Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,28 +1,45 @@
|
|
1 |
-
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
|
|
2 |
from fastapi.responses import JSONResponse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from slowapi import Limiter
|
4 |
from slowapi.util import get_remote_address
|
5 |
from slowapi.errors import RateLimitExceeded
|
6 |
-
from
|
7 |
-
from starlette.requests import Request
|
8 |
-
|
9 |
-
import pytesseract
|
10 |
-
from PIL import Image
|
11 |
-
import fitz # PyMuPDF
|
12 |
-
import docx
|
13 |
-
import pptx
|
14 |
-
import pandas as pd
|
15 |
-
import io
|
16 |
-
|
17 |
-
from transformers import pipeline
|
18 |
import matplotlib.pyplot as plt
|
19 |
import seaborn as sns
|
20 |
-
import
|
21 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
app = FastAPI()
|
24 |
|
25 |
-
#
|
|
|
|
|
|
|
|
|
26 |
app.add_middleware(
|
27 |
CORSMiddleware,
|
28 |
allow_origins=["*"],
|
@@ -30,124 +47,515 @@ app.add_middleware(
|
|
30 |
allow_headers=["*"],
|
31 |
)
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
return pytesseract.image_to_string(img)
|
77 |
-
|
78 |
-
def extract_data_from_excel(file_bytes: bytes) -> pd.DataFrame:
|
79 |
-
return pd.read_excel(io.BytesIO(file_bytes))
|
80 |
-
|
81 |
-
# --- API Endpoints ---
|
82 |
-
@app.post("/process/")
|
83 |
-
@limiter.limit("10/minute")
|
84 |
-
async def process_file(
|
85 |
request: Request,
|
86 |
file: UploadFile = File(...),
|
87 |
-
|
88 |
-
|
89 |
):
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
text = extract_text_from_pdf(file_bytes)
|
97 |
-
elif content_type in ["application/vnd.openxmlformats-officedocument.wordprocessingml.document"]:
|
98 |
-
text = extract_text_from_docx(file_bytes)
|
99 |
-
elif content_type in ["application/vnd.openxmlformats-officedocument.presentationml.presentation"]:
|
100 |
-
text = extract_text_from_pptx(file_bytes)
|
101 |
-
elif content_type in ["image/png", "image/jpeg"]:
|
102 |
-
text = extract_text_from_image(file_bytes)
|
103 |
-
else:
|
104 |
-
raise HTTPException(status_code=400, detail="Unsupported file format for this task.")
|
105 |
-
|
106 |
-
if task == "summarization":
|
107 |
-
summary = summarizer(text[:3000])[0]["summary_text"] # truncate long text
|
108 |
-
return {"summary": summary}
|
109 |
-
|
110 |
-
if task == "question_answering":
|
111 |
-
if not question:
|
112 |
-
raise HTTPException(status_code=400, detail="Question is required for QA.")
|
113 |
-
answer = qa_pipeline(question=question, context=text)
|
114 |
-
return {"answer": answer["answer"]}
|
115 |
-
|
116 |
-
# --- Task: Image Captioning ---
|
117 |
-
elif task == "captioning":
|
118 |
-
if content_type not in ["image/png", "image/jpeg"]:
|
119 |
-
raise HTTPException(status_code=400, detail="Only image files supported for captioning.")
|
120 |
-
image_path = save_temp_image(file)
|
121 |
-
caption = image_captioner(image_path)[0]["generated_text"]
|
122 |
-
os.remove(image_path)
|
123 |
-
return {"caption": caption}
|
124 |
-
|
125 |
-
# --- Task: Data Visualization ---
|
126 |
-
elif task == "visualization":
|
127 |
-
if content_type != "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
|
128 |
-
raise HTTPException(status_code=400, detail="Only Excel files supported for visualization.")
|
129 |
-
df = extract_data_from_excel(file_bytes)
|
130 |
-
|
131 |
-
if df.empty:
|
132 |
-
raise HTTPException(status_code=400, detail="No data found in Excel file.")
|
133 |
-
|
134 |
-
# Example visualization: correlation heatmap
|
135 |
-
numeric_df = df.select_dtypes(include="number")
|
136 |
-
if numeric_df.empty:
|
137 |
-
raise HTTPException(status_code=400, detail="No numeric data available for visualization.")
|
138 |
-
|
139 |
-
plt.figure(figsize=(10, 6))
|
140 |
-
sns.heatmap(numeric_df.corr(), annot=True, cmap="coolwarm")
|
141 |
-
viz_path = f"temp/viz_{uuid.uuid4().hex}.png"
|
142 |
-
plt.savefig(viz_path)
|
143 |
-
plt.close()
|
144 |
-
|
145 |
-
with open(viz_path, "rb") as img_file:
|
146 |
-
img_bytes = img_file.read()
|
147 |
-
os.remove(viz_path)
|
148 |
-
|
149 |
-
return JSONResponse(content={"image_bytes": list(img_bytes)})
|
150 |
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, Request
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from fastapi.responses import JSONResponse
|
4 |
+
from transformers import pipeline
|
5 |
+
from typing import Tuple, Optional
|
6 |
+
import io
|
7 |
+
import fitz # PyMuPDF
|
8 |
+
from PIL import Image
|
9 |
+
import pandas as pd
|
10 |
+
import uvicorn
|
11 |
+
from docx import Document
|
12 |
+
from pptx import Presentation
|
13 |
+
import pytesseract
|
14 |
+
import logging
|
15 |
+
import re
|
16 |
from slowapi import Limiter
|
17 |
from slowapi.util import get_remote_address
|
18 |
from slowapi.errors import RateLimitExceeded
|
19 |
+
from slowapi.middleware import SlowAPIMiddleware
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
import matplotlib.pyplot as plt
|
21 |
import seaborn as sns
|
22 |
+
import tempfile
|
23 |
+
import base64
|
24 |
+
from io import BytesIO
|
25 |
+
from pydantic import BaseModel
|
26 |
+
import traceback
|
27 |
+
import ast
|
28 |
+
|
29 |
+
# Initialize rate limiter
|
30 |
+
limiter = Limiter(key_func=get_remote_address)
|
31 |
+
|
32 |
+
# Configure logging
|
33 |
+
logging.basicConfig(level=logging.INFO)
|
34 |
+
logger = logging.getLogger(__name__)
|
35 |
|
36 |
app = FastAPI()
|
37 |
|
38 |
+
# Apply rate limiting middleware
|
39 |
+
app.state.limiter = limiter
|
40 |
+
app.add_middleware(SlowAPIMiddleware)
|
41 |
+
|
42 |
+
# CORS Configuration
|
43 |
app.add_middleware(
|
44 |
CORSMiddleware,
|
45 |
allow_origins=["*"],
|
|
|
47 |
allow_headers=["*"],
|
48 |
)
|
49 |
|
50 |
+
# Constants
|
51 |
+
MAX_FILE_SIZE = 10 * 1024 * 1024 # 10MB
|
52 |
+
SUPPORTED_FILE_TYPES = {
|
53 |
+
"docx", "xlsx", "pptx", "pdf", "jpg", "jpeg", "png"
|
54 |
+
}
|
55 |
|
56 |
+
# Model caching
|
57 |
+
summarizer = None
|
58 |
+
qa_model = None
|
59 |
+
image_captioner = None
|
60 |
+
|
61 |
+
def get_summarizer():
|
62 |
+
global summarizer
|
63 |
+
if summarizer is None:
|
64 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
65 |
+
return summarizer
|
66 |
+
|
67 |
+
def get_qa_model():
|
68 |
+
global qa_model
|
69 |
+
if qa_model is None:
|
70 |
+
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
71 |
+
return qa_model
|
72 |
+
|
73 |
+
def get_image_captioner():
|
74 |
+
global image_captioner
|
75 |
+
if image_captioner is None:
|
76 |
+
image_captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
77 |
+
return image_captioner
|
78 |
+
|
79 |
+
async def process_uploaded_file(file: UploadFile) -> Tuple[str, bytes]:
|
80 |
+
"""Validate and process uploaded file with special handling for each type"""
|
81 |
+
if not file.filename:
|
82 |
+
raise HTTPException(400, "No filename provided")
|
83 |
+
|
84 |
+
file_ext = file.filename.split('.')[-1].lower()
|
85 |
+
if file_ext not in SUPPORTED_FILE_TYPES:
|
86 |
+
raise HTTPException(400, f"Unsupported file type. Supported: {', '.join(SUPPORTED_FILE_TYPES)}")
|
87 |
+
|
88 |
+
content = await file.read()
|
89 |
+
if len(content) > MAX_FILE_SIZE:
|
90 |
+
raise HTTPException(413, f"File too large. Max size: {MAX_FILE_SIZE//1024//1024}MB")
|
91 |
+
|
92 |
+
# Special validation for PDFs
|
93 |
+
if file_ext == "pdf":
|
94 |
+
try:
|
95 |
+
with fitz.open(stream=content, filetype="pdf") as doc:
|
96 |
+
if doc.is_encrypted:
|
97 |
+
if not doc.authenticate(""):
|
98 |
+
raise ValueError("Encrypted PDF - cannot extract text")
|
99 |
+
if len(doc) > 50:
|
100 |
+
raise ValueError("PDF too large (max 50 pages)")
|
101 |
+
except Exception as e:
|
102 |
+
logger.error(f"PDF validation failed: {str(e)}")
|
103 |
+
raise HTTPException(422, detail=f"Invalid PDF file: {str(e)}")
|
104 |
+
|
105 |
+
await file.seek(0) # Reset file pointer for processing
|
106 |
+
return file_ext, content
|
107 |
+
|
108 |
+
def extract_text(content: bytes, file_ext: str) -> str:
|
109 |
+
"""Extract text from various file formats with enhanced support"""
|
110 |
+
try:
|
111 |
+
if file_ext == "docx":
|
112 |
+
doc = Document(io.BytesIO(content))
|
113 |
+
return "\n".join(para.text for para in doc.paragraphs if para.text.strip())
|
114 |
+
|
115 |
+
elif file_ext in {"xlsx", "xls"}:
|
116 |
+
df = pd.read_excel(io.BytesIO(content), sheet_name=None)
|
117 |
+
all_text = []
|
118 |
+
for sheet_name, sheet_data in df.items():
|
119 |
+
sheet_text = []
|
120 |
+
for column in sheet_data.columns:
|
121 |
+
sheet_text.extend(sheet_data[column].dropna().astype(str).tolist())
|
122 |
+
all_text.append(f"Sheet: {sheet_name}\n" + "\n".join(sheet_text))
|
123 |
+
return "\n\n".join(all_text)
|
124 |
+
|
125 |
+
elif file_ext == "pptx":
|
126 |
+
ppt = Presentation(io.BytesIO(content))
|
127 |
+
text = []
|
128 |
+
for slide in ppt.slides:
|
129 |
+
for shape in slide.shapes:
|
130 |
+
if hasattr(shape, "text") and shape.text.strip():
|
131 |
+
text.append(shape.text)
|
132 |
+
return "\n".join(text)
|
133 |
+
|
134 |
+
elif file_ext == "pdf":
|
135 |
+
pdf = fitz.open(stream=content, filetype="pdf")
|
136 |
+
return "\n".join(page.get_text("text") for page in pdf)
|
137 |
+
|
138 |
+
elif file_ext in {"jpg", "jpeg", "png"}:
|
139 |
+
# First try OCR
|
140 |
+
try:
|
141 |
+
image = Image.open(io.BytesIO(content))
|
142 |
+
text = pytesseract.image_to_string(image, config='--psm 6')
|
143 |
+
if text.strip():
|
144 |
+
return text
|
145 |
+
|
146 |
+
# If OCR fails, try image captioning
|
147 |
+
captioner = get_image_captioner()
|
148 |
+
result = captioner(image)
|
149 |
+
return result[0]['generated_text']
|
150 |
+
except Exception as img_e:
|
151 |
+
logger.error(f"Image processing failed: {str(img_e)}")
|
152 |
+
raise ValueError("Could not extract text or caption from image")
|
153 |
+
|
154 |
+
except Exception as e:
|
155 |
+
logger.error(f"Text extraction failed for {file_ext}: {str(e)}")
|
156 |
+
raise HTTPException(422, f"Failed to extract text from {file_ext} file")
|
157 |
+
|
158 |
+
# Visualization Models
|
159 |
+
class VisualizationRequest(BaseModel):
|
160 |
+
chart_type: str
|
161 |
+
x_column: Optional[str] = None
|
162 |
+
y_column: Optional[str] = None
|
163 |
+
hue_column: Optional[str] = None
|
164 |
+
title: Optional[str] = None
|
165 |
+
x_label: Optional[str] = None
|
166 |
+
y_label: Optional[str] = None
|
167 |
+
style: str = "seaborn"
|
168 |
+
filters: Optional[dict] = None
|
169 |
+
|
170 |
+
class NaturalLanguageRequest(BaseModel):
|
171 |
+
prompt: str
|
172 |
+
style: str = "seaborn"
|
173 |
+
|
174 |
+
def generate_visualization_code(df: pd.DataFrame, request: VisualizationRequest) -> str:
|
175 |
+
"""Generate Python code for visualization based on request parameters"""
|
176 |
+
code_lines = [
|
177 |
+
"import matplotlib.pyplot as plt",
|
178 |
+
"import seaborn as sns",
|
179 |
+
"import pandas as pd",
|
180 |
+
"",
|
181 |
+
"# Data preparation",
|
182 |
+
f"df = pd.DataFrame({df.to_dict(orient='list')})",
|
183 |
+
]
|
184 |
+
|
185 |
+
# Apply filters if specified
|
186 |
+
if request.filters:
|
187 |
+
filter_conditions = []
|
188 |
+
for column, condition in request.filters.items():
|
189 |
+
if isinstance(condition, dict):
|
190 |
+
if 'min' in condition and 'max' in condition:
|
191 |
+
filter_conditions.append(f"(df['{column}'] >= {condition['min']}) & (df['{column}'] <= {condition['max']})")
|
192 |
+
elif 'values' in condition:
|
193 |
+
values = ', '.join([f"'{v}'" if isinstance(v, str) else str(v) for v in condition['values']])
|
194 |
+
filter_conditions.append(f"df['{column}'].isin([{values}])")
|
195 |
+
else:
|
196 |
+
filter_conditions.append(f"df['{column}'] == {repr(condition)}")
|
197 |
+
|
198 |
+
if filter_conditions:
|
199 |
+
code_lines.extend([
|
200 |
+
"",
|
201 |
+
"# Apply filters",
|
202 |
+
f"df = df[{' & '.join(filter_conditions)}]"
|
203 |
+
])
|
204 |
+
|
205 |
+
code_lines.extend([
|
206 |
+
"",
|
207 |
+
"# Visualization",
|
208 |
+
f"plt.style.use('{request.style}')",
|
209 |
+
f"plt.figure(figsize=(10, 6))"
|
210 |
+
])
|
211 |
+
|
212 |
+
# Chart type specific code
|
213 |
+
if request.chart_type == "line":
|
214 |
+
if request.hue_column:
|
215 |
+
code_lines.append(f"sns.lineplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
216 |
+
else:
|
217 |
+
code_lines.append(f"plt.plot(df['{request.x_column}'], df['{request.y_column}'])")
|
218 |
+
elif request.chart_type == "bar":
|
219 |
+
if request.hue_column:
|
220 |
+
code_lines.append(f"sns.barplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
221 |
+
else:
|
222 |
+
code_lines.append(f"plt.bar(df['{request.x_column}'], df['{request.y_column}'])")
|
223 |
+
elif request.chart_type == "scatter":
|
224 |
+
if request.hue_column:
|
225 |
+
code_lines.append(f"sns.scatterplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
226 |
+
else:
|
227 |
+
code_lines.append(f"plt.scatter(df['{request.x_column}'], df['{request.y_column}'])")
|
228 |
+
elif request.chart_type == "histogram":
|
229 |
+
code_lines.append(f"plt.hist(df['{request.x_column}'], bins=20)")
|
230 |
+
elif request.chart_type == "boxplot":
|
231 |
+
if request.hue_column:
|
232 |
+
code_lines.append(f"sns.boxplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
233 |
+
else:
|
234 |
+
code_lines.append(f"sns.boxplot(data=df, x='{request.x_column}', y='{request.y_column}')")
|
235 |
+
elif request.chart_type == "heatmap":
|
236 |
+
code_lines.append(f"corr = df.corr()")
|
237 |
+
code_lines.append(f"sns.heatmap(corr, annot=True, cmap='coolwarm')")
|
238 |
+
else:
|
239 |
+
raise ValueError(f"Unsupported chart type: {request.chart_type}")
|
240 |
+
|
241 |
+
# Add labels and title
|
242 |
+
if request.title:
|
243 |
+
code_lines.append(f"plt.title('{request.title}')")
|
244 |
+
if request.x_label:
|
245 |
+
code_lines.append(f"plt.xlabel('{request.x_label}')")
|
246 |
+
if request.y_label:
|
247 |
+
code_lines.append(f"plt.ylabel('{request.y_label}')")
|
248 |
+
|
249 |
+
code_lines.extend([
|
250 |
+
"plt.tight_layout()",
|
251 |
+
"plt.show()"
|
252 |
+
])
|
253 |
+
|
254 |
+
return "\n".join(code_lines)
|
255 |
+
|
256 |
+
def interpret_natural_language(prompt: str, df_columns: list) -> VisualizationRequest:
|
257 |
+
"""Convert natural language prompt to visualization parameters"""
|
258 |
+
# Simple keyword-based interpretation (could be enhanced with NLP)
|
259 |
+
prompt = prompt.lower()
|
260 |
+
|
261 |
+
# Determine chart type
|
262 |
+
chart_type = "bar"
|
263 |
+
if "line" in prompt:
|
264 |
+
chart_type = "line"
|
265 |
+
elif "scatter" in prompt:
|
266 |
+
chart_type = "scatter"
|
267 |
+
elif "histogram" in prompt:
|
268 |
+
chart_type = "histogram"
|
269 |
+
elif "box" in prompt:
|
270 |
+
chart_type = "boxplot"
|
271 |
+
elif "heatmap" in prompt or "correlation" in prompt:
|
272 |
+
chart_type = "heatmap"
|
273 |
+
|
274 |
+
# Try to detect columns
|
275 |
+
x_col = None
|
276 |
+
y_col = None
|
277 |
+
hue_col = None
|
278 |
+
|
279 |
+
for col in df_columns:
|
280 |
+
if col.lower() in prompt:
|
281 |
+
if not x_col:
|
282 |
+
x_col = col
|
283 |
+
elif not y_col:
|
284 |
+
y_col = col
|
285 |
+
else:
|
286 |
+
hue_col = col
|
287 |
+
|
288 |
+
# Default to first columns if not detected
|
289 |
+
if not x_col and len(df_columns) > 0:
|
290 |
+
x_col = df_columns[0]
|
291 |
+
if not y_col and len(df_columns) > 1:
|
292 |
+
y_col = df_columns[1]
|
293 |
+
|
294 |
+
return VisualizationRequest(
|
295 |
+
chart_type=chart_type,
|
296 |
+
x_column=x_col,
|
297 |
+
y_column=y_col,
|
298 |
+
hue_column=hue_col,
|
299 |
+
title="Generated from: " + prompt[:50] + ("..." if len(prompt) > 50 else ""),
|
300 |
+
style="seaborn"
|
301 |
)
|
302 |
|
303 |
+
@app.post("/summarize")
|
304 |
+
@limiter.limit("5/minute")
|
305 |
+
async def summarize_document(request: Request, file: UploadFile = File(...)):
|
306 |
+
try:
|
307 |
+
file_ext, content = await process_uploaded_file(file)
|
308 |
+
text = extract_text(content, file_ext)
|
309 |
+
|
310 |
+
if not text.strip():
|
311 |
+
raise HTTPException(400, "No extractable text found")
|
312 |
+
|
313 |
+
# Clean and chunk text
|
314 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
315 |
+
chunks = [text[i:i+1000] for i in range(0, len(text), 1000)]
|
316 |
+
|
317 |
+
# Summarize each chunk
|
318 |
+
summarizer = get_summarizer()
|
319 |
+
summaries = []
|
320 |
+
for chunk in chunks:
|
321 |
+
summary = summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
|
322 |
+
summaries.append(summary)
|
323 |
+
|
324 |
+
return {"summary": " ".join(summaries)}
|
325 |
+
|
326 |
+
except HTTPException:
|
327 |
+
raise
|
328 |
+
except Exception as e:
|
329 |
+
logger.error(f"Summarization failed: {str(e)}")
|
330 |
+
raise HTTPException(500, "Document summarization failed")
|
331 |
+
|
332 |
+
@app.post("/qa")
|
333 |
+
@limiter.limit("5/minute")
|
334 |
+
async def question_answering(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
request: Request,
|
336 |
file: UploadFile = File(...),
|
337 |
+
question: str = Form(...),
|
338 |
+
language: str = Form("fr")
|
339 |
):
|
340 |
+
try:
|
341 |
+
file_ext, content = await process_uploaded_file(file)
|
342 |
+
text = extract_text(content, file_ext)
|
343 |
+
|
344 |
+
if not text.strip():
|
345 |
+
raise HTTPException(400, "No extractable text found")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
|
347 |
+
# Clean and truncate text
|
348 |
+
text = re.sub(r'\s+', ' ', text).strip()[:5000]
|
349 |
+
|
350 |
+
# Theme detection
|
351 |
+
theme_keywords = ["thème", "sujet principal", "quoi le sujet", "theme", "main topic"]
|
352 |
+
if any(kw in question.lower() for kw in theme_keywords):
|
353 |
+
try:
|
354 |
+
summarizer = get_summarizer()
|
355 |
+
summary_output = summarizer(
|
356 |
+
text,
|
357 |
+
max_length=min(100, len(text)//4),
|
358 |
+
min_length=30,
|
359 |
+
do_sample=False,
|
360 |
+
truncation=True
|
361 |
+
)
|
362 |
+
|
363 |
+
theme = summary_output[0].get("summary_text", text[:200] + "...")
|
364 |
+
return {
|
365 |
+
"question": question,
|
366 |
+
"answer": f"Le document traite principalement de : {theme}",
|
367 |
+
"confidence": 0.95,
|
368 |
+
"language": language
|
369 |
+
}
|
370 |
+
except Exception:
|
371 |
+
theme = text[:200] + ("..." if len(text) > 200 else "")
|
372 |
+
return {
|
373 |
+
"question": question,
|
374 |
+
"answer": f"D'après le document : {theme}",
|
375 |
+
"confidence": 0.7,
|
376 |
+
"language": language,
|
377 |
+
"warning": "theme_summary_fallback"
|
378 |
+
}
|
379 |
+
|
380 |
+
# Standard QA
|
381 |
+
qa = get_qa_model()
|
382 |
+
result = qa(question=question, context=text[:3000])
|
383 |
+
|
384 |
+
return {
|
385 |
+
"question": question,
|
386 |
+
"answer": result["answer"],
|
387 |
+
"confidence": result["score"],
|
388 |
+
"language": language
|
389 |
+
}
|
390 |
+
|
391 |
+
except HTTPException:
|
392 |
+
raise
|
393 |
+
except Exception as e:
|
394 |
+
logger.error(f"QA processing failed: {str(e)}")
|
395 |
+
raise HTTPException(500, detail=f"Analysis failed: {str(e)}")
|
396 |
+
|
397 |
+
@app.post("/visualize/code")
|
398 |
+
@limiter.limit("5/minute")
|
399 |
+
async def visualize_with_code(
|
400 |
+
request: Request,
|
401 |
+
file: UploadFile = File(...),
|
402 |
+
chart_type: str = Form(...),
|
403 |
+
x_column: Optional[str] = Form(None),
|
404 |
+
y_column: Optional[str] = Form(None),
|
405 |
+
hue_column: Optional[str] = Form(None),
|
406 |
+
title: Optional[str] = Form(None),
|
407 |
+
x_label: Optional[str] = Form(None),
|
408 |
+
y_label: Optional[str] = Form(None),
|
409 |
+
style: str = Form("seaborn"),
|
410 |
+
filters: Optional[str] = Form(None)
|
411 |
+
):
|
412 |
+
try:
|
413 |
+
# Validate file
|
414 |
+
file_ext, content = await process_uploaded_file(file)
|
415 |
+
if file_ext not in {"xlsx", "xls"}:
|
416 |
+
raise HTTPException(400, "Only Excel files are supported for visualization")
|
417 |
+
|
418 |
+
# Read Excel file
|
419 |
+
df = pd.read_excel(io.BytesIO(content))
|
420 |
+
|
421 |
+
# Parse filters if provided
|
422 |
+
filter_dict = {}
|
423 |
+
if filters:
|
424 |
+
try:
|
425 |
+
filter_dict = ast.literal_eval(filters)
|
426 |
+
if not isinstance(filter_dict, dict):
|
427 |
+
filter_dict = {}
|
428 |
+
except:
|
429 |
+
filter_dict = {}
|
430 |
+
|
431 |
+
# Create visualization request
|
432 |
+
vis_request = VisualizationRequest(
|
433 |
+
chart_type=chart_type,
|
434 |
+
x_column=x_column,
|
435 |
+
y_column=y_column,
|
436 |
+
hue_column=hue_column,
|
437 |
+
title=title,
|
438 |
+
x_label=x_label,
|
439 |
+
y_label=y_label,
|
440 |
+
style=style,
|
441 |
+
filters=filter_dict
|
442 |
+
)
|
443 |
+
|
444 |
+
# Generate visualization code
|
445 |
+
visualization_code = generate_visualization_code(df, vis_request)
|
446 |
+
|
447 |
+
# Execute the code to generate the plot
|
448 |
+
plt.figure()
|
449 |
+
local_vars = {}
|
450 |
+
exec(visualization_code, globals(), local_vars)
|
451 |
+
|
452 |
+
# Save the plot to a temporary file
|
453 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
|
454 |
+
plt.savefig(tmpfile.name, format='png', dpi=300)
|
455 |
+
plt.close()
|
456 |
+
|
457 |
+
# Read the image back as bytes
|
458 |
+
with open(tmpfile.name, "rb") as f:
|
459 |
+
image_bytes = f.read()
|
460 |
+
|
461 |
+
# Encode image as base64
|
462 |
+
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
|
463 |
+
|
464 |
+
return {
|
465 |
+
"status": "success",
|
466 |
+
"image": f"data:image/png;base64,{image_base64}",
|
467 |
+
"code": visualization_code,
|
468 |
+
"data_preview": df.head().to_dict(orient='records')
|
469 |
+
}
|
470 |
+
|
471 |
+
except HTTPException:
|
472 |
+
raise
|
473 |
+
except Exception as e:
|
474 |
+
logger.error(f"Visualization failed: {str(e)}\n{traceback.format_exc()}")
|
475 |
+
raise HTTPException(500, detail=f"Visualization failed: {str(e)}")
|
476 |
+
|
477 |
+
@app.post("/visualize/natural")
|
478 |
+
@limiter.limit("5/minute")
|
479 |
+
async def visualize_with_natural_language(
|
480 |
+
request: Request,
|
481 |
+
file: UploadFile = File(...),
|
482 |
+
prompt: str = Form(...),
|
483 |
+
style: str = Form("seaborn")
|
484 |
+
):
|
485 |
+
try:
|
486 |
+
# Validate file
|
487 |
+
file_ext, content = await process_uploaded_file(file)
|
488 |
+
if file_ext not in {"xlsx", "xls"}:
|
489 |
+
raise HTTPException(400, "Only Excel files are supported for visualization")
|
490 |
+
|
491 |
+
# Read Excel file
|
492 |
+
df = pd.read_excel(io.BytesIO(content))
|
493 |
+
|
494 |
+
# Convert natural language to visualization parameters
|
495 |
+
nl_request = NaturalLanguageRequest(prompt=prompt, style=style)
|
496 |
+
vis_request = interpret_natural_language(nl_request.prompt, df.columns.tolist())
|
497 |
+
|
498 |
+
# Generate visualization code
|
499 |
+
visualization_code = generate_visualization_code(df, vis_request)
|
500 |
+
|
501 |
+
# Execute the code to generate the plot
|
502 |
+
plt.figure()
|
503 |
+
local_vars = {}
|
504 |
+
exec(visualization_code, globals(), local_vars)
|
505 |
+
|
506 |
+
# Save the plot to a temporary file
|
507 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
|
508 |
+
plt.savefig(tmpfile.name, format='png', dpi=300)
|
509 |
+
plt.close()
|
510 |
+
|
511 |
+
# Read the image back as bytes
|
512 |
+
with open(tmpfile.name, "rb") as f:
|
513 |
+
image_bytes = f.read()
|
514 |
+
|
515 |
+
# Encode image as base64
|
516 |
+
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
|
517 |
+
|
518 |
+
return {
|
519 |
+
"status": "success",
|
520 |
+
"image": f"data:image/png;base64,{image_base64}",
|
521 |
+
"code": visualization_code,
|
522 |
+
"interpreted_parameters": vis_request.dict(),
|
523 |
+
"data_preview": df.head().to_dict(orient='records')
|
524 |
+
}
|
525 |
+
|
526 |
+
except HTTPException:
|
527 |
+
raise
|
528 |
+
except Exception as e:
|
529 |
+
logger.error(f"Natural language visualization failed: {str(e)}\n{traceback.format_exc()}")
|
530 |
+
raise HTTPException(500, detail=f"Visualization failed: {str(e)}")
|
531 |
+
|
532 |
+
@app.post("/get_columns")
|
533 |
+
@limiter.limit("10/minute")
|
534 |
+
async def get_excel_columns(
|
535 |
+
request: Request,
|
536 |
+
file: UploadFile = File(...)
|
537 |
+
):
|
538 |
+
try:
|
539 |
+
file_ext, content = await process_uploaded_file(file)
|
540 |
+
if file_ext not in {"xlsx", "xls"}:
|
541 |
+
raise HTTPException(400, "Only Excel files are supported")
|
542 |
+
|
543 |
+
df = pd.read_excel(io.BytesIO(content))
|
544 |
+
return {
|
545 |
+
"columns": list(df.columns),
|
546 |
+
"sample_data": df.head().to_dict(orient='records'),
|
547 |
+
"statistics": df.describe().to_dict() if len(df.select_dtypes(include=['number']).columns) > 0 else None
|
548 |
+
}
|
549 |
+
except Exception as e:
|
550 |
+
logger.error(f"Column extraction failed: {str(e)}")
|
551 |
+
raise HTTPException(500, detail="Failed to extract columns from Excel file")
|
552 |
+
|
553 |
+
@app.exception_handler(RateLimitExceeded)
|
554 |
+
async def rate_limit_exceeded_handler(request: Request, exc: RateLimitExceeded):
|
555 |
+
return JSONResponse(
|
556 |
+
status_code=429,
|
557 |
+
content={"detail": "Too many requests. Please try again later."}
|
558 |
+
)
|
559 |
|
560 |
+
if __name__ == "__main__":
|
561 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|