paper_url
stringlengths
36
81
paper_title
stringlengths
1
242
paper_arxiv_id
stringlengths
9
16
paper_url_abs
stringlengths
18
314
paper_url_pdf
stringlengths
21
935
repo_url
stringlengths
26
200
is_official
bool
2 classes
mentioned_in_paper
bool
2 classes
mentioned_in_github
bool
2 classes
framework
stringclasses
9 values
https://paperswithcode.com/paper/extended-reduced-order-surrogate-models-for
Extended reduced-order surrogate models for scalar-tensor gravity in the strong field and applications to binary pulsars and gravitational waves
2106.01622
https://arxiv.org/abs/2106.01622v2
https://arxiv.org/pdf/2106.01622v2.pdf
https://github.com/mh-guo/pySTGROMX
true
true
false
none
https://paperswithcode.com/paper/polyvector-fields-for-fano-3-folds
Polyvector fields for Fano 3-folds
2104.07626
https://arxiv.org/abs/2104.07626v3
https://arxiv.org/pdf/2104.07626v3.pdf
https://github.com/pbelmans/bivector-fields-fano-3-folds
true
true
false
none
https://paperswithcode.com/paper/bitwidth-adaptive-quantization-aware-neural
Bitwidth-Adaptive Quantization-Aware Neural Network Training: A Meta-Learning Approach
2207.10188
https://arxiv.org/abs/2207.10188v1
https://arxiv.org/pdf/2207.10188v1.pdf
https://github.com/jsjs0369/MEBQAT
true
false
false
pytorch
https://paperswithcode.com/paper/global-hash-tables-strike-back-an-analysis-of
Global Hash Tables Strike Back! An Analysis of Parallel GROUP BY Aggregation
2505.04153
https://arxiv.org/abs/2505.04153v1
https://arxiv.org/pdf/2505.04153v1.pdf
https://github.com/danielxue/global-hash-tables-strike-back
true
true
true
none
https://paperswithcode.com/paper/fast-and-eager-k-medoids-clustering-o-k
Fast and Eager k-Medoids Clustering: O(k) Runtime Improvement of the PAM, CLARA, and CLARANS Algorithms
2008.05171
https://arxiv.org/abs/2008.05171v2
https://arxiv.org/pdf/2008.05171v2.pdf
https://github.com/kno10/python-kmedoids
false
false
true
none
https://paperswithcode.com/paper/attention-is-all-you-need
Attention Is All You Need
1706.03762
https://arxiv.org/abs/1706.03762v7
https://arxiv.org/pdf/1706.03762v7.pdf
https://github.com/Zehui127/SQUAD_BERT
false
false
true
tf
https://paperswithcode.com/paper/mlosp-towards-a-unified-implementation-of
mlOSP: Towards a Unified Implementation of Regression Monte Carlo Algorithms
2012.00729
https://arxiv.org/abs/2012.00729v2
https://arxiv.org/pdf/2012.00729v2.pdf
https://github.com/mludkov/mlOSP
true
true
true
none
https://paperswithcode.com/paper/consistency-regularization-and-cutmix-for
Semi-supervised semantic segmentation needs strong, varied perturbations
1906.01916
https://arxiv.org/abs/1906.01916v5
https://arxiv.org/pdf/1906.01916v5.pdf
https://github.com/Britefury/cutmix-semisup-seg
true
true
true
pytorch
https://paperswithcode.com/paper/semantic-style-transfer-and-turning-two-bit
Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artworks
1603.01768
http://arxiv.org/abs/1603.01768v1
http://arxiv.org/pdf/1603.01768v1.pdf
https://github.com/paulwarkentin/pytorch-neural-doodle
false
false
true
pytorch
https://paperswithcode.com/paper/dgcl-an-efficient-communication-library-for
DGCL: an efficient communication library for distributed GNN training
null
https://dl.acm.org/doi/10.1145/3447786.3456233
https://dl.acm.org/doi/pdf/10.1145/3447786.3456233
https://github.com/czkkkkkk/gccl
false
false
false
none
https://paperswithcode.com/paper/syntheticfur-dataset-for-neural-rendering
SyntheticFur dataset for neural rendering
2105.06409
https://arxiv.org/abs/2105.06409v1
https://arxiv.org/pdf/2105.06409v1.pdf
https://github.com/google-research-datasets/synthetic-fur
true
true
true
none
https://paperswithcode.com/paper/learning-near-optimal-convex-combinations-of
Greedy Convex Ensemble
1910.03742
https://arxiv.org/abs/1910.03742v2
https://arxiv.org/pdf/1910.03742v2.pdf
https://github.com/tan1889/gce
true
true
false
pytorch
https://paperswithcode.com/paper/fisher-rao-metric-geometry-and-complexity-of
Fisher-Rao Metric, Geometry, and Complexity of Neural Networks
1711.01530
http://arxiv.org/abs/1711.01530v2
http://arxiv.org/pdf/1711.01530v2.pdf
https://github.com/ML-KA/PDG-Theory
false
false
true
none
https://paperswithcode.com/paper/neural-moving-horizon-estimation-for-robust
Neural Moving Horizon Estimation for Robust Flight Control
2206.10397
https://arxiv.org/abs/2206.10397v9
https://arxiv.org/pdf/2206.10397v9.pdf
https://github.com/rcl-nus/neuromhe
true
true
true
pytorch
https://paperswithcode.com/paper/brain-signal-classification-via-learning
EEG-based Emotional Video Classification via Learning Connectivity Structure
1905.11678
https://arxiv.org/abs/1905.11678v4
https://arxiv.org/pdf/1905.11678v4.pdf
https://github.com/ELEMKEP/bsc_lcs
true
true
true
pytorch
https://paperswithcode.com/paper/do-the-machine-learning-models-on-a-crowd
Do the Machine Learning Models on a Crowd Sourced Platform Exhibit Bias? An Empirical Study on Model Fairness
2005.12379
https://arxiv.org/abs/2005.12379v2
https://arxiv.org/pdf/2005.12379v2.pdf
https://github.com/sumonbis/ML-Fairness
true
false
false
none
https://paperswithcode.com/paper/quantum-constraint-problems-can-be-complete
Quantum Constraint Problems can be complete for $\mathsf{BQP}$, $\mathsf{QCMA}$, and more
2101.08381
https://arxiv.org/abs/2101.08381v3
https://arxiv.org/pdf/2101.08381v3.pdf
https://github.com/Timeroot/4StatesIn4Qubits
true
false
false
none
https://paperswithcode.com/paper/170501453
Distributed Proportional-Fairness Control in MicroGrids via Blockchain Smart Contracts
1705.01453
http://arxiv.org/abs/1705.01453v2
http://arxiv.org/pdf/1705.01453v2.pdf
https://github.com/danzipie/fairness-control-contract
false
false
true
none
https://paperswithcode.com/paper/youmakeup-vqa-challenge-towards-fine-grained
YouMakeup VQA Challenge: Towards Fine-grained Action Understanding in Domain-Specific Videos
2004.05573
https://arxiv.org/abs/2004.05573v1
https://arxiv.org/pdf/2004.05573v1.pdf
https://github.com/AIM3-RUC/YouMakeup_Baseline
true
true
false
pytorch
https://paperswithcode.com/paper/a-persistence-landscapes-toolbox-for
A persistence landscapes toolbox for topological statistics
1501.00179
http://arxiv.org/abs/1501.00179v3
http://arxiv.org/pdf/1501.00179v3.pdf
https://github.com/queenBNE/Persistent-Landscape-Wrapper
false
false
true
none
https://paperswithcode.com/paper/optimal-market-making-by-reinforcement
Optimal Market Making by Reinforcement Learning
2104.04036
https://arxiv.org/abs/2104.04036v1
https://arxiv.org/pdf/2104.04036v1.pdf
https://github.com/mselser95/optimal-market-making
true
true
false
none
https://paperswithcode.com/paper/a-refined-deep-learning-architecture-for
A Refined Deep Learning Architecture for Diabetic Foot Ulcers Detection
2007.07922
https://arxiv.org/abs/2007.07922v1
https://arxiv.org/pdf/2007.07922v1.pdf
https://github.com/Manugoyal12345/Yet-Another-EfficientDet-Pytorch
true
true
false
pytorch
https://paperswithcode.com/paper/revisiting-data-complexity-metrics-based-on
Revisiting Data Complexity Metrics Based on Morphology for Overlap and Imbalance: Snapshot, New Overlap Number of Balls Metrics and Singular Problems Prospect
2007.07935
https://arxiv.org/abs/2007.07935v1
https://arxiv.org/pdf/2007.07935v1.pdf
https://github.com/jdpastri/morphology-metrics
true
true
true
none
https://paperswithcode.com/paper/don-t-stop-pretraining-adapt-language-models
Don't Stop Pretraining: Adapt Language Models to Domains and Tasks
2004.10964
https://arxiv.org/abs/2004.10964v3
https://arxiv.org/pdf/2004.10964v3.pdf
https://github.com/shizhediao/t-dna
false
false
true
pytorch
https://paperswithcode.com/paper/manifold-mixup-better-representations-by
Manifold Mixup: Better Representations by Interpolating Hidden States
1806.05236
https://arxiv.org/abs/1806.05236v7
https://arxiv.org/pdf/1806.05236v7.pdf
https://github.com/rahulmadanahalli/manifold_mixup
false
false
true
tf
https://paperswithcode.com/paper/auto-encoding-variational-bayes
Auto-Encoding Variational Bayes
1312.6114
http://arxiv.org/abs/1312.6114v10
http://arxiv.org/pdf/1312.6114v10.pdf
https://github.com/jarrydmartinx/generative-models
false
false
true
tf
https://paperswithcode.com/paper/carp-compression-through-adaptive-recursive
CARP: Compression through Adaptive Recursive Partitioning for Multi-dimensional Images
1912.05622
https://arxiv.org/abs/1912.05622v2
https://arxiv.org/pdf/1912.05622v2.pdf
https://github.com/xylimeng/CARP
true
true
true
none
https://paperswithcode.com/paper/dart-noise-injection-for-robust-imitation
DART: Noise Injection for Robust Imitation Learning
1703.09327
http://arxiv.org/abs/1703.09327v2
http://arxiv.org/pdf/1703.09327v2.pdf
https://github.com/autonomousvision/data_aggregation
false
false
true
none
https://paperswithcode.com/paper/wasserstein-gan
Wasserstein GAN
1701.07875
http://arxiv.org/abs/1701.07875v3
http://arxiv.org/pdf/1701.07875v3.pdf
https://github.com/catalyst-team/gan
false
false
true
pytorch
https://paperswithcode.com/paper/a-solution-to-the-generalized-ros-hardware-io
A Solution to the Generalized ROS Hardware IO Problem -- A Generic Modbus/TCP Device Driver for PLCs, Sensors and Actuators
2112.11102
https://arxiv.org/abs/2112.11102v1
https://arxiv.org/pdf/2112.11102v1.pdf
https://github.com/bitmeal/ros-modbus-device-driver
true
true
true
none
https://paperswithcode.com/paper/listen-to-look-action-recognition-by
Listen to Look: Action Recognition by Previewing Audio
1912.04487
https://arxiv.org/abs/1912.04487v3
https://arxiv.org/pdf/1912.04487v3.pdf
https://github.com/facebookresearch/Listen-to-Look
false
false
true
pytorch
https://paperswithcode.com/paper/semantic-triples-verbalization-with
Semantic Triples Verbalization with Generative Pre-Training Model
null
https://aclanthology.org/2020.webnlg-1.17
https://aclanthology.org/2020.webnlg-1.17.pdf
https://github.com/blinovpd/ru-rdf2text
true
false
false
pytorch
https://paperswithcode.com/paper/atomic-loans-cryptocurrency-debt-instruments
Atomic Loans: Cryptocurrency Debt Instruments
1901.05117
http://arxiv.org/abs/1901.05117v1
http://arxiv.org/pdf/1901.05117v1.pdf
https://github.com/AtomicLoans/technicalpaper
false
false
true
none
https://paperswithcode.com/paper/student-performance-prediction-using-dynamic
Student Performance Prediction Using Dynamic Neural Models
2106.00524
https://arxiv.org/abs/2106.00524v1
https://arxiv.org/pdf/2106.00524v1.pdf
https://github.com/delmarin35/Dynamic-Neural-Models-for-Knowledge-Tracing
true
true
false
none
https://paperswithcode.com/paper/animegan-a-novel-lightweight-gan-for-photo
AnimeGAN: A Novel Lightweight GAN for Photo Animation
null
https://link.springer.com/chapter/10.1007/978-981-15-5577-0_18
https://link.springer.com/chapter/10.1007/978-981-15-5577-0_18
https://github.com/mindspore-courses/heads-on-mindspore/tree/main/2-AnimeGAN
false
false
false
mindspore
https://paperswithcode.com/paper/from-words-to-sound-neural-audio-synthesis-of
From Words to Sound: Neural Audio Synthesis of Guitar Sounds with Timbral Descriptors
null
https://zenodo.org/record/7088416
https://zenodo.org/record/7088416
https://github.com/TheSoundOfAIOSR/thesoundofaiosr.github.io
false
false
false
none
https://paperswithcode.com/paper/deep-cnns-with-spatially-weighted-pooling-for
Deep CNNs With Spatially Weighted Pooling for Fine-Grained Car Recognition
null
https://ieeexplore.ieee.org/document/7891907
https://www.researchgate.net/profile/Qichang-Hu/publication/316027349_Deep_CNNs_With_Spatially_Weighted_Pooling_for_Fine-Grained_Car_Recognition/links/59da13dca6fdcc2aad1299eb/Deep-CNNs-With-Spatially-Weighted-Pooling-for-Fine-Grained-Car-Recognition.pdf?_sg%5B0%5D=kFfa3QAo81iOIGlcjQ8XRVrfle6Ja-f3PbBzcCVIn3hbSh6EvHLERWho98fUz31FG9fT0TblP-aepGOCPxoarQ.OjIShztuvZs6W2EaIPef4wBuCkjA7vhzJphfFK-0w1_CjLGnxrWAUXxW4JP-7CEbBxDP3jW_tMo-sBuVDJfDqQ&_sg%5B1%5D=VMpD6s3ZN7MRfqLrLI8TiDC4DPHlksWNxOtrIPd7m-hc6H8V3yhKpndR7TsXCFyoHW8KFaQN-R7LmMcq-GO55-TxkzshV7BCIBpLq159AsWm.OjIShztuvZs6W2EaIPef4wBuCkjA7vhzJphfFK-0w1_CjLGnxrWAUXxW4JP-7CEbBxDP3jW_tMo-sBuVDJfDqQ&_iepl=
https://github.com/duongttr/SWP
false
false
false
tf
https://paperswithcode.com/paper/modeling-constrained-preemption-dynamics-of
Modeling Constrained Preemption Dynamics Of Transient Cloud Servers
1911.05160
https://arxiv.org/abs/1911.05160v1
https://arxiv.org/pdf/1911.05160v1.pdf
https://github.com/kadupitiya/goog-preemption-data
false
false
true
none
https://paperswithcode.com/paper/some-stylometric-remarks-on-ovid-s-heroides
Some Stylometric Remarks on Ovid's Heroides and the Epistula Sapphus
2202.11864
https://arxiv.org/abs/2202.11864v1
https://arxiv.org/pdf/2202.11864v1.pdf
https://github.com/bnagy/heroides-paper
true
true
false
none
https://paperswithcode.com/paper/amr-parsing-as-sequence-to-graph-transduction
AMR Parsing as Sequence-to-Graph Transduction
1905.08704
https://arxiv.org/abs/1905.08704v2
https://arxiv.org/pdf/1905.08704v2.pdf
https://github.com/sheng-z/stog
true
true
true
pytorch
https://paperswithcode.com/paper/provable-defense-against-privacy-leakage-in
Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective
2012.06043
https://arxiv.org/abs/2012.06043v1
https://arxiv.org/pdf/2012.06043v1.pdf
https://github.com/jeremy313/Soteria
false
false
true
pytorch
https://paperswithcode.com/paper/clusttr-clustering-training-for-robustness
Rethinking Clustering for Robustness
2006.07682
https://arxiv.org/abs/2006.07682v3
https://arxiv.org/pdf/2006.07682v3.pdf
https://github.com/clustr-official-account/ClusTR-Clustering-Training-For-Robustness
true
true
true
pytorch
https://paperswithcode.com/paper/visual-chirality-1
Visual Chirality
2006.09512
https://arxiv.org/abs/2006.09512v1
https://arxiv.org/pdf/2006.09512v1.pdf
https://github.com/linzhiqiu/digital_chirality
true
true
false
pytorch
https://paperswithcode.com/paper/partial-policy-iteration-for-l1-robust-markov
Partial Policy Iteration for L1-Robust Markov Decision Processes
2006.09484
https://arxiv.org/abs/2006.09484v1
https://arxiv.org/pdf/2006.09484v1.pdf
https://github.com/marekpetrik/PPI_paper
true
true
false
none
https://paperswithcode.com/paper/phase-aware-speech-enhancement-with-deep-1
Phase-aware Speech Enhancement with Deep Complex U-Net
1903.03107
http://arxiv.org/abs/1903.03107v2
http://arxiv.org/pdf/1903.03107v2.pdf
https://github.com/chanil1218/DCUnet.pytorch
false
false
false
pytorch
https://paperswithcode.com/paper/the-gh-exin-neural-network-for-hierarchical
The GH-EXIN neural network for hierarchical clustering
null
https://www.sciencedirect.com/science/article/pii/S0893608019302060
https://www.sciencedirect.com/science/article/pii/S0893608019302060
https://github.com/pietrobarbiero/ghexin
false
false
false
none
https://paperswithcode.com/paper/urcdm-ultra-resolution-image-synthesis-in
URCDM: Ultra-Resolution Image Synthesis in Histopathology
2407.13277
https://arxiv.org/abs/2407.13277v1
https://arxiv.org/pdf/2407.13277v1.pdf
https://github.com/scechnicka/URCDM
true
false
true
pytorch
https://paperswithcode.com/paper/hsemotion-team-at-the-7th-abaw-challenge
HSEmotion Team at the 7th ABAW Challenge: Multi-Task Learning and Compound Facial Expression Recognition
2407.13184
https://arxiv.org/abs/2407.13184v1
https://arxiv.org/pdf/2407.13184v1.pdf
https://github.com/HSE-asavchenko/face-emotion-recognition
true
true
false
tf
https://paperswithcode.com/paper/neural-architecture-retrieval
Neural Architecture Retrieval
2307.07919
https://arxiv.org/abs/2307.07919v2
https://arxiv.org/pdf/2307.07919v2.pdf
https://github.com/terrypei/nnretrieval
true
true
false
pytorch
https://paperswithcode.com/paper/rt-bene-a-dataset-and-baselines-for-real-time
RT-BENE: A Dataset and Baselines for Real-Time Blink Estimation in Natural Environments
null
http://openaccess.thecvf.com/content_ICCVW_2019/html/GAZE/Cortacero_RT-BENE_A_Dataset_and_Baselines_for_Real-Time_Blink_Estimation_in_ICCVW_2019_paper.html
http://openaccess.thecvf.com/content_ICCVW_2019/papers/GAZE/Cortacero_RT-BENE_A_Dataset_and_Baselines_for_Real-Time_Blink_Estimation_in_ICCVW_2019_paper.pdf
https://github.com/Tobias-Fischer/rt_gene
false
false
false
tf
https://paperswithcode.com/paper/robot-localization-in-floor-plans-using-a
Robot Localization in Floor Plans Using a Room Layout Edge Extraction Network
1903.01804
https://arxiv.org/abs/1903.01804v2
https://arxiv.org/pdf/1903.01804v2.pdf
https://github.com/ayusefi/Localization-Papers
false
false
true
none
https://paperswithcode.com/paper/training-deep-neural-networks-on-noisy-labels
Training Deep Neural Networks on Noisy Labels with Bootstrapping
1412.6596
http://arxiv.org/abs/1412.6596v3
http://arxiv.org/pdf/1412.6596v3.pdf
https://github.com/dr-darryl-wright/Noisy-Labels-with-Bootstrapping
false
false
true
none
https://paperswithcode.com/paper/efficientdet-scalable-and-efficient-object
EfficientDet: Scalable and Efficient Object Detection
1911.09070
https://arxiv.org/abs/1911.09070v7
https://arxiv.org/pdf/1911.09070v7.pdf
https://github.com/Manugoyal12345/Yet-Another-EfficientDet-Pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/adahessian-an-adaptive-second-order-optimizer
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning
2006.00719
https://arxiv.org/abs/2006.00719v3
https://arxiv.org/pdf/2006.00719v3.pdf
https://github.com/amirgholami/adahessian
true
true
true
pytorch
https://paperswithcode.com/paper/picar-an-efficient-extendable-approach-for
PICAR: An Efficient Extendable Approach for Fitting Hierarchical Spatial Models
1912.02382
https://arxiv.org/abs/1912.02382v2
https://arxiv.org/pdf/1912.02382v2.pdf
https://github.com/benee55/PICAR_code
true
true
false
none
https://paperswithcode.com/paper/a-systematic-approach-to-robustness-modelling
A Training Rate and Survival Heuristic for Inference and Robustness Evaluation (TRASHFIRE)
2401.13751
https://arxiv.org/abs/2401.13751v2
https://arxiv.org/pdf/2401.13751v2.pdf
https://github.com/simplymathematics/deckard/tree/main/examples/pytorch
false
false
false
pytorch
https://paperswithcode.com/paper/human-whole-body-dynamics-estimation-for
Human Whole-Body Dynamics Estimation for Enhancing Physical Human-Robot Interaction
1912.01136
https://arxiv.org/abs/1912.01136v1
https://arxiv.org/pdf/1912.01136v1.pdf
https://github.com/claudia-lat/MAPest
true
true
true
none
https://paperswithcode.com/paper/temporal-cycle-consistency-learning
Temporal Cycle-Consistency Learning
1904.07846
http://arxiv.org/abs/1904.07846v1
http://arxiv.org/pdf/1904.07846v1.pdf
https://github.com/google-research/google-research/tree/master/tcc
false
false
true
tf
https://paperswithcode.com/paper/mixup-beyond-empirical-risk-minimization
mixup: Beyond Empirical Risk Minimization
1710.09412
http://arxiv.org/abs/1710.09412v2
http://arxiv.org/pdf/1710.09412v2.pdf
https://github.com/CaoShuning/MIXUP
false
false
true
pytorch
https://paperswithcode.com/paper/ssd-single-shot-multibox-detector
SSD: Single Shot MultiBox Detector
1512.02325
http://arxiv.org/abs/1512.02325v5
http://arxiv.org/pdf/1512.02325v5.pdf
https://github.com/chandra411/Product-Detection
false
false
true
tf
https://paperswithcode.com/paper/high-efficiency-calculation-of-elastic
Investigating elastic constants across diverse strain-matrix sets
2002.00005
https://arxiv.org/abs/2002.00005v2
https://arxiv.org/pdf/2002.00005v2.pdf
https://github.com/zhongliliu/elastool
false
false
true
none
https://paperswithcode.com/paper/meta-learning-framework-with-applications-to
Meta-learning framework with applications to zero-shot time-series forecasting
2002.02887
https://arxiv.org/abs/2002.02887v3
https://arxiv.org/pdf/2002.02887v3.pdf
https://github.com/dmitri-carpov/deepar_evaluation
false
false
true
mxnet
https://paperswithcode.com/paper/auto-encoding-variational-bayes
Auto-Encoding Variational Bayes
1312.6114
http://arxiv.org/abs/1312.6114v10
http://arxiv.org/pdf/1312.6114v10.pdf
https://github.com/sarus-tech/tf2-published-models
false
false
false
tf
https://paperswithcode.com/paper/quaternion-equivariant-capsule-networks-for-1
Quaternion Equivariant Capsule Networks for 3D Point Clouds
1912.12098
https://arxiv.org/abs/1912.12098v3
https://arxiv.org/pdf/1912.12098v3.pdf
https://github.com/tolgabirdal/qecnetworks
false
false
true
pytorch
https://paperswithcode.com/paper/phase-transitions-of-wave-packet-dynamics-in
Phase transitions of wave packet dynamics in disordered non-Hermitian systems
2301.07370
https://arxiv.org/abs/2301.07370v2
https://arxiv.org/pdf/2301.07370v2.pdf
https://zenodo.org/record/7535012
false
false
false
none
https://paperswithcode.com/paper/beyond-graph-neural-networks-with-lifted
Beyond Graph Neural Networks with Lifted Relational Neural Networks
2007.06286
https://arxiv.org/abs/2007.06286v1
https://arxiv.org/pdf/2007.06286v1.pdf
https://github.com/GustikS/GNNwLRNNs
true
true
false
pytorch
https://paperswithcode.com/paper/i2l-meshnet-image-to-lixel-prediction-network-1
I2L-MeshNet: Image-to-Lixel Prediction Network for Accurate 3D Human Pose and Mesh Estimation from a Single RGB Image
2008.03713
https://arxiv.org/abs/2008.03713v2
https://arxiv.org/pdf/2008.03713v2.pdf
https://github.com/mks0601/I2L-MeshNet_RELEASE
true
true
true
pytorch
https://paperswithcode.com/paper/spatial-semantic-embedding-network-fast-3d
Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning
2007.03169
https://arxiv.org/abs/2007.03169v1
https://arxiv.org/pdf/2007.03169v1.pdf
https://github.com/96lives/ssen
true
true
true
pytorch
https://paperswithcode.com/paper/meta-learning-representations-for-continual
Meta-Learning Representations for Continual Learning
1905.12588
https://arxiv.org/abs/1905.12588v2
https://arxiv.org/pdf/1905.12588v2.pdf
https://github.com/lexili24/NLUProject
false
false
true
pytorch
https://paperswithcode.com/paper/cellular-automaton-decoders-with-provable
Cellular-automaton decoders with provable thresholds for topological codes
1809.10145
https://arxiv.org/abs/1809.10145v1
https://arxiv.org/pdf/1809.10145v1.pdf
https://github.com/MikeVasmer/Sweep-Decoder-Boundaries
false
false
true
none
https://paperswithcode.com/paper/harmonic-networks-deep-translation-and
Harmonic Networks: Deep Translation and Rotation Equivariance
1612.04642
http://arxiv.org/abs/1612.04642v2
http://arxiv.org/pdf/1612.04642v2.pdf
https://github.com/deworrall92/harmonicConvolutions
false
false
true
tf
https://paperswithcode.com/paper/real-world-attack-on-mtcnn-face-detection
Real-world adversarial attack on MTCNN face detection system
1910.06261
https://arxiv.org/abs/1910.06261v2
https://arxiv.org/pdf/1910.06261v2.pdf
https://github.com/Mind23-2/MindCode-101/tree/main/MTCNN
false
false
false
mindspore
https://paperswithcode.com/paper/a-discrete-representation-of-einsteins
A Discrete Representation of Einstein's Geometric Theory of Gravitation: The Fundamental Role of Dual Tessellations in Regge Calculus
0804.0279
http://arxiv.org/abs/0804.0279v1
http://arxiv.org/pdf/0804.0279v1.pdf
https://github.com/EelcoHoogendoorn/pycomplex
false
false
true
none
https://paperswithcode.com/paper/paragraph-level-neural-question-generation
Paragraph-level Neural Question Generation with Maxout Pointer and Gated Self-attention Networks
null
https://aclanthology.org/D18-1424
https://aclanthology.org/D18-1424.pdf
https://github.com/seanie12/neural-question-generation
false
false
false
pytorch
https://paperswithcode.com/paper/geometry-aware-supertagging-with
Geometry-Aware Supertagging with Heterogeneous Dynamic Convolutions
2203.12235
https://arxiv.org/abs/2203.12235v3
https://arxiv.org/pdf/2203.12235v3.pdf
https://github.com/konstantinoskokos/dynamic-graph-supertagging
true
true
true
pytorch
https://paperswithcode.com/paper/clones-in-deep-learning-code-what-where-and
Clones in Deep Learning Code: What, Where, and Why?
2107.13614
https://arxiv.org/abs/2107.13614v1
https://arxiv.org/pdf/2107.13614v1.pdf
https://github.com/Hadhemii/ClonesInDLCode
true
true
false
none
https://paperswithcode.com/paper/interpretable-and-transferable-models-to
Interpretable and Transferable Models to Understand the Impact of Lockdown Measures on Local Air Quality
2011.10144
https://arxiv.org/abs/2011.10144v2
https://arxiv.org/pdf/2011.10144v2.pdf
https://github.com/johanna-einsiedler/covid-19-air-pollution
true
true
true
none
https://paperswithcode.com/paper/out-of-distribution-detection-with-energy
Master's Thesis: Out-of-distribution Detection with Energy-based Models
2302.12002
https://arxiv.org/abs/2302.12002v2
https://arxiv.org/pdf/2302.12002v2.pdf
https://github.com/selflein/ma-ebm
true
true
true
pytorch
https://paperswithcode.com/paper/emergence-and-stability-of-self-evolved
Emergence and Stability of Self-Evolved Cooperative Strategies using Stochastic Machines
2010.13024
https://arxiv.org/abs/2010.13024v1
https://arxiv.org/pdf/2010.13024v1.pdf
https://github.com/jinhongkuan/evol-sim
true
true
false
none
https://paperswithcode.com/paper/joint-power-control-and-lsfd-for-wireless
Joint Power Control and LSFD for Wireless-Powered Cell-Free Massive MIMO
2002.09270
https://arxiv.org/abs/2002.09270v2
https://arxiv.org/pdf/2002.09270v2.pdf
https://github.com/emilbjornson/wireless-powered-cell-free
true
true
true
none
https://paperswithcode.com/paper/bottom-up-and-top-down-attention-for-image
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
1707.07998
http://arxiv.org/abs/1707.07998v3
http://arxiv.org/pdf/1707.07998v3.pdf
https://github.com/xiaobai714/image_caption
false
false
true
pytorch
https://paperswithcode.com/paper/neural-machine-translating-from-natural
Neural Machine Translating from Natural Language to SPARQL
1906.09302
https://arxiv.org/abs/1906.09302v1
https://arxiv.org/pdf/1906.09302v1.pdf
https://github.com/xiaoyuin/tntspa
false
false
true
tf
https://paperswithcode.com/paper/semantic-histogram-based-graph-matching-for
Semantic Histogram Based Graph Matching for Real-Time Multi-Robot Global Localization in Large Scale Environment
2010.09297
https://arxiv.org/abs/2010.09297v2
https://arxiv.org/pdf/2010.09297v2.pdf
https://github.com/gxytcrc/Semantic-Graph-based--global-Localization
false
false
true
none
https://paperswithcode.com/paper/adahessian-an-adaptive-second-order-optimizer
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning
2006.00719
https://arxiv.org/abs/2006.00719v3
https://arxiv.org/pdf/2006.00719v3.pdf
https://github.com/morganmcg1/ImageNette_ImageWoof_ImageWang
false
false
true
none
https://paperswithcode.com/paper/normalization-matters-in-weakly-supervised
Normalization Matters in Weakly Supervised Object Localization
2107.13221
https://arxiv.org/abs/2107.13221v1
https://arxiv.org/pdf/2107.13221v1.pdf
https://github.com/GenDisc/IVR
false
false
true
pytorch
https://paperswithcode.com/paper/vehicle-and-license-plate-recognition-with
Vehicle and License Plate Recognition with Novel Dataset for Toll Collection
2202.05631
https://arxiv.org/abs/2202.05631v2
https://arxiv.org/pdf/2202.05631v2.pdf
https://dagshub.com/arnavr.neo/VT-LPR
false
false
false
none
https://paperswithcode.com/paper/real-time-mdnet
Real-Time MDNet
1808.08834
http://arxiv.org/abs/1808.08834v1
http://arxiv.org/pdf/1808.08834v1.pdf
https://github.com/Amgao/RLS-RTMDNet
false
false
true
pytorch
https://paperswithcode.com/paper/sequence-tagging-with-contextual-and-non
Sequence Tagging with Contextual and Non-Contextual Subword Representations: A Multilingual Evaluation
1906.01569
https://arxiv.org/abs/1906.01569v1
https://arxiv.org/pdf/1906.01569v1.pdf
https://github.com/bheinzerling/subword-sequence-tagging
true
false
false
pytorch
https://paperswithcode.com/paper/coordinated-exploration-via-intrinsic-rewards
Coordinated Exploration via Intrinsic Rewards for Multi-Agent Reinforcement Learning
1905.12127
https://arxiv.org/abs/1905.12127v3
https://arxiv.org/pdf/1905.12127v3.pdf
https://github.com/shariqiqbal2810/Multi-Explore
true
true
true
pytorch
https://paperswithcode.com/paper/certainty-equivalent-perception-based-control
Certainty Equivalent Perception-Based Control
2008.12332
https://arxiv.org/abs/2008.12332v2
https://arxiv.org/pdf/2008.12332v2.pdf
https://github.com/modestyachts/certainty_equiv_perception_control
true
true
false
none
https://paperswithcode.com/paper/factorised-representation-learning-in-cardiac
Disentangled Representation Learning in Cardiac Image Analysis
1903.09467
https://arxiv.org/abs/1903.09467v4
https://arxiv.org/pdf/1903.09467v4.pdf
https://github.com/TsaftarisCollaboratory/CSDisentanglement_Metrics_Library
false
false
true
pytorch
https://paperswithcode.com/paper/fast-deep-reinforcement-learning-using-online
Fast deep reinforcement learning using online adjustments from the past
1810.08163
http://arxiv.org/abs/1810.08163v1
http://arxiv.org/pdf/1810.08163v1.pdf
https://github.com/AnnaNikitaRL/EVA
false
false
true
pytorch
https://paperswithcode.com/paper/machine-learning-based-generalized-model-for
Machine Learning-Based Generalized Model for Finite Element Analysis of Roll Deflection During the Austenitic Stainless Steel 316L Strip Rolling
2102.02470
https://arxiv.org/abs/2102.02470v2
https://arxiv.org/pdf/2102.02470v2.pdf
https://github.com/mahshadlotfinia/Stress316L
true
true
true
none
https://paperswithcode.com/paper/kinship-identification-through-joint-learning
Kinship Identification through Joint Learning Using Kinship Verification Ensembles
2004.06382
https://arxiv.org/abs/2004.06382v4
https://arxiv.org/pdf/2004.06382v4.pdf
https://github.com/we-wan/JLNet
false
false
true
pytorch
https://paperswithcode.com/paper/parallel-streaming-wasserstein-barycenters
Parallel Streaming Wasserstein Barycenters
1705.07443
http://arxiv.org/abs/1705.07443v2
http://arxiv.org/pdf/1705.07443v2.pdf
https://github.com/mstaib/stochastic-barycenter-code
true
true
true
none
https://paperswithcode.com/paper/pano-avqa-grounded-audio-visual-question-1
Pano-AVQA: Grounded Audio-Visual Question Answering on 360$^\circ$ Videos
2110.05122
https://arxiv.org/abs/2110.05122v1
https://arxiv.org/pdf/2110.05122v1.pdf
https://github.com/hs-yn/panoavqa
true
true
false
pytorch
https://paperswithcode.com/paper/prepended-domain-transformer-heterogeneous
Prepended Domain Transformer: Heterogeneous Face Recognition without Bells and Whistles
2210.06529
https://arxiv.org/abs/2210.06529v1
https://arxiv.org/pdf/2210.06529v1.pdf
https://github.com/anjith2006/bob.paper.tifs2022_hfr_prepended_domain_transformer
false
false
false
none
https://paperswithcode.com/paper/why-not-simply-translate-a-first-swedish
Why Not Simply Translate? A First Swedish Evaluation Benchmark for Semantic Similarity
2009.03116
https://arxiv.org/abs/2009.03116v2
https://arxiv.org/pdf/2009.03116v2.pdf
https://github.com/timpal0l/sts-benchmark-swedish
true
true
false
none
https://paperswithcode.com/paper/solving-classification-problems-using
Solving classification problems using Traceless Genetic Programming
2111.14790
https://arxiv.org/abs/2111.14790v1
https://arxiv.org/pdf/2111.14790v1.pdf
https://github.com/mihaioltean/traceless-genetic-programming
true
true
false
none
https://paperswithcode.com/paper/performance-of-openbci-eeg-binary-intent
Performance of OpenBCI EEG Binary Intent Classification with Laryngeal Imagery
2107.00045
https://arxiv.org/abs/2107.00045v1
https://arxiv.org/pdf/2107.00045v1.pdf
https://github.com/nateGeorge/openbci_laryngeal_imagery
true
true
false
none