paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/xception-deep-learning-with-depthwise
|
Xception: Deep Learning with Depthwise Separable Convolutions
|
1610.02357
|
http://arxiv.org/abs/1610.02357v3
|
http://arxiv.org/pdf/1610.02357v3.pdf
|
https://github.com/MindSpore-paper-code-2/code400/tree/main/Inception/xception
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/generating-a-structured-summary-of-numerous
|
Generating a Structured Summary of Numerous Academic Papers: Dataset and Method
|
2302.04580
|
https://arxiv.org/abs/2302.04580v1
|
https://arxiv.org/pdf/2302.04580v1.pdf
|
https://github.com/stevenlau6/bigsurvey
| true | true | false |
none
|
https://paperswithcode.com/paper/complex-network-for-complex-problems-a
|
Complex Network for Complex Problems: A comparative study of CNN and Complex-valued CNN
|
2302.04584
|
https://arxiv.org/abs/2302.04584v1
|
https://arxiv.org/pdf/2302.04584v1.pdf
|
https://github.com/soumickmj/pytorch-complex
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/toward-extremely-lightweight-distracted
|
Toward Extremely Lightweight Distracted Driver Recognition With Distillation-Based Neural Architecture Search and Knowledge Transfer
|
2302.04527
|
https://arxiv.org/abs/2302.04527v1
|
https://arxiv.org/pdf/2302.04527v1.pdf
|
https://github.com/dichao-liu/lightweight_distracted_driver_recognition_with_distillation-based_nas_and_knowledge_transfer
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/emvd-dataset-a-dataset-of-extreme-vocal
|
EMVD dataset: a dataset of extreme vocal distortion techniques used in heavy metal
|
2406.17732
|
https://arxiv.org/abs/2406.17732v1
|
https://arxiv.org/pdf/2406.17732v1.pdf
|
https://github.com/modantailleur/extrememetalvocalsdataset
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/contain-a-community-based-algorithm-for
|
CONTAIN: A Community-based Algorithm for Network Immunization
|
2303.01934
|
https://arxiv.org/abs/2303.01934v2
|
https://arxiv.org/pdf/2303.01934v2.pdf
|
https://github.com/ds4ai-upb/contain
| true | true | false |
none
|
https://paperswithcode.com/paper/the-cosmic-linear-anisotropy-solving-system-1
|
The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes
|
1104.2933
|
http://arxiv.org/abs/1104.2933v3
|
http://arxiv.org/pdf/1104.2933v3.pdf
|
https://github.com/zachjweiner/class_public
| false | false | true |
none
|
https://paperswithcode.com/paper/sparse-bayesian-optimization
|
Sparse Bayesian Optimization
|
2203.01900
|
https://arxiv.org/abs/2203.01900v2
|
https://arxiv.org/pdf/2203.01900v2.pdf
|
https://github.com/facebookresearch/sparsebo
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/gdcnet-calibrationless-geometric-distortion
|
GDCNet: Calibrationless geometric distortion correction of echo planar imaging data using deep learning
|
2402.18777
|
https://arxiv.org/abs/2402.18777v1
|
https://arxiv.org/pdf/2402.18777v1.pdf
|
https://github.com/imr-framework/gdcnet
| true | true | false |
tf
|
https://paperswithcode.com/paper/towards-democratizing-joint-embedding-self
|
Towards Democratizing Joint-Embedding Self-Supervised Learning
|
2303.01986
|
https://arxiv.org/abs/2303.01986v1
|
https://arxiv.org/pdf/2303.01986v1.pdf
|
https://github.com/facebookresearch/ffcv-ssl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/sequence-to-sequence-learning-with-neural
|
Sequence to Sequence Learning with Neural Networks
|
1409.3215
|
http://arxiv.org/abs/1409.3215v3
|
http://arxiv.org/pdf/1409.3215v3.pdf
|
https://github.com/Mind23-2/MindCode-73
| false | false | true |
mindspore
|
https://paperswithcode.com/paper/multi-task-learning-as-multi-objective
|
Multi-Task Learning as Multi-Objective Optimization
|
1810.04650
|
http://arxiv.org/abs/1810.04650v2
|
http://arxiv.org/pdf/1810.04650v2.pdf
|
https://github.com/isl-org/multiobjectiveoptimization
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/improving-factual-error-correction-by
|
Improving Factual Error Correction by Learning to Inject Factual Errors
|
2312.07049
|
https://arxiv.org/abs/2312.07049v1
|
https://arxiv.org/pdf/2312.07049v1.pdf
|
https://github.com/nlpcode/life
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/attentron-few-shot-text-to-speech-utilizing-1
|
Attentron: Few-Shot Text-to-Speech Utilizing Attention-Based Variable-Length Embedding
|
2005.08484
|
http://arxiv.org/abs/2005.08484v2
|
http://arxiv.org/pdf/2005.08484v2.pdf
|
https://github.com/jasminsternkopf/mel_cepstral_distance
| false | false | true |
none
|
https://paperswithcode.com/paper/towards-universal-soccer-video-understanding
|
Towards Universal Soccer Video Understanding
|
2412.01820
|
https://arxiv.org/abs/2412.01820v2
|
https://arxiv.org/pdf/2412.01820v2.pdf
|
https://github.com/jyrao/UniSoccer
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/sconna-a-stochastic-computing-based-optical
|
SCONNA: A Stochastic Computing Based Optical Accelerator for Ultra-Fast, Energy-Efficient Inference of Integer-Quantized CNNs
|
2302.07036
|
https://arxiv.org/abs/2302.07036v1
|
https://arxiv.org/pdf/2302.07036v1.pdf
|
https://github.com/uky-ucat/sc_onn_sim
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/team-detr-guide-queries-as-a-professional
|
Team DETR: Guide Queries as a Professional Team in Detection Transformers
|
2302.07116
|
https://arxiv.org/abs/2302.07116v3
|
https://arxiv.org/pdf/2302.07116v3.pdf
|
https://github.com/horrible-dong/teamdetr
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/sp-nas-serial-to-parallel-backbone-search-for
|
SP-NAS: Serial-to-Parallel Backbone Search for Object Detection
| null |
http://openaccess.thecvf.com/content_CVPR_2020/html/Jiang_SP-NAS_Serial-to-Parallel_Backbone_Search_for_Object_Detection_CVPR_2020_paper.html
|
http://openaccess.thecvf.com/content_CVPR_2020/papers/Jiang_SP-NAS_Serial-to-Parallel_Backbone_Search_for_Object_Detection_CVPR_2020_paper.pdf
|
https://github.com/2023-MindSpore-4/Code11/tree/main/Spnas
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/euca-a-practical-prototyping-framework
|
EUCA: the End-User-Centered Explainable AI Framework
|
2102.02437
|
https://arxiv.org/abs/2102.02437v2
|
https://arxiv.org/pdf/2102.02437v2.pdf
|
https://github.com/weinajin/euca
| false | false | true |
none
|
https://paperswithcode.com/paper/the-language-of-opinion-change-on-social
|
The language of opinion change on social media under the lens of communicative action
|
2210.17234
|
https://arxiv.org/abs/2210.17234v1
|
https://arxiv.org/pdf/2210.17234v1.pdf
|
https://github.com/corradomonti/10-dim-of-op-change
| true | true | false |
none
|
https://paperswithcode.com/paper/hierarchical-text-conditional-image
|
Hierarchical Text-Conditional Image Generation with CLIP Latents
|
2204.06125
|
https://arxiv.org/abs/2204.06125v1
|
https://arxiv.org/pdf/2204.06125v1.pdf
|
https://github.com/laion-ai/conditioned-prior
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/dp-bart-for-privatized-text-rewriting-under
|
DP-BART for Privatized Text Rewriting under Local Differential Privacy
|
2302.07636
|
https://arxiv.org/abs/2302.07636v2
|
https://arxiv.org/pdf/2302.07636v2.pdf
|
https://github.com/trusthlt/dp-bart-private-rewriting
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/optical-flow-estimation-with-event-based
|
Optical flow estimation from event-based cameras and spiking neural networks
|
2302.06492
|
https://arxiv.org/abs/2302.06492v2
|
https://arxiv.org/pdf/2302.06492v2.pdf
|
https://github.com/j-cuadrado/of_ev_snn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/the-enmity-paradox
|
The Enmity Paradox
|
2304.10076
|
https://arxiv.org/abs/2304.10076v1
|
https://arxiv.org/pdf/2304.10076v1.pdf
|
https://github.com/aghasemian/enmityparadox
| true | true | false |
none
|
https://paperswithcode.com/paper/human-guided-ground-truth-generation-for
|
Human Guided Ground-truth Generation for Realistic Image Super-resolution
|
2303.13069
|
https://arxiv.org/abs/2303.13069v1
|
https://arxiv.org/pdf/2303.13069v1.pdf
|
https://github.com/chrisdud0257/hggt
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/frequency-assisted-mamba-for-remote-sensing
|
Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution
|
2405.04964
|
https://arxiv.org/abs/2405.04964v2
|
https://arxiv.org/pdf/2405.04964v2.pdf
|
https://github.com/XY-boy/FreMamba
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/multi3woz-a-multilingual-multi-domain-multi
|
Multi3WOZ: A Multilingual, Multi-Domain, Multi-Parallel Dataset for Training and Evaluating Culturally Adapted Task-Oriented Dialog Systems
|
2307.14031
|
https://arxiv.org/abs/2307.14031v1
|
https://arxiv.org/pdf/2307.14031v1.pdf
|
https://github.com/cambridgeltl/multi3woz
| true | true | true |
none
|
https://paperswithcode.com/paper/rgbd-object-tracking-an-in-depth-review
|
RGBD Object Tracking: An In-depth Review
|
2203.14134
|
https://arxiv.org/abs/2203.14134v1
|
https://arxiv.org/pdf/2203.14134v1.pdf
|
https://github.com/memoryunreal/rgbd-tracking-review
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/alias-free-convnets-fractional-shift
|
Alias-Free Convnets: Fractional Shift Invariance via Polynomial Activations
|
2303.08085
|
https://arxiv.org/abs/2303.08085v2
|
https://arxiv.org/pdf/2303.08085v2.pdf
|
https://github.com/hmichaeli/alias_free_convnets
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-legendre-gauss-pseudospectral-collocation
|
A Legendre-Gauss Pseudospectral Collocation Method for Trajectory Optimization in Second Order Systems
|
2302.09036
|
https://arxiv.org/abs/2302.09036v1
|
https://arxiv.org/pdf/2302.09036v1.pdf
|
https://github.com/aunsiro/optibot
| false | false | true |
none
|
https://paperswithcode.com/paper/marginalised-gaussian-processes-with-nested
|
Marginalised Gaussian Processes with Nested Sampling
|
2010.16344
|
https://arxiv.org/abs/2010.16344v2
|
https://arxiv.org/pdf/2010.16344v2.pdf
|
https://github.com/frgsimpson/nsampling
| true | true | true |
tf
|
https://paperswithcode.com/paper/filtering-distillation-and-hard-negatives-for
|
Filtering, Distillation, and Hard Negatives for Vision-Language Pre-Training
|
2301.02280
|
https://arxiv.org/abs/2301.02280v2
|
https://arxiv.org/pdf/2301.02280v2.pdf
|
https://github.com/facebookresearch/diht
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/multi-modal-self-supervised-learning-for
|
Multi-Modal Self-Supervised Learning for Recommendation
|
2302.10632
|
https://arxiv.org/abs/2302.10632v5
|
https://arxiv.org/pdf/2302.10632v5.pdf
|
https://github.com/hkuds/mmssl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/graph-attention-networks
|
Graph Attention Networks
|
1710.10903
|
http://arxiv.org/abs/1710.10903v3
|
http://arxiv.org/pdf/1710.10903v3.pdf
|
https://github.com/taishan1994/pytorch_gat
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/logit-margin-matters-improving-transferable
|
Logit Margin Matters: Improving Transferable Targeted Adversarial Attack by Logit Calibration
|
2303.03680
|
https://arxiv.org/abs/2303.03680v1
|
https://arxiv.org/pdf/2303.03680v1.pdf
|
https://github.com/wjjll/target-attack
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/weigh-your-own-words-improving-hate-speech
|
Weigh Your Own Words: Improving Hate Speech Counter Narrative Generation via Attention Regularization
|
2309.02311
|
https://arxiv.org/abs/2309.02311v1
|
https://arxiv.org/pdf/2309.02311v1.pdf
|
https://github.com/milanlproc/weigh-your-own-words
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/bidirectional-reachable-hierarchical
|
Bidirectional-Reachable Hierarchical Reinforcement Learning with Mutually Responsive Policies
|
2406.18053
|
https://arxiv.org/abs/2406.18053v1
|
https://arxiv.org/pdf/2406.18053v1.pdf
|
https://github.com/roythuly/brhpo
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/quantifying-uncertainties-in-the-solar-axion
|
Quantifying uncertainties in the solar axion flux and their impact on determining axion model parameters
|
2101.08789
|
https://arxiv.org/abs/2101.08789v3
|
https://arxiv.org/pdf/2101.08789v3.pdf
|
https://github.com/sebhoof/SolarAxionFlux
| true | true | true |
none
|
https://paperswithcode.com/paper/axion-helioscopes-as-solar-thermometers
|
Axion Helioscopes as Solar Thermometers
|
2306.00077
|
https://arxiv.org/abs/2306.00077v2
|
https://arxiv.org/pdf/2306.00077v2.pdf
|
https://github.com/sebhoof/SolarAxionFlux
| true | true | true |
none
|
https://paperswithcode.com/paper/domain-adaptation-of-echocardiography
|
Domain Adaptation of Echocardiography Segmentation Via Reinforcement Learning
|
2406.17902
|
https://arxiv.org/abs/2406.17902v1
|
https://arxiv.org/pdf/2406.17902v1.pdf
|
https://github.com/arnaudjudge/rl4seg
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/the-barker-proposal-combining-robustness-and
|
The Barker proposal: combining robustness and efficiency in gradient-based MCMC
|
1908.11812
|
http://arxiv.org/abs/1908.11812v2
|
http://arxiv.org/pdf/1908.11812v2.pdf
|
https://github.com/UCL/rmcmc
| false | false | false |
none
|
https://paperswithcode.com/paper/unsupervised-domain-expansion-for-visual
|
Unsupervised Domain Expansion for Visual Categorization
|
2104.00233
|
https://arxiv.org/abs/2104.00233v1
|
https://arxiv.org/pdf/2104.00233v1.pdf
|
https://github.com/theeighthday/co-teaching
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/face-fast-accurate-and-context-aware-audio
|
Face: Fast, Accurate and Context-Aware Audio Annotation and Classification
|
2303.03666
|
https://arxiv.org/abs/2303.03666v1
|
https://arxiv.org/pdf/2303.03666v1.pdf
|
https://github.com/gitmehrdad/face
| true | true | true |
none
|
https://paperswithcode.com/paper/what-learned-representations-and-influence
|
What Learned Representations and Influence Functions Can Tell Us About Adversarial Examples
|
2309.10916
|
https://arxiv.org/abs/2309.10916v3
|
https://arxiv.org/pdf/2309.10916v3.pdf
|
https://github.com/sjabin/nnif
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/patchbackdoor-backdoor-attack-against-deep
|
PatchBackdoor: Backdoor Attack against Deep Neural Networks without Model Modification
|
2308.11822
|
https://arxiv.org/abs/2308.11822v1
|
https://arxiv.org/pdf/2308.11822v1.pdf
|
https://github.com/xaiveryuan/patchbackdoor
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/on-slicing-sorted-integer-sequences
|
On Slicing Sorted Integer Sequences
|
1907.01032
|
https://arxiv.org/abs/1907.01032v2
|
https://arxiv.org/pdf/1907.01032v2.pdf
|
https://github.com/jermp/s_indexes
| true | true | true |
none
|
https://paperswithcode.com/paper/techniques-for-inverted-index-compression
|
Techniques for Inverted Index Compression
|
1908.10598
|
https://arxiv.org/abs/1908.10598v2
|
https://arxiv.org/pdf/1908.10598v2.pdf
|
https://github.com/jermp/s_indexes
| false | false | true |
none
|
https://paperswithcode.com/paper/rlx2-training-a-sparse-deep-reinforcement
|
RLx2: Training a Sparse Deep Reinforcement Learning Model from Scratch
|
2205.15043
|
https://arxiv.org/abs/2205.15043v2
|
https://arxiv.org/pdf/2205.15043v2.pdf
|
https://github.com/tyq1024/rlx2
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/evotorch-scalable-evolutionary-computation-in
|
EvoTorch: Scalable Evolutionary Computation in Python
|
2302.12600
|
https://arxiv.org/abs/2302.12600v3
|
https://arxiv.org/pdf/2302.12600v3.pdf
|
https://github.com/nnaisense/evotorch
| true | true | true |
jax
|
https://paperswithcode.com/paper/semantic-segmentation-for-autonomous-driving
|
Semantic Segmentation for Autonomous Driving: Model Evaluation, Dataset Generation, Perspective Comparison, and Real-Time Capability
|
2207.12939
|
https://arxiv.org/abs/2207.12939v1
|
https://arxiv.org/pdf/2207.12939v1.pdf
|
https://github.com/sinop97/drive_sim_road_generation
| true | true | true |
none
|
https://paperswithcode.com/paper/fastami-a-monte-carlo-approach-to-the
|
FastAMI -- a Monte Carlo Approach to the Adjustment for Chance in Clustering Comparison Metrics
|
2305.03022
|
https://arxiv.org/abs/2305.03022v1
|
https://arxiv.org/pdf/2305.03022v1.pdf
|
https://github.com/mad-lab-fau/fastami
| true | false | false |
none
|
https://paperswithcode.com/paper/interpolation-in-generative-models
|
Feature-Based Interpolation and Geodesics in the Latent Spaces of Generative Models
|
1904.03445
|
https://arxiv.org/abs/1904.03445v3
|
https://arxiv.org/pdf/1904.03445v3.pdf
|
https://github.com/gmum/feature-based-interpolation
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/universal-construction-of-decoders-from
|
Universal construction of decoders from encoding black boxes
|
2110.00258
|
https://arxiv.org/abs/2110.00258v5
|
https://arxiv.org/pdf/2110.00258v5.pdf
|
https://github.com/sy3104/isometry_inversion
| true | true | true |
none
|
https://paperswithcode.com/paper/conserved-currents-for-kerr-and-orthogonality
|
Conserved currents for Kerr and orthogonality of quasinormal modes
|
2210.15935
|
https://arxiv.org/abs/2210.15935v3
|
https://arxiv.org/pdf/2210.15935v3.pdf
|
https://github.com/sprogl/h-k-tensors
| true | true | true |
none
|
https://paperswithcode.com/paper/styleganex-stylegan-based-manipulation-beyond
|
StyleGANEX: StyleGAN-Based Manipulation Beyond Cropped Aligned Faces
|
2303.06146
|
https://arxiv.org/abs/2303.06146v2
|
https://arxiv.org/pdf/2303.06146v2.pdf
|
https://github.com/williamyang1991/styleganex
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/simple-domain-generalization-methods-are
|
Simple Domain Generalization Methods are Strong Baselines for Open Domain Generalization
|
2303.18031
|
https://arxiv.org/abs/2303.18031v1
|
https://arxiv.org/pdf/2303.18031v1.pdf
|
https://github.com/shiralab/opendg-eval
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/cbam-convolutional-block-attention-module
|
CBAM: Convolutional Block Attention Module
|
1807.06521
|
http://arxiv.org/abs/1807.06521v2
|
http://arxiv.org/pdf/1807.06521v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-6/tree/main/CBAM
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/cliff-carrying-location-information-in-full
|
CLIFF: Carrying Location Information in Full Frames into Human Pose and Shape Estimation
|
2208.00571
|
https://arxiv.org/abs/2208.00571v2
|
https://arxiv.org/pdf/2208.00571v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-6/tree/main/CLIFF
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/bandwidth-selection-for-gaussian-kernel-ridge
|
Bandwidth Selection for Gaussian Kernel Ridge Regression via Jacobian Control
|
2205.11956
|
https://arxiv.org/abs/2205.11956v4
|
https://arxiv.org/pdf/2205.11956v4.pdf
|
https://github.com/allerbo/jacobian_bandwidth_selection
| true | true | true |
none
|
https://paperswithcode.com/paper/managing-power-grids-through-topology-actions
|
Managing power grids through topology actions: A comparative study between advanced rule-based and reinforcement learning agents
|
2304.00765
|
https://arxiv.org/abs/2304.00765v2
|
https://arxiv.org/pdf/2304.00765v2.pdf
|
https://github.com/fraunhoferiee/curriculumagent
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/gradient-driven-3d-segmentation-and
|
Gradient-Driven 3D Segmentation and Affordance Transfer in Gaussian Splatting Using 2D Masks
|
2409.11681
|
https://arxiv.org/abs/2409.11681v1
|
https://arxiv.org/pdf/2409.11681v1.pdf
|
https://github.com/JojiJoseph/3dgs-gradient-segmentation
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/uniformer-unified-multi-view-fusion
|
UniFusion: Unified Multi-view Fusion Transformer for Spatial-Temporal Representation in Bird's-Eye-View
|
2207.08536
|
https://arxiv.org/abs/2207.08536v2
|
https://arxiv.org/pdf/2207.08536v2.pdf
|
https://github.com/cfzd/unifusion
| true | true | true |
none
|
https://paperswithcode.com/paper/deepinteraction-3d-object-detection-via
|
DeepInteraction: 3D Object Detection via Modality Interaction
|
2208.11112
|
https://arxiv.org/abs/2208.11112v4
|
https://arxiv.org/pdf/2208.11112v4.pdf
|
https://github.com/fudan-zvg/gss
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/differentially-private-algorithms-for-3
|
Differentially Private Algorithms for Synthetic Power System Datasets
|
2303.11079
|
https://arxiv.org/abs/2303.11079v1
|
https://arxiv.org/pdf/2303.11079v1.pdf
|
https://github.com/wdvorkin/syntheticdata
| true | true | false |
none
|
https://paperswithcode.com/paper/vectornet-encoding-hd-maps-and-agent-dynamics
|
VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation
|
2005.04259
|
https://arxiv.org/abs/2005.04259v1
|
https://arxiv.org/pdf/2005.04259v1.pdf
|
https://github.com/henry1iu/tnt-trajectory-prediction
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/tnt-target-driven-trajectory-prediction
|
TNT: Target-driveN Trajectory Prediction
|
2008.08294
|
https://arxiv.org/abs/2008.08294v2
|
https://arxiv.org/pdf/2008.08294v2.pdf
|
https://github.com/henry1iu/tnt-trajectory-prediction
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/triaan-vc-triple-adaptive-attention
|
TriAAN-VC: Triple Adaptive Attention Normalization for Any-to-Any Voice Conversion
|
2303.09057
|
https://arxiv.org/abs/2303.09057v1
|
https://arxiv.org/pdf/2303.09057v1.pdf
|
https://github.com/winddori2002/TriAAN-VC
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/clip-goes-3d-leveraging-prompt-tuning-for
|
CLIP goes 3D: Leveraging Prompt Tuning for Language Grounded 3D Recognition
|
2303.11313
|
https://arxiv.org/abs/2303.11313v3
|
https://arxiv.org/pdf/2303.11313v3.pdf
|
https://github.com/deeptibhegde/clip-goes-3d
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/generative-semantic-segmentation
|
Generative Semantic Segmentation
|
2303.11316
|
https://arxiv.org/abs/2303.11316v2
|
https://arxiv.org/pdf/2303.11316v2.pdf
|
https://github.com/fudan-zvg/gss
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/self-supervised-learning-for-multimodal-non
|
Self-Supervised Learning for Multimodal Non-Rigid 3D Shape Matching
|
2303.10971
|
https://arxiv.org/abs/2303.10971v1
|
https://arxiv.org/pdf/2303.10971v1.pdf
|
https://github.com/dongliangcao/Self-Supervised-Multimodal-Shape-Matching
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/less-is-more-reducing-task-and-model
|
Less is More: Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation
|
2303.11203
|
https://arxiv.org/abs/2303.11203v2
|
https://arxiv.org/pdf/2303.11203v2.pdf
|
https://github.com/l1997i/lim3d
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/natcs-eliciting-natural-customer-support
|
NatCS: Eliciting Natural Customer Support Dialogues
|
2305.03007
|
https://arxiv.org/abs/2305.03007v1
|
https://arxiv.org/pdf/2305.03007v1.pdf
|
https://github.com/amazon-research/dstc11-track2-intent-induction
| false | false | true |
none
|
https://paperswithcode.com/paper/intent-induction-from-conversations-for-task
|
Intent Induction from Conversations for Task-Oriented Dialogue Track at DSTC 11
|
2304.12982
|
https://arxiv.org/abs/2304.12982v1
|
https://arxiv.org/pdf/2304.12982v1.pdf
|
https://github.com/amazon-research/dstc11-track2-intent-induction
| false | false | true |
none
|
https://paperswithcode.com/paper/query-encoder-distillation-via-embedding
|
Query Encoder Distillation via Embedding Alignment is a Strong Baseline Method to Boost Dense Retriever Online Efficiency
|
2306.11550
|
https://arxiv.org/abs/2306.11550v1
|
https://arxiv.org/pdf/2306.11550v1.pdf
|
https://github.com/guest400123064/distill-retriever
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/generative-multiplane-neural-radiance-for-3d
|
Generative Multiplane Neural Radiance for 3D-Aware Image Generation
|
2304.01172
|
https://arxiv.org/abs/2304.01172v1
|
https://arxiv.org/pdf/2304.01172v1.pdf
|
https://github.com/virobo-15/gmnr
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-discontinuous-galerkin-approach-for
|
A discontinuous Galerkin approach for atmospheric flows with implicit condensation
|
2305.13847
|
https://arxiv.org/abs/2305.13847v3
|
https://arxiv.org/pdf/2305.13847v3.pdf
|
https://github.com/hvonwah/cloud-models-code
| true | true | false |
none
|
https://paperswithcode.com/paper/magvlt-masked-generative-vision-and-language
|
MAGVLT: Masked Generative Vision-and-Language Transformer
|
2303.12208
|
https://arxiv.org/abs/2303.12208v1
|
https://arxiv.org/pdf/2303.12208v1.pdf
|
https://github.com/kakaobrain/magvlt
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/multimodal-industrial-anomaly-detection-by
|
Multimodal Industrial Anomaly Detection by Crossmodal Feature Mapping
|
2312.04521
|
https://arxiv.org/abs/2312.04521v2
|
https://arxiv.org/pdf/2312.04521v2.pdf
|
https://github.com/cvlab-unibo/crossmodal-feature-mapping
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/tabret-pre-training-transformer-based-tabular
|
TabRet: Pre-training Transformer-based Tabular Models for Unseen Columns
|
2303.15747
|
https://arxiv.org/abs/2303.15747v4
|
https://arxiv.org/pdf/2303.15747v4.pdf
|
https://github.com/pfnet-research/tabret
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/pynet-qxq-a-distilled-pynet-for-qxq-bayer
|
PyNET-QxQ: An Efficient PyNET Variant for QxQ Bayer Pattern Demosaicing in CMOS Image Sensors
|
2203.04314
|
https://arxiv.org/abs/2203.04314v2
|
https://arxiv.org/pdf/2203.04314v2.pdf
|
https://github.com/minhyeok01/pynet-qxq
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/polynomial-time-and-dependent-types
|
Polynomial Time and Dependent Types
|
2307.09145
|
https://arxiv.org/abs/2307.09145v2
|
https://arxiv.org/pdf/2307.09145v2.pdf
|
https://github.com/bobatkey/qtt-models
| true | true | false |
none
|
https://paperswithcode.com/paper/how-to-boost-face-recognition-with-stylegan
|
How to Boost Face Recognition with StyleGAN?
|
2210.10090
|
https://arxiv.org/abs/2210.10090v2
|
https://arxiv.org/pdf/2210.10090v2.pdf
|
https://github.com/seva100/stylegan-for-facerec
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/defending-llms-against-jailbreaking-attacks
|
Defending LLMs against Jailbreaking Attacks via Backtranslation
|
2402.16459
|
https://arxiv.org/abs/2402.16459v3
|
https://arxiv.org/pdf/2402.16459v3.pdf
|
https://github.com/yihanwang617/llm-jailbreaking-defense
| true | true | true |
none
|
https://paperswithcode.com/paper/mirror-cognitive-inner-monologue-between
|
MIRROR: Cognitive Inner Monologue Between Conversational Turns for Persistent Reflection and Reasoning in Conversational LLMs
|
2506.00430
|
https://arxiv.org/abs/2506.00430v1
|
https://arxiv.org/pdf/2506.00430v1.pdf
|
https://github.com/nicolehsing/MIRROR
| true | false | true |
none
|
https://paperswithcode.com/paper/mci-net-multi-scale-context-integrated
|
Mci-net: multi-scale context integrated network for liver ct image segmentation
| null |
https://www.sciencedirect.com/science/article/pii/S0045790622003408
|
https://www.sciencedirect.com/science/article/pii/S0045790622003408
|
https://github.com/Xie-Xiwang/MCI-Net
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/breaking-the-silence-detecting-and-mitigating
|
Breaking the Silence Detecting and Mitigating Gendered Abuse in Hindi, Tamil, and Indian English Online Spaces
|
2404.02013
|
https://arxiv.org/abs/2404.02013v2
|
https://arxiv.org/pdf/2404.02013v2.pdf
|
https://github.com/advaithavetagiri/cnlp-nits-pp
| true | true | false |
none
|
https://paperswithcode.com/paper/music-demixing-with-the-slicq-transform
|
Music demixing with the sliCQ transform
|
2112.05509
|
https://arxiv.org/abs/2112.05509v1
|
https://arxiv.org/pdf/2112.05509v1.pdf
|
https://github.com/sevagh/xumx-slicq
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/snrgan-the-semi-noise-reduction-gan-for-image
|
SNRGAN: The Semi Noise Reduction GAN for Image Denoising
| null |
https://ieeexplore.ieee.org/abstract/document/10475264
|
https://ieeexplore.ieee.org/abstract/document/10475264
|
https://github.com/mehrshadmmt/SNRGAN-The-Semi-Noise-Reduction-GAN-for-Image-Denoising
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/airloc-object-based-indoor-relocalization
|
AirLoc: Object-based Indoor Relocalization
|
2304.00954
|
https://arxiv.org/abs/2304.00954v1
|
https://arxiv.org/pdf/2304.00954v1.pdf
|
https://github.com/sair-lab/airloc
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/privacy-preserving-representations-are-not
|
Privacy-Preserving Representations are not Enough -- Recovering Scene Content from Camera Poses
|
2305.04603
|
https://arxiv.org/abs/2305.04603v1
|
https://arxiv.org/pdf/2305.04603v1.pdf
|
https://github.com/kunalchelani/objectpositioningfromposes
| true | true | false |
none
|
https://paperswithcode.com/paper/bi-mapper-holistic-bev-semantic-mapping-for
|
Bi-Mapper: Holistic BEV Semantic Mapping for Autonomous Driving
|
2305.04205
|
https://arxiv.org/abs/2305.04205v3
|
https://arxiv.org/pdf/2305.04205v3.pdf
|
https://github.com/lynn-yu/bi-mapper
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/hatemm-a-multi-modal-dataset-for-hate-video
|
HateMM: A Multi-Modal Dataset for Hate Video Classification
|
2305.03915
|
https://arxiv.org/abs/2305.03915v1
|
https://arxiv.org/pdf/2305.03915v1.pdf
|
https://github.com/hate-alert/hatemm
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/the-metric-space-of-collider-events
|
The Metric Space of Collider Events
|
1902.02346
|
http://arxiv.org/abs/1902.02346v3
|
http://arxiv.org/pdf/1902.02346v3.pdf
|
https://github.com/jet-net/jetnet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/on-the-evaluation-of-generative-models-in
|
Evaluating generative models in high energy physics
|
2211.10295
|
https://arxiv.org/abs/2211.10295v2
|
https://arxiv.org/pdf/2211.10295v2.pdf
|
https://github.com/jet-net/jetnet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/the-neural-hawkes-process-a-neurally-self
|
The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process
|
1612.09328
|
http://arxiv.org/abs/1612.09328v3
|
http://arxiv.org/pdf/1612.09328v3.pdf
|
https://github.com/sohamch/Neural-Hawkes-study
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/attacking-pre-trained-recommendation
|
Attacking Pre-trained Recommendation
|
2305.03995
|
https://arxiv.org/abs/2305.03995v1
|
https://arxiv.org/pdf/2305.03995v1.pdf
|
https://github.com/wyqing20/aprec
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/monocular-3d-human-pose-estimation-for-sports
|
Monocular 3D Human Pose Estimation for Sports Broadcasts using Partial Sports Field Registration
|
2304.04437
|
https://arxiv.org/abs/2304.04437v1
|
https://arxiv.org/pdf/2304.04437v1.pdf
|
https://github.com/tobibaum/partialsportsfieldreg_3dhpe
| true | true | true |
none
|
https://paperswithcode.com/paper/learning-to-estimate-external-forces-of-human
|
Learning to Estimate External Forces of Human Motion in Video
|
2207.05845
|
https://arxiv.org/abs/2207.05845v1
|
https://arxiv.org/pdf/2207.05845v1.pdf
|
https://github.com/michigancog/forcepose
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/low-cost-portable-easy-to-use-kiosks-to
|
Low-cost, portable, easy-to-use kiosks to facilitate home-cage testing of non-human primates during vision-based behavioral tasks
|
2401.03727
|
https://arxiv.org/abs/2401.03727v1
|
https://arxiv.org/pdf/2401.03727v1.pdf
|
https://github.com/vital-kolab/nhp-turk
| true | true | false |
none
|
https://paperswithcode.com/paper/intelligent-client-selection-for-federated
|
Intelligent Client Selection for Federated Learning using Cellular Automata
|
2310.00627
|
https://arxiv.org/abs/2310.00627v2
|
https://arxiv.org/pdf/2310.00627v2.pdf
|
https://github.com/nikopavl4/ca_client_selection
| true | true | false |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.