Spaces:
Sleeping
Sleeping
File size: 23,686 Bytes
8ea794b d728ee4 118cebd 74fd655 118cebd 74fd655 118cebd c6e8137 8ea794b 118cebd 2b4dabe 0d85c20 2b4dabe 8ea794b 118cebd 74fd655 118cebd cdc0a21 118cebd 8ea794b 118cebd 473762c 297e3be 8ea794b 118cebd 8ea794b 118cebd 8ea794b 118cebd 8ea794b 118cebd 74fd655 8ea794b 74fd655 118cebd 8ea794b 74fd655 118cebd 56b4bf4 118cebd 74fd655 118cebd 74fd655 118cebd 8ea794b 118cebd 8ea794b 118cebd d2111c8 118cebd d2111c8 118cebd 9735885 d2111c8 9735885 d2111c8 9735885 d2111c8 9735885 d2111c8 118cebd 9735885 118cebd 74fd655 118cebd 9735885 118cebd 74fd655 118cebd 8ea794b 118cebd d2111c8 118cebd 8ea794b 118cebd 8ea794b 118cebd 8ea794b 118cebd 8ea794b 118cebd 8ea794b 118cebd 8ea794b 118cebd 8ea794b 118cebd 8ea794b 118cebd 74fd655 118cebd d2111c8 118cebd 599895f 118cebd 599895f 118cebd 599895f 8ea794b 599895f 8ea794b 599895f 8ea794b 599895f 118cebd 599895f 8ea794b 8baee49 118cebd 8baee49 118cebd 8baee49 118cebd 8baee49 118cebd 8baee49 118cebd 8baee49 118cebd 8ea794b 118cebd 8ea794b 9735885 8ea794b 118cebd 8ea794b 118cebd 8ea794b 118cebd 8ea794b 118cebd 8ea794b 118cebd 8ea794b 118cebd 8ea794b 118cebd 8ea794b e6116e1 1cdc794 85e9416 8ea794b 85e9416 8ea794b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from transformers import pipeline
from typing import Tuple, Optional
import io
import fitz # PyMuPDF
from PIL import Image
import pandas as pd
import uvicorn
from docx import Document
from pptx import Presentation
import pytesseract
import logging
import re
from slowapi import Limiter
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
from slowapi.middleware import SlowAPIMiddleware
import matplotlib.pyplot as plt
import seaborn as sns
import tempfile
import base64
from io import BytesIO
from pydantic import BaseModel
import traceback
import ast
from fastapi.responses import HTMLResponse
from fastapi import Request
from pathlib import Path
from fastapi.staticfiles import StaticFiles
# Initialize rate limiter
limiter = Limiter(key_func=get_remote_address)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
# Serve static files (frontend)
app.mount("/static", StaticFiles(directory="static"), name="static")
@app.get("/", response_class=HTMLResponse)
def home ():
with open("static/indexAI.html","r") as file :
return file.read()
# Apply rate limiting middleware
app.state.limiter = limiter
app.add_middleware(SlowAPIMiddleware)
# CORS Configuration
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
# Constants
MAX_FILE_SIZE = 10 * 1024 * 1024 # 10MB
SUPPORTED_FILE_TYPES = {
"docx", "xlsx", "pptx", "pdf", "jpg", "jpeg", "png"
}
# Model caching
summarizer = None
qa_model = None
image_captioner = None
def get_summarizer():
global summarizer
if summarizer is None:
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
return summarizer
def get_qa_model():
global qa_model
if qa_model is None:
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
return qa_model
def get_image_captioner():
global image_captioner
if image_captioner is None:
image_captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
return image_captioner
async def process_uploaded_file(file: UploadFile) -> Tuple[str, bytes]:
"""Validate and process uploaded file with special handling for each type"""
if not file.filename:
raise HTTPException(400, "No filename provided")
file_ext = file.filename.split('.')[-1].lower()
if file_ext not in SUPPORTED_FILE_TYPES:
raise HTTPException(400, f"Unsupported file type. Supported: {', '.join(SUPPORTED_FILE_TYPES)}")
content = await file.read()
if len(content) > MAX_FILE_SIZE:
raise HTTPException(413, f"File too large. Max size: {MAX_FILE_SIZE//1024//1024}MB")
# Special validation for PDFs
if file_ext == "pdf":
try:
with fitz.open(stream=content, filetype="pdf") as doc:
if doc.is_encrypted:
if not doc.authenticate(""):
raise ValueError("Encrypted PDF - cannot extract text")
if len(doc) > 50:
raise ValueError("PDF too large (max 50 pages)")
except Exception as e:
logger.error(f"PDF validation failed: {str(e)}")
raise HTTPException(422, detail=f"Invalid PDF file: {str(e)}")
await file.seek(0) # Reset file pointer for processing
return file_ext, content
def extract_text(content: bytes, file_ext: str) -> str:
"""Extract text from various file formats with enhanced support"""
try:
if file_ext == "docx":
doc = Document(io.BytesIO(content))
return "\n".join(para.text for para in doc.paragraphs if para.text.strip())
elif file_ext in {"xlsx", "xls"}:
df = pd.read_excel(io.BytesIO(content), sheet_name=None)
all_text = []
for sheet_name, sheet_data in df.items():
sheet_text = []
for column in sheet_data.columns:
sheet_text.extend(sheet_data[column].dropna().astype(str).tolist())
all_text.append(f"Sheet: {sheet_name}\n" + "\n".join(sheet_text))
return "\n\n".join(all_text)
elif file_ext == "pptx":
ppt = Presentation(io.BytesIO(content))
text = []
for slide in ppt.slides:
for shape in slide.shapes:
if hasattr(shape, "text") and shape.text.strip():
text.append(shape.text)
return "\n".join(text)
elif file_ext == "pdf":
pdf = fitz.open(stream=content, filetype="pdf")
return "\n".join(page.get_text("text") for page in pdf)
elif file_ext in {"jpg", "jpeg", "png"}:
# First try OCR
try:
image = Image.open(io.BytesIO(content))
text = pytesseract.image_to_string(image, config='--psm 6')
if text.strip():
return text
# If OCR fails, try image captioning
captioner = get_image_captioner()
result = captioner(image)
return result[0]['generated_text']
except Exception as img_e:
logger.error(f"Image processing failed: {str(img_e)}")
raise ValueError("Could not extract text or caption from image")
except Exception as e:
logger.error(f"Text extraction failed for {file_ext}: {str(e)}")
raise HTTPException(422, f"Failed to extract text from {file_ext} file")
# Visualization Models
class VisualizationRequest(BaseModel):
chart_type: str
x_column: Optional[str] = None
y_column: Optional[str] = None
hue_column: Optional[str] = None
title: Optional[str] = None
x_label: Optional[str] = None
y_label: Optional[str] = None
style: str = "seaborn-v0_8" # Updated default
filters: Optional[dict] = None
class NaturalLanguageRequest(BaseModel):
prompt: str
style: str = "seaborn-v0_8"
def validate_matplotlib_style(style: str) -> str:
"""Validate and return a valid matplotlib style"""
available_styles = plt.style.available
# Map legacy style names to current ones
style_mapping = {
'seaborn': 'seaborn-v0_8',
'seaborn-white': 'seaborn-v0_8-white',
'seaborn-dark': 'seaborn-v0_8-dark',
# Add other legacy mappings if needed
}
# Check if it's a legacy name we can map
if style in style_mapping:
return style_mapping[style]
# Check if it's a valid current style
if style in available_styles:
return style
logger.warning(f"Invalid style '{style}'. Available styles: {available_styles}")
return "seaborn-v0_8" # Default fallback to current seaborn style
def generate_visualization_code(df: pd.DataFrame, request: VisualizationRequest) -> str:
"""Generate Python code for visualization based on request parameters"""
# Validate style
valid_style = validate_matplotlib_style(request.style)
code_lines = [
"import matplotlib.pyplot as plt",
"import seaborn as sns",
"import pandas as pd",
"",
"# Data preparation",
f"df = pd.DataFrame({df.to_dict(orient='list')})",
]
# Apply filters if specified
if request.filters:
filter_conditions = []
for column, condition in request.filters.items():
if isinstance(condition, dict):
if 'min' in condition and 'max' in condition:
filter_conditions.append(f"(df['{column}'] >= {condition['min']}) & (df['{column}'] <= {condition['max']})")
elif 'values' in condition:
values = ', '.join([f"'{v}'" if isinstance(v, str) else str(v) for v in condition['values']])
filter_conditions.append(f"df['{column}'].isin([{values}])")
else:
filter_conditions.append(f"df['{column}'] == {repr(condition)}")
if filter_conditions:
code_lines.extend([
"",
"# Apply filters",
f"df = df[{' & '.join(filter_conditions)}]"
])
code_lines.extend([
"",
"# Visualization",
f"plt.style.use('{valid_style}')",
f"plt.figure(figsize=(10, 6))"
])
# Chart type specific code
if request.chart_type == "line":
if request.hue_column:
code_lines.append(f"sns.lineplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
else:
code_lines.append(f"plt.plot(df['{request.x_column}'], df['{request.y_column}'])")
elif request.chart_type == "bar":
if request.hue_column:
code_lines.append(f"sns.barplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
else:
code_lines.append(f"plt.bar(df['{request.x_column}'], df['{request.y_column}'])")
elif request.chart_type == "scatter":
if request.hue_column:
code_lines.append(f"sns.scatterplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
else:
code_lines.append(f"plt.scatter(df['{request.x_column}'], df['{request.y_column}'])")
elif request.chart_type == "histogram":
code_lines.append(f"plt.hist(df['{request.x_column}'], bins=20)")
elif request.chart_type == "boxplot":
if request.hue_column:
code_lines.append(f"sns.boxplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
else:
code_lines.append(f"sns.boxplot(data=df, x='{request.x_column}', y='{request.y_column}')")
elif request.chart_type == "heatmap":
code_lines.append(f"corr = df.corr()")
code_lines.append(f"sns.heatmap(corr, annot=True, cmap='coolwarm')")
else:
raise ValueError(f"Unsupported chart type: {request.chart_type}")
# Add labels and title
if request.title:
code_lines.append(f"plt.title('{request.title}')")
if request.x_label:
code_lines.append(f"plt.xlabel('{request.x_label}')")
if request.y_label:
code_lines.append(f"plt.ylabel('{request.y_label}')")
code_lines.extend([
"plt.tight_layout()",
"plt.show()"
])
return "\n".join(code_lines)
def interpret_natural_language(prompt: str, df_columns: list) -> VisualizationRequest:
"""Convert natural language prompt to visualization parameters"""
prompt = prompt.lower()
# Determine chart type
chart_type = "bar"
if "line" in prompt:
chart_type = "line"
elif "scatter" in prompt:
chart_type = "scatter"
elif "histogram" in prompt:
chart_type = "histogram"
elif "box" in prompt:
chart_type = "boxplot"
elif "heatmap" in prompt or "correlation" in prompt:
chart_type = "heatmap"
# Try to detect columns
x_col = None
y_col = None
hue_col = None
for col in df_columns:
if col.lower() in prompt:
if not x_col:
x_col = col
elif not y_col:
y_col = col
else:
hue_col = col
# Default to first columns if not detected
if not x_col and len(df_columns) > 0:
x_col = df_columns[0]
if not y_col and len(df_columns) > 1:
y_col = df_columns[1]
return VisualizationRequest(
chart_type=chart_type,
x_column=x_col,
y_column=y_col,
hue_column=hue_col,
title="Generated from: " + prompt[:50] + ("..." if len(prompt) > 50 else ""),
style="seaborn-v0_8" # Updated default
)
@app.post("/summarize")
@limiter.limit("5/minute")
async def summarize_document(request: Request, file: UploadFile = File(...)):
try:
file_ext, content = await process_uploaded_file(file)
text = extract_text(content, file_ext)
if not text.strip():
raise HTTPException(400, "No extractable text found")
# Clean and chunk text
text = re.sub(r'\s+', ' ', text).strip()
chunks = [text[i:i+1000] for i in range(0, len(text), 1000)]
# Summarize each chunk
summarizer = get_summarizer()
summaries = []
for chunk in chunks:
summary = summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
summaries.append(summary)
return {"summary": " ".join(summaries)}
except HTTPException:
raise
except Exception as e:
logger.error(f"Summarization failed: {str(e)}")
raise HTTPException(500, "Document summarization failed")
@app.post("/qa")
@limiter.limit("5/minute")
async def question_answering(
request: Request,
file: UploadFile = File(...),
question: str = Form(...),
language: str = Form("fr")
):
try:
file_ext, content = await process_uploaded_file(file)
text = extract_text(content, file_ext)
if not text.strip():
raise HTTPException(400, "No extractable text found")
# Clean and truncate text
text = re.sub(r'\s+', ' ', text).strip()[:5000]
# Theme detection
theme_keywords = ["thème", "sujet principal", "quoi le sujet", "theme", "main topic"]
if any(kw in question.lower() for kw in theme_keywords):
try:
summarizer = get_summarizer()
summary_output = summarizer(
text,
max_length=min(100, len(text)//4),
min_length=30,
do_sample=False,
truncation=True
)
theme = summary_output[0].get("summary_text", text[:200] + "...")
return {
"question": question,
"answer": f"Le document traite principalement de : {theme}",
"confidence": 0.95,
"language": language
}
except Exception:
theme = text[:200] + ("..." if len(text) > 200 else "")
return {
"question": question,
"answer": f"D'après le document : {theme}",
"confidence": 0.7,
"language": language,
"warning": "theme_summary_fallback"
}
# Standard QA
qa = get_qa_model()
result = qa(question=question, context=text[:3000])
return {
"question": question,
"answer": result["answer"],
"confidence": result["score"],
"language": language
}
except HTTPException:
raise
except Exception as e:
logger.error(f"QA processing failed: {str(e)}")
raise HTTPException(500, detail=f"Analysis failed: {str(e)}")
@app.post("/visualize/code")
@limiter.limit("5/minute")
async def visualize_with_code(
request: Request,
file: UploadFile = File(...),
chart_type: str = Form(...),
x_column: Optional[str] = Form(None),
y_column: Optional[str] = Form(None),
hue_column: Optional[str] = Form(None),
title: Optional[str] = Form(None),
x_label: Optional[str] = Form(None),
y_label: Optional[str] = Form(None),
style: str = Form("seaborn-v0_8"), # Updated default
filters: Optional[str] = Form(None)
):
try:
file_ext, content = await process_uploaded_file(file)
if file_ext not in {"xlsx", "xls"}:
raise HTTPException(400, "Visualization is only supported for Excel files")
df = pd.read_excel(io.BytesIO(content))
if df.empty:
raise HTTPException(400, "The uploaded Excel file is empty")
# Convert filters from string to dictionary safely
filters_dict = None
if filters:
try:
filters_dict = ast.literal_eval(filters)
if not isinstance(filters_dict, dict):
raise ValueError()
except Exception:
raise HTTPException(400, "Invalid format for filters. Must be a valid dictionary string.")
viz_request = VisualizationRequest(
chart_type=chart_type,
x_column=x_column,
y_column=y_column,
hue_column=hue_column,
title=title,
x_label=x_label,
y_label=y_label,
style=style,
filters=filters_dict
)
code = generate_visualization_code(df, viz_request)
return {"code": code}
except HTTPException:
raise
except Exception as e:
logger.error(f"Visualization code generation failed: {str(e)}")
raise HTTPException(500, f"Visualization code generation failed: {str(e)}")
from fastapi.responses import FileResponse # Add this import at the top
@app.post("/visualize/natural")
@limiter.limit("5/minute")
async def visualize_with_natural_language(
request: Request,
file: UploadFile = File(...),
prompt: str = Form(...),
style: str = Form("seaborn-v0_8"),
return_type: str = Form("base64") # New parameter: "base64" or "file"
):
try:
# Validate file and process data (existing code)
file_ext, content = await process_uploaded_file(file)
if file_ext not in {"xlsx", "xls"}:
raise HTTPException(400, "Only Excel files are supported for visualization")
df = pd.read_excel(io.BytesIO(content))
nl_request = NaturalLanguageRequest(prompt=prompt, style=style)
vis_request = interpret_natural_language(nl_request.prompt, df.columns.tolist())
visualization_code = generate_visualization_code(df, vis_request)
# Generate the plot
plt.figure()
local_vars = {}
exec(visualization_code, globals(), local_vars)
# Save the plot to a temporary file
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
plt.savefig(temp_file.name, format='png', dpi=150, bbox_inches='tight')
plt.close()
# Handle response type
if return_type == "file":
# Return as downloadable file
return FileResponse(
temp_file.name,
media_type="image/png",
filename="visualization.png"
)
else:
# Return as Base64 (original behavior)
with open(temp_file.name, "rb") as f:
image_bytes = f.read()
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
# Clean up the temp file
try:
os.unlink(temp_file.name)
except:
pass
return {
"status": "success",
"image": f"data:image/png;base64,{image_base64}",
"code": visualization_code,
"interpreted_parameters": vis_request.dict()
}
except HTTPException:
raise
except Exception as e:
logger.error(f"Natural language visualization failed: {str(e)}\n{traceback.format_exc()}")
raise HTTPException(500, detail=f"Visualization failed: {str(e)}")
@app.get("/visualize/styles")
@limiter.limit("10/minute")
async def list_available_styles(request: Request):
"""List all available matplotlib styles"""
return {"available_styles": plt.style.available}
@app.post("/get_columns")
@limiter.limit("10/minute")
async def get_excel_columns(
request: Request,
file: UploadFile = File(...)
):
try:
file_ext, content = await process_uploaded_file(file)
if file_ext not in {"xlsx", "xls"}:
raise HTTPException(400, "Only Excel files are supported")
df = pd.read_excel(io.BytesIO(content))
return {
"columns": list(df.columns),
"sample_data": df.head().to_dict(orient='records'),
"statistics": df.describe().to_dict() if len(df.select_dtypes(include=['number']).columns) > 0 else None
}
except Exception as e:
logger.error(f"Column extraction failed: {str(e)}")
raise HTTPException(500, detail="Failed to extract columns from Excel file")
@app.exception_handler(RateLimitExceeded)
async def rate_limit_exceeded_handler(request: Request, exc: RateLimitExceeded):
return JSONResponse(
status_code=429,
content={"detail": "Too many requests. Please try again later."}
)
import gradio as gr
# Gradio interface for visualization
def gradio_visualize(file, prompt, style="seaborn-v0_8"):
# Call your existing FastAPI endpoint
with open(file.name, "rb") as f:
response = client.post(
"/visualize/natural",
files={"file": f},
data={"prompt": prompt, "style": style}
)
result = response.json()
# Return both image and code
return (
result["image"], # Base64 image
f"```python\n{result['code']}\n```" # Code with Markdown formatting
)
# Create Gradio interface
visualization_interface = gr.Interface(
fn=gradio_visualize,
inputs=[
gr.File(label="Upload Excel File", type="filepath"),
gr.Textbox(label="Visualization Prompt", placeholder="e.g., 'Show sales by region'"),
gr.Dropdown(label="Style", choices=plt.style.available, value="seaborn-v0_8")
],
outputs=[
gr.Image(label="Generated Visualization"), # Auto-handles base64
gr.Markdown(label="Generated Code") # Renders code with syntax highlighting
],
title="📊 Data Visualizer",
description="Upload an Excel file and describe the visualization you want"
)
# Mount Gradio to your FastAPI app
app = gr.mount_gradio_app(app, visualization_interface, path="/gradio")
# ===== ADD THIS AT THE BOTTOM OF main.py =====
if __name__ == "__main__":
import uvicorn
from fastapi.testclient import TestClient
from io import BytesIO
import base64
from PIL import Image
import matplotlib.pyplot as plt
# 1. Start the app (or connect to a running instance)
client = TestClient(app)
# 2. Test the visualization endpoint
test_file = "test.xlsx" # Replace with your test file
test_prompt = "Show me a bar chart of sales by region"
# 3. Send request to your own API
with open(test_file, "rb") as f:
response = client.post(
"/visualize/natural",
files={"file": ("test.xlsx", f, "application/vnd.ms-excel")},
data={"prompt": test_prompt}
)
# 4. Check if successful
if response.status_code == 200:
result = response.json()
print("Visualization generated successfully!")
# 5. Decode and display the image
image_data = result["image"].split(",")[1] # Remove header
image_bytes = base64.b64decode(image_data)
image = Image.open(BytesIO(image_bytes))
plt.imshow(image)
plt.axis("off")
plt.show()
else:
print(f"Error: {response.status_code}\n{response.text}")
# 6. Optional: Run the server (if not already running)
uvicorn.run(app, host="0.0.0.0", port=7860) |