paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/harvesting-bat-guano-with-nitrates-non
|
Harvesting BAT-GUANO with NITRATES (Non-Imaging Transient Reconstruction And TEmporal Search): Detecting and localizing the faintest GRBs with a likelihood framework
|
2111.01769
|
https://arxiv.org/abs/2111.01769v2
|
https://arxiv.org/pdf/2111.01769v2.pdf
|
https://github.com/swift-bat/nitrates
| true | true | true |
none
|
https://paperswithcode.com/paper/universal-ehr-federated-learning-framework
|
Universal EHR Federated Learning Framework
|
2211.07300
|
https://arxiv.org/abs/2211.07300v1
|
https://arxiv.org/pdf/2211.07300v1.pdf
|
https://github.com/starmpcc/unifl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/altclip-altering-the-language-encoder-in-clip
|
AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities
|
2211.06679
|
https://arxiv.org/abs/2211.06679v2
|
https://arxiv.org/pdf/2211.06679v2.pdf
|
https://github.com/flagai-open/flagai
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/pku-goodsad-a-supermarket-goods-dataset-for
|
PKU-GoodsAD: A Supermarket Goods Dataset for Unsupervised Anomaly Detection and Segmentation
|
2307.04956
|
https://arxiv.org/abs/2307.04956v2
|
https://arxiv.org/pdf/2307.04956v2.pdf
|
https://github.com/jianzhang96/goodsad
| true | true | true |
none
|
https://paperswithcode.com/paper/self-supervised-ppg-representation-learning
|
Self-Supervised PPG Representation Learning Shows High Inter-Subject Variability
|
2212.04902
|
https://arxiv.org/abs/2212.04902v2
|
https://arxiv.org/pdf/2212.04902v2.pdf
|
https://github.com/Raminghorbanii/Self-Supervised-PPG-Representation-Learning-Shows-High-Inter-Subject-Variability
| true | false | false |
tf
|
https://paperswithcode.com/paper/hypergraphs-for-multiscale-cycles-in
|
Hypergraphs for multiscale cycles in structured data
|
2210.07545
|
https://arxiv.org/abs/2210.07545v1
|
https://arxiv.org/pdf/2210.07545v1.pdf
|
https://github.com/irishryoon/minimal_generators_curves
| true | true | true |
none
|
https://paperswithcode.com/paper/prototypical-networks-for-few-shot-learning
|
Prototypical Networks for Few-shot Learning
|
1703.05175
|
http://arxiv.org/abs/1703.05175v2
|
http://arxiv.org/pdf/1703.05175v2.pdf
|
https://github.com/jakesnell/prototypical-networks
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/bayesian-additive-regression-trees-for
|
Bayesian additive regression trees for probabilistic programming
|
2206.03619
|
https://arxiv.org/abs/2206.03619v4
|
https://arxiv.org/pdf/2206.03619v4.pdf
|
https://github.com/grupo-de-modelado-probabilista/bart
| true | true | true |
none
|
https://paperswithcode.com/paper/automated-classification-of-model-errors-on-1
|
Automated Classification of Model Errors on ImageNet
|
2401.02430
|
https://arxiv.org/abs/2401.02430v1
|
https://arxiv.org/pdf/2401.02430v1.pdf
|
https://github.com/eth-sri/automated-error-analysis
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/neural-data-transformer-2-multi-context
|
Neural Data Transformer 2: Multi-context Pretraining for Neural Spiking Activity
| null |
https://openreview.net/forum?id=CBBtMnlTGq
|
https://openreview.net/pdf?id=CBBtMnlTGq
|
https://github.com/joel99/context_general_bci
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/dynamic-path-controllable-deep-unfolding
|
Dynamic Path-Controllable Deep Unfolding Network for Compressive Sensing
|
2306.16060
|
https://arxiv.org/abs/2306.16060v2
|
https://arxiv.org/pdf/2306.16060v2.pdf
|
https://github.com/songjiechong/dpc-dun
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/crossner-evaluating-cross-domain-named-entity
|
CrossNER: Evaluating Cross-Domain Named Entity Recognition
|
2012.04373
|
https://arxiv.org/abs/2012.04373v2
|
https://arxiv.org/pdf/2012.04373v2.pdf
|
https://github.com/jbogensperger/DRUG_CROSSNER
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/joint-resource-and-admission-management-for
|
Joint Resource and Admission Management for Slice-enabled Networks
|
1912.00192
|
https://arxiv.org/abs/1912.00192v2
|
https://arxiv.org/pdf/1912.00192v2.pdf
|
https://github.com/sinaebrahimi/energy-efficient-slicing
| true | false | false |
none
|
https://paperswithcode.com/paper/a-more-fine-grained-aspect-sentiment-opinion
|
A More Fine-Grained Aspect-Sentiment-Opinion Triplet Extraction Task
|
2103.15255
|
https://arxiv.org/abs/2103.15255v5
|
https://arxiv.org/pdf/2103.15255v5.pdf
|
https://github.com/l294265421/GTS-ASOTE
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/impara-impact-based-metric-for-gec-using
|
IMPARA: Impact-Based Metric for GEC Using Parallel Data
| null |
https://aclanthology.org/2022.coling-1.316
|
https://aclanthology.org/2022.coling-1.316.pdf
|
https://github.com/gotutiyan/IMPARA
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/action-units-that-constitute-trainable-micro
|
How to Synthesize a Large-Scale and Trainable Micro-Expression Dataset?
|
2112.01730
|
https://arxiv.org/abs/2112.01730v7
|
https://arxiv.org/pdf/2112.01730v7.pdf
|
https://github.com/liuyvchi/mie-x
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-transformer-based-representation-learning
|
A Transformer-based representation-learning model with unified processing of multimodal input for clinical diagnostics
|
2306.00864
|
https://arxiv.org/abs/2306.00864v1
|
https://arxiv.org/pdf/2306.00864v1.pdf
|
https://github.com/rl4m/irene
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/rgb-t-semantic-segmentation-with-location
|
RGB-T Semantic Segmentation with Location, Activation, and Sharpening
|
2210.14530
|
https://arxiv.org/abs/2210.14530v1
|
https://arxiv.org/pdf/2210.14530v1.pdf
|
https://github.com/mathlee/lasnet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/chainforge-a-visual-toolkit-for-prompt
|
ChainForge: A Visual Toolkit for Prompt Engineering and LLM Hypothesis Testing
|
2309.09128
|
https://arxiv.org/abs/2309.09128v3
|
https://arxiv.org/pdf/2309.09128v3.pdf
|
https://github.com/ianarawjo/ChainForge
| true | false | true |
none
|
https://paperswithcode.com/paper/learning-to-teach-large-language-models
|
Improving Large Language Models in Event Relation Logical Prediction
|
2310.09158
|
https://arxiv.org/abs/2310.09158v2
|
https://arxiv.org/pdf/2310.09158v2.pdf
|
https://github.com/chenmeiqii/teach-llm-lr
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/robust-mode-connectivity-oriented-adversarial
|
Robust Mode Connectivity-Oriented Adversarial Defense: Enhancing Neural Network Robustness Against Diversified $\ell_p$ Attacks
|
2303.10225
|
https://arxiv.org/abs/2303.10225v1
|
https://arxiv.org/pdf/2303.10225v1.pdf
|
https://github.com/wangren09/mcgr
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/bevpoolv2-a-cutting-edge-implementation-of
|
BEVPoolv2: A Cutting-edge Implementation of BEVDet Toward Deployment
|
2211.17111
|
https://arxiv.org/abs/2211.17111v1
|
https://arxiv.org/pdf/2211.17111v1.pdf
|
https://github.com/HuangJunJie2017/BEVDet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/comet-atomic-2020-on-symbolic-and-neural
|
COMET-ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs
|
2010.05953
|
https://arxiv.org/abs/2010.05953v2
|
https://arxiv.org/pdf/2010.05953v2.pdf
|
https://github.com/epfl-nlp/kogito
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/kogito-a-commonsense-knowledge-inference
|
kogito: A Commonsense Knowledge Inference Toolkit
|
2211.08451
|
https://arxiv.org/abs/2211.08451v3
|
https://arxiv.org/pdf/2211.08451v3.pdf
|
https://github.com/epfl-nlp/kogito
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/unsupervised-model-adaptation-for-continual
|
Unsupervised Model Adaptation for Continual Semantic Segmentation
|
2009.12518
|
https://arxiv.org/abs/2009.12518v2
|
https://arxiv.org/pdf/2009.12518v2.pdf
|
https://github.com/serbanstan/mas3-continual
| false | false | true |
tf
|
https://paperswithcode.com/paper/finding-deep-learning-compilation-bugs-with
|
NNSmith: Generating Diverse and Valid Test Cases for Deep Learning Compilers
|
2207.13066
|
https://arxiv.org/abs/2207.13066v2
|
https://arxiv.org/pdf/2207.13066v2.pdf
|
https://github.com/ganler/nnsmith-asplos-artifact
| true | false | true |
none
|
https://paperswithcode.com/paper/genomic-interpreter-a-hierarchical-genomic
|
Genomic Interpreter: A Hierarchical Genomic Deep Neural Network with 1D Shifted Window Transformer
|
2306.05143
|
https://arxiv.org/abs/2306.05143v2
|
https://arxiv.org/pdf/2306.05143v2.pdf
|
https://github.com/zehui127/1d-swin
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/cobaya-code-for-bayesian-analysis-of
|
Cobaya: Code for Bayesian Analysis of hierarchical physical models
|
2005.05290
|
https://arxiv.org/abs/2005.05290v2
|
https://arxiv.org/pdf/2005.05290v2.pdf
|
https://github.com/minhmpa/cobaya
| false | false | true |
none
|
https://paperswithcode.com/paper/optimal-sets-and-solution-paths-of-relu
|
Optimal Sets and Solution Paths of ReLU Networks
|
2306.00119
|
https://arxiv.org/abs/2306.00119v2
|
https://arxiv.org/pdf/2306.00119v2.pdf
|
https://github.com/pilancilab/relu_optimal_sets
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/hyperbolic-vision-transformers-combining
|
Hyperbolic Vision Transformers: Combining Improvements in Metric Learning
|
2203.10833
|
https://arxiv.org/abs/2203.10833v2
|
https://arxiv.org/pdf/2203.10833v2.pdf
|
https://github.com/OML-Team/open-metric-learning
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/vusfavariational-universal-successor-features
|
VUSFA:Variational Universal Successor Features Approximator to Improve Transfer DRL for Target Driven Visual Navigation
|
1908.06376
|
https://arxiv.org/abs/1908.06376v1
|
https://arxiv.org/pdf/1908.06376v1.pdf
|
https://github.com/shamanez/masters-work-target-driven-visual-navigation
| false | false | true |
tf
|
https://paperswithcode.com/paper/acfd-asymmetric-cartoon-face-detector
|
ACFD: Asymmetric Cartoon Face Detector
|
2007.00899
|
https://arxiv.org/abs/2007.00899v1
|
https://arxiv.org/pdf/2007.00899v1.pdf
|
https://github.com/barisbatuhan/dass_det_inference
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/object-detection-for-comics-using-manga109
|
Object Detection for Comics using Manga109 Annotations
|
1803.08670
|
http://arxiv.org/abs/1803.08670v2
|
http://arxiv.org/pdf/1803.08670v2.pdf
|
https://github.com/barisbatuhan/dass_det_inference
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/contrastive-semi-supervised-learning-for
|
Contrastive Semi-supervised Learning for Domain Adaptive Segmentation Across Similar Anatomical Structures
|
2208.08605
|
https://arxiv.org/abs/2208.08605v1
|
https://arxiv.org/pdf/2208.08605v1.pdf
|
https://github.com/hilab-git/dag4mia
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/eeg-aided-boosting-of-single-lead-ecg-based
|
EEG aided boosting of single-lead ECG based sleep staging with Deep Knowledge Distillation
|
2211.13125
|
https://arxiv.org/abs/2211.13125v1
|
https://arxiv.org/pdf/2211.13125v1.pdf
|
https://github.com/acrophase/sleep_staging_kd
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/harim-evaluating-summary-quality-with
|
HaRiM$^+$: Evaluating Summary Quality with Hallucination Risk
|
2211.12118
|
https://arxiv.org/abs/2211.12118v2
|
https://arxiv.org/pdf/2211.12118v2.pdf
|
https://github.com/ncsoft/harim_plus
| true | false | true |
none
|
https://paperswithcode.com/paper/mixed-integer-linear-optimization
|
Mixed integer linear optimization formulations for learning optimal binary classification trees
|
2206.04857
|
https://arxiv.org/abs/2206.04857v2
|
https://arxiv.org/pdf/2206.04857v2.pdf
|
https://github.com/brandalston/OBCT
| true | true | true |
none
|
https://paperswithcode.com/paper/applying-machine-learning-to-crowd-sourced
|
Applying Machine Learning to Crowd-sourced Data from Earthquake Detective
|
2011.04740
|
https://arxiv.org/abs/2011.04740v2
|
https://arxiv.org/pdf/2011.04740v2.pdf
|
https://github.com/Omkar-Ranadive/Earthquake-Detective
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/lsg-cpd-coherent-point-drift-with-local
|
LSG-CPD: Coherent Point Drift with Local Surface Geometry for Point Cloud Registration
|
2103.15039
|
https://arxiv.org/abs/2103.15039v2
|
https://arxiv.org/pdf/2103.15039v2.pdf
|
https://github.com/chirikjianlab/lsg-cpd
| true | true | true |
none
|
https://paperswithcode.com/paper/case-studies-of-development-of-verified
|
Case studies of development of verified programs with Dafny for accessibility assessment
|
2301.03224
|
https://arxiv.org/abs/2301.03224v1
|
https://arxiv.org/pdf/2301.03224v1.pdf
|
https://github.com/joaopascoalfariafeup/dafnyprojects
| true | true | false |
none
|
https://paperswithcode.com/paper/phase2vec-dynamical-systems-embedding-with-a
|
Phase2vec: Dynamical systems embedding with a physics-informed convolutional network
|
2212.03857
|
https://arxiv.org/abs/2212.03857v2
|
https://arxiv.org/pdf/2212.03857v2.pdf
|
https://github.com/nitzanlab/phase2vec
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/neural-network-approach-to-scaling-analysis
|
Neural Network Approach to Scaling Analysis of Critical Phenomena
|
2209.01777
|
https://arxiv.org/abs/2209.01777v3
|
https://arxiv.org/pdf/2209.01777v3.pdf
|
https://github.com/yonesuke/jaxfss
| true | true | true |
jax
|
https://paperswithcode.com/paper/splice-a-synthetic-paid-loss-and-incurred
|
SPLICE: A Synthetic Paid Loss and Incurred Cost Experience Simulator
|
2109.04058
|
https://arxiv.org/abs/2109.04058v4
|
https://arxiv.org/pdf/2109.04058v4.pdf
|
https://github.com/agi-lab/SPLICE
| false | true | true |
none
|
https://paperswithcode.com/paper/pre-training-also-transfers-non-robustness
|
ImageNet Pre-training also Transfers Non-Robustness
|
2106.10989
|
https://arxiv.org/abs/2106.10989v4
|
https://arxiv.org/pdf/2106.10989v4.pdf
|
https://github.com/jiamingzhang94/imagenet-pretraining-transfers-non-robustness
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/roboflow-100-a-rich-multi-domain-object
|
Roboflow 100: A Rich, Multi-Domain Object Detection Benchmark
|
2211.13523
|
https://arxiv.org/abs/2211.13523v3
|
https://arxiv.org/pdf/2211.13523v3.pdf
|
https://github.com/roboflow-ai/roboflow-100-benchmark
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/recipe-for-a-general-powerful-scalable-graph
|
Recipe for a General, Powerful, Scalable Graph Transformer
|
2205.12454
|
https://arxiv.org/abs/2205.12454v4
|
https://arxiv.org/pdf/2205.12454v4.pdf
|
https://github.com/graphcore/ogb-lsc-pcqm4mv2
| false | false | true |
tf
|
https://paperswithcode.com/paper/metaxl-meta-representation-transformation-for
|
MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning
|
2104.07908
|
https://arxiv.org/abs/2104.07908v1
|
https://arxiv.org/pdf/2104.07908v1.pdf
|
https://github.com/liatb282/metaxlr
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/metaxlr-mixed-language-meta-representation
|
MetaXLR -- Mixed Language Meta Representation Transformation for Low-resource Cross-lingual Learning based on Multi-Armed Bandit
|
2306.00100
|
https://arxiv.org/abs/2306.00100v1
|
https://arxiv.org/pdf/2306.00100v1.pdf
|
https://github.com/liatb282/metaxlr
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/characterizing-verbatim-short-term-memory-in
|
Characterizing Verbatim Short-Term Memory in Neural Language Models
|
2210.13569
|
https://arxiv.org/abs/2210.13569v2
|
https://arxiv.org/pdf/2210.13569v2.pdf
|
https://github.com/kristijanarmeni/verbatim-memory-in-nlms
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fixed-frustratingly-easy-domain
|
FIXED: Frustratingly Easy Domain Generalization with Mixup
|
2211.05228
|
https://arxiv.org/abs/2211.05228v2
|
https://arxiv.org/pdf/2211.05228v2.pdf
|
https://github.com/jindongwang/transferlearning
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/an-approach-for-detecting-dynamic-communities
|
An Approach for Detecting Dynamic Communities in Social Networks
|
2212.02383
|
https://arxiv.org/abs/2212.02383v1
|
https://arxiv.org/pdf/2212.02383v1.pdf
|
https://github.com/Yquetzal/ECML_PKDD_2019
| true | true | false |
none
|
https://paperswithcode.com/paper/class-continuous-conditional-generative
|
Class-Continuous Conditional Generative Neural Radiance Field
|
2301.00950
|
https://arxiv.org/abs/2301.00950v3
|
https://arxiv.org/pdf/2301.00950v3.pdf
|
https://github.com/tom919654/C3G-NeRF
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/ogb-lsc-a-large-scale-challenge-for-machine
|
OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs
|
2103.09430
|
https://arxiv.org/abs/2103.09430v3
|
https://arxiv.org/pdf/2103.09430v3.pdf
|
https://github.com/graphcore/ogb-lsc-pcqm4mv2
| false | false | true |
tf
|
https://paperswithcode.com/paper/a-persistent-spatial-semantic-representation
|
A Persistent Spatial Semantic Representation for High-level Natural Language Instruction Execution
|
2107.05612
|
https://arxiv.org/abs/2107.05612v3
|
https://arxiv.org/pdf/2107.05612v3.pdf
|
https://github.com/valtsblukis/hlsm
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/editing-models-with-task-arithmetic
|
Editing Models with Task Arithmetic
|
2212.04089
|
https://arxiv.org/abs/2212.04089v3
|
https://arxiv.org/pdf/2212.04089v3.pdf
|
https://github.com/mlfoundations/task_vectors
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-mixture-based-framework-for-guiding
|
A Mixture-Based Framework for Guiding Diffusion Models
|
2502.03332
|
https://arxiv.org/abs/2502.03332v1
|
https://arxiv.org/pdf/2502.03332v1.pdf
|
https://github.com/badr-moufad/mgdm
| true | true | true |
jax
|
https://paperswithcode.com/paper/machine-learning-in-the-quantum-age-quantum
|
Machine Learning in the Quantum Age: Quantum vs. Classical Support Vector Machines
|
2310.10910
|
https://arxiv.org/abs/2310.10910v1
|
https://arxiv.org/pdf/2310.10910v1.pdf
|
https://github.com/detasar/quantum_computing_notebooks/blob/main/SVC_VS_gridSearchQSVC.ipynb
| false | false | false |
none
|
https://paperswithcode.com/paper/classification-and-transformations-of-quantum
|
Classification and transformations of quantum circuit decompositions for permutation operations
|
2312.11644
|
https://arxiv.org/abs/2312.11644v1
|
https://arxiv.org/pdf/2312.11644v1.pdf
|
https://github.com/quconot/quconot
| true | true | true |
none
|
https://paperswithcode.com/paper/siena-galaxy-atlas-2020
|
Siena Galaxy Atlas 2020
|
2307.04888
|
https://arxiv.org/abs/2307.04888v1
|
https://arxiv.org/pdf/2307.04888v1.pdf
|
https://github.com/moustakas/SGA
| true | true | false |
none
|
https://paperswithcode.com/paper/megacrn-meta-graph-convolutional-recurrent
|
MegaCRN: Meta-Graph Convolutional Recurrent Network for Spatio-Temporal Modeling
|
2212.05989
|
https://arxiv.org/abs/2212.05989v2
|
https://arxiv.org/pdf/2212.05989v2.pdf
|
https://github.com/deepkashiwa20/megacrn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/elisa-a-new-tool-for-fast-modelling-of
|
ELISa: A new tool for fast modelling of eclipsing binaries
|
2106.10116
|
https://arxiv.org/abs/2106.10116v1
|
https://arxiv.org/pdf/2106.10116v1.pdf
|
https://github.com/mikecokina/elisa
| true | true | true |
none
|
https://paperswithcode.com/paper/adjusting-posteriors-from-composite-and
|
An Efficient Workflow for Modelling High-Dimensional Spatial Extremes
|
2210.00760
|
https://arxiv.org/abs/2210.00760v2
|
https://arxiv.org/pdf/2210.00760v2.pdf
|
https://github.com/siliusmv/spatialconditionalextremes
| true | true | true |
none
|
https://paperswithcode.com/paper/unsupervised-detection-of-contextualized
|
Unsupervised Detection of Contextualized Embedding Bias with Application to Ideology
|
2212.07547
|
https://arxiv.org/abs/2212.07547v1
|
https://arxiv.org/pdf/2212.07547v1.pdf
|
https://github.com/valentinhofmann/unsupervised_bias
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/crossmoda-2021-challenge-benchmark-of-cross
|
CrossMoDA 2021 challenge: Benchmark of Cross-Modality Domain Adaptation techniques for Vestibular Schwannoma and Cochlea Segmentation
|
2201.02831
|
https://arxiv.org/abs/2201.02831v3
|
https://arxiv.org/pdf/2201.02831v3.pdf
|
https://github.com/JianghaoWu/FPL-UDA
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/designing-stable-neural-networks-using-convex
|
Designing Stable Neural Networks using Convex Analysis and ODEs
|
2306.17332
|
https://arxiv.org/abs/2306.17332v2
|
https://arxiv.org/pdf/2306.17332v2.pdf
|
https://github.com/fsherry/non-expansive-odes
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/improving-natural-language-inference-in
|
Improving Natural Language Inference in Arabic using Transformer Models and Linguistically Informed Pre-Training
|
2307.14666
|
https://arxiv.org/abs/2307.14666v1
|
https://arxiv.org/pdf/2307.14666v1.pdf
|
https://github.com/fraunhofer-iais/arabic_nlp
| true | true | false |
none
|
https://paperswithcode.com/paper/the-effect-of-balancing-methods-on-model
|
The Effect of Balancing Methods on Model Behavior in Imbalanced Classification Problems
|
2307.00157
|
https://arxiv.org/abs/2307.00157v1
|
https://arxiv.org/pdf/2307.00157v1.pdf
|
https://github.com/adrianstando/ecml-pkdd-2023-effects-of-data-balancing
| true | true | false |
none
|
https://paperswithcode.com/paper/make-interval-bound-propagation-great-again
|
Make Interval Bound Propagation great again
|
2410.03373
|
https://arxiv.org/abs/2410.03373v1
|
https://arxiv.org/pdf/2410.03373v1.pdf
|
https://github.com/gmum/make-interval-bound-propagation-great-again
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/nezha-deployable-and-high-performance
|
Nezha: Deployable and High-Performance Consensus Using Synchronized Clocks
|
2206.03285
|
https://arxiv.org/abs/2206.03285v10
|
https://arxiv.org/pdf/2206.03285v10.pdf
|
https://github.com/steamgjk/nezha
| true | true | true |
none
|
https://paperswithcode.com/paper/evaluating-and-improving-the-robustness-of
|
Robustness of LiDAR-Based Pose Estimation: Evaluating and Improving Odometry and Localization Under Common Point Cloud Corruptions
|
2409.10824
|
https://arxiv.org/abs/2409.10824v2
|
https://arxiv.org/pdf/2409.10824v2.pdf
|
https://github.com/boyang9602/LiDARLocRobustness
| true | true | true |
none
|
https://paperswithcode.com/paper/a-probabilistic-fluctuation-based-membership
|
A Probabilistic Fluctuation based Membership Inference Attack for Diffusion Models
|
2308.12143
|
https://arxiv.org/abs/2308.12143v5
|
https://arxiv.org/pdf/2308.12143v5.pdf
|
https://github.com/wjfu99/mia-gen
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/weakly-supervised-training-of-universal
|
Weakly supervised training of universal visual concepts for multi-domain semantic segmentation
|
2212.10340
|
https://arxiv.org/abs/2212.10340v3
|
https://arxiv.org/pdf/2212.10340v3.pdf
|
https://github.com/unizg-fer-d307/universal_taxonomies
| true | true | true |
none
|
https://paperswithcode.com/paper/safe-and-smooth-certified-continuous-time
|
Safe and Smooth: Certified Continuous-Time Range-Only Localization
|
2209.04266
|
https://arxiv.org/abs/2209.04266v5
|
https://arxiv.org/pdf/2209.04266v5.pdf
|
https://github.com/utiasasrl/safe_and_smooth
| true | true | true |
none
|
https://paperswithcode.com/paper/making-pre-trained-language-models-better-few
|
Making Pre-trained Language Models Better Few-shot Learners
|
2012.15723
|
https://arxiv.org/abs/2012.15723v2
|
https://arxiv.org/pdf/2012.15723v2.pdf
|
https://github.com/ucsb-nlp-chang/promptboosting
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/endomorphism-algebras-of-geometrically-split
|
Endomorphism algebras of geometrically split genus 2 Jacobians over Q
|
2212.11102
|
https://arxiv.org/abs/2212.11102v1
|
https://arxiv.org/pdf/2212.11102v1.pdf
|
https://github.com/xguitart/endalgebrasg2
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-long-term-fairness-in-recommendation
|
Towards Long-term Fairness in Recommendation
|
2101.03584
|
https://arxiv.org/abs/2101.03584v1
|
https://arxiv.org/pdf/2101.03584v1.pdf
|
https://github.com/TobyGE/FCPO
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/incomplete-multi-view-multi-label-learning
|
Incomplete Multi-View Multi-Label Learning via Label-Guided Masked View- and Category-Aware Transformers
|
2303.07180
|
https://arxiv.org/abs/2303.07180v1
|
https://arxiv.org/pdf/2303.07180v1.pdf
|
https://github.com/justsmart/LMVCAT
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/a-physics-informed-neural-network-pinn
|
A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs
|
2409.10910
|
https://arxiv.org/abs/2409.10910v1
|
https://arxiv.org/pdf/2409.10910v1.pdf
|
https://github.com/shiv12spingo/PINN_Research/tree/main/Solidification_Problem
| true | false | false |
none
|
https://paperswithcode.com/paper/cross-view-meets-diffusion-aerial-image
|
Cross-View Meets Diffusion: Aerial Image Synthesis with Geometry and Text Guidance
|
2408.04224
|
https://arxiv.org/abs/2408.04224v2
|
https://arxiv.org/pdf/2408.04224v2.pdf
|
https://gitlab.com/vail-uvm/gpg2a
| false | true | true |
pytorch
|
https://paperswithcode.com/paper/promptboosting-black-box-text-classification
|
PromptBoosting: Black-Box Text Classification with Ten Forward Passes
|
2212.09257
|
https://arxiv.org/abs/2212.09257v2
|
https://arxiv.org/pdf/2212.09257v2.pdf
|
https://github.com/ucsb-nlp-chang/promptboosting
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/causal-triplet-an-open-challenge-for
|
Causal Triplet: An Open Challenge for Intervention-centric Causal Representation Learning
|
2301.05169
|
https://arxiv.org/abs/2301.05169v2
|
https://arxiv.org/pdf/2301.05169v2.pdf
|
https://github.com/CausalTriplet/causaltriplet
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/stereo-nec-enhancing-stereo-visual-inertial
|
Stereo-NEC: Enhancing Stereo Visual-Inertial SLAM Initialization with Normal Epipolar Constraints
|
2403.07225
|
https://arxiv.org/abs/2403.07225v1
|
https://arxiv.org/pdf/2403.07225v1.pdf
|
https://github.com/apdowjn/stereo-nec
| true | true | false |
none
|
https://paperswithcode.com/paper/ranking-with-submodular-functions-on-the-fly
|
Ranking with submodular functions on the fly
|
2301.06787
|
https://arxiv.org/abs/2301.06787v1
|
https://arxiv.org/pdf/2301.06787v1.pdf
|
https://github.com/Guangyi-Zhang/subm-ranking-on-the-fly
| true | true | false |
none
|
https://paperswithcode.com/paper/weakly-supervised-learning-of-cortical
|
Weakly Supervised Learning of Cortical Surface Reconstruction from Segmentations
|
2406.12650
|
https://arxiv.org/abs/2406.12650v1
|
https://arxiv.org/pdf/2406.12650v1.pdf
|
https://github.com/m-qiang/CoSeg
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/comparison-between-behavior-trees-and-finite
|
Comparison between Behavior Trees and Finite State Machines
|
2405.16137
|
https://arxiv.org/abs/2405.16137v1
|
https://arxiv.org/pdf/2405.16137v1.pdf
|
https://github.com/ethz-asl/bt_fsm_comparison
| true | true | false |
none
|
https://paperswithcode.com/paper/union-subgraph-neural-networks
|
Union Subgraph Neural Networks
|
2305.15747
|
https://arxiv.org/abs/2305.15747v3
|
https://arxiv.org/pdf/2305.15747v3.pdf
|
https://github.com/angusmonroe/unionsnn
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/rgb-d-based-categorical-object-pose-and-shape
|
RGB-D-Based Categorical Object Pose and Shape Estimation: Methods, Datasets, and Evaluation
|
2301.08147
|
https://arxiv.org/abs/2301.08147v1
|
https://arxiv.org/pdf/2301.08147v1.pdf
|
https://github.com/roym899/pose_and_shape_evaluation
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/albert-a-lite-bert-for-self-supervised
|
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
|
1909.11942
|
https://arxiv.org/abs/1909.11942v6
|
https://arxiv.org/pdf/1909.11942v6.pdf
|
https://github.com/lyqcom/albert
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/a-hyperspectral-imaging-dataset-and
|
A Hyperspectral Imaging Dataset and Methodology for Intraoperative Pixel-Wise Classification of Metastatic Colon Cancer in the Liver
|
2411.06969
|
https://arxiv.org/abs/2411.06969v1
|
https://arxiv.org/pdf/2411.06969v1.pdf
|
https://github.com/ikopriva/coloncancerhsi
| true | true | false |
none
|
https://paperswithcode.com/paper/measuring-faithful-and-plausible-visual
|
Measuring Faithful and Plausible Visual Grounding in VQA
|
2305.15015
|
https://arxiv.org/abs/2305.15015v2
|
https://arxiv.org/pdf/2305.15015v2.pdf
|
https://github.com/dreichcsl/fpvg
| true | true | true |
none
|
https://paperswithcode.com/paper/moment-based-kalman-filter-nonlinear-kalman
|
Moment-based Kalman Filter: Nonlinear Kalman Filtering with Exact Moment Propagation
|
2301.09130
|
https://arxiv.org/abs/2301.09130v1
|
https://arxiv.org/pdf/2301.09130v1.pdf
|
https://github.com/purewater0901/mkf
| true | true | true |
none
|
https://paperswithcode.com/paper/yosysnextpnr-an-open-source-framework-from
|
Yosys+nextpnr: an Open Source Framework from Verilog to Bitstream for Commercial FPGAs
|
1903.10407
|
http://arxiv.org/abs/1903.10407v1
|
http://arxiv.org/pdf/1903.10407v1.pdf
|
https://github.com/gatecat/nextpnr-xilinx
| false | false | true |
none
|
https://paperswithcode.com/paper/moment-based-exact-uncertainty-propagation
|
Moment-Based Exact Uncertainty Propagation Through Nonlinear Stochastic Autonomous Systems
|
2101.12490
|
https://arxiv.org/abs/2101.12490v1
|
https://arxiv.org/pdf/2101.12490v1.pdf
|
https://github.com/purewater0901/mkf
| false | false | true |
none
|
https://paperswithcode.com/paper/near-linear-time-algorithm-to-detect
|
Near linear time algorithm to detect community structures in large-scale networks
|
0709.2938
|
http://arxiv.org/abs/0709.2938v1
|
http://arxiv.org/pdf/0709.2938v1.pdf
|
https://github.com/ionicf/copra-communities-seq
| false | false | true |
none
|
https://paperswithcode.com/paper/finding-overlapping-communities-in-networks
|
Finding overlapping communities in networks by label propagation
|
0910.5516
|
http://arxiv.org/abs/0910.5516v3
|
http://arxiv.org/pdf/0910.5516v3.pdf
|
https://github.com/ionicf/copra-communities-seq
| false | false | true |
none
|
https://paperswithcode.com/paper/opencitations-meta
|
OpenCitations Meta
|
2306.16191
|
https://arxiv.org/abs/2306.16191v1
|
https://arxiv.org/pdf/2306.16191v1.pdf
|
https://github.com/opencitations/oc_meta
| true | false | false |
none
|
https://paperswithcode.com/paper/data-consistent-deep-rigid-mri-motion
|
Data Consistent Deep Rigid MRI Motion Correction
|
2301.10365
|
https://arxiv.org/abs/2301.10365v2
|
https://arxiv.org/pdf/2301.10365v2.pdf
|
https://github.com/nalinimsingh/neuromoco
| true | true | true |
tf
|
https://paperswithcode.com/paper/lemma-bootstrapping-high-level-mathematical
|
LEMMA: Bootstrapping High-Level Mathematical Reasoning with Learned Symbolic Abstractions
|
2211.08671
|
https://arxiv.org/abs/2211.08671v1
|
https://arxiv.org/pdf/2211.08671v1.pdf
|
https://github.com/uranium11010/lemma
| true | false | true |
none
|
https://paperswithcode.com/paper/inductive-reasoning-for-coinductive-types
|
Inductive Reasoning for Coinductive Types
|
2301.09802
|
https://arxiv.org/abs/2301.09802v2
|
https://arxiv.org/pdf/2301.09802v2.pdf
|
https://github.com/bagnalla/algco
| true | true | true |
none
|
https://paperswithcode.com/paper/closing-the-loop-testing-chatgpt-to-generate
|
Closing the Loop: Testing ChatGPT to Generate Model Explanations to Improve Human Labelling of Sponsored Content on Social Media
|
2306.05115
|
https://arxiv.org/abs/2306.05115v1
|
https://arxiv.org/pdf/2306.05115v1.pdf
|
https://github.com/thalesbertaglia/chatgpt-explanations-sponsored-content
| true | true | true |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.