paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/mozart-s-touch-a-lightweight-multi-modal
|
Mozart's Touch: A Lightweight Multi-modal Music Generation Framework Based on Pre-Trained Large Models
|
2405.02801
|
https://arxiv.org/abs/2405.02801v3
|
https://arxiv.org/pdf/2405.02801v3.pdf
|
https://github.com/tiffanyblews/mozartstouch
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/matrix-free-methods-for-finite-strain
|
Matrix-Free Methods for Finite-Strain Elasticity: Automatic Code Generation with No Performance Overhead
|
2505.15535
|
https://arxiv.org/abs/2505.15535v1
|
https://arxiv.org/pdf/2505.15535v1.pdf
|
https://github.com/mwichro/solid-matrix-free
| true | false | true |
none
|
https://paperswithcode.com/paper/a-sequential-benders-based-mixed-integer
|
A Sequential Benders-based Mixed-Integer Quadratic Programming Algorithm
|
2404.11786
|
https://arxiv.org/abs/2404.11786v1
|
https://arxiv.org/pdf/2404.11786v1.pdf
|
https://github.com/minlp-toolbox/camino
| false | false | true |
none
|
https://paperswithcode.com/paper/delgrad-exact-gradients-in-spiking-networks
|
DelGrad: Exact event-based gradients for training delays and weights on spiking neuromorphic hardware
|
2404.19165
|
https://arxiv.org/abs/2404.19165v3
|
https://arxiv.org/pdf/2404.19165v3.pdf
|
https://github.com/JulianGoeltz/fastAndDeep
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/fast-and-deep-neuromorphic-learning-with-time
|
Fast and energy-efficient neuromorphic deep learning with first-spike times
|
1912.11443
|
https://arxiv.org/abs/1912.11443v4
|
https://arxiv.org/pdf/1912.11443v4.pdf
|
https://github.com/JulianGoeltz/fastAndDeep
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/robust-benchmarking-in-noisy-environments
|
Robust benchmarking in noisy environments
|
1608.04295
|
http://arxiv.org/abs/1608.04295v1
|
http://arxiv.org/pdf/1608.04295v1.pdf
|
https://github.com/stdlib-js/utils-timeit
| false | false | true |
none
|
https://paperswithcode.com/paper/using-k-medoids-for-distributed-approximate
|
A Parametrizable Algorithm for Distributed Approximate Similarity Search with Arbitrary Distances
|
2405.13795
|
https://arxiv.org/abs/2405.13795v3
|
https://arxiv.org/pdf/2405.13795v3.pdf
|
https://github.com/elenagarciamorato/PDASC
| true | false | true |
none
|
https://paperswithcode.com/paper/toward-memory-aided-world-models-benchmarking
|
Toward Memory-Aided World Models: Benchmarking via Spatial Consistency
|
2505.22976
|
https://arxiv.org/abs/2505.22976v1
|
https://arxiv.org/pdf/2505.22976v1.pdf
|
https://github.com/kevin-lkw/loopnav
| true | true | false |
none
|
https://paperswithcode.com/paper/design-of-bayesian-clinical-trials-with
|
Design of Bayesian Clinical Trials with Clustered Data and Multiple Endpoints
|
2501.13218
|
https://arxiv.org/abs/2501.13218v2
|
https://arxiv.org/pdf/2501.13218v2.pdf
|
https://github.com/lmhagar/clusterdocs
| true | true | false |
none
|
https://paperswithcode.com/paper/enhancing-large-language-models-through-neuro
|
Enhancing Large Language Models through Neuro-Symbolic Integration and Ontological Reasoning
|
2504.07640
|
https://arxiv.org/abs/2504.07640v1
|
https://arxiv.org/pdf/2504.07640v1.pdf
|
https://github.com/ruslanmv/neuro-symbolic-interaction
| true | true | true |
none
|
https://paperswithcode.com/paper/inflationary-flows-calibrated-bayesian
|
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
|
2407.08843
|
https://arxiv.org/abs/2407.08843v3
|
https://arxiv.org/pdf/2407.08843v3.pdf
|
https://github.com/dannyfa/inflationary_flows
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/tracking-changing-probabilities-via-dynamic
|
Tracking Changing Probabilities via Dynamic Learners
|
2402.10142
|
https://arxiv.org/abs/2402.10142v3
|
https://arxiv.org/pdf/2402.10142v3.pdf
|
https://github.com/omadanitet/sparse-moving-averages
| true | true | true |
none
|
https://paperswithcode.com/paper/kblam-knowledge-base-augmented-language-model
|
KBLaM: Knowledge Base augmented Language Model
|
2410.10450
|
https://arxiv.org/abs/2410.10450v1
|
https://arxiv.org/pdf/2410.10450v1.pdf
|
https://github.com/microsoft/KBLaM
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/natural-language-processing-in-ethiopian
|
Natural Language Processing in Ethiopian Languages: Current State, Challenges, and Opportunities
|
2303.14406
|
https://arxiv.org/abs/2303.14406v1
|
https://arxiv.org/pdf/2303.14406v1.pdf
|
https://github.com/EthioNLP/Ethiopian-Language-Survey
| true | false | true |
none
|
https://paperswithcode.com/paper/adapt-an-interactive-procedure-for-multiple
|
AdaPT: An interactive procedure for multiple testing with side information
|
1609.06035
|
http://arxiv.org/abs/1609.06035v4
|
http://arxiv.org/pdf/1609.06035v4.pdf
|
https://github.com/patrickrchao/adaptmt
| false | false | true |
none
|
https://paperswithcode.com/paper/efficient-spatial-dataset-search-over
|
Joinable Search over Multi-source Spatial Datasets: Overlap, Coverage, and Efficiency
|
2311.13383
|
https://arxiv.org/abs/2311.13383v4
|
https://arxiv.org/pdf/2311.13383v4.pdf
|
https://github.com/yangwenzhe/msds_code
| true | true | true |
none
|
https://paperswithcode.com/paper/taming-knowledge-conflicts-in-language-models
|
Taming Knowledge Conflicts in Language Models
|
2503.10996
|
https://arxiv.org/abs/2503.10996v1
|
https://arxiv.org/pdf/2503.10996v1.pdf
|
https://github.com/GaotangLi/JUICE
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/depgraph-towards-any-structural-pruning
|
DepGraph: Towards Any Structural Pruning
|
2301.12900
|
https://arxiv.org/abs/2301.12900v2
|
https://arxiv.org/pdf/2301.12900v2.pdf
|
https://github.com/VainF/Torch-Pruning
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-efficient-convolutional-networks
|
Learning Efficient Convolutional Networks through Network Slimming
|
1708.06519
|
http://arxiv.org/abs/1708.06519v1
|
http://arxiv.org/pdf/1708.06519v1.pdf
|
https://github.com/VainF/Torch-Pruning
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/language-guided-concept-bottleneck-models-for
|
Language Guided Concept Bottleneck Models for Interpretable Continual Learning
|
2503.23283
|
https://arxiv.org/abs/2503.23283v1
|
https://arxiv.org/pdf/2503.23283v1.pdf
|
https://github.com/fishercats/clg-cbm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/ct-mamba-a-hybrid-convolutional-state-space
|
CT-Mamba: A Hybrid Convolutional State Space Model for Low-Dose CT Denoising
|
2411.07930
|
https://arxiv.org/abs/2411.07930v4
|
https://arxiv.org/pdf/2411.07930v4.pdf
|
https://github.com/zy2219105/ct-mamba
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/high-throughput-precision-phenotyping-of-left
|
High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy with Cardiovascular Deep Learning
|
2106.12511
|
https://arxiv.org/abs/2106.12511v1
|
https://arxiv.org/pdf/2106.12511v1.pdf
|
https://github.com/echonet/lvh
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/open-eyes-then-reason-fine-grained-visual
|
Open Eyes, Then Reason: Fine-grained Visual Mathematical Understanding in MLLMs
|
2501.06430
|
https://arxiv.org/abs/2501.06430v1
|
https://arxiv.org/pdf/2501.06430v1.pdf
|
https://github.com/ai4math-shanzhang/sve-math
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fast-video-generation-with-sliding-tile
|
Fast Video Generation with Sliding Tile Attention
|
2502.04507
|
https://arxiv.org/abs/2502.04507v1
|
https://arxiv.org/pdf/2502.04507v1.pdf
|
https://github.com/hao-ai-lab/fastvideo
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/data-pruning-in-generative-diffusion-models
|
Data Pruning in Generative Diffusion Models
|
2411.12523
|
https://arxiv.org/abs/2411.12523v2
|
https://arxiv.org/pdf/2411.12523v2.pdf
|
https://github.com/briqr/diffusion_data_pruning
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/compass-enhancing-spatial-understanding-in
|
CoMPaSS: Enhancing Spatial Understanding in Text-to-Image Diffusion Models
|
2412.13195
|
https://arxiv.org/abs/2412.13195v1
|
https://arxiv.org/pdf/2412.13195v1.pdf
|
https://github.com/blurgyy/compass
| true | true | true |
none
|
https://paperswithcode.com/paper/demystify-transformers-convolutions-in-modern
|
Demystify Transformers & Convolutions in Modern Image Deep Networks
|
2211.05781
|
https://arxiv.org/abs/2211.05781v3
|
https://arxiv.org/pdf/2211.05781v3.pdf
|
https://github.com/opengvlab/stm-evaluation
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/lcpy-an-open-source-python-package-for
|
lcpy: an open-source python package for parametric and dynamic Life Cycle Assessment and Life Cycle Costing
|
2506.13744
|
https://arxiv.org/abs/2506.13744v1
|
https://arxiv.org/pdf/2506.13744v1.pdf
|
https://github.com/spirdgk/lcpy
| true | true | false |
none
|
https://paperswithcode.com/paper/long-tailed-out-of-distribution-detection
|
Long-Tailed Out-of-Distribution Detection: Prioritizing Attention to Tail
|
2408.06742
|
https://arxiv.org/abs/2408.06742v3
|
https://arxiv.org/pdf/2408.06742v3.pdf
|
https://github.com/inar-design/patt
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/beyond-data-quantity-key-factors-driving
|
Beyond Data Quantity: Key Factors Driving Performance in Multilingual Language Models
|
2412.12500
|
https://arxiv.org/abs/2412.12500v1
|
https://arxiv.org/pdf/2412.12500v1.pdf
|
https://github.com/PortNLP/SHAP-MLLM-Analysis
| true | false | true |
none
|
https://paperswithcode.com/paper/preference-oriented-supervised-fine-tuning
|
Preference-Oriented Supervised Fine-Tuning: Favoring Target Model Over Aligned Large Language Models
|
2412.12865
|
https://arxiv.org/abs/2412.12865v1
|
https://arxiv.org/pdf/2412.12865v1.pdf
|
https://github.com/Savannah120/alignment-handbook-PoFT
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/a-real-time-system-for-scheduling-and
|
A Real-Time System for Scheduling and Managing UAV Delivery in Urban
|
2412.11590
|
https://arxiv.org/abs/2412.11590v1
|
https://arxiv.org/pdf/2412.11590v1.pdf
|
https://github.com/chengji253/uavdeliverysystem
| true | true | true |
none
|
https://paperswithcode.com/paper/3d-interaction-geometric-pre-training-for
|
3D Interaction Geometric Pre-training for Molecular Relational Learning
|
2412.02957
|
https://arxiv.org/abs/2412.02957v1
|
https://arxiv.org/pdf/2412.02957v1.pdf
|
https://github.com/Namkyeong/3DMRL
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/sfm-free-3d-gaussian-splatting-via
|
SfM-Free 3D Gaussian Splatting via Hierarchical Training
|
2412.01553
|
https://arxiv.org/abs/2412.01553v1
|
https://arxiv.org/pdf/2412.01553v1.pdf
|
https://github.com/jibo27/3dgs_hierarchical_training
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/the-densest-swamp-problem-subhypergraphs-with
|
The Densest SWAMP problem: subhypergraphs with arbitrary monotonic partial edge rewards
|
2506.12998
|
https://arxiv.org/abs/2506.12998v1
|
https://arxiv.org/pdf/2506.12998v1.pdf
|
https://github.com/vedangi/densest-swamp
| true | true | false |
none
|
https://paperswithcode.com/paper/cweval-outcome-driven-evaluation-on
|
CWEval: Outcome-driven Evaluation on Functionality and Security of LLM Code Generation
|
2501.08200
|
https://arxiv.org/abs/2501.08200v1
|
https://arxiv.org/pdf/2501.08200v1.pdf
|
https://github.com/co1lin/cweval
| true | true | true |
none
|
https://paperswithcode.com/paper/the-kfiou-loss-for-rotated-object-detection-1
|
The KFIoU Loss for Rotated Object Detection
|
2201.12558
|
https://arxiv.org/abs/2201.12558v6
|
https://arxiv.org/pdf/2201.12558v6.pdf
|
https://github.com/Jittor/JDet
| true | true | true |
none
|
https://paperswithcode.com/paper/h-vmunet-high-order-vision-mamba-unet-for
|
H-vmunet: High-order Vision Mamba UNet for Medical Image Segmentation
|
2403.13642
|
https://arxiv.org/abs/2403.13642v1
|
https://arxiv.org/pdf/2403.13642v1.pdf
|
https://github.com/wurenkai/h-vmunet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/leveraging-out-of-domain-data-for-domain
|
Can Out-of-Domain data help to Learn Domain-Specific Prompts for Multimodal Misinformation Detection?
|
2311.16496
|
https://arxiv.org/abs/2311.16496v4
|
https://arxiv.org/pdf/2311.16496v4.pdf
|
https://github.com/scviab/dpod
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/towards-more-trustworthy-deep-code-models-by
|
Towards More Trustworthy Deep Code Models by Enabling Out-of-Distribution Detection
|
2502.18883
|
https://arxiv.org/abs/2502.18883v1
|
https://arxiv.org/pdf/2502.18883v1.pdf
|
https://github.com/yanyanfu/cood
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/wakemint-detecting-sleepminting
|
WakeMint: Detecting Sleepminting Vulnerabilities in NFT Smart Contracts
|
2502.19032
|
https://arxiv.org/abs/2502.19032v1
|
https://arxiv.org/pdf/2502.19032v1.pdf
|
https://github.com/lei-xiao2/wakemint2
| true | true | false |
none
|
https://paperswithcode.com/paper/icm-assistant-instruction-tuning-multimodal
|
ICM-Assistant: Instruction-tuning Multimodal Large Language Models for Rule-based Explainable Image Content Moderation
|
2412.18216
|
https://arxiv.org/abs/2412.18216v2
|
https://arxiv.org/pdf/2412.18216v2.pdf
|
https://github.com/zhaoyuzhi/icm-assistant
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/structvizor-interactive-profiling-of-semi
|
StructVizor: Interactive Profiling of Semi-Structured Textual Data
|
2503.06500
|
https://arxiv.org/abs/2503.06500v1
|
https://arxiv.org/pdf/2503.06500v1.pdf
|
https://github.com/Amur-N/Semi-structured-Dataset-Collection
| true | false | false |
none
|
https://paperswithcode.com/paper/upc-sentinel-an-accurate-approach-for
|
UPC Sentinel: An Accurate Approach for Detecting Upgradeability Proxy Contracts in Ethereum
|
2501.00674
|
https://arxiv.org/abs/2501.00674v1
|
https://arxiv.org/pdf/2501.00674v1.pdf
|
https://github.com/SAILResearch/replication-24-amir-upc_sentinel
| true | false | true |
none
|
https://paperswithcode.com/paper/mcbench-a-benchmark-suite-for-monte-carlo
|
MCBench: A Benchmark Suite for Monte Carlo Sampling Algorithms
|
2501.03138
|
https://arxiv.org/abs/2501.03138v1
|
https://arxiv.org/pdf/2501.03138v1.pdf
|
https://github.com/tudo-physik-e4/mcbench
| true | true | true |
none
|
https://paperswithcode.com/paper/stability-of-data-dependent-ridge
|
Stability of Data-Dependent Ridge-Regularization for Inverse Problems
|
2406.12289
|
https://arxiv.org/abs/2406.12289v2
|
https://arxiv.org/pdf/2406.12289v2.pdf
|
https://github.com/fabianaltekrueger/dataadaptiverr
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/2408-00109
|
Back to the Continuous Attractor
|
2408.00109
|
https://arxiv.org/abs/2408.00109v3
|
https://arxiv.org/pdf/2408.00109v3.pdf
|
https://github.com/catniplab/back_to_the_continuous_attractor
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/normalizing-batch-normalization-for-long
|
Normalizing Batch Normalization for Long-Tailed Recognition
|
2501.03122
|
https://arxiv.org/abs/2501.03122v1
|
https://arxiv.org/pdf/2501.03122v1.pdf
|
https://github.com/yuxiangbao/nbn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/generalizable-lightweight-proxy-for-robust-1
|
Generalizable Lightweight Proxy for Robust NAS against Diverse Perturbations
|
2306.05031
|
https://arxiv.org/abs/2306.05031v2
|
https://arxiv.org/pdf/2306.05031v2.pdf
|
https://github.com/hyeonjeongha/mm-poisonrag
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/urinary-tract-infection-detection-in-digital
|
Urinary Tract Infection Detection in Digital Remote Monitoring: Strategies for Managing Participant-Specific Prediction Complexity
|
2502.17484
|
https://arxiv.org/abs/2502.17484v1
|
https://arxiv.org/pdf/2502.17484v1.pdf
|
https://github.com/Kexin-Fan/Multi-Source-Analysing
| true | false | false |
none
|
https://paperswithcode.com/paper/seconnds-secure-outsourced-neural-network
|
SecONNds: Secure Outsourced Neural Network Inference on ImageNet
|
2506.11586
|
https://arxiv.org/abs/2506.11586v1
|
https://arxiv.org/pdf/2506.11586v1.pdf
|
https://github.com/seconnds/seconnds_1_25
| true | true | false |
none
|
https://paperswithcode.com/paper/slowcal-sgd-slow-query-points-improve-local
|
SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization
|
2304.04169
|
https://arxiv.org/abs/2304.04169v2
|
https://arxiv.org/pdf/2304.04169v2.pdf
|
https://github.com/dahan198/slowcal-sgd
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/figstep-jailbreaking-large-vision-language
|
FigStep: Jailbreaking Large Vision-Language Models via Typographic Visual Prompts
|
2311.05608
|
https://arxiv.org/abs/2311.05608v3
|
https://arxiv.org/pdf/2311.05608v3.pdf
|
https://github.com/thuccslab/figstep
| true | true | true |
none
|
https://paperswithcode.com/paper/generating-structured-outputs-from-language
|
Generating Structured Outputs from Language Models: Benchmark and Studies
|
2501.10868
|
https://arxiv.org/abs/2501.10868v1
|
https://arxiv.org/pdf/2501.10868v1.pdf
|
https://github.com/guidance-ai/llguidance
| true | true | true |
none
|
https://paperswithcode.com/paper/synthetic-data-augmentation-for-enhancing
|
Synthetic Data Augmentation for Enhancing Harmful Algal Bloom Detection with Machine Learning
|
2503.03794
|
https://arxiv.org/abs/2503.03794v1
|
https://arxiv.org/pdf/2503.03794v1.pdf
|
https://github.com/Tonyhrule/Synthetic-HAB-ML-Augmentation
| true | false | false |
none
|
https://paperswithcode.com/paper/evaluating-knowledge-generation-and-self
|
Evaluating Knowledge Generation and Self-Refinement Strategies for LLM-based Column Type Annotation
|
2503.02718
|
https://arxiv.org/abs/2503.02718v1
|
https://arxiv.org/pdf/2503.02718v1.pdf
|
https://github.com/wbsg-uni-mannheim/tabanngpt
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/muble-mujoco-and-blender-simulation
|
MuBlE: MuJoCo and Blender simulation Environment and Benchmark for Task Planning in Robot Manipulation
|
2503.02834
|
https://arxiv.org/abs/2503.02834v1
|
https://arxiv.org/pdf/2503.02834v1.pdf
|
https://github.com/michaal94/muble
| true | true | false |
none
|
https://paperswithcode.com/paper/r2-t2-re-routing-in-test-time-for-multimodal
|
R2-T2: Re-Routing in Test-Time for Multimodal Mixture-of-Experts
|
2502.20395
|
https://arxiv.org/abs/2502.20395v1
|
https://arxiv.org/pdf/2502.20395v1.pdf
|
https://github.com/tianyi-lab/R2-T2
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/reasoning-language-models-a-blueprint
|
Reasoning Language Models: A Blueprint
|
2501.11223
|
https://arxiv.org/abs/2501.11223v3
|
https://arxiv.org/pdf/2501.11223v3.pdf
|
https://github.com/spcl/x1
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/efficient-training-of-large-vision-models-via
|
Efficient Training of Large Vision Models via Advanced Automated Progressive Learning
|
2410.00350
|
https://arxiv.org/abs/2410.00350v1
|
https://arxiv.org/pdf/2410.00350v1.pdf
|
https://github.com/changlin31/autoprog-zero
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/hdee-heterogeneous-domain-expert-ensemble
|
HDEE: Heterogeneous Domain Expert Ensemble
|
2502.19385
|
https://arxiv.org/abs/2502.19385v1
|
https://arxiv.org/pdf/2502.19385v1.pdf
|
https://github.com/gensyn-ai/hdee
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fintsb-a-comprehensive-and-practical
|
FinTSB: A Comprehensive and Practical Benchmark for Financial Time Series Forecasting
|
2502.18834
|
https://arxiv.org/abs/2502.18834v1
|
https://arxiv.org/pdf/2502.18834v1.pdf
|
https://github.com/tongjifinlab/fintsbenchmark
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/sharingan-a-transformer-architecture-for
|
Sharingan: A Transformer Architecture for Multi-Person Gaze Following
| null |
http://openaccess.thecvf.com//content/CVPR2024/html/Tafasca_Sharingan_A_Transformer_Architecture_for_Multi-Person_Gaze_Following_CVPR_2024_paper.html
|
http://openaccess.thecvf.com//content/CVPR2024/papers/Tafasca_Sharingan_A_Transformer_Architecture_for_Multi-Person_Gaze_Following_CVPR_2024_paper.pdf
|
https://github.com/idiap/sharingan
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/realtabformer-generating-realistic-relational
|
REaLTabFormer: Generating Realistic Relational and Tabular Data using Transformers
|
2302.02041
|
https://arxiv.org/abs/2302.02041v1
|
https://arxiv.org/pdf/2302.02041v1.pdf
|
https://github.com/worldbank/realtabformer
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/deep-common-feature-mining-for-efficient
|
Deep Common Feature Mining for Efficient Video Semantic Segmentation
|
2403.02689
|
https://arxiv.org/abs/2403.02689v2
|
https://arxiv.org/pdf/2403.02689v2.pdf
|
https://github.com/buaahugegun/dcfm
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/tpch-tensor-interacted-projection-and
|
TPCH: Tensor-interacted Projection and Cooperative Hashing for Multi-view Clustering
|
2412.18847
|
https://arxiv.org/abs/2412.18847v1
|
https://arxiv.org/pdf/2412.18847v1.pdf
|
https://github.com/jankin-wang/tpch
| true | true | false |
none
|
https://paperswithcode.com/paper/semi-truths-a-large-scale-dataset-of-ai
|
Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors
|
2411.07472
|
https://arxiv.org/abs/2411.07472v1
|
https://arxiv.org/pdf/2411.07472v1.pdf
|
https://github.com/j-kruk/semitruths
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/invariant-derivations-and-trace-bounds
|
Invariant derivations and trace bounds
|
2312.03101
|
https://arxiv.org/abs/2312.03101v4
|
https://arxiv.org/pdf/2312.03101v4.pdf
|
https://github.com/skipgaribaldi/invariant-derivations
| true | true | true |
none
|
https://paperswithcode.com/paper/sampling-is-all-you-need-on-modeling-long
|
Sampling Is All You Need on Modeling Long-Term User Behaviors for CTR Prediction
|
2205.10249
|
https://arxiv.org/abs/2205.10249v2
|
https://arxiv.org/pdf/2205.10249v2.pdf
|
https://github.com/reczoo/FuxiCTR
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/edicho-consistent-image-editing-in-the-wild
|
Edicho: Consistent Image Editing in the Wild
|
2412.21079
|
https://arxiv.org/abs/2412.21079v3
|
https://arxiv.org/pdf/2412.21079v3.pdf
|
https://github.com/ezioby/edicho
| true | true | true |
none
|
https://paperswithcode.com/paper/exploiting-music-source-separation-for
|
Exploiting Music Source Separation for Automatic Lyrics Transcription with Whisper
|
2506.15514
|
https://arxiv.org/abs/2506.15514v1
|
https://arxiv.org/pdf/2506.15514v1.pdf
|
https://github.com/jaza-syed/mss-alt
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/adversarial-attacks-on-robotic-vision
|
Adversarial Attacks on Robotic Vision Language Action Models
|
2506.03350
|
https://arxiv.org/abs/2506.03350v1
|
https://arxiv.org/pdf/2506.03350v1.pdf
|
https://github.com/eliotjones1/robogcg
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/navigating-image-restoration-with-var-s
|
Navigating Image Restoration with VAR's Distribution Alignment Prior
| null |
http://openaccess.thecvf.com//content/CVPR2025/html/Wang_Navigating_Image_Restoration_with_VARs_Distribution_Alignment_Prior_CVPR_2025_paper.html
|
http://openaccess.thecvf.com//content/CVPR2025/papers/Wang_Navigating_Image_Restoration_with_VARs_Distribution_Alignment_Prior_CVPR_2025_paper.pdf
|
https://github.com/siywang541/Varformer
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/causal-aware-large-language-models-enhancing
|
Causal-aware Large Language Models: Enhancing Decision-Making Through Learning, Adapting and Acting
|
2505.24710
|
https://arxiv.org/abs/2505.24710v1
|
https://arxiv.org/pdf/2505.24710v1.pdf
|
https://github.com/dmirlab-group/causal-aware_llms
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/nfisis-new-perspectives-on-fuzzy-inference
|
NFISiS: New Perspectives on Fuzzy Inference Systems for Renewable Energy Forecasting
|
2506.06285
|
https://arxiv.org/abs/2506.06285v1
|
https://arxiv.org/pdf/2506.06285v1.pdf
|
https://github.com/kaikerochaalves/NFISiS_PyPi
| true | false | false |
none
|
https://paperswithcode.com/paper/identifying-spurious-correlations-using
|
Identifying Spurious Correlations using Counterfactual Alignment
|
2312.02186
|
https://arxiv.org/abs/2312.02186v3
|
https://arxiv.org/pdf/2312.02186v3.pdf
|
https://github.com/ieee8023/latentshift
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cooperative-open-ended-learning-framework-for
|
Cooperative Open-ended Learning Framework for Zero-shot Coordination
|
2302.04831
|
https://arxiv.org/abs/2302.04831v4
|
https://arxiv.org/pdf/2302.04831v4.pdf
|
https://github.com/PKU-Alignment/ProAgent
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/optimal-group-fair-classifiers-from-linear
|
A Unified Post-Processing Framework for Group Fairness in Classification
|
2405.04025
|
https://arxiv.org/abs/2405.04025v2
|
https://arxiv.org/pdf/2405.04025v2.pdf
|
https://github.com/rxian/fair-classification
| true | true | true |
none
|
https://paperswithcode.com/paper/teaching-lmms-for-image-quality-scoring-and
|
Teaching LMMs for Image Quality Scoring and Interpreting
|
2503.09197
|
https://arxiv.org/abs/2503.09197v1
|
https://arxiv.org/pdf/2503.09197v1.pdf
|
https://github.com/q-future/q-sit
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/pretraining-language-models-to-ponder-in
|
Pretraining Language Models to Ponder in Continuous Space
|
2505.20674
|
https://arxiv.org/abs/2505.20674v1
|
https://arxiv.org/pdf/2505.20674v1.pdf
|
https://github.com/lumia-group/ponderinglm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fading-in-the-flow-suppression-of-cold-gas
|
Fading in the Flow: Suppression of cold gas growth in expanding galactic outflows
|
2506.08545
|
https://arxiv.org/abs/2506.08545v2
|
https://arxiv.org/pdf/2506.08545v2.pdf
|
https://github.com/dutta-alankar/cloud-crushing_PLUTO
| true | true | false |
none
|
https://paperswithcode.com/paper/group-robust-sample-reweighting-for
|
Group-robust Sample Reweighting for Subpopulation Shifts via Influence Functions
|
2503.07315
|
https://arxiv.org/abs/2503.07315v1
|
https://arxiv.org/pdf/2503.07315v1.pdf
|
https://github.com/qiaoruiyt/gsr
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/planetesimal-impact-vapor-plumes-and-nebular
|
Planetesimal Impact Vapor Plumes and Nebular Shocks form Chondritic Mixtures
|
2503.05636
|
https://arxiv.org/abs/2503.05636v1
|
https://arxiv.org/pdf/2503.05636v1.pdf
|
https://github.com/ststewart/ivans
| true | true | false |
none
|
https://paperswithcode.com/paper/chatbench-from-static-benchmarks-to-human-ai
|
ChatBench: From Static Benchmarks to Human-AI Evaluation
|
2504.07114
|
https://arxiv.org/abs/2504.07114v1
|
https://arxiv.org/pdf/2504.07114v1.pdf
|
https://github.com/serinachang5/interactive-eval
| true | true | true |
none
|
https://paperswithcode.com/paper/infofusion-controller-informed-trrt-star-with
|
InfoFusion Controller: Informed TRRT Star with Mutual Information based on Fusion of Pure Pursuit and MPC for Enhanced Path Planning
|
2503.06010
|
https://arxiv.org/abs/2503.06010v1
|
https://arxiv.org/pdf/2503.06010v1.pdf
|
https://github.com/drawingprocess/infofusioncontroller
| true | true | false |
none
|
https://paperswithcode.com/paper/generator-a-long-context-generative-genomic
|
GENERator: A Long-Context Generative Genomic Foundation Model
|
2502.07272
|
https://arxiv.org/abs/2502.07272v3
|
https://arxiv.org/pdf/2502.07272v3.pdf
|
https://github.com/generteam/generator
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/controller-distillation-reduces-fragile-brain
|
Controller Distillation Reduces Fragile Brain-Body Co-Adaptation and Enables Migrations in MAP-Elites
|
2504.06523
|
https://arxiv.org/abs/2504.06523v1
|
https://arxiv.org/pdf/2504.06523v1.pdf
|
https://github.com/mertan-a/pollination
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/holistic-fusion-task-and-setup-agnostic-robot
|
Holistic Fusion: Task- and Setup-Agnostic Robot Localization and State Estimation with Factor Graphs
|
2504.06479
|
https://arxiv.org/abs/2504.06479v1
|
https://arxiv.org/pdf/2504.06479v1.pdf
|
https://github.com/leggedrobotics/holistic_fusion
| true | false | true |
none
|
https://paperswithcode.com/paper/enforcement-agents-enhancing-accountability
|
Enforcement Agents: Enhancing Accountability and Resilience in Multi-Agent AI Frameworks
|
2504.04070
|
https://arxiv.org/abs/2504.04070v1
|
https://arxiv.org/pdf/2504.04070v1.pdf
|
https://github.com/SAGAR-TAMANG/Enforcement-Agents
| true | false | true |
none
|
https://paperswithcode.com/paper/frnet-frustum-range-networks-for-scalable
|
FRNet: Frustum-Range Networks for Scalable LiDAR Segmentation
|
2312.04484
|
https://arxiv.org/abs/2312.04484v3
|
https://arxiv.org/pdf/2312.04484v3.pdf
|
https://github.com/Xiangxu-0103/FRNet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/boosting-relational-deep-learning-with
|
Boosting Relational Deep Learning with Pretrained Tabular Models
|
2504.04934
|
https://arxiv.org/abs/2504.04934v1
|
https://arxiv.org/pdf/2504.04934v1.pdf
|
https://github.com/AntonioLonga/LightRDL
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/continual-deep-reinforcement-learning-with
|
Continual Deep Reinforcement Learning with Task-Agnostic Policy Distillation
|
2411.16532
|
https://arxiv.org/abs/2411.16532v1
|
https://arxiv.org/pdf/2411.16532v1.pdf
|
https://github.com/wabbajack1/tapd
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/darkelf-a-python-package-for-dark-matter
|
DarkELF: A python package for dark matter scattering in dielectric targets
|
2104.12786
|
https://arxiv.org/abs/2104.12786v1
|
https://arxiv.org/pdf/2104.12786v1.pdf
|
https://github.com/tongylin/DarkELF
| true | true | true |
none
|
https://paperswithcode.com/paper/dark-matter-direct-detection-from-the-single
|
Dark matter direct detection from the single phonon to the nuclear recoil regime
|
2205.02250
|
https://arxiv.org/abs/2205.02250v2
|
https://arxiv.org/pdf/2205.02250v2.pdf
|
https://github.com/tongylin/DarkELF
| true | true | true |
none
|
https://paperswithcode.com/paper/segagent-exploring-pixel-understanding-1
|
SegAgent: Exploring Pixel Understanding Capabilities in MLLMs by Imitating Human Annotator Trajectories
|
2503.08625
|
https://arxiv.org/abs/2503.08625v1
|
https://arxiv.org/pdf/2503.08625v1.pdf
|
https://github.com/aim-uofa/SegAgent
| true | true | true |
none
|
https://paperswithcode.com/paper/rsar-restricted-state-angle-resolver-and
|
RSAR: Restricted State Angle Resolver and Rotated SAR Benchmark
|
2501.04440
|
https://arxiv.org/abs/2501.04440v1
|
https://arxiv.org/pdf/2501.04440v1.pdf
|
https://github.com/visionxlab/earth-adapter
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/earth-adapter-bridge-the-geospatial-domain
|
Earth-Adapter: Bridge the Geospatial Domain Gaps with Mixture of Frequency Adaptation
|
2504.06220
|
https://arxiv.org/abs/2504.06220v3
|
https://arxiv.org/pdf/2504.06220v3.pdf
|
https://github.com/visionxlab/earth-adapter
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cyberllminstruct-a-new-dataset-for-analysing
|
CyberLLMInstruct: A New Dataset for Analysing Safety of Fine-Tuned LLMs Using Cyber Security Data
|
2503.09334
|
https://arxiv.org/abs/2503.09334v2
|
https://arxiv.org/pdf/2503.09334v2.pdf
|
https://github.com/adelsamir01/cyberllminstruct
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/growing-black-hole-hair-in-nonminimally
|
Growing black-hole hair in nonminimally coupled biscalar gravity
|
2501.14034
|
https://arxiv.org/abs/2501.14034v1
|
https://arxiv.org/pdf/2501.14034v1.pdf
|
https://bitbucket.org/canuda/canuda_axidilaton
| true | true | false |
none
|
https://paperswithcode.com/paper/the-kodaira-dimension-of-hilbert-modular
|
The Kodaira dimension of Hilbert modular threefolds
|
2501.15719
|
https://arxiv.org/abs/2501.15719v1
|
https://arxiv.org/pdf/2501.15719v1.pdf
|
https://github.com/adammlogan/hilbert-modular-threefolds
| true | true | false |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.