paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/east-an-efficient-and-accurate-scene-text
|
EAST: An Efficient and Accurate Scene Text Detector
|
1704.03155
|
http://arxiv.org/abs/1704.03155v2
|
http://arxiv.org/pdf/1704.03155v2.pdf
|
https://github.com/Mind23-2/MindCode-35
| false | false | true |
mindspore
|
https://paperswithcode.com/paper/layer-ensembles
|
Layer Ensembles
|
2210.04882
|
https://arxiv.org/abs/2210.04882v3
|
https://arxiv.org/pdf/2210.04882v3.pdf
|
https://github.com/iliiliiliili/layer-ensembles-pytorch
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/mobilenetv2-inverted-residuals-and-linear
|
MobileNetV2: Inverted Residuals and Linear Bottlenecks
|
1801.04381
|
http://arxiv.org/abs/1801.04381v4
|
http://arxiv.org/pdf/1801.04381v4.pdf
|
https://github.com/yangyucheng000/mobilenet_v2/blob/main/mobilenet_v2.py
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/collection-and-validation-of
|
Collection and Validation of Psychophysiological Data from Professional and Amateur Players: a Multimodal eSports Dataset
|
2011.00958
|
https://arxiv.org/abs/2011.00958v2
|
https://arxiv.org/pdf/2011.00958v2.pdf
|
https://github.com/asmerdov/DataCollectionSystem
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/exploring-and-measuring-non-linear
|
Exploring and measuring non-linear correlations: Copulas, Lightspeed Transportation and Clustering
|
1610.09659
|
http://arxiv.org/abs/1610.09659v1
|
http://arxiv.org/pdf/1610.09659v1.pdf
|
https://github.com/subhobrata/Courses_ML_DL3
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/attrimeter-an-attribute-guided-metric
|
Explainable Person Re-Identification with Attribute-guided Metric Distillation
|
2103.01451
|
https://arxiv.org/abs/2103.01451v2
|
https://arxiv.org/pdf/2103.01451v2.pdf
|
https://github.com/SheldongChen/AMD.github.io
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/robust-fingerprinting-of-genomic-databases
|
Robust Fingerprinting of Genomic Databases
|
2204.01801
|
https://arxiv.org/abs/2204.01801v1
|
https://arxiv.org/pdf/2204.01801v1.pdf
|
https://github.com/xiutianxi/robust-genomic-fp-github
| true | true | false |
none
|
https://paperswithcode.com/paper/i-spasp-structured-neural-pruning-via-sparse
|
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery
|
2112.04905
|
https://arxiv.org/abs/2112.04905v2
|
https://arxiv.org/pdf/2112.04905v2.pdf
|
https://github.com/wolfecameron/i-spasp
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/tfrd-a-benchmark-dataset-for-research-on
|
A Machine Learning Surrogate Modeling Benchmark for Temperature Field Reconstruction of Heat-Source Systems
|
2108.08298
|
https://arxiv.org/abs/2108.08298v5
|
https://arxiv.org/pdf/2108.08298v5.pdf
|
https://github.com/shendu-sw/tfr-hss-benchmark
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/towards-positive-jacobian-learn-to
|
Towards Positive Jacobian: Learn to Postprocess Diffeomorphic Image Registration with Matrix Exponential
|
2202.00749
|
https://arxiv.org/abs/2202.00749v1
|
https://arxiv.org/pdf/2202.00749v1.pdf
|
https://github.com/soumyadeep-pal/diffeomorphic-image-registration-postprocess
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/godsac-graph-optimized-dsac-for-robot
|
GODSAC*: Graph Optimized DSAC* for Robot Relocalization
|
2105.00546
|
https://arxiv.org/abs/2105.00546v2
|
https://arxiv.org/pdf/2105.00546v2.pdf
|
https://github.com/alphonsusadubredu/godsacstar
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mtg-a-benchmarking-suite-for-multilingual
|
MTG: A Benchmark Suite for Multilingual Text Generation
|
2108.07140
|
https://arxiv.org/abs/2108.07140v2
|
https://arxiv.org/pdf/2108.07140v2.pdf
|
https://github.com/zide05/mtg
| true | true | false |
none
|
https://paperswithcode.com/paper/resnet-strikes-back-an-improved-training
|
ResNet strikes back: An improved training procedure in timm
|
2110.00476
|
https://arxiv.org/abs/2110.00476v1
|
https://arxiv.org/pdf/2110.00476v1.pdf
|
https://github.com/shinya7y/UniverseNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/rezone-disarming-trustzone-with-tee-privilege
|
ReZone: Disarming TrustZone with TEE Privilege Reduction
|
2203.01025
|
https://arxiv.org/abs/2203.01025v1
|
https://arxiv.org/pdf/2203.01025v1.pdf
|
https://gitlab.com/esrgv3/rezone
| true | true | false |
none
|
https://paperswithcode.com/paper/polarization-adjusted-convolutional-pac-codes
|
PAC Codes: Sequential Decoding vs List Decoding
|
2002.06805
|
https://arxiv.org/abs/2002.06805v3
|
https://arxiv.org/pdf/2002.06805v3.pdf
|
https://github.com/mohammad-rowshan/List-Decoding-for-Polar-and-PAC-Codes
| true | false | false |
none
|
https://paperswithcode.com/paper/wastewater-catchment-areas-in-great-britain
|
Wastewater catchment areas in Great Britain
| null |
https://www.essoar.org/doi/10.1002/essoar.10510612.2
|
https://www.essoar.org/pdfjs/10.1002/essoar.10510612.2
|
https://github.com/tillahoffmann/wastewater-catchment-areas
| false | false | false |
none
|
https://paperswithcode.com/paper/motion-based-post-processing-using-kalman
|
Underwater Object Tracker: UOSTrack for Marine Organism Grasping of Underwater Vehicles
|
2301.01482
|
https://arxiv.org/abs/2301.01482v5
|
https://arxiv.org/pdf/2301.01482v5.pdf
|
https://github.com/liyunfenglyf/uostrack
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/partial-attribution-instance-segmentation-for
|
Partial-Attribution Instance Segmentation for Astronomical Source Detection and Deblending
|
2201.04714
|
https://arxiv.org/abs/2201.04714v1
|
https://arxiv.org/pdf/2201.04714v1.pdf
|
https://github.com/ryanhausen/morpheus-deblend
| true | true | false |
tf
|
https://paperswithcode.com/paper/a-penalised-piecewise-linear-model-for-non
|
A penalised piecewise-linear model for non-stationary extreme value analysis of peaks over threshold
|
2201.03915
|
https://arxiv.org/abs/2201.03915v1
|
https://arxiv.org/pdf/2201.03915v1.pdf
|
https://github.com/edmackay/ppl-model
| true | true | false |
none
|
https://paperswithcode.com/paper/fully-adaptive-bayesian-algorithm-for-data
|
Fully Adaptive Bayesian Algorithm for Data Analysis, FABADA
|
2201.05145
|
https://arxiv.org/abs/2201.05145v2
|
https://arxiv.org/pdf/2201.05145v2.pdf
|
https://github.com/pablomsanala/fabada
| true | true | true |
none
|
https://paperswithcode.com/paper/causalimages-an-r-package-for-causal
|
CausalImages: An R Package for Causal Inference with Earth Observation, Bio-medical, and Social Science Images
|
2310.00233
|
https://arxiv.org/abs/2310.00233v3
|
https://arxiv.org/pdf/2310.00233v3.pdf
|
https://github.com/AIandGlobalDevelopmentLab/causalimages-software
| true | true | true |
tf
|
https://paperswithcode.com/paper/computer-vision-tool-for-detection-mapping
|
Computer Vision Tool for Detection, Mapping and Fault Classification of PV Modules in Aerial IR Videos
|
2106.07314
|
https://arxiv.org/abs/2106.07314v1
|
https://arxiv.org/pdf/2106.07314v1.pdf
|
https://github.com/lukasbommes/pv-hawk
| false | false | true |
none
|
https://paperswithcode.com/paper/inducing-structure-in-reward-learning-by
|
Inducing Structure in Reward Learning by Learning Features
|
2201.07082
|
https://arxiv.org/abs/2201.07082v1
|
https://arxiv.org/pdf/2201.07082v1.pdf
|
https://github.com/andreea7b/FERL
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/bailando-3d-dance-generation-by-actor-critic
|
Bailando: 3D Dance Generation by Actor-Critic GPT with Choreographic Memory
|
2203.13055
|
https://arxiv.org/abs/2203.13055v2
|
https://arxiv.org/pdf/2203.13055v2.pdf
|
https://github.com/lisiyao21/bailando
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/190600091
|
Deep Learning Recommendation Model for Personalization and Recommendation Systems
|
1906.00091
|
https://arxiv.org/abs/1906.00091v1
|
https://arxiv.org/pdf/1906.00091v1.pdf
|
https://github.com/samiwilf/dlrm_from_shz0116
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/compositional-embeddings-using-complementary
|
Compositional Embeddings Using Complementary Partitions for Memory-Efficient Recommendation Systems
|
1909.02107
|
https://arxiv.org/abs/1909.02107v2
|
https://arxiv.org/pdf/1909.02107v2.pdf
|
https://github.com/samiwilf/dlrm_from_shz0116
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/the-architectural-implications-of-facebooks
|
The Architectural Implications of Facebook's DNN-based Personalized Recommendation
|
1906.03109
|
https://arxiv.org/abs/1906.03109v4
|
https://arxiv.org/pdf/1906.03109v4.pdf
|
https://github.com/samiwilf/dlrm_from_shz0116
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/generative-image-dynamics
|
Generative Image Dynamics
|
2309.07906
|
https://arxiv.org/abs/2309.07906v3
|
https://arxiv.org/pdf/2309.07906v3.pdf
|
https://github.com/fltwr/generative-image-dynamics
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/mixed-dimension-embeddings-with-application
|
Mixed Dimension Embeddings with Application to Memory-Efficient Recommendation Systems
|
1909.11810
|
https://arxiv.org/abs/1909.11810v3
|
https://arxiv.org/pdf/1909.11810v3.pdf
|
https://github.com/samiwilf/dlrm_from_shz0116
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/visual-identification-of-problematic-bias-in
|
Visual Identification of Problematic Bias in Large Label Spaces
|
2201.06386
|
https://arxiv.org/abs/2201.06386v1
|
https://arxiv.org/pdf/2201.06386v1.pdf
|
https://github.com/tensorflow/tensorboard
| true | true | false |
tf
|
https://paperswithcode.com/paper/an-adaptive-stochastic-gradient-free-approach
|
An adaptive stochastic gradient-free approach for high-dimensional blackbox optimization
|
2006.10887
|
https://arxiv.org/abs/2006.10887v2
|
https://arxiv.org/pdf/2006.10887v2.pdf
|
https://github.com/joedaws/asgf
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/infty-former-infinite-memory-transformer
|
$\infty$-former: Infinite Memory Transformer
|
2109.00301
|
https://arxiv.org/abs/2109.00301v3
|
https://arxiv.org/pdf/2109.00301v3.pdf
|
https://github.com/deep-spin/infinite-former
| true | true | false |
jax
|
https://paperswithcode.com/paper/findview-precise-target-view-localization
|
FindView: Precise Target View Localization Task for Look Around Agents
|
2303.09054
|
https://arxiv.org/abs/2303.09054v1
|
https://arxiv.org/pdf/2303.09054v1.pdf
|
https://github.com/haruishi43/look_around
| true | true | true |
none
|
https://paperswithcode.com/paper/safety-and-liveness-guarantees-through-reach
|
Safety and Liveness Guarantees through Reach-Avoid Reinforcement Learning
|
2112.12288
|
https://arxiv.org/abs/2112.12288v1
|
https://arxiv.org/pdf/2112.12288v1.pdf
|
https://github.com/saferoboticslab/safety_rl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/nfft-jl-generic-and-fast-julia-implementation
|
NFFT.jl: Generic and Fast Julia Implementation of the Nonequidistant Fast Fourier Transform
|
2208.00049
|
https://arxiv.org/abs/2208.00049v2
|
https://arxiv.org/pdf/2208.00049v2.pdf
|
https://github.com/tknopp/NFFT.jl
| false | false | true |
none
|
https://paperswithcode.com/paper/monte-carlo-simulation-of-sdes-using-gans
|
Monte Carlo Simulation of SDEs using GANs
|
2104.01437
|
https://arxiv.org/abs/2104.01437v1
|
https://arxiv.org/pdf/2104.01437v1.pdf
|
https://github.com/JorinovanRhijn/master-thesis-gans-for-sdes
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/instructiongpt-4-a-200-instruction-paradigm
|
InstructionGPT-4: A 200-Instruction Paradigm for Fine-Tuning MiniGPT-4
|
2308.12067
|
https://arxiv.org/abs/2308.12067v2
|
https://arxiv.org/pdf/2308.12067v2.pdf
|
https://huggingface.co/datasets/WaltonFuture/InstructionGPT-4
| false | false | false |
none
|
https://paperswithcode.com/paper/patches-are-all-you-need-1
|
Patches Are All You Need?
|
2201.09792
|
https://arxiv.org/abs/2201.09792v1
|
https://arxiv.org/pdf/2201.09792v1.pdf
|
https://github.com/locuslab/convmixer
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/partition-based-formulations-for-mixed
|
Partition-based formulations for mixed-integer optimization of trained ReLU neural networks
|
2102.04373
|
https://arxiv.org/abs/2102.04373v2
|
https://arxiv.org/pdf/2102.04373v2.pdf
|
https://github.com/cog-imperial/partitionedformulations_nn
| true | true | true |
none
|
https://paperswithcode.com/paper/image-features-of-a-splashing-drop-on-a-solid
|
Image features of a splashing drop on a solid surface extracted using a feedforward neural network
|
2201.09541
|
https://arxiv.org/abs/2201.09541v1
|
https://arxiv.org/pdf/2201.09541v1.pdf
|
https://github.com/yeejingzutuat/image-features-of-a-splashing-drop-on-a-solid-surface-extracted-using-a-feedforward-neural-network
| true | true | false |
none
|
https://paperswithcode.com/paper/p-generalized-probit-regression-and-scalable
|
$p$-Generalized Probit Regression and Scalable Maximum Likelihood Estimation via Sketching and Coresets
|
2203.13568
|
https://arxiv.org/abs/2203.13568v1
|
https://arxiv.org/pdf/2203.13568v1.pdf
|
https://github.com/cxan96/efficient-probit-regression
| true | true | false |
none
|
https://paperswithcode.com/paper/generative-de-novo-protein-design-with-global
|
Generative De Novo Protein Design with Global Context
|
2204.10673
|
https://arxiv.org/abs/2204.10673v2
|
https://arxiv.org/pdf/2204.10673v2.pdf
|
https://github.com/chengtan9907/gca-generative-protein-design
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/geom-gcn-geometric-graph-convolutional-1
|
Geom-GCN: Geometric Graph Convolutional Networks
|
2002.05287
|
https://arxiv.org/abs/2002.05287v2
|
https://arxiv.org/pdf/2002.05287v2.pdf
|
https://github.com/KAIDI3270/Geom_GCN_pytorch_implementation
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/maml-is-a-noisy-contrastive-learner
|
MAML is a Noisy Contrastive Learner in Classification
|
2106.15367
|
https://arxiv.org/abs/2106.15367v4
|
https://arxiv.org/pdf/2106.15367v4.pdf
|
https://github.com/iandrover/maml_noisy_contrasive_learner
| false | true | true |
pytorch
|
https://paperswithcode.com/paper/reflexive-tactics-for-algebra-revisited
|
Reflexive tactics for algebra, revisited
|
2202.04330
|
https://arxiv.org/abs/2202.04330v1
|
https://arxiv.org/pdf/2202.04330v1.pdf
|
https://github.com/math-comp/algebra-tactics
| true | true | true |
none
|
https://paperswithcode.com/paper/mr-estimator-a-toolbox-to-determine-intrinsic
|
MR. Estimator, a toolbox to determine intrinsic timescales from subsampled spiking activity
|
2007.03367
|
https://arxiv.org/abs/2007.03367v2
|
https://arxiv.org/pdf/2007.03367v2.pdf
|
https://github.com/Priesemann-Group/mrestimator
| true | true | true |
none
|
https://paperswithcode.com/paper/a-neural-algorithm-of-artistic-style
|
A Neural Algorithm of Artistic Style
|
1508.06576
|
http://arxiv.org/abs/1508.06576v2
|
http://arxiv.org/pdf/1508.06576v2.pdf
|
https://github.com/julianbel/itba-dl-neural-style-transfer
| false | false | true |
tf
|
https://paperswithcode.com/paper/real-time-unified-trajectory-planning-and
|
Real-Time Unified Trajectory Planning and Optimal Control for Urban Autonomous Driving Under Static and Dynamic Obstacle Constraints
|
2209.09320
|
https://arxiv.org/abs/2209.09320v1
|
https://arxiv.org/pdf/2209.09320v1.pdf
|
https://github.com/watonomous/control
| true | true | false |
none
|
https://paperswithcode.com/paper/txtract-taxonomy-aware-knowledge-extraction
|
TXtract: Taxonomy-Aware Knowledge Extraction for Thousands of Product Categories
|
2004.13852
|
https://arxiv.org/abs/2004.13852v2
|
https://arxiv.org/pdf/2004.13852v2.pdf
|
https://github.com/huangJC0429/TXtract
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-general-framework-for-the-rigorous
|
A general framework for the rigorous computation of invariant densities and the coarse-fine strategy
|
2212.05017
|
https://arxiv.org/abs/2212.05017v2
|
https://arxiv.org/pdf/2212.05017v2.pdf
|
https://github.com/juliadynamics/rigorousinvariantmeasures.jl
| true | true | false |
none
|
https://paperswithcode.com/paper/improving-factuality-and-reasoning-in
|
Improving Factuality and Reasoning in Language Models through Multiagent Debate
|
2305.14325
|
https://arxiv.org/abs/2305.14325v1
|
https://arxiv.org/pdf/2305.14325v1.pdf
|
https://github.com/composable-models/llm_multiagent_debate
| true | false | true |
none
|
https://paperswithcode.com/paper/egcn-an-ensemble-based-learning-framework-for
|
EGCN: An Ensemble-based Learning Framework for Exploring Effective Skeleton-based Rehabilitation Exercise Assessment
| null |
https://www.ijcai.org/proceedings/2022/511
|
https://www.ijcai.org/proceedings/2022/0511.pdf
|
https://github.com/bruceyo/EGCN
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/simple-pose-rethinking-and-improving-a-bottom
|
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation
|
1911.10529
|
https://arxiv.org/abs/1911.10529v1
|
https://arxiv.org/pdf/1911.10529v1.pdf
|
https://github.com/hellojialee/Multi-Person-Pose-using-Body-Parts
| false | false | false |
tf
|
https://paperswithcode.com/paper/measuring-the-contribution-of-multiple-model
|
Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances
|
2111.07035
|
https://arxiv.org/abs/2111.07035v2
|
https://arxiv.org/pdf/2111.07035v2.pdf
|
https://github.com/dstein64/multi-adv-detect
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/delaunay-component-analysis-for-evaluation-of-1
|
Delaunay Component Analysis for Evaluation of Data Representations
|
2202.06866
|
https://arxiv.org/abs/2202.06866v1
|
https://arxiv.org/pdf/2202.06866v1.pdf
|
https://github.com/petrapoklukar/dca
| true | true | false |
none
|
https://paperswithcode.com/paper/motion-planning-for-triple-axis-spectrometers
|
Motion Planning for Triple-Axis Spectrometers
|
2303.14041
|
https://arxiv.org/abs/2303.14041v1
|
https://arxiv.org/pdf/2303.14041v1.pdf
|
https://github.com/ILLGrenoble/taspaths
| true | true | false |
none
|
https://paperswithcode.com/paper/a-computationally-efficient-approach-to-fully
|
A Computationally Efficient Approach to Fully Bayesian Benchmarking
|
2203.12195
|
https://arxiv.org/abs/2203.12195v2
|
https://arxiv.org/pdf/2203.12195v2.pdf
|
https://github.com/taylorokonek/benchmarking-paper-sim
| true | true | false |
none
|
https://paperswithcode.com/paper/mobilenetv2-inverted-residuals-and-linear
|
MobileNetV2: Inverted Residuals and Linear Bottlenecks
|
1801.04381
|
http://arxiv.org/abs/1801.04381v4
|
http://arxiv.org/pdf/1801.04381v4.pdf
|
https://github.com/MS-Mind/MS-Code-02/tree/main/configs/mobilenetv2
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/bed-a-real-time-object-detection-system-for
|
BED: A Real-Time Object Detection System for Edge Devices
|
2202.07503
|
https://arxiv.org/abs/2202.07503v4
|
https://arxiv.org/pdf/2202.07503v4.pdf
|
https://github.com/datamllab/bed_camera
| true | true | false |
none
|
https://paperswithcode.com/paper/the-touche23-valueeval-dataset-for
|
The Touché23-ValueEval Dataset for Identifying Human Values behind Arguments
|
2301.13771
|
https://arxiv.org/abs/2301.13771v1
|
https://arxiv.org/pdf/2301.13771v1.pdf
|
https://zenodo.org/record/7550385
| true | false | false |
none
|
https://paperswithcode.com/paper/a-comparison-of-modern-general-purpose-visual
|
A Comparison of Modern General-Purpose Visual SLAM Approaches
|
2107.07589
|
https://arxiv.org/abs/2107.07589v2
|
https://arxiv.org/pdf/2107.07589v2.pdf
|
https://github.com/ryzhikovas/navigation2
| false | false | true |
none
|
https://paperswithcode.com/paper/the-marathon-2-a-navigation-system
|
The Marathon 2: A Navigation System
|
2003.00368
|
https://arxiv.org/abs/2003.00368v2
|
https://arxiv.org/pdf/2003.00368v2.pdf
|
https://github.com/ryzhikovas/navigation2
| false | false | true |
none
|
https://paperswithcode.com/paper/are-graph-embeddings-the-panacea-an-empirical
|
Are Graph Embeddings the Panacea? An Empirical Survey from the Data Fitness Perspective
| null |
https://link.springer.com/chapter/10.1007/978-981-97-2253-2_32
|
https://link.springer.com/content/pdf/10.1007/978-981-97-2253-2.pdf
|
https://github.com/PascalSun/PAKDD-2024
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/quantifying-the-impact-of-data
|
Quantifying the Impact of Data Characteristics on the Transferability of Sleep Stage Scoring Models
|
2304.06033
|
https://arxiv.org/abs/2304.06033v1
|
https://arxiv.org/pdf/2304.06033v1.pdf
|
https://github.com/akaraspt/transferability_sleep
| true | false | true |
none
|
https://paperswithcode.com/paper/atomec-an-open-source-average-atom-python
|
atoMEC: An open-source average-atom Python code
|
2206.01074
|
https://arxiv.org/abs/2206.01074v2
|
https://arxiv.org/pdf/2206.01074v2.pdf
|
https://github.com/atomec-project/atoMEC
| true | true | false |
none
|
https://paperswithcode.com/paper/pi-is-back-switching-acquisition-functions-in
|
PI is back! Switching Acquisition Functions in Bayesian Optimization
|
2211.01455
|
https://arxiv.org/abs/2211.01455v1
|
https://arxiv.org/pdf/2211.01455v1.pdf
|
https://github.com/automl/pi_is_back
| true | true | true |
none
|
https://paperswithcode.com/paper/diffgan-tts-high-fidelity-and-efficient-text
|
DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs
|
2201.11972
|
https://arxiv.org/abs/2201.11972v1
|
https://arxiv.org/pdf/2201.11972v1.pdf
|
https://github.com/keonlee9420/DiffGAN-TTS
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/zhichunroad-at-amazon-kdd-cup-2022-multitask
|
ZhichunRoad at Amazon KDD Cup 2022: MultiTask Pre-Training for E-Commerce Product Search
|
2301.13455
|
https://arxiv.org/abs/2301.13455v1
|
https://arxiv.org/pdf/2301.13455v1.pdf
|
https://github.com/cuixuage/KDDCup2022-ESCI
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/usb-universal-scale-object-detection
|
USB: Universal-Scale Object Detection Benchmark
|
2103.14027
|
https://arxiv.org/abs/2103.14027v3
|
https://arxiv.org/pdf/2103.14027v3.pdf
|
https://github.com/shinya7y/UniverseNet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cooperation-and-the-social-brain-hypothesis
|
Cooperation and the social brain hypothesis in primate social networks
|
2302.00075
|
https://arxiv.org/abs/2302.00075v2
|
https://arxiv.org/pdf/2302.00075v2.pdf
|
https://github.com/ngmaclaren/cooperation-threshold
| true | true | false |
none
|
https://paperswithcode.com/paper/comparing-the-latent-space-of-generative
|
Comparing the latent space of generative models
|
2207.06812
|
https://arxiv.org/abs/2207.06812v1
|
https://arxiv.org/pdf/2207.06812v1.pdf
|
https://github.com/asperti/We_love_latent_space
| true | false | true |
tf
|
https://paperswithcode.com/paper/pylot-a-modular-platform-for-exploring-1
|
Pylot: A Modular Platform for Exploring Latency-Accuracy Tradeoffs in Autonomous Vehicles
| null |
https://www.ionelgog.org/data/papers/2021-icra-pylot.pdf
|
https://www.ionelgog.org/data/papers/2021-icra-pylot.pdf
|
https://github.com/erdos-project/pylot
| false | true | false |
none
|
https://paperswithcode.com/paper/llt-an-r-package-for-linear-law-based-feature
|
LLT: An R package for Linear Law-based Feature Space Transformation
|
2304.14211
|
https://arxiv.org/abs/2304.14211v2
|
https://arxiv.org/pdf/2304.14211v2.pdf
|
https://github.com/mtkurbucz/llt
| true | true | false |
none
|
https://paperswithcode.com/paper/layer-grafted-pre-training-bridging
|
Layer Grafted Pre-training: Bridging Contrastive Learning And Masked Image Modeling For Label-Efficient Representations
|
2302.14138
|
https://arxiv.org/abs/2302.14138v1
|
https://arxiv.org/pdf/2302.14138v1.pdf
|
https://github.com/vita-group/layergraftedpretraining_iclr23
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/testing-platform-independent-quantum-error
|
Testing platform-independent quantum error mitigation on noisy quantum computers
|
2210.07194
|
https://arxiv.org/abs/2210.07194v2
|
https://arxiv.org/pdf/2210.07194v2.pdf
|
https://github.com/unitaryfund/research
| true | true | false |
none
|
https://paperswithcode.com/paper/adaptive-observation-cost-control-for
|
Adaptive Observation Cost Control for Variational Quantum Eigensolvers
|
2502.01704
|
https://arxiv.org/abs/2502.01704v1
|
https://arxiv.org/pdf/2502.01704v1.pdf
|
https://github.com/angler-vqe/subscore
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/how-to-compose-shortest-paths
|
How to Compose Shortest Paths
|
2205.15306
|
https://arxiv.org/abs/2205.15306v2
|
https://arxiv.org/pdf/2205.15306v2.pdf
|
https://github.com/jademaster/pathcomposer
| true | true | true |
none
|
https://paperswithcode.com/paper/deep-learning-for-symbolic-mathematics-1
|
Deep Learning for Symbolic Mathematics
|
1912.01412
|
https://arxiv.org/abs/1912.01412v1
|
https://arxiv.org/pdf/1912.01412v1.pdf
|
https://github.com/wellecks/symbolic_generalization
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-visual-analytics-approach-for-hardware
|
A Visual Analytics Approach for Hardware System Monitoring with Streaming Functional Data Analysis
|
2011.13079
|
https://arxiv.org/abs/2011.13079v3
|
https://arxiv.org/pdf/2011.13079v3.pdf
|
https://github.com/sshilpika/streaming-ms-plot
| true | true | false |
none
|
https://paperswithcode.com/paper/argo-scholar-interactive-visual-exploration
|
Argo Scholar: Interactive Visual Exploration of Literature in Browsers
|
2110.14060
|
https://arxiv.org/abs/2110.14060v1
|
https://arxiv.org/pdf/2110.14060v1.pdf
|
https://github.com/poloclub/argo-scholar
| true | true | true |
none
|
https://paperswithcode.com/paper/any-variational-autoencoder-can-do-arbitrary
|
Posterior Matching for Arbitrary Conditioning
|
2201.12414
|
https://arxiv.org/abs/2201.12414v4
|
https://arxiv.org/pdf/2201.12414v4.pdf
|
https://github.com/lupalab/posterior-matching
| true | true | true |
jax
|
https://paperswithcode.com/paper/end-to-end-security-for-distributed-event
|
End-to-End Security for Distributed Event-Driven Enclave Applications on Heterogeneous TEEs
|
2206.01041
|
https://arxiv.org/abs/2206.01041v6
|
https://arxiv.org/pdf/2206.01041v6.pdf
|
https://github.com/authenticexecution/main
| true | true | false |
none
|
https://paperswithcode.com/paper/how-much-does-it-cost-to-train-a-machine
|
The Cost of Training Machine Learning Models over Distributed Data Sources
|
2209.07124
|
https://arxiv.org/abs/2209.07124v2
|
https://arxiv.org/pdf/2209.07124v2.pdf
|
https://github.com/eliaguerra/federated_comparison_cttc
| true | true | false |
tf
|
https://paperswithcode.com/paper/carnet-a-lightweight-and-efficient-encoder
|
Rethinking Lightweight Convolutional Neural Networks for Efficient and High-quality Pavement Crack Detection
|
2109.05707
|
https://arxiv.org/abs/2109.05707v2
|
https://arxiv.org/pdf/2109.05707v2.pdf
|
https://github.com/shiyanrubing/carnet-v1.0
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/barlow-twins-self-supervised-learning-via
|
Barlow Twins: Self-Supervised Learning via Redundancy Reduction
|
2103.03230
|
https://arxiv.org/abs/2103.03230v3
|
https://arxiv.org/pdf/2103.03230v3.pdf
|
https://github.com/jeffwiroj/robust_tutorial
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/context-de-confounded-emotion-recognition
|
Context De-confounded Emotion Recognition
|
2303.11921
|
https://arxiv.org/abs/2303.11921v2
|
https://arxiv.org/pdf/2303.11921v2.pdf
|
https://github.com/ydk122024/ccim
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-fair-node-representations-with-graph
|
Learning Fair Node Representations with Graph Counterfactual Fairness
|
2201.03662
|
https://arxiv.org/abs/2201.03662v1
|
https://arxiv.org/pdf/2201.03662v1.pdf
|
https://github.com/jma712/gear
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/inspired2-an-improved-dataset-for-sociable
|
INSPIRED2: An Improved Dataset for Sociable Conversational Recommendation
|
2208.04104
|
https://arxiv.org/abs/2208.04104v2
|
https://arxiv.org/pdf/2208.04104v2.pdf
|
https://github.com/ahtsham58/inspired2
| true | true | false |
none
|
https://paperswithcode.com/paper/quench-dynamics-in-holographic-first-order
|
Quench Dynamics in Holographic First-Order Phase Transition
|
2211.11291
|
https://arxiv.org/abs/2211.11291v3
|
https://arxiv.org/pdf/2211.11291v3.pdf
|
https://github.com/qianchen2022/hfopt
| true | true | false |
none
|
https://paperswithcode.com/paper/quantum-agents-in-the-gym-a-variational
|
Quantum agents in the Gym: a variational quantum algorithm for deep Q-learning
|
2103.15084
|
https://arxiv.org/abs/2103.15084v3
|
https://arxiv.org/pdf/2103.15084v3.pdf
|
https://github.com/askolik/quantum_agents
| true | true | true |
none
|
https://paperswithcode.com/paper/yolox-exceeding-yolo-series-in-2021
|
YOLOX: Exceeding YOLO Series in 2021
|
2107.08430
|
https://arxiv.org/abs/2107.08430v2
|
https://arxiv.org/pdf/2107.08430v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-31
| false | false | true |
mindspore
|
https://paperswithcode.com/paper/c-mixup-improving-generalization-in
|
C-Mixup: Improving Generalization in Regression
|
2210.05775
|
https://arxiv.org/abs/2210.05775v1
|
https://arxiv.org/pdf/2210.05775v1.pdf
|
https://github.com/huaxiuyao/c-mixup
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/technical-debts-and-faults-in-open-source
|
Technical Debts and Faults in Open-source Quantum Software Systems: An Empirical Study
|
2206.00666
|
https://arxiv.org/abs/2206.00666v1
|
https://arxiv.org/pdf/2206.00666v1.pdf
|
https://github.com/openjamoses/jss-replication
| true | true | false |
tf
|
https://paperswithcode.com/paper/large-language-models-are-state-of-the-art
|
Large Language Models Are State-of-the-Art Evaluators of Translation Quality
|
2302.14520
|
https://arxiv.org/abs/2302.14520v2
|
https://arxiv.org/pdf/2302.14520v2.pdf
|
https://github.com/coldmist-lu/erroranalysis_prompt
| false | false | true |
none
|
https://paperswithcode.com/paper/chain-of-thought-prompting-elicits-reasoning
|
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
|
2201.11903
|
https://arxiv.org/abs/2201.11903v6
|
https://arxiv.org/pdf/2201.11903v6.pdf
|
https://github.com/coldmist-lu/erroranalysis_prompt
| false | false | true |
none
|
https://paperswithcode.com/paper/deep-contextual-clinical-prediction-with
|
Deep Contextual Clinical Prediction with Reverse Distillation
|
2007.05611
|
https://arxiv.org/abs/2007.05611v2
|
https://arxiv.org/pdf/2007.05611v2.pdf
|
https://github.com/clinicalml/omop-learn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/toward-human-like-evaluation-for-natural
|
Toward Human-Like Evaluation for Natural Language Generation with Error Analysis
|
2212.10179
|
https://arxiv.org/abs/2212.10179v1
|
https://arxiv.org/pdf/2212.10179v1.pdf
|
https://github.com/coldmist-lu/erroranalysis_prompt
| false | false | true |
none
|
https://paperswithcode.com/paper/communication-aware-drone-delivery-problem
|
Communication-aware Drone Delivery Problem
|
2203.05906
|
https://arxiv.org/abs/2203.05906v1
|
https://arxiv.org/pdf/2203.05906v1.pdf
|
https://github.com/cihantugrulcicek/cddp
| true | true | false |
none
|
https://paperswithcode.com/paper/contrastive-learning-for-image-registration
|
Contrastive Learning for Image Registration in Visual Teach and Repeat Navigation
| null |
https://www.mdpi.com/1424-8220/22/8/2975
|
https://mdpi-res.com/d_attachment/sensors/sensors-22-02975/article_deploy/sensors-22-02975.pdf?version=1649843771
|
https://github.com/Zdeeno/Siamese-network-image-alignment
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/noppa-non-parametric-pairwise-attention
|
NoPPA: Non-Parametric Pairwise Attention Random Walk Model for Sentence Representation
|
2302.12903
|
https://arxiv.org/abs/2302.12903v1
|
https://arxiv.org/pdf/2302.12903v1.pdf
|
https://github.com/jacksonwuxs/noppa
| true | true | false |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.