Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -2,7 +2,7 @@ from fastapi import FastAPI, UploadFile, File, Form, HTTPException, Request
|
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from fastapi.responses import JSONResponse
|
4 |
from transformers import pipeline
|
5 |
-
from typing import Tuple
|
6 |
import io
|
7 |
import fitz # PyMuPDF
|
8 |
from PIL import Image
|
@@ -22,8 +22,9 @@ import seaborn as sns
|
|
22 |
import tempfile
|
23 |
import base64
|
24 |
from io import BytesIO
|
25 |
-
from typing import Optional
|
26 |
from pydantic import BaseModel
|
|
|
|
|
27 |
|
28 |
# Initialize rate limiter
|
29 |
limiter = Limiter(key_func=get_remote_address)
|
@@ -154,6 +155,151 @@ def extract_text(content: bytes, file_ext: str) -> str:
|
|
154 |
logger.error(f"Text extraction failed for {file_ext}: {str(e)}")
|
155 |
raise HTTPException(422, f"Failed to extract text from {file_ext} file")
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
@app.post("/summarize")
|
158 |
@limiter.limit("5/minute")
|
159 |
async def summarize_document(request: Request, file: UploadFile = File(...)):
|
@@ -248,85 +394,9 @@ async def question_answering(
|
|
248 |
logger.error(f"QA processing failed: {str(e)}")
|
249 |
raise HTTPException(500, detail=f"Analysis failed: {str(e)}")
|
250 |
|
251 |
-
@app.
|
252 |
-
async def rate_limit_exceeded_handler(request: Request, exc: RateLimitExceeded):
|
253 |
-
return JSONResponse(
|
254 |
-
status_code=429,
|
255 |
-
content={"detail": "Too many requests. Please try again later."}
|
256 |
-
)
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
# Add this new Pydantic model for visualization requests
|
263 |
-
class VisualizationRequest(BaseModel):
|
264 |
-
chart_type: str
|
265 |
-
x_column: Optional[str] = None
|
266 |
-
y_column: Optional[str] = None
|
267 |
-
hue_column: Optional[str] = None
|
268 |
-
title: Optional[str] = None
|
269 |
-
x_label: Optional[str] = None
|
270 |
-
y_label: Optional[str] = None
|
271 |
-
style: str = "seaborn" # seaborn or matplotlib
|
272 |
-
|
273 |
-
# Add this new function for visualization code generation
|
274 |
-
def generate_visualization(df: pd.DataFrame, request: VisualizationRequest) -> str:
|
275 |
-
"""Generate and execute visualization code based on request"""
|
276 |
-
plt.style.use(request.style)
|
277 |
-
|
278 |
-
code_lines = [
|
279 |
-
"import matplotlib.pyplot as plt",
|
280 |
-
"import seaborn as sns",
|
281 |
-
"import pandas as pd",
|
282 |
-
"",
|
283 |
-
"# Data preparation",
|
284 |
-
f"df = pd.DataFrame({df.head().to_dict()})", # Simplified for demo
|
285 |
-
"",
|
286 |
-
"# Visualization code"
|
287 |
-
]
|
288 |
-
|
289 |
-
if request.chart_type == "line":
|
290 |
-
code_lines.append(f"plt.figure(figsize=(10, 6))")
|
291 |
-
if request.hue_column:
|
292 |
-
code_lines.append(f"sns.lineplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
293 |
-
else:
|
294 |
-
code_lines.append(f"plt.plot(df['{request.x_column}'], df['{request.y_column}'])")
|
295 |
-
elif request.chart_type == "bar":
|
296 |
-
code_lines.append(f"plt.figure(figsize=(10, 6))")
|
297 |
-
if request.hue_column:
|
298 |
-
code_lines.append(f"sns.barplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
299 |
-
else:
|
300 |
-
code_lines.append(f"plt.bar(df['{request.x_column}'], df['{request.y_column}'])")
|
301 |
-
elif request.chart_type == "scatter":
|
302 |
-
code_lines.append(f"plt.figure(figsize=(10, 6))")
|
303 |
-
if request.hue_column:
|
304 |
-
code_lines.append(f"sns.scatterplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
305 |
-
else:
|
306 |
-
code_lines.append(f"plt.scatter(df['{request.x_column}'], df['{request.y_column}'])")
|
307 |
-
elif request.chart_type == "histogram":
|
308 |
-
code_lines.append(f"plt.figure(figsize=(10, 6))")
|
309 |
-
code_lines.append(f"plt.hist(df['{request.x_column}'], bins=20)")
|
310 |
-
else:
|
311 |
-
raise ValueError("Unsupported chart type")
|
312 |
-
|
313 |
-
# Add labels and title
|
314 |
-
if request.title:
|
315 |
-
code_lines.append(f"plt.title('{request.title}')")
|
316 |
-
if request.x_label:
|
317 |
-
code_lines.append(f"plt.xlabel('{request.x_label}')")
|
318 |
-
if request.y_label:
|
319 |
-
code_lines.append(f"plt.ylabel('{request.y_label}')")
|
320 |
-
|
321 |
-
code_lines.append("plt.tight_layout()")
|
322 |
-
code_lines.append("plt.show()")
|
323 |
-
|
324 |
-
return "\n".join(code_lines)
|
325 |
-
|
326 |
-
# Add this new endpoint for visualization
|
327 |
-
@app.post("/visualize")
|
328 |
@limiter.limit("5/minute")
|
329 |
-
async def
|
330 |
request: Request,
|
331 |
file: UploadFile = File(...),
|
332 |
chart_type: str = Form(...),
|
@@ -336,18 +406,29 @@ async def generate_visualization_from_excel(
|
|
336 |
title: Optional[str] = Form(None),
|
337 |
x_label: Optional[str] = Form(None),
|
338 |
y_label: Optional[str] = Form(None),
|
339 |
-
style: str = Form("seaborn")
|
|
|
340 |
):
|
341 |
try:
|
342 |
# Validate file
|
343 |
-
file_ext, content = await
|
344 |
if file_ext not in {"xlsx", "xls"}:
|
345 |
raise HTTPException(400, "Only Excel files are supported for visualization")
|
346 |
|
347 |
# Read Excel file
|
348 |
df = pd.read_excel(io.BytesIO(content))
|
349 |
|
350 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
vis_request = VisualizationRequest(
|
352 |
chart_type=chart_type,
|
353 |
x_column=x_column,
|
@@ -356,12 +437,17 @@ async def generate_visualization_from_excel(
|
|
356 |
title=title,
|
357 |
x_label=x_label,
|
358 |
y_label=y_label,
|
359 |
-
style=style
|
|
|
360 |
)
|
361 |
|
362 |
-
# Generate
|
|
|
|
|
|
|
363 |
plt.figure()
|
364 |
-
|
|
|
365 |
|
366 |
# Save the plot to a temporary file
|
367 |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
|
@@ -378,7 +464,8 @@ async def generate_visualization_from_excel(
|
|
378 |
return {
|
379 |
"status": "success",
|
380 |
"image": f"data:image/png;base64,{image_base64}",
|
381 |
-
"code":
|
|
|
382 |
}
|
383 |
|
384 |
except HTTPException:
|
@@ -387,7 +474,61 @@ async def generate_visualization_from_excel(
|
|
387 |
logger.error(f"Visualization failed: {str(e)}\n{traceback.format_exc()}")
|
388 |
raise HTTPException(500, detail=f"Visualization failed: {str(e)}")
|
389 |
|
390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
@app.post("/get_columns")
|
392 |
@limiter.limit("10/minute")
|
393 |
async def get_excel_columns(
|
@@ -395,21 +536,26 @@ async def get_excel_columns(
|
|
395 |
file: UploadFile = File(...)
|
396 |
):
|
397 |
try:
|
398 |
-
file_ext, content = await
|
399 |
if file_ext not in {"xlsx", "xls"}:
|
400 |
raise HTTPException(400, "Only Excel files are supported")
|
401 |
|
402 |
df = pd.read_excel(io.BytesIO(content))
|
403 |
return {
|
404 |
"columns": list(df.columns),
|
405 |
-
"sample_data": df.head().to_dict(orient='records')
|
|
|
406 |
}
|
407 |
except Exception as e:
|
408 |
logger.error(f"Column extraction failed: {str(e)}")
|
409 |
raise HTTPException(500, detail="Failed to extract columns from Excel file")
|
410 |
|
411 |
-
|
412 |
-
|
|
|
|
|
|
|
|
|
413 |
|
414 |
if __name__ == "__main__":
|
415 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from fastapi.responses import JSONResponse
|
4 |
from transformers import pipeline
|
5 |
+
from typing import Tuple, Optional
|
6 |
import io
|
7 |
import fitz # PyMuPDF
|
8 |
from PIL import Image
|
|
|
22 |
import tempfile
|
23 |
import base64
|
24 |
from io import BytesIO
|
|
|
25 |
from pydantic import BaseModel
|
26 |
+
import traceback
|
27 |
+
import ast
|
28 |
|
29 |
# Initialize rate limiter
|
30 |
limiter = Limiter(key_func=get_remote_address)
|
|
|
155 |
logger.error(f"Text extraction failed for {file_ext}: {str(e)}")
|
156 |
raise HTTPException(422, f"Failed to extract text from {file_ext} file")
|
157 |
|
158 |
+
# Visualization Models
|
159 |
+
class VisualizationRequest(BaseModel):
|
160 |
+
chart_type: str
|
161 |
+
x_column: Optional[str] = None
|
162 |
+
y_column: Optional[str] = None
|
163 |
+
hue_column: Optional[str] = None
|
164 |
+
title: Optional[str] = None
|
165 |
+
x_label: Optional[str] = None
|
166 |
+
y_label: Optional[str] = None
|
167 |
+
style: str = "seaborn"
|
168 |
+
filters: Optional[dict] = None
|
169 |
+
|
170 |
+
class NaturalLanguageRequest(BaseModel):
|
171 |
+
prompt: str
|
172 |
+
style: str = "seaborn"
|
173 |
+
|
174 |
+
def generate_visualization_code(df: pd.DataFrame, request: VisualizationRequest) -> str:
|
175 |
+
"""Generate Python code for visualization based on request parameters"""
|
176 |
+
code_lines = [
|
177 |
+
"import matplotlib.pyplot as plt",
|
178 |
+
"import seaborn as sns",
|
179 |
+
"import pandas as pd",
|
180 |
+
"",
|
181 |
+
"# Data preparation",
|
182 |
+
f"df = pd.DataFrame({df.to_dict(orient='list')})",
|
183 |
+
]
|
184 |
+
|
185 |
+
# Apply filters if specified
|
186 |
+
if request.filters:
|
187 |
+
filter_conditions = []
|
188 |
+
for column, condition in request.filters.items():
|
189 |
+
if isinstance(condition, dict):
|
190 |
+
if 'min' in condition and 'max' in condition:
|
191 |
+
filter_conditions.append(f"(df['{column}'] >= {condition['min']}) & (df['{column}'] <= {condition['max']})")
|
192 |
+
elif 'values' in condition:
|
193 |
+
values = ', '.join([f"'{v}'" if isinstance(v, str) else str(v) for v in condition['values']])
|
194 |
+
filter_conditions.append(f"df['{column}'].isin([{values}])")
|
195 |
+
else:
|
196 |
+
filter_conditions.append(f"df['{column}'] == {repr(condition)}")
|
197 |
+
|
198 |
+
if filter_conditions:
|
199 |
+
code_lines.extend([
|
200 |
+
"",
|
201 |
+
"# Apply filters",
|
202 |
+
f"df = df[{' & '.join(filter_conditions)}]"
|
203 |
+
])
|
204 |
+
|
205 |
+
code_lines.extend([
|
206 |
+
"",
|
207 |
+
"# Visualization",
|
208 |
+
f"plt.style.use('{request.style}')",
|
209 |
+
f"plt.figure(figsize=(10, 6))"
|
210 |
+
])
|
211 |
+
|
212 |
+
# Chart type specific code
|
213 |
+
if request.chart_type == "line":
|
214 |
+
if request.hue_column:
|
215 |
+
code_lines.append(f"sns.lineplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
216 |
+
else:
|
217 |
+
code_lines.append(f"plt.plot(df['{request.x_column}'], df['{request.y_column}'])")
|
218 |
+
elif request.chart_type == "bar":
|
219 |
+
if request.hue_column:
|
220 |
+
code_lines.append(f"sns.barplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
221 |
+
else:
|
222 |
+
code_lines.append(f"plt.bar(df['{request.x_column}'], df['{request.y_column}'])")
|
223 |
+
elif request.chart_type == "scatter":
|
224 |
+
if request.hue_column:
|
225 |
+
code_lines.append(f"sns.scatterplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
226 |
+
else:
|
227 |
+
code_lines.append(f"plt.scatter(df['{request.x_column}'], df['{request.y_column}'])")
|
228 |
+
elif request.chart_type == "histogram":
|
229 |
+
code_lines.append(f"plt.hist(df['{request.x_column}'], bins=20)")
|
230 |
+
elif request.chart_type == "boxplot":
|
231 |
+
if request.hue_column:
|
232 |
+
code_lines.append(f"sns.boxplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
233 |
+
else:
|
234 |
+
code_lines.append(f"sns.boxplot(data=df, x='{request.x_column}', y='{request.y_column}')")
|
235 |
+
elif request.chart_type == "heatmap":
|
236 |
+
code_lines.append(f"corr = df.corr()")
|
237 |
+
code_lines.append(f"sns.heatmap(corr, annot=True, cmap='coolwarm')")
|
238 |
+
else:
|
239 |
+
raise ValueError(f"Unsupported chart type: {request.chart_type}")
|
240 |
+
|
241 |
+
# Add labels and title
|
242 |
+
if request.title:
|
243 |
+
code_lines.append(f"plt.title('{request.title}')")
|
244 |
+
if request.x_label:
|
245 |
+
code_lines.append(f"plt.xlabel('{request.x_label}')")
|
246 |
+
if request.y_label:
|
247 |
+
code_lines.append(f"plt.ylabel('{request.y_label}')")
|
248 |
+
|
249 |
+
code_lines.extend([
|
250 |
+
"plt.tight_layout()",
|
251 |
+
"plt.show()"
|
252 |
+
])
|
253 |
+
|
254 |
+
return "\n".join(code_lines)
|
255 |
+
|
256 |
+
def interpret_natural_language(prompt: str, df_columns: list) -> VisualizationRequest:
|
257 |
+
"""Convert natural language prompt to visualization parameters"""
|
258 |
+
# Simple keyword-based interpretation (could be enhanced with NLP)
|
259 |
+
prompt = prompt.lower()
|
260 |
+
|
261 |
+
# Determine chart type
|
262 |
+
chart_type = "bar"
|
263 |
+
if "line" in prompt:
|
264 |
+
chart_type = "line"
|
265 |
+
elif "scatter" in prompt:
|
266 |
+
chart_type = "scatter"
|
267 |
+
elif "histogram" in prompt:
|
268 |
+
chart_type = "histogram"
|
269 |
+
elif "box" in prompt:
|
270 |
+
chart_type = "boxplot"
|
271 |
+
elif "heatmap" in prompt or "correlation" in prompt:
|
272 |
+
chart_type = "heatmap"
|
273 |
+
|
274 |
+
# Try to detect columns
|
275 |
+
x_col = None
|
276 |
+
y_col = None
|
277 |
+
hue_col = None
|
278 |
+
|
279 |
+
for col in df_columns:
|
280 |
+
if col.lower() in prompt:
|
281 |
+
if not x_col:
|
282 |
+
x_col = col
|
283 |
+
elif not y_col:
|
284 |
+
y_col = col
|
285 |
+
else:
|
286 |
+
hue_col = col
|
287 |
+
|
288 |
+
# Default to first columns if not detected
|
289 |
+
if not x_col and len(df_columns) > 0:
|
290 |
+
x_col = df_columns[0]
|
291 |
+
if not y_col and len(df_columns) > 1:
|
292 |
+
y_col = df_columns[1]
|
293 |
+
|
294 |
+
return VisualizationRequest(
|
295 |
+
chart_type=chart_type,
|
296 |
+
x_column=x_col,
|
297 |
+
y_column=y_col,
|
298 |
+
hue_column=hue_col,
|
299 |
+
title="Generated from: " + prompt[:50] + ("..." if len(prompt) > 50 else ""),
|
300 |
+
style="seaborn"
|
301 |
+
)
|
302 |
+
|
303 |
@app.post("/summarize")
|
304 |
@limiter.limit("5/minute")
|
305 |
async def summarize_document(request: Request, file: UploadFile = File(...)):
|
|
|
394 |
logger.error(f"QA processing failed: {str(e)}")
|
395 |
raise HTTPException(500, detail=f"Analysis failed: {str(e)}")
|
396 |
|
397 |
+
@app.post("/visualize/code")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
@limiter.limit("5/minute")
|
399 |
+
async def visualize_with_code(
|
400 |
request: Request,
|
401 |
file: UploadFile = File(...),
|
402 |
chart_type: str = Form(...),
|
|
|
406 |
title: Optional[str] = Form(None),
|
407 |
x_label: Optional[str] = Form(None),
|
408 |
y_label: Optional[str] = Form(None),
|
409 |
+
style: str = Form("seaborn"),
|
410 |
+
filters: Optional[str] = Form(None)
|
411 |
):
|
412 |
try:
|
413 |
# Validate file
|
414 |
+
file_ext, content = await process_uploaded_file(file)
|
415 |
if file_ext not in {"xlsx", "xls"}:
|
416 |
raise HTTPException(400, "Only Excel files are supported for visualization")
|
417 |
|
418 |
# Read Excel file
|
419 |
df = pd.read_excel(io.BytesIO(content))
|
420 |
|
421 |
+
# Parse filters if provided
|
422 |
+
filter_dict = {}
|
423 |
+
if filters:
|
424 |
+
try:
|
425 |
+
filter_dict = ast.literal_eval(filters)
|
426 |
+
if not isinstance(filter_dict, dict):
|
427 |
+
filter_dict = {}
|
428 |
+
except:
|
429 |
+
filter_dict = {}
|
430 |
+
|
431 |
+
# Create visualization request
|
432 |
vis_request = VisualizationRequest(
|
433 |
chart_type=chart_type,
|
434 |
x_column=x_column,
|
|
|
437 |
title=title,
|
438 |
x_label=x_label,
|
439 |
y_label=y_label,
|
440 |
+
style=style,
|
441 |
+
filters=filter_dict
|
442 |
)
|
443 |
|
444 |
+
# Generate visualization code
|
445 |
+
visualization_code = generate_visualization_code(df, vis_request)
|
446 |
+
|
447 |
+
# Execute the code to generate the plot
|
448 |
plt.figure()
|
449 |
+
local_vars = {}
|
450 |
+
exec(visualization_code, globals(), local_vars)
|
451 |
|
452 |
# Save the plot to a temporary file
|
453 |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
|
|
|
464 |
return {
|
465 |
"status": "success",
|
466 |
"image": f"data:image/png;base64,{image_base64}",
|
467 |
+
"code": visualization_code,
|
468 |
+
"data_preview": df.head().to_dict(orient='records')
|
469 |
}
|
470 |
|
471 |
except HTTPException:
|
|
|
474 |
logger.error(f"Visualization failed: {str(e)}\n{traceback.format_exc()}")
|
475 |
raise HTTPException(500, detail=f"Visualization failed: {str(e)}")
|
476 |
|
477 |
+
@app.post("/visualize/natural")
|
478 |
+
@limiter.limit("5/minute")
|
479 |
+
async def visualize_with_natural_language(
|
480 |
+
request: Request,
|
481 |
+
file: UploadFile = File(...),
|
482 |
+
prompt: str = Form(...),
|
483 |
+
style: str = Form("seaborn")
|
484 |
+
):
|
485 |
+
try:
|
486 |
+
# Validate file
|
487 |
+
file_ext, content = await process_uploaded_file(file)
|
488 |
+
if file_ext not in {"xlsx", "xls"}:
|
489 |
+
raise HTTPException(400, "Only Excel files are supported for visualization")
|
490 |
+
|
491 |
+
# Read Excel file
|
492 |
+
df = pd.read_excel(io.BytesIO(content))
|
493 |
+
|
494 |
+
# Convert natural language to visualization parameters
|
495 |
+
nl_request = NaturalLanguageRequest(prompt=prompt, style=style)
|
496 |
+
vis_request = interpret_natural_language(nl_request.prompt, df.columns.tolist())
|
497 |
+
|
498 |
+
# Generate visualization code
|
499 |
+
visualization_code = generate_visualization_code(df, vis_request)
|
500 |
+
|
501 |
+
# Execute the code to generate the plot
|
502 |
+
plt.figure()
|
503 |
+
local_vars = {}
|
504 |
+
exec(visualization_code, globals(), local_vars)
|
505 |
+
|
506 |
+
# Save the plot to a temporary file
|
507 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
|
508 |
+
plt.savefig(tmpfile.name, format='png', dpi=300)
|
509 |
+
plt.close()
|
510 |
+
|
511 |
+
# Read the image back as bytes
|
512 |
+
with open(tmpfile.name, "rb") as f:
|
513 |
+
image_bytes = f.read()
|
514 |
+
|
515 |
+
# Encode image as base64
|
516 |
+
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
|
517 |
+
|
518 |
+
return {
|
519 |
+
"status": "success",
|
520 |
+
"image": f"data:image/png;base64,{image_base64}",
|
521 |
+
"code": visualization_code,
|
522 |
+
"interpreted_parameters": vis_request.dict(),
|
523 |
+
"data_preview": df.head().to_dict(orient='records')
|
524 |
+
}
|
525 |
+
|
526 |
+
except HTTPException:
|
527 |
+
raise
|
528 |
+
except Exception as e:
|
529 |
+
logger.error(f"Natural language visualization failed: {str(e)}\n{traceback.format_exc()}")
|
530 |
+
raise HTTPException(500, detail=f"Visualization failed: {str(e)}")
|
531 |
+
|
532 |
@app.post("/get_columns")
|
533 |
@limiter.limit("10/minute")
|
534 |
async def get_excel_columns(
|
|
|
536 |
file: UploadFile = File(...)
|
537 |
):
|
538 |
try:
|
539 |
+
file_ext, content = await process_uploaded_file(file)
|
540 |
if file_ext not in {"xlsx", "xls"}:
|
541 |
raise HTTPException(400, "Only Excel files are supported")
|
542 |
|
543 |
df = pd.read_excel(io.BytesIO(content))
|
544 |
return {
|
545 |
"columns": list(df.columns),
|
546 |
+
"sample_data": df.head().to_dict(orient='records'),
|
547 |
+
"statistics": df.describe().to_dict() if len(df.select_dtypes(include=['number']).columns) > 0 else None
|
548 |
}
|
549 |
except Exception as e:
|
550 |
logger.error(f"Column extraction failed: {str(e)}")
|
551 |
raise HTTPException(500, detail="Failed to extract columns from Excel file")
|
552 |
|
553 |
+
@app.exception_handler(RateLimitExceeded)
|
554 |
+
async def rate_limit_exceeded_handler(request: Request, exc: RateLimitExceeded):
|
555 |
+
return JSONResponse(
|
556 |
+
status_code=429,
|
557 |
+
content={"detail": "Too many requests. Please try again later."}
|
558 |
+
)
|
559 |
|
560 |
if __name__ == "__main__":
|
561 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|