paper_url
stringlengths
36
81
paper_title
stringlengths
1
242
paper_arxiv_id
stringlengths
9
16
paper_url_abs
stringlengths
18
314
paper_url_pdf
stringlengths
21
935
repo_url
stringlengths
26
200
is_official
bool
2 classes
mentioned_in_paper
bool
2 classes
mentioned_in_github
bool
2 classes
framework
stringclasses
9 values
https://paperswithcode.com/paper/double-path-networks-for-sequence-to-sequence
Double Path Networks for Sequence to Sequence Learning
1806.04856
http://arxiv.org/abs/1806.04856v2
http://arxiv.org/pdf/1806.04856v2.pdf
https://github.com/StillKeepTry/Transformer-PyTorch
true
true
false
pytorch
https://paperswithcode.com/paper/it-takes-four-to-tango-multiagent-self-play
It Takes Four to Tango: Multiagent Self Play for Automatic Curriculum Generation
null
https://openreview.net/forum?id=q4tZR1Y-UIs
https://openreview.net/pdf?id=q4tZR1Y-UIs
https://github.com/yuqingd/cusp
true
false
false
pytorch
https://paperswithcode.com/paper/on-the-effectiveness-of-discretizing
On the Effectiveness of Discretizing Quantitative Attributes in Linear Classifiers
1701.07114
http://arxiv.org/abs/1701.07114v1
http://arxiv.org/pdf/1701.07114v1.pdf
https://github.com/vedic-partap/Discretization
false
false
true
none
https://paperswithcode.com/paper/deep-reinforcement-learning-with-double-q
Deep Reinforcement Learning with Double Q-learning
1509.06461
http://arxiv.org/abs/1509.06461v3
http://arxiv.org/pdf/1509.06461v3.pdf
https://github.com/wmol4/Pytorch_DDQN_Unity_Navigation
false
false
true
pytorch
https://paperswithcode.com/paper/xnmt-the-extensible-neural-machine
XNMT: The eXtensible Neural Machine Translation Toolkit
1803.00188
http://arxiv.org/abs/1803.00188v1
http://arxiv.org/pdf/1803.00188v1.pdf
https://github.com/neulab/xnmt
true
true
false
none
https://paperswithcode.com/paper/generalised-dice-overlap-as-a-deep-learning
Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations
1707.03237
http://arxiv.org/abs/1707.03237v3
http://arxiv.org/pdf/1707.03237v3.pdf
https://github.com/IAmSuyogJadhav/Brainy
false
false
true
none
https://paperswithcode.com/paper/uncertainty-sampling-is-preconditioned
Uncertainty Sampling is Preconditioned Stochastic Gradient Descent on Zero-One Loss
1812.01815
http://arxiv.org/abs/1812.01815v1
http://arxiv.org/pdf/1812.01815v1.pdf
https://worksheets.codalab.org/worksheets/0xf8dfe5bcc1dc408fb54b3cc15a5abce8
true
false
false
none
https://paperswithcode.com/paper/understanding-black-box-predictions-via
Understanding Black-box Predictions via Influence Functions
1703.04730
https://arxiv.org/abs/1703.04730v3
https://arxiv.org/pdf/1703.04730v3.pdf
https://worksheets.codalab.org/worksheets/0x2b314dc3536b482dbba02783a24719fd
true
false
false
none
https://paperswithcode.com/paper/learning-sparse-2d-temporal-adjacent-networks
Learning Sparse 2D Temporal Adjacent Networks for Temporal Action Localization
1912.03612
https://arxiv.org/abs/1912.03612v1
https://arxiv.org/pdf/1912.03612v1.pdf
https://github.com/researchmm/2D-TAN
false
false
true
pytorch
https://paperswithcode.com/paper/hyper-path-based-representation-learning-for
Hyper-Path-Based Representation Learning for Hyper-Networks
1908.09152
https://arxiv.org/abs/1908.09152v2
https://arxiv.org/pdf/1908.09152v2.pdf
https://github.com/HKUST-KnowComp/HPHG
true
true
true
none
https://paperswithcode.com/paper/spike-train-level-backpropagation-for
Spike-Train Level Backpropagation for Training Deep Recurrent Spiking Neural Networks
1908.06378
https://arxiv.org/abs/1908.06378v3
https://arxiv.org/pdf/1908.06378v3.pdf
https://github.com/stonezwr/ST-RSBP
true
true
true
none
https://paperswithcode.com/paper/expand-and-compress-exploring-tuning
Expand and Compress: Exploring Tuning Principles for Continual Spatio-Temporal Graph Forecasting
2410.12593
https://arxiv.org/abs/2410.12593v1
https://arxiv.org/pdf/2410.12593v1.pdf
https://github.com/Onedean/EAC
false
false
false
pytorch
https://paperswithcode.com/paper/lending-orientation-to-neural-networks-for
Lending Orientation to Neural Networks for Cross-view Geo-localization
1903.12351
http://arxiv.org/abs/1903.12351v1
http://arxiv.org/pdf/1903.12351v1.pdf
https://github.com/Liumouliu/OriCNN
true
true
false
tf
https://paperswithcode.com/paper/mida-multiple-imputation-using-denoising
MIDA: Multiple Imputation using Denoising Autoencoders
1705.02737
http://arxiv.org/abs/1705.02737v3
http://arxiv.org/pdf/1705.02737v3.pdf
https://github.com/HarryK24/MIDA-pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/encoder-decoder-with-atrous-separable
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
1802.02611
http://arxiv.org/abs/1802.02611v3
http://arxiv.org/pdf/1802.02611v3.pdf
https://github.com/nolanliou/PeopleSegmentationDemo
false
false
true
tf
https://paperswithcode.com/paper/mobilenetv2-inverted-residuals-and-linear
MobileNetV2: Inverted Residuals and Linear Bottlenecks
1801.04381
http://arxiv.org/abs/1801.04381v4
http://arxiv.org/pdf/1801.04381v4.pdf
https://github.com/nolanliou/PeopleSegmentationDemo
false
false
true
tf
https://paperswithcode.com/paper/structural-estimation-of-behavioral
Structural Estimation of Behavioral Heterogeneity
1802.03735
http://arxiv.org/abs/1802.03735v2
http://arxiv.org/pdf/1802.03735v2.pdf
https://github.com/zhentaoshi/behavioral_heterogeneity
false
false
true
none
https://paperswithcode.com/paper/a-reduction-of-imitation-learning-and
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
1011.0686
http://arxiv.org/abs/1011.0686v3
http://arxiv.org/pdf/1011.0686v3.pdf
https://github.com/Refefer/Dagger
false
false
true
none
https://paperswithcode.com/paper/mastering-chess-and-shogi-by-self-play-with-a
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
1712.01815
http://arxiv.org/abs/1712.01815v1
http://arxiv.org/pdf/1712.01815v1.pdf
https://github.com/intenseG/BSK
false
false
true
tf
https://paperswithcode.com/paper/densely-connected-convolutional-networks
Densely Connected Convolutional Networks
1608.06993
http://arxiv.org/abs/1608.06993v5
http://arxiv.org/pdf/1608.06993v5.pdf
https://github.com/wangbinglin1995/tianchi
false
false
true
tf
https://paperswithcode.com/paper/taming-pre-trained-language-models-with-n
Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation
null
https://aclanthology.org/2021.acl-long.259
https://aclanthology.org/2021.acl-long.259.pdf
https://github.com/shizhediao/t-dna
true
true
false
pytorch
https://paperswithcode.com/paper/region-of-attraction-for-power-systems-using
Region of Attraction for Power Systems using Gaussian Process and Converse Lyapunov Function -- Part I: Theoretical Framework and Off-line Study
1906.03590
https://arxiv.org/abs/1906.03590v1
https://arxiv.org/pdf/1906.03590v1.pdf
https://github.com/Chaocas/ROA-for-Power-Systems
true
true
false
none
https://paperswithcode.com/paper/learning-what-and-where-to-transfer
Learning What and Where to Transfer
1905.05901
https://arxiv.org/abs/1905.05901v1
https://arxiv.org/pdf/1905.05901v1.pdf
https://github.com/jindongwang/transferlearning
false
false
true
pytorch
https://paperswithcode.com/paper/topologically-driven-methods-for-construction
Topologically Driven Methods for Construction Of Multi-Edge Type (Multigraph with nodes puncturing) Quasi-Cyclic Low-density Parity-check Codes for Wireless Channel, WDM Long-Haul and Archival Holographic Memory
2011.14753
https://arxiv.org/abs/2011.14753v3
https://arxiv.org/pdf/2011.14753v3.pdf
https://github.com/Lcrypto/Protograph-Sieving-Method-for-Construction-MET-LDPC-codes
true
false
false
none
https://paperswithcode.com/paper/face-super-resolution-through-wasserstein
Face Super-Resolution Through Wasserstein GANs
1705.02438
http://arxiv.org/abs/1705.02438v1
http://arxiv.org/pdf/1705.02438v1.pdf
https://github.com/MandyZChen/srez
true
true
true
tf
https://paperswithcode.com/paper/realistic-evaluation-of-deep-semi-supervised
Realistic Evaluation of Deep Semi-Supervised Learning Algorithms
1804.09170
https://arxiv.org/abs/1804.09170v4
https://arxiv.org/pdf/1804.09170v4.pdf
https://github.com/siit-vtt/semi-supervised-learning-pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/generalized-low-rank-models
Generalized Low Rank Models
1410.0342
http://arxiv.org/abs/1410.0342v4
http://arxiv.org/pdf/1410.0342v4.pdf
https://github.com/madeleineudell/LowRankModels.jl
true
true
false
none
https://paperswithcode.com/paper/predicting-pairwise-relations-with-neural
Predicting Pairwise Relations with Neural Similarity Encoders
1702.01824
http://arxiv.org/abs/1702.01824v2
http://arxiv.org/pdf/1702.01824v2.pdf
https://github.com/cod3licious/simec
true
true
true
pytorch
https://paperswithcode.com/paper/s3fd-single-shot-scale-invariant-face
S$^3$FD: Single Shot Scale-invariant Face Detector
1708.05237
http://arxiv.org/abs/1708.05237v3
http://arxiv.org/pdf/1708.05237v3.pdf
https://github.com/LeeRel1991/SFD
false
false
true
none
https://paperswithcode.com/paper/the-tatoeba-translation-challenge-realistic
The Tatoeba Translation Challenge -- Realistic Data Sets for Low Resource and Multilingual MT
2010.06354
https://arxiv.org/abs/2010.06354v1
https://arxiv.org/pdf/2010.06354v1.pdf
https://github.com/Helsinki-NLP/Tatoeba-Challenge
true
true
true
none
https://paperswithcode.com/paper/learning-the-joint-representation-of
Learning the Joint Representation of Heterogeneous Temporal Events for Clinical Endpoint Prediction
1803.04837
http://arxiv.org/abs/1803.04837v4
http://arxiv.org/pdf/1803.04837v4.pdf
https://github.com/pkusjh/HELSTM
true
true
true
none
https://paperswithcode.com/paper/city-wide-analysis-of-electronic-health
City-wide Analysis of Electronic Health Records Reveals Gender and Age Biases in the Administration of Known Drug-Drug Interactions
1803.03571
https://arxiv.org/abs/1803.03571v4
https://arxiv.org/pdf/1803.03571v4.pdf
https://github.com/rionbr/DDIBlumenau
true
true
true
none
https://paperswithcode.com/paper/number-parsing-at-a-gigabyte-per-second
Number Parsing at a Gigabyte per Second
2101.11408
https://arxiv.org/abs/2101.11408v9
https://arxiv.org/pdf/2101.11408v9.pdf
https://github.com/eddelbuettel/rcppfastfloat
false
false
true
none
https://paperswithcode.com/paper/real-time-monocular-depth-estimation-using
Real-Time Monocular Depth Estimation Using Synthetic Data With Domain Adaptation via Image Style Transfer
null
http://openaccess.thecvf.com/content_cvpr_2018/html/Atapour-Abarghouei_Real-Time_Monocular_Depth_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/papers/Atapour-Abarghouei_Real-Time_Monocular_Depth_CVPR_2018_paper.pdf
https://github.com/atapour/monocularDepth-Inference
true
false
false
pytorch
https://paperswithcode.com/paper/science-with-the-cherenkov-telescope-array
Science with the Cherenkov Telescope Array
1709.07997
http://arxiv.org/abs/1709.07997v2
http://arxiv.org/pdf/1709.07997v2.pdf
https://github.com/UofA-HEAG/CTA-Oz-School
false
false
true
none
https://paperswithcode.com/paper/self-attention-generative-adversarial
Self-Attention Generative Adversarial Networks
1805.08318
https://arxiv.org/abs/1805.08318v2
https://arxiv.org/pdf/1805.08318v2.pdf
https://github.com/sdoria/SimpleSelfAttention
false
false
true
pytorch
https://paperswithcode.com/paper/predicting-fluid-intelligence-of-children
Predicting Fluid Intelligence of Children using T1-weighted MR Images and a StackNet
1904.07387
https://arxiv.org/abs/1904.07387v3
https://arxiv.org/pdf/1904.07387v3.pdf
https://github.com/pykao/ABCD-MICCAI2019
true
true
true
none
https://paperswithcode.com/paper/a-generic-inverted-index-framework-for
A Generic Inverted Index Framework for Similarity Search on the GPU - Technical Report
1603.08390
http://arxiv.org/abs/1603.08390v3
http://arxiv.org/pdf/1603.08390v3.pdf
https://github.com/SeSaMe-NUS/genie
true
true
true
none
https://paperswithcode.com/paper/tunability-importance-of-hyperparameters-of
Tunability: Importance of Hyperparameters of Machine Learning Algorithms
1802.09596
http://arxiv.org/abs/1802.09596v3
http://arxiv.org/pdf/1802.09596v3.pdf
https://github.com/PhilippPro/tunability
true
true
false
none
https://paperswithcode.com/paper/using-random-effects-to-account-for-high
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks
null
http://proceedings.neurips.cc/paper/2021/hash/d35b05a832e2bb91f110d54e34e2da79-Abstract.html
http://proceedings.neurips.cc/paper/2021/file/d35b05a832e2bb91f110d54e34e2da79-Paper.pdf
https://github.com/gsimchoni/lmmnn
true
true
false
none
https://paperswithcode.com/paper/dsa-more-efficient-budgeted-pruning-via
DSA: More Efficient Budgeted Pruning via Differentiable Sparsity Allocation
2004.02164
https://arxiv.org/abs/2004.02164v5
https://arxiv.org/pdf/2004.02164v5.pdf
https://github.com/walkerning/differentiable-sparsity-allocation
false
false
true
pytorch
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
1810.04805
https://arxiv.org/abs/1810.04805v2
https://arxiv.org/pdf/1810.04805v2.pdf
https://github.com/lovedavidsilva/bert_old_version
false
false
true
tf
https://paperswithcode.com/paper/towards-hardware-aware-tractable-learning-of
Towards Hardware-Aware Tractable Learning of Probabilistic Models
null
http://papers.nips.cc/paper/9525-towards-hardware-aware-tractable-learning-of-probabilistic-models
http://papers.nips.cc/paper/9525-towards-hardware-aware-tractable-learning-of-probabilistic-models.pdf
https://github.com/laurago894/HwAwareProb
true
true
false
none
https://paperswithcode.com/paper/detecting-hate-speech-in-multi-modal-memes
Detecting Hate Speech in Multi-modal Memes
2012.14891
https://arxiv.org/abs/2012.14891v1
https://arxiv.org/pdf/2012.14891v1.pdf
https://github.com/Abhishek0697/Detection-of-Hate-Speech-in-Multimodal-Memes
true
false
false
pytorch
https://paperswithcode.com/paper/image-to-image-translation-with-conditional
Image-to-Image Translation with Conditional Adversarial Networks
1611.07004
http://arxiv.org/abs/1611.07004v3
http://arxiv.org/pdf/1611.07004v3.pdf
https://github.com/Vious/LBAM_Pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/skipnet-learning-dynamic-routing-in
SkipNet: Learning Dynamic Routing in Convolutional Networks
1711.09485
http://arxiv.org/abs/1711.09485v2
http://arxiv.org/pdf/1711.09485v2.pdf
https://github.com/geekJZY/arcticnet
false
false
true
pytorch
https://paperswithcode.com/paper/a-probabilistic-u-net-for-segmentation-of
A Probabilistic U-Net for Segmentation of Ambiguous Images
1806.05034
http://arxiv.org/abs/1806.05034v4
http://arxiv.org/pdf/1806.05034v4.pdf
https://github.com/stefanknegt/probabilistic_unet_pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/copy-and-paste-a-simple-but-effective
Copy and Paste: A Simple But Effective Initialization Method for Black-Box Adversarial Attacks
1906.06086
https://arxiv.org/abs/1906.06086v2
https://arxiv.org/pdf/1906.06086v2.pdf
https://github.com/ttbrunner/blackbox_starting_points
true
true
true
tf
https://paperswithcode.com/paper/integrating-and-querying-similar-tables-from
Integrating and querying similar tables from PDF documents using deep learning
1901.04672
https://arxiv.org/abs/1901.04672v1
https://arxiv.org/pdf/1901.04672v1.pdf
https://github.com/dhavalpotdar/Bounding-box-Classifier
false
false
true
none
https://paperswithcode.com/paper/bayesian-sparsification-methods-for-deep
Bayesian Sparsification Methods for Deep Complex-valued Networks
2003.11413
https://arxiv.org/abs/2003.11413v2
https://arxiv.org/pdf/2003.11413v2.pdf
https://github.com/ivannz/complex_paper
true
true
true
pytorch
https://paperswithcode.com/paper/computing-exact-guarantees-for-differential
Computing Tight Differential Privacy Guarantees Using FFT
1906.03049
https://arxiv.org/abs/1906.03049v2
https://arxiv.org/pdf/1906.03049v2.pdf
https://github.com/DPBayes/PLD-Accountant
true
true
true
none
https://paperswithcode.com/paper/the-collective-knowledge-project-making-ml
The Collective Knowledge project: making ML models more portable and reproducible with open APIs, reusable best practices and MLOps
2006.07161
https://arxiv.org/abs/2006.07161v2
https://arxiv.org/pdf/2006.07161v2.pdf
https://github.com/ctuning/cbench
true
true
true
tf
https://paperswithcode.com/paper/stochastic-kinetic-treatment-of-protein
Stochastic kinetic treatment of protein aggregation and the effects of macromolecular crowding
2102.01569
https://arxiv.org/abs/2102.01569v1
https://arxiv.org/pdf/2102.01569v1.pdf
https://github.com/jljorgenson18/popsim
true
true
false
none
https://paperswithcode.com/paper/towards-improving-solution-dominance-with
Towards Improving Solution Dominance with Incomparability Conditions: A case-study using Generator Itemset Mining
1910.00505
https://arxiv.org/abs/1910.00505v1
https://arxiv.org/pdf/1910.00505v1.pdf
https://github.com/stacs-cp/ModRef2019-Dominance
true
true
false
none
https://paperswithcode.com/paper/restoration-of-non-rigidly-distorted
Restoration of Non-rigidly Distorted Underwater Images using a Combination of Compressive Sensing and Local Polynomial Image Representations
1908.01940
https://arxiv.org/abs/1908.01940v1
https://arxiv.org/pdf/1908.01940v1.pdf
https://github.com/jeringeo/CompressiveFlows
true
true
true
none
https://paperswithcode.com/paper/training-deep-autoencoders-for-collaborative
Training Deep AutoEncoders for Collaborative Filtering
1708.01715
http://arxiv.org/abs/1708.01715v3
http://arxiv.org/pdf/1708.01715v3.pdf
https://github.com/NVIDIA/DeepRecommender
true
true
true
pytorch
https://paperswithcode.com/paper/boosting-scene-character-recognition-by
Boosting Scene Character Recognition by Learning Canonical Forms of Glyphs
1907.05577
https://arxiv.org/abs/1907.05577v2
https://arxiv.org/pdf/1907.05577v2.pdf
https://github.com/Actasidiot/CGRN
false
false
true
tf
https://paperswithcode.com/paper/darts-differentiable-architecture-search
DARTS: Differentiable Architecture Search
1806.09055
http://arxiv.org/abs/1806.09055v2
http://arxiv.org/pdf/1806.09055v2.pdf
https://github.com/abcp4/MyDarts
false
false
true
pytorch
https://paperswithcode.com/paper/accurate-large-minibatch-sgd-training
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
1706.02677
http://arxiv.org/abs/1706.02677v2
http://arxiv.org/pdf/1706.02677v2.pdf
https://github.com/abcp4/MyDarts
false
false
true
pytorch
https://paperswithcode.com/paper/a-factored-generalized-additive-model-for
A Factored Generalized Additive Model for Clinical Decision Support in the Operating Room
1907.12596
https://arxiv.org/abs/1907.12596v1
https://arxiv.org/pdf/1907.12596v1.pdf
https://github.com/nostringattached/FGAM
true
true
false
pytorch
https://paperswithcode.com/paper/joint-discriminative-and-generative-learning
Joint Discriminative and Generative Learning for Person Re-identification
1904.07223
https://arxiv.org/abs/1904.07223v3
https://arxiv.org/pdf/1904.07223v3.pdf
https://github.com/NVlabs/DG-Net
false
false
true
pytorch
https://paperswithcode.com/paper/conceptnet-55-an-open-multilingual-graph-of
ConceptNet 5.5: An Open Multilingual Graph of General Knowledge
1612.03975
http://arxiv.org/abs/1612.03975v2
http://arxiv.org/pdf/1612.03975v2.pdf
https://github.com/shayanray/ApplyingCommonSense
false
false
true
none
https://paperswithcode.com/paper/training-deep-autoencoders-for-collaborative
Training Deep AutoEncoders for Collaborative Filtering
1708.01715
http://arxiv.org/abs/1708.01715v3
http://arxiv.org/pdf/1708.01715v3.pdf
https://github.com/yrbahn/Deep-AutoEncoders-for-Collaborative-Filtering
false
false
true
tf
https://paperswithcode.com/paper/decoupled-deep-neural-network-for-semi
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation
1506.04924
http://arxiv.org/abs/1506.04924v2
http://arxiv.org/pdf/1506.04924v2.pdf
https://github.com/GoNgXiAoPeNg1/caffeBVLCplus
false
false
true
none
https://paperswithcode.com/paper/exploration-by-random-network-distillation
Exploration by Random Network Distillation
1810.12894
http://arxiv.org/abs/1810.12894v1
http://arxiv.org/pdf/1810.12894v1.pdf
https://github.com/kngwyu/intrinsic-rewards
false
false
true
pytorch
https://paperswithcode.com/paper/rethinking-graph-autoencoder-models-for
Rethinking Graph Auto-Encoder Models for Attributed Graph Clustering
2107.08562
https://arxiv.org/abs/2107.08562v3
https://arxiv.org/pdf/2107.08562v3.pdf
https://github.com/nairouz/R-GAE
true
true
false
pytorch
https://paperswithcode.com/paper/a-finnish-news-corpus-for-named-entity
A Finnish News Corpus for Named Entity Recognition
1908.04212
https://arxiv.org/abs/1908.04212v1
https://arxiv.org/pdf/1908.04212v1.pdf
https://github.com/mpsilfve/finer-data
false
false
true
none
https://paperswithcode.com/paper/unsupervised-efficient-and-semantic-expertise
Unsupervised, Efficient and Semantic Expertise Retrieval
1608.06651
http://arxiv.org/abs/1608.06651v2
http://arxiv.org/pdf/1608.06651v2.pdf
https://github.com/cvangysel/SERT
true
true
true
none
https://paperswithcode.com/paper/efficient-neural-architecture-search-via-1
Efficient Neural Architecture Search via Parameter Sharing
1802.03268
http://arxiv.org/abs/1802.03268v2
http://arxiv.org/pdf/1802.03268v2.pdf
https://github.com/MengTianjian/enas-pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/improving-unsupervised-defect-segmentation-by
Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders
1807.02011
http://arxiv.org/abs/1807.02011v3
http://arxiv.org/pdf/1807.02011v3.pdf
https://github.com/daxiaHuang/Unsupervised_Defect_Segmentation
false
false
true
tf
https://paperswithcode.com/paper/attention-is-all-you-need
Attention Is All You Need
1706.03762
https://arxiv.org/abs/1706.03762v7
https://arxiv.org/pdf/1706.03762v7.pdf
https://github.com/tbmoon/LANL_Earthquake_Prediction
false
false
true
pytorch
https://paperswithcode.com/paper/the-impact-of-modelling-choices-on-modelling
The impact of modelling choices on modelling outcomes: a spatio-temporal study of the association between COVID-19 spread and environmental conditions in Catalonia (Spain)
2009.12625
https://arxiv.org/abs/2009.12625v1
https://arxiv.org/pdf/2009.12625v1.pdf
https://github.com/albrizre/COVID_Catalonia
false
false
true
none
https://paperswithcode.com/paper/a-quantum-approximate-optimization-algorithm-1
A Quantum Approximate Optimization Algorithm
1411.4028
http://arxiv.org/abs/1411.4028v1
http://arxiv.org/pdf/1411.4028v1.pdf
https://github.com/Lucaman99/Cirq-Quantum-Computing
false
false
true
tf
https://paperswithcode.com/paper/u-gat-it-unsupervised-generative-attentional
U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation
1907.10830
https://arxiv.org/abs/1907.10830v4
https://arxiv.org/pdf/1907.10830v4.pdf
https://github.com/wkcn/UGATIT-mxnet
false
false
true
mxnet
https://paperswithcode.com/paper/label-noise-reduction-in-entity-typing-by
Label Noise Reduction in Entity Typing by Heterogeneous Partial-Label Embedding
1602.05307
http://arxiv.org/abs/1602.05307v1
http://arxiv.org/pdf/1602.05307v1.pdf
https://github.com/shanzhenren/AFET
false
false
true
none
https://paperswithcode.com/paper/quantifying-the-benefits-of-carbon-aware
On the Limitations of Carbon-Aware Temporal and Spatial Workload Shifting in the Cloud
2306.06502
https://arxiv.org/abs/2306.06502v2
https://arxiv.org/pdf/2306.06502v2.pdf
https://github.com/umassos/decarbonization-potential
true
true
false
none
https://paperswithcode.com/paper/190503381
AutoAssist: A Framework to Accelerate Training of Deep Neural Networks
1905.03381
https://arxiv.org/abs/1905.03381v1
https://arxiv.org/pdf/1905.03381v1.pdf
https://github.com/zhangjiong724/autoassist-exp
false
false
true
pytorch
https://paperswithcode.com/paper/hide-and-seek-privacy-challenge
Hide-and-Seek Privacy Challenge
2007.12087
https://arxiv.org/abs/2007.12087v2
https://arxiv.org/pdf/2007.12087v2.pdf
https://github.com/vanderschaarlab/hide-and-seek-submissions
false
false
true
none
https://paperswithcode.com/paper/real-time-and-interactive-tools-for-vocal
Real-time and interactive tools for vocal training based on an analytic signal with a cosine series envelope
1909.03650
https://arxiv.org/abs/1909.03650v1
https://arxiv.org/pdf/1909.03650v1.pdf
https://github.com/HidekiKawahara/voiceRTFB
false
false
true
none
https://paperswithcode.com/paper/mixnet-mixed-depthwise-convolutional-kernels
MixConv: Mixed Depthwise Convolutional Kernels
1907.09595
https://arxiv.org/abs/1907.09595v3
https://arxiv.org/pdf/1907.09595v3.pdf
https://github.com/zsef123/MixNet-PyTorch
false
false
true
pytorch
https://paperswithcode.com/paper/a-ros-multi-ontology-references-services-owl
A ROS multi-ontology references services: OWL reasoners and application prototyping issues
1706.10151
https://arxiv.org/abs/1706.10151v2
https://arxiv.org/pdf/1706.10151v2.pdf
https://github.com/EmaroLab/injected_armor_pkgs
true
true
true
none
https://paperswithcode.com/paper/faster-r-cnn-towards-real-time-object
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
1506.01497
http://arxiv.org/abs/1506.01497v3
http://arxiv.org/pdf/1506.01497v3.pdf
https://github.com/lincaiming/py-faster-rcnn-update
false
false
true
none
https://paperswithcode.com/paper/noisy-as-clean-learning-unsupervised
Noisy-As-Clean: Learning Self-supervised Denoising from the Corrupted Image
1906.06878
https://arxiv.org/abs/1906.06878v4
https://arxiv.org/pdf/1906.06878v4.pdf
https://github.com/csjunxu/Noisy-As-Clean
true
true
false
pytorch
https://paperswithcode.com/paper/four-things-everyone-should-know-to-improve
Four Things Everyone Should Know to Improve Batch Normalization
1906.03548
https://arxiv.org/abs/1906.03548v2
https://arxiv.org/pdf/1906.03548v2.pdf
https://github.com/nixx14/Ghost-BatchNormalisation-
false
false
true
none
https://paperswithcode.com/paper/gated-graph-sequence-neural-networks
Gated Graph Sequence Neural Networks
1511.05493
http://arxiv.org/abs/1511.05493v4
http://arxiv.org/pdf/1511.05493v4.pdf
https://github.com/entslscheia/GGNN_Reasoning
false
false
true
pytorch
https://paperswithcode.com/paper/edge-labeling-based-directed-gated-graph
Edge-Labeling based Directed Gated Graph Network for Few-shot Learning
2101.11299
https://arxiv.org/abs/2101.11299v1
https://arxiv.org/pdf/2101.11299v1.pdf
https://github.com/zpx16900/DGGN
true
true
false
pytorch
https://paperswithcode.com/paper/190409331
Looking Beyond Label Noise: Shifted Label Distribution Matters in Distantly Supervised Relation Extraction
1904.09331
https://arxiv.org/abs/1904.09331v2
https://arxiv.org/pdf/1904.09331v2.pdf
https://github.com/INK-USC/shifted-label-distribution
true
true
false
pytorch
https://paperswithcode.com/paper/semi-discrete-optimization-through-semi
Semi-discrete optimization through semi-discrete optimal transport: a framework for neural architecture search
2006.15221
https://arxiv.org/abs/2006.15221v2
https://arxiv.org/pdf/2006.15221v2.pdf
https://github.com/bibliotecadebabel/EvAI
false
false
true
pytorch
https://paperswithcode.com/paper/weakly-supervised-cell-instance-segmentation
Weakly Supervised Cell Instance Segmentation by Propagating from Detection Response
1911.13077
https://arxiv.org/abs/1911.13077v1
https://arxiv.org/pdf/1911.13077v1.pdf
https://github.com/naivete5656/WSISPDR
true
true
true
pytorch
https://paperswithcode.com/paper/a-common-semantic-space-for-monolingual-and
A Common Semantic Space for Monolingual and Cross-Lingual Meta-Embeddings
2001.06381
https://arxiv.org/abs/2001.06381v2
https://arxiv.org/pdf/2001.06381v2.pdf
https://github.com/ikergarcia1996/MVM-Embeddings
true
true
false
tf
https://paperswithcode.com/paper/privacy-preserving-deep-visual-recognition-an
Privacy-Preserving Deep Action Recognition: An Adversarial Learning Framework and A New Dataset
1906.05675
https://arxiv.org/abs/1906.05675v6
https://arxiv.org/pdf/1906.05675v6.pdf
https://github.com/TAMU-VITA/Privacy-AdversarialLearning
false
false
true
tf
https://paperswithcode.com/paper/learning-to-generate-time-lapse-videos-using
Learning to Generate Time-Lapse Videos Using Multi-Stage Dynamic Generative Adversarial Networks
1709.07592
http://arxiv.org/abs/1709.07592v3
http://arxiv.org/pdf/1709.07592v3.pdf
https://github.com/CompVis/image2video-synthesis-using-cINNs
false
false
true
pytorch
https://paperswithcode.com/paper/simple-online-and-realtime-tracking-with-a
Simple Online and Realtime Tracking with a Deep Association Metric
1703.07402
http://arxiv.org/abs/1703.07402v1
http://arxiv.org/pdf/1703.07402v1.pdf
https://github.com/MacherLabs/deep_sort
false
false
true
tf
https://paperswithcode.com/paper/attention-is-all-you-need
Attention Is All You Need
1706.03762
https://arxiv.org/abs/1706.03762v7
https://arxiv.org/pdf/1706.03762v7.pdf
https://github.com/enhuiz/transformer-pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/aspect-level-sentiment-classification-with-1
Aspect Level Sentiment Classification with Deep Memory Network
1605.08900
http://arxiv.org/abs/1605.08900v2
http://arxiv.org/pdf/1605.08900v2.pdf
https://github.com/ridakadri14/AspectBasedSentimentAnalysis
false
false
true
tf
https://paperswithcode.com/paper/g-tad-sub-graph-localization-for-temporal
G-TAD: Sub-Graph Localization for Temporal Action Detection
1911.11462
https://arxiv.org/abs/1911.11462v2
https://arxiv.org/pdf/1911.11462v2.pdf
https://github.com/812618101/TAL-Demo
false
false
true
none
https://paperswithcode.com/paper/deep-concept-wise-temporal-convolutional
Deep Concept-wise Temporal Convolutional Networks for Action Localization
1908.09442
https://arxiv.org/abs/1908.09442v1
https://arxiv.org/pdf/1908.09442v1.pdf
https://github.com/812618101/TAL-Demo
false
false
true
none
https://paperswithcode.com/paper/towards-cooperative-data-rate-prediction-for
Towards Cooperative Data Rate Prediction for Future Mobile and Vehicular 6G Networks
2001.09452
https://arxiv.org/abs/2001.09452v1
https://arxiv.org/pdf/2001.09452v1.pdf
https://github.com/falkenber9/falcon
true
true
true
none
https://paperswithcode.com/paper/normalized-wasserstein-distance-for-mixture
Normalized Wasserstein Distance for Mixture Distributions with Applications in Adversarial Learning and Domain Adaptation
1902.00415
https://arxiv.org/abs/1902.00415v2
https://arxiv.org/pdf/1902.00415v2.pdf
https://github.com/yogeshbalaji/Normalized-Wasserstein
true
true
true
tf
https://paperswithcode.com/paper/deepar-probabilistic-forecasting-with
DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
1704.04110
http://arxiv.org/abs/1704.04110v3
http://arxiv.org/pdf/1704.04110v3.pdf
https://github.com/Timbasa/Sample_GluonTS
false
false
true
none