paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/gptfuzzer-red-teaming-large-language-models
|
GPTFUZZER: Red Teaming Large Language Models with Auto-Generated Jailbreak Prompts
|
2309.10253
|
https://arxiv.org/abs/2309.10253v4
|
https://arxiv.org/pdf/2309.10253v4.pdf
|
https://github.com/yang-yan-yang-yan/sop
| false | false | true |
none
|
https://paperswithcode.com/paper/bts-bridging-text-and-sound-modalities-for
|
BTS: Bridging Text and Sound Modalities for Metadata-Aided Respiratory Sound Classification
|
2406.06786
|
https://arxiv.org/abs/2406.06786v2
|
https://arxiv.org/pdf/2406.06786v2.pdf
|
https://github.com/kaen2891/bts
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/lightweight-rgb-d-salient-object-detection
|
Lightweight RGB-D Salient Object Detection from a Speed-Accuracy Tradeoff Perspective
|
2505.04758
|
https://arxiv.org/abs/2505.04758v1
|
https://arxiv.org/pdf/2505.04758v1.pdf
|
https://github.com/duan-song/SATNet
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/omnigenbench-a-benchmark-for-omnipotent
|
OmniGenBench: A Benchmark for Omnipotent Multimodal Generation across 50+ Tasks
|
2505.18775
|
https://arxiv.org/abs/2505.18775v1
|
https://arxiv.org/pdf/2505.18775v1.pdf
|
https://github.com/emilia113/omnigenbench
| true | true | true |
paddle
|
https://paperswithcode.com/paper/inducing-programmatic-skills-for-agentic
|
Inducing Programmatic Skills for Agentic Tasks
|
2504.06821
|
https://arxiv.org/abs/2504.06821v1
|
https://arxiv.org/pdf/2504.06821v1.pdf
|
https://github.com/zorazrw/agent-skill-induction
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-realistic-low-light-image-enhancement
|
Towards Realistic Low-Light Image Enhancement via ISP Driven Data Modeling
|
2504.12204
|
https://arxiv.org/abs/2504.12204v1
|
https://arxiv.org/pdf/2504.12204v1.pdf
|
https://github.com/smbu-mm/llie
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/streamline-without-sacrifice-squeeze-out
|
Streamline Without Sacrifice -- Squeeze out Computation Redundancy in LMM
|
2505.15816
|
https://arxiv.org/abs/2505.15816v1
|
https://arxiv.org/pdf/2505.15816v1.pdf
|
https://github.com/penghao-wu/proxyv
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fuxictr-an-open-benchmark-for-click-through
|
BARS-CTR: Open Benchmarking for Click-Through Rate Prediction
|
2009.05794
|
https://arxiv.org/abs/2009.05794v5
|
https://arxiv.org/pdf/2009.05794v5.pdf
|
https://github.com/reczoo/FuxiCTR
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-survey-on-multilingual-mental-disorders
|
A Survey on Multilingual Mental Disorders Detection from Social Media Data
|
2505.15556
|
https://arxiv.org/abs/2505.15556v1
|
https://arxiv.org/pdf/2505.15556v1.pdf
|
https://github.com/bucuram/multilingual-mental-health-datasets-nlp
| true | false | true |
tf
|
https://paperswithcode.com/paper/openseg-r-improving-open-vocabulary
|
OpenSeg-R: Improving Open-Vocabulary Segmentation via Step-by-Step Visual Reasoning
|
2505.16974
|
https://arxiv.org/abs/2505.16974v1
|
https://arxiv.org/pdf/2505.16974v1.pdf
|
https://github.com/hanzy1996/openseg-r
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/edubench-a-comprehensive-benchmarking-dataset
|
EduBench: A Comprehensive Benchmarking Dataset for Evaluating Large Language Models in Diverse Educational Scenarios
|
2505.16160
|
https://arxiv.org/abs/2505.16160v1
|
https://arxiv.org/pdf/2505.16160v1.pdf
|
https://github.com/ybai-nlp/edubench
| true | true | true |
none
|
https://paperswithcode.com/paper/superposition-of-prs-and-pdsch-for-isac
|
Superposition of PRS and PDSCH for ISAC System: Spectral Efficiency Enhancement and Range Ambiguity Elimination
|
2409.20420
|
https://arxiv.org/abs/2409.20420v1
|
https://arxiv.org/pdf/2409.20420v1.pdf
|
https://github.com/Keivan-Khosroshahi/Superposition-of-PRS-and-PDSCH-for-ISAC-system
| false | false | false |
none
|
https://paperswithcode.com/paper/simple-radiology-vllm-test-time-scaling-with
|
Simple Radiology VLLM Test-time Scaling with Thought Graph Traversal
|
2506.11989
|
https://arxiv.org/abs/2506.11989v1
|
https://arxiv.org/pdf/2506.11989v1.pdf
|
https://github.com/glerium/Thought-Graph-Traversal
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/optimal-transport-based-identity-matching-for
|
Optimal Transport-based Identity Matching for Identity-invariant Facial Expression Recognition
|
2209.12172
|
https://arxiv.org/abs/2209.12172v1
|
https://arxiv.org/pdf/2209.12172v1.pdf
|
https://github.com/tomas-gajarsky/facetorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/synergy-between-3dmm-and-3d-landmarks-for
|
Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry
|
2110.09772
|
https://arxiv.org/abs/2110.09772v3
|
https://arxiv.org/pdf/2110.09772v3.pdf
|
https://github.com/tomas-gajarsky/facetorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/adaface-quality-adaptive-margin-for-face
|
AdaFace: Quality Adaptive Margin for Face Recognition
|
2204.00964
|
https://arxiv.org/abs/2204.00964v2
|
https://arxiv.org/pdf/2204.00964v2.pdf
|
https://github.com/tomas-gajarsky/facetorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/softcot-soft-chain-of-thought-for-efficient
|
SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs
|
2502.12134
|
https://arxiv.org/abs/2502.12134v1
|
https://arxiv.org/pdf/2502.12134v1.pdf
|
https://github.com/xuyige/softcot
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/eager-llm-enhancing-large-language-models-as
|
EAGER-LLM: Enhancing Large Language Models as Recommenders through Exogenous Behavior-Semantic Integration
|
2502.14735
|
https://arxiv.org/abs/2502.14735v1
|
https://arxiv.org/pdf/2502.14735v1.pdf
|
https://github.com/Indolent-Kawhi/EAGER-LLM
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/camal-optimizing-lsm-trees-via-active
|
CAMAL: Optimizing LSM-trees via Active Learning
|
2409.15130
|
https://arxiv.org/abs/2409.15130v1
|
https://arxiv.org/pdf/2409.15130v1.pdf
|
https://github.com/NTU-Siqiang-Group/CAMAL
| true | false | false |
none
|
https://paperswithcode.com/paper/mitigating-reward-over-optimization-in-direct
|
Mitigating Reward Over-optimization in Direct Alignment Algorithms with Importance Sampling
|
2506.08681
|
https://arxiv.org/abs/2506.08681v2
|
https://arxiv.org/pdf/2506.08681v2.pdf
|
https://github.com/duyhominhnguyen/is-daas
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/data-types-as-a-more-ergonomic-frontend-for
|
Data types as a more ergonomic frontend for Grammar-Guided Genetic Programming
|
2210.04826
|
https://arxiv.org/abs/2210.04826v1
|
https://arxiv.org/pdf/2210.04826v1.pdf
|
https://github.com/alcides/geneticengine
| true | true | true |
none
|
https://paperswithcode.com/paper/mac-an-efficient-gradient-preconditioning
|
MAC: An Efficient Gradient Preconditioning using Mean Activation Approximated Curvature
|
2506.08464
|
https://arxiv.org/abs/2506.08464v1
|
https://arxiv.org/pdf/2506.08464v1.pdf
|
https://github.com/hseung88/mac
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/discovering-hierarchical-latent-capabilities
|
Discovering Hierarchical Latent Capabilities of Language Models via Causal Representation Learning
|
2506.10378
|
https://arxiv.org/abs/2506.10378v1
|
https://arxiv.org/pdf/2506.10378v1.pdf
|
https://github.com/hlzhang109/causal-eval
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/videochat-r1-enhancing-spatio-temporal
|
VideoChat-R1: Enhancing Spatio-Temporal Perception via Reinforcement Fine-Tuning
|
2504.06958
|
https://arxiv.org/abs/2504.06958v2
|
https://arxiv.org/pdf/2504.06958v2.pdf
|
https://github.com/opengvlab/videochat-r1
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/tunizi-a-tunisian-arabizi-sentiment-analysis
|
TUNIZI: a Tunisian Arabizi sentiment analysis Dataset
|
2004.14303
|
https://arxiv.org/abs/2004.14303v1
|
https://arxiv.org/pdf/2004.14303v1.pdf
|
https://github.com/ivul-kaust/mole
| false | false | true |
none
|
https://paperswithcode.com/paper/mole-metadata-extraction-and-validation-in
|
MOLE: Metadata Extraction and Validation in Scientific Papers Using LLMs
|
2505.19800
|
https://arxiv.org/abs/2505.19800v1
|
https://arxiv.org/pdf/2505.19800v1.pdf
|
https://github.com/ivul-kaust/mole
| true | true | true |
none
|
https://paperswithcode.com/paper/recommendations-and-reporting-checklist-for
|
Recommendations and Reporting Checklist for Rigorous & Transparent Human Baselines in Model Evaluations
|
2506.13776
|
https://arxiv.org/abs/2506.13776v1
|
https://arxiv.org/pdf/2506.13776v1.pdf
|
https://github.com/kevinlwei/human-baselines
| true | true | false |
none
|
https://paperswithcode.com/paper/political-neutrality-in-ai-is-impossible-but
|
Political Neutrality in AI Is Impossible- But Here Is How to Approximate It
|
2503.05728
|
https://arxiv.org/abs/2503.05728v2
|
https://arxiv.org/pdf/2503.05728v2.pdf
|
https://github.com/jfisher52/approximation_political_neutrality
| true | true | true |
none
|
https://paperswithcode.com/paper/bayesian-variable-selection-in-a-cox
|
Bayesian variable selection in a Cox proportional hazards model with the "Sum of Single Effects" prior
|
2506.06233
|
https://arxiv.org/abs/2506.06233v1
|
https://arxiv.org/pdf/2506.06233v1.pdf
|
https://github.com/yunqiyang0215/survival-susie
| true | true | false |
none
|
https://paperswithcode.com/paper/generalized-interpolating-discrete-diffusion
|
Generalized Interpolating Discrete Diffusion
|
2503.04482
|
https://arxiv.org/abs/2503.04482v1
|
https://arxiv.org/pdf/2503.04482v1.pdf
|
https://github.com/dvruette/gidd
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/zeitenwenden-detecting-changes-in-the-german
|
Zeitenwenden: Detecting changes in the German political discourse
|
2410.17960
|
https://arxiv.org/abs/2410.17960v1
|
https://arxiv.org/pdf/2410.17960v1.pdf
|
https://github.com/JonasRieger/topicalchanges
| true | false | false |
none
|
https://paperswithcode.com/paper/simulating-lepton-number-violation-induced-by
|
Simulating lepton number violation induced by heavy neutrino-antineutrino oscillations at colliders
|
2210.10738
|
https://arxiv.org/abs/2210.10738v2
|
https://arxiv.org/pdf/2210.10738v2.pdf
|
https://github.com/heavy-neutral-leptons/pspss
| true | true | true |
none
|
https://paperswithcode.com/paper/beyond-lepton-number-violation-at-the-hl-lhc
|
Beyond lepton number violation at the HL-LHC: Resolving heavy neutrino-antineutrino oscillations
|
2212.00562
|
https://arxiv.org/abs/2212.00562v2
|
https://arxiv.org/pdf/2212.00562v2.pdf
|
https://github.com/heavy-neutral-leptons/pspss
| true | true | true |
none
|
https://paperswithcode.com/paper/heavy-neutrino-antineutrino-oscillations-at
|
Heavy neutrino-antineutrino oscillations at the FCC-ee
|
2308.07297
|
https://arxiv.org/abs/2308.07297v1
|
https://arxiv.org/pdf/2308.07297v1.pdf
|
https://github.com/heavy-neutral-leptons/pspss
| true | true | true |
none
|
https://paperswithcode.com/paper/mobilenetv2-inverted-residuals-and-linear
|
MobileNetV2: Inverted Residuals and Linear Bottlenecks
|
1801.04381
|
http://arxiv.org/abs/1801.04381v4
|
http://arxiv.org/pdf/1801.04381v4.pdf
|
https://github.com/duan-song/SATNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/depth-anything-unleashing-the-power-of-large
|
Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
|
2401.10891
|
https://arxiv.org/abs/2401.10891v2
|
https://arxiv.org/pdf/2401.10891v2.pdf
|
https://github.com/duan-song/SATNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/maximum-entropy-population-based-training-for-1
|
Maximum Entropy Population-Based Training for Zero-Shot Human-AI Coordination
|
2112.11701
|
https://arxiv.org/abs/2112.11701v3
|
https://arxiv.org/pdf/2112.11701v3.pdf
|
https://github.com/PKU-Alignment/ProAgent
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/nilmformer-non-intrusive-load-monitoring-that
|
NILMFormer: Non-Intrusive Load Monitoring that Accounts for Non-Stationarity
|
2506.05880
|
https://arxiv.org/abs/2506.05880v1
|
https://arxiv.org/pdf/2506.05880v1.pdf
|
https://github.com/adrienpetralia/nilmformer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-novel-sampling-theorem-on-the-rotation
|
A novel sampling theorem on the rotation group
|
1508.03101
|
https://arxiv.org/abs/1508.03101v2
|
https://arxiv.org/pdf/1508.03101v2.pdf
|
https://github.com/astro-informatics/so3
| false | false | true |
none
|
https://paperswithcode.com/paper/open-captchaworld-a-comprehensive-web-based
|
Open CaptchaWorld: A Comprehensive Web-based Platform for Testing and Benchmarking Multimodal LLM Agents
|
2505.24878
|
https://arxiv.org/abs/2505.24878v1
|
https://arxiv.org/pdf/2505.24878v1.pdf
|
https://github.com/metaagentx/opencaptchaworld
| true | true | true |
none
|
https://paperswithcode.com/paper/dualthor-a-dual-arm-humanoid-simulation
|
DualTHOR: A Dual-Arm Humanoid Simulation Platform for Contingency-Aware Planning
|
2506.16012
|
https://arxiv.org/abs/2506.16012v1
|
https://arxiv.org/pdf/2506.16012v1.pdf
|
https://github.com/ds199895/dualthor
| true | true | true |
none
|
https://paperswithcode.com/paper/semantic-entropy-probes-robust-and-cheap
|
Semantic Entropy Probes: Robust and Cheap Hallucination Detection in LLMs
|
2406.15927
|
https://arxiv.org/abs/2406.15927v1
|
https://arxiv.org/pdf/2406.15927v1.pdf
|
https://github.com/oatml/semantic-entropy-probes
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/ld-rps-zero-shot-unified-image-restoration
|
LD-RPS: Zero-Shot Unified Image Restoration via Latent Diffusion Recurrent Posterior Sampling
|
2507.00790
|
https://arxiv.org/abs/2507.00790v2
|
https://arxiv.org/pdf/2507.00790v2.pdf
|
https://github.com/amap-ml/ld-rps
| true | true | true |
jax
|
https://paperswithcode.com/paper/unified-modal-salient-object-detection-via
|
Unified-modal Salient Object Detection via Adaptive Prompt Learning
|
2311.16835
|
https://arxiv.org/abs/2311.16835v5
|
https://arxiv.org/pdf/2311.16835v5.pdf
|
https://github.com/angknpng/unisod
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/polybin3d-a-suite-of-optimal-and-efficient
|
PolyBin3D: A Suite of Optimal and Efficient Power Spectrum and Bispectrum Estimators for Large-Scale Structure
|
2404.07249
|
https://arxiv.org/abs/2404.07249v2
|
https://arxiv.org/pdf/2404.07249v2.pdf
|
https://github.com/oliverphilcox/polybin3d
| true | true | true |
jax
|
https://paperswithcode.com/paper/faster-r-cnn-towards-real-time-object
|
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
|
1506.01497
|
http://arxiv.org/abs/1506.01497v3
|
http://arxiv.org/pdf/1506.01497v3.pdf
|
https://github.com/vincentzhang/faster-rcnn-fcn
| false | false | true |
none
|
https://paperswithcode.com/paper/a-sparse-graph-structured-lasso-mixed-model
|
A Sparse Graph-Structured Lasso Mixed Model for Genetic Association with Confounding Correction
|
1711.04162
|
https://arxiv.org/abs/1711.04162v2
|
https://arxiv.org/pdf/1711.04162v2.pdf
|
https://github.com/YeWenting/sGLMM
| true | true | false |
none
|
https://paperswithcode.com/paper/guided-saliency-feature-learning-for-person
|
Guided Saliency Feature Learning for Person Re-identification in Crowded Scenes
| null |
https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/6159_ECCV_2020_paper.php
|
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123730358.pdf
|
https://github.com/JDAI-CV/fast-reid
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/optimizing-scoring-function-of-dynamic
|
Optimizing scoring function of dynamic programming of pairwise profile alignment using derivative free neural network
|
1708.09097
|
http://arxiv.org/abs/1708.09097v2
|
http://arxiv.org/pdf/1708.09097v2.pdf
|
https://github.com/yamada-kd/nepal
| true | true | false |
none
|
https://paperswithcode.com/paper/universal-sentence-encoder
|
Universal Sentence Encoder
|
1803.11175
|
http://arxiv.org/abs/1803.11175v2
|
http://arxiv.org/pdf/1803.11175v2.pdf
|
https://github.com/facebookresearch/InferSent
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/kern
|
KERN
|
1710.09145
|
http://arxiv.org/abs/1710.09145v1
|
http://arxiv.org/pdf/1710.09145v1.pdf
|
https://github.com/casacore/casarest
| true | true | false |
none
|
https://paperswithcode.com/paper/one-shot-mutual-affine-transfer-for
|
Non-Local Representation based Mutual Affine-Transfer Network for Photorealistic Stylization
|
1907.10274
|
https://arxiv.org/abs/1907.10274v2
|
https://arxiv.org/pdf/1907.10274v2.pdf
|
https://github.com/yingutk/NL-MAT
| true | true | false |
tf
|
https://paperswithcode.com/paper/tunable-subnetwork-splitting-for-model
|
Tunable Subnetwork Splitting for Model-parallelism of Neural Network Training
|
2009.04053
|
https://arxiv.org/abs/2009.04053v2
|
https://arxiv.org/pdf/2009.04053v2.pdf
|
https://github.com/xianggebenben/TSSM
| true | true | false |
tf
|
https://paperswithcode.com/paper/auto-encoding-variational-bayes
|
Auto-Encoding Variational Bayes
|
1312.6114
|
http://arxiv.org/abs/1312.6114v10
|
http://arxiv.org/pdf/1312.6114v10.pdf
|
https://github.com/enalisnick/stick-breaking_dgms
| false | false | true |
none
|
https://paperswithcode.com/paper/a-batch-noise-contrastive-estimation-approach
|
A Batch Noise Contrastive Estimation Approach for Training Large Vocabulary Language Models
|
1708.05997
|
http://arxiv.org/abs/1708.05997v2
|
http://arxiv.org/pdf/1708.05997v2.pdf
|
https://github.com/Stonesjtu/Pytorch-NCE
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/understanding-convolution-for-semantic
|
Understanding Convolution for Semantic Segmentation
|
1702.08502
|
http://arxiv.org/abs/1702.08502v3
|
http://arxiv.org/pdf/1702.08502v3.pdf
|
https://github.com/leemathew1998/GradientWeight
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/pp-lcnet-a-lightweight-cpu-convolutional
|
PP-LCNet: A Lightweight CPU Convolutional Neural Network
|
2109.15099
|
https://arxiv.org/abs/2109.15099v1
|
https://arxiv.org/pdf/2109.15099v1.pdf
|
https://github.com/leondgarse/keras_cv_attention_models/tree/main/keras_cv_attention_models/mobilenetv3_family
| false | false | false |
tf
|
https://paperswithcode.com/paper/deep-speaker-an-end-to-end-neural-speaker
|
Deep Speaker: an End-to-End Neural Speaker Embedding System
|
1705.02304
|
http://arxiv.org/abs/1705.02304v1
|
http://arxiv.org/pdf/1705.02304v1.pdf
|
https://github.com/prajual/Deep_Speaker
| false | false | true |
none
|
https://paperswithcode.com/paper/sol-a-library-for-scalable-online-learning
|
SOL: A Library for Scalable Online Learning Algorithms
|
1610.09083
|
http://arxiv.org/abs/1610.09083v1
|
http://arxiv.org/pdf/1610.09083v1.pdf
|
https://github.com/LIBOL/SOL
| true | true | false |
none
|
https://paperswithcode.com/paper/cross-view-image-synthesis-using-conditional
|
Cross-View Image Synthesis using Conditional GANs
|
1803.03396
|
http://arxiv.org/abs/1803.03396v2
|
http://arxiv.org/pdf/1803.03396v2.pdf
|
https://github.com/kregmi/cross-view-image-synthesis
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/recurrent-memory-networks-for-language
|
Recurrent Memory Networks for Language Modeling
|
1601.01272
|
http://arxiv.org/abs/1601.01272v2
|
http://arxiv.org/pdf/1601.01272v2.pdf
|
https://github.com/simonjisu/NMT
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/machine-learning-quantum-mechanics-and
|
Machine Learning, Quantum Mechanics, and Chemical Compound Space
|
1510.07512
|
http://arxiv.org/abs/1510.07512v3
|
http://arxiv.org/pdf/1510.07512v3.pdf
|
https://github.com/buralin/Data_Science_NL_Potential
| false | false | true |
none
|
https://paperswithcode.com/paper/wisedb-a-learning-based-workload-management
|
WiSeDB: A Learning-based Workload Management Advisor for Cloud Databases
|
1601.08221
|
http://arxiv.org/abs/1601.08221v3
|
http://arxiv.org/pdf/1601.08221v3.pdf
|
https://github.com/RyanMarcus/wisedb
| false | false | true |
none
|
https://paperswithcode.com/paper/cross-lingual-adaptation-using-structural
|
Cross-Lingual Adaptation using Structural Correspondence Learning
|
1008.0716
|
http://arxiv.org/abs/1008.0716v2
|
http://arxiv.org/pdf/1008.0716v2.pdf
|
https://github.com/pprett/bolt
| true | true | false |
none
|
https://paperswithcode.com/paper/mobilenets-efficient-convolutional-neural
|
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
|
1704.04861
|
http://arxiv.org/abs/1704.04861v1
|
http://arxiv.org/pdf/1704.04861v1.pdf
|
https://github.com/Tsejing/object_detection
| false | false | true |
tf
|
https://paperswithcode.com/paper/deep-grasp-detection-and-localization-of
|
Deep Grasp: Detection and Localization of Grasps with Deep Neural Networks
|
1802.00520
|
http://arxiv.org/abs/1802.00520v2
|
http://arxiv.org/pdf/1802.00520v2.pdf
|
https://github.com/ivalab/grasp_multiObject
| true | true | false |
none
|
https://paperswithcode.com/paper/self-normalizing-neural-networks
|
Self-Normalizing Neural Networks
|
1706.02515
|
http://arxiv.org/abs/1706.02515v5
|
http://arxiv.org/pdf/1706.02515v5.pdf
|
https://github.com/bioinf-jku/SNNs
| true | true | true |
tf
|
https://paperswithcode.com/paper/multiscale-strategies-for-computing-optimal
|
Multiscale Strategies for Computing Optimal Transport
|
1708.02469
|
http://arxiv.org/abs/1708.02469v1
|
http://arxiv.org/pdf/1708.02469v1.pdf
|
https://github.com/samuelgerber/mop
| true | false | false |
none
|
https://paperswithcode.com/paper/191104554
|
Geometry-Aware Neural Rendering
|
1911.04554
|
https://arxiv.org/abs/1911.04554v1
|
https://arxiv.org/pdf/1911.04554v1.pdf
|
https://github.com/josh-tobin/egqn-datasets
| true | true | false |
tf
|
https://paperswithcode.com/paper/an-end-to-end-architecture-for-keyword
|
An End-to-End Architecture for Keyword Spotting and Voice Activity Detection
|
1611.09405
|
http://arxiv.org/abs/1611.09405v1
|
http://arxiv.org/pdf/1611.09405v1.pdf
|
https://github.com/taylorlu/AudioKWS
| false | false | true |
tf
|
https://paperswithcode.com/paper/hamiltonian-descent-methods
|
Hamiltonian Descent Methods
|
1809.05042
|
http://arxiv.org/abs/1809.05042v1
|
http://arxiv.org/pdf/1809.05042v1.pdf
|
https://github.com/takyamamoto/FirstExplicitMethod-HDM
| false | false | true |
none
|
https://paperswithcode.com/paper/a-deep-generative-model-for-semi-supervised
|
A Deep Generative Model for Semi-Supervised Classification with Noisy Labels
|
1809.05957
|
http://arxiv.org/abs/1809.05957v1
|
http://arxiv.org/pdf/1809.05957v1.pdf
|
https://github.com/maxime1310/fuzzy_labeling_scRNA
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/leflow-enabling-flexible-fpga-high-level
|
LeFlow: Enabling Flexible FPGA High-Level Synthesis of Tensorflow Deep Neural Networks
|
1807.05317
|
http://arxiv.org/abs/1807.05317v1
|
http://arxiv.org/pdf/1807.05317v1.pdf
|
https://github.com/danielholanda/LeFlow
| true | true | true |
tf
|
https://paperswithcode.com/paper/micronnet-a-highly-compact-deep-convolutional
|
MicronNet: A Highly Compact Deep Convolutional Neural Network Architecture for Real-time Embedded Traffic Sign Classification
|
1804.00497
|
http://arxiv.org/abs/1804.00497v3
|
http://arxiv.org/pdf/1804.00497v3.pdf
|
https://github.com/ppriyank/MicronNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/dirichlet-process-gaussian-mixture-model-an
|
Dirichlet Process Gaussian-mixture model: An application to localizing coalescing binary neutron stars with gravitational-wave observations
|
1801.08009
|
http://arxiv.org/abs/1801.08009v2
|
http://arxiv.org/pdf/1801.08009v2.pdf
|
https://github.com/thaines/helit
| true | true | true |
none
|
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
|
U-Net: Convolutional Networks for Biomedical Image Segmentation
|
1505.04597
|
http://arxiv.org/abs/1505.04597v1
|
http://arxiv.org/pdf/1505.04597v1.pdf
|
https://github.com/IAmSuyogJadhav/Brainy
| false | false | true |
none
|
https://paperswithcode.com/paper/cad-pu-a-curvature-adaptive-deep-learning
|
CAD-PU: A Curvature-Adaptive Deep Learning Solution for Point Set Upsampling
|
2009.04660
|
https://arxiv.org/abs/2009.04660v1
|
https://arxiv.org/pdf/2009.04660v1.pdf
|
https://github.com/JiehongLin/CAD-PU
| true | true | true |
tf
|
https://paperswithcode.com/paper/lf-net-learning-local-features-from-images
|
LF-Net: Learning Local Features from Images
|
1805.09662
|
http://arxiv.org/abs/1805.09662v2
|
http://arxiv.org/pdf/1805.09662v2.pdf
|
https://github.com/vcg-uvic/lf-net-release
| true | true | true |
tf
|
https://paperswithcode.com/paper/ai-imu-dead-reckoning
|
AI-IMU Dead-Reckoning
|
1904.06064
|
http://arxiv.org/abs/1904.06064v1
|
http://arxiv.org/pdf/1904.06064v1.pdf
|
https://github.com/mbrossar/RINS-W
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/superpoint-self-supervised-interest-point
|
SuperPoint: Self-Supervised Interest Point Detection and Description
|
1712.07629
|
http://arxiv.org/abs/1712.07629v4
|
http://arxiv.org/pdf/1712.07629v4.pdf
|
https://github.com/tzvikif/SuperGlue
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/superglue-learning-feature-matching-with
|
SuperGlue: Learning Feature Matching with Graph Neural Networks
|
1911.11763
|
https://arxiv.org/abs/1911.11763v2
|
https://arxiv.org/pdf/1911.11763v2.pdf
|
https://github.com/tzvikif/SuperGlue
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/combining-markov-random-fields-and
|
Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis
|
1601.04589
|
http://arxiv.org/abs/1601.04589v1
|
http://arxiv.org/pdf/1601.04589v1.pdf
|
https://github.com/paulwarkentin/pytorch-neural-doodle
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/scalable-twin-neural-networks-for
|
Scalable Twin Neural Networks for Classification of Unbalanced Data
|
1705.00347
|
http://arxiv.org/abs/1705.00347v2
|
http://arxiv.org/pdf/1705.00347v2.pdf
|
https://github.com/panthimanshu/twinNeuralNets
| false | false | true |
none
|
https://paperswithcode.com/paper/choosing-the-sample-with-lowest-loss-makes
|
Choosing the Sample with Lowest Loss makes SGD Robust
|
2001.03316
|
https://arxiv.org/abs/2001.03316v1
|
https://arxiv.org/pdf/2001.03316v1.pdf
|
https://github.com/vatsal2020/mkl
| false | false | true |
none
|
https://paperswithcode.com/paper/exposure-a-white-box-photo-post-processing
|
Exposure: A White-Box Photo Post-Processing Framework
|
1709.09602
|
http://arxiv.org/abs/1709.09602v2
|
http://arxiv.org/pdf/1709.09602v2.pdf
|
https://github.com/yuanming-hu/exposure
| false | false | true |
tf
|
https://paperswithcode.com/paper/learning-the-population-dynamics-of-technical
|
Learning the dynamics of technical trading strategies
|
1903.02228
|
https://arxiv.org/abs/1903.02228v3
|
https://arxiv.org/pdf/1903.02228v3.pdf
|
https://github.com/NJ-Murphy/Learning-Technical-Trading
| true | true | false |
none
|
https://paperswithcode.com/paper/nonparametric-variable-importance-using-an
|
Nonparametric variable importance using an augmented neural network with multi-task learning
| null |
https://icml.cc/Conferences/2018/Schedule?showEvent=2042
|
http://proceedings.mlr.press/v80/feng18a/feng18a.pdf
|
https://github.com/jjfeng/nnet_var_import
| true | true | false |
tf
|
https://paperswithcode.com/paper/monotonic-chunkwise-attention-1
|
Monotonic Chunkwise Attention
| null |
https://openreview.net/forum?id=Hko85plCW
|
https://openreview.net/pdf?id=Hko85plCW
|
https://github.com/craffel/mocha
| true | true | false |
tf
|
https://paperswithcode.com/paper/convolutional-radio-modulation-recognition
|
Convolutional Radio Modulation Recognition Networks
|
1602.04105
|
http://arxiv.org/abs/1602.04105v3
|
http://arxiv.org/pdf/1602.04105v3.pdf
|
https://github.com/randaller/cnn-rtlsdr
| false | false | true |
tf
|
https://paperswithcode.com/paper/densely-connected-attention-propagation-for
|
Densely Connected Attention Propagation for Reading Comprehension
|
1811.04210
|
http://arxiv.org/abs/1811.04210v2
|
http://arxiv.org/pdf/1811.04210v2.pdf
|
https://github.com/vanzytay/NIPS2018_DECAPROP
| false | false | true |
tf
|
https://paperswithcode.com/paper/magnet-a-two-pronged-defense-against
|
MagNet: a Two-Pronged Defense against Adversarial Examples
|
1705.09064
|
http://arxiv.org/abs/1705.09064v2
|
http://arxiv.org/pdf/1705.09064v2.pdf
|
https://github.com/GokulKarthik/MagNet.pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/senteval-an-evaluation-toolkit-for-universal
|
SentEval: An Evaluation Toolkit for Universal Sentence Representations
|
1803.05449
|
http://arxiv.org/abs/1803.05449v1
|
http://arxiv.org/pdf/1803.05449v1.pdf
|
https://github.com/facebookresearch/InferSent
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-general-purpose-distributed-sentence
|
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning
|
1804.00079
|
http://arxiv.org/abs/1804.00079v1
|
http://arxiv.org/pdf/1804.00079v1.pdf
|
https://github.com/facebookresearch/InferSent
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/unsupervised-monocular-depth-estimation-with
|
Unsupervised Monocular Depth Estimation with Left-Right Consistency
|
1609.03677
|
http://arxiv.org/abs/1609.03677v3
|
http://arxiv.org/pdf/1609.03677v3.pdf
|
https://github.com/Lebhoryi/learn_monodepth
| false | false | true |
tf
|
https://paperswithcode.com/paper/dual-generator-generative-adversarial
|
Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
|
1901.04604
|
http://arxiv.org/abs/1901.04604v1
|
http://arxiv.org/pdf/1901.04604v1.pdf
|
https://github.com/Ha0Tang/AsymmetricGAN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/on-causal-and-anticausal-learning
|
On Causal and Anticausal Learning
|
1206.6471
|
http://arxiv.org/abs/1206.6471v1
|
http://arxiv.org/pdf/1206.6471v1.pdf
|
https://github.com/causalitas/causalitas.github.io
| false | false | true |
none
|
https://paperswithcode.com/paper/latent-weights-do-not-exist-rethinking
|
Latent Weights Do Not Exist: Rethinking Binarized Neural Network Optimization
|
1906.02107
|
https://arxiv.org/abs/1906.02107v2
|
https://arxiv.org/pdf/1906.02107v2.pdf
|
https://github.com/nikvaessen/Rethinking-Binarized-Neural-Network-Optimization
| false | false | true |
tf
|
https://paperswithcode.com/paper/super-slomo-high-quality-estimation-of
|
Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation
|
1712.00080
|
http://arxiv.org/abs/1712.00080v2
|
http://arxiv.org/pdf/1712.00080v2.pdf
|
https://github.com/susomena/DeepSlowMotion
| false | false | true |
tf
|
https://paperswithcode.com/paper/enriching-pre-trained-language-model-with
|
Enriching Pre-trained Language Model with Entity Information for Relation Classification
|
1905.08284
|
https://arxiv.org/abs/1905.08284v1
|
https://arxiv.org/pdf/1905.08284v1.pdf
|
https://github.com/onehaitao/R-BERT-relation-extraction
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/deep-learning-for-case-based-reasoning
|
Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions
|
1710.04806
|
http://arxiv.org/abs/1710.04806v2
|
http://arxiv.org/pdf/1710.04806v2.pdf
|
https://github.com/OscarcarLi/PrototypeDL
| true | true | false |
tf
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.