paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/towards-high-performance-video-object
|
Towards High Performance Video Object Detection for Mobiles
|
1804.05830
|
http://arxiv.org/abs/1804.05830v1
|
http://arxiv.org/pdf/1804.05830v1.pdf
|
https://github.com/stanlee321/LightFlow-Keras
| false | false | true |
tf
|
https://paperswithcode.com/paper/accurate-3d-localization-for-mav-swarms-by
|
Accurate 3D Localization for MAV Swarms by UWB and IMU Fusion
|
1807.10913
|
http://arxiv.org/abs/1807.10913v1
|
http://arxiv.org/pdf/1807.10913v1.pdf
|
https://github.com/lijx10/uwb-localization
| true | true | true |
none
|
https://paperswithcode.com/paper/photo-realistic-single-image-super-resolution
|
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
|
1609.04802
|
http://arxiv.org/abs/1609.04802v5
|
http://arxiv.org/pdf/1609.04802v5.pdf
|
https://github.com/titu1994/Super-Resolution-using-Generative-Adversarial-Networks
| false | false | true |
none
|
https://paperswithcode.com/paper/structural-learning-of-probabilistic
|
Structural Learning of Probabilistic Sentential Decision Diagrams under Partial Closed-World Assumption
|
2107.12130
|
https://arxiv.org/abs/2107.12130v1
|
https://arxiv.org/pdf/2107.12130v1.pdf
|
https://github.com/IDSIA-papers/2021-TPM
| true | true | false |
none
|
https://paperswithcode.com/paper/classifying-conversation-in-digital
|
Classifying Conversation in Digital Communication
|
1801.10527
|
http://arxiv.org/abs/1801.10527v1
|
http://arxiv.org/pdf/1801.10527v1.pdf
|
https://github.com/empiricalstateofmind/eventgraphs
| true | false | true |
none
|
https://paperswithcode.com/paper/real-time-2d-multi-person-pose-estimation-on
|
Real-time 2D Multi-Person Pose Estimation on CPU: Lightweight OpenPose
|
1811.12004
|
http://arxiv.org/abs/1811.12004v1
|
http://arxiv.org/pdf/1811.12004v1.pdf
|
https://github.com/murdockhou/lightweight_openpose
| false | false | true |
tf
|
https://paperswithcode.com/paper/virtual-cnn-branching-efficient-feature
|
Virtual CNN Branching: Efficient Feature Ensemble for Person Re-Identification
|
1803.05872
|
http://arxiv.org/abs/1803.05872v1
|
http://arxiv.org/pdf/1803.05872v1.pdf
|
https://github.com/agongt408/vbranch
| false | false | true |
tf
|
https://paperswithcode.com/paper/in-defense-of-the-triplet-loss-for-person-re
|
In Defense of the Triplet Loss for Person Re-Identification
|
1703.07737
|
http://arxiv.org/abs/1703.07737v4
|
http://arxiv.org/pdf/1703.07737v4.pdf
|
https://github.com/agongt408/vbranch
| false | false | true |
tf
|
https://paperswithcode.com/paper/pristi-a-conditional-diffusion-framework-for
|
PriSTI: A Conditional Diffusion Framework for Spatiotemporal Imputation
|
2302.09746
|
https://arxiv.org/abs/2302.09746v1
|
https://arxiv.org/pdf/2302.09746v1.pdf
|
https://github.com/lmzzml/pristi
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/mixed-effect-composite-rnn-gp-a-personalized
|
Deep Mixed Effect Model using Gaussian Processes: A Personalized and Reliable Prediction for Healthcare
|
1806.01551
|
https://arxiv.org/abs/1806.01551v3
|
https://arxiv.org/pdf/1806.01551v3.pdf
|
https://github.com/OpenXAIProject/Mixed-Effect-Composite-RNN-Gaussian-Process
| false | false | true |
tf
|
https://paperswithcode.com/paper/adversarial-attacks-on-time-series
|
Adversarial Attacks on Time Series
|
1902.10755
|
http://arxiv.org/abs/1902.10755v2
|
http://arxiv.org/pdf/1902.10755v2.pdf
|
https://github.com/titu1994/Adversarial-Attacks-Time-Series
| false | false | true |
tf
|
https://paperswithcode.com/paper/prototypical-representation-learning-for-1
|
Prototypical Representation Learning for Relation Extraction
|
2103.11647
|
https://arxiv.org/abs/2103.11647v1
|
https://arxiv.org/pdf/2103.11647v1.pdf
|
https://github.com/Alibaba-NLP/ProtoRE
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/sparse-multiway-decomposition-for-analysis
|
Sparse multiway decomposition for analysis and modeling of diffusion imaging and tractography
|
1505.07170
|
http://arxiv.org/abs/1505.07170v1
|
http://arxiv.org/pdf/1505.07170v1.pdf
|
https://github.com/brainlife/app-life
| false | false | true |
none
|
https://paperswithcode.com/paper/attanet-attention-augmented-network-for-fast
|
AttaNet: Attention-Augmented Network for Fast and Accurate Scene Parsing
|
2103.05930
|
https://arxiv.org/abs/2103.05930v1
|
https://arxiv.org/pdf/2103.05930v1.pdf
|
https://github.com/songqi-github/AttaNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/ssd-single-shot-multibox-detector
|
SSD: Single Shot MultiBox Detector
|
1512.02325
|
http://arxiv.org/abs/1512.02325v5
|
http://arxiv.org/pdf/1512.02325v5.pdf
|
https://github.com/nsom/ssd
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/dissent-sentence-representation-learning-from
|
DisSent: Sentence Representation Learning from Explicit Discourse Relations
|
1710.04334
|
https://arxiv.org/abs/1710.04334v4
|
https://arxiv.org/pdf/1710.04334v4.pdf
|
https://github.com/facebookresearch/InferSent
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/pixel-wise-attentional-gating-for
|
Pixel-wise Attentional Gating for Parsimonious Pixel Labeling
|
1805.01556
|
http://arxiv.org/abs/1805.01556v2
|
http://arxiv.org/pdf/1805.01556v2.pdf
|
https://github.com/aimerykong/Pixel-Attentional-Gating
| true | true | true |
none
|
https://paperswithcode.com/paper/chexnet-radiologist-level-pneumonia-detection
|
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning
|
1711.05225
|
http://arxiv.org/abs/1711.05225v3
|
http://arxiv.org/pdf/1711.05225v3.pdf
|
https://github.com/Azure/AzureChestXRay
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/random-erasing-data-augmentation
|
Random Erasing Data Augmentation
|
1708.04896
|
http://arxiv.org/abs/1708.04896v2
|
http://arxiv.org/pdf/1708.04896v2.pdf
|
https://github.com/NVlabs/DG-Net
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/mnemonic-descent-method-a-recurrent-process-1
|
Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment
| null |
https://www.ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf
|
https://www.ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf
|
https://github.com/trigeorgis/mdm
| false | false | false |
tf
|
https://paperswithcode.com/paper/catboost-unbiased-boosting-with-categorical
|
CatBoost: unbiased boosting with categorical features
|
1706.09516
|
http://arxiv.org/abs/1706.09516v5
|
http://arxiv.org/pdf/1706.09516v5.pdf
|
https://github.com/yumoh/catboost_iter
| false | false | true |
none
|
https://paperswithcode.com/paper/unity-a-general-platform-for-intelligent
|
Unity: A General Platform for Intelligent Agents
|
1809.02627
|
https://arxiv.org/abs/1809.02627v2
|
https://arxiv.org/pdf/1809.02627v2.pdf
|
https://github.com/Henreich/ML-Pong
| false | false | true |
tf
|
https://paperswithcode.com/paper/if-you-like-it-gan-it-probabilistic
|
If You Like It, GAN It. Probabilistic Multivariate Times Series Forecast With GAN
|
2005.01181
|
https://arxiv.org/abs/2005.01181v1
|
https://arxiv.org/pdf/2005.01181v1.pdf
|
https://github.com/flaviagiammarino/probcast-tensorflow
| false | false | true |
tf
|
https://paperswithcode.com/paper/reading-between-the-lines-can-llms-identify
|
Reading between the Lines: Can LLMs Identify Cross-Cultural Communication Gaps?
|
2502.09636
|
https://arxiv.org/abs/2502.09636v2
|
https://arxiv.org/pdf/2502.09636v2.pdf
|
https://github.com/sougata-ub/reading_between_lines
| true | true | false |
none
|
https://paperswithcode.com/paper/semi-supervised-learning-with-deep-generative-1
|
Semi-Supervised Learning with Deep Generative Models
|
1406.5298
|
http://arxiv.org/abs/1406.5298v2
|
http://arxiv.org/pdf/1406.5298v2.pdf
|
https://github.com/enalisnick/stick-breaking_dgms
| false | false | true |
none
|
https://paperswithcode.com/paper/generalised-dice-overlap-as-a-deep-learning
|
Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations
|
1707.03237
|
http://arxiv.org/abs/1707.03237v3
|
http://arxiv.org/pdf/1707.03237v3.pdf
|
https://github.com/neshitov/UNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/crowdsourcing-gaze-data-collection
|
Crowdsourcing Gaze Data Collection
|
1204.3367
|
https://arxiv.org/abs/1204.3367v1
|
https://arxiv.org/pdf/1204.3367v1.pdf
|
https://github.com/turkeyes/codecharts
| false | false | true |
none
|
https://paperswithcode.com/paper/yolo9000-better-faster-stronger
|
YOLO9000: Better, Faster, Stronger
|
1612.08242
|
http://arxiv.org/abs/1612.08242v1
|
http://arxiv.org/pdf/1612.08242v1.pdf
|
https://github.com/trongnghia00/darknet
| false | false | true |
none
|
https://paperswithcode.com/paper/single-shot-refinement-neural-network-for
|
Single-Shot Refinement Neural Network for Object Detection
|
1711.06897
|
http://arxiv.org/abs/1711.06897v3
|
http://arxiv.org/pdf/1711.06897v3.pdf
|
https://github.com/laycoding/FaceDetection
| false | false | true |
none
|
https://paperswithcode.com/paper/pylearn2-a-machine-learning-research-library
|
Pylearn2: a machine learning research library
|
1308.4214
|
http://arxiv.org/abs/1308.4214v1
|
http://arxiv.org/pdf/1308.4214v1.pdf
|
https://github.com/jacobpeplinskiV2/pylearn2
| false | false | true |
none
|
https://paperswithcode.com/paper/which-encoding-is-the-best-for-text
|
Which Encoding is the Best for Text Classification in Chinese, English, Japanese and Korean?
|
1708.02657
|
http://arxiv.org/abs/1708.02657v2
|
http://arxiv.org/pdf/1708.02657v2.pdf
|
https://github.com/zhangxiangxiao/glyph
| false | false | true |
none
|
https://paperswithcode.com/paper/fooling-lidar-perception-via-adversarial
|
Fooling LiDAR Perception via Adversarial Trajectory Perturbation
|
2103.15326
|
https://arxiv.org/abs/2103.15326v2
|
https://arxiv.org/pdf/2103.15326v2.pdf
|
https://github.com/ai4ce/FLAT
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/density-estimation-using-real-nvp
|
Density estimation using Real NVP
|
1605.08803
|
http://arxiv.org/abs/1605.08803v3
|
http://arxiv.org/pdf/1605.08803v3.pdf
|
https://github.com/ANLGBOY/RealNVP-with-PyTorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/graph-to-sequence-learning-using-gated-graph
|
Graph-to-Sequence Learning using Gated Graph Neural Networks
|
1806.09835
|
http://arxiv.org/abs/1806.09835v1
|
http://arxiv.org/pdf/1806.09835v1.pdf
|
https://github.com/beckdaniel/acl2018_graph2seq
| true | true | false |
mxnet
|
https://paperswithcode.com/paper/robust-probabilistic-modeling-with-bayesian
|
Robust Probabilistic Modeling with Bayesian Data Reweighting
|
1606.03860
|
http://arxiv.org/abs/1606.03860v3
|
http://arxiv.org/pdf/1606.03860v3.pdf
|
https://github.com/yixinwang/robust-rpm-public
| false | false | true |
none
|
https://paperswithcode.com/paper/fine-grained-analysis-of-sentence-embeddings
|
Fine-grained Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks
|
1608.04207
|
http://arxiv.org/abs/1608.04207v3
|
http://arxiv.org/pdf/1608.04207v3.pdf
|
https://github.com/facebookresearch/InferSent
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-human-computer-interface-design-for
|
A Human-Computer Interface Design for Quantitative Measure of Regret Theory
|
1810.00462
|
http://arxiv.org/abs/1810.00462v1
|
http://arxiv.org/pdf/1810.00462v1.pdf
|
https://github.com/I2RLab/RegretMeasurement-GUI
| false | false | true |
none
|
https://paperswithcode.com/paper/asynchronous-methods-for-deep-reinforcement
|
Asynchronous Methods for Deep Reinforcement Learning
|
1602.01783
|
http://arxiv.org/abs/1602.01783v2
|
http://arxiv.org/pdf/1602.01783v2.pdf
|
https://github.com/ShibiHe/Q-Optimality-Tightening
| false | false | true |
none
|
https://paperswithcode.com/paper/facenet-a-unified-embedding-for-face
|
FaceNet: A Unified Embedding for Face Recognition and Clustering
|
1503.03832
|
http://arxiv.org/abs/1503.03832v3
|
http://arxiv.org/pdf/1503.03832v3.pdf
|
https://github.com/CharlesPikachu/CharlesFace
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/playgol-learning-programs-through-play
|
Playgol: learning programs through play
|
1904.08993
|
https://arxiv.org/abs/1904.08993v2
|
https://arxiv.org/pdf/1904.08993v2.pdf
|
https://github.com/metagol/metagol
| true | true | false |
none
|
https://paperswithcode.com/paper/richer-convolutional-features-for-edge
|
Richer Convolutional Features for Edge Detection
|
1612.02103
|
https://arxiv.org/abs/1612.02103v3
|
https://arxiv.org/pdf/1612.02103v3.pdf
|
https://github.com/meteorshowers/RCF-pytorch
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/first-steps-toward-camera-model
|
First Steps Toward Camera Model Identification with Convolutional Neural Networks
|
1603.01068
|
http://arxiv.org/abs/1603.01068v2
|
http://arxiv.org/pdf/1603.01068v2.pdf
|
https://github.com/polimi-ispl/camera-model-identification-with-cnn
| false | false | false |
caffe2
|
https://paperswithcode.com/paper/deriving-machine-attention-from-human
|
Deriving Machine Attention from Human Rationales
|
1808.09367
|
http://arxiv.org/abs/1808.09367v1
|
http://arxiv.org/pdf/1808.09367v1.pdf
|
https://github.com/Sein-Jang/Deriving-Machine-Attention-from-Human-Rationales
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/convex-pentagons-that-admit-i-block
|
Convex pentagons that admit $i$-block transitive tilings
|
1510.01186
|
http://arxiv.org/abs/1510.01186v1
|
http://arxiv.org/pdf/1510.01186v1.pdf
|
https://github.com/justinjk007/Pentagonal-tiling
| false | false | true |
none
|
https://paperswithcode.com/paper/learning-to-see-in-the-dark
|
Learning to See in the Dark
|
1805.01934
|
http://arxiv.org/abs/1805.01934v1
|
http://arxiv.org/pdf/1805.01934v1.pdf
|
https://github.com/cydonia999/Learning_to_See_in_the_Dark_PyTorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/improved-adversarial-systems-for-3d-object
|
Improved Adversarial Systems for 3D Object Generation and Reconstruction
|
1707.09557
|
http://arxiv.org/abs/1707.09557v3
|
http://arxiv.org/pdf/1707.09557v3.pdf
|
https://github.com/kingcheng2000/3D-IWGAN
| false | false | true |
none
|
https://paperswithcode.com/paper/uncertainty-aware-joint-salient-object-and
|
Uncertainty-aware Joint Salient Object and Camouflaged Object Detection
|
2104.02628
|
https://arxiv.org/abs/2104.02628v1
|
https://arxiv.org/pdf/2104.02628v1.pdf
|
https://github.com/JingZhang617/Joint_COD_SOD
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/brain-tumor-segmentation-with-deep-neural
|
Brain Tumor Segmentation with Deep Neural Networks
|
1505.03540
|
http://arxiv.org/abs/1505.03540v3
|
http://arxiv.org/pdf/1505.03540v3.pdf
|
https://github.com/IAmSuyogJadhav/Brainy
| false | false | true |
none
|
https://paperswithcode.com/paper/texygen-a-benchmarking-platform-for-text
|
Texygen: A Benchmarking Platform for Text Generation Models
|
1802.01886
|
http://arxiv.org/abs/1802.01886v1
|
http://arxiv.org/pdf/1802.01886v1.pdf
|
https://github.com/geek-ai/Texygen
| true | true | true |
tf
|
https://paperswithcode.com/paper/compar-optimized-multi-compiler-for-automatic
|
ComPar: Optimized Multi-Compiler for Automatic OpenMP S2S Parallelization
|
2005.13304
|
http://arxiv.org/abs/2005.13304v1
|
http://arxiv.org/pdf/2005.13304v1.pdf
|
https://github.com/Scientific-Computing-Lab-NRCN/compar
| true | true | false |
none
|
https://paperswithcode.com/paper/asynchronous-bidirectional-decoding-for
|
Asynchronous Bidirectional Decoding for Neural Machine Translation
|
1801.05122
|
http://arxiv.org/abs/1801.05122v2
|
http://arxiv.org/pdf/1801.05122v2.pdf
|
https://github.com/DeepLearnXMU/ABD-NMT
| true | true | false |
none
|
https://paperswithcode.com/paper/vr-sgd-a-simple-stochastic-variance-reduction
|
VR-SGD: A Simple Stochastic Variance Reduction Method for Machine Learning
|
1802.09932
|
http://arxiv.org/abs/1802.09932v2
|
http://arxiv.org/pdf/1802.09932v2.pdf
|
https://github.com/jnhujnhu/VR-SGD
| true | true | false |
none
|
https://paperswithcode.com/paper/neural-machine-translation
|
Neural Machine Translation
|
1709.07809
|
http://arxiv.org/abs/1709.07809v1
|
http://arxiv.org/pdf/1709.07809v1.pdf
|
https://github.com/neulab/xnmt
| true | true | false |
none
|
https://paperswithcode.com/paper/stacked-attention-networks-for-image-question
|
Stacked Attention Networks for Image Question Answering
|
1511.02274
|
http://arxiv.org/abs/1511.02274v2
|
http://arxiv.org/pdf/1511.02274v2.pdf
|
https://github.com/zcyang/imageqa-san
| false | false | true |
none
|
https://paperswithcode.com/paper/playing-hard-exploration-games-by-watching
|
Playing hard exploration games by watching YouTube
|
1805.11592
|
http://arxiv.org/abs/1805.11592v2
|
http://arxiv.org/pdf/1805.11592v2.pdf
|
https://github.com/MaxSobolMark/HardRLWithYoutube
| false | false | true |
tf
|
https://paperswithcode.com/paper/task-agnostic-continual-learning-using-online
|
Task Agnostic Continual Learning Using Online Variational Bayes
|
1803.10123
|
http://arxiv.org/abs/1803.10123v3
|
http://arxiv.org/pdf/1803.10123v3.pdf
|
https://github.com/taldatech/tf-bgd
| false | false | true |
tf
|
https://paperswithcode.com/paper/on-the-design-of-deep-priors-for-unsupervised
|
On the Design of Deep Priors for Unsupervised Audio Restoration
|
2104.07161
|
https://arxiv.org/abs/2104.07161v1
|
https://arxiv.org/pdf/2104.07161v1.pdf
|
https://github.com/vivsivaraman/designaudiopriors
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/decoding-the-style-and-bias-of-song-lyrics
|
Decoding the Style and Bias of Song Lyrics
|
1907.07818
|
https://arxiv.org/abs/1907.07818v1
|
https://arxiv.org/pdf/1907.07818v1.pdf
|
https://github.com/manashpratim/Decoding-the-Style-and-Bias-of-Song-Lyrics
| true | true | false |
none
|
https://paperswithcode.com/paper/improving-the-resolution-of-cnn-feature-maps
|
Improving the Resolution of CNN Feature Maps Efficiently with Multisampling
|
1805.10766
|
https://arxiv.org/abs/1805.10766v2
|
https://arxiv.org/pdf/1805.10766v2.pdf
|
https://github.com/ShayanPersonal/checkered-cnn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/dual-gaussian-based-variational-subspace
|
Dual Gaussian-based Variational Subspace Disentanglement for Visible-Infrared Person Re-Identification
|
2008.02520
|
https://arxiv.org/abs/2008.02520v1
|
https://arxiv.org/pdf/2008.02520v1.pdf
|
https://github.com/TPCD/DG-VAE
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/multi-level-visual-similarity-based
|
Multi-Level Visual Similarity Based Personalized Tourist Attraction Recommendation Using Geo-Tagged Photos
|
2109.08275
|
https://arxiv.org/abs/2109.08275v2
|
https://arxiv.org/pdf/2109.08275v2.pdf
|
https://github.com/revaludo/MEAL
| true | true | false |
tf
|
https://paperswithcode.com/paper/efficient-learning-for-deep-quantum-neural
|
Efficient Learning for Deep Quantum Neural Networks
|
1902.10445
|
http://arxiv.org/abs/1902.10445v1
|
http://arxiv.org/pdf/1902.10445v1.pdf
|
https://github.com/R8monaW/DeepQNN
| true | true | false |
none
|
https://paperswithcode.com/paper/point-classification-with-runge-kutta
|
Classification with Runge-Kutta networks and feature space augmentation
|
2104.02369
|
https://arxiv.org/abs/2104.02369v2
|
https://arxiv.org/pdf/2104.02369v2.pdf
|
https://github.com/ElisaGiesecke/augmented-RK-Nets
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/coreference-resolution-with-entity
|
Coreference Resolution with Entity Equalization
| null |
https://aclanthology.org/P19-1066
|
https://aclanthology.org/P19-1066.pdf
|
https://github.com/kkjawz/coref-ee
| false | true | false |
tf
|
https://paperswithcode.com/paper/necola-towards-a-universal-field-level
|
NECOLA: Towards a Universal Field-level Cosmological Emulator
|
2111.02441
|
https://arxiv.org/abs/2111.02441v1
|
https://arxiv.org/pdf/2111.02441v1.pdf
|
https://github.com/HAWinther/MG-PICOLA-PUBLIC
| true | true | false |
none
|
https://paperswithcode.com/paper/perceptual-quality-assessment-of-smartphone
|
Perceptual Quality Assessment of Smartphone Photography
| null |
http://openaccess.thecvf.com/content_CVPR_2020/html/Fang_Perceptual_Quality_Assessment_of_Smartphone_Photography_CVPR_2020_paper.html
|
http://openaccess.thecvf.com/content_CVPR_2020/papers/Fang_Perceptual_Quality_Assessment_of_Smartphone_Photography_CVPR_2020_paper.pdf
|
https://github.com/h4nwei/SPAQ
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/llmjudge-llms-for-relevance-judgments
|
LLMJudge: LLMs for Relevance Judgments
|
2408.08896
|
https://arxiv.org/abs/2408.08896v1
|
https://arxiv.org/pdf/2408.08896v1.pdf
|
https://github.com/llm4eval/LLMJudge
| true | false | false |
none
|
https://paperswithcode.com/paper/mebow-monocular-estimation-of-body-1
|
MEBOW: Monocular Estimation of Body Orientation In the Wild
|
2011.13688
|
https://arxiv.org/abs/2011.13688v1
|
https://arxiv.org/pdf/2011.13688v1.pdf
|
https://github.com/ChenyanWu/MEBOW
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/cr-gan-learning-complete-representations-for
|
CR-GAN: Learning Complete Representations for Multi-view Generation
|
1806.11191
|
http://arxiv.org/abs/1806.11191v1
|
http://arxiv.org/pdf/1806.11191v1.pdf
|
https://github.com/bluer555/CR-GAN
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/sparse-classification-and-phase-transitions-a
|
Sparse Classification and Phase Transitions: A Discrete Optimization Perspective
|
1710.01352
|
http://arxiv.org/abs/1710.01352v1
|
http://arxiv.org/pdf/1710.01352v1.pdf
|
https://github.com/jeanpauphilet/SubsetSelectionCIO.jl
| false | false | true |
none
|
https://paperswithcode.com/paper/variational-dropout-sparsifies-deep-neural
|
Variational Dropout Sparsifies Deep Neural Networks
|
1701.05369
|
http://arxiv.org/abs/1701.05369v3
|
http://arxiv.org/pdf/1701.05369v3.pdf
|
https://github.com/ars-ashuha/variational-dropout-sparsifies-dnn
| false | false | true |
tf
|
https://paperswithcode.com/paper/a-neural-algorithm-of-artistic-style
|
A Neural Algorithm of Artistic Style
|
1508.06576
|
http://arxiv.org/abs/1508.06576v2
|
http://arxiv.org/pdf/1508.06576v2.pdf
|
https://github.com/ChetanTayal138/NeuralStyleTransfer
| false | false | true |
tf
|
https://paperswithcode.com/paper/deep-image-homography-estimation
|
Deep Image Homography Estimation
|
1606.03798
|
http://arxiv.org/abs/1606.03798v1
|
http://arxiv.org/pdf/1606.03798v1.pdf
|
https://github.com/mazenmel/Deep-homography-estimation-Pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/generative-adversarial-networks
|
Generative Adversarial Networks
|
1406.2661
|
https://arxiv.org/abs/1406.2661v1
|
https://arxiv.org/pdf/1406.2661v1.pdf
|
https://github.com/vaisakh-shaj/DeepLearning
| false | false | true |
tf
|
https://paperswithcode.com/paper/keyframe-based-monocular-slam-design-survey
|
Keyframe-based monocular SLAM: design, survey, and future directions
|
1607.00470
|
http://arxiv.org/abs/1607.00470v2
|
http://arxiv.org/pdf/1607.00470v2.pdf
|
https://github.com/adioshun/gitBook_DeepSlam
| false | false | true |
none
|
https://paperswithcode.com/paper/fiesta-fast-incremental-euclidean-distance
|
FIESTA: Fast Incremental Euclidean Distance Fields for Online Motion Planning of Aerial Robots
|
1903.02144
|
http://arxiv.org/abs/1903.02144v1
|
http://arxiv.org/pdf/1903.02144v1.pdf
|
https://github.com/HKUST-Aerial-Robotics/FIESTA
| false | false | true |
none
|
https://paperswithcode.com/paper/variational-disentanglement-for-rare-event
|
Variational Disentanglement for Rare Event Modeling
|
2009.08541
|
https://arxiv.org/abs/2009.08541v5
|
https://arxiv.org/pdf/2009.08541v5.pdf
|
https://github.com/zidixiu/VIE
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/lookahead-optimizer-k-steps-forward-1-step
|
Lookahead Optimizer: k steps forward, 1 step back
|
1907.08610
|
https://arxiv.org/abs/1907.08610v2
|
https://arxiv.org/pdf/1907.08610v2.pdf
|
https://github.com/alphadl/lookahead.pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/new-insights-into-black-bodies
|
New insights into black bodies
|
1201.1809
|
https://arxiv.org/abs/1201.1809v2
|
https://arxiv.org/pdf/1201.1809v2.pdf
|
https://github.com/mikecokina/elisa
| false | false | true |
none
|
https://paperswithcode.com/paper/geometry-based-data-generation
|
Geometry-Based Data Generation
|
1802.04927
|
http://arxiv.org/abs/1802.04927v4
|
http://arxiv.org/pdf/1802.04927v4.pdf
|
https://github.com/KrishnaswamyLab/SUGAR
| true | false | true |
none
|
https://paperswithcode.com/paper/reconstructing-functions-and-estimating
|
Reconstructing Functions and Estimating Parameters with Artificial Neural Networks: A Test with the Hubble Parameter and SNe Ia
|
1910.03636
|
https://arxiv.org/abs/1910.03636v5
|
https://arxiv.org/pdf/1910.03636v5.pdf
|
https://github.com/Guo-Jian-Wang/refann
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/object-detectors-emerge-in-deep-scene-cnns
|
Object Detectors Emerge in Deep Scene CNNs
|
1412.6856
|
http://arxiv.org/abs/1412.6856v2
|
http://arxiv.org/pdf/1412.6856v2.pdf
|
https://github.com/JepsonWong/CNN_Visualization
| false | false | true |
none
|
https://paperswithcode.com/paper/deep-reinforcement-learning-with-double-q
|
Deep Reinforcement Learning with Double Q-learning
|
1509.06461
|
http://arxiv.org/abs/1509.06461v3
|
http://arxiv.org/pdf/1509.06461v3.pdf
|
https://github.com/wtingda/DeepRLBreakout
| false | false | true |
tf
|
https://paperswithcode.com/paper/prediction-intervals-split-normal-mixture
|
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles
|
2007.09670
|
https://arxiv.org/abs/2007.09670v1
|
https://arxiv.org/pdf/2007.09670v1.pdf
|
https://github.com/tarik/pi-snm-qde
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/sequential-stratified-regeneration-mcmc-for
|
Sequential Stratified Regeneration: MCMC for Large State Spaces with an Application to Subgraph Count Estimation
|
2012.03879
|
https://arxiv.org/abs/2012.03879v3
|
https://arxiv.org/pdf/2012.03879v3.pdf
|
https://github.com/dccspeed/ripple
| true | true | true |
none
|
https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object
|
YOLOv4: Optimal Speed and Accuracy of Object Detection
|
2004.10934
|
https://arxiv.org/abs/2004.10934v1
|
https://arxiv.org/pdf/2004.10934v1.pdf
|
https://github.com/hhk7734/tensorflow-yolov4
| false | false | false |
tf
|
https://paperswithcode.com/paper/from-monte-carlo-to-las-vegas-improving
|
From Monte Carlo to Las Vegas: Improving Restricted Boltzmann Machine Training Through Stopping Sets
|
1711.08442
|
http://arxiv.org/abs/1711.08442v1
|
http://arxiv.org/pdf/1711.08442v1.pdf
|
https://github.com/PurdueMINDS/MCLV-RBM
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-neural-conversational-model
|
A Neural Conversational Model
|
1506.05869
|
http://arxiv.org/abs/1506.05869v3
|
http://arxiv.org/pdf/1506.05869v3.pdf
|
https://github.com/hamil168/Chatbots
| false | false | true |
tf
|
https://paperswithcode.com/paper/quantile-propagation-for-wasserstein
|
Quantile Propagation for Wasserstein-Approximate Gaussian Processes
|
1912.10200
|
https://arxiv.org/abs/1912.10200v3
|
https://arxiv.org/pdf/1912.10200v3.pdf
|
https://github.com/RuiZhang2016/Quantile-Propagation-for-Wasserstein-Approximate-Gaussian-Processes
| true | true | true |
none
|
https://paperswithcode.com/paper/linguistic-features-for-readability
|
Linguistic Features for Readability Assessment
|
2006.00377
|
https://arxiv.org/abs/2006.00377v1
|
https://arxiv.org/pdf/2006.00377v1.pdf
|
https://github.com/TovlyDeutsch/Linguistic-Features-for-Readability
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/gain-missing-data-imputation-using-generative
|
GAIN: Missing Data Imputation using Generative Adversarial Nets
|
1806.02920
|
http://arxiv.org/abs/1806.02920v1
|
http://arxiv.org/pdf/1806.02920v1.pdf
|
https://github.com/dhanajitb/GAIN-Pytorch
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/generative-adversarial-networks
|
Generative Adversarial Networks
|
1406.2661
|
https://arxiv.org/abs/1406.2661v1
|
https://arxiv.org/pdf/1406.2661v1.pdf
|
https://github.com/pskrunner14/face-DCGAN
| false | false | true |
tf
|
https://paperswithcode.com/paper/seboost-boosting-stochastic-learning-using
|
SEBOOST - Boosting Stochastic Learning Using Subspace Optimization Techniques
|
1609.00629
|
http://arxiv.org/abs/1609.00629v1
|
http://arxiv.org/pdf/1609.00629v1.pdf
|
https://github.com/eladrich/seboost
| true | true | false |
torch
|
https://paperswithcode.com/paper/binarized-neural-networks-training-deep
|
Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1
|
1602.02830
|
http://arxiv.org/abs/1602.02830v3
|
http://arxiv.org/pdf/1602.02830v3.pdf
|
https://github.com/csyhhu/MetaQuant
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/refer360-circ-a-referring-expression
|
Refer360$^\circ$: A Referring Expression Recognition Dataset in 360$^\circ$ Images
| null |
https://aclanthology.org/2020.acl-main.644
|
https://aclanthology.org/2020.acl-main.644.pdf
|
https://github.com/volkancirik/refer360
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/improving-patch-based-scene-text-script
|
Improving patch-based scene text script identification with ensembles of conjoined networks
|
1602.07480
|
http://arxiv.org/abs/1602.07480v2
|
http://arxiv.org/pdf/1602.07480v2.pdf
|
https://github.com/lluisgomez/script_identification
| true | true | false |
none
|
https://paperswithcode.com/paper/ladn-local-adversarial-disentangling-network
|
LADN: Local Adversarial Disentangling Network for Facial Makeup and De-Makeup
|
1904.11272
|
https://arxiv.org/abs/1904.11272v2
|
https://arxiv.org/pdf/1904.11272v2.pdf
|
https://github.com/wangguanzhi/LADN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/stackgan-text-to-photo-realistic-image
|
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
|
1612.03242
|
http://arxiv.org/abs/1612.03242v2
|
http://arxiv.org/pdf/1612.03242v2.pdf
|
https://github.com/dhirajpatnaik16297/IMG-TXT-Generative-Adversarial-Network
| false | false | true |
tf
|
https://paperswithcode.com/paper/atomnas-fine-grained-end-to-end-neural-1
|
AtomNAS: Fine-Grained End-to-End Neural Architecture Search
|
1912.09640
|
https://arxiv.org/abs/1912.09640v2
|
https://arxiv.org/pdf/1912.09640v2.pdf
|
https://github.com/meijieru/AtomNAS
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deepercut-a-deeper-stronger-and-faster-multi
|
DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model
|
1605.03170
|
http://arxiv.org/abs/1605.03170v3
|
http://arxiv.org/pdf/1605.03170v3.pdf
|
https://github.com/orkqueen/depplabseongil
| false | false | true |
tf
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.