length-of-sequentially
|
Typical Correlation Length of Sequentially Generated Tensor Network States
|
2301.04624
|
https://arxiv.org/abs/2301.04624v2
|
https://arxiv.org/pdf/2301.04624v2.pdf
|
https://github.com/denialhaag/weingarten
| true | true | true |
none
|
https://paperswithcode.com/paper/what-s-hard-in-english-rst-parsing-predictive
|
What's Hard in English RST Parsing? Predictive Models for Error Analysis
|
2309.04940
|
https://arxiv.org/abs/2309.04940v1
|
https://arxiv.org/pdf/2309.04940v1.pdf
|
https://github.com/janetlauyeung/nlperrors4rst
| true | true | false |
none
|
https://paperswithcode.com/paper/nm-flowgan-modeling-srgb-noise-with-a-hybrid
|
NM-FlowGAN: Modeling sRGB Noise without Paired Images using a Hybrid Approach of Normalizing Flows and GAN
|
2312.10112
|
https://arxiv.org/abs/2312.10112v3
|
https://arxiv.org/pdf/2312.10112v3.pdf
|
https://github.com/YoungJooHan/NM-FlowGAN
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cross-domain-weakly-supervised-object
|
Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation
|
1803.11365
|
http://arxiv.org/abs/1803.11365v1
|
http://arxiv.org/pdf/1803.11365v1.pdf
|
https://github.com/naoto0804/cross-domain-detection
| true | false | false |
none
|
https://paperswithcode.com/paper/crazychoir-flying-swarms-of-crazyflie
|
CrazyChoir: Flying Swarms of Crazyflie Quadrotors in ROS 2
|
2302.00716
|
https://arxiv.org/abs/2302.00716v2
|
https://arxiv.org/pdf/2302.00716v2.pdf
|
https://github.com/opt4smart/crazychoir
| true | true | false |
none
|
https://paperswithcode.com/paper/is-chatgpt-a-good-translator-a-preliminary
|
Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine
|
2301.08745
|
https://arxiv.org/abs/2301.08745v4
|
https://arxiv.org/pdf/2301.08745v4.pdf
|
https://github.com/wxjiao/is-chatgpt-a-good-translator
| true | true | true |
none
|
https://paperswithcode.com/paper/multi-grained-attention-network-for-aspect
|
Multi-grained Attention Network for Aspect-Level Sentiment Classification
| null |
https://aclanthology.org/D18-1380
|
https://aclanthology.org/D18-1380.pdf
|
https://github.com/mindspore-courses/ABSA-MindSpore
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/pointnet-deep-hierarchical-feature-learning
|
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
|
1706.02413
|
http://arxiv.org/abs/1706.02413v1
|
http://arxiv.org/pdf/1706.02413v1.pdf
|
https://gitee.com/gai-shaoyan/mind3d
| false | false | false |
none
|
https://paperswithcode.com/paper/point-transformer-1
|
Point Transformer
|
2012.09164
|
https://arxiv.org/abs/2012.09164v2
|
https://arxiv.org/pdf/2012.09164v2.pdf
|
https://gitee.com/gai-shaoyan/mind3d
| false | false | false |
none
|
https://paperswithcode.com/paper/multi-granularity-detector-for-vulnerability
|
Multi-Granularity Detector for Vulnerability Fixes
|
2305.13884
|
https://arxiv.org/abs/2305.13884v1
|
https://arxiv.org/pdf/2305.13884v1.pdf
|
https://github.com/soarsmu/midas
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/contrastive-collaborative-filtering-for-cold
|
Contrastive Collaborative Filtering for Cold-Start Item Recommendation
|
2302.02151
|
https://arxiv.org/abs/2302.02151v2
|
https://arxiv.org/pdf/2302.02151v2.pdf
|
https://github.com/zzhin/ccfcrec
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/slot-order-matters-for-compositional-scene
|
Towards Improving the Generation Quality of Autoregressive Slot VAEs
|
2206.01370
|
https://arxiv.org/abs/2206.01370v3
|
https://arxiv.org/pdf/2206.01370v3.pdf
|
https://github.com/pemami4911/segregate-relate-imagine
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/digress-discrete-denoising-diffusion-for
|
DiGress: Discrete Denoising diffusion for graph generation
|
2209.14734
|
https://arxiv.org/abs/2209.14734v4
|
https://arxiv.org/pdf/2209.14734v4.pdf
|
https://github.com/cvignac/digress
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/batch-normalization-accelerating-deep-network
|
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
|
1502.03167
|
http://arxiv.org/abs/1502.03167v3
|
http://arxiv.org/pdf/1502.03167v3.pdf
|
https://github.com/tanjeffreyz/deep-residual-learning
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/semantic-space-grounded-weighted-decoding-for
|
Semantic Space Grounded Weighted Decoding for Multi-Attribute Controllable Dialogue Generation
|
2305.02820
|
https://arxiv.org/abs/2305.02820v2
|
https://arxiv.org/pdf/2305.02820v2.pdf
|
https://github.com/blmoistawinde/dasc
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/disentangling-morphology-and-conductance-in
|
Disentangling morphology and conductance in amorphous graphene
|
2411.18041
|
https://arxiv.org/abs/2411.18041v2
|
https://arxiv.org/pdf/2411.18041v2.pdf
|
https://github.com/ngastellu/disorder_analysis_mac
| true | true | true |
none
|
https://paperswithcode.com/paper/measure-construction-by-extension-in
|
Measure Construction by Extension in Dependent Type Theory with Application to Integration
|
2209.02345
|
https://arxiv.org/abs/2209.02345v3
|
https://arxiv.org/pdf/2209.02345v3.pdf
|
https://github.com/math-comp/analysis
| true | true | true |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.