File size: 23,686 Bytes
8ea794b
 
d728ee4
118cebd
 
74fd655
118cebd
 
 
74fd655
118cebd
 
 
 
 
c6e8137
 
 
8ea794b
118cebd
 
 
 
 
 
 
 
2b4dabe
 
 
0d85c20
2b4dabe
8ea794b
118cebd
74fd655
118cebd
 
 
 
 
 
 
cdc0a21
 
 
 
 
 
 
 
 
 
 
118cebd
8ea794b
 
 
118cebd
473762c
 
 
 
 
 
297e3be
8ea794b
 
118cebd
 
 
8ea794b
118cebd
 
 
 
8ea794b
118cebd
 
 
 
 
 
 
 
 
 
 
8ea794b
118cebd
 
 
 
 
 
 
 
74fd655
 
8ea794b
74fd655
118cebd
 
8ea794b
74fd655
 
118cebd
56b4bf4
118cebd
 
74fd655
118cebd
 
 
 
 
 
74fd655
118cebd
 
 
 
 
8ea794b
118cebd
 
8ea794b
118cebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2111c8
118cebd
 
 
 
d2111c8
118cebd
9735885
 
 
d2111c8
 
 
 
 
 
 
 
 
 
 
 
 
9735885
 
d2111c8
9735885
d2111c8
9735885
d2111c8
 
 
118cebd
 
9735885
 
 
118cebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74fd655
118cebd
 
 
 
 
 
 
 
 
 
 
 
9735885
118cebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74fd655
118cebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ea794b
118cebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2111c8
118cebd
8ea794b
118cebd
 
 
 
 
 
8ea794b
118cebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ea794b
118cebd
 
8ea794b
118cebd
8ea794b
118cebd
8ea794b
118cebd
 
 
8ea794b
 
118cebd
 
8ea794b
118cebd
 
74fd655
118cebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2111c8
118cebd
 
 
 
599895f
118cebd
599895f
 
118cebd
599895f
 
 
 
 
 
8ea794b
 
599895f
 
 
 
 
 
 
8ea794b
 
 
 
 
 
 
 
599895f
8ea794b
599895f
 
 
 
118cebd
 
 
599895f
 
8ea794b
8baee49
 
118cebd
 
 
 
 
 
8baee49
 
118cebd
 
8baee49
118cebd
 
 
 
 
 
 
 
8baee49
 
118cebd
 
 
 
 
8baee49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118cebd
8baee49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118cebd
 
8ea794b
118cebd
 
8ea794b
9735885
 
 
 
 
 
8ea794b
 
118cebd
8ea794b
118cebd
8ea794b
 
118cebd
 
 
8ea794b
118cebd
8ea794b
 
118cebd
8ea794b
 
 
118cebd
 
8ea794b
 
118cebd
8ea794b
 
 
 
e6116e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cdc794
85e9416
8ea794b
85e9416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ea794b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from transformers import pipeline
from typing import Tuple, Optional
import io
import fitz  # PyMuPDF
from PIL import Image
import pandas as pd
import uvicorn
from docx import Document
from pptx import Presentation
import pytesseract
import logging
import re
from slowapi import Limiter
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
from slowapi.middleware import SlowAPIMiddleware
import matplotlib.pyplot as plt
import seaborn as sns
import tempfile
import base64
from io import BytesIO
from pydantic import BaseModel
import traceback
import ast
from fastapi.responses import HTMLResponse
from fastapi import Request
from pathlib import Path
from fastapi.staticfiles import StaticFiles


# Initialize rate limiter
limiter = Limiter(key_func=get_remote_address)

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI()


# Serve static files (frontend)
app.mount("/static", StaticFiles(directory="static"), name="static")


@app.get("/", response_class=HTMLResponse)
def home ():
    with open("static/indexAI.html","r") as file :
        return file.read()

        
# Apply rate limiting middleware
app.state.limiter = limiter
app.add_middleware(SlowAPIMiddleware)

# CORS Configuration
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
)

# Constants
MAX_FILE_SIZE = 10 * 1024 * 1024  # 10MB
SUPPORTED_FILE_TYPES = {
    "docx", "xlsx", "pptx", "pdf", "jpg", "jpeg", "png"
}

# Model caching
summarizer = None
qa_model = None
image_captioner = None

def get_summarizer():
    global summarizer
    if summarizer is None:
        summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
    return summarizer

def get_qa_model():
    global qa_model
    if qa_model is None:
        qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
    return qa_model

def get_image_captioner():
    global image_captioner
    if image_captioner is None:
        image_captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
    return image_captioner

async def process_uploaded_file(file: UploadFile) -> Tuple[str, bytes]:
    """Validate and process uploaded file with special handling for each type"""
    if not file.filename:
        raise HTTPException(400, "No filename provided")

    file_ext = file.filename.split('.')[-1].lower()
    if file_ext not in SUPPORTED_FILE_TYPES:
        raise HTTPException(400, f"Unsupported file type. Supported: {', '.join(SUPPORTED_FILE_TYPES)}")

    content = await file.read()
    if len(content) > MAX_FILE_SIZE:
        raise HTTPException(413, f"File too large. Max size: {MAX_FILE_SIZE//1024//1024}MB")

    # Special validation for PDFs
    if file_ext == "pdf":
        try:
            with fitz.open(stream=content, filetype="pdf") as doc:
                if doc.is_encrypted:
                    if not doc.authenticate(""):
                        raise ValueError("Encrypted PDF - cannot extract text")
                if len(doc) > 50:
                    raise ValueError("PDF too large (max 50 pages)")
        except Exception as e:
            logger.error(f"PDF validation failed: {str(e)}")
            raise HTTPException(422, detail=f"Invalid PDF file: {str(e)}")

    await file.seek(0)  # Reset file pointer for processing
    return file_ext, content

def extract_text(content: bytes, file_ext: str) -> str:
    """Extract text from various file formats with enhanced support"""
    try:
        if file_ext == "docx":
            doc = Document(io.BytesIO(content))
            return "\n".join(para.text for para in doc.paragraphs if para.text.strip())
        
        elif file_ext in {"xlsx", "xls"}:
            df = pd.read_excel(io.BytesIO(content), sheet_name=None)
            all_text = []
            for sheet_name, sheet_data in df.items():
                sheet_text = []
                for column in sheet_data.columns:
                    sheet_text.extend(sheet_data[column].dropna().astype(str).tolist())
                all_text.append(f"Sheet: {sheet_name}\n" + "\n".join(sheet_text))
            return "\n\n".join(all_text)
        
        elif file_ext == "pptx":
            ppt = Presentation(io.BytesIO(content))
            text = []
            for slide in ppt.slides:
                for shape in slide.shapes:
                    if hasattr(shape, "text") and shape.text.strip():
                        text.append(shape.text)
            return "\n".join(text)
        
        elif file_ext == "pdf":
            pdf = fitz.open(stream=content, filetype="pdf")
            return "\n".join(page.get_text("text") for page in pdf)
        
        elif file_ext in {"jpg", "jpeg", "png"}:
            # First try OCR
            try:
                image = Image.open(io.BytesIO(content))
                text = pytesseract.image_to_string(image, config='--psm 6')
                if text.strip():
                    return text
                
                # If OCR fails, try image captioning
                captioner = get_image_captioner()
                result = captioner(image)
                return result[0]['generated_text']
            except Exception as img_e:
                logger.error(f"Image processing failed: {str(img_e)}")
                raise ValueError("Could not extract text or caption from image")
        
    except Exception as e:
        logger.error(f"Text extraction failed for {file_ext}: {str(e)}")
        raise HTTPException(422, f"Failed to extract text from {file_ext} file")

# Visualization Models
class VisualizationRequest(BaseModel):
    chart_type: str
    x_column: Optional[str] = None
    y_column: Optional[str] = None
    hue_column: Optional[str] = None
    title: Optional[str] = None
    x_label: Optional[str] = None
    y_label: Optional[str] = None
    style: str = "seaborn-v0_8"  # Updated default
    filters: Optional[dict] = None

class NaturalLanguageRequest(BaseModel):
    prompt: str
    style: str = "seaborn-v0_8"

def validate_matplotlib_style(style: str) -> str:
    """Validate and return a valid matplotlib style"""
    available_styles = plt.style.available
    # Map legacy style names to current ones
    style_mapping = {
        'seaborn': 'seaborn-v0_8',
        'seaborn-white': 'seaborn-v0_8-white',
        'seaborn-dark': 'seaborn-v0_8-dark',
        # Add other legacy mappings if needed
    }
    
    # Check if it's a legacy name we can map
    if style in style_mapping:
        return style_mapping[style]
    
    # Check if it's a valid current style
    if style in available_styles:
        return style
    
    logger.warning(f"Invalid style '{style}'. Available styles: {available_styles}")
    return "seaborn-v0_8"  # Default fallback to current seaborn style



    
def generate_visualization_code(df: pd.DataFrame, request: VisualizationRequest) -> str:
    """Generate Python code for visualization based on request parameters"""
    # Validate style
    valid_style = validate_matplotlib_style(request.style)
    
    code_lines = [
        "import matplotlib.pyplot as plt",
        "import seaborn as sns",
        "import pandas as pd",
        "",
        "# Data preparation",
        f"df = pd.DataFrame({df.to_dict(orient='list')})",
    ]
    
    # Apply filters if specified
    if request.filters:
        filter_conditions = []
        for column, condition in request.filters.items():
            if isinstance(condition, dict):
                if 'min' in condition and 'max' in condition:
                    filter_conditions.append(f"(df['{column}'] >= {condition['min']}) & (df['{column}'] <= {condition['max']})")
                elif 'values' in condition:
                    values = ', '.join([f"'{v}'" if isinstance(v, str) else str(v) for v in condition['values']])
                    filter_conditions.append(f"df['{column}'].isin([{values}])")
            else:
                filter_conditions.append(f"df['{column}'] == {repr(condition)}")
        
        if filter_conditions:
            code_lines.extend([
                "",
                "# Apply filters",
                f"df = df[{' & '.join(filter_conditions)}]"
            ])
    
    code_lines.extend([
        "",
        "# Visualization",
        f"plt.style.use('{valid_style}')",
        f"plt.figure(figsize=(10, 6))"
    ])
    
    # Chart type specific code
    if request.chart_type == "line":
        if request.hue_column:
            code_lines.append(f"sns.lineplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
        else:
            code_lines.append(f"plt.plot(df['{request.x_column}'], df['{request.y_column}'])")
    elif request.chart_type == "bar":
        if request.hue_column:
            code_lines.append(f"sns.barplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
        else:
            code_lines.append(f"plt.bar(df['{request.x_column}'], df['{request.y_column}'])")
    elif request.chart_type == "scatter":
        if request.hue_column:
            code_lines.append(f"sns.scatterplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
        else:
            code_lines.append(f"plt.scatter(df['{request.x_column}'], df['{request.y_column}'])")
    elif request.chart_type == "histogram":
        code_lines.append(f"plt.hist(df['{request.x_column}'], bins=20)")
    elif request.chart_type == "boxplot":
        if request.hue_column:
            code_lines.append(f"sns.boxplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
        else:
            code_lines.append(f"sns.boxplot(data=df, x='{request.x_column}', y='{request.y_column}')")
    elif request.chart_type == "heatmap":
        code_lines.append(f"corr = df.corr()")
        code_lines.append(f"sns.heatmap(corr, annot=True, cmap='coolwarm')")
    else:
        raise ValueError(f"Unsupported chart type: {request.chart_type}")
    
    # Add labels and title
    if request.title:
        code_lines.append(f"plt.title('{request.title}')")
    if request.x_label:
        code_lines.append(f"plt.xlabel('{request.x_label}')")
    if request.y_label:
        code_lines.append(f"plt.ylabel('{request.y_label}')")
    
    code_lines.extend([
        "plt.tight_layout()",
        "plt.show()"
    ])
    
    return "\n".join(code_lines)

def interpret_natural_language(prompt: str, df_columns: list) -> VisualizationRequest:
    """Convert natural language prompt to visualization parameters"""
    prompt = prompt.lower()
    
    # Determine chart type
    chart_type = "bar"
    if "line" in prompt:
        chart_type = "line"
    elif "scatter" in prompt:
        chart_type = "scatter"
    elif "histogram" in prompt:
        chart_type = "histogram"
    elif "box" in prompt:
        chart_type = "boxplot"
    elif "heatmap" in prompt or "correlation" in prompt:
        chart_type = "heatmap"
    
    # Try to detect columns
    x_col = None
    y_col = None
    hue_col = None
    
    for col in df_columns:
        if col.lower() in prompt:
            if not x_col:
                x_col = col
            elif not y_col:
                y_col = col
            else:
                hue_col = col
    
    # Default to first columns if not detected
    if not x_col and len(df_columns) > 0:
        x_col = df_columns[0]
    if not y_col and len(df_columns) > 1:
        y_col = df_columns[1]
    
    return VisualizationRequest(
        chart_type=chart_type,
        x_column=x_col,
        y_column=y_col,
        hue_column=hue_col,
        title="Generated from: " + prompt[:50] + ("..." if len(prompt) > 50 else ""),
        style="seaborn-v0_8"  # Updated default
    )

@app.post("/summarize")
@limiter.limit("5/minute")
async def summarize_document(request: Request, file: UploadFile = File(...)):
    try:
        file_ext, content = await process_uploaded_file(file)
        text = extract_text(content, file_ext)
        
        if not text.strip():
            raise HTTPException(400, "No extractable text found")
        
        # Clean and chunk text
        text = re.sub(r'\s+', ' ', text).strip()
        chunks = [text[i:i+1000] for i in range(0, len(text), 1000)]
        
        # Summarize each chunk
        summarizer = get_summarizer()
        summaries = []
        for chunk in chunks:
            summary = summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
            summaries.append(summary)
        
        return {"summary": " ".join(summaries)}
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Summarization failed: {str(e)}")
        raise HTTPException(500, "Document summarization failed")

@app.post("/qa")
@limiter.limit("5/minute")
async def question_answering(
    request: Request,
    file: UploadFile = File(...),
    question: str = Form(...),
    language: str = Form("fr")
):
    try:
        file_ext, content = await process_uploaded_file(file)
        text = extract_text(content, file_ext)
        
        if not text.strip():
            raise HTTPException(400, "No extractable text found")

        # Clean and truncate text
        text = re.sub(r'\s+', ' ', text).strip()[:5000]

        # Theme detection
        theme_keywords = ["thème", "sujet principal", "quoi le sujet", "theme", "main topic"]
        if any(kw in question.lower() for kw in theme_keywords):
            try:
                summarizer = get_summarizer()
                summary_output = summarizer(
                    text,
                    max_length=min(100, len(text)//4),
                    min_length=30,
                    do_sample=False,
                    truncation=True
                )
                
                theme = summary_output[0].get("summary_text", text[:200] + "...")
                return {
                    "question": question,
                    "answer": f"Le document traite principalement de : {theme}",
                    "confidence": 0.95,
                    "language": language
                }
            except Exception:
                theme = text[:200] + ("..." if len(text) > 200 else "")
                return {
                    "question": question,
                    "answer": f"D'après le document : {theme}",
                    "confidence": 0.7,
                    "language": language,
                    "warning": "theme_summary_fallback"
                }

        # Standard QA
        qa = get_qa_model()
        result = qa(question=question, context=text[:3000])
        
        return {
            "question": question,
            "answer": result["answer"],
            "confidence": result["score"],
            "language": language
        }

    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"QA processing failed: {str(e)}")
        raise HTTPException(500, detail=f"Analysis failed: {str(e)}")

@app.post("/visualize/code")
@limiter.limit("5/minute")
async def visualize_with_code(
    request: Request,
    file: UploadFile = File(...),
    chart_type: str = Form(...),
    x_column: Optional[str] = Form(None),
    y_column: Optional[str] = Form(None),
    hue_column: Optional[str] = Form(None),
    title: Optional[str] = Form(None),
    x_label: Optional[str] = Form(None),
    y_label: Optional[str] = Form(None),
    style: str = Form("seaborn-v0_8"),  # Updated default
    filters: Optional[str] = Form(None)
):
    try:
        file_ext, content = await process_uploaded_file(file)

        if file_ext not in {"xlsx", "xls"}:
            raise HTTPException(400, "Visualization is only supported for Excel files")

        df = pd.read_excel(io.BytesIO(content))

        if df.empty:
            raise HTTPException(400, "The uploaded Excel file is empty")

        # Convert filters from string to dictionary safely
        filters_dict = None
        if filters:
            try:
                filters_dict = ast.literal_eval(filters)
                if not isinstance(filters_dict, dict):
                    raise ValueError()
            except Exception:
                raise HTTPException(400, "Invalid format for filters. Must be a valid dictionary string.")

        viz_request = VisualizationRequest(
            chart_type=chart_type,
            x_column=x_column,
            y_column=y_column,
            hue_column=hue_column,
            title=title,
            x_label=x_label,
            y_label=y_label,
            style=style,
            filters=filters_dict
        )

        code = generate_visualization_code(df, viz_request)
        return {"code": code}

    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Visualization code generation failed: {str(e)}")
        raise HTTPException(500, f"Visualization code generation failed: {str(e)}")

from fastapi.responses import FileResponse  # Add this import at the top

@app.post("/visualize/natural")
@limiter.limit("5/minute")
async def visualize_with_natural_language(
    request: Request,
    file: UploadFile = File(...),
    prompt: str = Form(...),
    style: str = Form("seaborn-v0_8"),
    return_type: str = Form("base64")  # New parameter: "base64" or "file"
):
    try:
        # Validate file and process data (existing code)
        file_ext, content = await process_uploaded_file(file)
        if file_ext not in {"xlsx", "xls"}:
            raise HTTPException(400, "Only Excel files are supported for visualization")
        
        df = pd.read_excel(io.BytesIO(content))
        nl_request = NaturalLanguageRequest(prompt=prompt, style=style)
        vis_request = interpret_natural_language(nl_request.prompt, df.columns.tolist())
        visualization_code = generate_visualization_code(df, vis_request)

        # Generate the plot
        plt.figure()
        local_vars = {}
        exec(visualization_code, globals(), local_vars)
        
        # Save the plot to a temporary file
        temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
        plt.savefig(temp_file.name, format='png', dpi=150, bbox_inches='tight')
        plt.close()

        # Handle response type
        if return_type == "file":
            # Return as downloadable file
            return FileResponse(
                temp_file.name,
                media_type="image/png",
                filename="visualization.png"
            )
        else:
            # Return as Base64 (original behavior)
            with open(temp_file.name, "rb") as f:
                image_bytes = f.read()
            image_base64 = base64.b64encode(image_bytes).decode('utf-8')
            
            # Clean up the temp file
            try:
                os.unlink(temp_file.name)
            except:
                pass
            
            return {
                "status": "success",
                "image": f"data:image/png;base64,{image_base64}",
                "code": visualization_code,
                "interpreted_parameters": vis_request.dict()
            }

    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Natural language visualization failed: {str(e)}\n{traceback.format_exc()}")
        raise HTTPException(500, detail=f"Visualization failed: {str(e)}")

@app.get("/visualize/styles")
@limiter.limit("10/minute")
async def list_available_styles(request: Request):
    """List all available matplotlib styles"""
    return {"available_styles": plt.style.available}

@app.post("/get_columns")
@limiter.limit("10/minute")
async def get_excel_columns(
    request: Request,
    file: UploadFile = File(...)
):
    try:
        file_ext, content = await process_uploaded_file(file)
        if file_ext not in {"xlsx", "xls"}:
            raise HTTPException(400, "Only Excel files are supported")
        
        df = pd.read_excel(io.BytesIO(content))
        return {
            "columns": list(df.columns),
            "sample_data": df.head().to_dict(orient='records'),
            "statistics": df.describe().to_dict() if len(df.select_dtypes(include=['number']).columns) > 0 else None
        }
    except Exception as e:
        logger.error(f"Column extraction failed: {str(e)}")
        raise HTTPException(500, detail="Failed to extract columns from Excel file")

@app.exception_handler(RateLimitExceeded)
async def rate_limit_exceeded_handler(request: Request, exc: RateLimitExceeded):
    return JSONResponse(
        status_code=429,
        content={"detail": "Too many requests. Please try again later."}
    )
import gradio as gr

# Gradio interface for visualization
def gradio_visualize(file, prompt, style="seaborn-v0_8"):
    # Call your existing FastAPI endpoint
    with open(file.name, "rb") as f:
        response = client.post(
            "/visualize/natural",
            files={"file": f},
            data={"prompt": prompt, "style": style}
        )
    result = response.json()
    
    # Return both image and code
    return (
        result["image"],  # Base64 image
        f"```python\n{result['code']}\n```"  # Code with Markdown formatting
    )

# Create Gradio interface
visualization_interface = gr.Interface(
    fn=gradio_visualize,
    inputs=[
        gr.File(label="Upload Excel File", type="filepath"),
        gr.Textbox(label="Visualization Prompt", placeholder="e.g., 'Show sales by region'"),
        gr.Dropdown(label="Style", choices=plt.style.available, value="seaborn-v0_8")
    ],
    outputs=[
        gr.Image(label="Generated Visualization"),  # Auto-handles base64
        gr.Markdown(label="Generated Code")  # Renders code with syntax highlighting
    ],
    title="📊 Data Visualizer",
    description="Upload an Excel file and describe the visualization you want"
)

# Mount Gradio to your FastAPI app
app = gr.mount_gradio_app(app, visualization_interface, path="/gradio")





# ===== ADD THIS AT THE BOTTOM OF main.py =====
if __name__ == "__main__":
    import uvicorn
    from fastapi.testclient import TestClient
    from io import BytesIO
    import base64
    from PIL import Image
    import matplotlib.pyplot as plt

    # 1. Start the app (or connect to a running instance)
    client = TestClient(app)

    # 2. Test the visualization endpoint
    test_file = "test.xlsx"  # Replace with your test file
    test_prompt = "Show me a bar chart of sales by region"

    # 3. Send request to your own API
    with open(test_file, "rb") as f:
        response = client.post(
            "/visualize/natural",
            files={"file": ("test.xlsx", f, "application/vnd.ms-excel")},
            data={"prompt": test_prompt}
        )

    # 4. Check if successful
    if response.status_code == 200:
        result = response.json()
        print("Visualization generated successfully!")

        # 5. Decode and display the image
        image_data = result["image"].split(",")[1]  # Remove header
        image_bytes = base64.b64decode(image_data)
        image = Image.open(BytesIO(image_bytes))

        plt.imshow(image)
        plt.axis("off")
        plt.show()
    else:
        print(f"Error: {response.status_code}\n{response.text}")

    # 6. Optional: Run the server (if not already running)
    uvicorn.run(app, host="0.0.0.0", port=7860)