File size: 34,019 Bytes
d65b6e8
66992f6
10008f1
640dd0e
af81629
10008f1
af81629
 
10008f1
fd289b1
42eafc4
e7e829d
78869ff
10008f1
 
 
42eafc4
a58ada6
c263c26
10008f1
fd289b1
42eafc4
 
 
 
 
640dd0e
 
 
 
 
 
af81629
 
 
 
640dd0e
fd289b1
10008f1
fd289b1
af81629
fd289b1
 
 
10008f1
fd289b1
10008f1
 
 
 
 
 
 
 
 
 
fd289b1
 
 
10008f1
fd289b1
 
af81629
 
 
640dd0e
66992f6
 
640dd0e
 
 
 
 
 
78869ff
 
 
 
 
 
 
 
 
 
 
af81629
78869ff
640dd0e
78869ff
 
 
fd289b1
640dd0e
 
 
 
 
 
 
 
 
b9dea2c
78869ff
af81629
 
640dd0e
 
 
 
66992f6
78869ff
 
af81629
78869ff
66992f6
78869ff
 
af81629
78869ff
 
 
 
640dd0e
78869ff
 
640dd0e
 
fd289b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af81629
10008f1
640dd0e
af81629
 
 
66992f6
af81629
 
 
66992f6
af81629
 
 
 
 
 
 
 
 
 
 
640dd0e
af81629
 
 
 
 
 
66992f6
af81629
 
66992f6
af81629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
af81629
 
640dd0e
af81629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
af81629
 
 
 
66992f6
 
117eca9
fd289b1
 
 
 
 
10008f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd289b1
640dd0e
 
 
42eafc4
10008f1
fd289b1
 
 
10008f1
fd289b1
10008f1
fd289b1
 
42eafc4
b9dea2c
10008f1
fd289b1
66992f6
640dd0e
fd289b1
640dd0e
 
b9dea2c
640dd0e
fd289b1
 
 
 
 
 
 
78869ff
10008f1
fd289b1
78869ff
10008f1
fd289b1
 
10008f1
fd289b1
42eafc4
 
 
 
 
 
 
 
 
10008f1
42eafc4
 
 
 
78869ff
42eafc4
78869ff
42eafc4
78869ff
10008f1
42eafc4
 
 
 
fd289b1
78869ff
 
42eafc4
10008f1
42eafc4
fd289b1
10008f1
 
 
 
42eafc4
b9dea2c
10008f1
42eafc4
10008f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42eafc4
 
 
10008f1
 
 
 
 
fd289b1
42eafc4
 
 
 
 
 
78869ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42eafc4
 
 
 
 
 
78869ff
 
 
 
 
42eafc4
 
 
 
 
 
 
78869ff
42eafc4
 
 
 
 
 
10008f1
42eafc4
78869ff
42eafc4
b9dea2c
10008f1
 
fd289b1
 
 
10008f1
fd289b1
42eafc4
fd289b1
640dd0e
 
 
 
 
 
10008f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42eafc4
10008f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af81629
42eafc4
78869ff
 
42eafc4
 
 
78869ff
 
42eafc4
 
 
78869ff
42eafc4
78869ff
 
 
42eafc4
78869ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42eafc4
af81629
 
10008f1
66992f6
 
42eafc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78869ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42eafc4
fd289b1
a58ada6
10008f1
42eafc4
b9dea2c
 
10008f1
78869ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42eafc4
10008f1
 
42eafc4
10008f1
fd289b1
 
10008f1
 
 
42eafc4
 
10008f1
 
 
 
 
 
 
 
 
 
fd289b1
10008f1
 
fd289b1
10008f1
fd289b1
 
b9dea2c
10008f1
 
b9dea2c
66992f6
fd289b1
10008f1
af81629
 
b9dea2c
10008f1
 
af81629
7208f76
10008f1
fd289b1
10008f1
 
 
 
42eafc4
78869ff
 
 
 
 
b37c0fc
 
10008f1
 
 
 
 
 
 
78869ff
 
 
 
 
 
 
 
 
 
 
 
 
 
10008f1
 
 
42eafc4
10008f1
 
 
 
 
 
 
 
 
42eafc4
10008f1
 
 
 
 
 
 
42eafc4
10008f1
 
 
42eafc4
 
10008f1
 
 
 
 
 
42eafc4
 
10008f1
 
 
 
 
 
 
 
 
 
 
 
 
42eafc4
10008f1
 
 
 
42eafc4
10008f1
66992f6
 
af81629
10008f1
 
 
 
 
 
 
 
25dcfd9
 
42eafc4
10008f1
 
 
 
 
66992f6
a58ada6
66992f6
af81629
678e06c
a58ada6
 
678e06c
a58ada6
678e06c
 
a58ada6
42eafc4
78869ff
 
 
 
 
 
 
 
 
 
 
42eafc4
678e06c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
import gradio as gr
import numpy as np
import queue
import torch
import time
import threading
import os
import urllib.request
import torchaudio
from scipy.spatial.distance import cosine
from RealtimeSTT import AudioToTextRecorder
from fastapi import FastAPI
from fastrtc import Stream, AsyncStreamHandler, ReplyOnPause, get_cloudflare_turn_credentials_async, get_cloudflare_turn_credentials
import json
import io
import wave
import asyncio
import uvicorn

# Simplified configuration parameters
SILENCE_THRESHS = [0, 0.4]
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
FINAL_BEAM_SIZE = 5
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
REALTIME_BEAM_SIZE = 5
TRANSCRIPTION_LANGUAGE = "en"
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
MIN_LENGTH_OF_RECORDING = 0.7
PRE_RECORDING_BUFFER_DURATION = 0.35

# Speaker change detection parameters
DEFAULT_CHANGE_THRESHOLD = 0.7
EMBEDDING_HISTORY_SIZE = 5
MIN_SEGMENT_DURATION = 1.0
DEFAULT_MAX_SPEAKERS = 4
ABSOLUTE_MAX_SPEAKERS = 10

# Global variables
FAST_SENTENCE_END = True
SAMPLE_RATE = 16000
BUFFER_SIZE = 512
CHANNELS = 1

# Speaker colors
SPEAKER_COLORS = [
    "#FFFF00",  # Yellow
    "#FF0000",  # Red
    "#00FF00",  # Green
    "#00FFFF",  # Cyan
    "#FF00FF",  # Magenta
    "#0000FF",  # Blue
    "#FF8000",  # Orange
    "#00FF80",  # Spring Green
    "#8000FF",  # Purple
    "#FFFFFF",  # White
]

SPEAKER_COLOR_NAMES = [
    "Yellow", "Red", "Green", "Cyan", "Magenta", 
    "Blue", "Orange", "Spring Green", "Purple", "White"
]


class SpeechBrainEncoder:
    """ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
    def __init__(self, device="cpu"):
        self.device = device
        self.model = None
        self.embedding_dim = 192
        self.model_loaded = False
        self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
        os.makedirs(self.cache_dir, exist_ok=True)
    
    def _download_model(self):
        """Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
        model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
        model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
        
        if not os.path.exists(model_path):
            print(f"Downloading ECAPA-TDNN model to {model_path}...")
            urllib.request.urlretrieve(model_url, model_path)
        
        return model_path
    
    def load_model(self):
        """Load the ECAPA-TDNN model"""
        try:
            from speechbrain.pretrained import EncoderClassifier
            
            model_path = self._download_model()
            
            self.model = EncoderClassifier.from_hparams(
                source="speechbrain/spkrec-ecapa-voxceleb",
                savedir=self.cache_dir,
                run_opts={"device": self.device}
            )
            
            self.model_loaded = True
            return True
        except Exception as e:
            print(f"Error loading ECAPA-TDNN model: {e}")
            return False
    
    def embed_utterance(self, audio, sr=16000):
        """Extract speaker embedding from audio"""
        if not self.model_loaded:
            raise ValueError("Model not loaded. Call load_model() first.")
        
        try:
            if isinstance(audio, np.ndarray):
                waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
            else:
                waveform = audio.unsqueeze(0)
            
            if sr != 16000:
                waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
            
            with torch.no_grad():
                embedding = self.model.encode_batch(waveform)
                
            return embedding.squeeze().cpu().numpy()
        except Exception as e:
            print(f"Error extracting embedding: {e}")
            return np.zeros(self.embedding_dim)


class AudioProcessor:
    """Processes audio data to extract speaker embeddings"""
    def __init__(self, encoder):
        self.encoder = encoder
    
    def extract_embedding(self, audio_int16):
        try:
            float_audio = audio_int16.astype(np.float32) / 32768.0
            
            if np.abs(float_audio).max() > 1.0:
                float_audio = float_audio / np.abs(float_audio).max()
            
            embedding = self.encoder.embed_utterance(float_audio)
            
            return embedding
        except Exception as e:
            print(f"Embedding extraction error: {e}")
            return np.zeros(self.encoder.embedding_dim)


class SpeakerChangeDetector:
    """Speaker change detector that supports a configurable number of speakers"""
    def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
        self.embedding_dim = embedding_dim
        self.change_threshold = change_threshold
        self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
        self.current_speaker = 0
        self.previous_embeddings = []
        self.last_change_time = time.time()
        self.mean_embeddings = [None] * self.max_speakers
        self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
        self.last_similarity = 0.0
        self.active_speakers = set([0])
        
    def set_max_speakers(self, max_speakers):
        """Update the maximum number of speakers"""
        new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
        
        if new_max < self.max_speakers:
            for speaker_id in list(self.active_speakers):
                if speaker_id >= new_max:
                    self.active_speakers.discard(speaker_id)
            
            if self.current_speaker >= new_max:
                self.current_speaker = 0
        
        if new_max > self.max_speakers:
            self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
            self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
        else:
            self.mean_embeddings = self.mean_embeddings[:new_max]
            self.speaker_embeddings = self.speaker_embeddings[:new_max]
        
        self.max_speakers = new_max
        
    def set_change_threshold(self, threshold):
        """Update the threshold for detecting speaker changes"""
        self.change_threshold = max(0.1, min(threshold, 0.99))
        
    def add_embedding(self, embedding, timestamp=None):
        """Add a new embedding and check if there's a speaker change"""
        current_time = timestamp or time.time()
        
        if not self.previous_embeddings:
            self.previous_embeddings.append(embedding)
            self.speaker_embeddings[self.current_speaker].append(embedding)
            if self.mean_embeddings[self.current_speaker] is None:
                self.mean_embeddings[self.current_speaker] = embedding.copy()
            return self.current_speaker, 1.0
        
        current_mean = self.mean_embeddings[self.current_speaker]
        if current_mean is not None:
            similarity = 1.0 - cosine(embedding, current_mean)
        else:
            similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1])
        
        self.last_similarity = similarity
        
        time_since_last_change = current_time - self.last_change_time
        is_speaker_change = False
        
        if time_since_last_change >= MIN_SEGMENT_DURATION:
            if similarity < self.change_threshold:
                best_speaker = self.current_speaker
                best_similarity = similarity
                
                for speaker_id in range(self.max_speakers):
                    if speaker_id == self.current_speaker:
                        continue
                        
                    speaker_mean = self.mean_embeddings[speaker_id]
                    
                    if speaker_mean is not None:
                        speaker_similarity = 1.0 - cosine(embedding, speaker_mean)
                        
                        if speaker_similarity > best_similarity:
                            best_similarity = speaker_similarity
                            best_speaker = speaker_id
                
                if best_speaker != self.current_speaker:
                    is_speaker_change = True
                    self.current_speaker = best_speaker
                elif len(self.active_speakers) < self.max_speakers:
                    for new_id in range(self.max_speakers):
                        if new_id not in self.active_speakers:
                            is_speaker_change = True
                            self.current_speaker = new_id
                            self.active_speakers.add(new_id)
                            break
        
        if is_speaker_change:
            self.last_change_time = current_time
        
        self.previous_embeddings.append(embedding)
        if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
            self.previous_embeddings.pop(0)
        
        self.speaker_embeddings[self.current_speaker].append(embedding)
        self.active_speakers.add(self.current_speaker)
        
        if len(self.speaker_embeddings[self.current_speaker]) > 30:
            self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:]
            
        if self.speaker_embeddings[self.current_speaker]:
            self.mean_embeddings[self.current_speaker] = np.mean(
                self.speaker_embeddings[self.current_speaker], axis=0
            )
        
        return self.current_speaker, similarity
    
    def get_color_for_speaker(self, speaker_id):
        """Return color for speaker ID"""
        if 0 <= speaker_id < len(SPEAKER_COLORS):
            return SPEAKER_COLORS[speaker_id]
        return "#FFFFFF"
    
    def get_status_info(self):
        """Return status information about the speaker change detector"""
        speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
        
        return {
            "current_speaker": self.current_speaker,
            "speaker_counts": speaker_counts,
            "active_speakers": len(self.active_speakers),
            "max_speakers": self.max_speakers,
            "last_similarity": self.last_similarity,
            "threshold": self.change_threshold
        }


class RealtimeSpeakerDiarization:
    def __init__(self):
        self.encoder = None
        self.audio_processor = None
        self.speaker_detector = None
        self.recorder = None
        self.sentence_queue = queue.Queue()
        self.full_sentences = []
        self.sentence_speakers = []
        self.pending_sentences = []
        self.displayed_text = ""
        self.last_realtime_text = ""
        self.is_running = False
        self.change_threshold = DEFAULT_CHANGE_THRESHOLD
        self.max_speakers = DEFAULT_MAX_SPEAKERS
        self.current_conversation = ""
        
    def initialize_models(self):
        """Initialize the speaker encoder model"""
        try:
            device_str = "cuda" if torch.cuda.is_available() else "cpu"
            print(f"Using device: {device_str}")
            
            self.encoder = SpeechBrainEncoder(device=device_str)
            success = self.encoder.load_model()
            
            if success:
                self.audio_processor = AudioProcessor(self.encoder)
                self.speaker_detector = SpeakerChangeDetector(
                    embedding_dim=self.encoder.embedding_dim,
                    change_threshold=self.change_threshold,
                    max_speakers=self.max_speakers
                )
                print("ECAPA-TDNN model loaded successfully!")
                return True
            else:
                print("Failed to load ECAPA-TDNN model")
                return False
        except Exception as e:
            print(f"Model initialization error: {e}")
            return False
    
    def live_text_detected(self, text):
        """Callback for real-time transcription updates"""
        text = text.strip()
        if text:
            sentence_delimiters = '.?!。'
            prob_sentence_end = (
                len(self.last_realtime_text) > 0
                and text[-1] in sentence_delimiters
                and self.last_realtime_text[-1] in sentence_delimiters
            )

            self.last_realtime_text = text

            if prob_sentence_end and FAST_SENTENCE_END:
                self.recorder.stop()
            elif prob_sentence_end:
                self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
            else:
                self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
    
    def process_final_text(self, text):
        """Process final transcribed text with speaker embedding"""
        text = text.strip()
        if text:
            try:
                bytes_data = self.recorder.last_transcription_bytes
                self.sentence_queue.put((text, bytes_data))
                self.pending_sentences.append(text)
            except Exception as e:
                print(f"Error processing final text: {e}")
    
    def process_sentence_queue(self):
        """Process sentences in the queue for speaker detection"""
        while self.is_running:
            try:
                text, bytes_data = self.sentence_queue.get(timeout=1)
                
                # Convert audio data to int16
                audio_int16 = np.frombuffer(bytes_data, dtype=np.int16)
                
                # Extract speaker embedding
                speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
                
                # Store sentence and embedding
                self.full_sentences.append((text, speaker_embedding))
                
                # Fill in missing speaker assignments
                while len(self.sentence_speakers) < len(self.full_sentences) - 1:
                    self.sentence_speakers.append(0)
                
                # Detect speaker changes
                speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
                self.sentence_speakers.append(speaker_id)
                
                # Remove from pending
                if text in self.pending_sentences:
                    self.pending_sentences.remove(text)
                
                # Update conversation display
                self.current_conversation = self.get_formatted_conversation()
                    
            except queue.Empty:
                continue
            except Exception as e:
                print(f"Error processing sentence: {e}")
    
    def start_recording(self):
        """Start the recording and transcription process"""
        if self.encoder is None:
            return "Please initialize models first!"
        
        try:
            # Setup recorder configuration for WebRTC input
            recorder_config = {
                'spinner': False,
                'use_microphone': False,  # We'll feed audio manually
                'model': FINAL_TRANSCRIPTION_MODEL,
                'language': TRANSCRIPTION_LANGUAGE,
                'silero_sensitivity': SILERO_SENSITIVITY,
                'webrtc_sensitivity': WEBRTC_SENSITIVITY,
                'post_speech_silence_duration': SILENCE_THRESHS[1],
                'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
                'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
                'min_gap_between_recordings': 0,
                'enable_realtime_transcription': True,
                'realtime_processing_pause': 0,
                'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
                'on_realtime_transcription_update': self.live_text_detected,
                'beam_size': FINAL_BEAM_SIZE,
                'beam_size_realtime': REALTIME_BEAM_SIZE,
                'buffer_size': BUFFER_SIZE,
                'sample_rate': SAMPLE_RATE,
            }

            self.recorder = AudioToTextRecorder(**recorder_config)
            
            # Start sentence processing thread
            self.is_running = True
            self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
            self.sentence_thread.start()
            
            # Start transcription thread
            self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
            self.transcription_thread.start()
            
            return "Recording started successfully! FastRTC audio input ready."
            
        except Exception as e:
            return f"Error starting recording: {e}"
    
    def run_transcription(self):
        """Run the transcription loop"""
        try:
            while self.is_running:
                self.recorder.text(self.process_final_text)
        except Exception as e:
            print(f"Transcription error: {e}")
    
    def stop_recording(self):
        """Stop the recording process"""
        self.is_running = False
        if self.recorder:
            self.recorder.stop()
        return "Recording stopped!"
    
    def clear_conversation(self):
        """Clear all conversation data"""
        self.full_sentences = []
        self.sentence_speakers = []
        self.pending_sentences = []
        self.displayed_text = ""
        self.last_realtime_text = ""
        self.current_conversation = "Conversation cleared!"
        
        if self.speaker_detector:
            self.speaker_detector = SpeakerChangeDetector(
                embedding_dim=self.encoder.embedding_dim,
                change_threshold=self.change_threshold,
                max_speakers=self.max_speakers
            )
        
        return "Conversation cleared!"
    
    def update_settings(self, threshold, max_speakers):
        """Update speaker detection settings"""
        self.change_threshold = threshold
        self.max_speakers = max_speakers
        
        if self.speaker_detector:
            self.speaker_detector.set_change_threshold(threshold)
            self.speaker_detector.set_max_speakers(max_speakers)
        
        return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
    
    def get_formatted_conversation(self):
        """Get the formatted conversation with speaker colors"""
        try:
            sentences_with_style = []
            
            # Process completed sentences
            for i, sentence in enumerate(self.full_sentences):
                sentence_text, _ = sentence
                if i >= len(self.sentence_speakers):
                    color = "#FFFFFF"
                    speaker_name = "Unknown"
                else:
                    speaker_id = self.sentence_speakers[i]
                    color = self.speaker_detector.get_color_for_speaker(speaker_id)
                    speaker_name = f"Speaker {speaker_id + 1}"
                    
                sentences_with_style.append(
                    f'<span style="color:{color};"><b>{speaker_name}:</b> {sentence_text}</span>')
            
            # Add pending sentences
            for pending_sentence in self.pending_sentences:
                sentences_with_style.append(
                    f'<span style="color:#60FFFF;"><b>Processing:</b> {pending_sentence}</span>')
            
            if sentences_with_style:
                return "<br><br>".join(sentences_with_style)
            else:
                return "Waiting for speech input..."
                
        except Exception as e:
            return f"Error formatting conversation: {e}"
    
    def get_status_info(self):
        """Get current status information"""
        if not self.speaker_detector:
            return "Speaker detector not initialized"
        
        try:
            status = self.speaker_detector.get_status_info()
            
            status_lines = [
                f"**Current Speaker:** {status['current_speaker'] + 1}",
                f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}",
                f"**Last Similarity:** {status['last_similarity']:.3f}",
                f"**Change Threshold:** {status['threshold']:.2f}",
                f"**Total Sentences:** {len(self.full_sentences)}",
                "",
                "**Speaker Segment Counts:**"
            ]
            
            for i in range(status['max_speakers']):
                color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
                status_lines.append(f"Speaker {i+1} ({color_name}): {status['speaker_counts'][i]}")
            
            return "\n".join(status_lines)
            
        except Exception as e:
            return f"Error getting status: {e}"

    def process_audio(self, audio_data):
        """Process audio data from FastRTC"""
        if not self.is_running or not self.recorder:
            return
        
        try:
            # Extract audio data from FastRTC format (sample_rate, numpy_array)
            sample_rate, audio_array = audio_data
            
            # Convert to int16 format
            if audio_array.dtype != np.int16:
                audio_array = (audio_array * 32767).astype(np.int16)
            
            # Convert to bytes and feed to recorder
            audio_bytes = audio_array.tobytes()
            self.recorder.feed_audio(audio_bytes)
        except Exception as e:
            print(f"Error processing FastRTC audio: {e}")


# FastRTC Audio Handler
class DiarizationHandler(AsyncStreamHandler):
    def __init__(self, diarization_system):
        super().__init__()
        self.diarization_system = diarization_system
        
    def copy(self):
        # Return a fresh handler for each new stream connection
        return DiarizationHandler(self.diarization_system)
    
    async def emit(self):
        """Not used in this implementation"""
        return None
    
    async def receive(self, data):
        """Receive audio data from FastRTC and process it"""
        if self.diarization_system.is_running:
            self.diarization_system.process_audio(data)


# Global instance
diarization_system = RealtimeSpeakerDiarization()


def initialize_system():
    """Initialize the diarization system"""
    success = diarization_system.initialize_models()
    if success:
        return "βœ… System initialized successfully! Models loaded."
    else:
        return "❌ Failed to initialize system. Please check the logs."


def start_recording():
    """Start recording and transcription"""
    return diarization_system.start_recording()


def stop_recording():
    """Stop recording and transcription"""
    return diarization_system.stop_recording()


def clear_conversation():
    """Clear the conversation"""
    return diarization_system.clear_conversation()


def update_settings(threshold, max_speakers):
    """Update system settings"""
    return diarization_system.update_settings(threshold, max_speakers)


def get_conversation():
    """Get the current conversation"""
    return diarization_system.get_formatted_conversation()


def get_status():
    """Get system status"""
    return diarization_system.get_status_info()


# Get Cloudflare TURN credentials for FastRTC
async def get_cloudflare_credentials():
    # Check if HF_TOKEN is set in environment
    hf_token = os.environ.get("HF_TOKEN")
    
    # If not set, use a default Hugging Face token if available
    if not hf_token:
        # Log a warning that user should set their own token
        print("Warning: HF_TOKEN environment variable not set. Please set your own Hugging Face token.")
        # Try to use the Hugging Face token from the environment
        from huggingface_hub import HfApi
        try:
            api = HfApi()
            hf_token = api.token
            if not hf_token:
                print("Error: No Hugging Face token available. TURN relay may not work properly.")
        except:
            print("Error: Failed to get Hugging Face token. TURN relay may not work properly.")
    
    # Get Cloudflare TURN credentials using the Hugging Face token
    if hf_token:
        try:
            return await get_cloudflare_turn_credentials_async(hf_token=hf_token)
        except Exception as e:
            print(f"Error getting Cloudflare TURN credentials: {e}")
    
    # Fallback to a default configuration that may not work
    return {
        "iceServers": [
            {
                "urls": "stun:stun.l.google.com:19302"
            }
        ]
    }


# Setup FastRTC stream handler with TURN server configuration
def setup_fastrtc_handler():
    """Set up FastRTC audio stream handler with TURN server configuration"""
    handler = DiarizationHandler(diarization_system)
    
    # Get server-side credentials (longer TTL)
    server_credentials = get_cloudflare_turn_credentials(ttl=360000)
    
    stream = Stream(
        handler=handler, 
        modality="audio", 
        mode="receive",
        rtc_configuration=get_cloudflare_credentials,  # Async function for client-side credentials
        server_rtc_configuration=server_credentials    # Server-side credentials with longer TTL
    )
    
    return stream


# Create Gradio interface
def create_interface():
    with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Monochrome()) as interface:
        gr.Markdown("# 🎀 Real-time Speech Recognition with Speaker Diarization")
        gr.Markdown("This app performs real-time speech recognition with automatic speaker identification and color-coding.")
        
        with gr.Row():
            with gr.Column(scale=2):
                # FastRTC Audio Component
                fastrtc_html = gr.HTML("""
                <div class="fastrtc-container" style="margin-bottom: 20px;">
                    <h3>πŸŽ™οΈ FastRTC Audio Input</h3>
                    <p>Click the button below to start the audio stream:</p>
                    <button id="start-fastrtc" style="background: #3498db; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer;">
                        Start FastRTC Audio
                    </button>
                    <div id="fastrtc-status" style="margin-top: 10px; font-style: italic;">Not connected</div>
                    <script>
                        document.getElementById('start-fastrtc').addEventListener('click', function() {
                            document.getElementById('fastrtc-status').textContent = 'Connecting...';
                            // FastRTC will initialize the connection
                            fetch('/start-rtc', { method: 'POST' })
                                .then(response => response.text())
                                .then(data => {
                                    document.getElementById('fastrtc-status').textContent = 'Connected! Speak now...';
                                })
                                .catch(error => {
                                    document.getElementById('fastrtc-status').textContent = 'Connection error: ' + error;
                                });
                        });
                    </script>
                </div>
                """)
                
                # Main conversation display
                conversation_output = gr.HTML(
                    value="<i>Click 'Initialize System' to start...</i>",
                    label="Live Conversation"
                )
                
                # Control buttons
                with gr.Row():
                    init_btn = gr.Button("πŸ”§ Initialize System", variant="secondary")
                    start_btn = gr.Button("πŸŽ™οΈ Start Recording", variant="primary", interactive=False)
                    stop_btn = gr.Button("⏹️ Stop Recording", variant="stop", interactive=False)
                    clear_btn = gr.Button("πŸ—‘οΈ Clear Conversation", interactive=False)
                
                # Status display
                status_output = gr.Textbox(
                    label="System Status",
                    value="System not initialized",
                    lines=8,
                    interactive=False
                )
            
            with gr.Column(scale=1):
                # Settings panel
                gr.Markdown("## βš™οΈ Settings")
                
                threshold_slider = gr.Slider(
                    minimum=0.1,
                    maximum=0.95,
                    step=0.05,
                    value=DEFAULT_CHANGE_THRESHOLD,
                    label="Speaker Change Sensitivity",
                    info="Lower values = more sensitive to speaker changes"
                )
                
                max_speakers_slider = gr.Slider(
                    minimum=2,
                    maximum=ABSOLUTE_MAX_SPEAKERS,
                    step=1,
                    value=DEFAULT_MAX_SPEAKERS,
                    label="Maximum Number of Speakers"
                )
                
                update_settings_btn = gr.Button("Update Settings")
                
                # Instructions
                gr.Markdown("## πŸ“ Instructions")
                gr.Markdown("""
                1. Click **Initialize System** to load models
                2. Click **Start Recording** to begin processing
                3. Click **Start FastRTC Audio** to connect your microphone
                4. Allow microphone access when prompted
                5. Speak into your microphone
                6. Watch real-time transcription with speaker labels
                7. Adjust settings as needed
                """)
                
                # Speaker color legend
                gr.Markdown("## 🎨 Speaker Colors")
                color_info = []
                for i, (color, name) in enumerate(zip(SPEAKER_COLORS, SPEAKER_COLOR_NAMES)):
                    color_info.append(f'<span style="color:{color};">β– </span> Speaker {i+1} ({name})')
                
                gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
                
                # FastRTC Integration Notice
                gr.Markdown("""
                ## ℹ️ About FastRTC
                This app uses FastRTC for low-latency audio streaming. 
                For optimal performance, use a modern browser and allow microphone access when prompted.
                """)
                
                # Hugging Face Token Information
                gr.Markdown("""
                ## πŸ”‘ Hugging Face Token
                This app uses Cloudflare TURN server via Hugging Face integration.
                If audio connection fails, set your HF_TOKEN environment variable in the Space settings.
                """)
        
        # Auto-refresh conversation and status
        def refresh_display():
            return diarization_system.get_formatted_conversation(), diarization_system.get_status_info()
        
        # Event handlers
        def on_initialize():
            result = initialize_system()
            if "successfully" in result:
                return (
                    result,
                    gr.update(interactive=True),   # start_btn
                    gr.update(interactive=True),   # clear_btn
                    get_conversation(),
                    get_status()
                )
            else:
                return (
                    result,
                    gr.update(interactive=False),  # start_btn
                    gr.update(interactive=False),  # clear_btn
                    get_conversation(),
                    get_status()
                )
        
        def on_start():
            result = start_recording()
            return (
                result,
                gr.update(interactive=False),  # start_btn
                gr.update(interactive=True),   # stop_btn
            )
        
        def on_stop():
            result = stop_recording()
            return (
                result,
                gr.update(interactive=True),   # start_btn
                gr.update(interactive=False),  # stop_btn
            )
        
        # Connect event handlers
        init_btn.click(
            on_initialize,
            outputs=[status_output, start_btn, clear_btn, conversation_output, status_output]
        )
        
        start_btn.click(
            on_start,
            outputs=[status_output, start_btn, stop_btn]
        )
        
        stop_btn.click(
            on_stop,
            outputs=[status_output, start_btn, stop_btn]
        )
        
        clear_btn.click(
            clear_conversation,
            outputs=[status_output]
        )
        
        update_settings_btn.click(
            update_settings,
            inputs=[threshold_slider, max_speakers_slider],
            outputs=[status_output]
        )
        
        # Auto-refresh every 2 seconds when recording
        refresh_timer = gr.Timer(2.0)
        refresh_timer.tick(
            refresh_display,
            outputs=[conversation_output, status_output]
        )
    
    return interface


# 1) Create FastAPI app
app = FastAPI()

# 2) Create Gradio interface
gradio_interface = create_interface()

# 3) Mount Gradio onto FastAPI at root
app = gr.mount_gradio_app(app, gradio_interface, path="/")

# 4) Initialize and mount FastRTC stream on the same app
rtc_stream = setup_fastrtc_handler()
rtc_stream.mount(app)

# 5) Expose an endpoint to trigger the client-side RTC handshake
@app.post("/start-rtc")
async def start_rtc():
    await rtc_stream.start_client()
    return {"status": "success"}

# 6) Local dev via uvicorn; HF Spaces will auto-detect 'app' and ignore this
if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)