paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/autofis-automatic-feature-interaction
|
AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction
|
2003.11235
|
https://arxiv.org/abs/2003.11235v3
|
https://arxiv.org/pdf/2003.11235v3.pdf
|
https://github.com/renmada/PaddleRec/tree/autofis/models/rank/autofis
| false | false | false |
paddle
|
https://paperswithcode.com/paper/unsupervised-feature-selection-based-on
|
Unsupervised Feature Selection based on Adaptive Similarity Learning and Subspace Clustering
|
1912.05458
|
https://arxiv.org/abs/1912.05458v1
|
https://arxiv.org/pdf/1912.05458v1.pdf
|
https://github.com/mohsengh/SCFS
| true | false | false |
none
|
https://paperswithcode.com/paper/tracking-without-bells-and-whistles
|
Tracking without bells and whistles
|
1903.05625
|
https://arxiv.org/abs/1903.05625v3
|
https://arxiv.org/pdf/1903.05625v3.pdf
|
https://github.com/xiuyu0000/new_papers_codes/tree/main/rbpn
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/deep-shape-matching
|
Deep Shape Matching
|
1709.03409
|
http://arxiv.org/abs/1709.03409v2
|
http://arxiv.org/pdf/1709.03409v2.pdf
|
https://github.com/janesjanes/sketchy
| true | true | false |
none
|
https://paperswithcode.com/paper/measuring-association-with-wasserstein
|
Measuring association with Wasserstein distances
|
2102.00356
|
https://arxiv.org/abs/2102.00356v3
|
https://arxiv.org/pdf/2102.00356v3.pdf
|
https://github.com/johanneswiesel/Wasserstein-correlation
| true | true | false |
none
|
https://paperswithcode.com/paper/aspect-controllable-opinion-summarization
|
Aspect-Controllable Opinion Summarization
|
2109.03171
|
https://arxiv.org/abs/2109.03171v1
|
https://arxiv.org/pdf/2109.03171v1.pdf
|
https://github.com/rktamplayo/acesum
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/cbnetv2-a-composite-backbone-network
|
CBNet: A Composite Backbone Network Architecture for Object Detection
|
2107.00420
|
https://arxiv.org/abs/2107.00420v7
|
https://arxiv.org/pdf/2107.00420v7.pdf
|
https://github.com/shinya7y/UniverseNet
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/high-resolution-waveform-capture-device-on-a
|
High-Resolution Waveform Capture Device on a Cyclone-V FPGA
|
2109.03026
|
https://arxiv.org/abs/2109.03026v1
|
https://arxiv.org/pdf/2109.03026v1.pdf
|
https://github.com/noeloikeau/fpyga
| true | true | false |
none
|
https://paperswithcode.com/paper/fdfb-full-domain-functional-bootstrapping
|
FDFB: Full Domain Functional Bootstrapping Towards Practical Fully Homomorphic Encryption
|
2109.02731
|
https://arxiv.org/abs/2109.02731v1
|
https://arxiv.org/pdf/2109.02731v1.pdf
|
https://github.com/cispa/full-domain-functional-bootstrap
| true | true | false |
none
|
https://paperswithcode.com/paper/trust-region-policy-optimization
|
Trust Region Policy Optimization
|
1502.05477
|
http://arxiv.org/abs/1502.05477v5
|
http://arxiv.org/pdf/1502.05477v5.pdf
|
https://github.com/DLR-RM/stable-baselines3
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/ema-auditing-data-removal-from-trained-models
|
EMA: Auditing Data Removal from Trained Models
|
2109.03675
|
https://arxiv.org/abs/2109.03675v2
|
https://arxiv.org/pdf/2109.03675v2.pdf
|
https://github.com/hazelsuko07/ema
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/learning-formation-of-physically-based-face
|
Learning Formation of Physically-Based Face Attributes
|
2004.03458
|
https://arxiv.org/abs/2004.03458v2
|
https://arxiv.org/pdf/2004.03458v2.pdf
|
https://github.com/ICT-VGL/ICT-FaceKit
| true | false | false |
none
|
https://paperswithcode.com/paper/image-to-image-translation-with-conditional
|
Image-to-Image Translation with Conditional Adversarial Networks
|
1611.07004
|
http://arxiv.org/abs/1611.07004v3
|
http://arxiv.org/pdf/1611.07004v3.pdf
|
https://github.com/hahahappyboy/GANForCartoon
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/u-gat-it-unsupervised-generative-attentional
|
U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation
|
1907.10830
|
https://arxiv.org/abs/1907.10830v4
|
https://arxiv.org/pdf/1907.10830v4.pdf
|
https://github.com/hahahappyboy/GANForCartoon
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/u-2-net-going-deeper-with-nested-u-structure
|
U$^2$-Net: Going Deeper with Nested U-Structure for Salient Object Detection
|
2005.09007
|
https://arxiv.org/abs/2005.09007v3
|
https://arxiv.org/pdf/2005.09007v3.pdf
|
https://github.com/hahahappyboy/GANForCartoon
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/icassp-2022-acoustic-echo-cancellation
|
ICASSP 2022 Acoustic Echo Cancellation Challenge
|
2202.13290
|
https://arxiv.org/abs/2202.13290v1
|
https://arxiv.org/pdf/2202.13290v1.pdf
|
https://github.com/microsoft/AEC-Challenge
| true | true | false |
none
|
https://paperswithcode.com/paper/fully-convolutional-networks-for-semantic-1
|
Fully Convolutional Networks for Semantic Segmentation
|
1411.4038
|
http://arxiv.org/abs/1411.4038v2
|
http://arxiv.org/pdf/1411.4038v2.pdf
|
https://github.com/hahahappyboy/GANForCartoon
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/glioblastoma-multiforme-prognosis-mri-missing
|
Glioblastoma Multiforme Prognosis: MRI Missing Modality Generation, Segmentation and Radiogenomic Survival Prediction
|
2104.01149
|
https://arxiv.org/abs/2104.01149v2
|
https://arxiv.org/pdf/2104.01149v2.pdf
|
https://github.com/mobarakol/GBM_Prognosis
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/an-investigation-of-ibm-quantum-computing
|
An investigation of IBM Quantum Computing device performance on Combinatorial Optimisation Problems
|
2107.03638
|
https://arxiv.org/abs/2107.03638v3
|
https://arxiv.org/pdf/2107.03638v3.pdf
|
https://github.com/QuCO-CSAM/Solving-Combinatorial-Optimisation-Problems-Using-Quantum-Algorithms
| false | false | true |
none
|
https://paperswithcode.com/paper/bag-of-tricks-for-image-classification-with
|
Bag of Tricks for Image Classification with Convolutional Neural Networks
|
1812.01187
|
http://arxiv.org/abs/1812.01187v2
|
http://arxiv.org/pdf/1812.01187v2.pdf
|
https://github.com/JIHOO97/Image-Classification-Competition
| false | false | true |
none
|
https://paperswithcode.com/paper/simam-a-simple-parameter-free-attention
|
SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks
| null |
http://proceedings.mlr.press/v139/yang21o.html
|
http://proceedings.mlr.press/v139/yang21o/yang21o.pdf
|
https://github.com/mindspore-courses/External-Attention-MindSpore/blob/main/model/attention/SimAM.py
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/non-autoregressive-translation-with-layer
|
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision
|
2110.07515
|
https://arxiv.org/abs/2110.07515v1
|
https://arxiv.org/pdf/2110.07515v1.pdf
|
https://github.com/chenyangh/dslp
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/recpipe-co-designing-models-and-hardware-to
|
RecPipe: Co-designing Models and Hardware to Jointly Optimize Recommendation Quality and Performance
|
2105.08820
|
https://arxiv.org/abs/2105.08820v2
|
https://arxiv.org/pdf/2105.08820v2.pdf
|
https://github.com/harvard-acc/RecPipe
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/attention-u-net-learning-where-to-look-for
|
Attention U-Net: Learning Where to Look for the Pancreas
|
1804.03999
|
http://arxiv.org/abs/1804.03999v3
|
http://arxiv.org/pdf/1804.03999v3.pdf
|
https://github.com/MasoumehVahedi/Brain_MRI_Segmentation
| false | false | true |
tf
|
https://paperswithcode.com/paper/normal-assisted-stereo-depth-estimation
|
Normal Assisted Stereo Depth Estimation
|
1911.10444
|
https://arxiv.org/abs/1911.10444v3
|
https://arxiv.org/pdf/1911.10444v3.pdf
|
https://github.com/udaykusupati/Normal-Assisted-Stereo
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/on-the-feasibility-of-modeling-ofdm
|
Feasibility of Modeling Orthogonal Frequency-Division Multiplexing Communication Signals with Unsupervised Generative Adversarial Networks
|
2109.05107
|
https://arxiv.org/abs/2109.05107v2
|
https://arxiv.org/pdf/2109.05107v2.pdf
|
https://github.com/usnistgov/ofdm-gan
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/scalable-bottom-up-hierarchical-clustering
|
Scalable Hierarchical Agglomerative Clustering
|
2010.11821
|
https://arxiv.org/abs/2010.11821v3
|
https://arxiv.org/pdf/2010.11821v3.pdf
|
https://github.com/nmonath/graphgrove
| false | false | false |
none
|
https://paperswithcode.com/paper/gradient-imitation-reinforcement-learning-for
|
Gradient Imitation Reinforcement Learning for Low Resource Relation Extraction
|
2109.06415
|
https://arxiv.org/abs/2109.06415v1
|
https://arxiv.org/pdf/2109.06415v1.pdf
|
https://github.com/thu-bpm/gradlre
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/bigrams-and-bilstms-two-neural-networks-for
|
Bigrams and BiLSTMs Two Neural Networks for Sequential Metaphor Detection
| null |
https://aclanthology.org/W18-0911
|
https://aclanthology.org/W18-0911.pdf
|
https://github.com/GU-CLASP/ocota
| true | true | false |
none
|
https://paperswithcode.com/paper/gate-free-state-preparation-for-fast
|
Gate-free state preparation for fast variational quantum eigensolver simulations: ctrl-VQE
|
2008.04302
|
https://arxiv.org/abs/2008.04302v3
|
https://arxiv.org/pdf/2008.04302v3.pdf
|
https://github.com/mayhallgroup/ctrlq
| true | true | true |
none
|
https://paperswithcode.com/paper/fast-r-cnn
|
Fast R-CNN
|
1504.08083
|
http://arxiv.org/abs/1504.08083v2
|
http://arxiv.org/pdf/1504.08083v2.pdf
|
https://github.com/sbetageri/MaskRCNN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/generating-fine-grained-open-vocabulary
|
Generating Fine-Grained Open Vocabulary Entity Type Descriptions
|
1805.10564
|
http://arxiv.org/abs/1805.10564v1
|
http://arxiv.org/pdf/1805.10564v1.pdf
|
https://github.com/kingsaint/Open-vocabulary-entity-type-description
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/universal-style-transfer-via-feature
|
Universal Style Transfer via Feature Transforms
|
1705.08086
|
http://arxiv.org/abs/1705.08086v2
|
http://arxiv.org/pdf/1705.08086v2.pdf
|
https://github.com/YCJGG/Muti-style-transfer-by-camera
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/revisiting-the-inverted-indices-for-billion
|
Revisiting the Inverted Indices for Billion-Scale Approximate Nearest Neighbors
|
1802.02422
|
http://arxiv.org/abs/1802.02422v2
|
http://arxiv.org/pdf/1802.02422v2.pdf
|
https://github.com/xinyandai/pnsw
| false | false | true |
mxnet
|
https://paperswithcode.com/paper/automatic-design-of-mechanical-metamaterial
|
Automatic Design of Mechanical Metamaterial Actuators
|
2002.03032
|
https://arxiv.org/abs/2002.03032v1
|
https://arxiv.org/pdf/2002.03032v1.pdf
|
https://github.com/ComplexityBiosystems/metamech
| false | false | true |
none
|
https://paperswithcode.com/paper/matrix-completion-in-the-unit-hypercube-via
|
Matrix Completion in the Unit Hypercube via Structured Matrix Factorization
|
1905.12881
|
https://arxiv.org/abs/1905.12881v1
|
https://arxiv.org/pdf/1905.12881v1.pdf
|
https://github.com/e-bug/unit-mf
| true | true | true |
none
|
https://paperswithcode.com/paper/neural-machine-translation-by-jointly
|
Neural Machine Translation by Jointly Learning to Align and Translate
|
1409.0473
|
http://arxiv.org/abs/1409.0473v7
|
http://arxiv.org/pdf/1409.0473v7.pdf
|
https://github.com/Epoch-Mengying/Generating-Poetry-with-Chatbot
| false | false | true |
none
|
https://paperswithcode.com/paper/soft-actor-critic-off-policy-maximum-entropy
|
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
|
1801.01290
|
http://arxiv.org/abs/1801.01290v2
|
http://arxiv.org/pdf/1801.01290v2.pdf
|
https://github.com/yimingpeng/sac-master
| false | false | true |
tf
|
https://paperswithcode.com/paper/constrained-bayesian-optimization-for
|
Constrained Bayesian Optimization for Automatic Chemical Design
|
1709.05501
|
https://arxiv.org/abs/1709.05501v6
|
https://arxiv.org/pdf/1709.05501v6.pdf
|
https://github.com/Ryan-Rhys/Constrained-Bayesian-Optimisation-for-Automatic-Chemical-Design
| true | true | true |
none
|
https://paperswithcode.com/paper/a-topological-centrality-measure-for-directed
|
A Topological Centrality Measure for Directed Networks
|
2201.12907
|
https://arxiv.org/abs/2201.12907v1
|
https://arxiv.org/pdf/2201.12907v1.pdf
|
https://github.com/lindahe8989/a-topological-centrality-measure-for-directed-networks
| true | true | false |
none
|
https://paperswithcode.com/paper/learning-to-execute
|
Learning to Execute
|
1410.4615
|
http://arxiv.org/abs/1410.4615v3
|
http://arxiv.org/pdf/1410.4615v3.pdf
|
https://github.com/btc-room101/bitcoin-rnn
| false | false | true |
none
|
https://paperswithcode.com/paper/mer-2023-multi-label-learning-modality
|
MER 2023: Multi-label Learning, Modality Robustness, and Semi-Supervised Learning
|
2304.08981
|
https://arxiv.org/abs/2304.08981v2
|
https://arxiv.org/pdf/2304.08981v2.pdf
|
https://github.com/zeroqiaoba/explainable-multimodal-emotion-reasoning
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/trust-region-policy-optimization
|
Trust Region Policy Optimization
|
1502.05477
|
http://arxiv.org/abs/1502.05477v5
|
http://arxiv.org/pdf/1502.05477v5.pdf
|
https://github.com/sirdr/TRPO.jl
| false | false | true |
none
|
https://paperswithcode.com/paper/fast-end-to-end-learning-on-protein-surfaces
|
Fast End-to-End Learning on Protein Surfaces
| null |
http://openaccess.thecvf.com//content/CVPR2021/html/Sverrisson_Fast_End-to-End_Learning_on_Protein_Surfaces_CVPR_2021_paper.html
|
http://openaccess.thecvf.com//content/CVPR2021/papers/Sverrisson_Fast_End-to-End_Learning_on_Protein_Surfaces_CVPR_2021_paper.pdf
|
https://github.com/FreyrS/dMaSIF
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/optimizing-frameworks-performance-using-c
|
Optimizing Frameworks Performance Using C++ Modules Aware ROOT
|
1812.03992
|
http://arxiv.org/abs/1812.03992v1
|
http://arxiv.org/pdf/1812.03992v1.pdf
|
https://github.com/yamaguchi1024/CHEP2018-Cplusplus-Modules
| false | false | true |
none
|
https://paperswithcode.com/paper/closed-form-analytical-results-for-maximum
|
Entropy Regularized Reinforcement Learning Using Large Deviation Theory
|
2106.03931
|
https://arxiv.org/abs/2106.03931v2
|
https://arxiv.org/pdf/2106.03931v2.pdf
|
https://github.com/argearriojas/2023-entregrl
| true | true | false |
none
|
https://paperswithcode.com/paper/quantum-circuit-learning
|
Quantum Circuit Learning
|
1803.00745
|
http://arxiv.org/abs/1803.00745v1
|
http://arxiv.org/pdf/1803.00745v1.pdf
|
https://github.com/UnofficialJuliaMirrorSnapshots/Yao.jl-5872b779-8223-5990-8dd0-5abbb0748c8c
| false | false | true |
none
|
https://paperswithcode.com/paper/feed-forward-networks-with-attention-can
|
Feed-Forward Networks with Attention Can Solve Some Long-Term Memory Problems
|
1512.08756
|
http://arxiv.org/abs/1512.08756v5
|
http://arxiv.org/pdf/1512.08756v5.pdf
|
https://github.com/WenYanger/Contextual-Attention
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/predicting-molecular-dipole-moments-by
|
Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles
|
2003.12437
|
https://arxiv.org/abs/2003.12437v3
|
https://arxiv.org/pdf/2003.12437v3.pdf
|
https://github.com/max-veit/velociraptor
| true | true | true |
none
|
https://paperswithcode.com/paper/superforms-tropical-cohomology-and-poincare
|
Superforms, Tropical Cohomology, and Poincaré Duality
|
1512.07409
|
http://arxiv.org/abs/1512.07409v3
|
http://arxiv.org/pdf/1512.07409v3.pdf
|
https://github.com/lkastner/cellularSheaves
| false | false | true |
none
|
https://paperswithcode.com/paper/chinese-poetry-generation-with-planning-based
|
Chinese Poetry Generation with Planning based Neural Network
|
1610.09889
|
http://arxiv.org/abs/1610.09889v2
|
http://arxiv.org/pdf/1610.09889v2.pdf
|
https://github.com/Epoch-Mengying/Generating-Poetry-with-Chatbot
| false | false | true |
none
|
https://paperswithcode.com/paper/monitoring-data-requests-in-decentralized
|
Monitoring Data Requests in Decentralized Data Storage Systems: A Case Study of IPFS
|
2104.09202
|
https://arxiv.org/abs/2104.09202v5
|
https://arxiv.org/pdf/2104.09202v5.pdf
|
https://github.com/mrd0ll4r/ipfs-tools
| true | true | true |
none
|
https://paperswithcode.com/paper/feature-selection-in-omics-prediction
|
Feature selection in omics prediction problems using cat scores and false nondiscovery rate control
|
0903.2003
|
http://arxiv.org/abs/0903.2003v4
|
http://arxiv.org/pdf/0903.2003v4.pdf
|
https://github.com/mjafin/shrinkage_da
| false | false | true |
none
|
https://paperswithcode.com/paper/value-prediction-network
|
Value Prediction Network
|
1707.03497
|
http://arxiv.org/abs/1707.03497v2
|
http://arxiv.org/pdf/1707.03497v2.pdf
|
https://github.com/junhyukoh/value-prediction-network
| true | true | true |
tf
|
https://paperswithcode.com/paper/graph-neural-networks-for-icecube-signal
|
Graph Neural Networks for IceCube Signal Classification
|
1809.06166
|
http://arxiv.org/abs/1809.06166v1
|
http://arxiv.org/pdf/1809.06166v1.pdf
|
https://github.com/WIPACrepo/NuIntClassification
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/robust-inference-via-generative-classifiers
|
Robust Inference via Generative Classifiers for Handling Noisy Labels
|
1901.11300
|
https://arxiv.org/abs/1901.11300v2
|
https://arxiv.org/pdf/1901.11300v2.pdf
|
https://github.com/pokaxpoka/RoGNoisyLabel
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deep-learning-of-vortex-induced-vibrations
|
Deep Learning of Vortex Induced Vibrations
|
1808.08952
|
http://arxiv.org/abs/1808.08952v1
|
http://arxiv.org/pdf/1808.08952v1.pdf
|
https://github.com/maziarraissi/DeepVIV
| true | true | true |
tf
|
https://paperswithcode.com/paper/190503448
|
parasweep: A template-based utility for generating, dispatching, and post-processing of parameter sweeps
|
1905.03448
|
https://arxiv.org/abs/1905.03448v2
|
https://arxiv.org/pdf/1905.03448v2.pdf
|
https://github.com/eviatarbach/parasweep
| true | true | true |
none
|
https://paperswithcode.com/paper/analysis-of-the-impact-of-negative-sampling
|
Analysis of the Impact of Negative Sampling on Link Prediction in Knowledge Graphs
|
1708.06816
|
http://arxiv.org/abs/1708.06816v2
|
http://arxiv.org/pdf/1708.06816v2.pdf
|
https://github.com/bhushank/kge-rl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/190600411
|
TechNet: Technology Semantic Network Based on Patent Data
|
1906.00411
|
https://arxiv.org/abs/1906.00411v4
|
https://arxiv.org/pdf/1906.00411v4.pdf
|
https://github.com/SerhadS/TechNet
| true | true | true |
none
|
https://paperswithcode.com/paper/deeppicar-a-low-cost-deep-neural-network
|
DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car
|
1712.08644
|
https://arxiv.org/abs/1712.08644v4
|
https://arxiv.org/pdf/1712.08644v4.pdf
|
https://github.com/heechul/picar
| true | true | true |
tf
|
https://paperswithcode.com/paper/regularizing-activation-distribution-for
|
Regularizing Activation Distribution for Training Binarized Deep Networks
|
1904.02823
|
http://arxiv.org/abs/1904.02823v1
|
http://arxiv.org/pdf/1904.02823v1.pdf
|
https://github.com/ruizhoud/DistributionLoss
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-simple-baseline-for-multi-object-tracking
|
FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking
|
2004.01888
|
https://arxiv.org/abs/2004.01888v6
|
https://arxiv.org/pdf/2004.01888v6.pdf
|
https://github.com/nadinenijssen/Github_5AUA0_Project_G12T1
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/mediation-effects-that-emulate-a-target
|
Mediation effects that emulate a target randomised trial: Simulation-based evaluation of ill-defined interventions on multiple mediators
|
1907.06734
|
https://arxiv.org/abs/1907.06734v3
|
https://arxiv.org/pdf/1907.06734v3.pdf
|
https://github.com/moreno-betancur/medRCT
| true | true | true |
none
|
https://paperswithcode.com/paper/towards-better-validity-dispersion-based
|
Towards better Validity: Dispersion based Clustering for Unsupervised Person Re-identification
|
1906.01308
|
https://arxiv.org/abs/1906.01308v1
|
https://arxiv.org/pdf/1906.01308v1.pdf
|
https://github.com/gddingcs/Dispersion-based-Clustering
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/optimal-hyperparameters-for-deep-lstm
|
Optimal Hyperparameters for Deep LSTM-Networks for Sequence Labeling Tasks
|
1707.06799
|
http://arxiv.org/abs/1707.06799v2
|
http://arxiv.org/pdf/1707.06799v2.pdf
|
https://github.com/SuphanutN/Thai-NER-BiLSTMCRF-WordCharEmbedding
| false | false | true |
none
|
https://paperswithcode.com/paper/convolutional-image-captioning
|
Convolutional Image Captioning
|
1711.09151
|
http://arxiv.org/abs/1711.09151v1
|
http://arxiv.org/pdf/1711.09151v1.pdf
|
https://github.com/davinhill/Convolution_Captioning
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/171110609
|
A recurrent neural network for classification of unevenly sampled variable stars
|
1711.10609
|
http://arxiv.org/abs/1711.10609v1
|
http://arxiv.org/pdf/1711.10609v1.pdf
|
https://github.com/bthtsang/DeepClassifierNoveltyDetection
| false | false | true |
tf
|
https://paperswithcode.com/paper/openloris-object-a-dataset-and-benchmark
|
OpenLORIS-Object: A Robotic Vision Dataset and Benchmark for Lifelong Deep Learning
|
1911.06487
|
https://arxiv.org/abs/1911.06487v2
|
https://arxiv.org/pdf/1911.06487v2.pdf
|
https://github.com/sheqi/Continual_Learning_CV
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/towards-better-understanding-of-gradient
|
Towards better understanding of gradient-based attribution methods for Deep Neural Networks
|
1711.06104
|
http://arxiv.org/abs/1711.06104v4
|
http://arxiv.org/pdf/1711.06104v4.pdf
|
https://github.com/pytorch/captum
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/why-should-i-trust-you-explaining-the
|
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
|
1602.04938
|
http://arxiv.org/abs/1602.04938v3
|
http://arxiv.org/pdf/1602.04938v3.pdf
|
https://github.com/pytorch/captum
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/local-explanation-methods-for-deep-neural
|
Local Explanation Methods for Deep Neural Networks Lack Sensitivity to Parameter Values
|
1810.03307
|
http://arxiv.org/abs/1810.03307v1
|
http://arxiv.org/pdf/1810.03307v1.pdf
|
https://github.com/pytorch/captum
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/speech-denoising-with-deep-feature-losses
|
Speech Denoising with Deep Feature Losses
|
1806.10522
|
http://arxiv.org/abs/1806.10522v1
|
http://arxiv.org/pdf/1806.10522v1.pdf
|
https://github.com/kuntojirohan/speechdenoising
| false | false | true |
tf
|
https://paperswithcode.com/paper/viwi-vision-aided-mmwave-beam-tracking
|
ViWi Vision-Aided mmWave Beam Tracking: Dataset, Task, and Baseline Solutions
|
2002.02445
|
https://arxiv.org/abs/2002.02445v3
|
https://arxiv.org/pdf/2002.02445v3.pdf
|
https://github.com/malrabeiah/VABT
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/classification-with-costly-features-as-a
|
Classification with Costly Features as a Sequential Decision-Making Problem
|
1909.02564
|
https://arxiv.org/abs/1909.02564v1
|
https://arxiv.org/pdf/1909.02564v1.pdf
|
https://github.com/jaromiru/cwcf
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/derandomized-smoothing-for-certifiable
|
(De)Randomized Smoothing for Certifiable Defense against Patch Attacks
|
2002.10733
|
https://arxiv.org/abs/2002.10733v3
|
https://arxiv.org/pdf/2002.10733v3.pdf
|
https://github.com/alevine0/patchSmoothing
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/facenet-a-unified-embedding-for-face
|
FaceNet: A Unified Embedding for Face Recognition and Clustering
|
1503.03832
|
http://arxiv.org/abs/1503.03832v3
|
http://arxiv.org/pdf/1503.03832v3.pdf
|
https://github.com/zexUlt/facerec
| false | false | true |
mxnet
|
https://paperswithcode.com/paper/a-generative-model-of-software-dependency
|
A Generative Model of Software Dependency Graphs to Better Understand Software Evolution
|
1410.7921
|
http://arxiv.org/abs/1410.7921v3
|
http://arxiv.org/pdf/1410.7921v3.pdf
|
https://github.com/v-m/GDGNC
| true | true | true |
none
|
https://paperswithcode.com/paper/acceleration-of-large-margin-metric-learning
|
Acceleration of Large Margin Metric Learning for Nearest Neighbor Classification Using Triplet Mining and Stratified Sampling
|
2009.14244
|
https://arxiv.org/abs/2009.14244v1
|
https://arxiv.org/pdf/2009.14244v1.pdf
|
https://github.com/bghojogh/Large-Margin-Metric-Learning
| true | false | true |
none
|
https://paperswithcode.com/paper/bullseye-polytope-a-scalable-clean-label
|
Bullseye Polytope: A Scalable Clean-Label Poisoning Attack with Improved Transferability
|
2005.00191
|
https://arxiv.org/abs/2005.00191v3
|
https://arxiv.org/pdf/2005.00191v3.pdf
|
https://github.com/ucsb-seclab/BullseyePoison
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/photo-realistic-single-image-super-resolution
|
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
|
1609.04802
|
http://arxiv.org/abs/1609.04802v5
|
http://arxiv.org/pdf/1609.04802v5.pdf
|
https://github.com/MindSpore-paper-code-2/code3/tree/main/wdsr
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/towards-exploiting-sticker-for-multimodal
|
Towards Exploiting Sticker for Multimodal Sentiment Analysis in Social Media: A New Dataset and Baseline
| null |
https://aclanthology.org/2022.coling-1.591
|
https://aclanthology.org/2022.coling-1.591.pdf
|
https://github.com/logos23333/csmsa
| true | true | false |
none
|
https://paperswithcode.com/paper/deep-learning-algorithms-for-rotating
|
Deep Learning Algorithms for Rotating Machinery Intelligent Diagnosis: An Open Source Benchmark Study
|
2003.03315
|
https://arxiv.org/abs/2003.03315v3
|
https://arxiv.org/pdf/2003.03315v3.pdf
|
https://github.com/ZhaoZhibin/DL-based-Intelligent-Diagnosis-Benchmark
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/inference-in-the-stochastic-block-model-with
|
Reliable Time Prediction in the Markov Stochastic Block Model
|
2004.04402
|
https://arxiv.org/abs/2004.04402v3
|
https://arxiv.org/pdf/2004.04402v3.pdf
|
https://github.com/quentin-duchemin/inference-markovian-SBM
| true | true | true |
none
|
https://paperswithcode.com/paper/repbert-contextualized-text-embeddings-for
|
RepBERT: Contextualized Text Embeddings for First-Stage Retrieval
|
2006.15498
|
https://arxiv.org/abs/2006.15498v2
|
https://arxiv.org/pdf/2006.15498v2.pdf
|
https://github.com/jingtaozhan/RepBERT-Index
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/self-supervised-character-to-character
|
Self-supervised Character-to-Character Distillation for Text Recognition
|
2211.00288
|
https://arxiv.org/abs/2211.00288v4
|
https://arxiv.org/pdf/2211.00288v4.pdf
|
https://github.com/tongkunguan/ccd
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/transformer-hawkes-process
|
Transformer Hawkes Process
|
2002.09291
|
https://arxiv.org/abs/2002.09291v5
|
https://arxiv.org/pdf/2002.09291v5.pdf
|
https://github.com/SimiaoZuo/Transformer-Hawkes-Process
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/dicoderma-a-practical-approach-for-metadata
|
DICODerma: A practical approach for metadata management of images in dermatology
|
2102.08673
|
https://arxiv.org/abs/2102.08673v1
|
https://arxiv.org/pdf/2102.08673v1.pdf
|
https://github.com/dermatologist/dicom-dermatology
| true | true | true |
none
|
https://paperswithcode.com/paper/a-linguistic-analysis-of-visually-grounded
|
A Linguistic Analysis of Visually Grounded Dialogues Based on Spatial Expressions
|
2010.03127
|
https://arxiv.org/abs/2010.03127v1
|
https://arxiv.org/pdf/2010.03127v1.pdf
|
https://github.com/Alab-NII/onecommon
| true | true | true |
tf
|
https://paperswithcode.com/paper/how-collective-asperity-detachments-nucleate
|
How collective asperity detachments nucleate slip at frictional interfaces
|
1904.07635
|
https://arxiv.org/abs/1904.07635v1
|
https://arxiv.org/pdf/1904.07635v1.pdf
|
https://github.com/tdegeus/GMatElastoPlasticQPot
| false | false | true |
none
|
https://paperswithcode.com/paper/non-negative-networks-against-adversarial
|
Non-Negative Networks Against Adversarial Attacks
|
1806.06108
|
http://arxiv.org/abs/1806.06108v2
|
http://arxiv.org/pdf/1806.06108v2.pdf
|
https://github.com/endgameinc/malware_evasion_competition
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/primal-dual-algorithms-for-non-negative
|
Primal-Dual Algorithms for Non-negative Matrix Factorization with the Kullback-Leibler Divergence
|
1412.1788
|
http://arxiv.org/abs/1412.1788v1
|
http://arxiv.org/pdf/1412.1788v1.pdf
|
https://github.com/felipeyanez/nmf
| false | false | true |
none
|
https://paperswithcode.com/paper/malware-detection-by-eating-a-whole-exe
|
Malware Detection by Eating a Whole EXE
|
1710.09435
|
http://arxiv.org/abs/1710.09435v1
|
http://arxiv.org/pdf/1710.09435v1.pdf
|
https://github.com/endgameinc/malware_evasion_competition
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/explaining-how-deep-neural-networks-forget-by
|
Explaining How Deep Neural Networks Forget by Deep Visualization
|
2005.01004
|
https://arxiv.org/abs/2005.01004v3
|
https://arxiv.org/pdf/2005.01004v3.pdf
|
https://github.com/giangnguyen2412/dissect_catastrophic_forgetting
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/kwant-a-software-package-for-quantum
|
Kwant: a software package for quantum transport
|
1309.2926
|
https://arxiv.org/abs/1309.2926v2
|
https://arxiv.org/pdf/1309.2926v2.pdf
|
https://github.com/joel-hutchinson/Haldane-Bilayer-KWANT
| false | false | true |
none
|
https://paperswithcode.com/paper/aim-taking-answers-in-mind-to-correct-chinese
|
AiM: Taking Answers in Mind to Correct Chinese Cloze Tests in Educational Applications
|
2208.12505
|
https://arxiv.org/abs/2208.12505v2
|
https://arxiv.org/pdf/2208.12505v2.pdf
|
https://github.com/yusenzhang826/aim
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/joint-analysis-of-the-thermal-sunyaev
|
Joint analysis of the thermal Sunyaev-Zeldovich effect and 2MASS galaxies: Probing gas physics in the local Universe and beyond
|
1804.05008
|
https://arxiv.org/abs/1804.05008v3
|
https://arxiv.org/pdf/1804.05008v3.pdf
|
https://github.com/ryumakiya/pysz
| false | false | true |
none
|
https://paperswithcode.com/paper/14101465
|
The invariant extended Kalman filter as a stable observer
|
1410.1465
|
http://arxiv.org/abs/1410.1465v4
|
http://arxiv.org/pdf/1410.1465v4.pdf
|
https://github.com/artivis/kalmanif
| false | false | true |
none
|
https://paperswithcode.com/paper/clustering-longitudinal-life-course-sequences
|
Clustering Longitudinal Life-Course Sequences Using Mixtures of Exponential-Distance Models
|
1908.07963
|
https://arxiv.org/abs/1908.07963v4
|
https://arxiv.org/pdf/1908.07963v4.pdf
|
https://github.com/Keefe-Murphy/MEDseq
| true | false | true |
none
|
https://paperswithcode.com/paper/must-cnn-a-multilayer-shift-and-stitch-deep
|
MUST-CNN: A Multilayer Shift-and-Stitch Deep Convolutional Architecture for Sequence-based Protein Structure Prediction
|
1605.03004
|
http://arxiv.org/abs/1605.03004v1
|
http://arxiv.org/pdf/1605.03004v1.pdf
|
https://github.com/QData/DeepProtein
| false | false | true |
torch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.