Spaces:
Sleeping
Sleeping
File size: 16,889 Bytes
a3e120b bd93d23 a3e120b e5bb694 bd93d23 e5bb694 6a1d4f7 e5bb694 a3e120b 6a1d4f7 bd93d23 6a1d4f7 e5bb694 6a1d4f7 e5bb694 6a1d4f7 e5bb694 d5ef142 e5bb694 a3e120b 6a1d4f7 e5bb694 6a1d4f7 e5bb694 6a1d4f7 bd93d23 a3e120b e5bb694 d5ef142 e5bb694 bd93d23 e5bb694 d5ef142 bd93d23 d5ef142 bd93d23 a3e120b d5ef142 a3e120b d5ef142 a3e120b d5ef142 6a1d4f7 bd93d23 6a1d4f7 a3e120b bd93d23 a3e120b bd93d23 a3e120b bd93d23 997896a 6a1d4f7 bd93d23 e5bb694 d5ef142 bd93d23 d5ef142 bd93d23 d5ef142 bd93d23 d5ef142 bd93d23 d5ef142 bd93d23 d5ef142 bd93d23 a3e120b d5ef142 e5bb694 bd93d23 e5bb694 d5ef142 a3e120b e5bb694 d5ef142 e5bb694 bd93d23 e5bb694 bd93d23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
"""
agent.py
This file defines the core logic for a sophisticated AI agent using LangGraph.
This version includes proper multimodal support for images, YouTube videos, and audio files.
"""
# ----------------------------------------------------------
# Section 0: Imports and Configuration
# ----------------------------------------------------------
import json
import os
import pickle
import re
import subprocess
import textwrap
import base64
import functools
from io import BytesIO
from pathlib import Path
import tempfile
import yt_dlp
from pydub import AudioSegment
import speech_recognition as sr
import requests
from cachetools import TTLCache
from PIL import Image
from langchain.schema import Document
from langchain.tools.retriever import create_retriever_tool
from langchain_community.vectorstores import FAISS
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import Tool, tool
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpoint, ChatHuggingFace
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition
from dotenv import load_dotenv
load_dotenv()
# --- Configuration and Caching ---
JSONL_PATH, FAISS_CACHE, EMBED_MODEL = Path("metadata.jsonl"), Path("faiss_index.pkl"), "sentence-transformers/all-mpnet-base-v2"
RETRIEVER_K, CACHE_TTL = 5, 600
API_CACHE = TTLCache(maxsize=256, ttl=CACHE_TTL)
def cached_get(key: str, fetch_fn):
if key in API_CACHE: return API_CACHE[key]
val = fetch_fn()
API_CACHE[key] = val
return val
# ----------------------------------------------------------
# Section 2: Standalone Tool Functions
# ----------------------------------------------------------
@tool
def python_repl(code: str) -> str:
"""Executes a string of Python code and returns the stdout/stderr."""
code = textwrap.dedent(code).strip()
try:
result = subprocess.run(["python", "-c", code], capture_output=True, text=True, timeout=10, check=False)
if result.returncode == 0: return f"Execution successful.\nSTDOUT:\n```\n{result.stdout}\n```"
else: return f"Execution failed.\nSTDOUT:\n```\n{result.stdout}\n```\nSTDERR:\n```\n{result.stderr}\n```"
except subprocess.TimeoutExpired: return "Execution timed out (>10s)."
def describe_image_func(image_source: str, vision_llm_instance) -> str:
"""Describes an image from a local file path or a URL using a provided vision LLM."""
try:
print(f"Processing image: {image_source}")
# Download and process image
if image_source.startswith("http"):
response = requests.get(image_source, timeout=10)
response.raise_for_status()
img = Image.open(BytesIO(response.content))
else:
img = Image.open(image_source)
# Convert to base64
buffered = BytesIO()
img.convert("RGB").save(buffered, format="JPEG")
b64_string = base64.b64encode(buffered.getvalue()).decode()
# Create multimodal message
msg = HumanMessage(content=[
{"type": "text", "text": "Describe this image in detail. Include all objects, people, text, colors, setting, and any other relevant information you can see."},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_string}"}}
])
result = vision_llm_instance.invoke([msg])
return f"Image description: {result.content}"
except Exception as e:
print(f"Error in describe_image_func: {e}")
return f"Error processing image: {e}"
@tool
def process_youtube_video(url: str) -> str:
"""Downloads and processes a YouTube video, extracting audio and converting to text."""
try:
print(f"Processing YouTube video: {url}")
# Create temporary directory
with tempfile.TemporaryDirectory() as temp_dir:
# Download audio from YouTube video
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': f'{temp_dir}/%(title)s.%(ext)s',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
title = info.get('title', 'Unknown')
# Find the downloaded audio file
audio_files = list(Path(temp_dir).glob("*.wav"))
if not audio_files:
return "Error: Could not download audio from YouTube video"
audio_file = audio_files[0]
# Convert audio to text using speech recognition
r = sr.Recognizer()
# Load audio file
audio = AudioSegment.from_wav(str(audio_file))
# Convert to mono and set sample rate
audio = audio.set_channels(1)
audio = audio.set_frame_rate(16000)
# Convert to smaller chunks for processing (30 seconds each)
chunk_length_ms = 30000
chunks = [audio[i:i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
transcript_parts = []
for i, chunk in enumerate(chunks[:10]): # Limit to first 5 minutes
chunk_file = Path(temp_dir) / f"chunk_{i}.wav"
chunk.export(chunk_file, format="wav")
try:
with sr.AudioFile(str(chunk_file)) as source:
audio_data = r.record(source)
text = r.recognize_google(audio_data)
transcript_parts.append(text)
except sr.UnknownValueError:
transcript_parts.append("[Unintelligible audio]")
except sr.RequestError as e:
transcript_parts.append(f"[Speech recognition error: {e}]")
transcript = " ".join(transcript_parts)
return f"YouTube Video: {title}\n\nTranscript (first 5 minutes):\n{transcript}"
except Exception as e:
print(f"Error processing YouTube video: {e}")
return f"Error processing YouTube video: {e}"
@tool
def process_audio_file(file_url: str) -> str:
"""Downloads and processes an audio file (MP3, WAV, etc.) and converts to text."""
try:
print(f"Processing audio file: {file_url}")
with tempfile.TemporaryDirectory() as temp_dir:
# Download audio file
response = requests.get(file_url, timeout=30)
response.raise_for_status()
# Determine file extension from URL or content type
if file_url.lower().endswith('.mp3'):
ext = 'mp3'
elif file_url.lower().endswith('.wav'):
ext = 'wav'
else:
content_type = response.headers.get('content-type', '')
if 'mp3' in content_type:
ext = 'mp3'
elif 'wav' in content_type:
ext = 'wav'
else:
ext = 'mp3' # Default assumption
audio_file = Path(temp_dir) / f"audio.{ext}"
with open(audio_file, 'wb') as f:
f.write(response.content)
# Convert to WAV if necessary
if ext != 'wav':
audio = AudioSegment.from_file(str(audio_file))
wav_file = Path(temp_dir) / "audio.wav"
audio.export(wav_file, format="wav")
audio_file = wav_file
# Convert audio to text
r = sr.Recognizer()
# Load and process audio
audio = AudioSegment.from_wav(str(audio_file))
audio = audio.set_channels(1).set_frame_rate(16000)
# Process in chunks
chunk_length_ms = 30000
chunks = [audio[i:i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
transcript_parts = []
for i, chunk in enumerate(chunks[:20]): # Limit to first 10 minutes
chunk_file = Path(temp_dir) / f"chunk_{i}.wav"
chunk.export(chunk_file, format="wav")
try:
with sr.AudioFile(str(chunk_file)) as source:
audio_data = r.record(source)
text = r.recognize_google(audio_data)
transcript_parts.append(text)
except sr.UnknownValueError:
transcript_parts.append("[Unintelligible audio]")
except sr.RequestError as e:
transcript_parts.append(f"[Speech recognition error: {e}]")
transcript = " ".join(transcript_parts)
return f"Audio file transcript:\n{transcript}"
except Exception as e:
print(f"Error processing audio file: {e}")
return f"Error processing audio file: {e}"
def web_search_func(query: str, cache_func) -> str:
"""Performs a web search using Tavily and returns a compilation of results."""
key = f"web:{query}"
results = cache_func(key, lambda: TavilySearchResults(max_results=5).invoke(query))
return "\n\n---\n\n".join([f"Source: {res['url']}\nContent: {res['content']}" for res in results])
def wiki_search_func(query: str, cache_func) -> str:
"""Searches Wikipedia and returns the top 2 results."""
key = f"wiki:{query}"
docs = cache_func(key, lambda: WikipediaLoader(query=query, load_max_docs=2, doc_content_chars_max=2000).load())
return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\n\n{d.page_content}" for d in docs])
def arxiv_search_func(query: str, cache_func) -> str:
"""Searches Arxiv for scientific papers and returns the top 2 results."""
key = f"arxiv:{query}"
docs = cache_func(key, lambda: ArxivLoader(query=query, load_max_docs=2).load())
return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\nPublished: {d.metadata['Published']}\nTitle: {d.metadata['Title']}\n\nSummary:\n{d.page_content}" for d in docs])
# ----------------------------------------------------------
# Section 3: DYNAMIC SYSTEM PROMPT
# ----------------------------------------------------------
SYSTEM_PROMPT_TEMPLATE = (
"""You are an expert-level multimodal research assistant. Your goal is to answer the user's question accurately using all available tools.
**CRITICAL INSTRUCTIONS:**
1. **USE YOUR TOOLS:** You have been given a set of tools to find information. You MUST use them when the answer is not immediately known to you. Do not make up answers.
2. **MULTIMODAL PROCESSING:** When you encounter URLs or attachments:
- For image URLs (jpg, png, gif, etc.): Use the `describe_image` tool
- For YouTube URLs: Use the `process_youtube_video` tool
- For audio files (mp3, wav, etc.): Use the `process_audio_file` tool
- For other content: Use appropriate search tools
3. **AVAILABLE TOOLS:** Here is the exact list of tools you have access to:
{tools}
4. **REASONING:** Think step-by-step. First, analyze the user's question and any attachments. Second, decide which tools are appropriate. Third, call the tools with correct parameters. Finally, synthesize the results.
5. **URL DETECTION:** Look for URLs in the user's message, especially in brackets like [Attachment URL: ...]. Process these appropriately.
6. **FINAL ANSWER FORMAT:** Your final response MUST strictly follow this format:
`FINAL ANSWER: [Your comprehensive answer incorporating all tool results]`
"""
)
# ----------------------------------------------------------
# Section 4: Factory Function for Agent Executor
# ----------------------------------------------------------
def create_agent_executor(provider: str = "groq"):
"""
Factory function to create and compile the LangGraph agent executor.
"""
print(f"Initializing agent with provider: {provider}")
# Step 1: Build LLMs - Use Google for vision capabilities
if provider == "google":
main_llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0)
vision_llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0)
elif provider == "groq":
main_llm = ChatGroq(model_name="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0)
# Use Google for vision since Groq's vision support may be limited
main_llm = ChatGroq(model_name="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0)
elif provider == "huggingface":
main_llm = ChatHuggingFace(llm=HuggingFaceEndpoint(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", temperature=0.1))
vision_llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0)
else:
raise ValueError("Invalid provider selected")
# Step 2: Build Retriever
embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
if FAISS_CACHE.exists():
with open(FAISS_CACHE, "rb") as f: vector_store = pickle.load(f)
else:
if JSONL_PATH.exists():
docs = [Document(page_content=f"Question: {rec['Question']}\n\nFinal answer: {rec['Final answer']}", metadata={"source": rec["task_id"]}) for rec in (json.loads(line) for line in open(JSONL_PATH, "rt", encoding="utf-8"))]
vector_store = FAISS.from_documents(docs, embeddings)
with open(FAISS_CACHE, "wb") as f: pickle.dump(vector_store, f)
else:
# Create empty vector store if no metadata file exists
docs = [Document(page_content="Sample document", metadata={"source": "sample"})]
vector_store = FAISS.from_documents(docs, embeddings)
retriever = vector_store.as_retriever(search_kwargs={"k": RETRIEVER_K})
# Step 3: Create the final list of tools
tools_list = [
python_repl,
Tool(name="describe_image", func=functools.partial(describe_image_func, vision_llm_instance=vision_llm), description="Describes an image from a local file path or a URL. Use this for any image files or image URLs."),
process_youtube_video,
process_audio_file,
Tool(name="web_search", func=functools.partial(web_search_func, cache_func=cached_get), description="Performs a web search using Tavily."),
Tool(name="wiki_search", func=functools.partial(wiki_search_func, cache_func=cached_get), description="Searches Wikipedia."),
Tool(name="arxiv_search", func=functools.partial(arxiv_search_func, cache_func=cached_get), description="Searches Arxiv for scientific papers."),
create_retriever_tool(retriever=retriever, name="retrieve_examples", description="Retrieve solved questions similar to the user's query."),
]
# Step 4: Format the tool list into a string for the prompt
tool_definitions = "\n".join([f"- `{tool.name}`: {tool.description}" for tool in tools_list])
final_system_prompt = SYSTEM_PROMPT_TEMPLATE.format(tools=tool_definitions)
llm_with_tools = main_llm.bind_tools(tools_list)
# Step 5: Define Graph Nodes
def retriever_node(state: MessagesState):
user_query = state["messages"][-1].content
docs = retriever.invoke(user_query)
messages = [SystemMessage(content=final_system_prompt)]
if docs:
example_text = "\n\n---\n\n".join(d.page_content for d in docs)
messages.append(AIMessage(content=f"I have found {len(docs)} similar solved examples:\n\n{example_text}", name="ExampleRetriever"))
messages.extend(state["messages"])
return {"messages": messages}
def assistant_node(state: MessagesState):
result = llm_with_tools.invoke(state["messages"])
return {"messages": [result]}
# Step 6: Build Graph
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever_node)
builder.add_node("assistant", assistant_node)
builder.add_node("tools", ToolNode(tools_list))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges("assistant", tools_condition, {"tools": "tools", "__end__": "__end__"})
builder.add_edge("tools", "assistant")
agent_executor = builder.compile()
print("Agent Executor created successfully.")
return agent_executor |