File size: 16,889 Bytes
a3e120b
 
 
 
bd93d23
a3e120b
 
e5bb694
bd93d23
e5bb694
6a1d4f7
 
 
 
e5bb694
 
 
a3e120b
6a1d4f7
 
bd93d23
 
 
 
6a1d4f7
 
 
e5bb694
 
6a1d4f7
e5bb694
6a1d4f7
e5bb694
d5ef142
e5bb694
a3e120b
6a1d4f7
e5bb694
 
6a1d4f7
 
 
e5bb694
6a1d4f7
 
bd93d23
a3e120b
 
e5bb694
d5ef142
 
 
 
 
 
e5bb694
bd93d23
e5bb694
d5ef142
 
 
 
 
 
 
 
 
 
 
 
 
bd93d23
 
 
 
 
 
 
 
 
 
 
d5ef142
 
 
bd93d23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3e120b
d5ef142
 
 
 
 
a3e120b
d5ef142
 
 
 
 
a3e120b
d5ef142
 
 
 
 
6a1d4f7
 
bd93d23
6a1d4f7
a3e120b
bd93d23
a3e120b
 
bd93d23
 
 
 
 
 
 
a3e120b
bd93d23
 
 
 
997896a
6a1d4f7
 
 
bd93d23
e5bb694
d5ef142
 
 
 
 
 
bd93d23
 
 
 
 
 
 
 
 
 
 
 
 
d5ef142
bd93d23
d5ef142
 
 
 
bd93d23
 
 
 
 
 
 
 
 
d5ef142
 
bd93d23
d5ef142
 
bd93d23
 
 
d5ef142
 
 
 
 
 
bd93d23
a3e120b
 
 
d5ef142
e5bb694
bd93d23
e5bb694
 
d5ef142
a3e120b
e5bb694
 
d5ef142
e5bb694
 
 
 
 
 
 
bd93d23
e5bb694
 
 
 
 
 
 
 
 
 
 
 
bd93d23
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
"""
agent.py

This file defines the core logic for a sophisticated AI agent using LangGraph.
This version includes proper multimodal support for images, YouTube videos, and audio files.
"""

# ----------------------------------------------------------
# Section 0: Imports and Configuration
# ----------------------------------------------------------
import json
import os
import pickle
import re
import subprocess
import textwrap
import base64
import functools
from io import BytesIO
from pathlib import Path
import tempfile
import yt_dlp
from pydub import AudioSegment
import speech_recognition as sr

import requests
from cachetools import TTLCache
from PIL import Image

from langchain.schema import Document
from langchain.tools.retriever import create_retriever_tool
from langchain_community.vectorstores import FAISS
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import Tool, tool
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpoint, ChatHuggingFace
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition

from dotenv import load_dotenv
load_dotenv()

# --- Configuration and Caching ---
JSONL_PATH, FAISS_CACHE, EMBED_MODEL = Path("metadata.jsonl"), Path("faiss_index.pkl"), "sentence-transformers/all-mpnet-base-v2"
RETRIEVER_K, CACHE_TTL = 5, 600
API_CACHE = TTLCache(maxsize=256, ttl=CACHE_TTL)
def cached_get(key: str, fetch_fn):
    if key in API_CACHE: return API_CACHE[key]
    val = fetch_fn()
    API_CACHE[key] = val
    return val

# ----------------------------------------------------------
# Section 2: Standalone Tool Functions
# ----------------------------------------------------------
@tool
def python_repl(code: str) -> str:
    """Executes a string of Python code and returns the stdout/stderr."""
    code = textwrap.dedent(code).strip()
    try:
        result = subprocess.run(["python", "-c", code], capture_output=True, text=True, timeout=10, check=False)
        if result.returncode == 0: return f"Execution successful.\nSTDOUT:\n```\n{result.stdout}\n```"
        else: return f"Execution failed.\nSTDOUT:\n```\n{result.stdout}\n```\nSTDERR:\n```\n{result.stderr}\n```"
    except subprocess.TimeoutExpired: return "Execution timed out (>10s)."

def describe_image_func(image_source: str, vision_llm_instance) -> str:
    """Describes an image from a local file path or a URL using a provided vision LLM."""
    try:
        print(f"Processing image: {image_source}")
        
        # Download and process image
        if image_source.startswith("http"): 
            response = requests.get(image_source, timeout=10)
            response.raise_for_status()
            img = Image.open(BytesIO(response.content))
        else: 
            img = Image.open(image_source)
        
        # Convert to base64
        buffered = BytesIO()
        img.convert("RGB").save(buffered, format="JPEG")
        b64_string = base64.b64encode(buffered.getvalue()).decode()
        
        # Create multimodal message
        msg = HumanMessage(content=[
            {"type": "text", "text": "Describe this image in detail. Include all objects, people, text, colors, setting, and any other relevant information you can see."},
            {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_string}"}}
        ])
        
        result = vision_llm_instance.invoke([msg])
        return f"Image description: {result.content}"
        
    except Exception as e: 
        print(f"Error in describe_image_func: {e}")
        return f"Error processing image: {e}"

@tool
def process_youtube_video(url: str) -> str:
    """Downloads and processes a YouTube video, extracting audio and converting to text."""
    try:
        print(f"Processing YouTube video: {url}")
        
        # Create temporary directory
        with tempfile.TemporaryDirectory() as temp_dir:
            # Download audio from YouTube video
            ydl_opts = {
                'format': 'bestaudio/best',
                'outtmpl': f'{temp_dir}/%(title)s.%(ext)s',
                'postprocessors': [{
                    'key': 'FFmpegExtractAudio',
                    'preferredcodec': 'wav',
                }],
            }
            
            with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                info = ydl.extract_info(url, download=True)
                title = info.get('title', 'Unknown')
                
            # Find the downloaded audio file
            audio_files = list(Path(temp_dir).glob("*.wav"))
            if not audio_files:
                return "Error: Could not download audio from YouTube video"
            
            audio_file = audio_files[0]
            
            # Convert audio to text using speech recognition
            r = sr.Recognizer()
            
            # Load audio file
            audio = AudioSegment.from_wav(str(audio_file))
            
            # Convert to mono and set sample rate
            audio = audio.set_channels(1)
            audio = audio.set_frame_rate(16000)
            
            # Convert to smaller chunks for processing (30 seconds each)
            chunk_length_ms = 30000
            chunks = [audio[i:i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
            
            transcript_parts = []
            for i, chunk in enumerate(chunks[:10]):  # Limit to first 5 minutes
                chunk_file = Path(temp_dir) / f"chunk_{i}.wav"
                chunk.export(chunk_file, format="wav")
                
                try:
                    with sr.AudioFile(str(chunk_file)) as source:
                        audio_data = r.record(source)
                        text = r.recognize_google(audio_data)
                        transcript_parts.append(text)
                except sr.UnknownValueError:
                    transcript_parts.append("[Unintelligible audio]")
                except sr.RequestError as e:
                    transcript_parts.append(f"[Speech recognition error: {e}]")
            
            transcript = " ".join(transcript_parts)
            
            return f"YouTube Video: {title}\n\nTranscript (first 5 minutes):\n{transcript}"
            
    except Exception as e:
        print(f"Error processing YouTube video: {e}")
        return f"Error processing YouTube video: {e}"

@tool
def process_audio_file(file_url: str) -> str:
    """Downloads and processes an audio file (MP3, WAV, etc.) and converts to text."""
    try:
        print(f"Processing audio file: {file_url}")
        
        with tempfile.TemporaryDirectory() as temp_dir:
            # Download audio file
            response = requests.get(file_url, timeout=30)
            response.raise_for_status()
            
            # Determine file extension from URL or content type
            if file_url.lower().endswith('.mp3'):
                ext = 'mp3'
            elif file_url.lower().endswith('.wav'):
                ext = 'wav'
            else:
                content_type = response.headers.get('content-type', '')
                if 'mp3' in content_type:
                    ext = 'mp3'
                elif 'wav' in content_type:
                    ext = 'wav'
                else:
                    ext = 'mp3'  # Default assumption
            
            audio_file = Path(temp_dir) / f"audio.{ext}"
            with open(audio_file, 'wb') as f:
                f.write(response.content)
            
            # Convert to WAV if necessary
            if ext != 'wav':
                audio = AudioSegment.from_file(str(audio_file))
                wav_file = Path(temp_dir) / "audio.wav"
                audio.export(wav_file, format="wav")
                audio_file = wav_file
            
            # Convert audio to text
            r = sr.Recognizer()
            
            # Load and process audio
            audio = AudioSegment.from_wav(str(audio_file))
            audio = audio.set_channels(1).set_frame_rate(16000)
            
            # Process in chunks
            chunk_length_ms = 30000
            chunks = [audio[i:i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
            
            transcript_parts = []
            for i, chunk in enumerate(chunks[:20]):  # Limit to first 10 minutes
                chunk_file = Path(temp_dir) / f"chunk_{i}.wav"
                chunk.export(chunk_file, format="wav")
                
                try:
                    with sr.AudioFile(str(chunk_file)) as source:
                        audio_data = r.record(source)
                        text = r.recognize_google(audio_data)
                        transcript_parts.append(text)
                except sr.UnknownValueError:
                    transcript_parts.append("[Unintelligible audio]")
                except sr.RequestError as e:
                    transcript_parts.append(f"[Speech recognition error: {e}]")
            
            transcript = " ".join(transcript_parts)
            return f"Audio file transcript:\n{transcript}"
            
    except Exception as e:
        print(f"Error processing audio file: {e}")
        return f"Error processing audio file: {e}"

def web_search_func(query: str, cache_func) -> str:
    """Performs a web search using Tavily and returns a compilation of results."""
    key = f"web:{query}"
    results = cache_func(key, lambda: TavilySearchResults(max_results=5).invoke(query))
    return "\n\n---\n\n".join([f"Source: {res['url']}\nContent: {res['content']}" for res in results])

def wiki_search_func(query: str, cache_func) -> str:
    """Searches Wikipedia and returns the top 2 results."""
    key = f"wiki:{query}"
    docs = cache_func(key, lambda: WikipediaLoader(query=query, load_max_docs=2, doc_content_chars_max=2000).load())
    return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\n\n{d.page_content}" for d in docs])

def arxiv_search_func(query: str, cache_func) -> str:
    """Searches Arxiv for scientific papers and returns the top 2 results."""
    key = f"arxiv:{query}"
    docs = cache_func(key, lambda: ArxivLoader(query=query, load_max_docs=2).load())
    return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\nPublished: {d.metadata['Published']}\nTitle: {d.metadata['Title']}\n\nSummary:\n{d.page_content}" for d in docs])

# ----------------------------------------------------------
# Section 3: DYNAMIC SYSTEM PROMPT
# ----------------------------------------------------------
SYSTEM_PROMPT_TEMPLATE = (
    """You are an expert-level multimodal research assistant. Your goal is to answer the user's question accurately using all available tools.

**CRITICAL INSTRUCTIONS:**
1.  **USE YOUR TOOLS:** You have been given a set of tools to find information. You MUST use them when the answer is not immediately known to you. Do not make up answers.
2.  **MULTIMODAL PROCESSING:** When you encounter URLs or attachments:
    - For image URLs (jpg, png, gif, etc.): Use the `describe_image` tool
    - For YouTube URLs: Use the `process_youtube_video` tool  
    - For audio files (mp3, wav, etc.): Use the `process_audio_file` tool
    - For other content: Use appropriate search tools
3.  **AVAILABLE TOOLS:** Here is the exact list of tools you have access to:
    {tools}
4.  **REASONING:** Think step-by-step. First, analyze the user's question and any attachments. Second, decide which tools are appropriate. Third, call the tools with correct parameters. Finally, synthesize the results.
5.  **URL DETECTION:** Look for URLs in the user's message, especially in brackets like [Attachment URL: ...]. Process these appropriately.
6.  **FINAL ANSWER FORMAT:** Your final response MUST strictly follow this format:
    `FINAL ANSWER: [Your comprehensive answer incorporating all tool results]`
"""
)

# ----------------------------------------------------------
# Section 4: Factory Function for Agent Executor
# ----------------------------------------------------------
def create_agent_executor(provider: str = "groq"):
    """
    Factory function to create and compile the LangGraph agent executor.
    """
    print(f"Initializing agent with provider: {provider}")

    # Step 1: Build LLMs - Use Google for vision capabilities
    if provider == "google": 
        main_llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0)
        vision_llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0)
    elif provider == "groq": 
        main_llm = ChatGroq(model_name="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0)
        # Use Google for vision since Groq's vision support may be limited
        main_llm = ChatGroq(model_name="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0)
    elif provider == "huggingface": 
        main_llm = ChatHuggingFace(llm=HuggingFaceEndpoint(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", temperature=0.1))
        vision_llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0)
    else: 
        raise ValueError("Invalid provider selected")

    # Step 2: Build Retriever
    embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
    if FAISS_CACHE.exists():
        with open(FAISS_CACHE, "rb") as f: vector_store = pickle.load(f)
    else:
        if JSONL_PATH.exists():
            docs = [Document(page_content=f"Question: {rec['Question']}\n\nFinal answer: {rec['Final answer']}", metadata={"source": rec["task_id"]}) for rec in (json.loads(line) for line in open(JSONL_PATH, "rt", encoding="utf-8"))]
            vector_store = FAISS.from_documents(docs, embeddings)
            with open(FAISS_CACHE, "wb") as f: pickle.dump(vector_store, f)
        else:
            # Create empty vector store if no metadata file exists
            docs = [Document(page_content="Sample document", metadata={"source": "sample"})]
            vector_store = FAISS.from_documents(docs, embeddings)
    
    retriever = vector_store.as_retriever(search_kwargs={"k": RETRIEVER_K})
    
    # Step 3: Create the final list of tools
    tools_list = [
        python_repl,
        Tool(name="describe_image", func=functools.partial(describe_image_func, vision_llm_instance=vision_llm), description="Describes an image from a local file path or a URL. Use this for any image files or image URLs."),
        process_youtube_video,
        process_audio_file,
        Tool(name="web_search", func=functools.partial(web_search_func, cache_func=cached_get), description="Performs a web search using Tavily."),
        Tool(name="wiki_search", func=functools.partial(wiki_search_func, cache_func=cached_get), description="Searches Wikipedia."),
        Tool(name="arxiv_search", func=functools.partial(arxiv_search_func, cache_func=cached_get), description="Searches Arxiv for scientific papers."),
        create_retriever_tool(retriever=retriever, name="retrieve_examples", description="Retrieve solved questions similar to the user's query."),
    ]
    
    # Step 4: Format the tool list into a string for the prompt
    tool_definitions = "\n".join([f"- `{tool.name}`: {tool.description}" for tool in tools_list])
    final_system_prompt = SYSTEM_PROMPT_TEMPLATE.format(tools=tool_definitions)

    llm_with_tools = main_llm.bind_tools(tools_list)

    # Step 5: Define Graph Nodes
    def retriever_node(state: MessagesState):
        user_query = state["messages"][-1].content
        docs = retriever.invoke(user_query)
        messages = [SystemMessage(content=final_system_prompt)]
        if docs:
            example_text = "\n\n---\n\n".join(d.page_content for d in docs)
            messages.append(AIMessage(content=f"I have found {len(docs)} similar solved examples:\n\n{example_text}", name="ExampleRetriever"))
        messages.extend(state["messages"])
        return {"messages": messages}

    def assistant_node(state: MessagesState):
        result = llm_with_tools.invoke(state["messages"])
        return {"messages": [result]}

    # Step 6: Build Graph
    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever_node)
    builder.add_node("assistant", assistant_node)
    builder.add_node("tools", ToolNode(tools_list))
    
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges("assistant", tools_condition, {"tools": "tools", "__end__": "__end__"})
    builder.add_edge("tools", "assistant")

    agent_executor = builder.compile()
    print("Agent Executor created successfully.")
    return agent_executor