Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -17,6 +17,13 @@ from slowapi import Limiter
|
|
17 |
from slowapi.util import get_remote_address
|
18 |
from slowapi.errors import RateLimitExceeded
|
19 |
from slowapi.middleware import SlowAPIMiddleware
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Initialize rate limiter
|
22 |
limiter = Limiter(key_func=get_remote_address)
|
@@ -248,5 +255,161 @@ async def rate_limit_exceeded_handler(request: Request, exc: RateLimitExceeded):
|
|
248 |
content={"detail": "Too many requests. Please try again later."}
|
249 |
)
|
250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
if __name__ == "__main__":
|
252 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
17 |
from slowapi.util import get_remote_address
|
18 |
from slowapi.errors import RateLimitExceeded
|
19 |
from slowapi.middleware import SlowAPIMiddleware
|
20 |
+
import matplotlib.pyplot as plt
|
21 |
+
import seaborn as sns
|
22 |
+
import tempfile
|
23 |
+
import base64
|
24 |
+
from io import BytesIO
|
25 |
+
from typing import Optional
|
26 |
+
from pydantic import BaseModel
|
27 |
|
28 |
# Initialize rate limiter
|
29 |
limiter = Limiter(key_func=get_remote_address)
|
|
|
255 |
content={"detail": "Too many requests. Please try again later."}
|
256 |
)
|
257 |
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
|
262 |
+
# Add this new Pydantic model for visualization requests
|
263 |
+
class VisualizationRequest(BaseModel):
|
264 |
+
chart_type: str
|
265 |
+
x_column: Optional[str] = None
|
266 |
+
y_column: Optional[str] = None
|
267 |
+
hue_column: Optional[str] = None
|
268 |
+
title: Optional[str] = None
|
269 |
+
x_label: Optional[str] = None
|
270 |
+
y_label: Optional[str] = None
|
271 |
+
style: str = "seaborn" # seaborn or matplotlib
|
272 |
+
|
273 |
+
# Add this new function for visualization code generation
|
274 |
+
def generate_visualization(df: pd.DataFrame, request: VisualizationRequest) -> str:
|
275 |
+
"""Generate and execute visualization code based on request"""
|
276 |
+
plt.style.use(request.style)
|
277 |
+
|
278 |
+
code_lines = [
|
279 |
+
"import matplotlib.pyplot as plt",
|
280 |
+
"import seaborn as sns",
|
281 |
+
"import pandas as pd",
|
282 |
+
"",
|
283 |
+
"# Data preparation",
|
284 |
+
f"df = pd.DataFrame({df.head().to_dict()})", # Simplified for demo
|
285 |
+
"",
|
286 |
+
"# Visualization code"
|
287 |
+
]
|
288 |
+
|
289 |
+
if request.chart_type == "line":
|
290 |
+
code_lines.append(f"plt.figure(figsize=(10, 6))")
|
291 |
+
if request.hue_column:
|
292 |
+
code_lines.append(f"sns.lineplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
293 |
+
else:
|
294 |
+
code_lines.append(f"plt.plot(df['{request.x_column}'], df['{request.y_column}'])")
|
295 |
+
elif request.chart_type == "bar":
|
296 |
+
code_lines.append(f"plt.figure(figsize=(10, 6))")
|
297 |
+
if request.hue_column:
|
298 |
+
code_lines.append(f"sns.barplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
299 |
+
else:
|
300 |
+
code_lines.append(f"plt.bar(df['{request.x_column}'], df['{request.y_column}'])")
|
301 |
+
elif request.chart_type == "scatter":
|
302 |
+
code_lines.append(f"plt.figure(figsize=(10, 6))")
|
303 |
+
if request.hue_column:
|
304 |
+
code_lines.append(f"sns.scatterplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
305 |
+
else:
|
306 |
+
code_lines.append(f"plt.scatter(df['{request.x_column}'], df['{request.y_column}'])")
|
307 |
+
elif request.chart_type == "histogram":
|
308 |
+
code_lines.append(f"plt.figure(figsize=(10, 6))")
|
309 |
+
code_lines.append(f"plt.hist(df['{request.x_column}'], bins=20)")
|
310 |
+
else:
|
311 |
+
raise ValueError("Unsupported chart type")
|
312 |
+
|
313 |
+
# Add labels and title
|
314 |
+
if request.title:
|
315 |
+
code_lines.append(f"plt.title('{request.title}')")
|
316 |
+
if request.x_label:
|
317 |
+
code_lines.append(f"plt.xlabel('{request.x_label}')")
|
318 |
+
if request.y_label:
|
319 |
+
code_lines.append(f"plt.ylabel('{request.y_label}')")
|
320 |
+
|
321 |
+
code_lines.append("plt.tight_layout()")
|
322 |
+
code_lines.append("plt.show()")
|
323 |
+
|
324 |
+
return "\n".join(code_lines)
|
325 |
+
|
326 |
+
# Add this new endpoint for visualization
|
327 |
+
@app.post("/visualize")
|
328 |
+
@limiter.limit("5/minute")
|
329 |
+
async def generate_visualization_from_excel(
|
330 |
+
request: Request,
|
331 |
+
file: UploadFile = File(...),
|
332 |
+
chart_type: str = Form(...),
|
333 |
+
x_column: Optional[str] = Form(None),
|
334 |
+
y_column: Optional[str] = Form(None),
|
335 |
+
hue_column: Optional[str] = Form(None),
|
336 |
+
title: Optional[str] = Form(None),
|
337 |
+
x_label: Optional[str] = Form(None),
|
338 |
+
y_label: Optional[str] = Form(None),
|
339 |
+
style: str = Form("seaborn")
|
340 |
+
):
|
341 |
+
try:
|
342 |
+
# Validate file
|
343 |
+
file_ext, content = await validate_file(file)
|
344 |
+
if file_ext not in {"xlsx", "xls"}:
|
345 |
+
raise HTTPException(400, "Only Excel files are supported for visualization")
|
346 |
+
|
347 |
+
# Read Excel file
|
348 |
+
df = pd.read_excel(io.BytesIO(content))
|
349 |
+
|
350 |
+
# Generate visualization request
|
351 |
+
vis_request = VisualizationRequest(
|
352 |
+
chart_type=chart_type,
|
353 |
+
x_column=x_column,
|
354 |
+
y_column=y_column,
|
355 |
+
hue_column=hue_column,
|
356 |
+
title=title,
|
357 |
+
x_label=x_label,
|
358 |
+
y_label=y_label,
|
359 |
+
style=style
|
360 |
+
)
|
361 |
+
|
362 |
+
# Generate and execute the visualization code
|
363 |
+
plt.figure()
|
364 |
+
exec(generate_visualization(df, vis_request), globals(), locals())
|
365 |
+
|
366 |
+
# Save the plot to a temporary file
|
367 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
|
368 |
+
plt.savefig(tmpfile.name, format='png', dpi=300)
|
369 |
+
plt.close()
|
370 |
+
|
371 |
+
# Read the image back as bytes
|
372 |
+
with open(tmpfile.name, "rb") as f:
|
373 |
+
image_bytes = f.read()
|
374 |
+
|
375 |
+
# Encode image as base64
|
376 |
+
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
|
377 |
+
|
378 |
+
return {
|
379 |
+
"status": "success",
|
380 |
+
"image": f"data:image/png;base64,{image_base64}",
|
381 |
+
"code": generate_visualization(df, vis_request)
|
382 |
+
}
|
383 |
+
|
384 |
+
except HTTPException:
|
385 |
+
raise
|
386 |
+
except Exception as e:
|
387 |
+
logger.error(f"Visualization failed: {str(e)}\n{traceback.format_exc()}")
|
388 |
+
raise HTTPException(500, detail=f"Visualization failed: {str(e)}")
|
389 |
+
|
390 |
+
# Add this new endpoint for getting column names
|
391 |
+
@app.post("/get_columns")
|
392 |
+
@limiter.limit("10/minute")
|
393 |
+
async def get_excel_columns(
|
394 |
+
request: Request,
|
395 |
+
file: UploadFile = File(...)
|
396 |
+
):
|
397 |
+
try:
|
398 |
+
file_ext, content = await validate_file(file)
|
399 |
+
if file_ext not in {"xlsx", "xls"}:
|
400 |
+
raise HTTPException(400, "Only Excel files are supported")
|
401 |
+
|
402 |
+
df = pd.read_excel(io.BytesIO(content))
|
403 |
+
return {
|
404 |
+
"columns": list(df.columns),
|
405 |
+
"sample_data": df.head().to_dict(orient='records')
|
406 |
+
}
|
407 |
+
except Exception as e:
|
408 |
+
logger.error(f"Column extraction failed: {str(e)}")
|
409 |
+
raise HTTPException(500, detail="Failed to extract columns from Excel file")
|
410 |
+
|
411 |
+
|
412 |
+
|
413 |
+
|
414 |
if __name__ == "__main__":
|
415 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|