Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,12 +1,8 @@
|
|
1 |
-
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
-
from fastapi.responses import JSONResponse
|
4 |
-
from
|
5 |
-
from
|
6 |
-
from fastapi.templating import Jinja2Templates
|
7 |
-
from transformers import pipeline, Pipeline
|
8 |
-
from typing import Dict, Optional, Tuple, List
|
9 |
-
from pydantic import BaseModel, constr, validator
|
10 |
import io
|
11 |
import fitz # PyMuPDF
|
12 |
from PIL import Image
|
@@ -16,161 +12,66 @@ from docx import Document
|
|
16 |
from pptx import Presentation
|
17 |
import pytesseract
|
18 |
import logging
|
19 |
-
import os
|
20 |
-
from datetime import datetime
|
21 |
-
from pathlib import Path
|
22 |
import re
|
23 |
-
import torch
|
24 |
|
25 |
# Configure logging
|
26 |
logging.basicConfig(level=logging.INFO)
|
27 |
logger = logging.getLogger(__name__)
|
28 |
|
29 |
-
|
30 |
-
app = FastAPI(
|
31 |
-
title="AI Document Analysis API",
|
32 |
-
description="Advanced document processing with multilingual support",
|
33 |
-
version="2.0.0",
|
34 |
-
docs_url="/docs",
|
35 |
-
redoc_url="/redoc"
|
36 |
-
)
|
37 |
|
38 |
-
#
|
39 |
app.add_middleware(
|
40 |
CORSMiddleware,
|
41 |
allow_origins=["*"],
|
42 |
-
allow_credentials=True,
|
43 |
allow_methods=["*"],
|
44 |
allow_headers=["*"],
|
45 |
)
|
46 |
|
47 |
-
# Set up templates
|
48 |
-
templates = Jinja2Templates(directory=str(Path(__file__).parent / "templates"))
|
49 |
-
|
50 |
-
# Serve static files
|
51 |
-
app.mount("/static", StaticFiles(directory="static"), name="static")
|
52 |
-
|
53 |
# Constants
|
54 |
MAX_FILE_SIZE = 10 * 1024 * 1024 # 10MB
|
55 |
-
MAX_TEXT_LENGTH = 2000
|
56 |
-
MAX_QUESTION_LENGTH = 500
|
57 |
-
MIN_QUESTION_LENGTH = 3
|
58 |
-
SUPPORTED_LANGUAGES = {"fr", "en", "es", "de"}
|
59 |
-
DEFAULT_LANGUAGE = "fr"
|
60 |
-
|
61 |
SUPPORTED_FILE_TYPES = {
|
62 |
-
"docx"
|
63 |
-
"xlsx": "Excel Spreadsheet",
|
64 |
-
"pptx": "PowerPoint Presentation",
|
65 |
-
"pdf": "PDF Document",
|
66 |
-
"jpg": "JPEG Image",
|
67 |
-
"jpeg": "JPEG Image",
|
68 |
-
"png": "PNG Image"
|
69 |
-
}
|
70 |
-
|
71 |
-
MODEL_MAPPING = {
|
72 |
-
"fr": {
|
73 |
-
"qa": "illuin/camembert-base-fquad",
|
74 |
-
"summarization": "moussaKam/barthez-orangesum-abstract",
|
75 |
-
"translation": "Helsinki-NLP/opus-mt-fr-en"
|
76 |
-
},
|
77 |
-
"en": {
|
78 |
-
"qa": "deepset/roberta-base-squad2",
|
79 |
-
"summarization": "facebook/bart-large-cnn",
|
80 |
-
"translation": "Helsinki-NLP/opus-mt-en-fr"
|
81 |
-
},
|
82 |
-
"default": {
|
83 |
-
"image_captioning": "Salesforce/blip-image-captioning-large",
|
84 |
-
"multilingual_translation": "facebook/nllb-200-distilled-600M"
|
85 |
-
}
|
86 |
}
|
87 |
|
88 |
-
#
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
status_code: int
|
117 |
-
timestamp: str
|
118 |
-
details: Optional[dict] = None
|
119 |
-
|
120 |
-
# Exception Handler
|
121 |
-
@app.exception_handler(HTTPException)
|
122 |
-
async def http_exception_handler(request: Request, exc: HTTPException):
|
123 |
-
error_response = ErrorResponse(
|
124 |
-
error=exc.detail,
|
125 |
-
status_code=exc.status_code,
|
126 |
-
timestamp=datetime.now().isoformat(),
|
127 |
-
details=getattr(exc, 'details', None)
|
128 |
-
)
|
129 |
-
return JSONResponse(
|
130 |
-
status_code=exc.status_code,
|
131 |
-
content=jsonable_encoder(error_response)
|
132 |
-
)
|
133 |
-
|
134 |
-
# Helper Functions
|
135 |
-
def get_model(model_name: str, task: str) -> Pipeline:
|
136 |
-
"""Get or load a Hugging Face model with caching."""
|
137 |
-
cache_key = f"{model_name}_{task}"
|
138 |
-
if cache_key not in models_cache:
|
139 |
-
try:
|
140 |
-
logger.info(f"Loading model: {model_name} for task: {task}")
|
141 |
-
models_cache[cache_key] = pipeline(task, model=model_name)
|
142 |
-
except Exception as e:
|
143 |
-
logger.error(f"Model loading failed: {str(e)}")
|
144 |
-
raise HTTPException(
|
145 |
-
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
|
146 |
-
detail="Model service unavailable",
|
147 |
-
details={"model": model_name, "error": str(e)}
|
148 |
-
)
|
149 |
-
return models_cache[cache_key]
|
150 |
-
|
151 |
-
async def validate_and_read_file(file: UploadFile) -> Tuple[str, bytes]:
|
152 |
-
"""Validate and read uploaded file."""
|
153 |
-
# Check file extension
|
154 |
-
file_ext = Path(file.filename).suffix[1:].lower()
|
155 |
if file_ext not in SUPPORTED_FILE_TYPES:
|
156 |
-
raise HTTPException(
|
157 |
-
|
158 |
-
detail=f"Unsupported file type. Supported: {', '.join(SUPPORTED_FILE_TYPES.values())}"
|
159 |
-
)
|
160 |
-
|
161 |
-
# Read and check file size
|
162 |
content = await file.read()
|
163 |
if len(content) > MAX_FILE_SIZE:
|
164 |
-
raise HTTPException(
|
165 |
-
|
166 |
-
detail=f"File exceeds maximum size of {MAX_FILE_SIZE//1024//1024}MB"
|
167 |
-
)
|
168 |
-
|
169 |
-
await file.seek(0)
|
170 |
return file_ext, content
|
171 |
|
172 |
def extract_text(content: bytes, file_ext: str) -> str:
|
173 |
-
"""Extract text from various file formats."""
|
174 |
try:
|
175 |
if file_ext == "docx":
|
176 |
doc = Document(io.BytesIO(content))
|
@@ -187,7 +88,12 @@ def extract_text(content: bytes, file_ext: str) -> str:
|
|
187 |
|
188 |
elif file_ext == "pdf":
|
189 |
pdf = fitz.open(stream=content, filetype="pdf")
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
elif file_ext in {"jpg", "jpeg", "png"}:
|
193 |
image = Image.open(io.BytesIO(content))
|
@@ -195,209 +101,81 @@ def extract_text(content: bytes, file_ext: str) -> str:
|
|
195 |
|
196 |
except Exception as e:
|
197 |
logger.error(f"Text extraction failed: {str(e)}")
|
198 |
-
raise HTTPException(
|
199 |
-
status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
|
200 |
-
detail="Failed to extract text from file",
|
201 |
-
details={"error": str(e), "file_type": file_ext}
|
202 |
-
)
|
203 |
-
|
204 |
-
def preprocess_text(text: str) -> str:
|
205 |
-
"""Clean and normalize extracted text."""
|
206 |
-
text = re.sub(r'\s+', ' ', text).strip()
|
207 |
-
return text[:MAX_TEXT_LENGTH] if len(text) > MAX_TEXT_LENGTH else text
|
208 |
-
|
209 |
-
def chunk_text(text: str, chunk_size: int = 1000) -> List[str]:
|
210 |
-
"""Split text into chunks for processing."""
|
211 |
-
return [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
|
212 |
-
|
213 |
-
# API Endpoints
|
214 |
-
@app.get("/", response_class=HTMLResponse)
|
215 |
-
async def home(request: Request):
|
216 |
-
return templates.TemplateResponse("index.html", {"request": request})
|
217 |
-
|
218 |
-
@app.get("/health")
|
219 |
-
async def health_check():
|
220 |
-
return {"status": "healthy", "timestamp": datetime.now().isoformat()}
|
221 |
|
222 |
@app.post("/summarize")
|
223 |
async def summarize_document(file: UploadFile = File(...)):
|
224 |
try:
|
225 |
-
file_ext, content = await
|
226 |
-
text =
|
227 |
|
228 |
if not text.strip():
|
229 |
-
raise HTTPException(
|
230 |
-
status_code=status.HTTP_400_BAD_REQUEST,
|
231 |
-
detail="No extractable text found in document"
|
232 |
-
)
|
233 |
-
|
234 |
-
model_name = MODEL_MAPPING.get("en", {}).get("summarization", "facebook/bart-large-cnn")
|
235 |
-
summarizer = get_model(model_name, "summarization")
|
236 |
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
238 |
summaries = []
|
239 |
for chunk in chunks:
|
240 |
summary = summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
|
241 |
summaries.append(summary)
|
242 |
|
243 |
-
return {
|
244 |
-
|
245 |
-
"summary": " ".join(summaries),
|
246 |
-
"language": "en",
|
247 |
-
"processed_chunks": len(chunks)
|
248 |
-
}
|
249 |
except HTTPException:
|
250 |
raise
|
251 |
except Exception as e:
|
252 |
logger.error(f"Summarization failed: {str(e)}")
|
253 |
-
raise HTTPException(
|
254 |
-
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
255 |
-
detail="Document summarization failed",
|
256 |
-
details={"error": str(e)}
|
257 |
-
)
|
258 |
|
259 |
@app.post("/qa")
|
260 |
async def question_answering(
|
261 |
file: UploadFile = File(...),
|
262 |
question: str = Form(...),
|
263 |
-
language: str = Form(
|
264 |
):
|
265 |
try:
|
266 |
-
file_ext, content = await
|
267 |
-
text =
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
"fr": ["thème", "sujet principal", "quoi le sujet"],
|
272 |
-
"en": ["theme", "main topic", "what is about"]
|
273 |
-
}
|
274 |
|
275 |
-
|
276 |
-
|
277 |
-
for kw in theme_keywords.get(language, theme_keywords["en"])
|
278 |
-
)
|
279 |
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
theme_prompt = (
|
287 |
-
"Extract the main theme of this text in 1-2 sentences. "
|
288 |
-
"Respond as if explaining to a beginner. "
|
289 |
-
"Text: {text}"
|
290 |
-
)
|
291 |
-
|
292 |
-
response = generator(
|
293 |
-
theme_prompt.format(text=text[:2000]),
|
294 |
-
max_length=200,
|
295 |
-
num_return_sequences=1,
|
296 |
-
do_sample=False
|
297 |
-
)
|
298 |
-
|
299 |
-
theme = response[0]["generated_text"].split(":")[-1].strip()
|
300 |
-
theme = re.sub(r"^(Le|La)\s+", "", theme)
|
301 |
-
|
302 |
return {
|
303 |
"question": question,
|
304 |
-
"answer": f"
|
305 |
"confidence": 0.95,
|
306 |
-
"language": language
|
307 |
-
"processing_method": "theme_analysis",
|
308 |
-
"success": True
|
309 |
}
|
310 |
|
311 |
# Standard QA processing
|
312 |
-
|
313 |
-
|
314 |
-
model_name = MODEL_MAPPING["default"].get("qa")
|
315 |
-
|
316 |
-
qa_model = get_model(model_name, "question-answering")
|
317 |
-
result = qa_model(question=question, context=text)
|
318 |
-
|
319 |
-
if result["score"] < 0.1:
|
320 |
-
return {
|
321 |
-
"question": question,
|
322 |
-
"answer": "No clear answer found in the document" if language == "en" else "Aucune réponse claire trouvée dans le document",
|
323 |
-
"confidence": result["score"],
|
324 |
-
"language": language,
|
325 |
-
"warning": "low_confidence",
|
326 |
-
"success": True
|
327 |
-
}
|
328 |
|
329 |
return {
|
330 |
"question": question,
|
331 |
"answer": result["answer"],
|
332 |
"confidence": result["score"],
|
333 |
-
"language": language
|
334 |
-
"success": True
|
335 |
}
|
336 |
|
337 |
except HTTPException:
|
338 |
raise
|
339 |
except Exception as e:
|
340 |
logger.error(f"QA processing failed: {str(e)}")
|
341 |
-
raise HTTPException(
|
342 |
-
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
343 |
-
detail="Document analysis failed",
|
344 |
-
details={"error": str(e)}
|
345 |
-
)
|
346 |
-
|
347 |
-
@app.post("/api/caption")
|
348 |
-
async def caption_image(file: UploadFile = File(...)):
|
349 |
-
try:
|
350 |
-
file_ext, content = await validate_and_read_file(file)
|
351 |
-
if file_ext not in {"jpg", "jpeg", "png"}:
|
352 |
-
raise HTTPException(
|
353 |
-
status_code=status.HTTP_400_BAD_REQUEST,
|
354 |
-
detail="Only image files are supported for captioning"
|
355 |
-
)
|
356 |
-
|
357 |
-
image = Image.open(io.BytesIO(content)).convert("RGB")
|
358 |
-
captioner = get_model(MODEL_MAPPING["default"]["image_captioning"], "image-to-text")
|
359 |
-
caption = captioner(image)[0]['generated_text']
|
360 |
-
|
361 |
-
return {
|
362 |
-
"success": True,
|
363 |
-
"caption": caption,
|
364 |
-
"file_type": file_ext
|
365 |
-
}
|
366 |
-
except HTTPException:
|
367 |
-
raise
|
368 |
-
except Exception as e:
|
369 |
-
logger.error(f"Image captioning failed: {str(e)}")
|
370 |
-
raise HTTPException(
|
371 |
-
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
372 |
-
detail="Image captioning failed",
|
373 |
-
details={"error": str(e)}
|
374 |
-
)
|
375 |
-
|
376 |
-
@app.post("/translate")
|
377 |
-
async def translate_text(
|
378 |
-
text: str = Form(...),
|
379 |
-
target_lang: str = Form(...),
|
380 |
-
src_lang: str = Form("eng_Latn")
|
381 |
-
):
|
382 |
-
try:
|
383 |
-
translator = get_model(MODEL_MAPPING["default"]["multilingual_translation"], "translation")
|
384 |
-
translated = translator(text, src_lang=src_lang, tgt_lang=target_lang)
|
385 |
-
|
386 |
-
return {
|
387 |
-
"success": True,
|
388 |
-
"translated_text": translated[0]["translation_text"],
|
389 |
-
"source_language": src_lang,
|
390 |
-
"target_language": target_lang
|
391 |
-
}
|
392 |
-
except Exception as e:
|
393 |
-
logger.error(f"Translation failed: {str(e)}")
|
394 |
-
raise HTTPException(
|
395 |
-
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
396 |
-
detail="Text translation failed",
|
397 |
-
details={"error": str(e)}
|
398 |
-
)
|
399 |
|
400 |
-
# Run the application
|
401 |
if __name__ == "__main__":
|
402 |
-
|
403 |
-
uvicorn.run("app:app", host="0.0.0.0", port=port, reload=False)
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from fastapi.responses import JSONResponse
|
4 |
+
from transformers import pipeline
|
5 |
+
from typing import Optional
|
|
|
|
|
|
|
|
|
6 |
import io
|
7 |
import fitz # PyMuPDF
|
8 |
from PIL import Image
|
|
|
12 |
from pptx import Presentation
|
13 |
import pytesseract
|
14 |
import logging
|
|
|
|
|
|
|
15 |
import re
|
|
|
16 |
|
17 |
# Configure logging
|
18 |
logging.basicConfig(level=logging.INFO)
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
21 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# CORS Configuration
|
24 |
app.add_middleware(
|
25 |
CORSMiddleware,
|
26 |
allow_origins=["*"],
|
|
|
27 |
allow_methods=["*"],
|
28 |
allow_headers=["*"],
|
29 |
)
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# Constants
|
32 |
MAX_FILE_SIZE = 10 * 1024 * 1024 # 10MB
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
SUPPORTED_FILE_TYPES = {
|
34 |
+
"docx", "xlsx", "pptx", "pdf", "jpg", "jpeg", "png"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
}
|
36 |
|
37 |
+
# Model caching
|
38 |
+
summarizer = None
|
39 |
+
qa_model = None
|
40 |
+
image_captioner = None
|
41 |
+
|
42 |
+
def get_summarizer():
|
43 |
+
global summarizer
|
44 |
+
if summarizer is None:
|
45 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
46 |
+
return summarizer
|
47 |
+
|
48 |
+
def get_qa_model():
|
49 |
+
global qa_model
|
50 |
+
if qa_model is None:
|
51 |
+
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
52 |
+
return qa_model
|
53 |
+
|
54 |
+
def get_image_captioner():
|
55 |
+
global image_captioner
|
56 |
+
if image_captioner is None:
|
57 |
+
image_captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
58 |
+
return image_captioner
|
59 |
+
|
60 |
+
async def process_uploaded_file(file: UploadFile):
|
61 |
+
if not file.filename:
|
62 |
+
raise HTTPException(400, "No file provided")
|
63 |
+
|
64 |
+
file_ext = file.filename.split('.')[-1].lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
if file_ext not in SUPPORTED_FILE_TYPES:
|
66 |
+
raise HTTPException(400, f"Unsupported file type. Supported: {', '.join(SUPPORTED_FILE_TYPES)}")
|
67 |
+
|
|
|
|
|
|
|
|
|
68 |
content = await file.read()
|
69 |
if len(content) > MAX_FILE_SIZE:
|
70 |
+
raise HTTPException(413, f"File too large. Max size: {MAX_FILE_SIZE//1024//1024}MB")
|
71 |
+
|
|
|
|
|
|
|
|
|
72 |
return file_ext, content
|
73 |
|
74 |
def extract_text(content: bytes, file_ext: str) -> str:
|
|
|
75 |
try:
|
76 |
if file_ext == "docx":
|
77 |
doc = Document(io.BytesIO(content))
|
|
|
88 |
|
89 |
elif file_ext == "pdf":
|
90 |
pdf = fitz.open(stream=content, filetype="pdf")
|
91 |
+
text = []
|
92 |
+
for page in pdf:
|
93 |
+
page_text = page.get_text("text")
|
94 |
+
if page_text.strip():
|
95 |
+
text.append(page_text)
|
96 |
+
return " ".join(text)
|
97 |
|
98 |
elif file_ext in {"jpg", "jpeg", "png"}:
|
99 |
image = Image.open(io.BytesIO(content))
|
|
|
101 |
|
102 |
except Exception as e:
|
103 |
logger.error(f"Text extraction failed: {str(e)}")
|
104 |
+
raise HTTPException(422, f"Failed to extract text from {file_ext} file")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
@app.post("/summarize")
|
107 |
async def summarize_document(file: UploadFile = File(...)):
|
108 |
try:
|
109 |
+
file_ext, content = await process_uploaded_file(file)
|
110 |
+
text = extract_text(content, file_ext)
|
111 |
|
112 |
if not text.strip():
|
113 |
+
raise HTTPException(400, "No extractable text found")
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
# Clean and chunk text
|
116 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
117 |
+
chunks = [text[i:i+1000] for i in range(0, len(text), 1000)]
|
118 |
+
|
119 |
+
# Summarize each chunk
|
120 |
+
summarizer = get_summarizer()
|
121 |
summaries = []
|
122 |
for chunk in chunks:
|
123 |
summary = summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
|
124 |
summaries.append(summary)
|
125 |
|
126 |
+
return {"summary": " ".join(summaries)}
|
127 |
+
|
|
|
|
|
|
|
|
|
128 |
except HTTPException:
|
129 |
raise
|
130 |
except Exception as e:
|
131 |
logger.error(f"Summarization failed: {str(e)}")
|
132 |
+
raise HTTPException(500, "Document summarization failed")
|
|
|
|
|
|
|
|
|
133 |
|
134 |
@app.post("/qa")
|
135 |
async def question_answering(
|
136 |
file: UploadFile = File(...),
|
137 |
question: str = Form(...),
|
138 |
+
language: str = Form("fr")
|
139 |
):
|
140 |
try:
|
141 |
+
file_ext, content = await process_uploaded_file(file)
|
142 |
+
text = extract_text(content, file_ext)
|
143 |
|
144 |
+
if not text.strip():
|
145 |
+
raise HTTPException(400, "No extractable text found")
|
|
|
|
|
|
|
146 |
|
147 |
+
# Clean text
|
148 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
|
|
|
|
149 |
|
150 |
+
# Handle theme questions
|
151 |
+
theme_keywords = ["thème", "sujet principal", "quoi le sujet", "theme", "main topic"]
|
152 |
+
if any(kw in question.lower() for kw in theme_keywords):
|
153 |
+
# Use summarization for theme detection
|
154 |
+
summarizer = get_summarizer()
|
155 |
+
theme = summarizer(text, max_length=100, min_length=30, do_sample=False)[0]["summary_text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
return {
|
157 |
"question": question,
|
158 |
+
"answer": f"Le document traite principalement de : {theme}",
|
159 |
"confidence": 0.95,
|
160 |
+
"language": language
|
|
|
|
|
161 |
}
|
162 |
|
163 |
# Standard QA processing
|
164 |
+
qa = get_qa_model()
|
165 |
+
result = qa(question=question, context=text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
return {
|
168 |
"question": question,
|
169 |
"answer": result["answer"],
|
170 |
"confidence": result["score"],
|
171 |
+
"language": language
|
|
|
172 |
}
|
173 |
|
174 |
except HTTPException:
|
175 |
raise
|
176 |
except Exception as e:
|
177 |
logger.error(f"QA processing failed: {str(e)}")
|
178 |
+
raise HTTPException(500, "Document analysis failed")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
|
|
180 |
if __name__ == "__main__":
|
181 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|