seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf a `float` `scalar`, KL divergence. """ if num_classes == 2: q = tf.nn.sigmoid(q_logits) p = tf.nn.sigmoid(p_logits) kl = (-tf.nn.sigmoid_cross_entropy_with_logits(logits=q_logits, labels=q) + f.nn.sigmoid_cross_entropy_with_logits(logits=p_logits, labels=q)) else: q = tf.nn.softmax(q_logits) p = tf.nn.softmax(p_logits) kl = tf.reduce_sum(q * (tf.log(q) - tf.log(p)), 1) num_labels = tf.reduce_sum(weights) num_labels = tf.where(tf.equal(num_labels, 0.), 1., num_labels) kl.get_shape().assert_has_rank(2) weights.get_shape().assert_has_rank(1) loss = tf.identity(tf.reduce_sum(tf.expand_dims(weights, -1) * kl) / num_labels, name='kl') return loss
tensorflow.log
5,800
import tensorflow as tf # TODO: check that all i in indices have ndim n-1 # TODO: support broadcasting for numpy arrays with np.broadcast_to() #indices = tf.pack(list(indices), axis=len(indices)-1) indices = tf.pack(list(indices), axis=-1) # indices = tf.Print(indices, [indices], 'indices', summarize=100) return tf.gather_nd(t, indices) else: raise NotImplementedError('index {} with {}'.format(t, indices))
tensorflow.gather_nd
5,801
import tensorflow as tf l = layer if use_bn: l = batch_norm_conv(l, b_train=bn_phaze, scope='bn') l = act_func(l) l = conv(l, scope='conv', filter_dims=filter_dims, stride_dims=[1, 1], dilation=dilation, non_linear_fn=None, bias=use_bias) l = tf.concat([l, layer], 3) return l def add_residual_layer(layer, filter_dims, act_func=tf.nn.relu, scope='residual_layer', use_bn=True, bn_phaze=False, use_bias=False, dilation=[1, 1, 1, 1]): with tf.variable_scope(scope):
tensorflow.concat
5,802
import tensorflow as tf with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.GRUCell(2) inp = [tf.constant(0.5, shape=[2, 2])] * 2 enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32) attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size]) for e in enc_outputs])
tensorflow.nn.rnn
5,803
import tensorflow as tf xent_mat *= class_weights return tf.reduce_sum(xent_mat, sumd) def _SafeNegEntropy(probs, batch_size, eps=0.0001): """Computes negative entropy in a way that will not overflow.""" adjusted_probs = tf.clip_by_value(probs, eps, 1.0 - eps) entropy = tf.mul(probs, tf.log(adjusted_probs)) return tf.reduce_sum(entropy) / batch_size
tensorflow.reduce_sum
5,804
import tensorflow as tf # loss of value function vf_loss = 0.5 * tf.reduce_sum(tf.square(pi.vf - self.r)) entropy = - tf.reduce_sum(prob_tf * log_prob_tf)
tensorflow.square
5,805
import tensorflow as tf placeholders = { 'batch': tf.placeholder(tf.int32, name='batch'), 'batch_neg': tf.placeholder(tf.int32, name='batch_neg'), 'batch_node':tf.placeholder(tf.int32,name = 'batch_node'), 'adj_min_batch': tf.placeholder(tf.float32,name='adj_min_batch'), 'sim_min_batch': tf.placeholder(tf.float32,name='sim_min_batch'), 'batch_edge_type_idx': tf.placeholder(tf.int32, shape=(), name='batch_edge_type_idx'), 'batch_row_edge_type': tf.placeholder(tf.int32, shape=(), name='batch_row_edge_type'), 'batch_col_edge_type': tf.placeholder(tf.int32, shape=(), name='batch_col_edge_type'), 'degrees': tf.placeholder(tf.int32), 'dropout': tf.placeholder_with_default(0., shape=()), }
tensorflow.placeholder
5,806
import tensorflow as tf if reuse: tf.get_variable_scope().reuse_variables() else: assert tf.get_variable_scope().reuse is False u = tf.contrib.layers.conv2d_transpose(layer_input,filters,f_size,stride=stride,padding=padding) if dropout_rate: u = tf.contrib.layers.dropout(u,keep_prob=dropout_rate) u = tf.contrib.layers.batch_norm(u) u = tf.nn.relu(u)
tensorflow.contrib.layers.conv2d_transpose
5,807
import tensorflow as tf def net_U0(self, x): lambda_1 = self.lambda_1 lambda_2 = tf.exp(self.lambda_2) U = self.neural_net(x, self.weights, self.biases) U_x = self.fwd_gradients_0(U, x) U_xx = self.fwd_gradients_0(U_x, x) F = -lambda_1*U*U_x + lambda_2*U_xx U0 = U - self.dt*tf.matmul(F, self.IRK_alpha.T) return U0 def net_U1(self, x): lambda_1 = self.lambda_1 lambda_2 = tf.exp(self.lambda_2) U = self.neural_net(x, self.weights, self.biases) U_x = self.fwd_gradients_1(U, x) U_xx = self.fwd_gradients_1(U_x, x) F = -lambda_1*U*U_x + lambda_2*U_xx U1 = U + self.dt*tf.matmul(F, (self.IRK_beta - self.IRK_alpha).T) return U1 def callback(self, loss): print('Loss:', loss) def train(self, nIter):
tensorflow.exp
5,808
import tensorflow as tf 'lr_decay_factors', '1, 0.6, 0.1', 'The values of learning_rate decay factor for each segment between boundaries (comma-separated list).') # checkpoint related configuration tf.app.flags.DEFINE_string( 'checkpoint_path', './model/resnet50',#None, 'The path to a checkpoint from which to fine-tune.') tf.app.flags.DEFINE_string( 'checkpoint_model_scope', '', 'Model scope in the checkpoint. None if the same as the trained model.') tf.app.flags.DEFINE_string( 'model_scope', 'xdet_resnet', 'Model scope name used to replace the name_scope in checkpoint.') tf.app.flags.DEFINE_string( 'checkpoint_exclude_scopes', 'xdet_resnet/xdet_head, xdet_resnet/xdet_multi_path, xdet_resnet/xdet_additional_conv',#None 'Comma-separated list of scopes of variables to exclude when restoring from a checkpoint.') tf.app.flags.DEFINE_boolean( 'ignore_missing_vars', True, 'When restoring a checkpoint would ignore missing variables.') tf.app.flags.DEFINE_boolean( 'run_on_cloud', True, 'Wether we will train on cloud (pre-trained model will be placed in the "data_dir/cloud_checkpoint_path").') tf.app.flags.DEFINE_string( 'cloud_checkpoint_path', 'resnet50/model.ckpt', 'The path to a checkpoint from which to fine-tune.')
tensorflow.app.flags.DEFINE_string
5,809
import tensorflow as tf alpha: A scalar, slope of negative section (default=`0.`). max_value: Saturation threshold. Returns ------- A tensor. """ if alpha != 0.: negative_part = tf.nn.relu(-x) x = tf.nn.relu(x) if max_value is not None: max_value = _to_tensor(max_value, x.dtype.base_dtype) zero = _to_tensor(0., x.dtype.base_dtype) x = tf.clip_by_value(x, zero, max_value) if alpha != 0.: alpha = _to_tensor(alpha, x.dtype.base_dtype) x -= alpha * negative_part return x def hard_sigmoid(x): """Segment-wise linear approximation of sigmoid. Faster than sigmoid. Returns 0. if x < -2.5, 1. if x > 2.5. In -2.5 <= x <= 2.5, returns 0.2 * x + 0.5.
tensorflow.clip_by_value
5,810
from tensorflow.python.ops import math_ops iou = math_ops.div(cm_diag, denominator) return math_ops.reduce_mean(iou, name=name)
tensorflow.python.ops.math_ops.reduce_mean
5,811
import tensorflow as tf # Verify that the mapped names are present in the Saved file and can be # Restored using remapped names. with self.test_session() as sess: v0 = tf.Variable(-1.0, name="v0") v1 = tf.Variable(-1.0, name="v1") with self.assertRaisesOpError("uninitialized value v0"): sess.run(v0)
tensorflow.Variable
5,812
import tensorflow as tf sequence_length=nwords) output = tf.concat([output_fw, output_bw], axis=-1) # transpose it back output = tf.transpose(output, perm=[1, 0, 2]) return output
tensorflow.transpose
5,813
import tensorflow as tf if time_major: # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) mask = tf.equal(mask, tf.ones_like(mask)) hidden_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer input_size = query.get_shape().as_list()[-1] # Trainable parameters w1 = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1)) w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1)) b = tf.Variable(tf.random_normal([attention_size], stddev=0.1)) v = tf.Variable(tf.random_normal([attention_size], stddev=0.1)) with tf.name_scope('v'): # Applying fully connected layer with non-linear activation to each of the B*T timestamps; # the shape of `tmp` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size tmp1 = tf.tensordot(facts, w1, axes=1) tmp2 = tf.tensordot(query, w2, axes=1) tmp2 = tf.reshape(tmp2, [-1, 1, tf.shape(tmp2)[-1]]) tmp = tf.tanh((tmp1 + tmp2) + b) # For each of the timestamps its vector of size A from `tmp` is reduced with `v` vector v_dot_tmp = tf.tensordot(tmp, v, axes=1, name='v_dot_tmp') # (B,T) shape key_masks = mask # [B, 1, T]
tensorflow.random_normal
5,814
import tensorflow as tf ''' y_pairs = tf.reshape(output, [-1,2]) # fold: 1 x n -> [n/2 x 2] pos_scores, neg_scores = tf.split(1, 2, y_pairs) # separate pairs hinge_losses = tf.nn.relu(margin - pos_scores + neg_scores)
tensorflow.split
5,815
import tensorflow as tf n_batch_train = n_batch*n_gpu n_updates_total = (n_train//n_batch_train)*n_iter X_train = tf.placeholder(tf.int32, [n_batch_train, 2, n_ctx, 2]) M_train = tf.placeholder(tf.float32, [n_batch_train, 2, n_ctx]) X = tf.placeholder(tf.int32, [None, 2, n_ctx, 2]) M = tf.placeholder(tf.float32, [None, 2, n_ctx]) Y_train = tf.placeholder(tf.int32, [n_batch_train]) Y = tf.placeholder(tf.int32, [None]) train, logits, clf_losses, lm_losses = mgpu_train(X_train, M_train, Y_train) clf_loss = tf.reduce_mean(clf_losses) params = find_trainable_variables('model') sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) sess.run(tf.global_variables_initializer()) shapes = json.load(open('model/params_shapes.json')) offsets = np.cumsum([np.prod(shape) for shape in shapes]) init_params = [np.load('model/params_{}.npy'.format(n)) for n in range(10)] init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1] init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)] init_params[0] = init_params[0][:n_ctx] init_params[0] = np.concatenate([init_params[1], (np.random.randn(n_special, n_embd)*0.02).astype(np.float32), init_params[0]], 0) del init_params[1] if n_transfer == -1: n_transfer = 0 else:
tensorflow.ConfigProto
5,816
import tensorflow as tf self.assertEqual((2, 2), res[0][0].h.shape) self.assertEqual((2, 2), res[0][1].c.shape) self.assertEqual((2, 2), res[0][1].h.shape) # pylint: disable=unused-variable,invalid-name def testDynamicAttentionDecoderStateIsTuple(self): with self.test_session() as sess: with tf.variable_scope( "root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) cell = tf.nn.rnn_cell.MultiRNNCell(cells=[cell] * 2, state_is_tuple=True) inp = tf.constant(0.5, shape=[2, 2, 2]) enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32) attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size]) for e in enc_outputs]) dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 dec, mem = tf.nn.seq2seq.attention_decoder( dec_inp, enc_state, attn_states, cell, output_size=4)
tensorflow.nn.rnn_cell.MultiRNNCell
5,817
import tensorflow.contrib as contrib train_y_2 = to_categorical(train_y_2, n_class_2) test_y_2 = to_categorical(test_y_2, n_class_2) return train_X, train_y_1, train_y_2, test_X, test_y_1, test_y_2 def apply_cross_stitch(input1, input2): input1_reshaped = contrib.layers.flatten(input1) input2_reshaped = contrib.layers.flatten(input2) input = tf.concat((input1_reshaped, input2_reshaped), axis=1) # initialize with identity matrix cross_stitch = tf.get_variable("cross_stitch", shape=(input.shape[1], input.shape[1]), dtype=tf.float32,
tensorflow.contrib.layers.flatten
5,818
import tensorflow as tf updates=actions[name] )) assignments.append(tf.scatter_update(ref=self.terminal_memory, indices=indices, updates=terminal)) assignments.append(tf.scatter_update(ref=self.reward_memory, indices=indices, updates=reward)) # Add episode indices.
tensorflow.scatter_update
5,819
import tensorflow as tf for variable, value in zip(all_vars, cog): vstar = self.get_slot(variable, "vstar") vstar.load(value, client.model.sess) # get old gradient _, gprev = client.get_grads() # Find g_t - F'(old) gdiff = [g1 - g2 for g1, g2 in zip(avg_gradient, gprev)] with client.model.graph.as_default(): all_vars = tf.trainable_variables() for variable, grad in zip(all_vars, gdiff): gold = self.get_slot(variable, "gold") gold.load(grad, client.model.sess)
tensorflow.trainable_variables
5,820
import tensorflow as tf import tensorflow as tf import importlib import subprocess tf.enable_eager_execution() from entropy_model import EntropyBottleneck
tensorflow.enable_eager_execution
5,821
import tensorflow as tf [num_batch * num_prior, 1]) # 3. classification loss including positive and negative examples loss_class_mask = tf.logical_or(mask_pos, mask_hard_neg) loss_class_mask_b = tf.broadcast_to(loss_class_mask, tf.shape(class_pred)) filter_class_true = tf.boolean_mask(tf.cast(mask_pos, tf.float32), loss_class_mask) filter_class_pred = tf.boolean_mask(class_pred, loss_class_mask_b) filter_class_pred = tf.reshape(filter_class_pred, [-1, num_class]) loss_class = tf.keras.losses.sparse_categorical_crossentropy( y_true=filter_class_true, y_pred=filter_class_pred) loss_class = tf.reduce_mean(loss_class) return loss_loc, loss_landm, loss_class return multi_box_loss
tensorflow.reduce_mean
5,822
import tensorflow as tf self.s_ = tf.placeholder(tf.float32, [None, self.num_s], name='s1_') # input next state for agent1 self.R = tf.placeholder(tf.float32, [None, ], name='R') # input Reward
tensorflow.placeholder
5,823
import tensorflow as tf loss = tf.losses.softmax_cross_entropy(labels, outputs)
tensorflow.losses.softmax_cross_entropy
5,824
import tensorflow as tf :return: [batch_size, window_size] boolean tensor mask. """ return tf.logical_not(tf.sequence_mask(before_padding, maxlen=window_size)) def _right_mask(after_padding, window_size): """Same as above, but for right-padded vectors.""" return tf.sequence_mask(window_size - after_padding, maxlen=window_size) class WindowFeatures(object): """Helper for dealing with window-like raw features. In particular, this class generates concatenated "dflux_dt" values, and has a masking
tensorflow.sequence_mask
5,825
import tensorflow as tf weights: 1-D `float` tensor with shape [num_timesteps * batch_size]. Elements should be 1.0 only on end of sequences num_classes: a `int`, number of training classes Returns: a `float` `scalar`, KL divergence. """ if num_classes == 2: q = tf.nn.sigmoid(q_logits) p = tf.nn.sigmoid(p_logits) kl = (-tf.nn.sigmoid_cross_entropy_with_logits(logits=q_logits, labels=q) + f.nn.sigmoid_cross_entropy_with_logits(logits=p_logits, labels=q)) else: q = tf.nn.softmax(q_logits) p = tf.nn.softmax(p_logits) kl = tf.reduce_sum(q * (tf.log(q) - tf.log(p)), 1) num_labels = tf.reduce_sum(weights) num_labels = tf.where(tf.equal(num_labels, 0.), 1., num_labels)
tensorflow.nn.sigmoid_cross_entropy_with_logits
5,826
import tensorflow as tf x = tf.matmul(x, V)
tensorflow.matmul
5,827
import tensorflow as tf features={ 'label':tf.FixedLenFeature([], tf.int64), 'img_raw' : tf.FixedLenFeature([], tf.string), })
tensorflow.FixedLenFeature
5,828
import tensorflow as tf if padding == "PARTIAL": with tf.variable_scope('mask'): _, h, w, _ = input.get_shape().as_list()
tensorflow.variable_scope
5,829
import tensorflow as tf decoder_use_sum_merge=model_options.decoder_use_sum_merge, decoder_filters=model_options.decoder_filters, decoder_output_is_logits=model_options.decoder_output_is_logits, weight_decay=weight_decay, reuse=reuse, is_training=is_training, fine_tune_batch_norm=fine_tune_batch_norm, use_bounded_activation=model_options.use_bounded_activation) outputs_to_logits = {} for output in sorted(model_options.outputs_to_num_classes): if model_options.decoder_output_is_logits: outputs_to_logits[output] = tf.identity(features, name=output) else: outputs_to_logits[output] = get_branch_logits( features, model_options.outputs_to_num_classes[output], model_options.atrous_rates, weight_decay=weight_decay, reuse=reuse, scope_suffix=output) return outputs_to_logits
tensorflow.identity
5,830
import tensorflow as tf self.is_training = tf.placeholder(tf.bool) initializer = tf.contrib.layers.variance_scaling_initializer() # Embedding Lookup 16 with tf.device('/cpu:0'), tf.name_scope("embedding"): if use_he_uniform: self.embedding_W = tf.get_variable(name='lookup_W', shape=[num_quantized_chars, embedding_size], initializer=tf.contrib.layers.variance_scaling_initializer()) else: self.embedding_W = tf.Variable(tf.random_uniform([num_quantized_chars, embedding_size], -1.0, 1.0),name="embedding_W") self.embedded_characters = tf.nn.embedding_lookup(self.embedding_W, self.input_x) embedded_text_expand = tf.expand_dims(self.embedded_characters, -1) with tf.device('/cpu:0'), tf.name_scope("embedding_tags"): W_tags = tf.get_variable("embed_W_tags", [tags_vocab_size, embedding_size], initializer=initializer) embedded_tags = tf.nn.embedding_lookup(W_tags, self.input_tags) embedded_tags_expanded = tf.expand_dims(embedded_tags, -1) with tf.device('/cpu:0'), tf.name_scope("embedding_deps"): W_deps = tf.get_variable("embed_W_deps", [deps_vocab_size, embedding_size], initializer=initializer) embedded_deps = tf.nn.embedding_lookup(W_deps, self.input_deps) embedded_deps_expanded = tf.expand_dims(embedded_deps, -1) with tf.device('/cpu:0'), tf.name_scope("embedding_head"): W_head = tf.get_variable("embed_W_head", [num_quantized_chars, embedding_size], initializer=initializer) embedded_head = tf.nn.embedding_lookup(W_head, self.input_head) embedded_head_expanded = tf.expand_dims(embedded_head, -1)
tensorflow.name_scope
5,831
import tensorflow as tf weights = tf.constant(weights, dtype=tf.float32, name='class_weights') def GetCell(): """Creates an LSTM cell with dropout.""" c = tf.nn.rnn_cell.LSTMCell(hidden_size, use_peepholes=model_params['peepholes'], num_proj=proj_size) if dropout_keep_prob is not None: c = tf.nn.rnn_cell.DropoutWrapper(c, input_keep_prob=dropout_keep_prob) return c # Create the bi-directional LSTM with tf.variable_scope('wordrnn'): with tf.variable_scope('fw'): cell_fw = GetCell() with tf.variable_scope('bw'): cell_bw = GetCell() rnnout, _, _ = tf.nn.bidirectional_rnn(cell_fw, cell_bw, self._inputs, dtype=tf.float32, sequence_length=self.seq_lens) if proj_size: out_size = 2 * proj_size else:
tensorflow.variable_scope
5,832
import tensorflow as tf # use the TPU version of RunConfig config = tf.contrib.tpu.RunConfig(
tensorflow.contrib.tpu.RunConfig
5,833
import tensorflow as tf A = [[0.8, 0.6, 0.3], [0.1, 0.6, 0.4]] B = [1, 1] top_k = tf.nn.top_k(A, 2) in_top_k = tf.nn.in_top_k(A, B, 1)
tensorflow.nn.top_k
5,834
import tensorflow as tf coord.request_stop() coord.join(threads) def predict_time(loop=100): feed_dict={ testnum:1 } with tf.Session(config=config) as sess: sess.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) tf.train.Saver().restore(sess,path) total=0.0 for i in range(loop): a = datetime.now() accuracy_np = sess.run([accuracy],feed_dict=feed_dict) b = datetime.now() c = (b - a).microseconds total+=c print('predict_time(ms): ',total/(loop*1000)) coord.request_stop() coord.join(threads)
tensorflow.train.Saver
5,835
import tensorflow as tf batch_size = tf.shape(observations_ph.get())[0] random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64) chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions) output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
tensorflow.where
5,836
import tensorflow as tf with tf.name_scope('AccumGradOptimizer'): ops = [] for s, gv in zip(slots, grads_and_vars): g, v = gv ops.append(s.assign_add(g)) update_counter = tf.assign_add(counter, 1, name='update_counter') update_slot_op = tf.group(update_counter, *ops, name='update_slot') def update_grad(): update_op = self._opt.apply_gradients(slots_and_vars) with tf.control_dependencies([update_op]): clear_ops = [tf.assign(s, tf.zeros_like(s)) for s in slots] return tf.group(*clear_ops, name='update_grad') pred = tf.equal(tf.mod(counter, self._niter), 0) with tf.control_dependencies([update_slot_op]): if name is None: name = 'cond_update_grad' op = tf.cond(pred, update_grad, tf.no_op, name=name).op return op if __name__ == '__main__': # run it with "python -m tensorpack.tfutils.optimizer" x = tf.get_variable('x', shape=[6]) cost = tf.reduce_sum(tf.abs(x), name='cost') opt = tf.train.GradientDescentOptimizer(0.01) opt = AccumGradOptimizer(opt, 5)
tensorflow.mod
5,837
import tensorflow as tf W = tf.get_variable('W', [state_size, num_classes]) b = tf.get_variable('b', [num_classes], initializer=tf.constant_initializer(0.0)) '''因为rnn_outputs是三维的,这里需要将其转成2维的, 矩阵运算后再转换回来[batch_size, num_steps, num_classes]''' logits = tf.reshape(tf.matmul(tf.reshape(rnn_outputs, [-1, state_size]), W) +b, \ shape=[batch_size, num_steps, num_classes]) predictions = tf.nn.softmax(logits) y_as_list = tf.unstack(y, num=num_steps, axis=1) losses = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,logits=logits) total_loss = tf.reduce_mean(losses) train_step = tf.train.AdagradOptimizer(learning_rate).minimize(total_loss) '''训练网络''' def train_rnn(num_epochs, num_steps, state_size=4, verbose=True): with tf.Session() as sess: sess.run(tf.global_variables_initializer()) #sess = tf_debug.LocalCLIDebugWrapperSession(sess) training_losses = [] for idx, epoch in enumerate(gen_epochs(num_epochs, num_steps)): training_loss = 0
tensorflow.train.AdagradOptimizer
5,838
import tensorflow as tf src_mask = tf.sequence_mask(encoder_input_length[0], maxlen=max_src_len, dtype=tf.float32) src_mask = tf.einsum('ij,ik->ijk', src_mask, src_mask) attn_loss *= tf.to_float(src_mask) # don't take padding words into account attn_loss = tf.norm(attn_loss) / tf.to_float(batch_size) xent_loss += reconstruction_attn_weight * attn_loss attention_weights = [attention_weights, reconstructed_weights]
tensorflow.to_float
5,839
import tensorflow as tf for var in tf.all_variables(): print(var) batch_size = tf.shape(policy.obs_ph)[0] n_actions = ac_space.nvec if isinstance(ac_space, MultiDiscrete) else ac_space.n random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=n_actions, dtype=tf.int64)
tensorflow.shape
5,840
import tensorflow as tf batch_size = tf.shape(X)[0] noise_shape = (batch_size, 1, 1, 1) random_tensor = keep_prob + tf.random_uniform(noise_shape, dtype=tf.float32) binary_tensor = tf.floor(random_tensor) X = (X / keep_prob) * binary_tensor return X def _do_conv(self, X, w, h, in_ch, out_ch, filter_size=1, no_relu=False, no_reg=False, is_train=False): W = self._make_var('W', (filter_size, filter_size, in_ch, out_ch), no_reg=no_reg) if not no_relu: X = tf.nn.relu(X) X = tf.nn.conv2d(X, W, (1, 1, 1, 1), padding='SAME') X = self._add_batch_norm(X, out_ch, is_train=is_train) X = tf.reshape(X, (-1, w, h, out_ch)) # Sanity shape check return X def _do_separable_conv(self, X, w, h, ch, filter_size=3, stride=1, ch_mul=1, no_batch_norm=False, W_d=None, W_p=None, is_train=False): if W_d is None: W_d = self._make_var('W_d', (filter_size, filter_size, ch, ch_mul)) if W_p is None: W_p = self._make_var('W_p', (1, 1, ch_mul * ch, ch))
tensorflow.nn.conv2d
5,841
import tensorflow as tf v_backup = tf.stop_gradient(min_qf_pi - self.ent_coef * logp_pi) value_loss = 0.5 * tf.reduce_mean(((value_fn - v_backup) ** 2)*self.weight_ph) #value_for_priority = tf.reduce_mean((value_fn - v_backup) ** 2,1) regularizervf = tf.contrib.layers.l1_l2_regularizer(scale_l1=0.0, scale_l2=1e-5, scope='model/values_fn') all_trainable_weights_vf = tf_util.get_trainable_vars('model/values_fn') regularization_penalty_vf = tf.contrib.layers.apply_regularization(regularizervf, all_trainable_weights_vf) if self.n_step: values_losses = qf1_loss + qf2_loss + value_loss + regularization_penalty_vf + qf1_loss_n + qf2_loss_n else: values_losses = qf1_loss + qf2_loss + value_loss + regularization_penalty_vf # Policy train op # (has to be separate from value train op, because min_qf_pi appears in policy_loss) policy_optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_ph) policy_train_op = policy_optimizer.minimize(policy_loss, var_list=tf_util.get_trainable_vars('model/pi')) # Value train op value_optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_ph) values_params = tf_util.get_trainable_vars('model/values_fn') source_params = tf_util.get_trainable_vars("model/values_fn/vf") target_params = tf_util.get_trainable_vars("target/values_fn/vf") # Polyak averaging for target variables self.target_update_op = [ tf.assign(target, (1 - self.tau) * target + self.tau * source) for target, source in zip(target_params, source_params) ]
tensorflow.train.AdamOptimizer
5,842
import tensorflow as tf """Computes listwise softmax loss with propensity weighting. Args: output: (tf.Tensor) A tensor with shape [batch_size, list_size]. Each value is the ranking score of the corresponding example. labels: (tf.Tensor) A tensor of the same shape as `output`. A value >= 1 means a relevant example. propensity_weights: (tf.Tensor) A tensor of the same shape as `output` containing the weight of each element. name: A string used as the name for this variable scope. Returns: (tf.Tensor) A single value tensor containing the loss. """ loss = None with tf.name_scope(name, "click_softmax_cross_entropy",[output]): label_dis = labels*propensity_weights / tf.reduce_sum(labels*propensity_weights, 1, keep_dims=True) loss = tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=label_dis) * tf.reduce_sum(labels*propensity_weights, 1) return tf.reduce_sum(loss) / tf.reduce_sum(labels*propensity_weights) def click_loglikelihood(self, labels, propensity,train_output, name=None): """Computes listwise softmax loss with propensity weighting. Args: output: (tf.Tensor) A tensor with shape [batch_size, list_size]. Each value is the ranking score of the corresponding example. labels: (tf.Tensor) A tensor of the same shape as `output`. A value >= 1 means a relevant example. propensity_weights: (tf.Tensor) A tensor of the same shape as `output` containing the weight of each element. name: A string used as the name for this variable scope.
tensorflow.reduce_sum
5,843
import tensorflow as tf inputs = tf.nn.relu(inputs, name="first_relu") #print("temp cnn output shape:", inputs.shape) inputs = tf.squeeze(inputs, axis=2) #print("squeeze shape", inputs.shape)
tensorflow.squeeze
5,844
import tensorflow as tf init_op=tf.train.init_from_checkpoint(init_checkpoint, assignment_map) scaffold_fn=tf.train.Scaffold(init_op=init_op)
tensorflow.train.Scaffold
5,845
import tensorflow as tf shuffle=True) def placeholder_like(x, name=None): return tf.placeholder(shape=x.shape, dtype=tf.float32, name=name) def random_sphere(shape): n = tf.random_normal(shape=shape, dtype=tf.float32) n = tf.reshape(n, shape=(int(shape[0]), -1)) n = tf.nn.l2_normalize(n, dim=1) n = tf.reshape(n, shape) return n
tensorflow.random_normal
5,846
import tensorflow as tf masked_lm_log_probs = tf.reshape( masked_lm_log_probs, [-1, masked_lm_log_probs.shape[-1]] ) masked_lm_predictions = tf.argmax( masked_lm_log_probs, axis=-1, output_type=tf.int32 ) masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1]) masked_lm_ids = tf.reshape(masked_lm_ids, [-1]) masked_lm_weights = tf.reshape(masked_lm_weights, [-1]) masked_lm_accuracy = tf.metrics.accuracy( labels=masked_lm_ids, predictions=masked_lm_predictions, weights=masked_lm_weights, ) masked_lm_mean_loss = tf.metrics.mean( values=masked_lm_example_loss, weights=masked_lm_weights
tensorflow.reshape
5,847
import tensorflow as tf if is_adaptive_stage(stage): # The property should have keys matching those of state_update_tensors. self.assertSameElements(stage.state_update_aggregation_modes.keys(), test_data.state_update_tensors.keys()) for mode in six.itervalues(stage.state_update_aggregation_modes): self.assertIn(mode, encoding_stage.StateAggregationMode) for tensor in six.itervalues(test_data.initial_state): self.assertTrue(tf.is_tensor(tensor)) for tensor in six.itervalues(test_data.state_update_tensors): self.assertTrue(tf.is_tensor(tensor)) for tensor in six.itervalues(test_data.updated_state): self.assertTrue(tf.is_tensor(tensor)) # The state related Tensors should have appropriate substrings in their # names. for tensor in six.itervalues(test_data.initial_state): self.assertIn(encoding_stage.INITIAL_STATE_SCOPE_SUFFIX, tensor.name) for tensor in six.itervalues(test_data.updated_state): self.assertIn(encoding_stage.UPDATE_STATE_SCOPE_SUFFIX, tensor.name)
tensorflow.is_tensor
5,848
import tensorflow as tf def good(): offset_y, offset_x, _ = tf.unstack(bbox_begin) target_height, target_width, _ = tf.unstack(bbox_size) crop_window = tf.stack([offset_y, offset_x, target_height, target_width]) image = tf.image.decode_and_crop_jpeg( byte, crop_window, channels=3, **JPEG_OPT) image = uint8_resize_bicubic(image, [224, 224]) return image def bad():
tensorflow.image.decode_and_crop_jpeg
5,849
from tensorflow.python.platform import googletest ig = integrated_gradients.IntegratedGradients(graph, sess, y[0], x) mask = ig.GetMask(x_value=x_input_val[0], feed_dict={}, x_baseline=x_baseline_val[0], x_steps=1000) # Verify the result. self.assertAlmostEqual(expected_val, mask.sum(), places=3) if __name__ == '__main__': googletest.main()
tensorflow.python.platform.googletest.main
5,850
import tensorflow as tf options = self.options input_shape = tf.shape(encoder_states) batch_size = input_shape[0] passage_len = input_shape[1] with variable_scope.variable_scope("attention_decoder"): encoder_features = tf.expand_dims(encoder_states, axis=2) # now is shape [batch_size, passage_len, 1, encoder_dim] W_h = variable_scope.get_variable("W_h", [1, 1, encoder_dim, options.attention_vec_size]) self.W_h = W_h encoder_features = nn_ops.conv2d(encoder_features, W_h, [1, 1, 1, 1], "SAME") # [batch_size, passage_len, 1, attention_vec_size] encoder_features = tf.reshape(encoder_features, [batch_size, passage_len, options.attention_vec_size]) return encoder_features def decode_mode(self, word_vocab, beam_size, state_t_1, context_t_1, coverage_t_1, word_t, encoder_states, encoder_features, passage_word_idx, passage_mask): options = self.options with variable_scope.variable_scope("attention_decoder"): v = variable_scope.get_variable("v", [options.attention_vec_size]) v = tf.expand_dims(tf.expand_dims(v, axis=0), axis=0)
tensorflow.reshape
5,851
import tensorflow as tf self.abs_td = tf.abs(self.target_q - self.q) self.ISWeights = tf.placeholder(tf.float32, [None, 1], name='IS_weights') with tf.variable_scope('TD_error'): self.loss = tf.reduce_mean(self.ISWeights * tf.squared_difference(self.target_q, self.q)) with tf.variable_scope('C_train'): self.train_op = tf.train.AdamOptimizer(self.lr).minimize(self.loss, global_step=GLOBAL_STEP) with tf.variable_scope('a_grad'): self.a_grads = tf.gradients(self.q, a)[0] # tensor of gradients of each sample (None, a_dim)
tensorflow.variable_scope
5,852
import tensorflow as tf fc_weight = tf.get_variable("weights", initializer=initial_value[0]) fc_bias = tf.get_variable("bias", shape=[out_dim], initializer=initial_value[1]) if use_bias: output = tf.add(tf.matmul(flat_input, fc_weight), fc_bias) else: output = tf.matmul(flat_input, fc_weight)
tensorflow.matmul
5,853
from tensorflow.python.framework import ops as _ops Returns: The created Operation. """ result = _op_def_lib.apply_op("Old", name=name) return result _ops.RegisterShape("Old")(None) _resource_create_op_outputs = [""] def resource_create_op(resource, name=None): r"""TODO: add doc. Args:
tensorflow.python.framework.ops.RegisterShape
5,854
import tensorflow as tf # Select logits to prob function self.logits_to_prob = tf.nn.softmax if self.hparams.logits_to_prob == 'sigmoid': self.logits_to_prob = sigmoid_prob self.output = self.ranking_model(self.max_candidate_num, scope='ranking_model') pad_removed_output = self.remove_padding_for_metric_eval(self.docid_inputs, self.output) reshaped_labels = tf.transpose(tf.convert_to_tensor(self.labels)) # reshape from [max_candidate_num, ?] to [?, max_candidate_num] for metric in self.exp_settings['metrics']: for topn in self.exp_settings['metrics_topn']: metric_value = utils.make_ranking_metric_fn(metric, topn)(reshaped_labels, pad_removed_output, None) tf.summary.scalar('%s_%d' % (metric, topn), metric_value, collections=['eval']) if not forward_only: # Build model self.rank_list_size = exp_settings['train_list_cutoff'] train_output = self.ranking_model(self.rank_list_size, scope='ranking_model') self.propensity = self.DenoisingNet(self.rank_list_size, forward_only) train_labels = self.labels[:self.rank_list_size] print('Loss Function is ' + self.hparams.loss_func) # Select loss function self.loss_func = None
tensorflow.summary.scalar
5,855
from tensorflow.python.framework import ops guide_tensor = op.inputs[1] input_tensor = op.inputs[2] has_offset = op.get_attr('has_offset') return _hdrnet.bilateral_slice_apply_grad( grid_tensor, guide_tensor, input_tensor, grad, has_offset=has_offset) # ----------- Register Shape inference ---------------------------------------- @ops.RegisterShape('BilateralSlice') def _bilateral_slice_shape(op): input_tensor = op.inputs[0] guide_tensor = op.inputs[1] return [guide_tensor.get_shape().concatenate(input_tensor.get_shape()[-1])] @ops.RegisterShape('BilateralSliceApply')
tensorflow.python.framework.ops.RegisterShape
5,856
from tensorflow.python.ops.rnn_cell_impl import _Linear """Gated recurrent unit (GRU) with nunits cells.""" if self._gate_linear is None: bias_ones = self._bias_initializer if self._bias_initializer is None: bias_ones = init_ops.constant_initializer(1.0, dtype=inputs.dtype) with vs.variable_scope("gates"): # Reset gate and update gate. self._gate_linear = _Linear( [inputs, state], 2 * self._num_units, True, bias_initializer=bias_ones, kernel_initializer=self._kernel_initializer)
tensorflow.python.ops.rnn_cell_impl._Linear
5,857
import tensorflow as tf querry_size = query.get_shape().as_list()[-1] queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1) d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag) d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag) d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]]) scores = d_layer_3_all if mask is not None: mask = tf.equal(mask, tf.ones_like(mask)) key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(scores) * (-2 ** 32 + 1) scores = tf.where(key_masks, scores, paddings) # [B, 1, T] # Activation if softmax_stag: scores = tf.nn.softmax(scores) # [B, 1, T] # Weighted sum if mode == 'SUM': output = tf.matmul(scores, facts) # [B, 1, H] # output = tf.reshape(output, [-1, tf.shape(facts)[-1]])
tensorflow.expand_dims
5,858
import tensorflow as tf return tf.squeeze(logits, axis=[1, 2, 3]) # -1 due to the pad above. current_output_position = common_layers.shape_list(ids)[1] - 1 logits = logits[:, current_output_position, :, :] return tf.squeeze(logits, axis=[1, 2]) initial_ids = tf.zeros([batch_size], dtype=tf.int32) if self.has_input: inputs_old = features["inputs"] features["inputs"] = tf.expand_dims(features["inputs"], 1) if len(features["inputs"].shape) < 5: features["inputs"] = tf.expand_dims(features["inputs"], 4) # Expand the inputs in to the beam size. features["inputs"] = tf.tile(features["inputs"], [1, beam_size, 1, 1, 1]) s = common_layers.shape_list(features["inputs"]) features["inputs"] = tf.reshape(features["inputs"], [s[0] * s[1], s[2], s[3], s[4]]) target_modality = self._problem_hparams.target_modality
tensorflow.expand_dims
5,859
from tensorflow.python.ops import array_ops def benchmarkTfRNNLSTMBlockCellTraining(self): test_configs = self._GetTestConfig() for config_name, config in test_configs.items(): num_layers = config["num_layers"] num_units = config["num_units"] batch_size = config["batch_size"] seq_length = config["seq_length"] with ops.Graph().as_default(), ops.device("/device:GPU:0"): inputs = seq_length * [ array_ops.zeros([batch_size, num_units], dtypes.float32) ] cell = lambda: lstm_ops.LSTMBlockCell(num_units=num_units) # pylint: disable=cell-var-from-loop multi_cell = rnn_cell.MultiRNNCell( [cell() for _ in range(num_layers)]) outputs, final_state = core_rnn.static_rnn( multi_cell, inputs, dtype=dtypes.float32) trainable_variables = ops.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES) gradients = gradients_impl.gradients([outputs, final_state],
tensorflow.python.ops.array_ops.zeros
5,860
import tensorflow as tf generated_images = tf.reshape(decoder_output, [-1, 28, 28, 1]) # Tensorboard visualization tf.summary.scalar(name='Autoencoder Loss', tensor=autoencoder_loss) tf.summary.scalar(name='Discriminator gauss Loss', tensor=dc_g_loss) tf.summary.scalar(name='Discriminator categorical Loss', tensor=dc_c_loss) tf.summary.scalar(name='Generator Loss', tensor=generator_loss) tf.summary.scalar(name='Supervised Encoder Loss', tensor=supervised_encoder_loss) tf.summary.histogram(name='Encoder Gauss Distribution', values=encoder_output_latent) tf.summary.histogram(name='Real Gauss Distribution', values=real_distribution) tf.summary.histogram(name='Encoder Categorical Distribution', values=encoder_output_label) tf.summary.histogram(name='Real Categorical Distribution', values=categorial_distribution) tf.summary.image(name='Input Images', tensor=input_images, max_outputs=10) tf.summary.image(name='Generated Images', tensor=generated_images, max_outputs=10) summary_op = tf.summary.merge_all() # Saving the model saver = tf.train.Saver() step = 0 with tf.Session() as sess:
tensorflow.summary.histogram
5,861
from tensorflow.python.ops import array_ops perm = [axis] + [n for n in range(ndim) if n != axis] batch_values = array_ops.transpose(values, perm)[:batch_size] def reallocate(): next_size = _next_array_size(new_size) next_shape = array_ops.pack([next_size] + fixed_shape) new_value = array_ops.zeros(next_shape, dtype=values.dtype) old_value = array.value() assign_op = state_ops.assign(array, new_value, validate_shape=False) with ops.control_dependencies([assign_op]): copy_op = array[:size].assign(old_value[:size]) # return value needs to be the same dtype as no_op() for cond with ops.control_dependencies([copy_op]):
tensorflow.python.ops.array_ops.zeros
5,862
import tensorflow as tf image_resizer_fn(tensor_dict[fields.InputDataFields.image], None)[0], tf.uint8) if fields.InputDataFields.image_additional_channels in tensor_dict: channels = tensor_dict[fields.InputDataFields.image_additional_channels] tensor_dict[fields.InputDataFields.image] = tf.concat( [tensor_dict[fields.InputDataFields.image], channels], axis=2) # Apply data augmentation ops. if data_augmentation_fn is not None:
tensorflow.concat
5,863
import tensorflow as tf with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) if task_name != "sts-b": probabilities = tf.nn.softmax(logits, axis=-1) predictions = tf.argmax(probabilities, axis=-1, output_type=tf.int32) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
tensorflow.nn.bias_add
5,864
import tensorflow as tf ------- The selected tensor. """ if condition.dtype != tf.bool: condition = tf.cast(condition, 'bool') if not callable(then_expression): def then_expression_fn():
tensorflow.cast
5,865
import tensorflow as tf self.b1 = tf.Variable(tf.zeros([10])) def _build_model(self, x, y): w0 = self.w0.read_value() b0 = self.b0.read_value() w1 = self.w1.read_value() b1 = self.b1.read_value() params = (w0, b0, w1, b1) layer0 = tf.matmul(x, w0) + b0 layer1 = tf.nn.sigmoid(layer0) layer2 = tf.matmul(layer1, w1) + b1 predictions = layer2 loss = tf.reduce_mean(tf.losses.sparse_softmax_cross_entropy(logits=predictions, labels=y)) grads = tf.gradients(ys=loss, xs=params) return predictions, loss, grads def build_training_model(self, x, y): """
tensorflow.nn.sigmoid
5,866
import tensorflow as tf def import_params(model_dir, model_name, params): model_dir = os.path.abspath(model_dir) p_name = os.path.join(model_dir, "params.json") m_name = os.path.join(model_dir, model_name + ".json") if not tf.gfile.Exists(p_name) or not tf.gfile.Exists(m_name): return params with tf.gfile.Open(p_name) as fd: tf.logging.info("Restoring hyper parameters from %s" % p_name) json_str = fd.readline() params.parse_json(json_str) with tf.gfile.Open(m_name) as fd: tf.logging.info("Restoring model parameters from %s" % m_name) json_str = fd.readline()
tensorflow.gfile.Open
5,867
import tensorflow as tf def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False): shape = input_.get_shape().as_list() with tf.variable_scope(scope or "Linear"): matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32, tf.random_normal_initializer(stddev=stddev)) bias = tf.get_variable("bias", [output_size], initializer=tf.constant_initializer(bias_start)) if with_w: return tf.matmul(input_, matrix) + bias, matrix, bias else: return tf.matmul(input_, matrix) + bias def deconv2d(input_, output_shape, k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02, name="deconv2d", with_w=False): with tf.variable_scope(name): # filter : [height, width, output_channels, in_channels] w = tf.get_variable('w', [k_h, k_w, output_shape[-1], input_.get_shape()[-1]], initializer=tf.random_normal_initializer(stddev=stddev)) # print("w", w.get_shape())
tensorflow.matmul
5,868
import tensorflow as tf # Note: tf.nn.softmax_cross_entropy_with_logits # expects logits, Keras expects probabilities. if not from_logits: # scale preds so that the class probas of each sample sum to 1 output /= tf.reduce_sum( output, axis=len(output.get_shape()) - 1, keep_dims=True) # manual computation of crossentropy epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype) output = tf.clip_by_value(output, epsilon, 1. - epsilon) return -tf.reduce_sum( target * tf.log(output), axis=len(output.get_shape()) - 1) else: try: return tf.nn.softmax_cross_entropy_with_logits( labels=target, logits=output) except TypeError: return tf.nn.softmax_cross_entropy_with_logits( logits=output, labels=target) def sparse_categorical_crossentropy(output, target, from_logits=False): """Categorical crossentropy between an output tensor and a target tensor, where the target is an integer tensor. """ # Note: tf.nn.softmax_cross_entropy_with_logits # expects logits, Keras expects probabilities.
tensorflow.nn.softmax_cross_entropy_with_logits
5,869
import tensorflow as tf depth = im.get_shape().as_list()[1] height = im.get_shape().as_list()[2] width = im.get_shape().as_list()[3] channels = im.get_shape().as_list()[4] x = tf.to_float(x) y = tf.to_float(y) z = tf.to_float(z) depth_f = tf.to_float(depth) height_f = tf.to_float(height) width_f = tf.to_float(width) # Number of disparity interpolated.
tensorflow.to_float
5,870
import tensorflow as tf grad = grad - tf.reshape(adj, [self.n_envs * self.n_steps, 1]) * kl_grad # These are turst region adjusted gradients wrt f ie statistics of policy pi grads_f = -grad / (self.n_envs * self.n_steps) grads_policy = tf.gradients(f_i_, self.params, grads_f) grads_q = tf.gradients(loss_q * self.q_coef, self.params) grads = [gradient_add(g1, g2, param, verbose=self.verbose) for (g1, g2, param) in zip(grads_policy, grads_q, self.params)] avg_norm_grads_f = avg_norm(grads_f) * (self.n_steps * self.n_envs)
tensorflow.gradients
5,871
import tensorflow as tf weights = np.load(self.load_weights_path) init_state_initializer = tf.constant_initializer(weights['init_state']) W_in_initializer = tf.constant_initializer(weights['W_in']) W_rec_initializer = tf.constant_initializer(weights['W_rec']) W_out_initializer = tf.constant_initializer(weights['W_out']) b_rec_initializer = tf.constant_initializer(weights['b_rec']) b_out_initializer = tf.constant_initializer(weights['b_out'])
tensorflow.constant_initializer
5,872
import tensorflow as tf output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, logits, probabilities) def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator."""
tensorflow.reduce_mean
5,873
import tensorflow as tf if add_bias: bias = tf.Variable([0.0])
tensorflow.Variable
5,874
import tensorflow as tf padding=self.padding, name='resize_x_to_y') resized = tf.nn.bias_add( resized, bias) resized = self.ff_nl(resized) return resized elif mode == 'replicate_n_transpose': resized = tf.image.resize_images( x, y_size[:-1], kernel, align_corners=False) resized = tf.nn.conv3d_transpose( value=resized, filter=kernel, output_shape=y_size, strides=[1, 1, 1, 1, 1], padding='SAME', name='resize_x_to_y') resized = tf.nn.bias_add( resized, bias) resized = self.ff_nl(resized) return resized else:
tensorflow.nn.conv3d_transpose
5,875
from tensorflow.python.framework import ops Returns: If the default graph is being used to define a function, the returned list of variables are those created inside the function body so far. Otherwise, returns an empty list. """ g = ops.get_default_graph() if isinstance(g, _FuncGraph): return g.extra_vars else: return []
tensorflow.python.framework.ops.get_default_graph
5,876
import tensorflow as tf gamma = tf.get_variable('gamma', [shape[-1]], initializer=tf.random_normal_initializer(1., 0.02)) pop_mean = tf.get_variable('pop_mean', [shape[-1]], initializer=tf.constant_initializer(0.), trainable=False) pop_var = tf.get_variable('pop_var', [shape[-1]], initializer=tf.constant_initializer(1.), trainable=False)
tensorflow.constant_initializer
5,877
import tensorflow as tf self.assertEqual((2, 4), res[0].shape) res = sess.run([mem]) self.assertEqual(2, len(res[0])) self.assertEqual((2, 2), res[0][0].c.shape) self.assertEqual((2, 2), res[0][0].h.shape) self.assertEqual((2, 2), res[0][1].c.shape) self.assertEqual((2, 2), res[0][1].h.shape) def testEmbeddingAttentionDecoder(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): inp = [tf.constant(0.5, shape=[2, 2])] * 2 cell = tf.nn.rnn_cell.GRUCell(2) enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32) attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size]) for e in enc_outputs]) dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)] dec, mem = tf.nn.seq2seq.embedding_attention_decoder( dec_inp, enc_state, attn_states, cell, num_symbols=4, embedding_size=2, output_size=3) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 3), res[0].shape) res = sess.run([mem]) self.assertEqual((2, 2), res[0].shape)
tensorflow.nn.rnn
5,878
from tensorflow.python.ops import check_ops value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. Returns: value_tensor: A tensor representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ check_ops.assert_type(values, dtypes.bool) count = _create_local('count', shape=[]) values = math_ops.to_float(values) if weights is not None: weights = math_ops.to_float(weights) values = math_ops.mul(values, weights) value_tensor = array_ops.identity(count) update_op = state_ops.assign_add(count, math_ops.reduce_sum(values)) if metrics_collections: ops.add_to_collections(metrics_collections, value_tensor)
tensorflow.python.ops.check_ops.assert_type
5,879
import tensorflow as tf c = tf.nn.rnn_cell.DropoutWrapper(c, input_keep_prob=dropout_keep_prob) return c # Create the bi-directional LSTM with tf.variable_scope('wordrnn'): with tf.variable_scope('fw'): cell_fw = GetCell() with tf.variable_scope('bw'):
tensorflow.variable_scope
5,880
import tensorflow as tf tf.flags.DEFINE_integer("batch_size", "50", "batch size for training") tf.flags.DEFINE_string("logs_dir", "/scratch1/ram095/nips20/logs_mnist128/", "path to logs directory") tf.flags.DEFINE_string("data_dir", "/scratch1/ram095/nips20/paris_street", "path to dataset") tf.flags.DEFINE_float("learning_rate", "1e-4", "Learning rate for Adam Optimizer") tf.flags.DEFINE_string("model_dir", "Model_zoo/", "Path to vgg model mat") tf.flags.DEFINE_bool('debug', "False", "Debug mode: True/ False") tf.flags.DEFINE_string('mode', "train", "Mode train/ test/ visualize") MODEL_URL = 'http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat' MAX_ITERATION = int(1e5 + 1) NUM_OF_CLASSESS = 3
tensorflow.flags.DEFINE_string
5,881
import tensorflow as tf with tf.variable_scope("proj_seq2seq"): dec, _ = tf.nn.seq2seq.embedding_rnn_seq2seq( enc_inp, dec_inp, cell, num_encoder_symbols=2, num_decoder_symbols=5, embedding_size=2, output_projection=(w, b)) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 2), res[0].shape)
tensorflow.global_variables_initializer
5,882
import tensorflow as tf def import_ops(self): """Imports ops from collections.""" if self._is_training: self._train_op = tf.get_collection_ref("train_op")[0] self._lr = tf.get_collection_ref("lr")[0] self._new_lr = tf.get_collection_ref("new_lr")[0]
tensorflow.get_collection_ref
5,883
import tensorflow as tf if __name__ == "__main__": tf.autograph.set_verbosity(0)
tensorflow.autograph.set_verbosity
5,884
from tensorflow.python.ops import math_ops value_tensor, update_op = streaming_mean_squared_error( predictions, labels, weights, None, None, name or 'root_mean_squared_error') root_mean_squared_error = math_ops.sqrt(value_tensor) with ops.control_dependencies([update_op]): update_op = math_ops.sqrt(update_op)
tensorflow.python.ops.math_ops.sqrt
5,885
import tensorflow as tf return out @layer def recurrent_layer(tensor, cell=None, hidden_dims=128, sequence_length=None, decoder_fn=None, activation=tf.nn.tanh, initializer=tf.orthogonal_initializer(), initial_state=None, keep_prob=1.0, return_final_state=False, return_next_cell_input=True, **opts): if cell is None: cell = tf.contrib.rnn.BasicRNNCell(hidden_dims, activation=activation) # cell = tf.contrib.rnn.LSTMCell(hidden_dims, activation=activation) if keep_prob < 1.0: keep_prob = _global_keep_prob(keep_prob) cell = tf.contrib.rnn.DropoutWrapper(cell, keep_prob, keep_prob) if opts.get("name"): tf.add_to_collection(opts.get("name"), cell)
tensorflow.contrib.rnn.BasicRNNCell
5,886
from tensorflow.python.ops import math_ops if weight_tensor is None: return math_ops.reduce_mean(loss_vec, name="loss") else: loss_vec = array_ops.reshape(loss_vec, shape=(-1,)) loss_vec = math_ops.mul( loss_vec, array_ops.reshape(weight_tensor, shape=(-1,))) return math_ops.div( math_ops.reduce_sum(loss_vec), math_ops.to_float(math_ops.reduce_sum(weight_tensor)), name="loss") def _get_linear_vars(self): if self._get_linear_feature_columns(): return ops.get_collection(self._linear_weight_collection)
tensorflow.python.ops.math_ops.reduce_sum
5,887
import tensorflow as tf cur_batch_size = dynamic_image_shape[0] # Get static shape of image. # shape = (3,) static_image_shape = params["generator_projection_dims"] print_obj( "minibatch_stddev", "static_image_shape", static_image_shape ) # cur_batch_size must be divisible by or smaller than group_size. divisbility_condition = tf.equal( x=tf.mod(x=cur_batch_size, y=group_size), y=0, name="divisbility_condition" ) less_than_condition = tf.less( x=cur_batch_size, y=group_size, name="less_than_condition" ) any_condition = tf.reduce_any( input_tensor=[divisbility_condition, less_than_condition],
tensorflow.mod
5,888
import tensorflow as tf E_init_args=None, name='embedding', ): if E_init_args is None: E_init_args = {} super(EmbeddingInputlayer, self).__init__(prev_layer=None, name=name) logging.info("EmbeddingInputlayer %s: (%d, %d)" % (self.name, vocabulary_size, embedding_size)) self.inputs = inputs with tf.variable_scope(name): embeddings = tf.get_variable( name='embeddings', shape=(vocabulary_size, embedding_size), initializer=E_init, dtype=LayersConfig.tf_dtype, **E_init_args) embed = tf.nn.embedding_lookup(embeddings, self.inputs) self.outputs = embed self.all_layers = [self.outputs] self.all_params = [embeddings] self.all_drop = {} class AverageEmbeddingInputlayer(Layer):
tensorflow.get_variable
5,889
import tensorflow as tf all_shards = [shard_losses[loss_name] for shard_losses in sharded_losses] if isinstance(all_shards[0], tuple): sharded_num, sharded_den = zip(*all_shards) mean_loss = ( tf.add_n(sharded_num) / tf.maximum(1.0, tf.add_n(sharded_den))) else: mean_loss = tf.reduce_mean(all_shards) losses[loss_name] = mean_loss return losses def summarize_features(features, num_shards=1): with tf.name_scope("input_stats"): for (k, v) in six.iteritems(features): if isinstance(v, tf.Tensor) and v.get_shape().ndims > 1: tf.summary.scalar("%s_batch" % k, tf.shape(v)[0] // num_shards) tf.summary.scalar("%s_length" % k, tf.shape(v)[1]) nonpadding = tf.to_float(tf.not_equal(v, 0)) nonpadding_tokens = tf.reduce_sum(nonpadding) tf.summary.scalar("%s_nonpadding_tokens" % k, nonpadding_tokens) tf.summary.scalar("%s_nonpadding_fraction" % k, tf.reduce_mean(nonpadding)) _already_logged = set()
tensorflow.name_scope
5,890
import tensorflow as tf variable_averages = tf.train.ExponentialMovingAverage( FLAGS.moving_average_decay, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) # batch norm updates with tf.control_dependencies([variables_averages_op, apply_gradient_op, batch_norm_updates_op]): train_op = tf.no_op(name='train_op') saver = tf.train.Saver(tf.global_variables())
tensorflow.control_dependencies
5,891
import tensorflow as tf Returns: samples: an integer `Tensor`. Top samples from the beam search """ batch_size = common_layers.shape_list(features["inputs"])[0] def symbols_to_logits_fn(ids): """Go from ids to logits.""" ids = tf.expand_dims(tf.expand_dims(ids, axis=2), axis=3) ids = tf.pad(ids[:, 1:], [[0, 0], [0, 1], [0, 0], [0, 0]]) if "partial_targets" in features: pt = features["partial_targets"] pt_length = common_layers.shape_list(pt)[1] pt = tf.tile(pt, [1, beam_size]) pt = tf.reshape(pt, [batch_size * beam_size, pt_length, 1, 1]) ids = tf.concat([pt, ids], axis=1) features["targets"] = ids self._coverage = None logits, _ = self(features) # pylint: disable=not-callable # now self._coverage is a coverage tensor for the first datashard. # it has shape [batch_size] and contains floats between 0 and # source_length. if self._problem_hparams: modality = self._problem_hparams.target_modality if modality.top_is_pointwise: return tf.squeeze(logits, axis=[1, 2, 3]) # -1 due to the pad above. current_output_position = common_layers.shape_list(ids)[1] - 1 logits = logits[:, current_output_position, :, :]
tensorflow.concat
5,892
import tensorflow.contrib.layers as layers return out def simple_model_w_feat_eng(img_in, num_actions, scope, reuse=False): with tf.variable_scope(scope, reuse=reuse): out = img_in out = layers.flatten(out) # stddev = 1/n, where n = number of inputs gauss_initializer = initializers.xavier_initializer(uniform=False) with tf.variable_scope("action_value"): out = layers.fully_connected( out,
tensorflow.contrib.layers.flatten
5,893
import tensorflow as tf self._reward = tf.Variable( lambda: tf.zeros(batch_dims, tf.float32), name='reward', trainable=False) self._done = tf.Variable( lambda: tf.cast(tf.ones(batch_dims), tf.bool), name='done', trainable=False) def __getattr__(self, name):
tensorflow.ones
5,894
from tensorflow.python.platform import test embeddings = ops.categorical_variable( cat_var_idx, n_classes=5, embedding_size=10, name="my_cat_var") sess.run(variables.global_variables_initializer()) emb1 = sess.run(embeddings, feed_dict={cat_var_idx.name: [[0, 1], [2, 3]]}) emb2 = sess.run(embeddings, feed_dict={cat_var_idx.name: [[0, 2], [1, 3]]}) self.assertEqual(emb1.shape, emb2.shape) self.assertAllEqual(np.transpose(emb2, axes=[1, 0, 2]), emb1) if __name__ == "__main__": test.main()
tensorflow.python.platform.test.main
5,895
from tensorflow.python.training import moving_averages if is_train: # For training, do batch norm with batch mean & variance # Update moving averages if training (X, mean, variance) = tf.nn.fused_batch_norm(X, scale, offset, epsilon=epsilon, is_training=True) update_mean = moving_averages.assign_moving_average(moving_mean, mean, decay) update_variance = moving_averages.assign_moving_average(moving_variance, variance, decay) with tf.control_dependencies([update_mean, update_variance]): X = tf.identity(X) else: # For prediction, do batch norm with computed moving mean & variance from training
tensorflow.python.training.moving_averages.assign_moving_average
5,896
import tensorflow as tf input_shape = get_shape_list(input_ids, expected_rank=2) batch_size = input_shape[0] seq_length = input_shape[1] if input_mask is None: input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32) if token_type_ids is None: token_type_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32)
tensorflow.ones
5,897
import tensorflow as tf pi = act_limit * mlp(x, list(hidden_sizes) + [act_dim], activation, output_activation) with tf.variable_scope('q1'): q1 = tf.squeeze(mlp(tf.concat([x, a], axis=-1), list(hidden_sizes) + [1], activation, None), axis=1) with tf.variable_scope('q2'): q2 = tf.squeeze(mlp(tf.concat([x, a], axis=-1), list(hidden_sizes) + [1], activation, None), axis=1) with tf.variable_scope('q1', reuse=True): q1_pi = tf.squeeze(mlp(tf.concat([x, pi], axis=-1), list(hidden_sizes) + [1], activation, None), axis=1) elif nn_type == 'mlp_dropout':
tensorflow.concat
5,898
import tensorflow as tf gradvars = [] with tf.device('/cpu:0'):
tensorflow.device
5,899