paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/extended-reduced-order-surrogate-models-for
|
Extended reduced-order surrogate models for scalar-tensor gravity in the strong field and applications to binary pulsars and gravitational waves
|
2106.01622
|
https://arxiv.org/abs/2106.01622v2
|
https://arxiv.org/pdf/2106.01622v2.pdf
|
https://github.com/mh-guo/pySTGROMX
| true | true | false |
none
|
https://paperswithcode.com/paper/polyvector-fields-for-fano-3-folds
|
Polyvector fields for Fano 3-folds
|
2104.07626
|
https://arxiv.org/abs/2104.07626v3
|
https://arxiv.org/pdf/2104.07626v3.pdf
|
https://github.com/pbelmans/bivector-fields-fano-3-folds
| true | true | false |
none
|
https://paperswithcode.com/paper/bitwidth-adaptive-quantization-aware-neural
|
Bitwidth-Adaptive Quantization-Aware Neural Network Training: A Meta-Learning Approach
|
2207.10188
|
https://arxiv.org/abs/2207.10188v1
|
https://arxiv.org/pdf/2207.10188v1.pdf
|
https://github.com/jsjs0369/MEBQAT
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/global-hash-tables-strike-back-an-analysis-of
|
Global Hash Tables Strike Back! An Analysis of Parallel GROUP BY Aggregation
|
2505.04153
|
https://arxiv.org/abs/2505.04153v1
|
https://arxiv.org/pdf/2505.04153v1.pdf
|
https://github.com/danielxue/global-hash-tables-strike-back
| true | true | true |
none
|
https://paperswithcode.com/paper/fast-and-eager-k-medoids-clustering-o-k
|
Fast and Eager k-Medoids Clustering: O(k) Runtime Improvement of the PAM, CLARA, and CLARANS Algorithms
|
2008.05171
|
https://arxiv.org/abs/2008.05171v2
|
https://arxiv.org/pdf/2008.05171v2.pdf
|
https://github.com/kno10/python-kmedoids
| false | false | true |
none
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/Zehui127/SQUAD_BERT
| false | false | true |
tf
|
https://paperswithcode.com/paper/mlosp-towards-a-unified-implementation-of
|
mlOSP: Towards a Unified Implementation of Regression Monte Carlo Algorithms
|
2012.00729
|
https://arxiv.org/abs/2012.00729v2
|
https://arxiv.org/pdf/2012.00729v2.pdf
|
https://github.com/mludkov/mlOSP
| true | true | true |
none
|
https://paperswithcode.com/paper/consistency-regularization-and-cutmix-for
|
Semi-supervised semantic segmentation needs strong, varied perturbations
|
1906.01916
|
https://arxiv.org/abs/1906.01916v5
|
https://arxiv.org/pdf/1906.01916v5.pdf
|
https://github.com/Britefury/cutmix-semisup-seg
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/semantic-style-transfer-and-turning-two-bit
|
Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artworks
|
1603.01768
|
http://arxiv.org/abs/1603.01768v1
|
http://arxiv.org/pdf/1603.01768v1.pdf
|
https://github.com/paulwarkentin/pytorch-neural-doodle
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/dgcl-an-efficient-communication-library-for
|
DGCL: an efficient communication library for distributed GNN training
| null |
https://dl.acm.org/doi/10.1145/3447786.3456233
|
https://dl.acm.org/doi/pdf/10.1145/3447786.3456233
|
https://github.com/czkkkkkk/gccl
| false | false | false |
none
|
https://paperswithcode.com/paper/syntheticfur-dataset-for-neural-rendering
|
SyntheticFur dataset for neural rendering
|
2105.06409
|
https://arxiv.org/abs/2105.06409v1
|
https://arxiv.org/pdf/2105.06409v1.pdf
|
https://github.com/google-research-datasets/synthetic-fur
| true | true | true |
none
|
https://paperswithcode.com/paper/learning-near-optimal-convex-combinations-of
|
Greedy Convex Ensemble
|
1910.03742
|
https://arxiv.org/abs/1910.03742v2
|
https://arxiv.org/pdf/1910.03742v2.pdf
|
https://github.com/tan1889/gce
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/fisher-rao-metric-geometry-and-complexity-of
|
Fisher-Rao Metric, Geometry, and Complexity of Neural Networks
|
1711.01530
|
http://arxiv.org/abs/1711.01530v2
|
http://arxiv.org/pdf/1711.01530v2.pdf
|
https://github.com/ML-KA/PDG-Theory
| false | false | true |
none
|
https://paperswithcode.com/paper/neural-moving-horizon-estimation-for-robust
|
Neural Moving Horizon Estimation for Robust Flight Control
|
2206.10397
|
https://arxiv.org/abs/2206.10397v9
|
https://arxiv.org/pdf/2206.10397v9.pdf
|
https://github.com/rcl-nus/neuromhe
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/brain-signal-classification-via-learning
|
EEG-based Emotional Video Classification via Learning Connectivity Structure
|
1905.11678
|
https://arxiv.org/abs/1905.11678v4
|
https://arxiv.org/pdf/1905.11678v4.pdf
|
https://github.com/ELEMKEP/bsc_lcs
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/do-the-machine-learning-models-on-a-crowd
|
Do the Machine Learning Models on a Crowd Sourced Platform Exhibit Bias? An Empirical Study on Model Fairness
|
2005.12379
|
https://arxiv.org/abs/2005.12379v2
|
https://arxiv.org/pdf/2005.12379v2.pdf
|
https://github.com/sumonbis/ML-Fairness
| true | false | false |
none
|
https://paperswithcode.com/paper/quantum-constraint-problems-can-be-complete
|
Quantum Constraint Problems can be complete for $\mathsf{BQP}$, $\mathsf{QCMA}$, and more
|
2101.08381
|
https://arxiv.org/abs/2101.08381v3
|
https://arxiv.org/pdf/2101.08381v3.pdf
|
https://github.com/Timeroot/4StatesIn4Qubits
| true | false | false |
none
|
https://paperswithcode.com/paper/170501453
|
Distributed Proportional-Fairness Control in MicroGrids via Blockchain Smart Contracts
|
1705.01453
|
http://arxiv.org/abs/1705.01453v2
|
http://arxiv.org/pdf/1705.01453v2.pdf
|
https://github.com/danzipie/fairness-control-contract
| false | false | true |
none
|
https://paperswithcode.com/paper/youmakeup-vqa-challenge-towards-fine-grained
|
YouMakeup VQA Challenge: Towards Fine-grained Action Understanding in Domain-Specific Videos
|
2004.05573
|
https://arxiv.org/abs/2004.05573v1
|
https://arxiv.org/pdf/2004.05573v1.pdf
|
https://github.com/AIM3-RUC/YouMakeup_Baseline
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-persistence-landscapes-toolbox-for
|
A persistence landscapes toolbox for topological statistics
|
1501.00179
|
http://arxiv.org/abs/1501.00179v3
|
http://arxiv.org/pdf/1501.00179v3.pdf
|
https://github.com/queenBNE/Persistent-Landscape-Wrapper
| false | false | true |
none
|
https://paperswithcode.com/paper/optimal-market-making-by-reinforcement
|
Optimal Market Making by Reinforcement Learning
|
2104.04036
|
https://arxiv.org/abs/2104.04036v1
|
https://arxiv.org/pdf/2104.04036v1.pdf
|
https://github.com/mselser95/optimal-market-making
| true | true | false |
none
|
https://paperswithcode.com/paper/a-refined-deep-learning-architecture-for
|
A Refined Deep Learning Architecture for Diabetic Foot Ulcers Detection
|
2007.07922
|
https://arxiv.org/abs/2007.07922v1
|
https://arxiv.org/pdf/2007.07922v1.pdf
|
https://github.com/Manugoyal12345/Yet-Another-EfficientDet-Pytorch
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/revisiting-data-complexity-metrics-based-on
|
Revisiting Data Complexity Metrics Based on Morphology for Overlap and Imbalance: Snapshot, New Overlap Number of Balls Metrics and Singular Problems Prospect
|
2007.07935
|
https://arxiv.org/abs/2007.07935v1
|
https://arxiv.org/pdf/2007.07935v1.pdf
|
https://github.com/jdpastri/morphology-metrics
| true | true | true |
none
|
https://paperswithcode.com/paper/don-t-stop-pretraining-adapt-language-models
|
Don't Stop Pretraining: Adapt Language Models to Domains and Tasks
|
2004.10964
|
https://arxiv.org/abs/2004.10964v3
|
https://arxiv.org/pdf/2004.10964v3.pdf
|
https://github.com/shizhediao/t-dna
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/manifold-mixup-better-representations-by
|
Manifold Mixup: Better Representations by Interpolating Hidden States
|
1806.05236
|
https://arxiv.org/abs/1806.05236v7
|
https://arxiv.org/pdf/1806.05236v7.pdf
|
https://github.com/rahulmadanahalli/manifold_mixup
| false | false | true |
tf
|
https://paperswithcode.com/paper/auto-encoding-variational-bayes
|
Auto-Encoding Variational Bayes
|
1312.6114
|
http://arxiv.org/abs/1312.6114v10
|
http://arxiv.org/pdf/1312.6114v10.pdf
|
https://github.com/jarrydmartinx/generative-models
| false | false | true |
tf
|
https://paperswithcode.com/paper/carp-compression-through-adaptive-recursive
|
CARP: Compression through Adaptive Recursive Partitioning for Multi-dimensional Images
|
1912.05622
|
https://arxiv.org/abs/1912.05622v2
|
https://arxiv.org/pdf/1912.05622v2.pdf
|
https://github.com/xylimeng/CARP
| true | true | true |
none
|
https://paperswithcode.com/paper/dart-noise-injection-for-robust-imitation
|
DART: Noise Injection for Robust Imitation Learning
|
1703.09327
|
http://arxiv.org/abs/1703.09327v2
|
http://arxiv.org/pdf/1703.09327v2.pdf
|
https://github.com/autonomousvision/data_aggregation
| false | false | true |
none
|
https://paperswithcode.com/paper/wasserstein-gan
|
Wasserstein GAN
|
1701.07875
|
http://arxiv.org/abs/1701.07875v3
|
http://arxiv.org/pdf/1701.07875v3.pdf
|
https://github.com/catalyst-team/gan
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-solution-to-the-generalized-ros-hardware-io
|
A Solution to the Generalized ROS Hardware IO Problem -- A Generic Modbus/TCP Device Driver for PLCs, Sensors and Actuators
|
2112.11102
|
https://arxiv.org/abs/2112.11102v1
|
https://arxiv.org/pdf/2112.11102v1.pdf
|
https://github.com/bitmeal/ros-modbus-device-driver
| true | true | true |
none
|
https://paperswithcode.com/paper/listen-to-look-action-recognition-by
|
Listen to Look: Action Recognition by Previewing Audio
|
1912.04487
|
https://arxiv.org/abs/1912.04487v3
|
https://arxiv.org/pdf/1912.04487v3.pdf
|
https://github.com/facebookresearch/Listen-to-Look
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/semantic-triples-verbalization-with
|
Semantic Triples Verbalization with Generative Pre-Training Model
| null |
https://aclanthology.org/2020.webnlg-1.17
|
https://aclanthology.org/2020.webnlg-1.17.pdf
|
https://github.com/blinovpd/ru-rdf2text
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/atomic-loans-cryptocurrency-debt-instruments
|
Atomic Loans: Cryptocurrency Debt Instruments
|
1901.05117
|
http://arxiv.org/abs/1901.05117v1
|
http://arxiv.org/pdf/1901.05117v1.pdf
|
https://github.com/AtomicLoans/technicalpaper
| false | false | true |
none
|
https://paperswithcode.com/paper/student-performance-prediction-using-dynamic
|
Student Performance Prediction Using Dynamic Neural Models
|
2106.00524
|
https://arxiv.org/abs/2106.00524v1
|
https://arxiv.org/pdf/2106.00524v1.pdf
|
https://github.com/delmarin35/Dynamic-Neural-Models-for-Knowledge-Tracing
| true | true | false |
none
|
https://paperswithcode.com/paper/animegan-a-novel-lightweight-gan-for-photo
|
AnimeGAN: A Novel Lightweight GAN for Photo Animation
| null |
https://link.springer.com/chapter/10.1007/978-981-15-5577-0_18
|
https://link.springer.com/chapter/10.1007/978-981-15-5577-0_18
|
https://github.com/mindspore-courses/heads-on-mindspore/tree/main/2-AnimeGAN
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/from-words-to-sound-neural-audio-synthesis-of
|
From Words to Sound: Neural Audio Synthesis of Guitar Sounds with Timbral Descriptors
| null |
https://zenodo.org/record/7088416
|
https://zenodo.org/record/7088416
|
https://github.com/TheSoundOfAIOSR/thesoundofaiosr.github.io
| false | false | false |
none
|
https://paperswithcode.com/paper/deep-cnns-with-spatially-weighted-pooling-for
|
Deep CNNs With Spatially Weighted Pooling for Fine-Grained Car Recognition
| null |
https://ieeexplore.ieee.org/document/7891907
|
https://www.researchgate.net/profile/Qichang-Hu/publication/316027349_Deep_CNNs_With_Spatially_Weighted_Pooling_for_Fine-Grained_Car_Recognition/links/59da13dca6fdcc2aad1299eb/Deep-CNNs-With-Spatially-Weighted-Pooling-for-Fine-Grained-Car-Recognition.pdf?_sg%5B0%5D=kFfa3QAo81iOIGlcjQ8XRVrfle6Ja-f3PbBzcCVIn3hbSh6EvHLERWho98fUz31FG9fT0TblP-aepGOCPxoarQ.OjIShztuvZs6W2EaIPef4wBuCkjA7vhzJphfFK-0w1_CjLGnxrWAUXxW4JP-7CEbBxDP3jW_tMo-sBuVDJfDqQ&_sg%5B1%5D=VMpD6s3ZN7MRfqLrLI8TiDC4DPHlksWNxOtrIPd7m-hc6H8V3yhKpndR7TsXCFyoHW8KFaQN-R7LmMcq-GO55-TxkzshV7BCIBpLq159AsWm.OjIShztuvZs6W2EaIPef4wBuCkjA7vhzJphfFK-0w1_CjLGnxrWAUXxW4JP-7CEbBxDP3jW_tMo-sBuVDJfDqQ&_iepl=
|
https://github.com/duongttr/SWP
| false | false | false |
tf
|
https://paperswithcode.com/paper/modeling-constrained-preemption-dynamics-of
|
Modeling Constrained Preemption Dynamics Of Transient Cloud Servers
|
1911.05160
|
https://arxiv.org/abs/1911.05160v1
|
https://arxiv.org/pdf/1911.05160v1.pdf
|
https://github.com/kadupitiya/goog-preemption-data
| false | false | true |
none
|
https://paperswithcode.com/paper/some-stylometric-remarks-on-ovid-s-heroides
|
Some Stylometric Remarks on Ovid's Heroides and the Epistula Sapphus
|
2202.11864
|
https://arxiv.org/abs/2202.11864v1
|
https://arxiv.org/pdf/2202.11864v1.pdf
|
https://github.com/bnagy/heroides-paper
| true | true | false |
none
|
https://paperswithcode.com/paper/amr-parsing-as-sequence-to-graph-transduction
|
AMR Parsing as Sequence-to-Graph Transduction
|
1905.08704
|
https://arxiv.org/abs/1905.08704v2
|
https://arxiv.org/pdf/1905.08704v2.pdf
|
https://github.com/sheng-z/stog
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/provable-defense-against-privacy-leakage-in
|
Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective
|
2012.06043
|
https://arxiv.org/abs/2012.06043v1
|
https://arxiv.org/pdf/2012.06043v1.pdf
|
https://github.com/jeremy313/Soteria
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/clusttr-clustering-training-for-robustness
|
Rethinking Clustering for Robustness
|
2006.07682
|
https://arxiv.org/abs/2006.07682v3
|
https://arxiv.org/pdf/2006.07682v3.pdf
|
https://github.com/clustr-official-account/ClusTR-Clustering-Training-For-Robustness
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/visual-chirality-1
|
Visual Chirality
|
2006.09512
|
https://arxiv.org/abs/2006.09512v1
|
https://arxiv.org/pdf/2006.09512v1.pdf
|
https://github.com/linzhiqiu/digital_chirality
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/partial-policy-iteration-for-l1-robust-markov
|
Partial Policy Iteration for L1-Robust Markov Decision Processes
|
2006.09484
|
https://arxiv.org/abs/2006.09484v1
|
https://arxiv.org/pdf/2006.09484v1.pdf
|
https://github.com/marekpetrik/PPI_paper
| true | true | false |
none
|
https://paperswithcode.com/paper/phase-aware-speech-enhancement-with-deep-1
|
Phase-aware Speech Enhancement with Deep Complex U-Net
|
1903.03107
|
http://arxiv.org/abs/1903.03107v2
|
http://arxiv.org/pdf/1903.03107v2.pdf
|
https://github.com/chanil1218/DCUnet.pytorch
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/the-gh-exin-neural-network-for-hierarchical
|
The GH-EXIN neural network for hierarchical clustering
| null |
https://www.sciencedirect.com/science/article/pii/S0893608019302060
|
https://www.sciencedirect.com/science/article/pii/S0893608019302060
|
https://github.com/pietrobarbiero/ghexin
| false | false | false |
none
|
https://paperswithcode.com/paper/urcdm-ultra-resolution-image-synthesis-in
|
URCDM: Ultra-Resolution Image Synthesis in Histopathology
|
2407.13277
|
https://arxiv.org/abs/2407.13277v1
|
https://arxiv.org/pdf/2407.13277v1.pdf
|
https://github.com/scechnicka/URCDM
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/hsemotion-team-at-the-7th-abaw-challenge
|
HSEmotion Team at the 7th ABAW Challenge: Multi-Task Learning and Compound Facial Expression Recognition
|
2407.13184
|
https://arxiv.org/abs/2407.13184v1
|
https://arxiv.org/pdf/2407.13184v1.pdf
|
https://github.com/HSE-asavchenko/face-emotion-recognition
| true | true | false |
tf
|
https://paperswithcode.com/paper/neural-architecture-retrieval
|
Neural Architecture Retrieval
|
2307.07919
|
https://arxiv.org/abs/2307.07919v2
|
https://arxiv.org/pdf/2307.07919v2.pdf
|
https://github.com/terrypei/nnretrieval
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/rt-bene-a-dataset-and-baselines-for-real-time
|
RT-BENE: A Dataset and Baselines for Real-Time Blink Estimation in Natural Environments
| null |
http://openaccess.thecvf.com/content_ICCVW_2019/html/GAZE/Cortacero_RT-BENE_A_Dataset_and_Baselines_for_Real-Time_Blink_Estimation_in_ICCVW_2019_paper.html
|
http://openaccess.thecvf.com/content_ICCVW_2019/papers/GAZE/Cortacero_RT-BENE_A_Dataset_and_Baselines_for_Real-Time_Blink_Estimation_in_ICCVW_2019_paper.pdf
|
https://github.com/Tobias-Fischer/rt_gene
| false | false | false |
tf
|
https://paperswithcode.com/paper/robot-localization-in-floor-plans-using-a
|
Robot Localization in Floor Plans Using a Room Layout Edge Extraction Network
|
1903.01804
|
https://arxiv.org/abs/1903.01804v2
|
https://arxiv.org/pdf/1903.01804v2.pdf
|
https://github.com/ayusefi/Localization-Papers
| false | false | true |
none
|
https://paperswithcode.com/paper/training-deep-neural-networks-on-noisy-labels
|
Training Deep Neural Networks on Noisy Labels with Bootstrapping
|
1412.6596
|
http://arxiv.org/abs/1412.6596v3
|
http://arxiv.org/pdf/1412.6596v3.pdf
|
https://github.com/dr-darryl-wright/Noisy-Labels-with-Bootstrapping
| false | false | true |
none
|
https://paperswithcode.com/paper/efficientdet-scalable-and-efficient-object
|
EfficientDet: Scalable and Efficient Object Detection
|
1911.09070
|
https://arxiv.org/abs/1911.09070v7
|
https://arxiv.org/pdf/1911.09070v7.pdf
|
https://github.com/Manugoyal12345/Yet-Another-EfficientDet-Pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/adahessian-an-adaptive-second-order-optimizer
|
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning
|
2006.00719
|
https://arxiv.org/abs/2006.00719v3
|
https://arxiv.org/pdf/2006.00719v3.pdf
|
https://github.com/amirgholami/adahessian
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/picar-an-efficient-extendable-approach-for
|
PICAR: An Efficient Extendable Approach for Fitting Hierarchical Spatial Models
|
1912.02382
|
https://arxiv.org/abs/1912.02382v2
|
https://arxiv.org/pdf/1912.02382v2.pdf
|
https://github.com/benee55/PICAR_code
| true | true | false |
none
|
https://paperswithcode.com/paper/a-systematic-approach-to-robustness-modelling
|
A Training Rate and Survival Heuristic for Inference and Robustness Evaluation (TRASHFIRE)
|
2401.13751
|
https://arxiv.org/abs/2401.13751v2
|
https://arxiv.org/pdf/2401.13751v2.pdf
|
https://github.com/simplymathematics/deckard/tree/main/examples/pytorch
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/human-whole-body-dynamics-estimation-for
|
Human Whole-Body Dynamics Estimation for Enhancing Physical Human-Robot Interaction
|
1912.01136
|
https://arxiv.org/abs/1912.01136v1
|
https://arxiv.org/pdf/1912.01136v1.pdf
|
https://github.com/claudia-lat/MAPest
| true | true | true |
none
|
https://paperswithcode.com/paper/temporal-cycle-consistency-learning
|
Temporal Cycle-Consistency Learning
|
1904.07846
|
http://arxiv.org/abs/1904.07846v1
|
http://arxiv.org/pdf/1904.07846v1.pdf
|
https://github.com/google-research/google-research/tree/master/tcc
| false | false | true |
tf
|
https://paperswithcode.com/paper/mixup-beyond-empirical-risk-minimization
|
mixup: Beyond Empirical Risk Minimization
|
1710.09412
|
http://arxiv.org/abs/1710.09412v2
|
http://arxiv.org/pdf/1710.09412v2.pdf
|
https://github.com/CaoShuning/MIXUP
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/ssd-single-shot-multibox-detector
|
SSD: Single Shot MultiBox Detector
|
1512.02325
|
http://arxiv.org/abs/1512.02325v5
|
http://arxiv.org/pdf/1512.02325v5.pdf
|
https://github.com/chandra411/Product-Detection
| false | false | true |
tf
|
https://paperswithcode.com/paper/high-efficiency-calculation-of-elastic
|
Investigating elastic constants across diverse strain-matrix sets
|
2002.00005
|
https://arxiv.org/abs/2002.00005v2
|
https://arxiv.org/pdf/2002.00005v2.pdf
|
https://github.com/zhongliliu/elastool
| false | false | true |
none
|
https://paperswithcode.com/paper/meta-learning-framework-with-applications-to
|
Meta-learning framework with applications to zero-shot time-series forecasting
|
2002.02887
|
https://arxiv.org/abs/2002.02887v3
|
https://arxiv.org/pdf/2002.02887v3.pdf
|
https://github.com/dmitri-carpov/deepar_evaluation
| false | false | true |
mxnet
|
https://paperswithcode.com/paper/auto-encoding-variational-bayes
|
Auto-Encoding Variational Bayes
|
1312.6114
|
http://arxiv.org/abs/1312.6114v10
|
http://arxiv.org/pdf/1312.6114v10.pdf
|
https://github.com/sarus-tech/tf2-published-models
| false | false | false |
tf
|
https://paperswithcode.com/paper/quaternion-equivariant-capsule-networks-for-1
|
Quaternion Equivariant Capsule Networks for 3D Point Clouds
|
1912.12098
|
https://arxiv.org/abs/1912.12098v3
|
https://arxiv.org/pdf/1912.12098v3.pdf
|
https://github.com/tolgabirdal/qecnetworks
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/phase-transitions-of-wave-packet-dynamics-in
|
Phase transitions of wave packet dynamics in disordered non-Hermitian systems
|
2301.07370
|
https://arxiv.org/abs/2301.07370v2
|
https://arxiv.org/pdf/2301.07370v2.pdf
|
https://zenodo.org/record/7535012
| false | false | false |
none
|
https://paperswithcode.com/paper/beyond-graph-neural-networks-with-lifted
|
Beyond Graph Neural Networks with Lifted Relational Neural Networks
|
2007.06286
|
https://arxiv.org/abs/2007.06286v1
|
https://arxiv.org/pdf/2007.06286v1.pdf
|
https://github.com/GustikS/GNNwLRNNs
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/i2l-meshnet-image-to-lixel-prediction-network-1
|
I2L-MeshNet: Image-to-Lixel Prediction Network for Accurate 3D Human Pose and Mesh Estimation from a Single RGB Image
|
2008.03713
|
https://arxiv.org/abs/2008.03713v2
|
https://arxiv.org/pdf/2008.03713v2.pdf
|
https://github.com/mks0601/I2L-MeshNet_RELEASE
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/spatial-semantic-embedding-network-fast-3d
|
Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning
|
2007.03169
|
https://arxiv.org/abs/2007.03169v1
|
https://arxiv.org/pdf/2007.03169v1.pdf
|
https://github.com/96lives/ssen
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/meta-learning-representations-for-continual
|
Meta-Learning Representations for Continual Learning
|
1905.12588
|
https://arxiv.org/abs/1905.12588v2
|
https://arxiv.org/pdf/1905.12588v2.pdf
|
https://github.com/lexili24/NLUProject
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/cellular-automaton-decoders-with-provable
|
Cellular-automaton decoders with provable thresholds for topological codes
|
1809.10145
|
https://arxiv.org/abs/1809.10145v1
|
https://arxiv.org/pdf/1809.10145v1.pdf
|
https://github.com/MikeVasmer/Sweep-Decoder-Boundaries
| false | false | true |
none
|
https://paperswithcode.com/paper/harmonic-networks-deep-translation-and
|
Harmonic Networks: Deep Translation and Rotation Equivariance
|
1612.04642
|
http://arxiv.org/abs/1612.04642v2
|
http://arxiv.org/pdf/1612.04642v2.pdf
|
https://github.com/deworrall92/harmonicConvolutions
| false | false | true |
tf
|
https://paperswithcode.com/paper/real-world-attack-on-mtcnn-face-detection
|
Real-world adversarial attack on MTCNN face detection system
|
1910.06261
|
https://arxiv.org/abs/1910.06261v2
|
https://arxiv.org/pdf/1910.06261v2.pdf
|
https://github.com/Mind23-2/MindCode-101/tree/main/MTCNN
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/a-discrete-representation-of-einsteins
|
A Discrete Representation of Einstein's Geometric Theory of Gravitation: The Fundamental Role of Dual Tessellations in Regge Calculus
|
0804.0279
|
http://arxiv.org/abs/0804.0279v1
|
http://arxiv.org/pdf/0804.0279v1.pdf
|
https://github.com/EelcoHoogendoorn/pycomplex
| false | false | true |
none
|
https://paperswithcode.com/paper/paragraph-level-neural-question-generation
|
Paragraph-level Neural Question Generation with Maxout Pointer and Gated Self-attention Networks
| null |
https://aclanthology.org/D18-1424
|
https://aclanthology.org/D18-1424.pdf
|
https://github.com/seanie12/neural-question-generation
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/geometry-aware-supertagging-with
|
Geometry-Aware Supertagging with Heterogeneous Dynamic Convolutions
|
2203.12235
|
https://arxiv.org/abs/2203.12235v3
|
https://arxiv.org/pdf/2203.12235v3.pdf
|
https://github.com/konstantinoskokos/dynamic-graph-supertagging
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/clones-in-deep-learning-code-what-where-and
|
Clones in Deep Learning Code: What, Where, and Why?
|
2107.13614
|
https://arxiv.org/abs/2107.13614v1
|
https://arxiv.org/pdf/2107.13614v1.pdf
|
https://github.com/Hadhemii/ClonesInDLCode
| true | true | false |
none
|
https://paperswithcode.com/paper/interpretable-and-transferable-models-to
|
Interpretable and Transferable Models to Understand the Impact of Lockdown Measures on Local Air Quality
|
2011.10144
|
https://arxiv.org/abs/2011.10144v2
|
https://arxiv.org/pdf/2011.10144v2.pdf
|
https://github.com/johanna-einsiedler/covid-19-air-pollution
| true | true | true |
none
|
https://paperswithcode.com/paper/out-of-distribution-detection-with-energy
|
Master's Thesis: Out-of-distribution Detection with Energy-based Models
|
2302.12002
|
https://arxiv.org/abs/2302.12002v2
|
https://arxiv.org/pdf/2302.12002v2.pdf
|
https://github.com/selflein/ma-ebm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/emergence-and-stability-of-self-evolved
|
Emergence and Stability of Self-Evolved Cooperative Strategies using Stochastic Machines
|
2010.13024
|
https://arxiv.org/abs/2010.13024v1
|
https://arxiv.org/pdf/2010.13024v1.pdf
|
https://github.com/jinhongkuan/evol-sim
| true | true | false |
none
|
https://paperswithcode.com/paper/joint-power-control-and-lsfd-for-wireless
|
Joint Power Control and LSFD for Wireless-Powered Cell-Free Massive MIMO
|
2002.09270
|
https://arxiv.org/abs/2002.09270v2
|
https://arxiv.org/pdf/2002.09270v2.pdf
|
https://github.com/emilbjornson/wireless-powered-cell-free
| true | true | true |
none
|
https://paperswithcode.com/paper/bottom-up-and-top-down-attention-for-image
|
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
|
1707.07998
|
http://arxiv.org/abs/1707.07998v3
|
http://arxiv.org/pdf/1707.07998v3.pdf
|
https://github.com/xiaobai714/image_caption
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/neural-machine-translating-from-natural
|
Neural Machine Translating from Natural Language to SPARQL
|
1906.09302
|
https://arxiv.org/abs/1906.09302v1
|
https://arxiv.org/pdf/1906.09302v1.pdf
|
https://github.com/xiaoyuin/tntspa
| false | false | true |
tf
|
https://paperswithcode.com/paper/semantic-histogram-based-graph-matching-for
|
Semantic Histogram Based Graph Matching for Real-Time Multi-Robot Global Localization in Large Scale Environment
|
2010.09297
|
https://arxiv.org/abs/2010.09297v2
|
https://arxiv.org/pdf/2010.09297v2.pdf
|
https://github.com/gxytcrc/Semantic-Graph-based--global-Localization
| false | false | true |
none
|
https://paperswithcode.com/paper/adahessian-an-adaptive-second-order-optimizer
|
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning
|
2006.00719
|
https://arxiv.org/abs/2006.00719v3
|
https://arxiv.org/pdf/2006.00719v3.pdf
|
https://github.com/morganmcg1/ImageNette_ImageWoof_ImageWang
| false | false | true |
none
|
https://paperswithcode.com/paper/normalization-matters-in-weakly-supervised
|
Normalization Matters in Weakly Supervised Object Localization
|
2107.13221
|
https://arxiv.org/abs/2107.13221v1
|
https://arxiv.org/pdf/2107.13221v1.pdf
|
https://github.com/GenDisc/IVR
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/vehicle-and-license-plate-recognition-with
|
Vehicle and License Plate Recognition with Novel Dataset for Toll Collection
|
2202.05631
|
https://arxiv.org/abs/2202.05631v2
|
https://arxiv.org/pdf/2202.05631v2.pdf
|
https://dagshub.com/arnavr.neo/VT-LPR
| false | false | false |
none
|
https://paperswithcode.com/paper/real-time-mdnet
|
Real-Time MDNet
|
1808.08834
|
http://arxiv.org/abs/1808.08834v1
|
http://arxiv.org/pdf/1808.08834v1.pdf
|
https://github.com/Amgao/RLS-RTMDNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/sequence-tagging-with-contextual-and-non
|
Sequence Tagging with Contextual and Non-Contextual Subword Representations: A Multilingual Evaluation
|
1906.01569
|
https://arxiv.org/abs/1906.01569v1
|
https://arxiv.org/pdf/1906.01569v1.pdf
|
https://github.com/bheinzerling/subword-sequence-tagging
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/coordinated-exploration-via-intrinsic-rewards
|
Coordinated Exploration via Intrinsic Rewards for Multi-Agent Reinforcement Learning
|
1905.12127
|
https://arxiv.org/abs/1905.12127v3
|
https://arxiv.org/pdf/1905.12127v3.pdf
|
https://github.com/shariqiqbal2810/Multi-Explore
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/certainty-equivalent-perception-based-control
|
Certainty Equivalent Perception-Based Control
|
2008.12332
|
https://arxiv.org/abs/2008.12332v2
|
https://arxiv.org/pdf/2008.12332v2.pdf
|
https://github.com/modestyachts/certainty_equiv_perception_control
| true | true | false |
none
|
https://paperswithcode.com/paper/factorised-representation-learning-in-cardiac
|
Disentangled Representation Learning in Cardiac Image Analysis
|
1903.09467
|
https://arxiv.org/abs/1903.09467v4
|
https://arxiv.org/pdf/1903.09467v4.pdf
|
https://github.com/TsaftarisCollaboratory/CSDisentanglement_Metrics_Library
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/fast-deep-reinforcement-learning-using-online
|
Fast deep reinforcement learning using online adjustments from the past
|
1810.08163
|
http://arxiv.org/abs/1810.08163v1
|
http://arxiv.org/pdf/1810.08163v1.pdf
|
https://github.com/AnnaNikitaRL/EVA
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/machine-learning-based-generalized-model-for
|
Machine Learning-Based Generalized Model for Finite Element Analysis of Roll Deflection During the Austenitic Stainless Steel 316L Strip Rolling
|
2102.02470
|
https://arxiv.org/abs/2102.02470v2
|
https://arxiv.org/pdf/2102.02470v2.pdf
|
https://github.com/mahshadlotfinia/Stress316L
| true | true | true |
none
|
https://paperswithcode.com/paper/kinship-identification-through-joint-learning
|
Kinship Identification through Joint Learning Using Kinship Verification Ensembles
|
2004.06382
|
https://arxiv.org/abs/2004.06382v4
|
https://arxiv.org/pdf/2004.06382v4.pdf
|
https://github.com/we-wan/JLNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/parallel-streaming-wasserstein-barycenters
|
Parallel Streaming Wasserstein Barycenters
|
1705.07443
|
http://arxiv.org/abs/1705.07443v2
|
http://arxiv.org/pdf/1705.07443v2.pdf
|
https://github.com/mstaib/stochastic-barycenter-code
| true | true | true |
none
|
https://paperswithcode.com/paper/pano-avqa-grounded-audio-visual-question-1
|
Pano-AVQA: Grounded Audio-Visual Question Answering on 360$^\circ$ Videos
|
2110.05122
|
https://arxiv.org/abs/2110.05122v1
|
https://arxiv.org/pdf/2110.05122v1.pdf
|
https://github.com/hs-yn/panoavqa
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/prepended-domain-transformer-heterogeneous
|
Prepended Domain Transformer: Heterogeneous Face Recognition without Bells and Whistles
|
2210.06529
|
https://arxiv.org/abs/2210.06529v1
|
https://arxiv.org/pdf/2210.06529v1.pdf
|
https://github.com/anjith2006/bob.paper.tifs2022_hfr_prepended_domain_transformer
| false | false | false |
none
|
https://paperswithcode.com/paper/why-not-simply-translate-a-first-swedish
|
Why Not Simply Translate? A First Swedish Evaluation Benchmark for Semantic Similarity
|
2009.03116
|
https://arxiv.org/abs/2009.03116v2
|
https://arxiv.org/pdf/2009.03116v2.pdf
|
https://github.com/timpal0l/sts-benchmark-swedish
| true | true | false |
none
|
https://paperswithcode.com/paper/solving-classification-problems-using
|
Solving classification problems using Traceless Genetic Programming
|
2111.14790
|
https://arxiv.org/abs/2111.14790v1
|
https://arxiv.org/pdf/2111.14790v1.pdf
|
https://github.com/mihaioltean/traceless-genetic-programming
| true | true | false |
none
|
https://paperswithcode.com/paper/performance-of-openbci-eeg-binary-intent
|
Performance of OpenBCI EEG Binary Intent Classification with Laryngeal Imagery
|
2107.00045
|
https://arxiv.org/abs/2107.00045v1
|
https://arxiv.org/pdf/2107.00045v1.pdf
|
https://github.com/nateGeorge/openbci_laryngeal_imagery
| true | true | false |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.