paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/tracking-objects-as-points
|
Tracking Objects as Points
|
2004.01177
|
https://arxiv.org/abs/2004.01177v2
|
https://arxiv.org/pdf/2004.01177v2.pdf
|
https://github.com/danielzgsilva/MOT
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/an-analysis-of-lime-for-text-data
|
An Analysis of LIME for Text Data
|
2010.12487
|
https://arxiv.org/abs/2010.12487v2
|
https://arxiv.org/pdf/2010.12487v2.pdf
|
https://github.com/dmardaoui/lime_text_theory
| true | true | true |
none
|
https://paperswithcode.com/paper/optimal-execution-strategy-with-an-uncertain
|
Optimal Trade Execution with Uncertain Volume Target
|
1810.11454
|
https://arxiv.org/abs/1810.11454v5
|
https://arxiv.org/pdf/1810.11454v5.pdf
|
https://github.com/julien-vaes/trading_uncertain_volume
| true | false | true |
none
|
https://paperswithcode.com/paper/adversarial-disentanglement-of-speaker
|
Adversarial Disentanglement of Speaker Representation for Attribute-Driven Privacy Preservation
|
2012.04454
|
https://arxiv.org/abs/2012.04454v3
|
https://arxiv.org/pdf/2012.04454v3.pdf
|
https://github.com/LIAvignon/adversarial-disentangling-autoencoder-for-spk-representation
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/eqg-race-examination-type-question-generation
|
EQG-RACE: Examination-Type Question Generation
|
2012.06106
|
https://arxiv.org/abs/2012.06106v1
|
https://arxiv.org/pdf/2012.06106v1.pdf
|
https://github.com/jemmryx/EQG-RACE
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/spatio-temporal-wind-speed-forecasting-using
|
Spatio-Temporal Wind Speed Forecasting using Graph Networks and Novel Transformer Architectures
|
2208.13585
|
https://arxiv.org/abs/2208.13585v2
|
https://arxiv.org/pdf/2208.13585v2.pdf
|
https://github.com/larsbentsen/fftransformer
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/argument-mining-driven-analysis-of-peer
|
Argument Mining Driven Analysis of Peer-Reviews
|
2012.07743
|
https://arxiv.org/abs/2012.07743v1
|
https://arxiv.org/pdf/2012.07743v1.pdf
|
https://github.com/fromm-m/aaai2021-am-peer-reviews
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deepseek-v2-a-strong-economical-and-efficient
|
DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
|
2405.04434
|
https://arxiv.org/abs/2405.04434v5
|
https://arxiv.org/pdf/2405.04434v5.pdf
|
https://github.com/pwc-1/Paper-8/tree/main/deepseek_v2
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/data-driven-cardiovascular-flow-modeling
|
Data-driven cardiovascular flow modeling: examples and opportunities
|
2010.00131
|
https://arxiv.org/abs/2010.00131v2
|
https://arxiv.org/pdf/2010.00131v2.pdf
|
https://github.com/amir-cardiolab/cardio-data-driven
| false | false | true |
none
|
https://paperswithcode.com/paper/competitive-gradient-descent
|
Competitive Gradient Descent
|
1905.12103
|
https://arxiv.org/abs/1905.12103v3
|
https://arxiv.org/pdf/1905.12103v3.pdf
|
https://github.com/devzhk/Implicit-Competitive-Regularization
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/stay-on-topic-generating-context-specific
|
Stay On-Topic: Generating Context-specific Fake Restaurant Reviews
|
1805.02400
|
http://arxiv.org/abs/1805.02400v4
|
http://arxiv.org/pdf/1805.02400v4.pdf
|
https://github.com/hokkaido/fake-reviews
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/MalteHB/-l-ctra
| false | false | true |
tf
|
https://paperswithcode.com/paper/convolutional-neural-networks-over-tree
|
Convolutional Neural Networks over Tree Structures for Programming Language Processing
|
1409.5718
|
http://arxiv.org/abs/1409.5718v2
|
http://arxiv.org/pdf/1409.5718v2.pdf
|
https://github.com/bdqnghi/tbcnn.tensorflow
| false | false | true |
tf
|
https://paperswithcode.com/paper/certified-adversarial-robustness-via
|
Certified Adversarial Robustness via Randomized Smoothing
|
1902.02918
|
https://arxiv.org/abs/1902.02918v2
|
https://arxiv.org/pdf/1902.02918v2.pdf
|
https://github.com/mwojnars/nifty
| false | false | true |
tf
|
https://paperswithcode.com/paper/focusing-on-possible-named-entities-in-active
|
Focusing on Potential Named Entities During Active Label Acquisition
|
2111.03837
|
https://arxiv.org/abs/2111.03837v3
|
https://arxiv.org/pdf/2111.03837v3.pdf
|
https://github.com/bo1929/anelfop
| true | true | false |
none
|
https://paperswithcode.com/paper/an-agent-based-modelling-approach-to-brain
|
An Agent-Based Modelling Approach to Brain Drain
|
2103.03234
|
https://arxiv.org/abs/2103.03234v2
|
https://arxiv.org/pdf/2103.03234v2.pdf
|
https://github.com/furkangursoy/braindrainabm
| true | false | true |
none
|
https://paperswithcode.com/paper/unifuse-unidirectional-fusion-for-360-circ
|
UniFuse: Unidirectional Fusion for 360$^{\circ}$ Panorama Depth Estimation
|
2102.03550
|
https://arxiv.org/abs/2102.03550v2
|
https://arxiv.org/pdf/2102.03550v2.pdf
|
https://github.com/alibaba/UniFuse-Unidirectional-Fusion
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-unified-approach-to-interpreting-and
|
A Unified Approach to Interpreting and Boosting Adversarial Transferability
|
2010.04055
|
https://arxiv.org/abs/2010.04055v2
|
https://arxiv.org/pdf/2010.04055v2.pdf
|
https://github.com/xherdan76/A-Unified-Approach-to-Interpreting-and-Boosting-Adversarial-Transferability
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/coreference-resolution-without-span
|
Coreference Resolution without Span Representations
|
2101.00434
|
https://arxiv.org/abs/2101.00434v2
|
https://arxiv.org/pdf/2101.00434v2.pdf
|
https://github.com/yuvalkirstain/s2e-coref
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/universal-dephasing-noise-injection-via
|
Universal Dephasing Noise Injection via Schrodinger Wave Autoregressive Moving Average Models
|
2102.03370
|
https://arxiv.org/abs/2102.03370v2
|
https://arxiv.org/pdf/2102.03370v2.pdf
|
https://github.com/mezze-team/mezze
| false | false | true |
tf
|
https://paperswithcode.com/paper/cross-lingual-word-embedding-refinement-by
|
Cross-Lingual Word Embedding Refinement by $\ell_{1}$ Norm Optimisation
|
2104.04916
|
https://arxiv.org/abs/2104.04916v1
|
https://arxiv.org/pdf/2104.04916v1.pdf
|
https://github.com/Pzoom522/L1-Refinement
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/dialogue-graph-modeling-for-conversational
|
Dialogue Graph Modeling for Conversational Machine Reading
|
2012.14827
|
https://arxiv.org/abs/2012.14827v3
|
https://arxiv.org/pdf/2012.14827v3.pdf
|
https://github.com/ozyyshr/DGM
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/scpm-net-an-anchor-free-3d-lung-nodule
|
SCPM-Net: An Anchor-free 3D Lung Nodule Detection Network using Sphere Representation and Center Points Matching
|
2104.05215
|
https://arxiv.org/abs/2104.05215v2
|
https://arxiv.org/pdf/2104.05215v2.pdf
|
https://github.com/HiLab-git/SCPM-Net
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/texrel-a-green-family-of-datasets-for
|
TexRel: a Green Family of Datasets for Emergent Communications on Relations
|
2105.12804
|
https://arxiv.org/abs/2105.12804v1
|
https://arxiv.org/pdf/2105.12804v1.pdf
|
https://github.com/asappresearch/texrel
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/adversarial-fault-tolerant-training-for-deep
|
Towards Enhancing Fault Tolerance in Neural Networks
|
1907.03103
|
https://arxiv.org/abs/1907.03103v3
|
https://arxiv.org/pdf/1907.03103v3.pdf
|
https://gitlab.com/vasishtduddu/FaultTolerantNN
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/the-shapley-value-of-classifiers-in-ensemble
|
The Shapley Value of Classifiers in Ensemble Games
|
2101.02153
|
https://arxiv.org/abs/2101.02153v2
|
https://arxiv.org/pdf/2101.02153v2.pdf
|
https://github.com/benedekrozemberczki/shapley
| true | true | true |
none
|
https://paperswithcode.com/paper/structure-enhanced-meta-learning-for-few-shot
|
Structure-Enhanced Meta-Learning For Few-Shot Graph Classification
|
2103.03547
|
https://arxiv.org/abs/2103.03547v7
|
https://arxiv.org/pdf/2103.03547v7.pdf
|
https://github.com/jiangshunyu/SMF-GIN
| false | true | true |
pytorch
|
https://paperswithcode.com/paper/biosignal-analysis-with-matching-pursuit
|
Biosignal Analysis with Matching-Pursuit Based Adaptive Chirplet Transform
|
1709.08328
|
http://arxiv.org/abs/1709.08328v1
|
http://arxiv.org/pdf/1709.08328v1.pdf
|
https://github.com/jiecui/mpact
| false | false | true |
none
|
https://paperswithcode.com/paper/diffusion-posterior-sampling-for-general
|
Diffusion Posterior Sampling for General Noisy Inverse Problems
|
2209.14687
|
https://arxiv.org/abs/2209.14687v4
|
https://arxiv.org/pdf/2209.14687v4.pdf
|
https://github.com/dps2022/diffusion-posterior-sampling
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-practical-quantum-instruction-set
|
A Practical Quantum Instruction Set Architecture
|
1608.03355
|
http://arxiv.org/abs/1608.03355v2
|
http://arxiv.org/pdf/1608.03355v2.pdf
|
https://github.com/kdalkafoukis/quantum_computing
| false | false | true |
none
|
https://paperswithcode.com/paper/symbolic-brittleness-in-sequence-models-on
|
Symbolic Brittleness in Sequence Models: on Systematic Generalization in Symbolic Mathematics
|
2109.13986
|
https://arxiv.org/abs/2109.13986v2
|
https://arxiv.org/pdf/2109.13986v2.pdf
|
https://github.com/wellecks/symbolic_generalization
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/infoxlm-an-information-theoretic-framework
|
InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training
|
2007.07834
|
https://arxiv.org/abs/2007.07834v2
|
https://arxiv.org/pdf/2007.07834v2.pdf
|
https://github.com/CZWin32768/xnlg
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/principle-bit-analysis-autoencoding-with
|
Principal Bit Analysis: Autoencoding with Schur-Concave Loss
|
2106.02796
|
https://arxiv.org/abs/2106.02796v2
|
https://arxiv.org/pdf/2106.02796v2.pdf
|
https://github.com/SourbhBh/PBA
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/hybrid-angle-control-and-almost-global
|
Hybrid Angle Control and Almost Global Stability of Grid-Forming Power Converters
|
2008.07661
|
http://arxiv.org/abs/2008.07661v1
|
http://arxiv.org/pdf/2008.07661v1.pdf
|
https://github.com/ATayebi/HybridAngleControl-HAC
| true | true | true |
none
|
https://paperswithcode.com/paper/under-the-sand-navigation-and-localization-of
|
Under the Sand: Navigation and Localization of a Micro Aerial Vehicle for Landmine Detection with Ground Penetrating Synthetic Aperture Radar
|
2106.10108
|
https://arxiv.org/abs/2106.10108v2
|
https://arxiv.org/pdf/2106.10108v2.pdf
|
https://github.com/ethz-asl/mav_findmine
| true | true | true |
none
|
https://paperswithcode.com/paper/sliced-iterative-generator
|
Sliced Iterative Normalizing Flows
|
2007.00674
|
https://arxiv.org/abs/2007.00674v3
|
https://arxiv.org/pdf/2007.00674v3.pdf
|
https://github.com/biweidai/SINF
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/self-adaptive-training-beyond-empirical-risk
|
Self-Adaptive Training: beyond Empirical Risk Minimization
|
2002.10319
|
https://arxiv.org/abs/2002.10319v2
|
https://arxiv.org/pdf/2002.10319v2.pdf
|
https://github.com/MarinePICOT/Adversarial-Robustness-via-Fisher-Rao-Regularization
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-mathbf-mathit-matching
|
Learning Matching Representations for Individualized Organ Transplantation Allocation
|
2101.11769
|
https://arxiv.org/abs/2101.11769v2
|
https://arxiv.org/pdf/2101.11769v2.pdf
|
https://github.com/CanXu0728/MatchingRep
| false | false | true |
none
|
https://paperswithcode.com/paper/a-causal-view-on-compositional-data
|
Instrumental Variable Estimation for Compositional Treatments
|
2106.11234
|
https://arxiv.org/abs/2106.11234v3
|
https://arxiv.org/pdf/2106.11234v3.pdf
|
https://github.com/EAiler/comp-iv
| true | true | true |
jax
|
https://paperswithcode.com/paper/minimizing-finite-sums-with-the-stochastic
|
Minimizing Finite Sums with the Stochastic Average Gradient
|
1309.2388
|
http://arxiv.org/abs/1309.2388v2
|
http://arxiv.org/pdf/1309.2388v2.pdf
|
https://github.com/nathansiae/Stochastic-Average-Newton
| false | false | true |
none
|
https://paperswithcode.com/paper/lv-bert-exploiting-layer-variety-for-bert
|
LV-BERT: Exploiting Layer Variety for BERT
|
2106.11740
|
https://arxiv.org/abs/2106.11740v2
|
https://arxiv.org/pdf/2106.11740v2.pdf
|
https://github.com/yuweihao/LV-BERT
| true | true | true |
tf
|
https://paperswithcode.com/paper/a-generative-model-of-symmetry
|
A Generative Model of Symmetry Transformations
|
2403.01946
|
https://arxiv.org/abs/2403.01946v3
|
https://arxiv.org/pdf/2403.01946v3.pdf
|
https://github.com/cambridge-mlg/sgm
| true | true | true |
jax
|
https://paperswithcode.com/paper/arcface-additive-angular-margin-loss-for-deep
|
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
|
1801.07698
|
https://arxiv.org/abs/1801.07698v4
|
https://arxiv.org/pdf/1801.07698v4.pdf
|
https://github.com/shyhyawJou/ArcFace-Pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/pointer-value-retrieval-a-new-benchmark-for
|
Pointer Value Retrieval: A new benchmark for understanding the limits of neural network generalization
|
2107.12580
|
https://arxiv.org/abs/2107.12580v2
|
https://arxiv.org/pdf/2107.12580v2.pdf
|
https://github.com/OfirKedem/Pointer-Value-Retrieval
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/heam-high-efficiency-approximate-multiplier
|
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks
|
2201.08022
|
https://arxiv.org/abs/2201.08022v5
|
https://arxiv.org/pdf/2201.08022v5.pdf
|
https://github.com/fdu-me-arc/approxflow
| true | true | false |
tf
|
https://paperswithcode.com/paper/personalizing-dialogue-agents-i-have-a-dog-do
|
Personalizing Dialogue Agents: I have a dog, do you have pets too?
|
1801.07243
|
http://arxiv.org/abs/1801.07243v5
|
http://arxiv.org/pdf/1801.07243v5.pdf
|
https://github.com/af1tang/personaGPT
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/simple-modifications-to-improve-tabular
|
Simple Modifications to Improve Tabular Neural Networks
|
2108.03214
|
https://arxiv.org/abs/2108.03214v2
|
https://arxiv.org/pdf/2108.03214v2.pdf
|
https://github.com/jrfiedler/xynn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/named-entity-recognition-with-small-strongly
|
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data
|
2106.08977
|
https://arxiv.org/abs/2106.08977v2
|
https://arxiv.org/pdf/2106.08977v2.pdf
|
https://github.com/amzn/amazon-weak-ner-needle
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/theory-guided-hard-constraint-projection-hcp
|
Theory-guided hard constraint projection (HCP): a knowledge-based data-driven scientific machine learning method
|
2012.06148
|
https://arxiv.org/abs/2012.06148v2
|
https://arxiv.org/pdf/2012.06148v2.pdf
|
https://github.com/YuntianChen/Hard_constrant_projection_HCP
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/distinguishing-look-alike-innocent-and
|
Distinguishing Look-Alike Innocent and Vulnerable Code by Subtle Semantic Representation Learning and Explanation
|
2308.11237
|
https://arxiv.org/abs/2308.11237v1
|
https://arxiv.org/pdf/2308.11237v1.pdf
|
https://github.com/jacknichao/svuld
| true | true | false |
none
|
https://paperswithcode.com/paper/communication-constrained-expansion-planning
|
Communication-Constrained Expansion Planning for Resilient Distribution Systems
|
1801.03520
|
http://arxiv.org/abs/1801.03520v1
|
http://arxiv.org/pdf/1801.03520v1.pdf
|
https://github.com/gbyeon/2DBP
| false | false | true |
none
|
https://paperswithcode.com/paper/convolutional-2d-knowledge-graph-embeddings
|
Convolutional 2D Knowledge Graph Embeddings
|
1707.01476
|
http://arxiv.org/abs/1707.01476v6
|
http://arxiv.org/pdf/1707.01476v6.pdf
|
https://github.com/oliver-lloyd/kge_param_sens
| false | false | true |
none
|
https://paperswithcode.com/paper/cfear-radarodometry-conservative-filtering-1
|
CFEAR Radarodometry - Conservative Filtering for Efficient and Accurate Radar Odometry
| null |
https://arxiv.org/abs/2105.01457
|
https://arxiv.org/pdf/2105.01457.pdf
|
https://github.com/dan11003/CFEAR_Radarodometry_code_public
| true | false | false |
none
|
https://paperswithcode.com/paper/protein-driven-lipid-domain-nucleation-in
|
Protein driven lipid domain nucleation in biological membranes
|
1909.08659
|
https://arxiv.org/abs/1909.08659v1
|
https://arxiv.org/pdf/1909.08659v1.pdf
|
https://github.com/moritzhoferer/moritzhoferer
| false | false | true |
none
|
https://paperswithcode.com/paper/dimensionality-reduction-of-longitudinal
|
Dimensionality Reduction of Longitudinal 'Omics Data using Modern Tensor Factorization
|
2111.14159
|
https://arxiv.org/abs/2111.14159v1
|
https://arxiv.org/pdf/2111.14159v1.pdf
|
https://github.com/uriamorp/mprod_package
| true | true | false |
none
|
https://paperswithcode.com/paper/misleading-authorship-attribution-of-source
|
Misleading Authorship Attribution of Source Code using Adversarial Learning
|
1905.12386
|
https://arxiv.org/abs/1905.12386v2
|
https://arxiv.org/pdf/1905.12386v2.pdf
|
https://github.com/equiw/code-imitator
| false | false | true |
none
|
https://paperswithcode.com/paper/cross-part-learning-for-fine-grained-image
|
Cross-Part Learning for Fine-Grained Image Classification
| null |
https://ieeexplore.ieee.org/abstract/document/9656684
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9656684
|
https://github.com/2023-MindSpore-1/ms-code-135
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/faster-one-sample-stochastic-conditional
|
Faster One-Sample Stochastic Conditional Gradient Method for Composite Convex Minimization
|
2202.13212
|
https://arxiv.org/abs/2202.13212v2
|
https://arxiv.org/pdf/2202.13212v2.pdf
|
https://github.com/ratschlab/faster-hcgm-composite
| true | true | false |
none
|
https://paperswithcode.com/paper/hybrid-multi-fluid-particle-simulations-of
|
Hybrid multi-fluid-particle simulations of the cosmic neutrino background
|
2210.16012
|
https://arxiv.org/abs/2210.16012v2
|
https://arxiv.org/pdf/2210.16012v2.pdf
|
https://github.com/joechenunsw/gadget4-hybrid_public
| true | true | false |
none
|
https://paperswithcode.com/paper/modelling-stochastic-time-delay-for
|
Modelling stochastic time delay for regression analysis
|
2111.06403
|
https://arxiv.org/abs/2111.06403v1
|
https://arxiv.org/pdf/2111.06403v1.pdf
|
https://github.com/aaron1rcl/tvs_regression
| true | true | false |
none
|
https://paperswithcode.com/paper/puzzle-cam-improved-localization-via-matching
|
Puzzle-CAM: Improved localization via matching partial and full features
|
2101.11253
|
https://arxiv.org/abs/2101.11253v4
|
https://arxiv.org/pdf/2101.11253v4.pdf
|
https://github.com/dbash/zerowaste
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/bootstrapping-semantic-segmentation-with
|
Bootstrapping Semantic Segmentation with Regional Contrast
|
2104.04465
|
https://arxiv.org/abs/2104.04465v4
|
https://arxiv.org/pdf/2104.04465v4.pdf
|
https://github.com/dbash/zerowaste
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/eadro-an-end-to-end-troubleshooting-framework
|
Eadro: An End-to-End Troubleshooting Framework for Microservices on Multi-source Data
|
2302.05092
|
https://arxiv.org/abs/2302.05092v1
|
https://arxiv.org/pdf/2302.05092v1.pdf
|
https://github.com/bebillionaireusd/eadro
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/end-to-end-learning-for-self-driving-cars
|
End to End Learning for Self-Driving Cars
|
1604.07316
|
http://arxiv.org/abs/1604.07316v1
|
http://arxiv.org/pdf/1604.07316v1.pdf
|
https://github.com/jm12138/car-behavioral-cloning-paddle
| false | false | true |
paddle
|
https://paperswithcode.com/paper/strategic-latency-reduction-in-blockchain
|
Strategic Latency Reduction in Blockchain Peer-to-Peer Networks
|
2205.06837
|
https://arxiv.org/abs/2205.06837v4
|
https://arxiv.org/pdf/2205.06837v4.pdf
|
https://github.com/weizhaot/geth_peri
| true | true | false |
none
|
https://paperswithcode.com/paper/identifying-causal-associations-in-tweets
|
Identifying causal relations in tweets using deep learning: Use case on diabetes-related tweets from 2017-2021
|
2111.01225
|
https://arxiv.org/abs/2111.01225v4
|
https://arxiv.org/pdf/2111.01225v4.pdf
|
https://github.com/wdds/causal-associations-diabetes-twitter
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-to-generate-piano-music-with-sustain
|
Learning To Generate Piano Music With Sustain Pedals
|
2111.01216
|
https://arxiv.org/abs/2111.01216v1
|
https://arxiv.org/pdf/2111.01216v1.pdf
|
https://github.com/joann8512/suspedal-gen
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/adapting-a-convnext-model-to-audio
|
Adapting a ConvNeXt model to audio classification on AudioSet
|
2306.00830
|
https://arxiv.org/abs/2306.00830v1
|
https://arxiv.org/pdf/2306.00830v1.pdf
|
https://github.com/k-h-ismail/dcls-audio
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/the-entropy-production-of-stationary
|
The entropy production of stationary diffusions
|
2212.05125
|
https://arxiv.org/abs/2212.05125v3
|
https://arxiv.org/pdf/2212.05125v3.pdf
|
https://github.com/lancelotdacosta/entropy_production_stationary_diffusions
| true | true | false |
none
|
https://paperswithcode.com/paper/semantic-supersenses-for-english-possessives
|
Semantic Supersenses for English Possessives
| null |
https://aclanthology.org/L18-1242
|
https://aclanthology.org/L18-1242.pdf
|
https://github.com/nert-gu/streusle
| true | true | false |
none
|
https://paperswithcode.com/paper/comprehensive-supersense-disambiguation-of
|
Comprehensive Supersense Disambiguation of English Prepositions and Possessives
|
1805.04905
|
http://arxiv.org/abs/1805.04905v1
|
http://arxiv.org/pdf/1805.04905v1.pdf
|
https://github.com/nert-gu/streusle
| true | true | false |
none
|
https://paperswithcode.com/paper/robust-control-under-uncertainty-via-bounded
|
Robust Control Under Uncertainty via Bounded Rationality and Differential Privacy
|
2109.08262
|
https://arxiv.org/abs/2109.08262v1
|
https://arxiv.org/pdf/2109.08262v1.pdf
|
https://github.com/irom-lab/br-dp-robust
| true | true | true |
jax
|
https://paperswithcode.com/paper/edge-similarity-aware-graph-neural-networks
|
Edge-similarity-aware Graph Neural Networks
|
2109.09432
|
https://arxiv.org/abs/2109.09432v1
|
https://arxiv.org/pdf/2109.09432v1.pdf
|
https://github.com/vincentx15/rnattentional
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/machine-learning-synthetic-spectra-for
|
Machine learning synthetic spectra for probabilistic redshift estimation: SYTH-Z
|
2111.12118
|
https://arxiv.org/abs/2111.12118v1
|
https://arxiv.org/pdf/2111.12118v1.pdf
|
https://github.com/nesar/mdn_phoz
| true | true | false |
tf
|
https://paperswithcode.com/paper/hapnet-toward-superior-rgb-thermal-scene
|
HAPNet: Toward Superior RGB-Thermal Scene Parsing via Hybrid, Asymmetric, and Progressive Heterogeneous Feature Fusion
|
2404.03527
|
https://arxiv.org/abs/2404.03527v2
|
https://arxiv.org/pdf/2404.03527v2.pdf
|
https://github.com/LiJiahang617/HAPNet
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/learning-a-more-continuous-zero-level-set-in
|
Learning a More Continuous Zero Level Set in Unsigned Distance Fields through Level Set Projection
|
2308.11441
|
https://arxiv.org/abs/2308.11441v1
|
https://arxiv.org/pdf/2308.11441v1.pdf
|
https://github.com/junshengzhou/levelsetudf
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/proofnet-autoformalizing-and-formally-proving
|
ProofNet: Autoformalizing and Formally Proving Undergraduate-Level Mathematics
|
2302.12433
|
https://arxiv.org/abs/2302.12433v1
|
https://arxiv.org/pdf/2302.12433v1.pdf
|
https://github.com/zhangir-azerbayev/proofnet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/ultra-efficient-transfer-learning-with-meta
|
Ultra Efficient Transfer Learning with Meta Update for Cross Subject EEG Classification
|
2003.06113
|
https://arxiv.org/abs/2003.06113v3
|
https://arxiv.org/pdf/2003.06113v3.pdf
|
https://github.com/tiehangd/MUPS
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/soft-actor-critic-for-discrete-action
|
Soft Actor-Critic for Discrete Action Settings
|
1910.07207
|
https://arxiv.org/abs/1910.07207v2
|
https://arxiv.org/pdf/1910.07207v2.pdf
|
https://github.com/p-christ/Deep-Reinforcement-Learning-Algorithms-with-PyTorch
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-tutorial-on-learning-disentangled
|
Learning Disentangled Representations in the Imaging Domain
|
2108.12043
|
https://arxiv.org/abs/2108.12043v6
|
https://arxiv.org/pdf/2108.12043v6.pdf
|
https://github.com/vios-s/disentanglement_tutorial
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/from-discrete-to-continuous-convolution
|
From Discrete to Continuous Convolution Layers
|
2006.11120
|
https://arxiv.org/abs/2006.11120v1
|
https://arxiv.org/pdf/2006.11120v1.pdf
|
https://github.com/assafshocher/ResizeRight
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/integration-of-genetic-algorithms-and-deep
|
Integration of Genetic Algorithms and Deep Learning for the Generation and Bioactivity Prediction of Novel Tyrosine Kinase Inhibitors
|
2408.07155
|
https://arxiv.org/abs/2408.07155v1
|
https://arxiv.org/pdf/2408.07155v1.pdf
|
https://github.com/ricardo-romero-ochoa/bio-deep-learning
| true | true | false |
tf
|
https://paperswithcode.com/paper/hardware-security-evaluation-of-max-10-fpga
|
Hardware Security Evaluation of MAX 10 FPGA
|
1910.05086
|
http://arxiv.org/abs/1910.05086v1
|
http://arxiv.org/pdf/1910.05086v1.pdf
|
https://github.com/ArcadeHustle/WatermelonPapriumDump
| false | false | true |
none
|
https://paperswithcode.com/paper/classifying-dyads-for-militarized-conflict
|
Classifying Dyads for Militarized Conflict Analysis
|
2109.12860
|
https://arxiv.org/abs/2109.12860v1
|
https://arxiv.org/pdf/2109.12860v1.pdf
|
https://github.com/conflict-ai/conflictwiki
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/irt2-inductive-linking-and-ranking-in
|
IRT2: Inductive Linking and Ranking in Knowledge Graphs of Varying Scale
|
2301.00716
|
https://arxiv.org/abs/2301.00716v1
|
https://arxiv.org/pdf/2301.00716v1.pdf
|
https://github.com/lavis-nlp/irt2
| true | true | false |
none
|
https://paperswithcode.com/paper/stylebank-an-explicit-representation-for
|
StyleBank: An Explicit Representation for Neural Image Style Transfer
|
1703.09210
|
http://arxiv.org/abs/1703.09210v2
|
http://arxiv.org/pdf/1703.09210v2.pdf
|
https://github.com/jxcodetw/stylebank
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/deep-plastic-surgery-robust-and-controllable
|
Deep Plastic Surgery: Robust and Controllable Image Editing with Human-Drawn Sketches
|
2001.02890
|
https://arxiv.org/abs/2001.02890v1
|
https://arxiv.org/pdf/2001.02890v1.pdf
|
https://github.com/vita-group/deepps
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/neuface-realistic-3d-neural-face-rendering
|
NeuFace: Realistic 3D Neural Face Rendering from Multi-view Images
|
2303.14092
|
https://arxiv.org/abs/2303.14092v2
|
https://arxiv.org/pdf/2303.14092v2.pdf
|
https://github.com/aejion/neuface
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/privacy-preserving-traffic-flow-prediction-a
|
Privacy-preserving Traffic Flow Prediction: A Federated Learning Approach
|
2003.08725
|
https://arxiv.org/abs/2003.08725v1
|
https://arxiv.org/pdf/2003.08725v1.pdf
|
https://github.com/Practicing-Federated-Learning-for-IoT/FedGRU
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/shotluck-holmes-a-family-of-efficient-small
|
Shotluck Holmes: A Family of Efficient Small-Scale Large Language Vision Models For Video Captioning and Summarization
|
2405.20648
|
https://arxiv.org/abs/2405.20648v2
|
https://arxiv.org/pdf/2405.20648v2.pdf
|
https://github.com/Skyline-9/Shotluck-Holmes
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/goes-class-estimation-for-behind-the-limb
|
GOES class estimation for behind-the-limb solar flares using MESSENGER SAX
|
2012.10221
|
https://arxiv.org/abs/2012.10221v1
|
https://arxiv.org/pdf/2012.10221v1.pdf
|
https://github.com/elastufka/SAX-XRS_figures
| false | false | true |
none
|
https://paperswithcode.com/paper/cautious-bayesian-optimization-for-efficient
|
Cautious Bayesian Optimization for Efficient and Scalable Policy Search
|
2011.09445
|
http://arxiv.org/abs/2011.09445v1
|
http://arxiv.org/pdf/2011.09445v1.pdf
|
https://github.com/boschresearch/ConfidenceRegionBO
| true | false | true |
none
|
https://paperswithcode.com/paper/anomaly-detection-in-multivariate-non
|
Anomaly Detection in Multivariate Non-stationary Time Series for Automatic DBMS Diagnosis
|
1708.02635
|
http://arxiv.org/abs/1708.02635v2
|
http://arxiv.org/pdf/1708.02635v2.pdf
|
https://github.com/leedoyup/anogan-tf
| false | false | true |
tf
|
https://paperswithcode.com/paper/hurricane-forecasting-a-novel-multimodal
|
Hurricane Forecasting: A Novel Multimodal Machine Learning Framework
|
2011.06125
|
https://arxiv.org/abs/2011.06125v4
|
https://arxiv.org/pdf/2011.06125v4.pdf
|
https://github.com/stormalytics/hurricane-frocasting
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-strong-baseline-for-image-and-video-quality
|
A strong baseline for image and video quality assessment
|
2111.07104
|
https://arxiv.org/abs/2111.07104v1
|
https://arxiv.org/pdf/2111.07104v1.pdf
|
https://github.com/tencent/censeoqoe
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/deep-facial-synthesis-a-new-challenge
|
Facial-Sketch Synthesis: A New Challenge
|
2112.15439
|
https://arxiv.org/abs/2112.15439v6
|
https://arxiv.org/pdf/2112.15439v6.pdf
|
https://github.com/DengPingFan/FS2K
| true | true | false |
none
|
https://paperswithcode.com/paper/unsupervised-anomaly-detection-with
|
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
|
1703.05921
|
http://arxiv.org/abs/1703.05921v1
|
http://arxiv.org/pdf/1703.05921v1.pdf
|
https://github.com/leedoyup/anogan-tf
| false | false | true |
tf
|
https://paperswithcode.com/paper/fourier-series-weight-in-quantum-machine
|
Fourier series weight in quantum machine learning
|
2302.00105
|
https://arxiv.org/abs/2302.00105v2
|
https://arxiv.org/pdf/2302.00105v2.pdf
|
https://github.com/pifparfait/fourier_based_qml
| true | true | false |
none
|
https://paperswithcode.com/paper/probabilistic-circuits-for-variational
|
Probabilistic Circuits for Variational Inference in Discrete Graphical Models
|
2010.11446
|
https://arxiv.org/abs/2010.11446v1
|
https://arxiv.org/pdf/2010.11446v1.pdf
|
https://github.com/AndyShih12/SPN_Variational_Inference
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/optimality-of-finite-parameter-shift-rules
|
Optimality of Finite-Support Parameter Shift Rules for Derivatives of Variational Quantum Circuits
|
2112.14669
|
https://arxiv.org/abs/2112.14669v2
|
https://arxiv.org/pdf/2112.14669v2.pdf
|
https://github.com/dojt/shiftrulespluto
| true | true | true |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.