File size: 38,027 Bytes
8ea794b
 
d728ee4
118cebd
 
74fd655
118cebd
 
 
74fd655
118cebd
 
 
 
 
c6e8137
 
 
8ea794b
118cebd
 
 
 
 
 
 
 
2b4dabe
 
 
0d85c20
0ef1eae
 
 
29d0793
8ea794b
29d0793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118cebd
74fd655
118cebd
 
 
 
 
 
 
cdc0a21
 
 
 
 
 
 
 
 
 
 
118cebd
8ea794b
 
 
118cebd
473762c
 
 
 
 
 
297e3be
8ea794b
 
118cebd
 
 
8ea794b
118cebd
 
 
 
8ea794b
118cebd
 
 
 
 
 
 
 
 
 
 
8ea794b
118cebd
 
 
 
 
 
 
 
74fd655
 
8ea794b
74fd655
118cebd
 
8ea794b
74fd655
 
118cebd
56b4bf4
118cebd
 
74fd655
118cebd
 
 
 
 
 
74fd655
118cebd
 
 
 
 
8ea794b
118cebd
29d0793
8ea794b
118cebd
 
 
 
 
29d0793
 
 
 
 
 
 
 
 
 
118cebd
 
 
29d0793
118cebd
29d0793
 
 
 
 
 
 
118cebd
29d0793
118cebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29d0793
 
118cebd
 
 
 
 
 
 
 
 
 
d2111c8
118cebd
 
 
 
d2111c8
118cebd
9735885
 
 
d2111c8
 
 
 
 
 
 
 
 
 
 
 
 
9735885
 
d2111c8
9735885
d2111c8
9735885
d2111c8
 
 
118cebd
29d0793
9735885
 
 
29d0793
 
 
118cebd
 
 
 
29d0793
118cebd
29d0793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118cebd
 
29d0793
118cebd
 
 
 
 
29d0793
 
 
 
 
118cebd
 
29d0793
 
 
 
74fd655
29d0793
 
 
 
118cebd
 
 
 
29d0793
 
118cebd
 
 
 
29d0793
9735885
118cebd
 
 
29d0793
118cebd
 
 
 
 
 
 
 
 
 
 
 
 
74fd655
118cebd
 
29d0793
118cebd
 
29d0793
118cebd
29d0793
118cebd
29d0793
 
 
118cebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
629bda0
118cebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2111c8
118cebd
629bda0
 
5098252
5b32457
629bda0
 
360e004
 
5b32457
360e004
5b32457
360e004
 
 
 
 
5b32457
 
 
 
 
 
 
 
 
 
 
360e004
5b32457
 
360e004
5b32457
 
360e004
5b32457
 
360e004
5b32457
 
360e004
 
5b32457
 
360e004
 
5b32457
 
360e004
5b32457
360e004
5b32457
 
 
 
 
 
 
 
360e004
 
 
 
 
 
 
5b32457
360e004
 
4465d9c
 
 
 
 
629bda0
4465d9c
 
 
 
 
 
 
 
 
629bda0
 
 
4465d9c
629bda0
 
4465d9c
629bda0
4465d9c
629bda0
 
 
4465d9c
 
 
629bda0
 
4465d9c
 
 
 
 
 
 
629bda0
 
 
 
 
 
 
31a4493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4465d9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ea794b
118cebd
 
 
 
 
 
8ea794b
118cebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ea794b
118cebd
 
8ea794b
118cebd
8ea794b
118cebd
8ea794b
118cebd
 
 
8ea794b
 
118cebd
 
8ea794b
118cebd
 
74fd655
118cebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa3afad
 
ecf4773
118cebd
3918290
118cebd
ecf4773
fa3afad
118cebd
 
3918290
9333c98
3918290
 
 
 
 
 
 
 
eca39b4
56298de
3918290
56298de
3918290
 
56298de
 
 
 
3918290
 
eca39b4
3918290
56298de
 
eca39b4
 
3918290
 
5b32457
 
3918290
eca39b4
 
 
 
 
3918290
eca39b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3918290
 
eca39b4
 
 
 
 
 
3918290
 
 
 
 
 
 
 
 
 
eca39b4
 
5740b8a
3918290
 
 
 
 
eca39b4
5740b8a
 
 
eca39b4
 
3918290
eca39b4
 
 
 
5740b8a
 
eca39b4
 
 
3918290
eca39b4
 
 
8ea794b
3918290
 
ecf4773
9735885
 
 
 
 
 
8ea794b
 
118cebd
8ea794b
118cebd
8ea794b
 
118cebd
 
 
8ea794b
118cebd
8ea794b
 
118cebd
8ea794b
 
 
118cebd
 
8ea794b
 
118cebd
8ea794b
 
 
 
e6116e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cdc794
85e9416
8ea794b
85e9416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ea794b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from transformers import pipeline
from typing import Tuple, Optional
import io
import fitz  # PyMuPDF
from PIL import Image
import pandas as pd
import uvicorn
from docx import Document
from pptx import Presentation
import pytesseract
import logging
import re
from slowapi import Limiter
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
from slowapi.middleware import SlowAPIMiddleware
import matplotlib.pyplot as plt
import seaborn as sns
import tempfile
import base64
from io import BytesIO
from pydantic import BaseModel
import traceback
import ast
from fastapi.responses import HTMLResponse
from fastapi import Request
from pathlib import Path
from fastapi.staticfiles import StaticFiles
import numpy as np  # Add this import
import pandas as pd
from io import BytesIO
# main.py

# Standard library imports
import io
import re
import logging
import tempfile
import base64
import warnings
from typing import Tuple, Optional
from pathlib import Path

# Third-party imports
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, HTMLResponse
from transformers import pipeline
import fitz  # PyMuPDF
from PIL import Image
import pandas as pd
import uvicorn
from docx import Document
from pptx import Presentation
import pytesseract
from slowapi import Limiter
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
from slowapi.middleware import SlowAPIMiddleware
import matplotlib.pyplot as plt
import seaborn as sns
from pydantic import BaseModel
import traceback
import ast
from openpyxl import Workbook

# Suppress openpyxl warnings
warnings.filterwarnings("ignore", category=UserWarning, module="openpyxl")

# Rest of your code (app setup, routes, etc.)...
# Initialize rate limiter
limiter = Limiter(key_func=get_remote_address)

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI()


# Serve static files (frontend)
app.mount("/static", StaticFiles(directory="static"), name="static")


@app.get("/", response_class=HTMLResponse)
def home ():
    with open("static/indexAI.html","r") as file :
        return file.read()

        
# Apply rate limiting middleware
app.state.limiter = limiter
app.add_middleware(SlowAPIMiddleware)

# CORS Configuration
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
)

# Constants
MAX_FILE_SIZE = 10 * 1024 * 1024  # 10MB
SUPPORTED_FILE_TYPES = {
    "docx", "xlsx", "pptx", "pdf", "jpg", "jpeg", "png"
}

# Model caching
summarizer = None
qa_model = None
image_captioner = None

def get_summarizer():
    global summarizer
    if summarizer is None:
        summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
    return summarizer

def get_qa_model():
    global qa_model
    if qa_model is None:
        qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
    return qa_model

def get_image_captioner():
    global image_captioner
    if image_captioner is None:
        image_captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
    return image_captioner

async def process_uploaded_file(file: UploadFile) -> Tuple[str, bytes]:
    """Validate and process uploaded file with special handling for each type"""
    if not file.filename:
        raise HTTPException(400, "No filename provided")

    file_ext = file.filename.split('.')[-1].lower()
    if file_ext not in SUPPORTED_FILE_TYPES:
        raise HTTPException(400, f"Unsupported file type. Supported: {', '.join(SUPPORTED_FILE_TYPES)}")

    content = await file.read()
    if len(content) > MAX_FILE_SIZE:
        raise HTTPException(413, f"File too large. Max size: {MAX_FILE_SIZE//1024//1024}MB")

    # Special validation for PDFs
    if file_ext == "pdf":
        try:
            with fitz.open(stream=content, filetype="pdf") as doc:
                if doc.is_encrypted:
                    if not doc.authenticate(""):
                        raise ValueError("Encrypted PDF - cannot extract text")
                if len(doc) > 50:
                    raise ValueError("PDF too large (max 50 pages)")
        except Exception as e:
            logger.error(f"PDF validation failed: {str(e)}")
            raise HTTPException(422, detail=f"Invalid PDF file: {str(e)}")

    await file.seek(0)  # Reset file pointer for processing
    return file_ext, content

def extract_text(content: bytes, file_ext: str) -> str:
    """Extract text from various file formats with enhanced Excel support"""
    try:
        if file_ext == "docx":
            doc = Document(io.BytesIO(content))
            return "\n".join(para.text for para in doc.paragraphs if para.text.strip())
        
        elif file_ext in {"xlsx", "xls"}:
            # Improved Excel handling with better NaN and date support
            df = pd.read_excel(
                io.BytesIO(content),
                sheet_name=None,
                engine='openpyxl',
                na_values=['', 'NA', 'N/A', 'NaN', 'null'],
                keep_default_na=False,
                parse_dates=True
            )
            
            all_text = []
            for sheet_name, sheet_data in df.items():
                sheet_text = []
                # Convert all data to string and handle special types
                for column in sheet_data.columns:
                    # Handle datetime columns
                    if pd.api.types.is_datetime64_any_dtype(sheet_data[column]):
                        sheet_data[column] = sheet_data[column].dt.strftime('%Y-%m-%d %H:%M:%S')
                    # Convert to string and clean
                    col_text = sheet_data[column].astype(str).replace(['nan', 'None', 'NaT'], '').tolist()
                    sheet_text.extend([x for x in col_text if x.strip()])
                
                all_text.append(f"Sheet: {sheet_name}\n" + "\n".join(sheet_text))
            
            return "\n\n".join(all_text)
        
        elif file_ext == "pptx":
            ppt = Presentation(io.BytesIO(content))
            text = []
            for slide in ppt.slides:
                for shape in slide.shapes:
                    if hasattr(shape, "text") and shape.text.strip():
                        text.append(shape.text)
            return "\n".join(text)
        
        elif file_ext == "pdf":
            pdf = fitz.open(stream=content, filetype="pdf")
            return "\n".join(page.get_text("text") for page in pdf)
        
        elif file_ext in {"jpg", "jpeg", "png"}:
            # First try OCR
            try:
                image = Image.open(io.BytesIO(content))
                text = pytesseract.image_to_string(image, config='--psm 6')
                if text.strip():
                    return text
                
                # If OCR fails, try image captioning
                captioner = get_image_captioner()
                result = captioner(image)
                return result[0]['generated_text']
            except Exception as img_e:
                logger.error(f"Image processing failed: {str(img_e)}")
                raise ValueError("Could not extract text or caption from image")
        
    except Exception as e:
        logger.error(f"Text extraction failed for {file_ext}: {str(e)}", exc_info=True)
        raise HTTPException(422, f"Failed to extract text from {file_ext} file: {str(e)}")

# Visualization Models
class VisualizationRequest(BaseModel):
    chart_type: str
    x_column: Optional[str] = None
    y_column: Optional[str] = None
    hue_column: Optional[str] = None
    title: Optional[str] = None
    x_label: Optional[str] = None
    y_label: Optional[str] = None
    style: str = "seaborn-v0_8"  # Updated default
    filters: Optional[dict] = None

class NaturalLanguageRequest(BaseModel):
    prompt: str
    style: str = "seaborn-v0_8"

def validate_matplotlib_style(style: str) -> str:
    """Validate and return a valid matplotlib style"""
    available_styles = plt.style.available
    # Map legacy style names to current ones
    style_mapping = {
        'seaborn': 'seaborn-v0_8',
        'seaborn-white': 'seaborn-v0_8-white',
        'seaborn-dark': 'seaborn-v0_8-dark',
        # Add other legacy mappings if needed
    }
    
    # Check if it's a legacy name we can map
    if style in style_mapping:
        return style_mapping[style]
    
    # Check if it's a valid current style
    if style in available_styles:
        return style
    
    logger.warning(f"Invalid style '{style}'. Available styles: {available_styles}")
    return "seaborn-v0_8"  # Default fallback to current seaborn style



    
def generate_visualization_code(df: pd.DataFrame, request: VisualizationRequest) -> str:
    """Generate Python code for visualization with enhanced NaN handling and type safety"""
    # Validate style
    valid_style = validate_matplotlib_style(request.style)
    
    # Convert DataFrame to dict with proper NaN handling
    df_dict = df.where(pd.notnull(df), None).to_dict(orient='list')
    
    code_lines = [
        "import matplotlib.pyplot as plt",
        "import seaborn as sns",
        "import pandas as pd",
        "import numpy as np",
        "",
        "# Data preparation with NaN handling and type conversion",
        f"raw_data = {df_dict}",
        "df = pd.DataFrame(raw_data)",
        "",
        "# Automatic type conversion and cleaning",
        "for col in df.columns:",
        "    # Convert strings that should be numeric",
        "    if pd.api.types.is_string_dtype(df[col]):",
        "        try:",
        "            df[col] = pd.to_numeric(df[col])",
        "            continue",
        "        except (ValueError, TypeError):",
        "            pass",
        "    ",
        "    # Convert string dates to datetime",
        "    try:",
        "        df[col] = pd.to_datetime(df[col])",
        "        continue",
        "    except (ValueError, TypeError):",
        "        pass",
        "    ",
        "    # Clean remaining None/NaN values",
        "    df[col] = df[col].where(pd.notnull(df[col]), None)",
    ]
    
    # Apply filters if specified (with enhanced safety)
    if request.filters:
        filter_conditions = []
        for column, condition in request.filters.items():
            if isinstance(condition, dict):
                if 'min' in condition and 'max' in condition:
                    filter_conditions.append(
                        f"(pd.notna(df['{column}']) & "
                        f"(df['{column}'] >= {condition['min']}) & "
                        f"(df['{column}'] <= {condition['max']})"
                    )
                elif 'values' in condition:
                    values = ', '.join([f"'{v}'" if isinstance(v, str) else str(v) for v in condition['values']])
                    filter_conditions.append(
                        f"(pd.notna(df['{column}'])) & "
                        f"(df['{column}'].isin([{values}]))"
                    )
            else:
                filter_conditions.append(
                    f"(pd.notna(df['{column}'])) & "
                    f"(df['{column}'] == {repr(condition)})"
                )
        
        if filter_conditions:
            code_lines.extend([
                "",
                "# Apply filters with NaN checking",
                f"df = df[{' & '.join(filter_conditions)}].copy()"
            ])
    
    code_lines.extend([
        "",
        "# Visualization setup",
        f"plt.style.use('{valid_style}')",
        f"plt.figure(figsize=(10, 6))"
    ])
    
    # Chart type specific code (unchanged from your original)
    if request.chart_type == "line":
        if request.hue_column:
            code_lines.append(f"sns.lineplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
        else:
            code_lines.append(f"plt.plot(df['{request.x_column}'], df['{request.y_column}'])")
    elif request.chart_type == "bar":
        if request.hue_column:
            code_lines.append(f"sns.barplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
        else:
            code_lines.append(f"plt.bar(df['{request.x_column}'], df['{request.y_column}'])")
    elif request.chart_type == "scatter":
        if request.hue_column:
            code_lines.append(f"sns.scatterplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
        else:
            code_lines.append(f"plt.scatter(df['{request.x_column}'], df['{request.y_column}'])")
    elif request.chart_type == "histogram":
        code_lines.append(f"plt.hist(df['{request.x_column}'].dropna(), bins=20)")  # Added dropna()
    elif request.chart_type == "boxplot":
        if request.hue_column:
            code_lines.append(f"sns.boxplot(data=df.dropna(), x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")  # Added dropna()
        else:
            code_lines.append(f"sns.boxplot(data=df.dropna(), x='{request.x_column}', y='{request.y_column}')")  # Added dropna()
    elif request.chart_type == "heatmap":
        code_lines.append("numeric_df = df.select_dtypes(include=[np.number])")  # Filter numeric only
        code_lines.append("corr = numeric_df.corr()")
        code_lines.append("sns.heatmap(corr, annot=True, cmap='coolwarm')")
    else:
        raise ValueError(f"Unsupported chart type: {request.chart_type}")
    
    # Add labels and title
    if request.title:
        code_lines.append(f"plt.title('{request.title}')")
    if request.x_label:
        code_lines.append(f"plt.xlabel('{request.x_label}')")
    if request.y_label:
        code_lines.append(f"plt.ylabel('{request.y_label}')")
    
    code_lines.extend([
        "plt.tight_layout()",
        "plt.show()"
    ])
    
    return "\n".join(code_lines)

    
    # Determine chart type
    chart_type = "bar"
    if "line" in prompt:
        chart_type = "line"
    elif "scatter" in prompt:
        chart_type = "scatter"
    elif "histogram" in prompt:
        chart_type = "histogram"
    elif "box" in prompt:
        chart_type = "boxplot"
    elif "heatmap" in prompt or "correlation" in prompt:
        chart_type = "heatmap"
    
    # Try to detect columns
    x_col = None
    y_col = None
    hue_col = None
    
    for col in df_columns:
        if col.lower() in prompt:
            if not x_col:
                x_col = col
            elif not y_col:
                y_col = col
            else:
                hue_col = col
    
    # Default to first columns if not detected
    if not x_col and len(df_columns) > 0:
        x_col = df_columns[0]
    if not y_col and len(df_columns) > 1:
        y_col = df_columns[1]
    
    return VisualizationRequest(
        chart_type=chart_type,
        x_column=x_col,
        y_column=y_col,
        hue_column=hue_col,
        title="Generated from: " + prompt[:50] + ("..." if len(prompt) > 50 else ""),
        style="seaborn-v0_8"  # Updated default
    )
from typing import Optional

def interpret_natural_language(prompt: str, df_columns: list) -> Optional[VisualizationRequest]:
    """Fully dynamic prompt interpretation that works with any Excel columns"""
    if not prompt or not df_columns:
        return None

    prompt = prompt.lower().strip()
    col_names = [col.lower() for col in df_columns]
    
    # Initialize with defaults
    chart_type = "bar"
    x_col = None
    y_col = None
    hue_col = None
    
    # Dynamic chart type detection
    if any(word in prompt for word in ["line", "trend", "over time"]):
        chart_type = "line"
    elif any(word in prompt for word in ["scatter", "relationship", "correlat"]):
        chart_type = "scatter"
    elif any(word in prompt for word in ["histogram", "distribut", "frequenc"]):
        chart_type = "histogram"
    elif any(word in prompt for word in ["box", "quartile"]):
        chart_type = "boxplot"
    elif any(word in prompt for word in ["heatmap", "matrix"]):
        chart_type = "heatmap"
    
    # Dynamic column assignment - looks for column names mentioned in prompt
    for col, col_lower in zip(df_columns, col_names):
        if col_lower in prompt:
            # First mentioned column becomes x-axis
            if not x_col:
                x_col = col
            # Second mentioned becomes y-axis (except for histograms)
            elif not y_col and chart_type != "histogram":
                y_col = col
            # Third mentioned could be hue
            elif not hue_col and chart_type in ["bar", "scatter", "line"]:
                hue_col = col
    
    # Smart defaults when columns aren't specified
    if not x_col and df_columns:
        x_col = df_columns[0]  # First column as default x-axis
        
    if not y_col and len(df_columns) > 1 and chart_type != "histogram":
        y_col = df_columns[1]  # Second column as default y-axis
    
    # Special handling for specific chart types
    if chart_type == "heatmap":
        return VisualizationRequest(
            chart_type="heatmap",
            title=f"Heatmap: {prompt[:30]}...",
            style="seaborn-v0_8"
        )
    
    if chart_type == "histogram" and y_col:
        # Histograms only need x-axis
        y_col = None
    
    return VisualizationRequest(
        chart_type=chart_type,
        x_column=x_col,
        y_column=y_col,
        hue_column=hue_col,
        title=f"{chart_type.title()} of {prompt[:30]}...",
        style="seaborn-v0_8"
    )

# ===== DYNAMIC VISUALIZATION FUNCTIONS =====
def read_any_excel(content: bytes) -> pd.DataFrame:
    """Read any Excel file with automatic type detection"""
    try:
        # First read without parsing dates to detect datetime columns
        df = pd.read_excel(
            io.BytesIO(content),
            engine='openpyxl',
            dtype=object,  # Read everything as object initially
            na_values=['', '#N/A', '#VALUE!', '#REF!', 'NULL', 'NA', 'N/A']
        )
        
        # Convert each column to best possible type
        for col in df.columns:
            # First try numeric conversion
            try:
                df[col] = pd.to_numeric(df[col])
                continue
            except (ValueError, TypeError):
                pass
                
            # Then try datetime with explicit format
            try:
                df[col] = pd.to_datetime(df[col], format='mixed')
                continue
            except (ValueError, TypeError):
                pass
                
            # Finally clean strings
            df[col] = df[col].astype(str).str.strip()
            df[col] = df[col].replace(['nan', 'None', 'NaT', ''], None)
        
        return df
    
    except Exception as e:
        logger.error(f"Excel reading failed: {str(e)}")
        raise HTTPException(422, f"Could not process Excel file: {str(e)}")


        
    
    except Exception as e:
        logger.error(f"Excel reading failed: {str(e)}")
        raise HTTPException(422, f"Could not process Excel file: {str(e)}")


def clean_and_convert_data(df: pd.DataFrame) -> pd.DataFrame:
    """
    Clean and convert data types in a DataFrame with proper error handling
    """
    df_clean = df.copy()
    
    for col in df_clean.columns:
        # Try numeric conversion with proper error handling
        try:
            numeric_vals = pd.to_numeric(df_clean[col])
            df_clean[col] = numeric_vals
            continue  # Skip to next column if successful
        except (ValueError, TypeError):
            pass
        
        # Try datetime conversion with format inference
        try:
            # First try ISO format
            datetime_vals = pd.to_datetime(df_clean[col], format='ISO8601')
            df_clean[col] = datetime_vals
            continue
        except (ValueError, TypeError):
            try:
                # Fallback to mixed format
                datetime_vals = pd.to_datetime(df_clean[col], format='mixed')
                df_clean[col] = datetime_vals
                continue
            except (ValueError, TypeError):
                pass
        
        # Clean string columns
        if df_clean[col].dtype == object:
            df_clean[col] = (
                df_clean[col]
                .astype(str)
                .str.strip()
                .replace(['nan', 'None', 'NaT', ''], pd.NA)
            )
    
    return df_clean


    
def is_date_like(s: str) -> bool:
    """Helper to detect date-like strings"""
    date_patterns = [
        r'\d{4}-\d{2}-\d{2}',  # YYYY-MM-DD
        r'\d{2}/\d{2}/\d{4}',   # MM/DD/YYYY
        r'\d{4}/\d{2}/\d{2}',   # YYYY/MM/DD
        r'\d{2}-\d{2}-\d{4}',   # MM-DD-YYYY
        r'\d{1,2}[./-]\d{1,2}[./-]\d{2,4}',  # Various separators
        r'\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}'  # With time
    ]
    return any(re.match(p, s) for p in date_patterns)

def generate_smart_prompt(df: pd.DataFrame) -> str:
    """Generate a sensible default prompt based on data"""
    numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
    date_cols = df.select_dtypes(include=['datetime']).columns.tolist()
    cat_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
    
    if date_cols and numeric_cols:
        return f"Show line chart of {numeric_cols[0]} over time"
    elif len(numeric_cols) >= 2 and cat_cols:
        return f"Compare {numeric_cols[0]} and {numeric_cols[1]} by {cat_cols[0]}"
    elif numeric_cols:
        return f"Show distribution of {numeric_cols[0]}"
    else:
        return "Show data overview"

def generate_dynamic_visualization_code(df: pd.DataFrame, request: VisualizationRequest) -> str:
    """Generate visualization code that adapts to any DataFrame structure"""
    # Validate style
    valid_style = validate_matplotlib_style(request.style)
    
    # Prepare data with type preservation
    data_dict = {}
    type_hints = {}
    
    for col in df.columns:
        if pd.api.types.is_datetime64_any_dtype(df[col]):
            data_dict[col] = df[col].dt.strftime('%Y-%m-%d %H:%M:%S').tolist()
            type_hints[col] = 'datetime'
        elif pd.api.types.is_numeric_dtype(df[col]):
            data_dict[col] = df[col].tolist()
            type_hints[col] = 'numeric'
        else:
            data_dict[col] = df[col].astype(str).tolist()
            type_hints[col] = 'string'
    
    code_lines = [
        "import matplotlib.pyplot as plt",
        "import seaborn as sns",
        "import pandas as pd",
        "import numpy as np",
        "from datetime import datetime",
        "",
        "# Data reconstruction with type handling",
        f"raw_data = {data_dict}",
        "df = pd.DataFrame(raw_data)",
        "",
        "# Type conversion based on detected types"
    ]
    
    # Add type conversion for each column
    for col, col_type in type_hints.items():
        if col_type == 'datetime':
            code_lines.append(
                f"df['{col}'] = pd.to_datetime(df['{col}'], format='%Y-%m-%d %H:%M:%S', errors='ignore')"
            )
        elif col_type == 'numeric':
            code_lines.append(
                f"df['{col}'] = pd.to_numeric(df['{col}'], errors='ignore')"
            )
    
    code_lines.extend([
        "",
        "# Clean missing values",
        "df = df.replace([None, np.nan, 'nan', 'None', 'NaT', ''], None)",
        "df = df.where(pd.notnull(df), None)",
        "",
        "# Visualization setup",
        f"plt.style.use('{valid_style}')",
        f"plt.figure(figsize=(10, 6))"
    ])
    
    # Chart type specific code (from your existing function)
    if request.chart_type == "line":
        if request.hue_column:
            code_lines.append(f"sns.lineplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
        else:
            code_lines.append(f"plt.plot(df['{request.x_column}'], df['{request.y_column}'])")
    elif request.chart_type == "bar":
        if request.hue_column:
            code_lines.append(f"sns.barplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
        else:
            code_lines.append(f"plt.bar(df['{request.x_column}'], df['{request.y_column}'])")
    elif request.chart_type == "scatter":
        if request.hue_column:
            code_lines.append(f"sns.scatterplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
        else:
            code_lines.append(f"plt.scatter(df['{request.x_column}'], df['{request.y_column}'])")
    elif request.chart_type == "histogram":
        code_lines.append(f"plt.hist(df['{request.x_column}'].dropna(), bins=20)")
    elif request.chart_type == "boxplot":
        if request.hue_column:
            code_lines.append(f"sns.boxplot(data=df.dropna(), x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
        else:
            code_lines.append(f"sns.boxplot(data=df.dropna(), x='{request.x_column}', y='{request.y_column}')")
    elif request.chart_type == "heatmap":
        code_lines.append("numeric_df = df.select_dtypes(include=[np.number])")
        code_lines.append("corr = numeric_df.corr()")
        code_lines.append("sns.heatmap(corr, annot=True, cmap='coolwarm')")
    else:
        raise ValueError(f"Unsupported chart type: {request.chart_type}")
    
    # Add labels and title
    if request.title:
        code_lines.append(f"plt.title('{request.title}')")
    if request.x_label:
        code_lines.append(f"plt.xlabel('{request.x_label}')")
    if request.y_label:
        code_lines.append(f"plt.ylabel('{request.y_label}')")
    
    code_lines.extend([
        "plt.tight_layout()",
        "plt.show()"
    ])
    
    return "\n".join(code_lines)




@app.post("/summarize")
@limiter.limit("5/minute")
async def summarize_document(request: Request, file: UploadFile = File(...)):
    try:
        file_ext, content = await process_uploaded_file(file)
        text = extract_text(content, file_ext)
        
        if not text.strip():
            raise HTTPException(400, "No extractable text found")
        
        # Clean and chunk text
        text = re.sub(r'\s+', ' ', text).strip()
        chunks = [text[i:i+1000] for i in range(0, len(text), 1000)]
        
        # Summarize each chunk
        summarizer = get_summarizer()
        summaries = []
        for chunk in chunks:
            summary = summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
            summaries.append(summary)
        
        return {"summary": " ".join(summaries)}
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Summarization failed: {str(e)}")
        raise HTTPException(500, "Document summarization failed")

@app.post("/qa")
@limiter.limit("5/minute")
async def question_answering(
    request: Request,
    file: UploadFile = File(...),
    question: str = Form(...),
    language: str = Form("fr")
):
    try:
        file_ext, content = await process_uploaded_file(file)
        text = extract_text(content, file_ext)
        
        if not text.strip():
            raise HTTPException(400, "No extractable text found")

        # Clean and truncate text
        text = re.sub(r'\s+', ' ', text).strip()[:5000]

        # Theme detection
        theme_keywords = ["thème", "sujet principal", "quoi le sujet", "theme", "main topic"]
        if any(kw in question.lower() for kw in theme_keywords):
            try:
                summarizer = get_summarizer()
                summary_output = summarizer(
                    text,
                    max_length=min(100, len(text)//4),
                    min_length=30,
                    do_sample=False,
                    truncation=True
                )
                
                theme = summary_output[0].get("summary_text", text[:200] + "...")
                return {
                    "question": question,
                    "answer": f"Le document traite principalement de : {theme}",
                    "confidence": 0.95,
                    "language": language
                }
            except Exception:
                theme = text[:200] + ("..." if len(text) > 200 else "")
                return {
                    "question": question,
                    "answer": f"D'après le document : {theme}",
                    "confidence": 0.7,
                    "language": language,
                    "warning": "theme_summary_fallback"
                }

        # Standard QA
        qa = get_qa_model()
        result = qa(question=question, context=text[:3000])
        
        return {
            "question": question,
            "answer": result["answer"],
            "confidence": result["score"],
            "language": language
        }

    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"QA processing failed: {str(e)}")
        raise HTTPException(500, detail=f"Analysis failed: {str(e)}")


     
# [Previous imports remain exactly the same...]
@app.post("/visualize/natural")
async def natural_language_visualization(
    file: UploadFile = File(...),
    prompt: str = Form(""),
    style: str = Form("seaborn-v0_8")
):
    try:
        # Read and validate file
        content = await file.read()
        try:
            df = pd.read_excel(BytesIO(content))
        except Exception as e:
            raise HTTPException(400, detail=f"Invalid Excel file: {str(e)}")

        if df.empty:
            raise HTTPException(400, detail="The uploaded Excel file is empty")

        # Clean and convert data types
        for col in df.columns:
            # Try numeric conversion first
            df[col] = pd.to_numeric(df[col], errors='ignore')
            
            # Then try datetime
            try:
                df[col] = pd.to_datetime(df[col], errors='ignore')
            except:
                pass
            
            # Finally clean strings
            df[col] = df[col].astype(str).str.strip().replace('nan', np.nan)

        # Generate visualization request
        vis_request = interpret_natural_language(prompt, df.columns.tolist())
        if not vis_request:
            raise HTTPException(400, "Could not interpret visualization request")

        # Create visualization
        plt.style.use(style)
        fig, ax = plt.subplots(figsize=(10, 6))

        try:
            if vis_request.chart_type == "heatmap":
                numeric_df = df.select_dtypes(include=['number'])
                if numeric_df.empty:
                    raise ValueError("No numeric columns for heatmap")
                sns.heatmap(numeric_df.corr(), annot=True, ax=ax)
            else:
                # Ensure numeric data for plotting
                plot_data = df.copy()
                if vis_request.x_column:
                    plot_data[vis_request.x_column] = pd.to_numeric(
                        plot_data[vis_request.x_column],
                        errors='coerce'
                    )
                if vis_request.y_column:
                    plot_data[vis_request.y_column] = pd.to_numeric(
                        plot_data[vis_request.y_column],
                        errors='coerce'
                    )
                
                # Remove rows with missing numeric data
                plot_data = plot_data.dropna()
                
                if vis_request.chart_type == "line":
                    sns.lineplot(
                        data=plot_data,
                        x=vis_request.x_column,
                        y=vis_request.y_column,
                        hue=vis_request.hue_column,
                        ax=ax
                    )
                elif vis_request.chart_type == "bar":
                    sns.barplot(
                        data=plot_data,
                        x=vis_request.x_column,
                        y=vis_request.y_column,
                        hue=vis_request.hue_column,
                        ax=ax
                    )
                elif vis_request.chart_type == "scatter":
                    sns.scatterplot(
                        data=plot_data,
                        x=vis_request.x_column,
                        y=vis_request.y_column,
                        hue=vis_request.hue_column,
                        ax=ax
                    )
                # Add other chart types as needed...

            ax.set_title(vis_request.title)
            buf = BytesIO()
            plt.savefig(buf, format='png', bbox_inches='tight')
            plt.close(fig)
            buf.seek(0)
            
            # Generate the visualization code (you'll need to implement this)
            generated_code = generate_visualization_code(df, vis_request)
            
            return {
                "status": "success",
                "image": base64.b64encode(buf.read()).decode('utf-8'),
                "chart_type": vis_request.chart_type,
                "columns": list(df.columns),
                "x_column": vis_request.x_column,
                "y_column": vis_request.y_column,
                "hue_column": vis_request.hue_column,
                "code": generated_code  # Added comma that was missing
            }
            
        except Exception as e:
            raise HTTPException(400, detail=f"Plotting error: {str(e)}")

    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Visualization error: {str(e)}", exc_info=True)
        raise HTTPException(500, detail=f"Server error: {str(e)}")

@app.get("/visualize/styles")
@limiter.limit("10/minute")
async def list_available_styles(request: Request):
    """List all available matplotlib styles"""
    return {"available_styles": plt.style.available}

@app.post("/get_columns")
@limiter.limit("10/minute")
async def get_excel_columns(
    request: Request,
    file: UploadFile = File(...)
):
    try:
        file_ext, content = await process_uploaded_file(file)
        if file_ext not in {"xlsx", "xls"}:
            raise HTTPException(400, "Only Excel files are supported")
        
        df = pd.read_excel(io.BytesIO(content))
        return {
            "columns": list(df.columns),
            "sample_data": df.head().to_dict(orient='records'),
            "statistics": df.describe().to_dict() if len(df.select_dtypes(include=['number']).columns) > 0 else None
        }
    except Exception as e:
        logger.error(f"Column extraction failed: {str(e)}")
        raise HTTPException(500, detail="Failed to extract columns from Excel file")

@app.exception_handler(RateLimitExceeded)
async def rate_limit_exceeded_handler(request: Request, exc: RateLimitExceeded):
    return JSONResponse(
        status_code=429,
        content={"detail": "Too many requests. Please try again later."}
    )
import gradio as gr

# Gradio interface for visualization
def gradio_visualize(file, prompt, style="seaborn-v0_8"):
    # Call your existing FastAPI endpoint
    with open(file.name, "rb") as f:
        response = client.post(
            "/visualize/natural",
            files={"file": f},
            data={"prompt": prompt, "style": style}
        )
    result = response.json()
    
    # Return both image and code
    return (
        result["image"],  # Base64 image
        f"```python\n{result['code']}\n```"  # Code with Markdown formatting
    )

# Create Gradio interface
visualization_interface = gr.Interface(
    fn=gradio_visualize,
    inputs=[
        gr.File(label="Upload Excel File", type="filepath"),
        gr.Textbox(label="Visualization Prompt", placeholder="e.g., 'Show sales by region'"),
        gr.Dropdown(label="Style", choices=plt.style.available, value="seaborn-v0_8")
    ],
    outputs=[
        gr.Image(label="Generated Visualization"),  # Auto-handles base64
        gr.Markdown(label="Generated Code")  # Renders code with syntax highlighting
    ],
    title="📊 Data Visualizer",
    description="Upload an Excel file and describe the visualization you want"
)

# Mount Gradio to your FastAPI app
app = gr.mount_gradio_app(app, visualization_interface, path="/gradio")





# ===== ADD THIS AT THE BOTTOM OF main.py =====
if __name__ == "__main__":
    import uvicorn
    from fastapi.testclient import TestClient
    from io import BytesIO
    import base64
    from PIL import Image
    import matplotlib.pyplot as plt

    # 1. Start the app (or connect to a running instance)
    client = TestClient(app)

    # 2. Test the visualization endpoint
    test_file = "test.xlsx"  # Replace with your test file
    test_prompt = "Show me a bar chart of sales by region"

    # 3. Send request to your own API
    with open(test_file, "rb") as f:
        response = client.post(
            "/visualize/natural",
            files={"file": ("test.xlsx", f, "application/vnd.ms-excel")},
            data={"prompt": test_prompt}
        )

    # 4. Check if successful
    if response.status_code == 200:
        result = response.json()
        print("Visualization generated successfully!")

        # 5. Decode and display the image
        image_data = result["image"].split(",")[1]  # Remove header
        image_bytes = base64.b64decode(image_data)
        image = Image.open(BytesIO(image_bytes))

        plt.imshow(image)
        plt.axis("off")
        plt.show()
    else:
        print(f"Error: {response.status_code}\n{response.text}")

    # 6. Optional: Run the server (if not already running)
    uvicorn.run(app, host="0.0.0.0", port=7860)