paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/feyngame
|
FeynGame
|
2003.00896
|
http://arxiv.org/abs/2003.00896v1
|
http://arxiv.org/pdf/2003.00896v1.pdf
|
https://gitlab.com/feyngame/FeynGame
| true | true | true |
none
|
https://paperswithcode.com/paper/learning-user-interpretable-descriptions-of
|
Discovering User-Interpretable Capabilities of Black-Box Planning Agents
|
2107.13668
|
https://arxiv.org/abs/2107.13668v3
|
https://arxiv.org/pdf/2107.13668v3.pdf
|
https://github.com/aair-lab/capability-discovery
| true | true | false |
none
|
https://paperswithcode.com/paper/conformal-credal-self-supervised-learning
|
Conformal Credal Self-Supervised Learning
|
2205.15239
|
https://arxiv.org/abs/2205.15239v2
|
https://arxiv.org/pdf/2205.15239v2.pdf
|
https://github.com/julilien/c2s2l
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/the-causal-news-corpus-annotating-causal
|
The Causal News Corpus: Annotating Causal Relations in Event Sentences from News
|
2204.11714
|
https://arxiv.org/abs/2204.11714v1
|
https://arxiv.org/pdf/2204.11714v1.pdf
|
https://github.com/tanfiona/causalnewscorpus
| true | true | true |
tf
|
https://paperswithcode.com/paper/inttower-the-next-generation-of-two-tower
|
IntTower: the Next Generation of Two-Tower Model for Pre-Ranking System
|
2210.09890
|
https://arxiv.org/abs/2210.09890v1
|
https://arxiv.org/pdf/2210.09890v1.pdf
|
https://github.com/archersama/inttower
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/neighbor2neighbor-self-supervised-denoising
|
Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images
|
2101.02824
|
https://arxiv.org/abs/2101.02824v3
|
https://arxiv.org/pdf/2101.02824v3.pdf
|
https://github.com/code-implementation1/Code6/tree/main/Neighbor2Neighbor
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/quantified-reflection-calculus-with-one
|
Quantified Reflection Calculus with one modality
|
2003.13651
|
http://arxiv.org/abs/2003.13651v1
|
http://arxiv.org/pdf/2003.13651v1.pdf
|
https://gitlab.com/ana-borges/QRC1-Coq
| false | false | true |
none
|
https://paperswithcode.com/paper/replicate-or-relocate-non-uniform-access-in
|
NuPS: A Parameter Server for Machine Learning with Non-Uniform Parameter Access
|
2104.00501
|
https://arxiv.org/abs/2104.00501v3
|
https://arxiv.org/pdf/2104.00501v3.pdf
|
https://github.com/alexrenz/adaps
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/optimal-and-adaptive-monteiro-svaiter
|
Optimal and Adaptive Monteiro-Svaiter Acceleration
|
2205.15371
|
https://arxiv.org/abs/2205.15371v2
|
https://arxiv.org/pdf/2205.15371v2.pdf
|
https://github.com/danielle-hausler/ms-optimal
| true | true | true |
none
|
https://paperswithcode.com/paper/good-intentions-adaptive-parameter-servers
|
Good Intentions: Adaptive Parameter Management via Intent Signaling
|
2206.00470
|
https://arxiv.org/abs/2206.00470v4
|
https://arxiv.org/pdf/2206.00470v4.pdf
|
https://github.com/alexrenz/adaps
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-subterranean-virtual-cave-world-for-gazebo
|
A Subterranean Virtual Cave World for Gazebo based on the DARPA SubT Challenge
|
2004.08452
|
https://arxiv.org/abs/2004.08452v2
|
https://arxiv.org/pdf/2004.08452v2.pdf
|
https://github.com/ltu-rai/gazebo_cave_world
| false | false | true |
none
|
https://paperswithcode.com/paper/small-sample-hyperspectral-image
|
Small Sample Hyperspectral Image Classification Based on the Random Patches Network and Recursive Filtering
| null |
https://doi.org/10.3390/s23052499
|
https://www.mdpi.com/1424-8220/23/5/2499
|
https://github.com/UchaevD/RPNet-RF
| true | false | false |
none
|
https://paperswithcode.com/paper/circle-loss-a-unified-perspective-of-pair
|
Circle Loss: A Unified Perspective of Pair Similarity Optimization
|
2002.10857
|
https://arxiv.org/abs/2002.10857v2
|
https://arxiv.org/pdf/2002.10857v2.pdf
|
https://github.com/wujpbb7/caffe_circleloss
| false | false | true |
none
|
https://paperswithcode.com/paper/image-to-image-translation-with-conditional
|
Image-to-Image Translation with Conditional Adversarial Networks
|
1611.07004
|
http://arxiv.org/abs/1611.07004v3
|
http://arxiv.org/pdf/1611.07004v3.pdf
|
https://github.com/VedantDere0104/Pix2Pix_GAN
| false | false | true |
none
|
https://paperswithcode.com/paper/would-mega-scale-datasets-further-enhance
|
Would Mega-scale Datasets Further Enhance Spatiotemporal 3D CNNs?
|
2004.04968
|
https://arxiv.org/abs/2004.04968v1
|
https://arxiv.org/pdf/2004.04968v1.pdf
|
https://github.com/kaleab-k/VideoAT
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/compositional-attention-disentangling-search-1
|
Compositional Attention: Disentangling Search and Retrieval
|
2110.09419
|
https://arxiv.org/abs/2110.09419v2
|
https://arxiv.org/pdf/2110.09419v2.pdf
|
https://github.com/Rishit-dagli/Compositional-Attention
| false | false | true |
tf
|
https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
|
Deep Residual Learning for Image Recognition
|
1512.03385
|
http://arxiv.org/abs/1512.03385v1
|
http://arxiv.org/pdf/1512.03385v1.pdf
|
https://github.com/alililia/ascend_SE-Net
| false | false | true |
mindspore
|
https://paperswithcode.com/paper/are-vision-transformers-more-data-hungry-than-1
|
Are Vision Transformers More Data Hungry Than Newborn Visual Systems?
|
2312.02843
|
https://arxiv.org/abs/2312.02843v1
|
https://arxiv.org/pdf/2312.02843v1.pdf
|
https://github.com/buildingamind/vit-cot
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/iotvulcode-ai-enabled-vulnerability-detection
|
IoTvulCode: AI-enabled vulnerability detection in software products designed for IoT applications
| null |
https://link.springer.com/article/10.1007/s10207-024-00848-6
|
https://link.springer.com/content/pdf/10.1007/s10207-024-00848-6.pdf
|
https://github.com/SmartSecLab/IoTvulCode
| false | true | false |
tf
|
https://paperswithcode.com/paper/the-cosmological-simulation-code-scriptstyle
|
The cosmological simulation code $\scriptstyle{\rm CO}N{\rm CEPT}\, 1.0$
|
2112.01508
|
https://arxiv.org/abs/2112.01508v2
|
https://arxiv.org/pdf/2112.01508v2.pdf
|
https://github.com/jmd-dk/concept
| true | true | true |
none
|
https://paperswithcode.com/paper/argumentative-text-generation-in-economic
|
Argumentative Text Generation in Economic Domain
|
2206.09251
|
https://arxiv.org/abs/2206.09251v1
|
https://arxiv.org/pdf/2206.09251v1.pdf
|
https://github.com/kotelnikov-ev/economic_argument_generation
| true | true | false |
none
|
https://paperswithcode.com/paper/simulation-platform-for-pattern-recognition
|
Simulation platform for pattern recognition based on reservoir computing with memristor networks
|
2112.00248
|
https://arxiv.org/abs/2112.00248v2
|
https://arxiv.org/pdf/2112.00248v2.pdf
|
https://github.com/GTANAKA-LAB/Memristor-Network-Reservoir
| true | false | false |
none
|
https://paperswithcode.com/paper/sequential-estimation-of-quantiles-with
|
Sequential estimation of quantiles with applications to A/B-testing and best-arm identification
|
1906.09712
|
https://arxiv.org/abs/1906.09712v5
|
https://arxiv.org/pdf/1906.09712v5.pdf
|
https://github.com/WLM1ke/poptimizer
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/the-gpt-writingprompts-dataset-a-comparative
|
The GPT-WritingPrompts Dataset: A Comparative Analysis of Character Portrayal in Short Stories
|
2406.16767
|
https://arxiv.org/abs/2406.16767v2
|
https://arxiv.org/pdf/2406.16767v2.pdf
|
https://github.com/kristinhuangg/gpt-writing-prompts
| true | true | false |
none
|
https://paperswithcode.com/paper/constructing-prediction-intervals-with-neural
|
Constructing Prediction Intervals with Neural Networks: An Empirical Evaluation of Bootstrapping and Conformal Inference Methods
|
2210.05354
|
https://arxiv.org/abs/2210.05354v1
|
https://arxiv.org/pdf/2210.05354v1.pdf
|
https://github.com/alexcontarino/constructing-prediction-intervals-for-neural-networks
| true | true | false |
none
|
https://paperswithcode.com/paper/unified-streaming-and-non-streaming-two-pass
|
Unified Streaming and Non-streaming Two-pass End-to-end Model for Speech Recognition
|
2012.05481
|
https://arxiv.org/abs/2012.05481v2
|
https://arxiv.org/pdf/2012.05481v2.pdf
|
https://github.com/xianchao-wu/wenet-deep-sparse-conformer
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/test-case-prioritization-using-test-case
|
Test case prioritization using test case diversification and fault-proneness estimations
|
2106.10524
|
https://arxiv.org/abs/2106.10524v3
|
https://arxiv.org/pdf/2106.10524v3.pdf
|
https://github.com/mostafamahdieh/ClusteringFaultPronenessTCP
| true | true | true |
none
|
https://paperswithcode.com/paper/hierarchical-nucleation-in-deep-neural
|
Hierarchical nucleation in deep neural networks
|
2007.03506
|
https://arxiv.org/abs/2007.03506v2
|
https://arxiv.org/pdf/2007.03506v2.pdf
|
https://github.com/diegodoimo/hierarchical_nucleation
| true | false | true |
none
|
https://paperswithcode.com/paper/enhancing-few-shot-class-incremental-learning
|
Enhancing Few-Shot Class-Incremental Learning via Training-Free Bi-Level Modality Calibration
| null |
http://openaccess.thecvf.com//content/CVPR2025/html/Chen_Enhancing_Few-Shot_Class-Incremental_Learning_via_Training-Free_Bi-Level_Modality_Calibration_CVPR_2025_paper.html
|
http://openaccess.thecvf.com//content/CVPR2025/papers/Chen_Enhancing_Few-Shot_Class-Incremental_Learning_via_Training-Free_Bi-Level_Modality_Calibration_CVPR_2025_paper.pdf
|
https://github.com/yychen016/bimc
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/treating-motion-as-option-to-reduce-motion
|
Treating Motion as Option to Reduce Motion Dependency in Unsupervised Video Object Segmentation
|
2209.03138
|
https://arxiv.org/abs/2209.03138v5
|
https://arxiv.org/pdf/2209.03138v5.pdf
|
https://github.com/ahasan-haque/TMO-RAFT
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/some-results-on-k-critical-p-5-free-graphs
|
Some Results on $k$-Critical $P_5$-Free Graphs
|
2108.05492
|
https://arxiv.org/abs/2108.05492v1
|
https://arxiv.org/pdf/2108.05492v1.pdf
|
https://github.com/benrkcameron/P5gemfree_critical
| false | false | true |
none
|
https://paperswithcode.com/paper/namedentityrangers-at-semeval-2022-task-11
|
NamedEntityRangers at SemEval-2022 Task 11: Transformer-based Approaches for Multilingual Complex Named Entity Recognition
| null |
https://aclanthology.org/2022.semeval-1.216
|
https://aclanthology.org/2022.semeval-1.216.pdf
|
https://github.com/abiks/multiconer
| true | true | false |
none
|
https://paperswithcode.com/paper/private-adaptive-optimization-with-side
|
Private Adaptive Optimization with Side Information
|
2202.05963
|
https://arxiv.org/abs/2202.05963v2
|
https://arxiv.org/pdf/2202.05963v2.pdf
|
https://github.com/litian96/adadps
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/aida-upm-at-semeval-2022-task-5-exploring
|
AIDA-UPM at SemEval-2022 Task 5: Exploring Multimodal Late Information Fusion for Multimedia Automatic Misogyny Identification
| null |
https://aclanthology.org/2022.semeval-1.107
|
https://aclanthology.org/2022.semeval-1.107.pdf
|
https://github.com/aida-upm/aida-upm-semeval-2022-task-5-mami-
| true | true | false |
none
|
https://paperswithcode.com/paper/dfsz-type-axions-and-where-to-find-them
|
DFSZ-Type Axions and Where to Find Them
|
2302.04667
|
https://arxiv.org/abs/2302.04667v3
|
https://arxiv.org/pdf/2302.04667v3.pdf
|
https://github.com/jhbdiehl/dfszforest
| true | true | false |
none
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/alililia/ms_contrib/tree/main/ascend_transformer
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/ma-net-a-multi-scale-attention-network-for
|
MA-Net: A Multi-Scale Attention Network for Liver and Tumor Segmentation
| null |
https://ieeexplore.ieee.org/document/9201310
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9201310
|
https://github.com/qubvel/segmentation_models.pytorch
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/character-level-representations-improve-drs
|
Character-level Representations Improve DRS-based Semantic Parsing Even in the Age of BERT
|
2011.04308
|
https://arxiv.org/abs/2011.04308v1
|
https://arxiv.org/pdf/2011.04308v1.pdf
|
https://github.com/shenminx/drs-parser
| false | false | true |
none
|
https://paperswithcode.com/paper/the-parallel-meaning-bank-towards-a
|
The Parallel Meaning Bank: Towards a Multilingual Corpus of Translations Annotated with Compositional Meaning Representations
|
1702.03964
|
http://arxiv.org/abs/1702.03964v1
|
http://arxiv.org/pdf/1702.03964v1.pdf
|
https://github.com/shenminx/drs-parser
| false | false | true |
none
|
https://paperswithcode.com/paper/progressive-translation-improving-domain
|
Progressive Translation: Improving Domain Robustness of Neural Machine Translation with Intermediate Sequences
|
2305.09154
|
https://arxiv.org/abs/2305.09154v1
|
https://arxiv.org/pdf/2305.09154v1.pdf
|
https://github.com/chaojun-wang/progressive-translation
| true | true | true |
tf
|
https://paperswithcode.com/paper/spin-dependent-recombination-mechanisms-for
|
Spin-dependent recombination mechanisms for quintet bi-excitons generated through singlet fission
|
2302.04678
|
https://arxiv.org/abs/2302.04678v2
|
https://arxiv.org/pdf/2302.04678v2.pdf
|
https://github.com/yneter/ampodmr
| true | true | false |
none
|
https://paperswithcode.com/paper/avatarposer-articulated-full-body-pose
|
AvatarPoser: Articulated Full-Body Pose Tracking from Sparse Motion Sensing
|
2207.13784
|
https://arxiv.org/abs/2207.13784v1
|
https://arxiv.org/pdf/2207.13784v1.pdf
|
https://github.com/eth-siplab/avatarposer
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/ava-avd-audio-visual-speaker-diarization-in
|
AVA-AVD: Audio-Visual Speaker Diarization in the Wild
|
2111.14448
|
https://arxiv.org/abs/2111.14448v5
|
https://arxiv.org/pdf/2111.14448v5.pdf
|
https://github.com/showlab/ava-avd
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/avf-mae-scaling-affective-video-facial-masked
|
AVF-MAE++: Scaling Affective Video Facial Masked Autoencoders via Efficient Audio-Visual Self-Supervised Learning
| null |
http://openaccess.thecvf.com//content/CVPR2025/html/Wu_AVF-MAE_Scaling_Affective_Video_Facial_Masked_Autoencoders_via_Efficient_Audio-Visual_CVPR_2025_paper.html
|
http://openaccess.thecvf.com//content/CVPR2025/papers/Wu_AVF-MAE_Scaling_Affective_Video_Facial_Masked_Autoencoders_via_Efficient_Audio-Visual_CVPR_2025_paper.pdf
|
https://github.com/xuecwu/avf-mae
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/towards-hard-positive-query-mining-for-detr
|
Towards Hard-Positive Query Mining for DETR-based Human-Object Interaction Detection
|
2207.05293
|
https://arxiv.org/abs/2207.05293v1
|
https://arxiv.org/pdf/2207.05293v1.pdf
|
https://github.com/muchhair/hqm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/vision-xformers-efficient-attention-for-image
|
Vision Xformers: Efficient Attention for Image Classification
|
2107.02239
|
https://arxiv.org/abs/2107.02239v4
|
https://arxiv.org/pdf/2107.02239v4.pdf
|
https://github.com/pranavphoenix/VisionXformer
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/colonformer-an-efficient-transformer-based
|
ColonFormer: An Efficient Transformer based Method for Colon Polyp Segmentation
|
2205.08473
|
https://arxiv.org/abs/2205.08473v3
|
https://arxiv.org/pdf/2205.08473v3.pdf
|
https://github.com/ducnt9907/ColonFormer
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/dataset-for-analyzing-various-gaze-zones-and
|
Synthetic Distracted Driving (SynDD2) dataset for analyzing distracted behaviors and various gaze zones of a driver
|
2204.08096
|
https://arxiv.org/abs/2204.08096v3
|
https://arxiv.org/pdf/2204.08096v3.pdf
|
https://github.com/Shahad24/AICITY2022_Track3_Team95
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/improved-churn-causal-analysis-through
|
Improved Churn Causal Analysis Through Restrained High‑Dimensional Feature Space Efects in Financial Institutions
| null |
https://link.springer.com/article/10.1007/s44230-022-00006-y
|
https://link.springer.com/content/pdf/10.1007/s44230-022-00006-y.pdf
|
https://github.com/DavidHason/CausalAnalysis
| false | false | false |
tf
|
https://paperswithcode.com/paper/benchmarking-omni-vision-representation
|
Benchmarking Omni-Vision Representation through the Lens of Visual Realms
|
2207.07106
|
https://arxiv.org/abs/2207.07106v2
|
https://arxiv.org/pdf/2207.07106v2.pdf
|
https://github.com/ZhangYuanhan-AI/OmniBenchmark
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/cross-age-speaker-verification-learning-age
|
Cross-Age Speaker Verification: Learning Age-Invariant Speaker Embeddings
|
2207.05929
|
https://arxiv.org/abs/2207.05929v1
|
https://arxiv.org/pdf/2207.05929v1.pdf
|
https://github.com/qinxiaoyi/cross-age_speaker_verification
| true | true | true |
none
|
https://paperswithcode.com/paper/edgar-an-autonomous-driving-research-platform
|
EDGAR: An Autonomous Driving Research Platform -- From Feature Development to Real-World Application
|
2309.15492
|
https://arxiv.org/abs/2309.15492v2
|
https://arxiv.org/pdf/2309.15492v2.pdf
|
https://github.com/tumftm/edgar_digital_twin
| true | true | false |
none
|
https://paperswithcode.com/paper/ultra-fast-deep-lane-detection-with-hybrid
|
Ultra Fast Deep Lane Detection with Hybrid Anchor Driven Ordinal Classification
|
2206.07389
|
https://arxiv.org/abs/2206.07389v1
|
https://arxiv.org/pdf/2206.07389v1.pdf
|
https://github.com/cfzd/ultra-fast-lane-detection-v2
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deepjoin-learning-a-joint-occupancy-signed
|
DeepJoin: Learning a Joint Occupancy, Signed Distance, and Normal Field Function for Shape Repair
|
2211.12400
|
https://arxiv.org/abs/2211.12400v1
|
https://arxiv.org/pdf/2211.12400v1.pdf
|
https://github.com/terascale-all-sensing-research-studio/deepjoin
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/pytorch-image-quality-metrics-for-image
|
PyTorch Image Quality: Metrics for Image Quality Assessment
|
2208.14818
|
https://arxiv.org/abs/2208.14818v1
|
https://arxiv.org/pdf/2208.14818v1.pdf
|
https://github.com/danjacobellis/mpq
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/detection-friendly-nonuniformity-correction-a-1
|
Detection-Friendly Nonuniformity Correction: A Union Framework for Infrared UAV Target Detection
| null |
http://openaccess.thecvf.com//content/CVPR2025/html/Fang_Detection-Friendly_Nonuniformity_Correction_A_Union_Framework_for_Infrared_UAV_Target_CVPR_2025_paper.html
|
http://openaccess.thecvf.com//content/CVPR2025/papers/Fang_Detection-Friendly_Nonuniformity_Correction_A_Union_Framework_for_Infrared_UAV_Target_CVPR_2025_paper.pdf
|
https://github.com/IVPLaboratory/UniCD
| true | true | false |
none
|
https://paperswithcode.com/paper/no-word-embedding-model-is-perfect-evaluating
|
No Word Embedding Model Is Perfect: Evaluating the Representation Accuracy for Social Bias in the Media
|
2211.03634
|
https://arxiv.org/abs/2211.03634v1
|
https://arxiv.org/pdf/2211.03634v1.pdf
|
https://github.com/webis-de/emnlp-22
| true | true | false |
none
|
https://paperswithcode.com/paper/weakly-supervised-mesh-convolutional-hand
|
Weakly-Supervised Mesh-Convolutional Hand Reconstruction in the Wild
|
2004.01946
|
https://arxiv.org/abs/2004.01946v1
|
https://arxiv.org/pdf/2004.01946v1.pdf
|
https://github.com/EAST-J/Youtubehand
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/comparing-apples-with-apples-robust-detection
|
Comparing Apples with Apples: Robust Detection Limits for Exoplanet High-Contrast Imaging in the Presence of non-Gaussian Noise
|
2303.12030
|
https://arxiv.org/abs/2303.12030v1
|
https://arxiv.org/pdf/2303.12030v1.pdf
|
https://github.com/markusbonse/applefy
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-long-form-video-understanding-1
|
Towards Long-Form Video Understanding
|
2106.11310
|
https://arxiv.org/abs/2106.11310v1
|
https://arxiv.org/pdf/2106.11310v1.pdf
|
https://github.com/md-mohaiminul/ViS4mer
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/quantum-dynamics-using-path-integral-coarse
|
Quantum dynamics using path integral coarse-graining
|
2208.06205
|
https://arxiv.org/abs/2208.06205v2
|
https://arxiv.org/pdf/2208.06205v2.pdf
|
https://github.com/venkatkapil24/pigs-methodology
| true | false | false |
none
|
https://paperswithcode.com/paper/a-scalable-test-problem-generator-for
|
A Scalable Test Problem Generator for Sequential Transfer Optimization
|
2304.08503
|
https://arxiv.org/abs/2304.08503v4
|
https://arxiv.org/pdf/2304.08503v4.pdf
|
https://github.com/xminghsueh/stop
| true | true | false |
none
|
https://paperswithcode.com/paper/a-dictionary-based-study-of-word-sense
|
A Dictionary-Based Study of Word Sense Difficulty
| null |
https://aclanthology.org/2022.readi-1.3
|
https://aclanthology.org/2022.readi-1.3.pdf
|
https://github.com/daalft/dicomplex
| true | true | false |
none
|
https://paperswithcode.com/paper/deformable-detr-deformable-transformers-for-1
|
Deformable DETR: Deformable Transformers for End-to-End Object Detection
|
2010.04159
|
https://arxiv.org/abs/2010.04159v4
|
https://arxiv.org/pdf/2010.04159v4.pdf
|
https://github.com/haoy945/demf
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/omni3d-a-large-benchmark-and-model-for-3d
|
Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild
|
2207.10660
|
https://arxiv.org/abs/2207.10660v2
|
https://arxiv.org/pdf/2207.10660v2.pdf
|
https://github.com/facebookresearch/omni3d
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/neural-architecture-search-for-spiking-neural
|
Neural Architecture Search for Spiking Neural Networks
|
2201.10355
|
https://arxiv.org/abs/2201.10355v3
|
https://arxiv.org/pdf/2201.10355v3.pdf
|
https://github.com/intelligent-computing-lab-yale/neural-architecture-search-for-spiking-neural-networks
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/long-movie-clip-classification-with-state
|
Long Movie Clip Classification with State-Space Video Models
|
2204.01692
|
https://arxiv.org/abs/2204.01692v3
|
https://arxiv.org/pdf/2204.01692v3.pdf
|
https://github.com/md-mohaiminul/ViS4mer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/grounding-visual-representations-with-texts
|
Grounding Visual Representations with Texts for Domain Generalization
|
2207.10285
|
https://arxiv.org/abs/2207.10285v2
|
https://arxiv.org/pdf/2207.10285v2.pdf
|
https://github.com/mswzeus/gvrt
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/boosting-3d-object-detection-via-object
|
Boosting 3D Object Detection via Object-Focused Image Fusion
|
2207.10589
|
https://arxiv.org/abs/2207.10589v1
|
https://arxiv.org/pdf/2207.10589v1.pdf
|
https://github.com/haoy945/demf
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/jperceiver-joint-perception-network-for-depth
|
JPerceiver: Joint Perception Network for Depth, Pose and Layout Estimation in Driving Scenes
|
2207.07895
|
https://arxiv.org/abs/2207.07895v1
|
https://arxiv.org/pdf/2207.07895v1.pdf
|
https://github.com/sunnyhelen/jperceiver
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/ra-depth-resolution-adaptive-self-supervised
|
RA-Depth: Resolution Adaptive Self-Supervised Monocular Depth Estimation
|
2207.11984
|
https://arxiv.org/abs/2207.11984v2
|
https://arxiv.org/pdf/2207.11984v2.pdf
|
https://github.com/hmhemu/ra-depth
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/developing-optimal-causal-cyber-defence
|
Developing Optimal Causal Cyber-Defence Agents via Cyber Security Simulation
|
2207.12355
|
https://arxiv.org/abs/2207.12355v2
|
https://arxiv.org/pdf/2207.12355v2.pdf
|
https://github.com/dstl/yawning-titan
| true | true | false |
tf
|
https://paperswithcode.com/paper/denoising-diffusion-probabilistic-models
|
Denoising Diffusion Probabilistic Models
|
2006.11239
|
https://arxiv.org/abs/2006.11239v2
|
https://arxiv.org/pdf/2006.11239v2.pdf
|
https://github.com/mszpc/denoising-diffusion-mindspore
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/latent-topology-induction-for-understanding
|
Latent Topology Induction for Understanding Contextualized Representations
|
2206.01512
|
https://arxiv.org/abs/2206.01512v1
|
https://arxiv.org/pdf/2206.01512v1.pdf
|
https://github.com/franxyao/rdp
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/exploring-adversarial-examples-and
|
Exploring Adversarial Examples and Adversarial Robustness of Convolutional Neural Networks by Mutual Information
|
2207.05756
|
https://arxiv.org/abs/2207.05756v2
|
https://arxiv.org/pdf/2207.05756v2.pdf
|
https://github.com/wowotou1998/exploring-adv-by-mutual-info
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/scaling-structured-inference-with
|
Scaling Structured Inference with Randomization
|
2112.03638
|
https://arxiv.org/abs/2112.03638v3
|
https://arxiv.org/pdf/2112.03638v3.pdf
|
https://github.com/franxyao/rdp
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/clustering-performance-analysis-using-new
|
Clustering performance analysis using a new correlation-based cluster validity index
|
2109.11172
|
https://arxiv.org/abs/2109.11172v2
|
https://arxiv.org/pdf/2109.11172v2.pdf
|
https://github.com/nwiroonsri/ncvalid
| true | true | true |
none
|
https://paperswithcode.com/paper/optimizing-image-compression-via-joint
|
Optimizing Image Compression via Joint Learning with Denoising
|
2207.10869
|
https://arxiv.org/abs/2207.10869v1
|
https://arxiv.org/pdf/2207.10869v1.pdf
|
https://github.com/felixcheng97/denoisecompression
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/wasserstein-gan
|
Wasserstein GAN
|
1701.07875
|
http://arxiv.org/abs/1701.07875v3
|
http://arxiv.org/pdf/1701.07875v3.pdf
|
https://github.com/MasoumehVahedi/GANs-Model
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/conditional-generative-adversarial-nets
|
Conditional Generative Adversarial Nets
|
1411.1784
|
https://arxiv.org/abs/1411.1784v1
|
https://arxiv.org/pdf/1411.1784v1.pdf
|
https://github.com/MasoumehVahedi/GANs-Model
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/seamlessm4t-massively-multilingual-multimodal
|
SeamlessM4T: Massively Multilingual & Multimodal Machine Translation
|
2308.11596
|
https://arxiv.org/abs/2308.11596v3
|
https://arxiv.org/pdf/2308.11596v3.pdf
|
https://github.com/facebookresearch/sonar
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/an-efficient-two-stream-network-for-isolated
|
An Efficient Two-Stream Network for Isolated Sign Language Recognition Using Accumulative Video Motion
| null |
https://ieeexplore.ieee.org/abstract/document/9875269
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9875269
|
https://github.com/Hamzah-Luqman/SLR_AMN
| false | true | false |
tf
|
https://paperswithcode.com/paper/automatic-verb-classifier-for-abui-avc-abz
|
Automatic Verb Classifier for Abui (AVC-abz)
| null |
https://aclanthology.org/2022.eurali-1.7
|
https://aclanthology.org/2022.eurali-1.7.pdf
|
https://github.com/fanacek/avc-abz
| true | true | false |
none
|
https://paperswithcode.com/paper/text-guided-synthesis-of-artistic-images-with
|
Text-Guided Synthesis of Artistic Images with Retrieval-Augmented Diffusion Models
|
2207.13038
|
https://arxiv.org/abs/2207.13038v1
|
https://arxiv.org/pdf/2207.13038v1.pdf
|
https://github.com/compvis/latent-diffusion
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/learning-domain-adaptive-object-detection
|
Learning Domain Adaptive Object Detection with Probabilistic Teacher
|
2206.06293
|
https://arxiv.org/abs/2206.06293v1
|
https://arxiv.org/pdf/2206.06293v1.pdf
|
https://github.com/hikvision-research/probabilisticteacher
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/conformal-prediction-set-for-time-series
|
Conformal prediction set for time-series
|
2206.07851
|
https://arxiv.org/abs/2206.07851v1
|
https://arxiv.org/pdf/2206.07851v1.pdf
|
https://github.com/hamrel-cxu/EnbPI
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/rfla-gaussian-receptive-field-based-label
|
RFLA: Gaussian Receptive Field based Label Assignment for Tiny Object Detection
|
2208.08738
|
https://arxiv.org/abs/2208.08738v2
|
https://arxiv.org/pdf/2208.08738v2.pdf
|
https://github.com/chasel-tsui/mmdet-rfla
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/bounding-stochastic-safety-leveraging
|
Bounding Stochastic Safety: Leveraging Freedman's Inequality with Discrete-Time Control Barrier Functions
|
2403.05745
|
https://arxiv.org/abs/2403.05745v5
|
https://arxiv.org/pdf/2403.05745v5.pdf
|
https://github.com/rkcosner/freedman
| true | true | false |
none
|
https://paperswithcode.com/paper/decomposed-knowledge-distillation-for-class
|
Decomposed Knowledge Distillation for Class-Incremental Semantic Segmentation
|
2210.05941
|
https://arxiv.org/abs/2210.05941v1
|
https://arxiv.org/pdf/2210.05941v1.pdf
|
https://github.com/cvlab-yonsei/dkd
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/an-empirical-evaluation-of-temporal-graph
|
An Empirical Evaluation of Temporal Graph Benchmark
|
2307.12510
|
https://arxiv.org/abs/2307.12510v5
|
https://arxiv.org/pdf/2307.12510v5.pdf
|
https://github.com/yule-BUAA/DyGLib_TGB
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/icolorit-towards-propagating-local-hint-to
|
iColoriT: Towards Propagating Local Hint to the Right Region in Interactive Colorization by Leveraging Vision Transformer
|
2207.06831
|
https://arxiv.org/abs/2207.06831v4
|
https://arxiv.org/pdf/2207.06831v4.pdf
|
https://github.com/pmh9960/iColoriT
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/fitting-summary-statistics-of-neural-data
|
Fitting summary statistics of neural data with a differentiable spiking network simulator
|
2106.10064
|
https://arxiv.org/abs/2106.10064v2
|
https://arxiv.org/pdf/2106.10064v2.pdf
|
https://github.com/epfl-lcn/pub-bellec-wang-2021-sample-and-measure
| true | true | true |
tf
|
https://paperswithcode.com/paper/classical-quantum-combs-their-min-entropy-and
|
The Min-Entropy of Classical-Quantum Combs for Measurement-Based Applications
|
2212.00553
|
https://arxiv.org/abs/2212.00553v3
|
https://arxiv.org/pdf/2212.00553v3.pdf
|
https://github.com/isaacdsmith/min-entropy_and_mbqc
| true | true | true |
none
|
https://paperswithcode.com/paper/simultaneous-multiple-object-detection-and
|
Simultaneous Multiple Object Detection and Pose Estimation using 3D Model Infusion with Monocular Vision
|
2211.11188
|
https://arxiv.org/abs/2211.11188v3
|
https://arxiv.org/pdf/2211.11188v3.pdf
|
https://github.com/CongliangLi/LabelImg3D
| true | false | false |
none
|
https://paperswithcode.com/paper/nnood-a-framework-for-benchmarking-self
|
nnOOD: A Framework for Benchmarking Self-supervised Anomaly Localisation Methods
|
2209.01124
|
https://arxiv.org/abs/2209.01124v1
|
https://arxiv.org/pdf/2209.01124v1.pdf
|
https://github.com/matt-baugh/nnood
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/self-supervised-out-of-distribution-detection-1
|
Natural Synthetic Anomalies for Self-Supervised Anomaly Detection and Localization
|
2109.15222
|
https://arxiv.org/abs/2109.15222v3
|
https://arxiv.org/pdf/2109.15222v3.pdf
|
https://github.com/matt-baugh/nnood
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/exploiting-class-activation-value-for-partial
|
Exploiting Class Activation Value for Partial-Label Learning
| null |
https://openreview.net/forum?id=qqdXHUGec9h
|
https://openreview.net/pdf?id=qqdXHUGec9h
|
https://github.com/Shuijing2018/CAVL_Mindspore
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/elte-poetry-corpus-a-machine-annotated
|
ELTE Poetry Corpus: A Machine Annotated Database of Canonical Hungarian Poetry
| null |
https://aclanthology.org/2022.lrec-1.372
|
https://aclanthology.org/2022.lrec-1.372.pdf
|
https://github.com/elte-dh/poetry-corpus
| true | true | false |
none
|
https://paperswithcode.com/paper/what-matters-in-unsupervised-optical-flow
|
What Matters in Unsupervised Optical Flow
|
2006.04902
|
https://arxiv.org/abs/2006.04902v2
|
https://arxiv.org/pdf/2006.04902v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-36
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/domfn-a-divergence-orientated-multi-modal
|
DOMFN: A Divergence-Orientated Multi-Modal Fusion Network for Resume Assessment
| null |
https://dl.acm.org/doi/abs/10.1145/3503161.3548203
|
https://dl.acm.org/doi/pdf/10.1145/3503161.3548203
|
https://github.com/lyqcom/MM22_DOMFN
| false | false | false |
mindspore
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.