paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/gatsbi-generative-adversarial-training-for-1
|
GATSBI: Generative Adversarial Training for Simulation-Based Inference
|
2203.06481
|
https://arxiv.org/abs/2203.06481v1
|
https://arxiv.org/pdf/2203.06481v1.pdf
|
https://github.com/mackelab/gatsbi
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/ontology-matching-through-absolute
|
Ontology Matching Through Absolute Orientation of Embedding Spaces
|
2204.04040
|
https://arxiv.org/abs/2204.04040v1
|
https://arxiv.org/pdf/2204.04040v1.pdf
|
https://github.com/guilhermesfc/ontology-matching-absolute-orientation
| true | true | false |
none
|
https://paperswithcode.com/paper/backward-monte-carlo-applied-to-muon
|
Backward Monte-Carlo applied to muon transport
|
1705.05636
|
https://arxiv.org/abs/1705.05636v2
|
https://arxiv.org/pdf/1705.05636v2.pdf
|
https://github.com/niess/alouette
| false | false | true |
none
|
https://paperswithcode.com/paper/tegtok-augmenting-text-generation-via-task
|
TegTok: Augmenting Text Generation via Task-specific and Open-world Knowledge
|
2203.08517
|
https://arxiv.org/abs/2203.08517v1
|
https://arxiv.org/pdf/2203.08517v1.pdf
|
https://github.com/lxchtan/tegtok
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/patch-fool-are-vision-transformers-always-1
|
Patch-Fool: Are Vision Transformers Always Robust Against Adversarial Perturbations?
|
2203.08392
|
https://arxiv.org/abs/2203.08392v3
|
https://arxiv.org/pdf/2203.08392v3.pdf
|
https://github.com/rice-eic/patch-fool
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/implicit-communication-as-minimum-entropy
|
Communicating via Markov Decision Processes
|
2107.08295
|
https://arxiv.org/abs/2107.08295v2
|
https://arxiv.org/pdf/2107.08295v2.pdf
|
https://github.com/schroederdewitt/meme
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/very-deep-convolutional-networks-for-large
|
Very Deep Convolutional Networks for Large-Scale Image Recognition
|
1409.1556
|
http://arxiv.org/abs/1409.1556v6
|
http://arxiv.org/pdf/1409.1556v6.pdf
|
https://github.com/mikekestemont/deepscript
| false | false | true |
none
|
https://paperswithcode.com/paper/bayesian-framework-for-gradient-leakage-1
|
Bayesian Framework for Gradient Leakage
|
2111.04706
|
https://arxiv.org/abs/2111.04706v2
|
https://arxiv.org/pdf/2111.04706v2.pdf
|
https://github.com/eth-sri/bayes-framework-leakage
| true | true | false |
jax
|
https://paperswithcode.com/paper/un-solving-morphological-inflection-lemma
|
(Un)solving Morphological Inflection: Lemma Overlap Artificially Inflates Models' Performance
|
2108.05682
|
https://arxiv.org/abs/2108.05682v2
|
https://arxiv.org/pdf/2108.05682v2.pdf
|
https://github.com/onlplab/lemmasplitting
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/spact-self-supervised-privacy-preservation
|
SPAct: Self-supervised Privacy Preservation for Action Recognition
|
2203.15205
|
https://arxiv.org/abs/2203.15205v1
|
https://arxiv.org/pdf/2203.15205v1.pdf
|
https://github.com/daveishan/spact
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/groupvit-semantic-segmentation-emerges-from
|
GroupViT: Semantic Segmentation Emerges from Text Supervision
|
2202.11094
|
https://arxiv.org/abs/2202.11094v5
|
https://arxiv.org/pdf/2202.11094v5.pdf
|
https://github.com/NVlabs/GroupViT
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/signing-at-scale-learning-to-co-articulate
|
Signing at Scale: Learning to Co-Articulate Signs for Large-Scale Photo-Realistic Sign Language Production
|
2203.15354
|
https://arxiv.org/abs/2203.15354v1
|
https://arxiv.org/pdf/2203.15354v1.pdf
|
https://github.com/bensaunders27/meinedgs-translation-protocols
| true | true | false |
none
|
https://paperswithcode.com/paper/modern-distributed-data-parallel-large-scale
|
Modern Distributed Data-Parallel Large-Scale Pre-training Strategies For NLP models
|
2206.06356
|
https://arxiv.org/abs/2206.06356v1
|
https://arxiv.org/pdf/2206.06356v1.pdf
|
https://github.com/biechi/distributedtraininggpt2
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/effective-seed-scheduling-for-fuzzing-with
|
Effective Seed Scheduling for Fuzzing with Graph Centrality Analysis
|
2203.12064
|
https://arxiv.org/abs/2203.12064v2
|
https://arxiv.org/pdf/2203.12064v2.pdf
|
https://github.com/dongdongshe/k-scheduler
| true | true | true |
none
|
https://paperswithcode.com/paper/deep-hyperspectral-unmixing-using-transformer
|
Deep Hyperspectral Unmixing using Transformer Network
|
2203.17076
|
https://arxiv.org/abs/2203.17076v1
|
https://arxiv.org/pdf/2203.17076v1.pdf
|
https://github.com/preetam22n/deeptrans-hsu
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/weakly-supervised-segmentation-using
|
Weakly-supervised segmentation using inherently-explainable classification models and their application to brain tumour classification
|
2206.05148
|
https://arxiv.org/abs/2206.05148v2
|
https://arxiv.org/pdf/2206.05148v2.pdf
|
https://github.com/soumickmj/GPModels
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/design-and-performance-evaluation-in-kiefer
|
Design and performance evaluation in Kiefer-Weiss problems when sampling from discrete exponential families
|
2203.13957
|
https://arxiv.org/abs/2203.13957v2
|
https://arxiv.org/pdf/2203.13957v2.pdf
|
https://github.com/tosinabase/Kiefer-Weiss
| true | true | true |
none
|
https://paperswithcode.com/paper/stancy-stance-classification-based-on
|
STANCY: Stance Classification Based on Consistency Cues
|
1910.06048
|
https://arxiv.org/abs/1910.06048v1
|
https://arxiv.org/pdf/1910.06048v1.pdf
|
https://github.com/kashpop/stancy
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/efficient-neural-neighborhood-search-for
|
Efficient Neural Neighborhood Search for Pickup and Delivery Problems
|
2204.11399
|
https://arxiv.org/abs/2204.11399v3
|
https://arxiv.org/pdf/2204.11399v3.pdf
|
https://github.com/yining043/PDP-N2S
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/improving-self-supervised-learning-based-mos
|
Improving Self-Supervised Learning-based MOS Prediction Networks
|
2204.11030
|
https://arxiv.org/abs/2204.11030v1
|
https://arxiv.org/pdf/2204.11030v1.pdf
|
https://github.com/BME-SmartLab/DeepMOS
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/mind-the-gap-domain-gap-control-for-single-1
|
Mind the Gap: Domain Gap Control for Single Shot Domain Adaptation for Generative Adversarial Networks
|
2110.08398
|
https://arxiv.org/abs/2110.08398v2
|
https://arxiv.org/pdf/2110.08398v2.pdf
|
https://github.com/ZPdesu/MindTheGap
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/laion-400m-open-dataset-of-clip-filtered-400
|
LAION-400M: Open Dataset of CLIP-Filtered 400 Million Image-Text Pairs
|
2111.02114
|
https://arxiv.org/abs/2111.02114v1
|
https://arxiv.org/pdf/2111.02114v1.pdf
|
https://github.com/compvis/latent-diffusion
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/opdmulti-openable-part-detection-for-multiple
|
OPDMulti: Openable Part Detection for Multiple Objects
|
2303.14087
|
https://arxiv.org/abs/2303.14087v1
|
https://arxiv.org/pdf/2303.14087v1.pdf
|
https://github.com/3dlg-hcvc/OPDMulti
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/torchmd-a-deep-learning-framework-for
|
TorchMD: A deep learning framework for molecular simulations
|
2012.12106
|
https://arxiv.org/abs/2012.12106v1
|
https://arxiv.org/pdf/2012.12106v1.pdf
|
https://github.com/skywalk163/INFINITY
| false | false | false |
paddle
|
https://paperswithcode.com/paper/graph-u-nets
|
Graph U-Nets
|
1905.05178
|
https://arxiv.org/abs/1905.05178v1
|
https://arxiv.org/pdf/1905.05178v1.pdf
|
https://github.com/HongyangGao/gunet
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/pos-bert-point-cloud-one-stage-bert-pre
|
POS-BERT: Point Cloud One-Stage BERT Pre-Training
|
2204.00989
|
https://arxiv.org/abs/2204.00989v1
|
https://arxiv.org/pdf/2204.00989v1.pdf
|
https://github.com/fukexue/pos-bert
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/online-convolutional-re-parameterization
|
Online Convolutional Re-parameterization
|
2204.00826
|
https://arxiv.org/abs/2204.00826v1
|
https://arxiv.org/pdf/2204.00826v1.pdf
|
https://github.com/jugghm/orepa_cvpr2022
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/video-k-net-a-simple-strong-and-unified
|
Video K-Net: A Simple, Strong, and Unified Baseline for Video Segmentation
|
2204.04656
|
https://arxiv.org/abs/2204.04656v2
|
https://arxiv.org/pdf/2204.04656v2.pdf
|
https://github.com/lxtgh/video-k-net
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/dispatchable-generation-of-a-novel-compressed
|
Dispatchable Generation of a Novel Compressed-Air Assisted Wind Turbine and its Operation Mechanism
| null |
https://ieeexplore.ieee.org/document/8543621
|
https://ieeexplore.ieee.org/document/8543621
|
https://github.com/AIRicky/Dispatchable-Wind-Turbine
| false | false | false |
none
|
https://paperswithcode.com/paper/hermite-type-modifications-of-bobyqa-for
|
Hermite-type modifications of BOBYQA for optimization with some partial derivatives
|
2204.05022
|
https://arxiv.org/abs/2204.05022v1
|
https://arxiv.org/pdf/2204.05022v1.pdf
|
https://github.com/temf/hermitelsb
| true | true | false |
none
|
https://paperswithcode.com/paper/glassmessaging-supporting-messaging-needs
|
GlassMessaging: Supporting Messaging Needs During Daily Activities Using OST-HMDs
|
2308.15753
|
https://arxiv.org/abs/2308.15753v1
|
https://arxiv.org/pdf/2308.15753v1.pdf
|
https://github.com/nus-hcilab/glassmessaging
| true | true | false |
none
|
https://paperswithcode.com/paper/global-convergence-of-multi-agent-policy
|
Global Convergence of Multi-Agent Policy Gradient in Markov Potential Games
|
2106.01969
|
https://arxiv.org/abs/2106.01969v3
|
https://arxiv.org/pdf/2106.01969v3.pdf
|
https://github.com/sundave1998/independent-npg-mpg
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/3dcrowdnet-2d-human-pose-guided3d-crowd-human
|
Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes
|
2104.07300
|
https://arxiv.org/abs/2104.07300v3
|
https://arxiv.org/pdf/2104.07300v3.pdf
|
https://github.com/hongsukchoi/3dcrowdnet_release
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/ranking-with-submodular-functions-on-a-budget
|
Ranking with submodular functions on a budget
|
2204.04168
|
https://arxiv.org/abs/2204.04168v1
|
https://arxiv.org/pdf/2204.04168v1.pdf
|
https://github.com/guangyi-zhang/max-submodular-ranking
| true | true | false |
none
|
https://paperswithcode.com/paper/contextual-representation-learning-beyond-1
|
Contextual Representation Learning beyond Masked Language Modeling
|
2204.04163
|
https://arxiv.org/abs/2204.04163v1
|
https://arxiv.org/pdf/2204.04163v1.pdf
|
https://github.com/fuzhiyi/taco
| true | true | false |
jax
|
https://paperswithcode.com/paper/autoint-automatic-feature-interaction
|
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
|
1810.11921
|
https://arxiv.org/abs/1810.11921v2
|
https://arxiv.org/pdf/1810.11921v2.pdf
|
https://github.com/PaddlePaddle/PaddleRec/tree/master/models/rank/autoint
| false | false | false |
paddle
|
https://paperswithcode.com/paper/sedimentation-of-a-surfactant-laden-drop-in-a
|
Sedimentation of a surfactant-laden drop in a liquid with particles
|
2204.04349
|
https://arxiv.org/abs/2204.04349v1
|
https://arxiv.org/pdf/2204.04349v1.pdf
|
https://github.com/zhongxiaoxu/computational_methods_interfacial_dynamics
| true | true | false |
none
|
https://paperswithcode.com/paper/learning-in-the-wild-towards-leveraging
|
Learning in the Wild: Towards Leveraging Unlabeled Data for Effectively Tuning Pre-trained Code Models
|
2401.01060
|
https://arxiv.org/abs/2401.01060v1
|
https://arxiv.org/pdf/2401.01060v1.pdf
|
https://github.com/shuzhenggao/hint
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/addressing-detection-limits-with
|
Addressing Detection Limits with Semiparametric Cumulative Probability Models
|
2207.02815
|
https://arxiv.org/abs/2207.02815v1
|
https://arxiv.org/pdf/2207.02815v1.pdf
|
https://github.com/yuqitian35/detectionlimitcode
| true | true | false |
none
|
https://paperswithcode.com/paper/lossless-point-cloud-geometry-and-attribute
|
Lossless Point Cloud Geometry and Attribute Compression Using a Learned Conditional Probability Model
|
2303.06519
|
https://arxiv.org/abs/2303.06519v2
|
https://arxiv.org/pdf/2303.06519v2.pdf
|
https://github.com/Weafre/CNeT
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/out-of-context-how-important-is-local-context
|
Out of Context: How important is Local Context in Neural Program Repair?
|
2312.04986
|
https://arxiv.org/abs/2312.04986v1
|
https://arxiv.org/pdf/2312.04986v1.pdf
|
https://github.com/giganticode/out_of_context_paper_data
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/puma-empowering-unified-mllm-with-multi
|
PUMA: Empowering Unified MLLM with Multi-granular Visual Generation
|
2410.13861
|
https://arxiv.org/abs/2410.13861v2
|
https://arxiv.org/pdf/2410.13861v2.pdf
|
https://github.com/rongyaofang/puma
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/qu-net-image-quality-detection-framework-for
|
QU-net++: Image Quality Detection Framework for Segmentation of Medical 3D Image Stacks
|
2110.14181
|
https://arxiv.org/abs/2110.14181v4
|
https://arxiv.org/pdf/2110.14181v4.pdf
|
https://github.com/sohiniroych/qu-net-plus-plus
| true | true | true |
tf
|
https://paperswithcode.com/paper/encoding-domain-knowledge-in-multi-view
|
Encoding Domain Knowledge in Multi-view Latent Variable Models: A Bayesian Approach with Structured Sparsity
|
2204.06242
|
https://arxiv.org/abs/2204.06242v2
|
https://arxiv.org/pdf/2204.06242v2.pdf
|
https://github.com/mlo-lab/muvi
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/privacy-preserving-collaborative-learning
|
Privacy-preserving Collaborative Learning with Automatic Transformation Search
|
2011.12505
|
https://arxiv.org/abs/2011.12505v2
|
https://arxiv.org/pdf/2011.12505v2.pdf
|
https://github.com/eth-sri/bayes-framework-leakage
| false | false | true |
jax
|
https://paperswithcode.com/paper/generalization-and-stabilization-of-exact
|
Generalization and stabilization of exact scattering solutions for spherical symmetric scatterers
|
2204.05761
|
https://arxiv.org/abs/2204.05761v2
|
https://arxiv.org/pdf/2204.05761v2.pdf
|
https://github.com/zetison/e3dss
| true | true | false |
none
|
https://paperswithcode.com/paper/on-variational-bounds-of-mutual-information
|
On Variational Bounds of Mutual Information
|
1905.06922
|
https://arxiv.org/abs/1905.06922v1
|
https://arxiv.org/pdf/1905.06922v1.pdf
|
https://github.com/karlstratos/doe
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/stochastic-optimal-well-control-in-subsurface
|
Stochastic optimal well control in subsurface reservoirs using reinforcement learning
|
2207.03456
|
https://arxiv.org/abs/2207.03456v2
|
https://arxiv.org/pdf/2207.03456v2.pdf
|
https://github.com/atishdixit16/rl_robust_owc
| true | true | false |
none
|
https://paperswithcode.com/paper/block-deep-neural-network-based-signal
|
Block Deep Neural Network-Based Signal Detector for Generalized Spatial Modulation
|
2008.03612
|
https://arxiv.org/abs/2008.03612v3
|
https://arxiv.org/pdf/2008.03612v3.pdf
|
https://github.com/burakozpoyraz/Block-DNN
| false | false | true |
none
|
https://paperswithcode.com/paper/em-fault-it-yourself-building-a-replicable
|
EM-Fault It Yourself: Building a Replicable EMFI Setup for Desktop and Server Hardware
|
2209.09835
|
https://arxiv.org/abs/2209.09835v1
|
https://arxiv.org/pdf/2209.09835v1.pdf
|
https://github.com/fgsect/em-fault-it-yourself
| true | true | false |
none
|
https://paperswithcode.com/paper/not-seen-not-heard-in-the-digital-world
|
Not Seen, Not Heard in the Digital World! Measuring Privacy Practices in Children's Apps
|
2303.09008
|
https://arxiv.org/abs/2303.09008v1
|
https://arxiv.org/pdf/2303.09008v1.pdf
|
https://github.com/children-privacy/children-privacy
| true | true | false |
none
|
https://paperswithcode.com/paper/model-robust-standardization-in-cluster
|
Model-robust standardization in cluster-randomized trials
|
2505.19336
|
https://arxiv.org/abs/2505.19336v1
|
https://arxiv.org/pdf/2505.19336v1.pdf
|
https://github.com/deckardt98/mrstdcrt
| true | true | false |
none
|
https://paperswithcode.com/paper/interior-point-methods-strike-back-solving
|
Interior-Point Methods Strike Back: Solving the Wasserstein Barycenter Problem
|
1905.12895
|
https://arxiv.org/abs/1905.12895v2
|
https://arxiv.org/pdf/1905.12895v2.pdf
|
https://gitlab.com/ZXiong/wasserstein-barycenter
| true | false | false |
none
|
https://paperswithcode.com/paper/the-challenge-of-diacritics-in-yoruba
|
The Challenge of Diacritics in Yoruba Embeddings
|
2011.07605
|
https://arxiv.org/abs/2011.07605v1
|
https://arxiv.org/pdf/2011.07605v1.pdf
|
https://github.com/tosingithub/ydesk
| true | true | false |
none
|
https://paperswithcode.com/paper/grasping-the-arrow-of-time-from-the
|
Grasping the Arrow of Time from the Singularity: Decoding Micromotion in Low-dimensional Latent Spaces from StyleGAN
|
2204.12696
|
https://arxiv.org/abs/2204.12696v1
|
https://arxiv.org/pdf/2204.12696v1.pdf
|
https://github.com/wuqiuche/micromotion-stylegan
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mobilestylegan-a-lightweight-convolutional
|
MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis
|
2104.04767
|
https://arxiv.org/abs/2104.04767v2
|
https://arxiv.org/pdf/2104.04767v2.pdf
|
https://github.com/Harrypotterrrr/MobileStyleGAN
| false | false | true |
tf
|
https://paperswithcode.com/paper/emergent-modularity-in-pre-trained
|
Emergent Modularity in Pre-trained Transformers
|
2305.18390
|
https://arxiv.org/abs/2305.18390v2
|
https://arxiv.org/pdf/2305.18390v2.pdf
|
https://github.com/thunlp/modularity-analysis
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/anytime-constrained-reinforcement-learning
|
Anytime-Constrained Reinforcement Learning
|
2311.05511
|
https://arxiv.org/abs/2311.05511v3
|
https://arxiv.org/pdf/2311.05511v3.pdf
|
https://github.com/jermcmahan/anytime-constraints
| true | true | false |
none
|
https://paperswithcode.com/paper/walking-in-the-shadow-a-new-perspective-on
|
Walking in the Shadow: A New Perspective on Descent Directions for Constrained Minimization
|
2006.08426
|
https://arxiv.org/abs/2006.08426v4
|
https://arxiv.org/pdf/2006.08426v4.pdf
|
https://github.com/hassanmortagy/Walking-in-the-Shadow
| true | true | false |
none
|
https://paperswithcode.com/paper/cloud-property-graph-connecting-cloud
|
Cloud Property Graph: Connecting Cloud Security Assessments with Static Code Analysis
|
2206.06938
|
https://arxiv.org/abs/2206.06938v1
|
https://arxiv.org/pdf/2206.06938v1.pdf
|
https://github.com/clouditor/cloud-property-graph
| true | true | false |
none
|
https://paperswithcode.com/paper/lsun-construction-of-a-large-scale-image
|
LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop
|
1506.03365
|
http://arxiv.org/abs/1506.03365v3
|
http://arxiv.org/pdf/1506.03365v3.pdf
|
https://github.com/monniert/unicorn
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/share-with-thy-neighbors-single-view
|
Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency
|
2204.10310
|
https://arxiv.org/abs/2204.10310v3
|
https://arxiv.org/pdf/2204.10310v3.pdf
|
https://github.com/monniert/unicorn
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/neural-3d-mesh-renderer
|
Neural 3D Mesh Renderer
|
1711.07566
|
http://arxiv.org/abs/1711.07566v1
|
http://arxiv.org/pdf/1711.07566v1.pdf
|
https://github.com/monniert/unicorn
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/shapenet-an-information-rich-3d-model
|
ShapeNet: An Information-Rich 3D Model Repository
|
1512.03012
|
http://arxiv.org/abs/1512.03012v1
|
http://arxiv.org/pdf/1512.03012v1.pdf
|
https://github.com/monniert/unicorn
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/university-1652-a-multi-view-multi-source
|
University-1652: A Multi-view Multi-source Benchmark for Drone-based Geo-localization
|
2002.12186
|
https://arxiv.org/abs/2002.12186v2
|
https://arxiv.org/pdf/2002.12186v2.pdf
|
https://github.com/wtyhub/LPN
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/spiking-graph-convolutional-networks-1
|
Spiking Graph Convolutional Networks
|
2205.02767
|
https://arxiv.org/abs/2205.02767v2
|
https://arxiv.org/pdf/2205.02767v2.pdf
|
https://github.com/zulunzhu/spikinggcn
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/alignahead-online-cross-layer-knowledge
|
Alignahead: Online Cross-Layer Knowledge Extraction on Graph Neural Networks
|
2205.02468
|
https://arxiv.org/abs/2205.02468v1
|
https://arxiv.org/pdf/2205.02468v1.pdf
|
https://github.com/guojy-eatstg/alignahead
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/airindex-versatile-index-tuning-through-data
|
AirIndex: Versatile Index Tuning Through Data and Storage
|
2306.14395
|
https://arxiv.org/abs/2306.14395v3
|
https://arxiv.org/pdf/2306.14395v3.pdf
|
https://github.com/illinoisdata/alex_ext
| true | true | false |
none
|
https://paperswithcode.com/paper/second-order-sensitivity-analysis-for-bilevel
|
Second-Order Sensitivity Analysis for Bilevel Optimization
|
2205.02329
|
https://arxiv.org/abs/2205.02329v1
|
https://arxiv.org/pdf/2205.02329v1.pdf
|
https://github.com/stanfordasl/sensitivity_jax
| true | true | false |
jax
|
https://paperswithcode.com/paper/cross-view-transformers-for-real-time-map
|
Cross-view Transformers for real-time Map-view Semantic Segmentation
|
2205.02833
|
https://arxiv.org/abs/2205.02833v1
|
https://arxiv.org/pdf/2205.02833v1.pdf
|
https://github.com/bradyz/cross_view_transformers
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/fusing-context-into-knowledge-graph-for
|
Fusing Context Into Knowledge Graph for Commonsense Question Answering
|
2012.04808
|
https://arxiv.org/abs/2012.04808v3
|
https://arxiv.org/pdf/2012.04808v3.pdf
|
https://github.com/microsoft/kear
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/stylealign-analysis-and-applications-of-1
|
StyleAlign: Analysis and Applications of Aligned StyleGAN Models
|
2110.11323
|
https://arxiv.org/abs/2110.11323v2
|
https://arxiv.org/pdf/2110.11323v2.pdf
|
https://github.com/betterze/StyleAlign
| true | true | true |
tf
|
https://paperswithcode.com/paper/bort-back-and-denoising-reconstruction-for-1
|
BORT: Back and Denoising Reconstruction for End-to-End Task-Oriented Dialog
|
2205.02471
|
https://arxiv.org/abs/2205.02471v1
|
https://arxiv.org/pdf/2205.02471v1.pdf
|
https://github.com/jd-ai-research-nlp/bort
| true | true | false |
none
|
https://paperswithcode.com/paper/atp-amrize-then-parse-enhancing-amr-parsing
|
ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs
|
2204.08875
|
https://arxiv.org/abs/2204.08875v2
|
https://arxiv.org/pdf/2204.08875v2.pdf
|
https://github.com/chenllliang/atp
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mfgnet-dynamic-modality-aware-filter
|
MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking
|
2107.10433
|
https://arxiv.org/abs/2107.10433v2
|
https://arxiv.org/pdf/2107.10433v2.pdf
|
https://github.com/wangxiao5791509/MFG_RGBT_Tracking_PyTorch
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/when-a-sentence-does-not-introduce-a-1
|
When a sentence does not introduce a discourse entity, Transformer-based models still sometimes refer to it
|
2205.03472
|
https://arxiv.org/abs/2205.03472v1
|
https://arxiv.org/pdf/2205.03472v1.pdf
|
https://github.com/sebschu/discourse-entity-lm
| true | true | true |
none
|
https://paperswithcode.com/paper/maximizing-the-information-learned-from
|
Maximizing the information learned from finite data selects a simple model
|
1705.01166
|
http://arxiv.org/abs/1705.01166v3
|
http://arxiv.org/pdf/1705.01166v3.pdf
|
https://github.com/mcabbott/atomicpriors.jl
| false | false | true |
none
|
https://paperswithcode.com/paper/an-information-scaling-law-34
|
An information scaling law: ζ= 3/4
|
1710.09351
|
http://arxiv.org/abs/1710.09351v1
|
http://arxiv.org/pdf/1710.09351v1.pdf
|
https://github.com/mcabbott/atomicpriors.jl
| false | false | true |
none
|
https://paperswithcode.com/paper/information-geometry-for-multiparameter
|
Information geometry for multiparameter models: New perspectives on the origin of simplicity
|
2111.07176
|
https://arxiv.org/abs/2111.07176v2
|
https://arxiv.org/pdf/2111.07176v2.pdf
|
https://github.com/mcabbott/atomicpriors.jl
| false | false | true |
none
|
https://paperswithcode.com/paper/simple-pose-rethinking-and-improving-a-bottom
|
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation
|
1911.10529
|
https://arxiv.org/abs/1911.10529v1
|
https://arxiv.org/pdf/1911.10529v1.pdf
|
https://github.com/hellojialee/Improved-Body-Parts
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/hcsc-hierarchical-contrastive-selective
|
HCSC: Hierarchical Contrastive Selective Coding
|
2202.00455
|
https://arxiv.org/abs/2202.00455v4
|
https://arxiv.org/pdf/2202.00455v4.pdf
|
https://github.com/gyfastas/hcsc
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/spike-based-computational-models-of-bio
|
Spike-based computational models of bio-inspired memories in the hippocampal CA3 region on SpiNNaker
|
2205.04782
|
https://arxiv.org/abs/2205.04782v1
|
https://arxiv.org/pdf/2205.04782v1.pdf
|
https://github.com/dancasmor/spike-based-computational-models-of-bio-inspired-memories-in-the-hippocampal-ca3-region-in-spinnaker
| true | true | false |
none
|
https://paperswithcode.com/paper/easymlserve-easy-deployment-of-rest-machine
|
EasyMLServe: Easy Deployment of REST Machine Learning Services
|
2211.14417
|
https://arxiv.org/abs/2211.14417v1
|
https://arxiv.org/pdf/2211.14417v1.pdf
|
https://github.com/KIT-IAI/EasyMLServe
| true | false | true |
none
|
https://paperswithcode.com/paper/pyrcn-exploration-and-application-of-esns
|
PyRCN: A Toolbox for Exploration and Application of Reservoir Computing Networks
|
2103.04807
|
https://arxiv.org/abs/2103.04807v3
|
https://arxiv.org/pdf/2103.04807v3.pdf
|
https://github.com/tud-stks/pyrcn-benchmark
| true | true | true |
none
|
https://paperswithcode.com/paper/spatial-mixture-of-experts
|
Spatial Mixture-of-Experts
|
2211.13491
|
https://arxiv.org/abs/2211.13491v1
|
https://arxiv.org/pdf/2211.13491v1.pdf
|
https://github.com/spcl/smoe
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-to-recover-orientations-from
|
Learning to recover orientations from projections in single-particle cryo-EM
|
2104.06237
|
https://arxiv.org/abs/2104.06237v1
|
https://arxiv.org/pdf/2104.06237v1.pdf
|
https://github.com/mdeff/paper-cryoem-orientation-recovery
| false | false | true |
none
|
https://paperswithcode.com/paper/introducing-causal-inference-in-the-energy
|
Introducing causal inference in the energy-efficient building design process
|
2203.10115
|
https://arxiv.org/abs/2203.10115v3
|
https://arxiv.org/pdf/2203.10115v3.pdf
|
https://github.com/chenxiachan/Causal-inference-in-building-design
| true | false | true |
none
|
https://paperswithcode.com/paper/calpric-inclusive-and-fine-grain-labeling-of
|
Calpric: Inclusive and Fine-grain Labeling of Privacy Policies with Crowdsourcing and Active Learning
|
2401.08038
|
https://arxiv.org/abs/2401.08038v1
|
https://arxiv.org/pdf/2401.08038v1.pdf
|
https://github.com/dlgroupuoft/calpric
| true | true | false |
tf
|
https://paperswithcode.com/paper/interpretable-computer-vision-models-through
|
Interpretable Computer Vision Models through Adversarial Training: Unveiling the Robustness-Interpretability Connection
|
2307.02500
|
https://arxiv.org/abs/2307.02500v2
|
https://arxiv.org/pdf/2307.02500v2.pdf
|
https://github.com/delyan-boychev/pytorch_trainers_interpretability
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/boundary-aware-network-for-kidney-parsing
|
Boundary-Aware Network for Kidney Parsing
|
2208.13338
|
https://arxiv.org/abs/2208.13338v1
|
https://arxiv.org/pdf/2208.13338v1.pdf
|
https://github.com/ShishuaiHu/BA-Net
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/boundary-aware-network-for-abdominal-multi
|
Boundary-Aware Network for Abdominal Multi-Organ Segmentation
|
2208.13774
|
https://arxiv.org/abs/2208.13774v1
|
https://arxiv.org/pdf/2208.13774v1.pdf
|
https://github.com/ShishuaiHu/BA-Net
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/perturbation-augmentation-for-fairer-nlp
|
Perturbation Augmentation for Fairer NLP
|
2205.12586
|
https://arxiv.org/abs/2205.12586v2
|
https://arxiv.org/pdf/2205.12586v2.pdf
|
https://github.com/facebookresearch/responsiblenlp
| true | true | false |
none
|
https://paperswithcode.com/paper/rellis-3d-dataset-data-benchmarks-and
|
RELLIS-3D Dataset: Data, Benchmarks and Analysis
|
2011.12954
|
https://arxiv.org/abs/2011.12954v4
|
https://arxiv.org/pdf/2011.12954v4.pdf
|
https://github.com/unmannedlab/RELLIS-3D
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/quasi-oracle-estimation-of-heterogeneous
|
Quasi-Oracle Estimation of Heterogeneous Treatment Effects
|
1712.04912
|
https://arxiv.org/abs/1712.04912v4
|
https://arxiv.org/pdf/1712.04912v4.pdf
|
https://github.com/uber/causalml/blob/master/causalml/inference/meta/rlearner.py
| false | false | false |
none
|
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
|
U-Net: Convolutional Networks for Biomedical Image Segmentation
|
1505.04597
|
http://arxiv.org/abs/1505.04597v1
|
http://arxiv.org/pdf/1505.04597v1.pdf
|
https://github.com/ashishpapanai/uNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/modlanets-learning-generalisable-dynamics-via
|
ModLaNets: Learning Generalisable Dynamics via Modularity and Physical Inductive Bias
|
2206.12325
|
https://arxiv.org/abs/2206.12325v3
|
https://arxiv.org/pdf/2206.12325v3.pdf
|
https://github.com/YupuLu/ModLaNets
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/mimii-dg-sound-dataset-for-malfunctioning
|
MIMII DG: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection for Domain Generalization Task
|
2205.13879
|
https://arxiv.org/abs/2205.13879v2
|
https://arxiv.org/pdf/2205.13879v2.pdf
|
https://github.com/kota-dohi/dcase2022_task2_baseline_mobile_net_v2
| true | true | true |
tf
|
https://paperswithcode.com/paper/general-robot-dynamics-learning-and-gen2real
|
General Robot Dynamics Learning and Gen2Real
|
2104.02402
|
https://arxiv.org/abs/2104.02402v1
|
https://arxiv.org/pdf/2104.02402v1.pdf
|
https://github.com/sachiel321/General-Robot-Dynamics
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/improving-item-cold-start-recommendation-via
|
Improving Item Cold-start Recommendation via Model-agnostic Conditional Variational Autoencoder
|
2205.13795
|
https://arxiv.org/abs/2205.13795v1
|
https://arxiv.org/pdf/2205.13795v1.pdf
|
https://github.com/bestactionnow/cvar
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/feyngame-2-1-feynman-diagrams-made-easy
|
FeynGame-2.1 -- Feynman diagrams made easy
|
2401.12778
|
https://arxiv.org/abs/2401.12778v1
|
https://arxiv.org/pdf/2401.12778v1.pdf
|
https://gitlab.com/feyngame/FeynGame
| true | true | true |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.