Spaces:
Sleeping
Sleeping
Commit
Β·
7208f76
1
Parent(s):
b9dea2c
Fixing Real time audio
Browse files
app.py
CHANGED
@@ -11,6 +11,8 @@ import queue
|
|
11 |
from collections import deque
|
12 |
import asyncio
|
13 |
from typing import Generator, Tuple, List, Optional
|
|
|
|
|
14 |
|
15 |
# Configuration parameters (keeping original models)
|
16 |
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
|
@@ -30,6 +32,7 @@ MIN_SEGMENT_DURATION = 1.0
|
|
30 |
DEFAULT_MAX_SPEAKERS = 4
|
31 |
ABSOLUTE_MAX_SPEAKERS = 10
|
32 |
SAMPLE_RATE = 16000
|
|
|
33 |
|
34 |
# Speaker labels
|
35 |
SPEAKER_LABELS = [f"Speaker {i+1}" for i in range(ABSOLUTE_MAX_SPEAKERS)]
|
@@ -220,35 +223,46 @@ class AudioProcessor:
|
|
220 |
|
221 |
|
222 |
class RealTimeSpeakerDiarization:
|
223 |
-
"""Main class for real-time speaker diarization"""
|
224 |
def __init__(self, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
|
225 |
self.encoder = None
|
226 |
self.audio_processor = None
|
227 |
self.speaker_detector = None
|
|
|
228 |
self.change_threshold = change_threshold
|
229 |
self.max_speakers = max_speakers
|
230 |
self.transcript_history = []
|
231 |
self.is_initialized = False
|
232 |
|
233 |
-
#
|
234 |
-
self.
|
235 |
-
self.
|
236 |
-
self.
|
|
|
237 |
|
238 |
-
|
239 |
"""Initialize the speaker diarization system"""
|
240 |
if self.is_initialized:
|
241 |
return True
|
242 |
|
243 |
try:
|
244 |
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
245 |
-
print(f"Initializing
|
246 |
|
|
|
247 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
248 |
success = self.encoder.load_model()
|
249 |
|
250 |
if not success:
|
251 |
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
self.audio_processor = AudioProcessor(self.encoder)
|
254 |
self.speaker_detector = SpeakerChangeDetector(
|
@@ -274,31 +288,89 @@ class RealTimeSpeakerDiarization:
|
|
274 |
self.speaker_detector.set_change_threshold(change_threshold)
|
275 |
self.speaker_detector.set_max_speakers(max_speakers)
|
276 |
|
277 |
-
def
|
278 |
-
"""Process
|
279 |
if not self.is_initialized:
|
280 |
-
return
|
281 |
|
282 |
try:
|
283 |
-
#
|
284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
-
#
|
287 |
-
|
|
|
|
|
|
|
288 |
|
289 |
-
|
290 |
-
|
291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
|
|
|
|
|
|
|
|
|
295 |
except Exception as e:
|
296 |
-
print(f"Error
|
297 |
-
return 0, f"Speaker 1: {text}"
|
298 |
|
299 |
-
def
|
300 |
-
"""Get the
|
301 |
-
return "\n".join(self.transcript_history)
|
302 |
|
303 |
def add_to_transcript(self, formatted_text: str):
|
304 |
"""Add formatted text to transcript history"""
|
@@ -311,82 +383,74 @@ class RealTimeSpeakerDiarization:
|
|
311 |
def clear_transcript(self):
|
312 |
"""Clear transcript history and reset speaker detector"""
|
313 |
self.transcript_history = []
|
|
|
314 |
if self.speaker_detector:
|
315 |
self.speaker_detector = SpeakerChangeDetector(
|
316 |
embedding_dim=self.encoder.embedding_dim,
|
317 |
change_threshold=self.change_threshold,
|
318 |
max_speakers=self.max_speakers
|
319 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
|
321 |
|
322 |
# Global instance
|
323 |
diarization_system = RealTimeSpeakerDiarization()
|
324 |
|
325 |
|
326 |
-
|
327 |
"""Initialize the diarization system"""
|
328 |
-
success =
|
329 |
if success:
|
330 |
return "β
Speaker diarization system initialized successfully!"
|
331 |
else:
|
332 |
return "β Failed to initialize speaker diarization system. Please check your setup."
|
333 |
|
334 |
|
335 |
-
def
|
336 |
-
"""Process audio
|
337 |
if not diarization_system.is_initialized:
|
338 |
-
return "Please initialize the system first.", ""
|
339 |
|
340 |
-
|
341 |
-
|
342 |
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
# Resample if needed
|
352 |
-
if sample_rate != SAMPLE_RATE:
|
353 |
-
audio_data = torchaudio.functional.resample(
|
354 |
-
torch.tensor(audio_data), sample_rate, SAMPLE_RATE
|
355 |
-
).numpy()
|
356 |
-
|
357 |
-
# Process the audio segment
|
358 |
-
speaker_id, formatted_text = diarization_system.process_audio_segment(audio_data, transcription_text)
|
359 |
-
|
360 |
-
# Add to transcript
|
361 |
-
diarization_system.add_to_transcript(formatted_text)
|
362 |
-
|
363 |
-
# Return updated transcript and current speaker info
|
364 |
-
transcript = diarization_system.get_transcript_history()
|
365 |
-
current_speaker_info = f"Current Speaker: {SPEAKER_LABELS[speaker_id]}"
|
366 |
-
|
367 |
-
return transcript, current_speaker_info
|
368 |
-
|
369 |
-
except Exception as e:
|
370 |
-
error_msg = f"Error processing audio: {str(e)}"
|
371 |
-
return diarization_system.get_transcript_history(), error_msg
|
372 |
|
373 |
|
374 |
def clear_conversation():
|
375 |
"""Clear the conversation transcript"""
|
376 |
diarization_system.clear_transcript()
|
377 |
-
return "
|
378 |
|
379 |
|
380 |
def create_gradio_interface():
|
381 |
-
"""Create and return the Gradio interface"""
|
382 |
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Soft()) as demo:
|
383 |
-
gr.Markdown("# ποΈ Real-time Speaker Diarization with
|
384 |
-
gr.Markdown("
|
385 |
|
386 |
# Initialization section
|
387 |
with gr.Row():
|
388 |
-
init_btn = gr.Button("π Initialize System", variant="primary")
|
389 |
-
init_status = gr.Textbox(label="
|
390 |
|
391 |
# Settings section
|
392 |
with gr.Row():
|
@@ -409,35 +473,35 @@ def create_gradio_interface():
|
|
409 |
info="Maximum number of speakers to detect"
|
410 |
)
|
411 |
|
412 |
-
# Audio
|
413 |
with gr.Row():
|
414 |
with gr.Column():
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
|
|
|
|
|
|
419 |
)
|
420 |
-
|
421 |
-
|
422 |
-
placeholder="Enter the transcription of the audio...",
|
423 |
-
lines=3
|
424 |
-
)
|
425 |
-
process_btn = gr.Button("π― Process Audio", variant="secondary")
|
426 |
|
427 |
with gr.Column():
|
428 |
-
|
429 |
-
label="Current
|
430 |
-
interactive=False
|
|
|
431 |
)
|
432 |
-
clear_btn = gr.Button("ποΈ Clear Conversation", variant="stop")
|
433 |
|
434 |
# Output section
|
435 |
transcript_output = gr.Textbox(
|
436 |
-
label="Live Transcript with Speaker Labels",
|
437 |
lines=15,
|
438 |
-
max_lines=
|
439 |
interactive=False,
|
440 |
-
|
|
|
441 |
)
|
442 |
|
443 |
# Event handlers
|
@@ -446,54 +510,49 @@ def create_gradio_interface():
|
|
446 |
outputs=[init_status]
|
447 |
)
|
448 |
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
change_threshold,
|
456 |
-
max_speakers
|
457 |
-
],
|
458 |
-
outputs=[transcript_output, current_speaker]
|
459 |
)
|
460 |
|
461 |
clear_btn.click(
|
462 |
fn=clear_conversation,
|
463 |
-
outputs=[transcript_output,
|
464 |
-
)
|
465 |
-
|
466 |
-
# Auto-process when audio and transcription are provided
|
467 |
-
audio_input.change(
|
468 |
-
fn=process_audio_with_transcript,
|
469 |
-
inputs=[
|
470 |
-
audio_input,
|
471 |
-
gr.Number(value=SAMPLE_RATE, visible=False),
|
472 |
-
transcription_input,
|
473 |
-
change_threshold,
|
474 |
-
max_speakers
|
475 |
-
],
|
476 |
-
outputs=[transcript_output, current_speaker]
|
477 |
)
|
478 |
|
479 |
# Instructions
|
480 |
-
gr.
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
|
498 |
return demo
|
499 |
|
|
|
11 |
from collections import deque
|
12 |
import asyncio
|
13 |
from typing import Generator, Tuple, List, Optional
|
14 |
+
import whisper
|
15 |
+
from transformers import pipeline
|
16 |
|
17 |
# Configuration parameters (keeping original models)
|
18 |
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
|
|
|
32 |
DEFAULT_MAX_SPEAKERS = 4
|
33 |
ABSOLUTE_MAX_SPEAKERS = 10
|
34 |
SAMPLE_RATE = 16000
|
35 |
+
CHUNK_DURATION = 2.0 # Process audio in 2-second chunks
|
36 |
|
37 |
# Speaker labels
|
38 |
SPEAKER_LABELS = [f"Speaker {i+1}" for i in range(ABSOLUTE_MAX_SPEAKERS)]
|
|
|
223 |
|
224 |
|
225 |
class RealTimeSpeakerDiarization:
|
226 |
+
"""Main class for real-time speaker diarization with FastRTC"""
|
227 |
def __init__(self, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
|
228 |
self.encoder = None
|
229 |
self.audio_processor = None
|
230 |
self.speaker_detector = None
|
231 |
+
self.transcription_pipeline = None
|
232 |
self.change_threshold = change_threshold
|
233 |
self.max_speakers = max_speakers
|
234 |
self.transcript_history = []
|
235 |
self.is_initialized = False
|
236 |
|
237 |
+
# Audio processing
|
238 |
+
self.audio_buffer = deque(maxlen=int(SAMPLE_RATE * 10)) # 10 second buffer
|
239 |
+
self.processing_queue = queue.Queue()
|
240 |
+
self.last_processed_time = 0
|
241 |
+
self.current_transcript = ""
|
242 |
|
243 |
+
def initialize(self):
|
244 |
"""Initialize the speaker diarization system"""
|
245 |
if self.is_initialized:
|
246 |
return True
|
247 |
|
248 |
try:
|
249 |
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
250 |
+
print(f"Initializing models on {device_str}...")
|
251 |
|
252 |
+
# Initialize speaker encoder
|
253 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
254 |
success = self.encoder.load_model()
|
255 |
|
256 |
if not success:
|
257 |
return False
|
258 |
+
|
259 |
+
# Initialize transcription pipeline
|
260 |
+
self.transcription_pipeline = pipeline(
|
261 |
+
"automatic-speech-recognition",
|
262 |
+
model=f"openai/whisper-{REALTIME_TRANSCRIPTION_MODEL}",
|
263 |
+
device=0 if torch.cuda.is_available() else -1,
|
264 |
+
return_timestamps=True
|
265 |
+
)
|
266 |
|
267 |
self.audio_processor = AudioProcessor(self.encoder)
|
268 |
self.speaker_detector = SpeakerChangeDetector(
|
|
|
288 |
self.speaker_detector.set_change_threshold(change_threshold)
|
289 |
self.speaker_detector.set_max_speakers(max_speakers)
|
290 |
|
291 |
+
def process_audio_stream(self, audio_chunk, sample_rate):
|
292 |
+
"""Process real-time audio stream from FastRTC"""
|
293 |
if not self.is_initialized:
|
294 |
+
return self.get_current_transcript(), "System not initialized"
|
295 |
|
296 |
try:
|
297 |
+
# Convert to numpy array if needed
|
298 |
+
if hasattr(audio_chunk, 'numpy'):
|
299 |
+
audio_data = audio_chunk.numpy()
|
300 |
+
else:
|
301 |
+
audio_data = np.array(audio_chunk)
|
302 |
+
|
303 |
+
# Handle different audio formats
|
304 |
+
if len(audio_data.shape) > 1:
|
305 |
+
audio_data = audio_data.mean(axis=1) # Convert to mono
|
306 |
+
|
307 |
+
# Resample if needed
|
308 |
+
if sample_rate != SAMPLE_RATE:
|
309 |
+
audio_data = torchaudio.functional.resample(
|
310 |
+
torch.tensor(audio_data), sample_rate, SAMPLE_RATE
|
311 |
+
).numpy()
|
312 |
+
|
313 |
+
# Add to buffer
|
314 |
+
self.audio_buffer.extend(audio_data)
|
315 |
|
316 |
+
# Process if we have enough audio
|
317 |
+
current_time = time.time()
|
318 |
+
if (current_time - self.last_processed_time) >= CHUNK_DURATION:
|
319 |
+
self.process_buffered_audio()
|
320 |
+
self.last_processed_time = current_time
|
321 |
|
322 |
+
return self.get_current_transcript(), f"Processing... Buffer: {len(self.audio_buffer)} samples"
|
323 |
+
|
324 |
+
except Exception as e:
|
325 |
+
error_msg = f"Error processing audio stream: {str(e)}"
|
326 |
+
print(error_msg)
|
327 |
+
return self.get_current_transcript(), error_msg
|
328 |
+
|
329 |
+
def process_buffered_audio(self):
|
330 |
+
"""Process buffered audio for transcription and speaker diarization"""
|
331 |
+
if len(self.audio_buffer) < int(SAMPLE_RATE * MIN_LENGTH_OF_RECORDING):
|
332 |
+
return
|
333 |
+
|
334 |
+
try:
|
335 |
+
# Get audio data from buffer
|
336 |
+
audio_data = np.array(list(self.audio_buffer))
|
337 |
|
338 |
+
# Transcribe audio
|
339 |
+
if len(audio_data) > 0:
|
340 |
+
result = self.transcription_pipeline(
|
341 |
+
audio_data,
|
342 |
+
return_timestamps=True,
|
343 |
+
generate_kwargs={"language": TRANSCRIPTION_LANGUAGE}
|
344 |
+
)
|
345 |
+
|
346 |
+
transcription = result["text"].strip()
|
347 |
+
|
348 |
+
if transcription and len(transcription) > 0:
|
349 |
+
# Extract speaker embedding
|
350 |
+
embedding = self.audio_processor.extract_embedding(audio_data)
|
351 |
+
|
352 |
+
# Detect speaker
|
353 |
+
speaker_id, similarity = self.speaker_detector.add_embedding(embedding)
|
354 |
+
|
355 |
+
# Format text with speaker label
|
356 |
+
speaker_label = SPEAKER_LABELS[speaker_id]
|
357 |
+
formatted_text = f"{speaker_label}: {transcription}"
|
358 |
+
|
359 |
+
# Add to transcript
|
360 |
+
self.add_to_transcript(formatted_text)
|
361 |
+
|
362 |
+
print(f"Transcribed: {formatted_text} (Similarity: {similarity:.3f})")
|
363 |
|
364 |
+
# Clear part of the buffer to prevent memory issues
|
365 |
+
if len(self.audio_buffer) > SAMPLE_RATE * 5: # Keep last 5 seconds
|
366 |
+
self.audio_buffer = deque(list(self.audio_buffer)[-SAMPLE_RATE * 3:], maxlen=int(SAMPLE_RATE * 10))
|
367 |
+
|
368 |
except Exception as e:
|
369 |
+
print(f"Error in process_buffered_audio: {e}")
|
|
|
370 |
|
371 |
+
def get_current_transcript(self):
|
372 |
+
"""Get the current transcript"""
|
373 |
+
return "\n".join(self.transcript_history) if self.transcript_history else "Listening..."
|
374 |
|
375 |
def add_to_transcript(self, formatted_text: str):
|
376 |
"""Add formatted text to transcript history"""
|
|
|
383 |
def clear_transcript(self):
|
384 |
"""Clear transcript history and reset speaker detector"""
|
385 |
self.transcript_history = []
|
386 |
+
self.audio_buffer.clear()
|
387 |
if self.speaker_detector:
|
388 |
self.speaker_detector = SpeakerChangeDetector(
|
389 |
embedding_dim=self.encoder.embedding_dim,
|
390 |
change_threshold=self.change_threshold,
|
391 |
max_speakers=self.max_speakers
|
392 |
)
|
393 |
+
|
394 |
+
def get_status(self):
|
395 |
+
"""Get current system status"""
|
396 |
+
if not self.is_initialized:
|
397 |
+
return "System not initialized"
|
398 |
+
|
399 |
+
if self.speaker_detector:
|
400 |
+
active_speakers = len(self.speaker_detector.active_speakers)
|
401 |
+
current_speaker = self.speaker_detector.current_speaker + 1
|
402 |
+
similarity = self.speaker_detector.last_similarity
|
403 |
+
return f"Active: {active_speakers} speakers | Current: Speaker {current_speaker} | Similarity: {similarity:.3f}"
|
404 |
+
|
405 |
+
return "Ready"
|
406 |
|
407 |
|
408 |
# Global instance
|
409 |
diarization_system = RealTimeSpeakerDiarization()
|
410 |
|
411 |
|
412 |
+
def initialize_system():
|
413 |
"""Initialize the diarization system"""
|
414 |
+
success = diarization_system.initialize()
|
415 |
if success:
|
416 |
return "β
Speaker diarization system initialized successfully!"
|
417 |
else:
|
418 |
return "β Failed to initialize speaker diarization system. Please check your setup."
|
419 |
|
420 |
|
421 |
+
def process_realtime_audio(audio_stream, change_threshold, max_speakers):
|
422 |
+
"""Process real-time audio stream from FastRTC"""
|
423 |
if not diarization_system.is_initialized:
|
424 |
+
return "Please initialize the system first.", "System not ready"
|
425 |
|
426 |
+
# Update settings
|
427 |
+
diarization_system.update_settings(change_threshold, max_speakers)
|
428 |
|
429 |
+
if audio_stream is None:
|
430 |
+
return diarization_system.get_current_transcript(), diarization_system.get_status()
|
431 |
+
|
432 |
+
# Process the audio stream
|
433 |
+
transcript, status = diarization_system.process_audio_stream(audio_stream, SAMPLE_RATE)
|
434 |
+
|
435 |
+
return transcript, diarization_system.get_status()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
|
437 |
|
438 |
def clear_conversation():
|
439 |
"""Clear the conversation transcript"""
|
440 |
diarization_system.clear_transcript()
|
441 |
+
return "Conversation cleared. Listening...", "Ready"
|
442 |
|
443 |
|
444 |
def create_gradio_interface():
|
445 |
+
"""Create and return the Gradio interface with FastRTC"""
|
446 |
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Soft()) as demo:
|
447 |
+
gr.Markdown("# ποΈ Real-time Speaker Diarization with FastRTC")
|
448 |
+
gr.Markdown("Speak into your microphone for real-time speaker diarization and transcription.")
|
449 |
|
450 |
# Initialization section
|
451 |
with gr.Row():
|
452 |
+
init_btn = gr.Button("π Initialize System", variant="primary", scale=1)
|
453 |
+
init_status = gr.Textbox(label="System Status", interactive=False, scale=2)
|
454 |
|
455 |
# Settings section
|
456 |
with gr.Row():
|
|
|
473 |
info="Maximum number of speakers to detect"
|
474 |
)
|
475 |
|
476 |
+
# FastRTC Audio Input
|
477 |
with gr.Row():
|
478 |
with gr.Column():
|
479 |
+
# FastRTC component for real-time audio
|
480 |
+
audio_input = gr.FastRTC(
|
481 |
+
audio=True,
|
482 |
+
video=False,
|
483 |
+
label="π€ Real-time Audio Input",
|
484 |
+
audio_sample_rate=SAMPLE_RATE,
|
485 |
+
audio_channels=1
|
486 |
)
|
487 |
+
|
488 |
+
clear_btn = gr.Button("ποΈ Clear Conversation", variant="stop")
|
|
|
|
|
|
|
|
|
489 |
|
490 |
with gr.Column():
|
491 |
+
current_status = gr.Textbox(
|
492 |
+
label="Current Status",
|
493 |
+
interactive=False,
|
494 |
+
value="Click Initialize to start"
|
495 |
)
|
|
|
496 |
|
497 |
# Output section
|
498 |
transcript_output = gr.Textbox(
|
499 |
+
label="π΄ Live Transcript with Speaker Labels",
|
500 |
lines=15,
|
501 |
+
max_lines=25,
|
502 |
interactive=False,
|
503 |
+
value="Click Initialize, then start speaking...",
|
504 |
+
autoscroll=True
|
505 |
)
|
506 |
|
507 |
# Event handlers
|
|
|
510 |
outputs=[init_status]
|
511 |
)
|
512 |
|
513 |
+
# FastRTC stream processing
|
514 |
+
audio_input.stream(
|
515 |
+
fn=process_realtime_audio,
|
516 |
+
inputs=[audio_input, change_threshold, max_speakers],
|
517 |
+
outputs=[transcript_output, current_status],
|
518 |
+
time_limit=30 # Process in 30-second chunks
|
|
|
|
|
|
|
|
|
519 |
)
|
520 |
|
521 |
clear_btn.click(
|
522 |
fn=clear_conversation,
|
523 |
+
outputs=[transcript_output, current_status]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
524 |
)
|
525 |
|
526 |
# Instructions
|
527 |
+
with gr.Accordion("π Instructions", open=False):
|
528 |
+
gr.Markdown("""
|
529 |
+
## How to Use:
|
530 |
+
|
531 |
+
1. **Initialize**: Click "π Initialize System" to load the AI models (this may take a moment)
|
532 |
+
2. **Allow Microphone**: Your browser will ask for microphone permission - please allow it
|
533 |
+
3. **Adjust Settings**:
|
534 |
+
- **Speaker Change Threshold**:
|
535 |
+
- Lower (0.3-0.5) for speakers with different voices
|
536 |
+
- Higher (0.6-0.8) for speakers with similar voices
|
537 |
+
- **Max Speakers**: Set expected number of speakers (2-10)
|
538 |
+
4. **Start Speaking**: The system will automatically transcribe and identify speakers
|
539 |
+
5. **View Results**: See real-time transcript with speaker labels (Speaker 1, Speaker 2, etc.)
|
540 |
+
6. **Clear**: Use "Clear Conversation" to reset and start fresh
|
541 |
+
|
542 |
+
## Features:
|
543 |
+
- β
Real-time audio processing via FastRTC
|
544 |
+
- β
Automatic speech recognition with Whisper
|
545 |
+
- β
Speaker diarization with ECAPA-TDNN
|
546 |
+
- β
Live transcript with speaker labels
|
547 |
+
- β
Configurable sensitivity settings
|
548 |
+
- β
Support for up to 10 speakers
|
549 |
+
|
550 |
+
## Tips:
|
551 |
+
- Speak clearly and allow brief pauses between speakers
|
552 |
+
- The system learns speaker characteristics over time
|
553 |
+
- Better results with distinct speaker voices
|
554 |
+
- Ensure good microphone quality for best performance
|
555 |
+
""")
|
556 |
|
557 |
return demo
|
558 |
|