paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/a-meta-analytic-framework-to-adjust-for-bias
|
A meta-analytic framework to adjust for bias in external control studies
|
2110.03827
|
https://arxiv.org/abs/2110.03827v1
|
https://arxiv.org/pdf/2110.03827v1.pdf
|
https://github.com/phcanalytics/ecmeta
| true | true | false |
none
|
https://paperswithcode.com/paper/efficient-context-aware-network-for-abdominal
|
Efficient Context-Aware Network for Abdominal Multi-organ Segmentation
|
2109.10601
|
https://arxiv.org/abs/2109.10601v4
|
https://arxiv.org/pdf/2109.10601v4.pdf
|
https://github.com/shanghai-aitrox-technology/efficientsegmentation
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deepwave-a-recurrent-neural-network-for-real
|
DeepWave: A Recurrent Neural-Network for Real-Time Acoustic Imaging
| null |
http://papers.nips.cc/paper/9665-deepwave-a-recurrent-neural-network-for-real-time-acoustic-imaging
|
http://papers.nips.cc/paper/9665-deepwave-a-recurrent-neural-network-for-real-time-acoustic-imaging.pdf
|
https://github.com/adrianSRoman/DeepWaveTorch
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/icnet-for-real-time-semantic-segmentation-on
|
ICNet for Real-Time Semantic Segmentation on High-Resolution Images
|
1704.08545
|
http://arxiv.org/abs/1704.08545v2
|
http://arxiv.org/pdf/1704.08545v2.pdf
|
https://github.com/pooruss/ICNet-Paddle2.2.0rc
| false | false | true |
paddle
|
https://paperswithcode.com/paper/training-full-spike-neural-networks-via
|
Training Full Spike Neural Networks via Auxiliary Accumulation Pathway
|
2301.11929
|
https://arxiv.org/abs/2301.11929v1
|
https://arxiv.org/pdf/2301.11929v1.pdf
|
https://github.com/iCGY96/syops-counter
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/2d-multi-class-model-for-gray-and-white
|
2D Multi-Class Model for Gray and White Matter Segmentation of the Cervical Spinal Cord at 7T
|
2110.06516
|
https://arxiv.org/abs/2110.06516v1
|
https://arxiv.org/pdf/2110.06516v1.pdf
|
https://github.com/ivadomed/model_seg_gm-wm_t2star_7t_unet3d-multiclass
| true | true | true |
none
|
https://paperswithcode.com/paper/the-amazing-mysteries-of-the-gutter-drawing
|
The Amazing Mysteries of the Gutter: Drawing Inferences Between Panels in Comic Book Narratives
|
1611.05118
|
http://arxiv.org/abs/1611.05118v2
|
http://arxiv.org/pdf/1611.05118v2.pdf
|
https://github.com/gsoykan/comics_text_plus
| false | false | true |
none
|
https://paperswithcode.com/paper/sim-to-real-transfer-for-robotic-manipulation
|
Sim-to-Real Transfer for Robotic Manipulation with Tactile Sensory
|
2103.00410
|
https://arxiv.org/abs/2103.00410v2
|
https://arxiv.org/pdf/2103.00410v2.pdf
|
https://github.com/quantumiracle/Robotic_Door_Opening_with_Tactile_Simulation
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/calibrated-optimal-decision-making-with
|
Calibrated Optimal Decision Making with Multiple Data Sources and Limited Outcome
|
2104.10554
|
https://arxiv.org/abs/2104.10554v5
|
https://arxiv.org/pdf/2104.10554v5.pdf
|
https://github.com/hengruicai/coda
| true | true | true |
none
|
https://paperswithcode.com/paper/averaging-weights-leads-to-wider-optima-and
|
Averaging Weights Leads to Wider Optima and Better Generalization
|
1803.05407
|
http://arxiv.org/abs/1803.05407v3
|
http://arxiv.org/pdf/1803.05407v3.pdf
|
https://github.com/zlwangustc/SWA_paddle
| false | false | true |
paddle
|
https://paperswithcode.com/paper/a-comprehensive-gold-standard-and-benchmark
|
A Comprehensive Gold Standard and Benchmark for Comics Text Detection and Recognition
|
2212.14674
|
https://arxiv.org/abs/2212.14674v1
|
https://arxiv.org/pdf/2212.14674v1.pdf
|
https://github.com/gsoykan/comics_text_plus
| true | true | true |
none
|
https://paperswithcode.com/paper/selecting-stickers-in-open-domain-dialogue-1
|
Selecting Stickers in Open-Domain Dialogue through Multitask Learning
|
2209.07697
|
https://arxiv.org/abs/2209.07697v1
|
https://arxiv.org/pdf/2209.07697v1.pdf
|
https://github.com/nonstopfor/sticker-selection
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-physics-guided-neural-operator-learning
|
A Physics-Guided Neural Operator Learning Approach to Model Biological Tissues from Digital Image Correlation Measurements
|
2204.00205
|
https://arxiv.org/abs/2204.00205v1
|
https://arxiv.org/pdf/2204.00205v1.pdf
|
https://github.com/fishmoon1234/ifno-tissue
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-deep-implicit-fourier-neural
|
Learning Deep Implicit Fourier Neural Operators (IFNOs) with Applications to Heterogeneous Material Modeling
|
2203.08205
|
https://arxiv.org/abs/2203.08205v1
|
https://arxiv.org/pdf/2203.08205v1.pdf
|
https://github.com/fishmoon1234/ifno-tissue
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/gradient-map-assisted-head-and-neck-tumor
|
Gradient Map-Assisted Head and Neck Tumor Segmentation: A Pre-RT to Mid-RT Approach in MRI-Guided Radiotherapy
|
2410.12941
|
https://arxiv.org/abs/2410.12941v1
|
https://arxiv.org/pdf/2410.12941v1.pdf
|
https://github.com/aarhus-radonc-ai/gradientseghnts
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/simulation-based-inference-of-surface
|
Simulation-Based Inference of Surface Accumulation and Basal Melt Rates of an Antarctic Ice Shelf from Isochronal Layers
|
2312.02997
|
https://arxiv.org/abs/2312.02997v1
|
https://arxiv.org/pdf/2312.02997v1.pdf
|
https://github.com/mackelab/sbi-ice
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/tr-misr-multiimage-super-resolution-based-on
|
TR-MISR: Multiimage Super-Resolution Based on Feature Fusion With Transformers
| null |
https://ieeexplore.ieee.org/abstract/document/9684717
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9684717
|
https://github.com/Suanmd/TR-MISR
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/mixed-supervised-object-detection-by
|
Mixed Supervised Object Detection by Transferring Mask Prior and Semantic Similarity
|
2110.14191
|
https://arxiv.org/abs/2110.14191v1
|
https://arxiv.org/pdf/2110.14191v1.pdf
|
https://github.com/bcmi/tramas-weak-shot-object-detection
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/ember-an-open-dataset-for-training-static-pe
|
EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models
|
1804.04637
|
http://arxiv.org/abs/1804.04637v2
|
http://arxiv.org/pdf/1804.04637v2.pdf
|
https://github.com/pralab/toucanstrike
| false | false | true |
none
|
https://paperswithcode.com/paper/activation-analysis-of-a-byte-based-deep
|
Activation Analysis of a Byte-Based Deep Neural Network for Malware Classification
|
1903.04717
|
http://arxiv.org/abs/1903.04717v2
|
http://arxiv.org/pdf/1903.04717v2.pdf
|
https://github.com/pralab/toucanstrike
| false | false | true |
none
|
https://paperswithcode.com/paper/strong-constraints-on-decay-and-annihilation
|
Strong constraints on decay and annihilation of dark matter from heating of gas-rich dwarf galaxies
|
2111.08025
|
https://arxiv.org/abs/2111.08025v2
|
https://arxiv.org/pdf/2111.08025v2.pdf
|
https://github.com/JayWadekar/Gas_rich_dwarfs
| true | true | false |
none
|
https://paperswithcode.com/paper/walking-fingerprinting
|
Walking fingerprinting
|
2309.09897
|
https://arxiv.org/abs/2309.09897v1
|
https://arxiv.org/pdf/2309.09897v1.pdf
|
https://github.com/lilykoff/ml_walking_fingerprint
| true | true | false |
none
|
https://paperswithcode.com/paper/router-tuning-a-simple-and-effective-approach
|
Router-Tuning: A Simple and Effective Approach for Enabling Dynamic-Depth in Transformers
|
2410.13184
|
https://arxiv.org/abs/2410.13184v2
|
https://arxiv.org/pdf/2410.13184v2.pdf
|
https://github.com/case-lab-umd/router-tuning
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/ground-encoding-learned-factor-graph-based
|
Ground Encoding: Learned Factor Graph-based Models for Localizing Ground Penetrating Radar
|
2103.15317
|
https://arxiv.org/abs/2103.15317v1
|
https://arxiv.org/pdf/2103.15317v1.pdf
|
https://github.com/rpl-cmu/CMU-GPR-Dataset
| false | false | true |
none
|
https://paperswithcode.com/paper/axion-echos-from-the-supernova-graveyard
|
Axion Echos from the Supernova Graveyard
|
2110.13916
|
https://arxiv.org/abs/2110.13916v3
|
https://arxiv.org/pdf/2110.13916v3.pdf
|
https://github.com/ManuelBuenAbad/snr_ghosts
| true | true | true |
none
|
https://paperswithcode.com/paper/exploring-social-choice-mechanisms-for
|
Exploring Social Choice Mechanisms for Recommendation Fairness in SCRUF
|
2309.08621
|
https://arxiv.org/abs/2309.08621v2
|
https://arxiv.org/pdf/2309.08621v2.pdf
|
https://github.com/that-recsys-lab/scruf_facctrec_2023
| true | true | false |
none
|
https://paperswithcode.com/paper/a-unified-framework-for-slot-based-response
|
A Unified Framework for Slot based Response Generation in a Multimodal Dialogue System
|
2305.17433
|
https://arxiv.org/abs/2305.17433v1
|
https://arxiv.org/pdf/2305.17433v1.pdf
|
https://github.com/avinashsai/slot-gpt
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/optimal-weighted-convolution-for
|
Optimal Weighted Convolution for Classification and Denosing
|
2505.24558
|
https://arxiv.org/abs/2505.24558v1
|
https://arxiv.org/pdf/2505.24558v1.pdf
|
https://github.com/cammarasana123/weightedconvolution2.0
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/infrared-small-target-detection-using-multi
|
Local Patch Network with Global Attention for Infrared Small Target Detection
|
2108.06054
|
https://arxiv.org/abs/2108.06054v3
|
https://arxiv.org/pdf/2108.06054v3.pdf
|
https://github.com/cquptimg/Local-Patch-Network-with-Global-Attention
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/vd-pcr-improving-visual-dialog-with-pronoun
|
VD-PCR: Improving Visual Dialog with Pronoun Coreference Resolution
|
2205.14693
|
https://arxiv.org/abs/2205.14693v1
|
https://arxiv.org/pdf/2205.14693v1.pdf
|
https://github.com/hkust-knowcomp/vd-pcr
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/equivariant-representations-for-non-free
|
Equivariant Representation Learning in the Presence of Stabilizers
|
2301.05231
|
https://arxiv.org/abs/2301.05231v2
|
https://arxiv.org/pdf/2301.05231v2.pdf
|
https://github.com/luis-armando-perez-rey/non-free
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/on-the-robustness-of-interpretability-methods
|
On the Robustness of Interpretability Methods
|
1806.08049
|
http://arxiv.org/abs/1806.08049v1
|
http://arxiv.org/pdf/1806.08049v1.pdf
|
https://github.com/viggotw/Robustness-of-Interpretability-Methods/blob/main/README.md
| false | false | false |
none
|
https://paperswithcode.com/paper/unifiedqa-crossing-format-boundaries-with-a
|
UnifiedQA: Crossing Format Boundaries With a Single QA System
|
2005.00700
|
https://arxiv.org/abs/2005.00700v3
|
https://arxiv.org/pdf/2005.00700v3.pdf
|
https://github.com/facebookresearch/metaicl
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/multitask-prompted-training-enables-zero-shot-1
|
Multitask Prompted Training Enables Zero-Shot Task Generalization
|
2110.08207
|
https://arxiv.org/abs/2110.08207v3
|
https://arxiv.org/pdf/2110.08207v3.pdf
|
https://github.com/facebookresearch/metaicl
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/crossfit-a-few-shot-learning-challenge-for
|
CrossFit: A Few-shot Learning Challenge for Cross-task Generalization in NLP
|
2104.08835
|
https://arxiv.org/abs/2104.08835v2
|
https://arxiv.org/pdf/2104.08835v2.pdf
|
https://github.com/facebookresearch/metaicl
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/metaicl-learning-to-learn-in-context
|
MetaICL: Learning to Learn In Context
|
2110.15943
|
https://arxiv.org/abs/2110.15943v2
|
https://arxiv.org/pdf/2110.15943v2.pdf
|
https://github.com/facebookresearch/metaicl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mau-a-motion-aware-unit-for-video-prediction
|
MAU: A Motion-Aware Unit for Video Prediction and Beyond
| null |
http://proceedings.neurips.cc/paper/2021/hash/e25cfa90f04351958216f97e3efdabe9-Abstract.html
|
http://proceedings.neurips.cc/paper/2021/file/e25cfa90f04351958216f97e3efdabe9-Paper.pdf
|
https://github.com/ZhengChang467/MAU
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/vector-valued-distance-and-gyrocalculus-on
|
Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices
|
2110.13475
|
https://arxiv.org/abs/2110.13475v1
|
https://arxiv.org/pdf/2110.13475v1.pdf
|
https://github.com/fedelopez77/gyrospd
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/counterfactual-explanations-without-opening
|
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
|
1711.00399
|
http://arxiv.org/abs/1711.00399v3
|
http://arxiv.org/pdf/1711.00399v3.pdf
|
https://github.com/interpretml/DiCE
| false | false | true |
tf
|
https://paperswithcode.com/paper/iitkgp-at-w-nut-2020-shared-task-1-domain
|
IITKGP at W-NUT 2020 Shared Task-1: Domain specific BERT representation for Named Entity Recognition of lab protocol
| null |
https://aclanthology.org/2020.wnut-1.34
|
https://aclanthology.org/2020.wnut-1.34.pdf
|
https://github.com/tejasvaidhyadev/NER_Lab_Protocols
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/chunking-historical-german
|
Chunking Historical German
| null |
https://aclanthology.org/2021.nodalida-main.19
|
https://aclanthology.org/2021.nodalida-main.19.pdf
|
https://github.com/rubcompling/nodalida2021
| true | true | false |
none
|
https://paperswithcode.com/paper/weighted-siamese-network-to-predict-the-time
|
Interpretable Weighted Siamese Network to Predict the Time to Onset of Alzheimer's Disease from MRI Images
|
2304.07097
|
https://arxiv.org/abs/2304.07097v2
|
https://arxiv.org/pdf/2304.07097v2.pdf
|
https://github.com/msgun/weightedsiamese
| true | true | false |
tf
|
https://paperswithcode.com/paper/modelling-behavioural-diversity-for-learning
|
Modelling Behavioural Diversity for Learning in Open-Ended Games
|
2103.07927
|
https://arxiv.org/abs/2103.07927v2
|
https://arxiv.org/pdf/2103.07927v2.pdf
|
https://github.com/oslumbers/diverse-psro
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/an-empirically-grounded-expansion-of-the
|
An empirically grounded expansion of the supersense inventory
| null |
https://aclanthology.org/2016.gwc-1.30
|
https://aclanthology.org/2016.gwc-1.30.pdf
|
https://github.com/coastalcph/semdax
| true | true | false |
none
|
https://paperswithcode.com/paper/adversarial-attacks-on-voter-model-dynamics
|
Adversarial attacks on voter model dynamics in complex networks
|
2111.09561
|
https://arxiv.org/abs/2111.09561v2
|
https://arxiv.org/pdf/2111.09561v2.pdf
|
https://github.com/kztakemoto/advvoter
| true | true | true |
none
|
https://paperswithcode.com/paper/learning-to-recognize-musical-genre-from
|
Learning to Recognize Musical Genre from Audio
|
1803.05337
|
http://arxiv.org/abs/1803.05337v1
|
http://arxiv.org/pdf/1803.05337v1.pdf
|
https://github.com/raonsol/deep-pitcher
| false | false | true |
none
|
https://paperswithcode.com/paper/systematic-errors-in-diffusion-coefficients
|
Systematic errors in diffusion coefficients from long-time molecular dynamics simulations at constant pressure
|
2003.09205
|
https://arxiv.org/abs/2003.09205v2
|
https://arxiv.org/pdf/2003.09205v2.pdf
|
https://github.com/kulkem/qwrap
| false | false | true |
none
|
https://paperswithcode.com/paper/sportssum2-0-generating-high-quality-sports
|
SportsSum2.0: Generating High-Quality Sports News from Live Text Commentary
|
2110.05750
|
https://arxiv.org/abs/2110.05750v1
|
https://arxiv.org/pdf/2110.05750v1.pdf
|
https://github.com/krystalan/sportssum2.0
| true | true | true |
none
|
https://paperswithcode.com/paper/investigating-pretrained-language-models-for
|
Investigating Pretrained Language Models for Graph-to-Text Generation
|
2007.08426
|
https://arxiv.org/abs/2007.08426v3
|
https://arxiv.org/pdf/2007.08426v3.pdf
|
https://github.com/bjascob/amrlib
| false | false | true |
none
|
https://paperswithcode.com/paper/maskgit-masked-generative-image-transformer
|
MaskGIT: Masked Generative Image Transformer
|
2202.04200
|
https://arxiv.org/abs/2202.04200v1
|
https://arxiv.org/pdf/2202.04200v1.pdf
|
https://github.com/google-research/maskgit
| true | false | true |
jax
|
https://paperswithcode.com/paper/ernie-enhanced-representation-through
|
ERNIE: Enhanced Representation through Knowledge Integration
|
1904.09223
|
http://arxiv.org/abs/1904.09223v1
|
http://arxiv.org/pdf/1904.09223v1.pdf
|
https://github.com/lvyufeng/ERNIE_mindspore
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/isp-multi-layered-garment-draping-with-1
|
ISP: Multi-Layered Garment Draping with Implicit Sewing Patterns
|
2305.14100
|
https://arxiv.org/abs/2305.14100v2
|
https://arxiv.org/pdf/2305.14100v2.pdf
|
https://github.com/liren2515/isp
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/gici-lib-a-gnss-ins-camera-integrated
|
GICI-LIB: A GNSS/INS/Camera Integrated Navigation Library
|
2306.13268
|
https://arxiv.org/abs/2306.13268v2
|
https://arxiv.org/pdf/2306.13268v2.pdf
|
https://github.com/chichengcn/gici-open
| true | true | false |
none
|
https://paperswithcode.com/paper/weakly-supervised-gaze-estimation-from
|
3DGazeNet: Generalizing Gaze Estimation with Weak-Supervision from Synthetic Views
|
2212.02997
|
https://arxiv.org/abs/2212.02997v3
|
https://arxiv.org/pdf/2212.02997v3.pdf
|
https://github.com/vagver/3dgazenet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/boosting-cattle-face-recognition-under
|
Boosting cattle face recognition under uncontrolled scenes by embedding enhancement and optimization
| null |
https://doi.org/10.1016/j.asoc.2024.111951
|
https://doi.org/10.1016/j.asoc.2024.111951
|
https://github.com/XingshiXu/CAAID
| false | false | false |
none
|
https://paperswithcode.com/paper/tydip-a-dataset-for-politeness-classification
|
TyDiP: A Dataset for Politeness Classification in Nine Typologically Diverse Languages
|
2211.16496
|
https://arxiv.org/abs/2211.16496v1
|
https://arxiv.org/pdf/2211.16496v1.pdf
|
https://github.com/genius1237/tydip
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/size-and-shape-space-gaussian-mixture-models
|
Size-and-Shape Space Gaussian Mixture Models for Structural Clustering of Molecular Dynamics Trajectories
|
2112.11424
|
https://arxiv.org/abs/2112.11424v2
|
https://arxiv.org/pdf/2112.11424v2.pdf
|
https://github.com/mccullaghlab/gmm-positions
| true | true | true |
none
|
https://paperswithcode.com/paper/listing-maximal-k-plexes-in-large-real-world
|
Listing Maximal k-Plexes in Large Real-World Graphs
|
2202.08737
|
https://arxiv.org/abs/2202.08737v2
|
https://arxiv.org/pdf/2202.08737v2.pdf
|
https://github.com/joey001/ListPlex
| true | true | false |
none
|
https://paperswithcode.com/paper/an-error-state-model-predictive-control-on
|
An Error-State Model Predictive Control on Connected Matrix Lie Groups for Legged Robot Control
|
2203.08728
|
https://arxiv.org/abs/2203.08728v2
|
https://arxiv.org/pdf/2203.08728v2.pdf
|
https://github.com/umich-curly/error-state-mpc
| true | true | false |
none
|
https://paperswithcode.com/paper/control-oriented-modeling-of-bend-propagation
|
Control-oriented Modeling of Bend Propagation in an Octopus Arm
|
2110.07211
|
https://arxiv.org/abs/2110.07211v1
|
https://arxiv.org/pdf/2110.07211v1.pdf
|
https://github.com/GazzolaLab/PyElastica
| false | false | true |
none
|
https://paperswithcode.com/paper/surrogate-losses-for-online-learning-of
|
Surrogate Losses for Online Learning of Stepsizes in Stochastic Non-Convex Optimization
|
1901.09068
|
https://arxiv.org/abs/1901.09068v2
|
https://arxiv.org/pdf/1901.09068v2.pdf
|
https://github.com/duanzhiihao/PyTorch_OLoptim
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/momentum-based-variance-reduction-in-non
|
Momentum-Based Variance Reduction in Non-Convex SGD
|
1905.10018
|
https://arxiv.org/abs/1905.10018v3
|
https://arxiv.org/pdf/1905.10018v3.pdf
|
https://github.com/duanzhiihao/PyTorch_OLoptim
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-modern-introduction-to-online-learning
|
A Modern Introduction to Online Learning
|
1912.13213
|
https://arxiv.org/abs/1912.13213v7
|
https://arxiv.org/pdf/1912.13213v7.pdf
|
https://github.com/duanzhiihao/PyTorch_OLoptim
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/quarantine-sparsity-can-uncover-the-trojan
|
Quarantine: Sparsity Can Uncover the Trojan Attack Trigger for Free
|
2205.11819
|
https://arxiv.org/abs/2205.11819v1
|
https://arxiv.org/pdf/2205.11819v1.pdf
|
https://github.com/vita-group/backdoor-lth
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/imface-a-nonlinear-3d-morphable-face-model
|
ImFace: A Nonlinear 3D Morphable Face Model with Implicit Neural Representations
|
2203.14510
|
https://arxiv.org/abs/2203.14510v2
|
https://arxiv.org/pdf/2203.14510v2.pdf
|
https://github.com/aejion/neuface
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/tju-dhd-a-diverse-high-resolution-dataset-for
|
TJU-DHD: A Diverse High-Resolution Dataset for Object Detection
|
2011.09170
|
https://arxiv.org/abs/2011.09170v1
|
https://arxiv.org/pdf/2011.09170v1.pdf
|
https://github.com/tjubiit/TJU-DHD
| true | true | true |
none
|
https://paperswithcode.com/paper/diagnosing-applications-i-o-behavior-through
|
Diagnosing applications' I/O behavior through system call observability
|
2304.08569
|
https://arxiv.org/abs/2304.08569v1
|
https://arxiv.org/pdf/2304.08569v1.pdf
|
https://github.com/dsrhaslab/dio
| true | true | false |
none
|
https://paperswithcode.com/paper/bayesian-reconstruction-of-memories-stored-in
|
Bayesian reconstruction of memories stored in neural networks from their connectivity
|
2105.07416
|
https://arxiv.org/abs/2105.07416v2
|
https://arxiv.org/pdf/2105.07416v2.pdf
|
https://github.com/sgoldt/reconstructing_memories
| true | true | true |
none
|
https://paperswithcode.com/paper/mastering-chess-and-shogi-by-self-play-with-a
|
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
|
1712.01815
|
http://arxiv.org/abs/1712.01815v1
|
http://arxiv.org/pdf/1712.01815v1.pdf
|
https://github.com/cosmobobak/ttt-ml
| false | false | true |
tf
|
https://paperswithcode.com/paper/generating-3d-molecules-conditional-on
|
Generating 3D Molecules Conditional on Receptor Binding Sites with Deep Generative Models
|
2110.15200
|
https://arxiv.org/abs/2110.15200v2
|
https://arxiv.org/pdf/2110.15200v2.pdf
|
https://github.com/mattragoza/liGAN
| true | true | true |
caffe2
|
https://paperswithcode.com/paper/attacking-text-classifiers-via-sentence
|
R&R: Metric-guided Adversarial Sentence Generation
|
2104.08453
|
https://arxiv.org/abs/2104.08453v3
|
https://arxiv.org/pdf/2104.08453v3.pdf
|
https://github.com/DAI-Lab/fibber
| true | true | true |
tf
|
https://paperswithcode.com/paper/generating-3d-molecular-structures
|
Generating 3D Molecular Structures Conditional on a Receptor Binding Site with Deep Generative Models
|
2010.14442
|
https://arxiv.org/abs/2010.14442v3
|
https://arxiv.org/pdf/2010.14442v3.pdf
|
https://github.com/mattragoza/liGAN
| false | false | true |
caffe2
|
https://paperswithcode.com/paper/domain-adaptation-for-underwater-image-1
|
Domain Adaptation for Underwater Image Enhancement via Content and Style Separation
|
2202.08537
|
https://arxiv.org/abs/2202.08537v2
|
https://arxiv.org/pdf/2202.08537v2.pdf
|
https://github.com/fordevoted/uiess
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/auto-encoding-variational-bayes
|
Auto-Encoding Variational Bayes
|
1312.6114
|
http://arxiv.org/abs/1312.6114v10
|
http://arxiv.org/pdf/1312.6114v10.pdf
|
https://github.com/pytorch/botorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/botorch-programmable-bayesian-optimization-in
|
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
|
1910.06403
|
https://arxiv.org/abs/1910.06403v3
|
https://arxiv.org/pdf/1910.06403v3.pdf
|
https://github.com/pytorch/botorch
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/solving-the-many-variables-problem-in-mice
|
Solving the "many variables" problem in MICE with principal component regression
|
2206.15107
|
https://arxiv.org/abs/2206.15107v2
|
https://arxiv.org/pdf/2206.15107v2.pdf
|
https://github.com/edoardocostantini/fireworks
| false | true | false |
none
|
https://paperswithcode.com/paper/yolox-exceeding-yolo-series-in-2021
|
YOLOX: Exceeding YOLO Series in 2021
|
2107.08430
|
https://arxiv.org/abs/2107.08430v2
|
https://arxiv.org/pdf/2107.08430v2.pdf
|
https://github.com/jinsheng124/yolox
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/approximate-translation-from-floating-point
|
Approximate Translation from Floating-Point to Real-Interval Arithmetic
|
2112.02804
|
https://arxiv.org/abs/2112.02804v1
|
https://arxiv.org/pdf/2112.02804v1.pdf
|
https://github.com/dsksh/fp_rint_why3
| true | true | true |
none
|
https://paperswithcode.com/paper/learning-a-continuous-representation-of-3d
|
Learning a Continuous Representation of 3D Molecular Structures with Deep Generative Models
|
2010.08687
|
https://arxiv.org/abs/2010.08687v3
|
https://arxiv.org/pdf/2010.08687v3.pdf
|
https://github.com/mattragoza/liGAN
| true | true | true |
caffe2
|
https://paperswithcode.com/paper/geometric-deep-learning-grids-groups-graphs
|
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
|
2104.13478
|
https://arxiv.org/abs/2104.13478v2
|
https://arxiv.org/pdf/2104.13478v2.pdf
|
https://github.com/GuangfuWang/geometric-deep-learning-chinese-translation-scripts
| false | false | true |
none
|
https://paperswithcode.com/paper/seed-driven-document-ranking-for-systematic
|
Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study
|
2112.04090
|
https://arxiv.org/abs/2112.04090v1
|
https://arxiv.org/pdf/2112.04090v1.pdf
|
https://github.com/ielab/sdr
| true | true | false |
none
|
https://paperswithcode.com/paper/unimodal-face-classification-with-multimodal
|
Unimodal Face Classification with Multimodal Training
|
2112.04182
|
https://arxiv.org/abs/2112.04182v1
|
https://arxiv.org/pdf/2112.04182v1.pdf
|
https://github.com/wbteng9526/mtut_fr
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/sentiment-analysis-using-averaged-weighted
|
Sentiment Analysis Using Averaged Weighted Word Vector Features
|
2002.05606
|
https://arxiv.org/abs/2002.05606v2
|
https://arxiv.org/pdf/2002.05606v2.pdf
|
https://github.com/alierkan/sentiment-analysis
| true | true | false |
none
|
https://paperswithcode.com/paper/hardnet-a-low-memory-traffic-network
|
HarDNet: A Low Memory Traffic Network
|
1909.00948
|
https://arxiv.org/abs/1909.00948v1
|
https://arxiv.org/pdf/1909.00948v1.pdf
|
https://github.com/lanPN85/HarDNet-MSEG
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/hardnet-mseg-a-simple-encoder-decoder-polyp
|
HarDNet-MSEG: A Simple Encoder-Decoder Polyp Segmentation Neural Network that Achieves over 0.9 Mean Dice and 86 FPS
|
2101.07172
|
https://arxiv.org/abs/2101.07172v2
|
https://arxiv.org/pdf/2101.07172v2.pdf
|
https://github.com/lanPN85/HarDNet-MSEG
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/global-local-path-networks-for-monocular
|
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth
|
2201.07436
|
https://arxiv.org/abs/2201.07436v3
|
https://arxiv.org/pdf/2201.07436v3.pdf
|
https://github.com/vinvino02/GLPDepth
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/graph-neural-networks-with-diverse-spectral
|
Graph Neural Networks with Diverse Spectral Filtering
|
2312.09041
|
https://arxiv.org/abs/2312.09041v3
|
https://arxiv.org/pdf/2312.09041v3.pdf
|
https://github.com/jingweio/dsf
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deep-realistic-extragalactic-model-dream
|
Deep Realistic Extragalactic Model (DREaM) Galaxy Catalogs: Predictions for a Roman Ultra-Deep Field
|
2110.10703
|
https://arxiv.org/abs/2110.10703v1
|
https://arxiv.org/pdf/2110.10703v1.pdf
|
https://github.com/ryanhausen/fitsmap
| false | false | true |
none
|
https://paperswithcode.com/paper/time-varying-graph-representation-learning
|
Time-varying Graph Representation Learning via Higher-Order Skip-Gram with Negative Sampling
|
2006.14330
|
https://arxiv.org/abs/2006.14330v1
|
https://arxiv.org/pdf/2006.14330v1.pdf
|
https://github.com/simonepiaggesi/hosgns
| true | true | true |
tf
|
https://paperswithcode.com/paper/generative-models-for-periodicity-detection
|
Generative Models for Periodicity Detection in Noisy Signals
|
2201.07896
|
https://arxiv.org/abs/2201.07896v1
|
https://arxiv.org/pdf/2201.07896v1.pdf
|
https://github.com/nnaisense/gmpda
| true | true | true |
none
|
https://paperswithcode.com/paper/multi-agent-trajectory-prediction-with
|
Multi-Agent Trajectory Prediction With Heterogeneous Edge-Enhanced Graph Attention Network
| null |
https://ieeexplore.ieee.org/abstract/document/9700483
|
https://ieeexplore.ieee.org/abstract/document/9700483
|
https://github.com/Xiaoyu006/MATP-with-HEAT
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/learning-transient-partial-differential
|
Local neural operator for solving transient partial differential equations on varied domains
|
2203.08145
|
https://arxiv.org/abs/2203.08145v2
|
https://arxiv.org/pdf/2203.08145v2.pdf
|
https://github.com/PPhub-hy/torch-local-neural-operators
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/tf-gczsl-task-free-generalized-continual-zero
|
Online Lifelong Generalized Zero-Shot Learning
|
2103.10741
|
https://arxiv.org/abs/2103.10741v2
|
https://arxiv.org/pdf/2103.10741v2.pdf
|
https://github.com/Chandan-IITI/Tf-GCZSL
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/self-supervised-learning-framework-for-remote
|
Self-supervised Representation Learning Framework for Remote Physiological Measurement Using Spatiotemporal Augmentation Loss
|
2107.07695
|
https://arxiv.org/abs/2107.07695v2
|
https://arxiv.org/pdf/2107.07695v2.pdf
|
https://github.com/Dylan-H-Wang/SLF-RPM
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cast-a-toolchain-for-creating-and
|
CaST: A Toolchain for Creating and Characterizing Realistic Wireless Network Emulation Scenarios
|
2208.03993
|
https://arxiv.org/abs/2208.03993v2
|
https://arxiv.org/pdf/2208.03993v2.pdf
|
https://github.com/wineslab/cast
| true | true | false |
none
|
https://paperswithcode.com/paper/adaptive-lora-merge-with-parameter-pruning
|
Adaptive LoRA Merge with Parameter Pruning for Low-Resource Generation
|
2505.24174
|
https://arxiv.org/abs/2505.24174v1
|
https://arxiv.org/pdf/2505.24174v1.pdf
|
https://github.com/mr0223/adaptive_lora_merge
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/non-isomorphic-inter-modality-graph-alignment
|
Non-isomorphic Inter-modality Graph Alignment and Synthesis for Holistic Brain Mapping
|
2107.06281
|
https://arxiv.org/abs/2107.06281v1
|
https://arxiv.org/pdf/2107.06281v1.pdf
|
https://github.com/basiralab/IMANGraphNet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object
|
YOLOv4: Optimal Speed and Accuracy of Object Detection
|
2004.10934
|
https://arxiv.org/abs/2004.10934v1
|
https://arxiv.org/pdf/2004.10934v1.pdf
|
https://github.com/gzw820/PyTorch_YOLOv4
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/deep-radial-kernel-networks-approximating
|
Deep Radial Kernel Networks: Approximating Radially Symmetric Functions with Deep Networks
|
1703.03470
|
http://arxiv.org/abs/1703.03470v1
|
http://arxiv.org/pdf/1703.03470v1.pdf
|
https://bitbucket.org/mccane/deep-radial-kernel-network
| true | true | true |
tf
|
https://paperswithcode.com/paper/cr-fiqa-face-image-quality-assessment-by
|
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability
|
2112.06592
|
https://arxiv.org/abs/2112.06592v2
|
https://arxiv.org/pdf/2112.06592v2.pdf
|
https://github.com/fdbtrs/cr-fiqa
| true | true | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.