paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/weightedshap-analyzing-and-improving-shapley
|
WeightedSHAP: analyzing and improving Shapley based feature attributions
|
2209.13429
|
https://arxiv.org/abs/2209.13429v1
|
https://arxiv.org/pdf/2209.13429v1.pdf
|
https://github.com/ykwon0407/weightedshap
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/domain-generalization-in-robust-invariant
|
Domain Generalization In Robust Invariant Representation
|
2304.03431
|
https://arxiv.org/abs/2304.03431v2
|
https://arxiv.org/pdf/2304.03431v2.pdf
|
https://github.com/GauriGupta19/Domain-Generalisation-in-Invariance
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/generating-persona-consistent-dialogues-by
|
Generating Persona Consistent Dialogues by Exploiting Natural Language Inference
|
1911.05889
|
https://arxiv.org/abs/1911.05889v4
|
https://arxiv.org/pdf/1911.05889v4.pdf
|
https://github.com/songhaoyu/RCDG
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/a-delphes-card-for-the-eic-yellow-report
|
A Delphes card for the EIC yellow-report detector
|
2103.06886
|
https://arxiv.org/abs/2103.06886v1
|
https://arxiv.org/pdf/2103.06886v1.pdf
|
https://zenodo.org/record/4592887
| true | false | false |
none
|
https://paperswithcode.com/paper/defakehop-a-light-weight-high-performance
|
DefakeHop: A Light-Weight High-Performance Deepfake Detector
|
2103.06929
|
https://arxiv.org/abs/2103.06929v1
|
https://arxiv.org/pdf/2103.06929v1.pdf
|
https://github.com/hongshuochen/DefakeHop
| true | false | true |
none
|
https://paperswithcode.com/paper/self-supervised-learning-from-contrastive
|
Self-Supervised Learning from Contrastive Mixtures for Personalized Speech Enhancement
|
2011.03426
|
https://arxiv.org/abs/2011.03426v2
|
https://arxiv.org/pdf/2011.03426v2.pdf
|
https://github.com/IU-SAIGE/contrastive_mixtures
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/modular-interactive-video-object-segmentation
|
Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion
|
2103.07941
|
https://arxiv.org/abs/2103.07941v3
|
https://arxiv.org/pdf/2103.07941v3.pdf
|
https://github.com/hkchengrex/Mask-Propagation
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/fast-is-better-than-free-revisiting-1
|
Fast is better than free: Revisiting adversarial training
|
2001.03994
|
https://arxiv.org/abs/2001.03994v1
|
https://arxiv.org/pdf/2001.03994v1.pdf
|
https://github.com/juliagusak/neural-ode-metasolver
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/video-object-segmentation-using-space-time
|
Video Object Segmentation using Space-Time Memory Networks
|
1904.00607
|
https://arxiv.org/abs/1904.00607v2
|
https://arxiv.org/pdf/1904.00607v2.pdf
|
https://github.com/hkchengrex/Mask-Propagation
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/batch-renormalization-towards-reducing
|
Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models
|
1702.03275
|
http://arxiv.org/abs/1702.03275v2
|
http://arxiv.org/pdf/1702.03275v2.pdf
|
https://github.com/eigenfoo/batch-renorm
| false | false | true |
tf
|
https://paperswithcode.com/paper/kernelized-memory-network-for-video-object
|
Kernelized Memory Network for Video Object Segmentation
|
2007.08270
|
https://arxiv.org/abs/2007.08270v1
|
https://arxiv.org/pdf/2007.08270v1.pdf
|
https://github.com/hkchengrex/Mask-Propagation
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/dynamicppl-stan-like-speed-for-dynamic
|
DynamicPPL: Stan-like Speed for Dynamic Probabilistic Models
|
2002.02702
|
https://arxiv.org/abs/2002.02702v1
|
https://arxiv.org/pdf/2002.02702v1.pdf
|
https://github.com/storopoli/Bayesian-Julia
| false | false | true |
none
|
https://paperswithcode.com/paper/neural-additive-models-interpretable-machine
|
Neural Additive Models: Interpretable Machine Learning with Neural Nets
|
2004.13912
|
https://arxiv.org/abs/2004.13912v2
|
https://arxiv.org/pdf/2004.13912v2.pdf
|
https://github.com/kherud/neural-additive-models-pt
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/two-directional-simultaneous-inference-for
|
Two-directional simultaneous inference for high-dimensional models
|
2012.11100
|
https://arxiv.org/abs/2012.11100v4
|
https://arxiv.org/pdf/2012.11100v4.pdf
|
https://github.com/LinhzLab/TOSI
| true | true | false |
none
|
https://paperswithcode.com/paper/181209970
|
Synthetic Difference in Differences
|
1812.09970
|
https://arxiv.org/abs/1812.09970v4
|
https://arxiv.org/pdf/1812.09970v4.pdf
|
https://github.com/synth-inference/synthdid
| true | true | true |
none
|
https://paperswithcode.com/paper/adaptive-gradient-balancing-for
|
Adaptive Gradient Balancing for UndersampledMRI Reconstruction and Image-to-Image Translation
|
2104.01889
|
https://arxiv.org/abs/2104.01889v1
|
https://arxiv.org/pdf/2104.01889v1.pdf
|
https://github.com/ItzikMalkiel/AGB
| true | true | false |
tf
|
https://paperswithcode.com/paper/universal-evolutionary-model-for-periodical
|
Universal evolutionary model for periodical species
|
2010.00940
|
https://arxiv.org/abs/2010.00940v2
|
https://arxiv.org/pdf/2010.00940v2.pdf
|
https://github.com/ivanslapnicar/EvolutionaryModel.jl
| true | true | true |
none
|
https://paperswithcode.com/paper/improve-query-focused-abstractive
|
Improve Query Focused Abstractive Summarization by Incorporating Answer Relevance
|
2105.12969
|
https://arxiv.org/abs/2105.12969v2
|
https://arxiv.org/pdf/2105.12969v2.pdf
|
https://github.com/HLTCHKUST/QFS
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/adaptive-mask-sampling-and-manifold-to
|
Adaptive Mask Sampling and Manifold to Euclidean Subspace Learning with Distance Covariance Representation for Hyperspectral Image Classification
| null |
https://ieeexplore.ieee.org/abstract/document/10097620
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10097620&tag=1
|
https://github.com/lms-07/AMS-M2ESL
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/geniepath-graph-neural-networks-with-adaptive
|
GeniePath: Graph Neural Networks with Adaptive Receptive Paths
|
1802.00910
|
http://arxiv.org/abs/1802.00910v3
|
http://arxiv.org/pdf/1802.00910v3.pdf
|
https://github.com/dmlc/dgl/tree/master/examples/pytorch/geniepath
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/a-bop-and-beyond-a-second-order-optimizer-for
|
A Bop and Beyond: A Second Order Optimizer for Binarized Neural Networks
|
2104.05124
|
https://arxiv.org/abs/2104.05124v1
|
https://arxiv.org/pdf/2104.05124v1.pdf
|
https://github.com/CuauSuarez/Bop2ndOrder
| true | false | true |
tf
|
https://paperswithcode.com/paper/continuous-galerkin-schemes-for-semi-explicit
|
Continuous Galerkin Schemes for Semi-Explicit Differential-Algebraic Equations
|
2011.09336
|
https://arxiv.org/abs/2011.09336v2
|
https://arxiv.org/pdf/2011.09336v2.pdf
|
https://github.com/rolandherzog/cg-schemes-for-daes
| true | true | true |
none
|
https://paperswithcode.com/paper/pthash-revisiting-fch-minimal-perfect-hashing
|
PTHash: Revisiting FCH Minimal Perfect Hashing
|
2104.10402
|
https://arxiv.org/abs/2104.10402v2
|
https://arxiv.org/pdf/2104.10402v2.pdf
|
https://github.com/jermp/pthash
| true | true | true |
none
|
https://paperswithcode.com/paper/fibro-cosanet-pulmonary-fibrosis-prognosis
|
Fibro-CoSANet: Pulmonary Fibrosis Prognosis Prediction using a Convolutional Self Attention Network
|
2104.05889
|
https://arxiv.org/abs/2104.05889v1
|
https://arxiv.org/pdf/2104.05889v1.pdf
|
https://github.com/zabir-nabil/Fibro-CoSANet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/from-partners-to-populations-a-hierarchical
|
From partners to populations: A hierarchical Bayesian account of coordination and convention
|
2104.05857
|
https://arxiv.org/abs/2104.05857v3
|
https://arxiv.org/pdf/2104.05857v3.pdf
|
https://github.com/hawkrobe/conventions_model
| true | true | false |
none
|
https://paperswithcode.com/paper/enet-a-deep-neural-network-architecture-for
|
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
|
1606.02147
|
http://arxiv.org/abs/1606.02147v1
|
http://arxiv.org/pdf/1606.02147v1.pdf
|
https://github.com/MindSpore-MS-Code2/code0/tree/main/E-NET
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/fantastic-data-and-how-to-query-them
|
Fantastic Data and How to Query Them
|
2201.05026
|
https://arxiv.org/abs/2201.05026v1
|
https://arxiv.org/pdf/2201.05026v1.pdf
|
https://github.com/cqels/vision
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/cascade-dynamics-modeling-with-attention
|
Cascade Dynamics Modeling with Attention-based Recurrent Neural Network
| null |
https://www.ijcai.org/Proceedings/2017/0416.pdf
|
https://www.ijcai.org/Proceedings/2017/0416.pdf
|
https://github.com/Allen517/cyanrnn_project
| false | false | false |
none
|
https://paperswithcode.com/paper/goo-a-dataset-for-gaze-object-prediction-in
|
GOO: A Dataset for Gaze Object Prediction in Retail Environments
|
2105.10793
|
https://arxiv.org/abs/2105.10793v2
|
https://arxiv.org/pdf/2105.10793v2.pdf
|
https://github.com/upeee/GOO-GAZE2021
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/crossasr-a-modular-differential-testing
|
CrossASR++: A Modular Differential Testing Framework for Automatic Speech Recognition
|
2105.14881
|
https://arxiv.org/abs/2105.14881v2
|
https://arxiv.org/pdf/2105.14881v2.pdf
|
https://github.com/soarsmu/CrossASRplus
| true | true | false |
paddle
|
https://paperswithcode.com/paper/an-iterative-jacobi-like-algorithm-to-compute
|
An iterative Jacobi-like algorithm to compute a few sparse eigenvalue-eigenvector pairs
|
2105.14642
|
https://arxiv.org/abs/2105.14642v2
|
https://arxiv.org/pdf/2105.14642v2.pdf
|
https://github.com/cristian-rusu-research/JACOBI-PCA
| true | true | false |
none
|
https://paperswithcode.com/paper/robust-bayesian-nonparametric-variable
|
Robust Bayesian Nonparametric Variable Selection for Linear Regression
|
2105.11022
|
https://arxiv.org/abs/2105.11022v2
|
https://arxiv.org/pdf/2105.11022v2.pdf
|
https://github.com/albcab/RobustVariableSelection
| true | true | false |
none
|
https://paperswithcode.com/paper/dexycb-a-benchmark-for-capturing-hand
|
DexYCB: A Benchmark for Capturing Hand Grasping of Objects
|
2104.04631
|
https://arxiv.org/abs/2104.04631v1
|
https://arxiv.org/pdf/2104.04631v1.pdf
|
https://github.com/NVlabs/dex-ycb-toolkit
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/emcee-the-mcmc-hammer
|
emcee: The MCMC Hammer
|
1202.3665
|
http://arxiv.org/abs/1202.3665v4
|
http://arxiv.org/pdf/1202.3665v4.pdf
|
https://gitlab.com/Noxbru/Katu
| false | false | true |
none
|
https://paperswithcode.com/paper/learning-fuzzy-clustering-for-spect-ct
|
Learning Fuzzy Clustering for SPECT/CT Segmentation via Convolutional Neural Networks
|
2104.08623
|
https://arxiv.org/abs/2104.08623v3
|
https://arxiv.org/pdf/2104.08623v3.pdf
|
https://github.com/junyuchen245/Semi-supervised_FCM_Loss_for_Segmentation
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/writing-in-the-air-unconstrained-text
|
Writing in The Air: Unconstrained Text Recognition from Finger Movement Using Spatio-Temporal Convolution
|
2104.09021
|
https://arxiv.org/abs/2104.09021v1
|
https://arxiv.org/pdf/2104.09021v1.pdf
|
https://github.com/Uehwan/WiTA
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/fashion-guided-adversarial-attack-on-person
|
Fashion-Guided Adversarial Attack on Person Segmentation
|
2104.08422
|
https://arxiv.org/abs/2104.08422v2
|
https://arxiv.org/pdf/2104.08422v2.pdf
|
https://github.com/nii-yamagishilab/fashion_adv
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/swin-transformer-hierarchical-vision
|
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
|
2103.14030
|
https://arxiv.org/abs/2103.14030v2
|
https://arxiv.org/pdf/2103.14030v2.pdf
|
https://github.com/shinya7y/UniverseNet
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/generalized-focal-loss-v2-learning-reliable
|
Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection
|
2011.12885
|
https://arxiv.org/abs/2011.12885v1
|
https://arxiv.org/pdf/2011.12885v1.pdf
|
https://github.com/shinya7y/UniverseNet
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/scale-equalizing-pyramid-convolution-for
|
Scale-Equalizing Pyramid Convolution for Object Detection
|
2005.03101
|
https://arxiv.org/abs/2005.03101v1
|
https://arxiv.org/pdf/2005.03101v1.pdf
|
https://github.com/shinya7y/UniverseNet
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/the-simpson-s-paradox-in-the-offline
|
The Simpson's Paradox in the Offline Evaluation of Recommendation Systems
|
2104.08912
|
https://arxiv.org/abs/2104.08912v1
|
https://arxiv.org/pdf/2104.08912v1.pdf
|
https://github.com/terrierteam/stratified_recsys_eval
| true | true | false |
none
|
https://paperswithcode.com/paper/structure-aware-abstractive-conversation
|
Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs
|
2104.08400
|
https://arxiv.org/abs/2104.08400v1
|
https://arxiv.org/pdf/2104.08400v1.pdf
|
https://github.com/GT-SALT/Structure-Aware-BART
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/rethinking-graph-neural-network-search-from
|
Rethinking Graph Neural Architecture Search from Message-passing
|
2103.14282
|
https://arxiv.org/abs/2103.14282v4
|
https://arxiv.org/pdf/2103.14282v4.pdf
|
https://github.com/phython96/GNAS-MP
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/some-methods-for-heterogeneous-treatment
|
Some methods for heterogeneous treatment effect estimation in high-dimensions
|
1707.00102
|
http://arxiv.org/abs/1707.00102v1
|
http://arxiv.org/pdf/1707.00102v1.pdf
|
https://github.com/saberpowers/causalLearning
| false | false | true |
none
|
https://paperswithcode.com/paper/aeon-a-method-for-automatic-evaluation-of-nlp
|
AEON: A Method for Automatic Evaluation of NLP Test Cases
|
2205.06439
|
https://arxiv.org/abs/2205.06439v1
|
https://arxiv.org/pdf/2205.06439v1.pdf
|
https://github.com/CUHK-ARISE/AEON
| true | true | true |
none
|
https://paperswithcode.com/paper/attentive-fashion-grammar-network-for-fashion
|
Attentive Fashion Grammar Network for Fashion Landmark Detection and Clothing Category Classification
| null |
http://openaccess.thecvf.com/content_cvpr_2018/html/Wang_Attentive_Fashion_Grammar_CVPR_2018_paper.html
|
http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Attentive_Fashion_Grammar_CVPR_2018_paper.pdf
|
https://github.com/zuoxiang95/BCRNN
| false | false | false |
tf
|
https://paperswithcode.com/paper/a-structure-aware-relation-network-for
|
A Structure-Aware Relation Network for Thoracic Diseases Detection and Segmentation
|
2104.10326
|
https://arxiv.org/abs/2104.10326v1
|
https://arxiv.org/pdf/2104.10326v1.pdf
|
https://github.com/Deepwise-AILab/ChestX-Det-Dataset
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/contour-proposal-networks-for-biomedical
|
Contour Proposal Networks for Biomedical Instance Segmentation
|
2104.03393
|
https://arxiv.org/abs/2104.03393v1
|
https://arxiv.org/pdf/2104.03393v1.pdf
|
https://github.com/FZJ-INM1-BDA/celldetection
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/relationnet-bridging-visual-representations
|
RelationNet++: Bridging Visual Representations for Object Detection via Transformer Decoder
|
2010.15831
|
https://arxiv.org/abs/2010.15831v1
|
https://arxiv.org/pdf/2010.15831v1.pdf
|
https://github.com/shinya7y/UniverseNet
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/short-term-anchor-linking-and-long-term-self
|
Short-term anchor linking and long-term self-guided attention for video object detection
| null |
https://www.sciencedirect.com/science/article/abs/pii/S0262885621000846
|
https://www.sciencedirect.com/science/article/abs/pii/S0262885621000846
|
https://github.com/daniel-cores/SLTnet
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/device-for-ecg-prediction-based-on-retinal
|
Device for ECG prediction based on retinal vasculature analysis
|
2009.11099
|
http://arxiv.org/abs/2009.11099v1
|
http://arxiv.org/pdf/2009.11099v1.pdf
|
https://github.com/pranjalrai-iitd/Retinal-vessel-segmentation-and-vessel-diameter-estimation
| true | false | true |
none
|
https://paperswithcode.com/paper/trivializations-for-gradient-based
|
Trivializations for Gradient-Based Optimization on Manifolds
|
1909.09501
|
https://arxiv.org/abs/1909.09501v2
|
https://arxiv.org/pdf/1909.09501v2.pdf
|
https://github.com/toshas/torch-householder
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/stylized-neural-painting
|
Stylized Neural Painting
|
2011.08114
|
https://arxiv.org/abs/2011.08114v1
|
https://arxiv.org/pdf/2011.08114v1.pdf
|
https://github.com/r00tsyst3m/snp
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/the-packing-chromatic-number-of-the-infinite-1
|
The Packing Chromatic Number of the Infinite Square Grid is 15
|
2301.09757
|
https://arxiv.org/abs/2301.09757v2
|
https://arxiv.org/pdf/2301.09757v2.pdf
|
https://github.com/bsubercaseaux/PackingChromaticTacas
| true | false | false |
none
|
https://paperswithcode.com/paper/unveiling-the-potential-of-graph-neural
|
Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN
|
1901.08113
|
http://arxiv.org/abs/1901.08113v1
|
http://arxiv.org/pdf/1901.08113v1.pdf
|
https://github.com/itu-ai-ml-in-5g-challenge/ps-014.2-gnn-challenge-gradient-ascent
| false | false | true |
tf
|
https://paperswithcode.com/paper/fast-lio2-fast-direct-lidar-inertial-odometry
|
FAST-LIO2: Fast Direct LiDAR-inertial Odometry
|
2107.06829
|
https://arxiv.org/abs/2107.06829v1
|
https://arxiv.org/pdf/2107.06829v1.pdf
|
https://github.com/hku-mars/FAST_LIO
| true | true | false |
none
|
https://paperswithcode.com/paper/improving-the-filtering-of-branch-and-bound
|
Improving the filtering of Branch-And-Bound MDD solver (extended)
|
2104.11951
|
https://arxiv.org/abs/2104.11951v1
|
https://arxiv.org/pdf/2104.11951v1.pdf
|
https://github.com/xgillard/ddo
| true | true | false |
none
|
https://paperswithcode.com/paper/lidar-and-camera-self-calibration-using
|
LCCNet: LiDAR and Camera Self-Calibration using Cost Volume Network
|
2012.13901
|
https://arxiv.org/abs/2012.13901v2
|
https://arxiv.org/pdf/2012.13901v2.pdf
|
https://github.com/LvXudong-HIT/LCCNet
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/deep-label-distribution-learning-with-label
|
Deep Label Distribution Learning with Label Ambiguity
|
1611.01731
|
http://arxiv.org/abs/1611.01731v2
|
http://arxiv.org/pdf/1611.01731v2.pdf
|
https://github.com/gaobb/DLDL
| true | false | false |
none
|
https://paperswithcode.com/paper/nonlinear-sufficient-dimension-reduction-for
|
Nonlinear Sufficient Dimension Reduction for Distribution-on-Distribution Regression
|
2207.04613
|
https://arxiv.org/abs/2207.04613v2
|
https://arxiv.org/pdf/2207.04613v2.pdf
|
https://github.com/bideliunian/sdr4d2dreg
| true | true | false |
none
|
https://paperswithcode.com/paper/fine-grained-post-training-for-improving
|
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems
| null |
https://aclanthology.org/2021.naacl-main.122
|
https://aclanthology.org/2021.naacl-main.122.pdf
|
https://github.com/hanjanghoon/BERT_FP
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/hough2map-iterative-event-based-hough
|
Hough2Map -- Iterative Event-based Hough Transform for High-Speed Railway Mapping
|
2102.08145
|
https://arxiv.org/abs/2102.08145v2
|
https://arxiv.org/pdf/2102.08145v2.pdf
|
https://github.com/ethz-asl/Hough2Map
| true | true | true |
none
|
https://paperswithcode.com/paper/icecap-information-concentrated-entity-aware
|
ICECAP: Information Concentrated Entity-aware Image Captioning
|
2108.02050
|
https://arxiv.org/abs/2108.02050v1
|
https://arxiv.org/pdf/2108.02050v1.pdf
|
https://github.com/HAWLYQ/ICECAP
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/graph-random-neural-network
|
Graph Random Neural Network for Semi-Supervised Learning on Graphs
|
2005.11079
|
https://arxiv.org/abs/2005.11079v4
|
https://arxiv.org/pdf/2005.11079v4.pdf
|
https://github.com/junzhuang-code/graphss
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/bnn-bn-training-binary-neural-networks
|
"BNN - BN = ?": Training Binary Neural Networks without Batch Normalization
|
2104.08215
|
https://arxiv.org/abs/2104.08215v1
|
https://arxiv.org/pdf/2104.08215v1.pdf
|
https://github.com/VITA-Group/BNN_NoBN
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/unsupervised-pixel-level-domain-adaptation
|
Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks
|
1612.05424
|
http://arxiv.org/abs/1612.05424v2
|
http://arxiv.org/pdf/1612.05424v2.pdf
|
https://github.com/francescodisalvo05/66DaysOfData
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/semantically-adversarial-learnable-filters
|
Semantically Adversarial Learnable Filters
|
2008.06069
|
https://arxiv.org/abs/2008.06069v3
|
https://arxiv.org/pdf/2008.06069v3.pdf
|
https://github.com/AliShahin/FilterFool
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/quasi-recurrent-neural-networks
|
Quasi-Recurrent Neural Networks
|
1611.01576
|
http://arxiv.org/abs/1611.01576v2
|
http://arxiv.org/pdf/1611.01576v2.pdf
|
https://github.com/francescodisalvo05/66DaysOfData
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/sequence-to-sequence-learning-with-neural
|
Sequence to Sequence Learning with Neural Networks
|
1409.3215
|
http://arxiv.org/abs/1409.3215v3
|
http://arxiv.org/pdf/1409.3215v3.pdf
|
https://github.com/francescodisalvo05/66DaysOfData
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-neural-algorithm-of-artistic-style
|
A Neural Algorithm of Artistic Style
|
1508.06576
|
http://arxiv.org/abs/1508.06576v2
|
http://arxiv.org/pdf/1508.06576v2.pdf
|
https://github.com/francescodisalvo05/66DaysOfData
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-adaptive-propagation-for-knowledge
|
AdaProp: Learning Adaptive Propagation for Graph Neural Network based Knowledge Graph Reasoning
|
2205.15319
|
https://arxiv.org/abs/2205.15319v2
|
https://arxiv.org/pdf/2205.15319v2.pdf
|
https://github.com/tmlr-group/one-shot-subgraph
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/the-cosmic-neutrino-background-as-a
|
The cosmic neutrino background as a collection of fluids in large-scale structure simulations
|
2011.12503
|
https://arxiv.org/abs/2011.12503v2
|
https://arxiv.org/pdf/2011.12503v2.pdf
|
https://github.com/joechenunsw/gadget4-hybrid_public
| false | false | true |
none
|
https://paperswithcode.com/paper/one-line-to-run-them-all-supereasy-massive
|
One line to run them all: SuperEasy massive neutrino linear response in $N$-body simulations
|
2011.12504
|
https://arxiv.org/abs/2011.12504v2
|
https://arxiv.org/pdf/2011.12504v2.pdf
|
https://github.com/joechenunsw/gadget4-hybrid_public
| false | false | true |
none
|
https://paperswithcode.com/paper/adavqa-overcoming-language-priors-with
|
AdaVQA: Overcoming Language Priors with Adapted Margin Cosine Loss
|
2105.01993
|
https://arxiv.org/abs/2105.01993v1
|
https://arxiv.org/pdf/2105.01993v1.pdf
|
https://github.com/guoyang9/AdaVQA
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/erasor-egocentric-ratio-of-pseudo-occupancy
|
ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point Cloud Map Building
|
2103.04316
|
https://arxiv.org/abs/2103.04316v1
|
https://arxiv.org/pdf/2103.04316v1.pdf
|
https://github.com/LimHyungTae/ERASOR.Official
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/memristor-based-cryogenic-programmable-dc
|
Memristor-based cryogenic programmable DC sources for scalable in-situ quantum-dot control
|
2203.07107
|
https://arxiv.org/abs/2203.07107v2
|
https://arxiv.org/pdf/2203.07107v2.pdf
|
https://github.com/3it-nano/qdms
| true | true | false |
none
|
https://paperswithcode.com/paper/employing-deep-part-object-relationships-for
|
Employing Deep Part-Object Relationships for Salient Object Detection
| null |
http://openaccess.thecvf.com/content_ICCV_2019/html/Liu_Employing_Deep_Part-Object_Relationships_for_Salient_Object_Detection_ICCV_2019_paper.html
|
http://openaccess.thecvf.com/content_ICCV_2019/papers/Liu_Employing_Deep_Part-Object_Relationships_for_Salient_Object_Detection_ICCV_2019_paper.pdf
|
https://github.com/liuyi1989/TSPORTNet
| false | false | false |
tf
|
https://paperswithcode.com/paper/end-to-end-object-detection-with-transformers
|
End-to-End Object Detection with Transformers
|
2005.12872
|
https://arxiv.org/abs/2005.12872v3
|
https://arxiv.org/pdf/2005.12872v3.pdf
|
https://github.com/DataXujing/TensorRT-DETR
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/irls-and-slime-mold-equivalence-and
|
IRLS and Slime Mold: Equivalence and Convergence
|
1601.02712
|
http://arxiv.org/abs/1601.02712v1
|
http://arxiv.org/pdf/1601.02712v1.pdf
|
https://github.com/DamianStraszak/IRLS-and-Physarum-Dynamics
| false | false | true |
none
|
https://paperswithcode.com/paper/a-bfs-tree-of-ranking-references-for
|
A BFS-Tree of Ranking References for Unsupervised Manifold Learning
| null |
https://doi.org/10.1016/j.patcog.2020.107666
|
https://www.ic.unicamp.br/~dcarlos/papers/journals/PatternRecognition_BFSTRee_2021.pdf
|
https://github.com/UDLF/UDLF
| false | false | false |
none
|
https://paperswithcode.com/paper/earthnet2021-a-large-scale-dataset-and
|
EarthNet2021: A large-scale dataset and challenge for Earth surface forecasting as a guided video prediction task
|
2104.10066
|
https://arxiv.org/abs/2104.10066v1
|
https://arxiv.org/pdf/2104.10066v1.pdf
|
https://github.com/earthnet2021/earthnet-model-intercomparison-suite
| true | false | false |
none
|
https://paperswithcode.com/paper/multi-task-learning-of-speech-and-speaker
|
Towards multi-task learning of speech and speaker recognition
|
2302.12773
|
https://arxiv.org/abs/2302.12773v2
|
https://arxiv.org/pdf/2302.12773v2.pdf
|
https://github.com/nikvaessen/disjoint-mtl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/optical-music-recognition-with-convolutional
|
Optical Music Recognition with Convolutional Sequence-to-Sequence Models
|
1707.04877
|
http://arxiv.org/abs/1707.04877v1
|
http://arxiv.org/pdf/1707.04877v1.pdf
|
https://github.com/apacha/OMR-Datasets
| false | false | true |
none
|
https://paperswithcode.com/paper/deep-discriminative-direct-decoders-for-high
|
Deep Direct Discriminative Decoders for High-dimensional Time-series Data Analysis
|
2205.10947
|
https://arxiv.org/abs/2205.10947v2
|
https://arxiv.org/pdf/2205.10947v2.pdf
|
https://gitlab.com/m.reza.rezaei72/dynamical_deep_neuron
| false | false | false |
tf
|
https://paperswithcode.com/paper/a-hitchhiker-s-guide-to-statistical
|
A Hitchhiker's Guide to Statistical Comparisons of Reinforcement Learning Algorithms
| null |
https://openreview.net/forum?id=ryx0N3IaIV
|
https://openreview.net/pdf?id=ryx0N3IaIV
|
https://github.com/ccolas/rl_stats
| true | true | false |
none
|
https://paperswithcode.com/paper/learning-to-hash-for-recommendation-a-survey
|
Learning to Hash for Recommendation: A Survey
|
2412.03875
|
https://arxiv.org/abs/2412.03875v1
|
https://arxiv.org/pdf/2412.03875v1.pdf
|
https://github.com/luo-fangyuan/hashrec
| true | true | true |
none
|
https://paperswithcode.com/paper/xlm-e-cross-lingual-language-model-pre
|
XLM-E: Cross-lingual Language Model Pre-training via ELECTRA
|
2106.16138
|
https://arxiv.org/abs/2106.16138v2
|
https://arxiv.org/pdf/2106.16138v2.pdf
|
https://github.com/CZWin32768/xnlg
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/optimality-of-the-recursive-neyman-allocation
|
Optimality of the recursive Neyman allocation
|
2105.14486
|
https://arxiv.org/abs/2105.14486v1
|
https://arxiv.org/pdf/2105.14486v1.pdf
|
https://github.com/rwieczor/recursive_Neyman
| true | true | false |
none
|
https://paperswithcode.com/paper/vitgan-training-gans-with-vision-transformers
|
ViTGAN: Training GANs with Vision Transformers
|
2107.04589
|
https://arxiv.org/abs/2107.04589v2
|
https://arxiv.org/pdf/2107.04589v2.pdf
|
https://github.com/wilile26811249/ViTGAN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-stacked-dcnn-to-predict-the-rul-of-a
|
A stacked DCNN to predict the RUL of a turbofan engine
| null |
http://papers.phmsociety.org/index.php/phmconf/article/view/3110
|
http://papers.phmsociety.org/index.php/phmconf/article/download/3110/1838
|
https://github.com/datrikintelligence/stacked-dcnn-rul-phm21
| false | true | false |
tf
|
https://paperswithcode.com/paper/does-referent-predictability-affect-the
|
Does referent predictability affect the choice of referential form? A computational approach using masked coreference resolution
|
2109.13105
|
https://arxiv.org/abs/2109.13105v1
|
https://arxiv.org/pdf/2109.13105v1.pdf
|
https://github.com/amore-upf/masked-coreference
| true | true | true |
tf
|
https://paperswithcode.com/paper/the-impact-of-changes-in-resolution-on-the
|
The Impact of Changes in Resolution on the Persistent Homology of Images
|
2111.05663
|
https://arxiv.org/abs/2111.05663v1
|
https://arxiv.org/pdf/2111.05663v1.pdf
|
https://github.com/sarahtymochko/ph-of-images
| true | true | true |
none
|
https://paperswithcode.com/paper/weight-uncertainty-in-neural-networks
|
Weight Uncertainty in Neural Networks
|
1505.05424
|
http://arxiv.org/abs/1505.05424v2
|
http://arxiv.org/pdf/1505.05424v2.pdf
|
https://github.com/hbahadirsahin/bayes_by_backprop
| false | false | true |
tf
|
https://paperswithcode.com/paper/how-privacy-preserving-are-line-clouds
|
How Privacy-Preserving are Line Clouds? Recovering Scene Details from 3D Lines
|
2103.05086
|
https://arxiv.org/abs/2103.05086v1
|
https://arxiv.org/pdf/2103.05086v1.pdf
|
https://github.com/kunalchelani/Line2Point
| true | true | true |
none
|
https://paperswithcode.com/paper/cough-against-covid-evidence-of-covid-19
|
Cough Against COVID: Evidence of COVID-19 Signature in Cough Sounds
|
2009.08790
|
https://arxiv.org/abs/2009.08790v2
|
https://arxiv.org/pdf/2009.08790v2.pdf
|
https://github.com/WadhwaniAI/cough-against-covid
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/shakespearizing-modern-language-using-copy-1
|
Shakespearizing Modern Language Using Copy-Enriched Sequence-to-Sequence Models
|
1707.01161
|
http://arxiv.org/abs/1707.01161v2
|
http://arxiv.org/pdf/1707.01161v2.pdf
|
https://github.com/achyutak/Project-2021
| false | false | true |
none
|
https://paperswithcode.com/paper/multi-agent-advisor-q-learning
|
Multi-Agent Advisor Q-Learning
|
2111.00345
|
https://arxiv.org/abs/2111.00345v6
|
https://arxiv.org/pdf/2111.00345v6.pdf
|
https://github.com/sriram94/multiagentadvisorqlearning
| true | true | false |
tf
|
https://paperswithcode.com/paper/spanner-named-entity-re-recognition-as-span
|
SpanNER: Named Entity Re-/Recognition as Span Prediction
|
2106.00641
|
https://arxiv.org/abs/2106.00641v2
|
https://arxiv.org/pdf/2106.00641v2.pdf
|
https://github.com/neulab/spanner
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/unifying-sparsest-cut-cluster-deletion-and
|
Unifying Sparsest Cut, Cluster Deletion, and Modularity Clustering Objectives with Correlation Clustering
|
1712.05825
|
http://arxiv.org/abs/1712.05825v3
|
http://arxiv.org/pdf/1712.05825v3.pdf
|
https://github.com/nveldt/LamCC
| false | false | true |
none
|
https://paperswithcode.com/paper/inertial-odometry-on-handheld-smartphones
|
Inertial Odometry on Handheld Smartphones
|
1703.00154
|
http://arxiv.org/abs/1703.00154v2
|
http://arxiv.org/pdf/1703.00154v2.pdf
|
https://github.com/dmckinnon/mapper
| false | false | true |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.