paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/ace-a-generic-constraint-solver
|
ACE, a generic constraint solver
|
2302.05405
|
https://arxiv.org/abs/2302.05405v2
|
https://arxiv.org/pdf/2302.05405v2.pdf
|
https://github.com/xcsp3team/ace
| true | true | true |
none
|
https://paperswithcode.com/paper/a-unified-framework-for-quantifying-privacy
|
A Unified Framework for Quantifying Privacy Risk in Synthetic Data
|
2211.10459
|
https://arxiv.org/abs/2211.10459v1
|
https://arxiv.org/pdf/2211.10459v1.pdf
|
https://github.com/statice/anonymeter
| true | true | true |
none
|
https://paperswithcode.com/paper/diffusion-explainer-visual-explanation-for
|
Diffusion Explainer: Visual Explanation for Text-to-image Stable Diffusion
|
2305.03509
|
https://arxiv.org/abs/2305.03509v3
|
https://arxiv.org/pdf/2305.03509v3.pdf
|
https://github.com/poloclub/diffusion-explainer
| true | true | true |
none
|
https://paperswithcode.com/paper/intervalmdp-jl-accelerated-value-iteration
|
IntervalMDP.jl: Accelerated Value Iteration for Interval Markov Decision Processes
|
2401.04068
|
https://arxiv.org/abs/2401.04068v2
|
https://arxiv.org/pdf/2401.04068v2.pdf
|
https://github.com/zinoex/intervalmdp.jl
| true | true | false |
none
|
https://paperswithcode.com/paper/stars-enabled-integrated-sensing-and
|
STARS Enabled Integrated Sensing and Communications
|
2207.10748
|
https://arxiv.org/abs/2207.10748v3
|
https://arxiv.org/pdf/2207.10748v3.pdf
|
https://github.com/zhaolin820/stars-enabled-integrated-sensing-and-communications
| true | false | true |
none
|
https://paperswithcode.com/paper/learning-to-classify-images-without-labels
|
SCAN: Learning to Classify Images without Labels
|
2005.12320
|
https://arxiv.org/abs/2005.12320v2
|
https://arxiv.org/pdf/2005.12320v2.pdf
|
https://github.com/2023-MindSpore-4/Code14/tree/main/simclr
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/autoregressive-gan-for-semantic-unconditional
|
Autoregressive GAN for Semantic Unconditional Head Motion Generation
|
2211.00987
|
https://arxiv.org/abs/2211.00987v2
|
https://arxiv.org/pdf/2211.00987v2.pdf
|
https://github.com/louisbearing/unconditionalheadmotion
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/solving-elliptic-problems-with-singular
|
Solving Elliptic Problems with Singular Sources using Singularity Splitting Deep Ritz Method
|
2209.02931
|
https://arxiv.org/abs/2209.02931v2
|
https://arxiv.org/pdf/2209.02931v2.pdf
|
https://github.com/hhjc-web/ssdrm
| true | true | false |
none
|
https://paperswithcode.com/paper/memguard-defending-against-black-box
|
MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
|
1909.10594
|
https://arxiv.org/abs/1909.10594v3
|
https://arxiv.org/pdf/1909.10594v3.pdf
|
https://github.com/jinyuan-jia/memguard
| false | false | true |
tf
|
https://paperswithcode.com/paper/learning-navigational-visual-representations
|
Learning Navigational Visual Representations with Semantic Map Supervision
|
2307.12335
|
https://arxiv.org/abs/2307.12335v1
|
https://arxiv.org/pdf/2307.12335v1.pdf
|
https://github.com/yiconghong/ego2map-navit
| true | true | true |
none
|
https://paperswithcode.com/paper/baryonic-features-in-the-matter-transfer
|
Baryonic Features in the Matter Transfer Function
|
astro-ph/9709112
|
https://arxiv.org/abs/astro-ph/9709112v1
|
https://arxiv.org/pdf/astro-ph/9709112v1.pdf
|
https://github.com/cosmodesi/cosmoprimo
| false | false | true |
jax
|
https://paperswithcode.com/paper/2pcnet-two-phase-consistency-training-for-day
|
2PCNet: Two-Phase Consistency Training for Day-to-Night Unsupervised Domain Adaptive Object Detection
|
2303.13853
|
https://arxiv.org/abs/2303.13853v1
|
https://arxiv.org/pdf/2303.13853v1.pdf
|
https://github.com/mecarill/2pcnet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/multilingual-translation-with-extensible
|
Multilingual Translation with Extensible Multilingual Pretraining and Finetuning
|
2008.00401
|
https://arxiv.org/abs/2008.00401v1
|
https://arxiv.org/pdf/2008.00401v1.pdf
|
https://github.com/russiannlp/rucola
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/effective-open-intent-classification-with-k
|
Effective Open Intent Classification with K-center Contrastive Learning and Adjustable Decision Boundary
|
2304.10220
|
https://arxiv.org/abs/2304.10220v1
|
https://arxiv.org/pdf/2304.10220v1.pdf
|
https://github.com/lxk00/clap
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/efficient-reachability-analysis-of-closed
|
Efficient Reachability Analysis of Closed-Loop Systems with Neural Network Controllers
|
2101.01815
|
https://arxiv.org/abs/2101.01815v2
|
https://arxiv.org/pdf/2101.01815v2.pdf
|
https://github.com/mit-acl/nn_robustness_analysis
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/flair-1-semantic-segmentation-and-domain
|
FLAIR #1: semantic segmentation and domain adaptation dataset
|
2211.12979
|
https://arxiv.org/abs/2211.12979v5
|
https://arxiv.org/pdf/2211.12979v5.pdf
|
https://github.com/IGNF/FLAIR-1-AI-Challenge
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-representative-trajectories-of
|
Learning Representative Trajectories of Dynamical Systems via Domain-Adaptive Imitation
|
2304.10260
|
https://arxiv.org/abs/2304.10260v1
|
https://arxiv.org/pdf/2304.10260v1.pdf
|
https://github.com/dlr-mi/dati
| true | true | true |
tf
|
https://paperswithcode.com/paper/a-holistic-approach-to-predicting-top-quark
|
A Holistic Approach to Predicting Top Quark Kinematic Properties with the Covariant Particle Transformer
|
2203.05687
|
https://arxiv.org/abs/2203.05687v3
|
https://arxiv.org/pdf/2203.05687v3.pdf
|
https://github.com/hep-lbdl/covariant-particle-transformer
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/light-weight-deep-extreme-multilabel
|
Light-weight Deep Extreme Multilabel Classification
|
2304.11045
|
https://arxiv.org/abs/2304.11045v1
|
https://arxiv.org/pdf/2304.11045v1.pdf
|
https://github.com/misterpawan/lightdxml
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-convnet-for-the-2020s
|
A ConvNet for the 2020s
|
2201.03545
|
https://arxiv.org/abs/2201.03545v2
|
https://arxiv.org/pdf/2201.03545v2.pdf
|
https://github.com/k-h-ismail/convnext-dcls
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/towards-scalable-adaptive-learning-with-graph
|
Towards Scalable Adaptive Learning with Graph Neural Networks and Reinforcement Learning
|
2305.06398
|
https://arxiv.org/abs/2305.06398v1
|
https://arxiv.org/pdf/2305.06398v1.pdf
|
https://github.com/jvasso/graph-rl4adaptive-learning
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/variational-quantum-simulation-of-the-fokker
|
Variational Quantum Simulation of the Fokker-Planck Equation applied to Quantum Radiation Reaction
|
2411.17517
|
https://arxiv.org/abs/2411.17517v2
|
https://arxiv.org/pdf/2411.17517v2.pdf
|
https://github.com/OsAmaro/QuantumFokkerPlanck
| true | false | true |
none
|
https://paperswithcode.com/paper/learning-permutation-symmetries-with-gips-in
|
Learning permutation symmetries with gips in R
|
2307.00790
|
https://arxiv.org/abs/2307.00790v3
|
https://arxiv.org/pdf/2307.00790v3.pdf
|
https://github.com/przechoj/gips_replication_code
| true | true | true |
none
|
https://paperswithcode.com/paper/resolving-the-hubble-tension-with-new-early
|
Resolving the Hubble Tension with New Early Dark Energy
|
2006.06686
|
https://arxiv.org/abs/2006.06686v3
|
https://arxiv.org/pdf/2006.06686v3.pdf
|
https://github.com/nede-cosmo/triggerclass
| false | false | true |
none
|
https://paperswithcode.com/paper/joint-acoustic-echo-cancellation-and-blind
|
Joint Acoustic Echo Cancellation and Blind Source Extraction based on Independent Vector Extraction
|
2205.06473
|
https://arxiv.org/abs/2205.06473v2
|
https://arxiv.org/pdf/2205.06473v2.pdf
|
https://github.com/thomashaubner/joint_aec_bse
| true | true | false |
none
|
https://paperswithcode.com/paper/scaling-up-dynamic-graph-representation
|
Scaling Up Dynamic Graph Representation Learning via Spiking Neural Networks
|
2208.10364
|
https://arxiv.org/abs/2208.10364v3
|
https://arxiv.org/pdf/2208.10364v3.pdf
|
https://github.com/edisonleeeee/spikenet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/enriching-language-models-with-graph-based
|
Enriching language models with graph-based context information to better understand textual data
|
2305.11070
|
https://arxiv.org/abs/2305.11070v1
|
https://arxiv.org/pdf/2305.11070v1.pdf
|
https://github.com/tryptofanik/gc-bert
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/assessing-the-predicting-power-of-gps-data
|
Assessing the predicting power of GPS data for aftershocks forecasting
|
2305.11183
|
https://arxiv.org/abs/2305.11183v1
|
https://arxiv.org/pdf/2305.11183v1.pdf
|
https://github.com/vicioms/gps_aftershocks_ml
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/measuring-intersectional-biases-in-historical
|
Measuring Intersectional Biases in Historical Documents
|
2305.12376
|
https://arxiv.org/abs/2305.12376v1
|
https://arxiv.org/pdf/2305.12376v1.pdf
|
https://github.com/copenlu/intersectional-bias-pbw
| true | true | false |
none
|
https://paperswithcode.com/paper/zero-shot-end-to-end-spoken-language
|
Zero-Shot End-to-End Spoken Language Understanding via Cross-Modal Selective Self-Training
|
2305.12793
|
https://arxiv.org/abs/2305.12793v2
|
https://arxiv.org/pdf/2305.12793v2.pdf
|
https://github.com/amazon-science/zero-shot-e2e-slu
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/uncertainty-based-detection-of-adversarial
|
Uncertainty-based Detection of Adversarial Attacks in Semantic Segmentation
|
2305.12825
|
https://arxiv.org/abs/2305.12825v2
|
https://arxiv.org/pdf/2305.12825v2.pdf
|
https://github.com/kmaag/adversarial-attack-detection-uncertainty
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/asynchronous-trajectory-matching-based
|
Asynchronous Trajectory Matching-Based Multimodal Maritime Data Fusion for Vessel Traffic Surveillance in Inland Waterways
|
2302.11283
|
https://arxiv.org/abs/2302.11283v1
|
https://arxiv.org/pdf/2302.11283v1.pdf
|
https://github.com/gy65896/DeepSORVF
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/generative-data-driven-approaches-for
|
Generative data-driven approaches for stochastic subgrid parameterizations in an idealized ocean model
|
2302.07984
|
https://arxiv.org/abs/2302.07984v1
|
https://arxiv.org/pdf/2302.07984v1.pdf
|
https://github.com/m2lines/pyqg_generative
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/cl-uzh-at-semeval-2023-task-10-sexism
|
CL-UZH at SemEval-2023 Task 10: Sexism Detection through Incremental Fine-Tuning and Multi-Task Learning with Label Descriptions
|
2306.03907
|
https://arxiv.org/abs/2306.03907v1
|
https://arxiv.org/pdf/2306.03907v1.pdf
|
https://github.com/jagol/cl-uzh-edos-2023
| true | true | true |
none
|
https://paperswithcode.com/paper/how-poor-is-the-stimulus-evaluating
|
How poor is the stimulus? Evaluating hierarchical generalization in neural networks trained on child-directed speech
|
2301.11462
|
https://arxiv.org/abs/2301.11462v2
|
https://arxiv.org/pdf/2301.11462v2.pdf
|
https://github.com/adityayedetore/lm-povstim-with-childes
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/predicting-gender-of-brazilian-names-using
|
Predicting Gender by First Name Using Character-level Machine Learning
|
2106.10156
|
https://arxiv.org/abs/2106.10156v2
|
https://arxiv.org/pdf/2106.10156v2.pdf
|
https://github.com/roscibely/Gender-Classification
| true | false | true |
tf
|
https://paperswithcode.com/paper/a-term-based-approach-for-generating-finite
|
A Term-based Approach for Generating Finite Automata from Interaction Diagrams
|
2306.02983
|
https://arxiv.org/abs/2306.02983v2
|
https://arxiv.org/pdf/2306.02983v2.pdf
|
https://github.com/erwanm974/hibou_nfa_generation
| false | true | false |
none
|
https://paperswithcode.com/paper/subgraph2vec-learning-distributed
|
subgraph2vec: Learning Distributed Representations of Rooted Sub-graphs from Large Graphs
|
1606.08928
|
http://arxiv.org/abs/1606.08928v1
|
http://arxiv.org/pdf/1606.08928v1.pdf
|
https://github.com/mldroid/subgraph2vec_tf
| false | false | true |
tf
|
https://paperswithcode.com/paper/sensing-the-pulse-of-the-pandemic
|
Sensing the Pulse of the Pandemic: Geovisualizing the Demographic Disparities of Public Sentiment toward COVID-19 through Social Media
|
2304.06120
|
https://arxiv.org/abs/2304.06120v2
|
https://arxiv.org/pdf/2304.06120v2.pdf
|
https://github.com/binbinlingiser/sentiment-adjusted-by-demographics-sad-index
| true | true | false |
none
|
https://paperswithcode.com/paper/distributionally-robust-ensemble-of-lottery
|
Distributionally Robust Ensemble of Lottery Tickets Towards Calibrated Sparse Network Training
| null |
https://openreview.net/forum?id=WrRG0C1Vo5
|
https://openreview.net/pdf?id=WrRG0C1Vo5
|
https://github.com/ritmininglab/dre
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/contrabar-contrastive-bayes-adaptive-deep-rl
|
ContraBAR: Contrastive Bayes-Adaptive Deep RL
|
2306.02418
|
https://arxiv.org/abs/2306.02418v1
|
https://arxiv.org/pdf/2306.02418v1.pdf
|
https://github.com/ec2604/contrabar
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/nice-slam-with-adaptive-feature-grids
|
NICE-SLAM with Adaptive Feature Grids
|
2306.02395
|
https://arxiv.org/abs/2306.02395v2
|
https://arxiv.org/pdf/2306.02395v2.pdf
|
https://github.com/zhangganlin/nice-slam-with-adaptive-feature-grids
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/mavd-the-first-open-large-scale-mandarin
|
MAVD: The First Open Large-Scale Mandarin Audio-Visual Dataset with Depth Information
|
2306.02263
|
https://arxiv.org/abs/2306.02263v1
|
https://arxiv.org/pdf/2306.02263v1.pdf
|
https://github.com/springhuo/mavd
| true | true | false |
none
|
https://paperswithcode.com/paper/balancing-logit-variation-for-long-tailed-1
|
Balancing Logit Variation for Long-tailed Semantic Segmentation
|
2306.02061
|
https://arxiv.org/abs/2306.02061v1
|
https://arxiv.org/pdf/2306.02061v1.pdf
|
https://github.com/grantword8/blv
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/robust-imaging-sonar-based-place-recognition
|
Robust Imaging Sonar-based Place Recognition and Localization in Underwater Environments
|
2305.14773
|
https://arxiv.org/abs/2305.14773v1
|
https://arxiv.org/pdf/2305.14773v1.pdf
|
https://github.com/sparolab/sonar_context
| true | true | true |
none
|
https://paperswithcode.com/paper/debiased-pairwise-learning-from-positive
|
Debiased Pairwise Learning from Positive-Unlabeled Implicit Feedback
|
2307.15973
|
https://arxiv.org/abs/2307.15973v1
|
https://arxiv.org/pdf/2307.15973v1.pdf
|
https://github.com/liubin06/dpl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/pygwalker-on-the-fly-assistant-for
|
PyGWalker: On-the-fly Assistant for Exploratory Visual Data Analysis
|
2406.11637
|
https://arxiv.org/abs/2406.11637v1
|
https://arxiv.org/pdf/2406.11637v1.pdf
|
https://github.com/Kanaries/pygwalker
| true | true | true |
none
|
https://paperswithcode.com/paper/computational-methods-for-fast-bayesian-model
|
Computational methods for fast Bayesian model assessment via calibrated posterior p-values
|
2306.04866
|
https://arxiv.org/abs/2306.04866v2
|
https://arxiv.org/pdf/2306.04866v2.pdf
|
https://github.com/salleuska/fastcppp
| true | true | true |
none
|
https://paperswithcode.com/paper/deepening-gamma-ray-point-source-catalogues
|
Deepening gamma-ray point-source catalogues with sub-threshold information
|
2306.16483
|
https://arxiv.org/abs/2306.16483v2
|
https://arxiv.org/pdf/2306.16483v2.pdf
|
https://github.com/aurelio-amerio/gpcs
| true | true | true |
none
|
https://paperswithcode.com/paper/the-drunkard-s-odometry-estimating-camera
|
The Drunkard's Odometry: Estimating Camera Motion in Deforming Scenes
|
2306.16917
|
https://arxiv.org/abs/2306.16917v1
|
https://arxiv.org/pdf/2306.16917v1.pdf
|
https://github.com/UZ-SLAMLab/DrunkardsOdometry
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/hierarchical-consistent-contrastive-learning
|
Hierarchical Consistent Contrastive Learning for Skeleton-Based Action Recognition with Growing Augmentations
|
2211.13466
|
https://arxiv.org/abs/2211.13466v3
|
https://arxiv.org/pdf/2211.13466v3.pdf
|
https://github.com/JHang2020/HiCLR
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/end-to-end-differentiable-molecular-mechanics
|
End-to-End Differentiable Molecular Mechanics Force Field Construction
|
2010.01196
|
https://arxiv.org/abs/2010.01196v3
|
https://arxiv.org/pdf/2010.01196v3.pdf
|
https://github.com/kntkb/openmmforcefields
| false | false | true |
none
|
https://paperswithcode.com/paper/minddiffuser-controlled-image-reconstruction-1
|
MindDiffuser: Controlled Image Reconstruction from Human Brain Activity with Semantic and Structural Diffusion
|
2308.04249
|
https://arxiv.org/abs/2308.04249v1
|
https://arxiv.org/pdf/2308.04249v1.pdf
|
https://github.com/reedonepeck/minddiffuser
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
|
Deep Residual Learning for Image Recognition
|
1512.03385
|
http://arxiv.org/abs/1512.03385v1
|
http://arxiv.org/pdf/1512.03385v1.pdf
|
https://github.com/ljy-hy/mentormix_pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/model-based-offline-reinforcement-learning
|
Model-Based Offline Reinforcement Learning with Pessimism-Modulated Dynamics Belief
|
2210.06692
|
https://arxiv.org/abs/2210.06692v2
|
https://arxiv.org/pdf/2210.06692v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-220/tree/main/pmdb
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/conditional-variational-autoencoder-with
|
Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
|
2106.06103
|
https://arxiv.org/abs/2106.06103v1
|
https://arxiv.org/pdf/2106.06103v1.pdf
|
https://github.com/lakahaga/dc-comix-tts
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/mixer-tts-non-autoregressive-fast-and-compact
|
Mixer-TTS: non-autoregressive, fast and compact text-to-speech model conditioned on language model embeddings
|
2110.03584
|
https://arxiv.org/abs/2110.03584v2
|
https://arxiv.org/pdf/2110.03584v2.pdf
|
https://github.com/lakahaga/dc-comix-tts
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/qmix-monotonic-value-function-factorisation
|
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
|
1803.11485
|
http://arxiv.org/abs/1803.11485v2
|
http://arxiv.org/pdf/1803.11485v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-221/tree/main/qmix
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/fpdm-domain-specific-fast-pre-training
|
$FastDoc$: Domain-Specific Fast Continual Pre-training Technique using Document-Level Metadata and Taxonomy
|
2306.06190
|
https://arxiv.org/abs/2306.06190v3
|
https://arxiv.org/pdf/2306.06190v3.pdf
|
https://github.com/manavkapadnis/FPDM-Fast-Pre-training-Technique
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/on-a-tropicalization-of-planar-polynomial
|
On a tropicalization of planar polynomial ODEs with finitely many structurally stable phase portraits
|
2305.18002
|
https://arxiv.org/abs/2305.18002v3
|
https://arxiv.org/pdf/2305.18002v3.pdf
|
https://github.com/ahsarantaris/tropical-phase-plane
| true | true | true |
none
|
https://paperswithcode.com/paper/a-large-scale-empirical-study-on-semantic
|
A Large-Scale Empirical Study on Semantic Versioning in Golang Ecosystem
|
2309.02894
|
https://arxiv.org/abs/2309.02894v2
|
https://arxiv.org/pdf/2309.02894v2.pdf
|
https://github.com/liwenke1/GoSVI
| true | true | false |
none
|
https://paperswithcode.com/paper/nearest-neighbor-and-kernel-survival-analysis
|
Nearest Neighbor and Kernel Survival Analysis: Nonasymptotic Error Bounds and Strong Consistency Rates
|
1905.05285
|
https://arxiv.org/abs/1905.05285v2
|
https://arxiv.org/pdf/1905.05285v2.pdf
|
https://github.com/georgehc/npsurvival
| false | false | true |
none
|
https://paperswithcode.com/paper/revisiting-ensembling-in-one-shot-federated
|
Revisiting Ensembling in One-Shot Federated Learning
|
2411.07182
|
https://arxiv.org/abs/2411.07182v1
|
https://arxiv.org/pdf/2411.07182v1.pdf
|
https://github.com/sacs-epfl/fens
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/estimating-lexical-complexity-from-document
|
Estimating Lexical Complexity from Document-Level Distributions
|
2404.01196
|
https://arxiv.org/abs/2404.01196v1
|
https://arxiv.org/pdf/2404.01196v1.pdf
|
https://github.com/sondrewold/lexical_complexity_estimation
| true | true | true |
none
|
https://paperswithcode.com/paper/liquid-structural-state-space-models
|
Liquid Structural State-Space Models
|
2209.12951
|
https://arxiv.org/abs/2209.12951v1
|
https://arxiv.org/pdf/2209.12951v1.pdf
|
https://github.com/raminmh/liquid-s4
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/towards-effective-ancient-chinese-translation
|
Towards Effective Ancient Chinese Translation: Dataset, Model, and Evaluation
|
2308.00240
|
https://arxiv.org/abs/2308.00240v1
|
https://arxiv.org/pdf/2308.00240v1.pdf
|
https://github.com/rucaibox/erya
| true | true | false |
none
|
https://paperswithcode.com/paper/generative-downscaling-of-pde-solvers-with
|
Generative downscaling of PDE solvers with physics-guided diffusion models
|
2404.05009
|
https://arxiv.org/abs/2404.05009v1
|
https://arxiv.org/pdf/2404.05009v1.pdf
|
https://github.com/woodssss/generative-downsscaling-pde-solvers
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/training-neural-networks-as-recognizers-of
|
Training Neural Networks as Recognizers of Formal Languages
|
2411.07107
|
https://arxiv.org/abs/2411.07107v1
|
https://arxiv.org/pdf/2411.07107v1.pdf
|
https://github.com/rycolab/flare
| true | true | false |
none
|
https://paperswithcode.com/paper/training-neural-networks-as-recognizers-of
|
Training Neural Networks as Recognizers of Formal Languages
|
2411.07107
|
https://arxiv.org/abs/2411.07107v1
|
https://arxiv.org/pdf/2411.07107v1.pdf
|
https://github.com/rycolab/neural-network-recognizers
| true | true | false |
none
|
https://paperswithcode.com/paper/xgbd-explanation-guided-graph-backdoor
|
XGBD: Explanation-Guided Graph Backdoor Detection
|
2308.04406
|
https://arxiv.org/abs/2308.04406v1
|
https://arxiv.org/pdf/2308.04406v1.pdf
|
https://github.com/guanzihan/gnn_backdoor_detection
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/improved-benthic-classification-using
|
Improved Benthic Classification using Resolution Scaling and SymmNet Unsupervised Domain Adaptation
|
2303.10960
|
https://arxiv.org/abs/2303.10960v1
|
https://arxiv.org/pdf/2303.10960v1.pdf
|
https://github.com/hdoi5324/benthic-uda
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/structural-attention-rethinking-transformer
|
Structural Attention: Rethinking Transformer for Unpaired Medical Image Synthesis
|
2406.18967
|
https://arxiv.org/abs/2406.18967v2
|
https://arxiv.org/pdf/2406.18967v2.pdf
|
https://github.com/hieuphan33/miccai2024-unest
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/mamba-linear-time-sequence-modeling-with
|
Mamba: Linear-Time Sequence Modeling with Selective State Spaces
|
2312.00752
|
https://arxiv.org/abs/2312.00752v2
|
https://arxiv.org/pdf/2312.00752v2.pdf
|
https://github.com/mzeromiko/vmamba
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/tc-gnn-accelerating-sparse-graph-neural
|
TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs
|
2112.02052
|
https://arxiv.org/abs/2112.02052v4
|
https://arxiv.org/pdf/2112.02052v4.pdf
|
https://github.com/YukeWang96/TCGNN-Pytorch
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/attribute-descent-simulating-object-centric
|
Attribute Descent: Simulating Object-Centric Datasets on the Content Level and Beyond
|
2202.14034
|
https://arxiv.org/abs/2202.14034v2
|
https://arxiv.org/pdf/2202.14034v2.pdf
|
https://github.com/yorkeyao/VehicleX
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/potter-pooling-attention-transformer-for
|
POTTER: Pooling Attention Transformer for Efficient Human Mesh Recovery
|
2303.13357
|
https://arxiv.org/abs/2303.13357v1
|
https://arxiv.org/pdf/2303.13357v1.pdf
|
https://github.com/zczcwh/potter
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/minority-oriented-vicinity-expansion-with
|
Minority-Oriented Vicinity Expansion with Attentive Aggregation for Video Long-Tailed Recognition
|
2211.13471
|
https://arxiv.org/abs/2211.13471v1
|
https://arxiv.org/pdf/2211.13471v1.pdf
|
https://github.com/wjun0830/move
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/py-gwbse-a-high-throughput-workflow-package
|
$py$GWBSE: A high throughput workflow package for GW-BSE calculations
|
2210.00152
|
https://arxiv.org/abs/2210.00152v2
|
https://arxiv.org/pdf/2210.00152v2.pdf
|
https://github.com/cmdlab/pygwbse
| true | true | true |
none
|
https://paperswithcode.com/paper/iterative-graph-alignment
|
Iterative Graph Alignment
|
2408.16667
|
https://arxiv.org/abs/2408.16667v1
|
https://arxiv.org/pdf/2408.16667v1.pdf
|
https://github.com/fangyuan-ksgk/ruleeval
| true | true | true |
none
|
https://paperswithcode.com/paper/hyperparameter-optimization-for-ast
|
Hyperparameter Optimization for AST Differencing
|
2011.10268
|
https://arxiv.org/abs/2011.10268v3
|
https://arxiv.org/pdf/2011.10268v3.pdf
|
https://github.com/GumTreeDiff/gumtree
| true | true | false |
none
|
https://paperswithcode.com/paper/improve-long-term-memory-learning-through
|
Improve Long-term Memory Learning Through Rescaling the Error Temporally
|
2307.11462
|
https://arxiv.org/abs/2307.11462v1
|
https://arxiv.org/pdf/2307.11462v1.pdf
|
https://github.com/radarFudan/INTEREST
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/generative-modeling-helps-weak-supervision
|
Generative Modeling Helps Weak Supervision (and Vice Versa)
|
2203.12023
|
https://arxiv.org/abs/2203.12023v6
|
https://arxiv.org/pdf/2203.12023v6.pdf
|
https://github.com/benbo/wsgan-paper
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/magic-nerf-lens-interactive-fusion-of-neural
|
Magic NeRF Lens: Interactive Fusion of Neural Radiance Fields for Virtual Facility Inspection
|
2307.09860
|
https://arxiv.org/abs/2307.09860v1
|
https://arxiv.org/pdf/2307.09860v1.pdf
|
https://github.com/uhhhci/immersive-ngp
| true | true | true |
none
|
https://paperswithcode.com/paper/bayesian-optimized-monte-carlo-planning
|
Bayesian Optimized Monte Carlo Planning
|
2010.03597
|
https://arxiv.org/abs/2010.03597v1
|
https://arxiv.org/pdf/2010.03597v1.pdf
|
https://github.com/sisl/BOMCP.jl
| false | false | true |
none
|
https://paperswithcode.com/paper/from-sparse-to-soft-mixtures-of-experts
|
From Sparse to Soft Mixtures of Experts
|
2308.00951
|
https://arxiv.org/abs/2308.00951v2
|
https://arxiv.org/pdf/2308.00951v2.pdf
|
https://github.com/fkodom/soft-mixture-of-experts
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-to-paraphrase-sentences-to-different
|
Learning to Paraphrase Sentences to Different Complexity Levels
|
2308.02226
|
https://arxiv.org/abs/2308.02226v1
|
https://arxiv.org/pdf/2308.02226v1.pdf
|
https://github.com/alisonhc/change-complexity
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/distilbert-a-distilled-version-of-bert
|
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter
|
1910.01108
|
https://arxiv.org/abs/1910.01108v4
|
https://arxiv.org/pdf/1910.01108v4.pdf
|
https://github.com/philschmid/knowledge-distillation-transformers-pytorch-sagemaker
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/fastformers-highly-efficient-transformer
|
FastFormers: Highly Efficient Transformer Models for Natural Language Understanding
|
2010.13382
|
https://arxiv.org/abs/2010.13382v1
|
https://arxiv.org/pdf/2010.13382v1.pdf
|
https://github.com/philschmid/knowledge-distillation-transformers-pytorch-sagemaker
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/yolov3-an-incremental-improvement
|
YOLOv3: An Incremental Improvement
|
1804.02767
|
http://arxiv.org/abs/1804.02767v1
|
http://arxiv.org/pdf/1804.02767v1.pdf
|
https://github.com/MindSpore-paper-code-3/code5/tree/main/res2net_yolov3
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/adarevd-adaptive-patch-exiting-reversible-1
|
AdaRevD: Adaptive Patch Exiting Reversible Decoder Pushes the Limit of Image Deblurring
|
2406.09135
|
https://arxiv.org/abs/2406.09135v1
|
https://arxiv.org/pdf/2406.09135v1.pdf
|
https://github.com/INVOKERer/AdaRevD
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/rethinking-uncertainly-missing-and-ambiguous
|
Rethinking Uncertainly Missing and Ambiguous Visual Modality in Multi-Modal Entity Alignment
|
2307.16210
|
https://arxiv.org/abs/2307.16210v2
|
https://arxiv.org/pdf/2307.16210v2.pdf
|
https://github.com/zjukg/umaea
| false | true | true |
pytorch
|
https://paperswithcode.com/paper/better-speech-synthesis-through-scaling
|
Better speech synthesis through scaling
|
2305.07243
|
https://arxiv.org/abs/2305.07243v2
|
https://arxiv.org/pdf/2305.07243v2.pdf
|
https://github.com/neonbjb/tortoise-tts
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/synthesis-of-separation-processes-with
|
Synthesis of separation processes with reinforcement learning
|
2211.04327
|
https://arxiv.org/abs/2211.04327v1
|
https://arxiv.org/pdf/2211.04327v1.pdf
|
https://github.com/lollcat/aspen-rl
| true | true | true |
jax
|
https://paperswithcode.com/paper/it5-large-scale-text-to-text-pretraining-for
|
IT5: Text-to-text Pretraining for Italian Language Understanding and Generation
|
2203.03759
|
https://arxiv.org/abs/2203.03759v2
|
https://arxiv.org/pdf/2203.03759v2.pdf
|
https://github.com/MrFeelgoood/RealEstateStocksForecasting
| false | false | true |
none
|
https://paperswithcode.com/paper/optimal-sample-size-planning-for-the-wilcoxon
|
Optimal Sample Size Planning for the Wilcoxon-Mann-Whitney-Test
|
1805.12249
|
http://arxiv.org/abs/1805.12249v1
|
http://arxiv.org/pdf/1805.12249v1.pdf
|
https://github.com/cran/WMWssp
| false | false | true |
none
|
https://paperswithcode.com/paper/deformation-equivariant-cross-modality-image
|
Deformation equivariant cross-modality image synthesis with paired non-aligned training data
|
2208.12491
|
https://arxiv.org/abs/2208.12491v2
|
https://arxiv.org/pdf/2208.12491v2.pdf
|
https://github.com/honkamj/non-aligned-i2i
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/generalized-laplacian-regularized-framelet
|
Generalized Laplacian Regularized Framelet Graph Neural Networks
|
2210.15092
|
https://arxiv.org/abs/2210.15092v2
|
https://arxiv.org/pdf/2210.15092v2.pdf
|
https://github.com/superca729/pl-ufg
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-quantum-of-quic-dissecting-cryptography
|
A Quantum of QUIC: Dissecting Cryptography with Post-Quantum Insights
|
2405.09264
|
https://arxiv.org/abs/2405.09264v1
|
https://arxiv.org/pdf/2405.09264v1.pdf
|
https://github.com/tumi8/quic-crypto-paper
| true | true | false |
none
|
https://paperswithcode.com/paper/scaling-inference-time-search-with-vision
|
Scaling Inference-Time Search with Vision Value Model for Improved Visual Comprehension
|
2412.03704
|
https://arxiv.org/abs/2412.03704v2
|
https://arxiv.org/pdf/2412.03704v2.pdf
|
https://github.com/si0wang/visvm
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/compose-and-conquer-diffusion-based-3d-depth
|
Compose and Conquer: Diffusion-Based 3D Depth Aware Composable Image Synthesis
|
2401.09048
|
https://arxiv.org/abs/2401.09048v1
|
https://arxiv.org/pdf/2401.09048v1.pdf
|
https://github.com/tomtom1103/compose-and-conquer
| true | true | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.