paper_url
stringlengths
36
81
paper_title
stringlengths
1
242
paper_arxiv_id
stringlengths
9
16
paper_url_abs
stringlengths
18
314
paper_url_pdf
stringlengths
21
935
repo_url
stringlengths
26
200
is_official
bool
2 classes
mentioned_in_paper
bool
2 classes
mentioned_in_github
bool
2 classes
framework
stringclasses
9 values
https://paperswithcode.com/paper/ace-a-generic-constraint-solver
ACE, a generic constraint solver
2302.05405
https://arxiv.org/abs/2302.05405v2
https://arxiv.org/pdf/2302.05405v2.pdf
https://github.com/xcsp3team/ace
true
true
true
none
https://paperswithcode.com/paper/a-unified-framework-for-quantifying-privacy
A Unified Framework for Quantifying Privacy Risk in Synthetic Data
2211.10459
https://arxiv.org/abs/2211.10459v1
https://arxiv.org/pdf/2211.10459v1.pdf
https://github.com/statice/anonymeter
true
true
true
none
https://paperswithcode.com/paper/diffusion-explainer-visual-explanation-for
Diffusion Explainer: Visual Explanation for Text-to-image Stable Diffusion
2305.03509
https://arxiv.org/abs/2305.03509v3
https://arxiv.org/pdf/2305.03509v3.pdf
https://github.com/poloclub/diffusion-explainer
true
true
true
none
https://paperswithcode.com/paper/intervalmdp-jl-accelerated-value-iteration
IntervalMDP.jl: Accelerated Value Iteration for Interval Markov Decision Processes
2401.04068
https://arxiv.org/abs/2401.04068v2
https://arxiv.org/pdf/2401.04068v2.pdf
https://github.com/zinoex/intervalmdp.jl
true
true
false
none
https://paperswithcode.com/paper/stars-enabled-integrated-sensing-and
STARS Enabled Integrated Sensing and Communications
2207.10748
https://arxiv.org/abs/2207.10748v3
https://arxiv.org/pdf/2207.10748v3.pdf
https://github.com/zhaolin820/stars-enabled-integrated-sensing-and-communications
true
false
true
none
https://paperswithcode.com/paper/learning-to-classify-images-without-labels
SCAN: Learning to Classify Images without Labels
2005.12320
https://arxiv.org/abs/2005.12320v2
https://arxiv.org/pdf/2005.12320v2.pdf
https://github.com/2023-MindSpore-4/Code14/tree/main/simclr
false
false
false
mindspore
https://paperswithcode.com/paper/autoregressive-gan-for-semantic-unconditional
Autoregressive GAN for Semantic Unconditional Head Motion Generation
2211.00987
https://arxiv.org/abs/2211.00987v2
https://arxiv.org/pdf/2211.00987v2.pdf
https://github.com/louisbearing/unconditionalheadmotion
true
true
true
pytorch
https://paperswithcode.com/paper/solving-elliptic-problems-with-singular
Solving Elliptic Problems with Singular Sources using Singularity Splitting Deep Ritz Method
2209.02931
https://arxiv.org/abs/2209.02931v2
https://arxiv.org/pdf/2209.02931v2.pdf
https://github.com/hhjc-web/ssdrm
true
true
false
none
https://paperswithcode.com/paper/memguard-defending-against-black-box
MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
1909.10594
https://arxiv.org/abs/1909.10594v3
https://arxiv.org/pdf/1909.10594v3.pdf
https://github.com/jinyuan-jia/memguard
false
false
true
tf
https://paperswithcode.com/paper/learning-navigational-visual-representations
Learning Navigational Visual Representations with Semantic Map Supervision
2307.12335
https://arxiv.org/abs/2307.12335v1
https://arxiv.org/pdf/2307.12335v1.pdf
https://github.com/yiconghong/ego2map-navit
true
true
true
none
https://paperswithcode.com/paper/baryonic-features-in-the-matter-transfer
Baryonic Features in the Matter Transfer Function
astro-ph/9709112
https://arxiv.org/abs/astro-ph/9709112v1
https://arxiv.org/pdf/astro-ph/9709112v1.pdf
https://github.com/cosmodesi/cosmoprimo
false
false
true
jax
https://paperswithcode.com/paper/2pcnet-two-phase-consistency-training-for-day
2PCNet: Two-Phase Consistency Training for Day-to-Night Unsupervised Domain Adaptive Object Detection
2303.13853
https://arxiv.org/abs/2303.13853v1
https://arxiv.org/pdf/2303.13853v1.pdf
https://github.com/mecarill/2pcnet
true
true
true
pytorch
https://paperswithcode.com/paper/multilingual-translation-with-extensible
Multilingual Translation with Extensible Multilingual Pretraining and Finetuning
2008.00401
https://arxiv.org/abs/2008.00401v1
https://arxiv.org/pdf/2008.00401v1.pdf
https://github.com/russiannlp/rucola
false
false
true
pytorch
https://paperswithcode.com/paper/effective-open-intent-classification-with-k
Effective Open Intent Classification with K-center Contrastive Learning and Adjustable Decision Boundary
2304.10220
https://arxiv.org/abs/2304.10220v1
https://arxiv.org/pdf/2304.10220v1.pdf
https://github.com/lxk00/clap
true
true
false
pytorch
https://paperswithcode.com/paper/efficient-reachability-analysis-of-closed
Efficient Reachability Analysis of Closed-Loop Systems with Neural Network Controllers
2101.01815
https://arxiv.org/abs/2101.01815v2
https://arxiv.org/pdf/2101.01815v2.pdf
https://github.com/mit-acl/nn_robustness_analysis
true
true
true
pytorch
https://paperswithcode.com/paper/flair-1-semantic-segmentation-and-domain
FLAIR #1: semantic segmentation and domain adaptation dataset
2211.12979
https://arxiv.org/abs/2211.12979v5
https://arxiv.org/pdf/2211.12979v5.pdf
https://github.com/IGNF/FLAIR-1-AI-Challenge
true
false
true
pytorch
https://paperswithcode.com/paper/learning-representative-trajectories-of
Learning Representative Trajectories of Dynamical Systems via Domain-Adaptive Imitation
2304.10260
https://arxiv.org/abs/2304.10260v1
https://arxiv.org/pdf/2304.10260v1.pdf
https://github.com/dlr-mi/dati
true
true
true
tf
https://paperswithcode.com/paper/a-holistic-approach-to-predicting-top-quark
A Holistic Approach to Predicting Top Quark Kinematic Properties with the Covariant Particle Transformer
2203.05687
https://arxiv.org/abs/2203.05687v3
https://arxiv.org/pdf/2203.05687v3.pdf
https://github.com/hep-lbdl/covariant-particle-transformer
false
false
true
pytorch
https://paperswithcode.com/paper/light-weight-deep-extreme-multilabel
Light-weight Deep Extreme Multilabel Classification
2304.11045
https://arxiv.org/abs/2304.11045v1
https://arxiv.org/pdf/2304.11045v1.pdf
https://github.com/misterpawan/lightdxml
true
true
false
pytorch
https://paperswithcode.com/paper/a-convnet-for-the-2020s
A ConvNet for the 2020s
2201.03545
https://arxiv.org/abs/2201.03545v2
https://arxiv.org/pdf/2201.03545v2.pdf
https://github.com/k-h-ismail/convnext-dcls
false
false
true
pytorch
https://paperswithcode.com/paper/towards-scalable-adaptive-learning-with-graph
Towards Scalable Adaptive Learning with Graph Neural Networks and Reinforcement Learning
2305.06398
https://arxiv.org/abs/2305.06398v1
https://arxiv.org/pdf/2305.06398v1.pdf
https://github.com/jvasso/graph-rl4adaptive-learning
true
true
false
pytorch
https://paperswithcode.com/paper/variational-quantum-simulation-of-the-fokker
Variational Quantum Simulation of the Fokker-Planck Equation applied to Quantum Radiation Reaction
2411.17517
https://arxiv.org/abs/2411.17517v2
https://arxiv.org/pdf/2411.17517v2.pdf
https://github.com/OsAmaro/QuantumFokkerPlanck
true
false
true
none
https://paperswithcode.com/paper/learning-permutation-symmetries-with-gips-in
Learning permutation symmetries with gips in R
2307.00790
https://arxiv.org/abs/2307.00790v3
https://arxiv.org/pdf/2307.00790v3.pdf
https://github.com/przechoj/gips_replication_code
true
true
true
none
https://paperswithcode.com/paper/resolving-the-hubble-tension-with-new-early
Resolving the Hubble Tension with New Early Dark Energy
2006.06686
https://arxiv.org/abs/2006.06686v3
https://arxiv.org/pdf/2006.06686v3.pdf
https://github.com/nede-cosmo/triggerclass
false
false
true
none
https://paperswithcode.com/paper/joint-acoustic-echo-cancellation-and-blind
Joint Acoustic Echo Cancellation and Blind Source Extraction based on Independent Vector Extraction
2205.06473
https://arxiv.org/abs/2205.06473v2
https://arxiv.org/pdf/2205.06473v2.pdf
https://github.com/thomashaubner/joint_aec_bse
true
true
false
none
https://paperswithcode.com/paper/scaling-up-dynamic-graph-representation
Scaling Up Dynamic Graph Representation Learning via Spiking Neural Networks
2208.10364
https://arxiv.org/abs/2208.10364v3
https://arxiv.org/pdf/2208.10364v3.pdf
https://github.com/edisonleeeee/spikenet
true
true
true
pytorch
https://paperswithcode.com/paper/enriching-language-models-with-graph-based
Enriching language models with graph-based context information to better understand textual data
2305.11070
https://arxiv.org/abs/2305.11070v1
https://arxiv.org/pdf/2305.11070v1.pdf
https://github.com/tryptofanik/gc-bert
true
true
false
pytorch
https://paperswithcode.com/paper/assessing-the-predicting-power-of-gps-data
Assessing the predicting power of GPS data for aftershocks forecasting
2305.11183
https://arxiv.org/abs/2305.11183v1
https://arxiv.org/pdf/2305.11183v1.pdf
https://github.com/vicioms/gps_aftershocks_ml
true
true
false
pytorch
https://paperswithcode.com/paper/measuring-intersectional-biases-in-historical
Measuring Intersectional Biases in Historical Documents
2305.12376
https://arxiv.org/abs/2305.12376v1
https://arxiv.org/pdf/2305.12376v1.pdf
https://github.com/copenlu/intersectional-bias-pbw
true
true
false
none
https://paperswithcode.com/paper/zero-shot-end-to-end-spoken-language
Zero-Shot End-to-End Spoken Language Understanding via Cross-Modal Selective Self-Training
2305.12793
https://arxiv.org/abs/2305.12793v2
https://arxiv.org/pdf/2305.12793v2.pdf
https://github.com/amazon-science/zero-shot-e2e-slu
true
true
false
pytorch
https://paperswithcode.com/paper/uncertainty-based-detection-of-adversarial
Uncertainty-based Detection of Adversarial Attacks in Semantic Segmentation
2305.12825
https://arxiv.org/abs/2305.12825v2
https://arxiv.org/pdf/2305.12825v2.pdf
https://github.com/kmaag/adversarial-attack-detection-uncertainty
true
true
true
pytorch
https://paperswithcode.com/paper/asynchronous-trajectory-matching-based
Asynchronous Trajectory Matching-Based Multimodal Maritime Data Fusion for Vessel Traffic Surveillance in Inland Waterways
2302.11283
https://arxiv.org/abs/2302.11283v1
https://arxiv.org/pdf/2302.11283v1.pdf
https://github.com/gy65896/DeepSORVF
false
false
true
pytorch
https://paperswithcode.com/paper/generative-data-driven-approaches-for
Generative data-driven approaches for stochastic subgrid parameterizations in an idealized ocean model
2302.07984
https://arxiv.org/abs/2302.07984v1
https://arxiv.org/pdf/2302.07984v1.pdf
https://github.com/m2lines/pyqg_generative
true
false
true
pytorch
https://paperswithcode.com/paper/cl-uzh-at-semeval-2023-task-10-sexism
CL-UZH at SemEval-2023 Task 10: Sexism Detection through Incremental Fine-Tuning and Multi-Task Learning with Label Descriptions
2306.03907
https://arxiv.org/abs/2306.03907v1
https://arxiv.org/pdf/2306.03907v1.pdf
https://github.com/jagol/cl-uzh-edos-2023
true
true
true
none
https://paperswithcode.com/paper/how-poor-is-the-stimulus-evaluating
How poor is the stimulus? Evaluating hierarchical generalization in neural networks trained on child-directed speech
2301.11462
https://arxiv.org/abs/2301.11462v2
https://arxiv.org/pdf/2301.11462v2.pdf
https://github.com/adityayedetore/lm-povstim-with-childes
true
true
false
pytorch
https://paperswithcode.com/paper/predicting-gender-of-brazilian-names-using
Predicting Gender by First Name Using Character-level Machine Learning
2106.10156
https://arxiv.org/abs/2106.10156v2
https://arxiv.org/pdf/2106.10156v2.pdf
https://github.com/roscibely/Gender-Classification
true
false
true
tf
https://paperswithcode.com/paper/a-term-based-approach-for-generating-finite
A Term-based Approach for Generating Finite Automata from Interaction Diagrams
2306.02983
https://arxiv.org/abs/2306.02983v2
https://arxiv.org/pdf/2306.02983v2.pdf
https://github.com/erwanm974/hibou_nfa_generation
false
true
false
none
https://paperswithcode.com/paper/subgraph2vec-learning-distributed
subgraph2vec: Learning Distributed Representations of Rooted Sub-graphs from Large Graphs
1606.08928
http://arxiv.org/abs/1606.08928v1
http://arxiv.org/pdf/1606.08928v1.pdf
https://github.com/mldroid/subgraph2vec_tf
false
false
true
tf
https://paperswithcode.com/paper/sensing-the-pulse-of-the-pandemic
Sensing the Pulse of the Pandemic: Geovisualizing the Demographic Disparities of Public Sentiment toward COVID-19 through Social Media
2304.06120
https://arxiv.org/abs/2304.06120v2
https://arxiv.org/pdf/2304.06120v2.pdf
https://github.com/binbinlingiser/sentiment-adjusted-by-demographics-sad-index
true
true
false
none
https://paperswithcode.com/paper/distributionally-robust-ensemble-of-lottery
Distributionally Robust Ensemble of Lottery Tickets Towards Calibrated Sparse Network Training
null
https://openreview.net/forum?id=WrRG0C1Vo5
https://openreview.net/pdf?id=WrRG0C1Vo5
https://github.com/ritmininglab/dre
true
true
false
pytorch
https://paperswithcode.com/paper/contrabar-contrastive-bayes-adaptive-deep-rl
ContraBAR: Contrastive Bayes-Adaptive Deep RL
2306.02418
https://arxiv.org/abs/2306.02418v1
https://arxiv.org/pdf/2306.02418v1.pdf
https://github.com/ec2604/contrabar
true
true
false
pytorch
https://paperswithcode.com/paper/nice-slam-with-adaptive-feature-grids
NICE-SLAM with Adaptive Feature Grids
2306.02395
https://arxiv.org/abs/2306.02395v2
https://arxiv.org/pdf/2306.02395v2.pdf
https://github.com/zhangganlin/nice-slam-with-adaptive-feature-grids
true
true
false
pytorch
https://paperswithcode.com/paper/mavd-the-first-open-large-scale-mandarin
MAVD: The First Open Large-Scale Mandarin Audio-Visual Dataset with Depth Information
2306.02263
https://arxiv.org/abs/2306.02263v1
https://arxiv.org/pdf/2306.02263v1.pdf
https://github.com/springhuo/mavd
true
true
false
none
https://paperswithcode.com/paper/balancing-logit-variation-for-long-tailed-1
Balancing Logit Variation for Long-tailed Semantic Segmentation
2306.02061
https://arxiv.org/abs/2306.02061v1
https://arxiv.org/pdf/2306.02061v1.pdf
https://github.com/grantword8/blv
true
true
false
pytorch
https://paperswithcode.com/paper/robust-imaging-sonar-based-place-recognition
Robust Imaging Sonar-based Place Recognition and Localization in Underwater Environments
2305.14773
https://arxiv.org/abs/2305.14773v1
https://arxiv.org/pdf/2305.14773v1.pdf
https://github.com/sparolab/sonar_context
true
true
true
none
https://paperswithcode.com/paper/debiased-pairwise-learning-from-positive
Debiased Pairwise Learning from Positive-Unlabeled Implicit Feedback
2307.15973
https://arxiv.org/abs/2307.15973v1
https://arxiv.org/pdf/2307.15973v1.pdf
https://github.com/liubin06/dpl
true
true
false
pytorch
https://paperswithcode.com/paper/pygwalker-on-the-fly-assistant-for
PyGWalker: On-the-fly Assistant for Exploratory Visual Data Analysis
2406.11637
https://arxiv.org/abs/2406.11637v1
https://arxiv.org/pdf/2406.11637v1.pdf
https://github.com/Kanaries/pygwalker
true
true
true
none
https://paperswithcode.com/paper/computational-methods-for-fast-bayesian-model
Computational methods for fast Bayesian model assessment via calibrated posterior p-values
2306.04866
https://arxiv.org/abs/2306.04866v2
https://arxiv.org/pdf/2306.04866v2.pdf
https://github.com/salleuska/fastcppp
true
true
true
none
https://paperswithcode.com/paper/deepening-gamma-ray-point-source-catalogues
Deepening gamma-ray point-source catalogues with sub-threshold information
2306.16483
https://arxiv.org/abs/2306.16483v2
https://arxiv.org/pdf/2306.16483v2.pdf
https://github.com/aurelio-amerio/gpcs
true
true
true
none
https://paperswithcode.com/paper/the-drunkard-s-odometry-estimating-camera
The Drunkard's Odometry: Estimating Camera Motion in Deforming Scenes
2306.16917
https://arxiv.org/abs/2306.16917v1
https://arxiv.org/pdf/2306.16917v1.pdf
https://github.com/UZ-SLAMLab/DrunkardsOdometry
true
false
true
pytorch
https://paperswithcode.com/paper/hierarchical-consistent-contrastive-learning
Hierarchical Consistent Contrastive Learning for Skeleton-Based Action Recognition with Growing Augmentations
2211.13466
https://arxiv.org/abs/2211.13466v3
https://arxiv.org/pdf/2211.13466v3.pdf
https://github.com/JHang2020/HiCLR
true
false
true
pytorch
https://paperswithcode.com/paper/end-to-end-differentiable-molecular-mechanics
End-to-End Differentiable Molecular Mechanics Force Field Construction
2010.01196
https://arxiv.org/abs/2010.01196v3
https://arxiv.org/pdf/2010.01196v3.pdf
https://github.com/kntkb/openmmforcefields
false
false
true
none
https://paperswithcode.com/paper/minddiffuser-controlled-image-reconstruction-1
MindDiffuser: Controlled Image Reconstruction from Human Brain Activity with Semantic and Structural Diffusion
2308.04249
https://arxiv.org/abs/2308.04249v1
https://arxiv.org/pdf/2308.04249v1.pdf
https://github.com/reedonepeck/minddiffuser
true
true
false
pytorch
https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
Deep Residual Learning for Image Recognition
1512.03385
http://arxiv.org/abs/1512.03385v1
http://arxiv.org/pdf/1512.03385v1.pdf
https://github.com/ljy-hy/mentormix_pytorch
false
false
true
pytorch
https://paperswithcode.com/paper/model-based-offline-reinforcement-learning
Model-Based Offline Reinforcement Learning with Pessimism-Modulated Dynamics Belief
2210.06692
https://arxiv.org/abs/2210.06692v2
https://arxiv.org/pdf/2210.06692v2.pdf
https://github.com/2023-MindSpore-1/ms-code-220/tree/main/pmdb
false
false
false
mindspore
https://paperswithcode.com/paper/conditional-variational-autoencoder-with
Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
2106.06103
https://arxiv.org/abs/2106.06103v1
https://arxiv.org/pdf/2106.06103v1.pdf
https://github.com/lakahaga/dc-comix-tts
false
false
true
pytorch
https://paperswithcode.com/paper/mixer-tts-non-autoregressive-fast-and-compact
Mixer-TTS: non-autoregressive, fast and compact text-to-speech model conditioned on language model embeddings
2110.03584
https://arxiv.org/abs/2110.03584v2
https://arxiv.org/pdf/2110.03584v2.pdf
https://github.com/lakahaga/dc-comix-tts
false
false
true
pytorch
https://paperswithcode.com/paper/qmix-monotonic-value-function-factorisation
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
1803.11485
http://arxiv.org/abs/1803.11485v2
http://arxiv.org/pdf/1803.11485v2.pdf
https://github.com/2023-MindSpore-1/ms-code-221/tree/main/qmix
false
false
false
mindspore
https://paperswithcode.com/paper/fpdm-domain-specific-fast-pre-training
$FastDoc$: Domain-Specific Fast Continual Pre-training Technique using Document-Level Metadata and Taxonomy
2306.06190
https://arxiv.org/abs/2306.06190v3
https://arxiv.org/pdf/2306.06190v3.pdf
https://github.com/manavkapadnis/FPDM-Fast-Pre-training-Technique
true
false
false
pytorch
https://paperswithcode.com/paper/on-a-tropicalization-of-planar-polynomial
On a tropicalization of planar polynomial ODEs with finitely many structurally stable phase portraits
2305.18002
https://arxiv.org/abs/2305.18002v3
https://arxiv.org/pdf/2305.18002v3.pdf
https://github.com/ahsarantaris/tropical-phase-plane
true
true
true
none
https://paperswithcode.com/paper/a-large-scale-empirical-study-on-semantic
A Large-Scale Empirical Study on Semantic Versioning in Golang Ecosystem
2309.02894
https://arxiv.org/abs/2309.02894v2
https://arxiv.org/pdf/2309.02894v2.pdf
https://github.com/liwenke1/GoSVI
true
true
false
none
https://paperswithcode.com/paper/nearest-neighbor-and-kernel-survival-analysis
Nearest Neighbor and Kernel Survival Analysis: Nonasymptotic Error Bounds and Strong Consistency Rates
1905.05285
https://arxiv.org/abs/1905.05285v2
https://arxiv.org/pdf/1905.05285v2.pdf
https://github.com/georgehc/npsurvival
false
false
true
none
https://paperswithcode.com/paper/revisiting-ensembling-in-one-shot-federated
Revisiting Ensembling in One-Shot Federated Learning
2411.07182
https://arxiv.org/abs/2411.07182v1
https://arxiv.org/pdf/2411.07182v1.pdf
https://github.com/sacs-epfl/fens
true
true
false
pytorch
https://paperswithcode.com/paper/estimating-lexical-complexity-from-document
Estimating Lexical Complexity from Document-Level Distributions
2404.01196
https://arxiv.org/abs/2404.01196v1
https://arxiv.org/pdf/2404.01196v1.pdf
https://github.com/sondrewold/lexical_complexity_estimation
true
true
true
none
https://paperswithcode.com/paper/liquid-structural-state-space-models
Liquid Structural State-Space Models
2209.12951
https://arxiv.org/abs/2209.12951v1
https://arxiv.org/pdf/2209.12951v1.pdf
https://github.com/raminmh/liquid-s4
true
true
true
pytorch
https://paperswithcode.com/paper/towards-effective-ancient-chinese-translation
Towards Effective Ancient Chinese Translation: Dataset, Model, and Evaluation
2308.00240
https://arxiv.org/abs/2308.00240v1
https://arxiv.org/pdf/2308.00240v1.pdf
https://github.com/rucaibox/erya
true
true
false
none
https://paperswithcode.com/paper/generative-downscaling-of-pde-solvers-with
Generative downscaling of PDE solvers with physics-guided diffusion models
2404.05009
https://arxiv.org/abs/2404.05009v1
https://arxiv.org/pdf/2404.05009v1.pdf
https://github.com/woodssss/generative-downsscaling-pde-solvers
true
true
true
pytorch
https://paperswithcode.com/paper/training-neural-networks-as-recognizers-of
Training Neural Networks as Recognizers of Formal Languages
2411.07107
https://arxiv.org/abs/2411.07107v1
https://arxiv.org/pdf/2411.07107v1.pdf
https://github.com/rycolab/flare
true
true
false
none
https://paperswithcode.com/paper/training-neural-networks-as-recognizers-of
Training Neural Networks as Recognizers of Formal Languages
2411.07107
https://arxiv.org/abs/2411.07107v1
https://arxiv.org/pdf/2411.07107v1.pdf
https://github.com/rycolab/neural-network-recognizers
true
true
false
none
https://paperswithcode.com/paper/xgbd-explanation-guided-graph-backdoor
XGBD: Explanation-Guided Graph Backdoor Detection
2308.04406
https://arxiv.org/abs/2308.04406v1
https://arxiv.org/pdf/2308.04406v1.pdf
https://github.com/guanzihan/gnn_backdoor_detection
true
true
false
pytorch
https://paperswithcode.com/paper/improved-benthic-classification-using
Improved Benthic Classification using Resolution Scaling and SymmNet Unsupervised Domain Adaptation
2303.10960
https://arxiv.org/abs/2303.10960v1
https://arxiv.org/pdf/2303.10960v1.pdf
https://github.com/hdoi5324/benthic-uda
true
true
true
pytorch
https://paperswithcode.com/paper/structural-attention-rethinking-transformer
Structural Attention: Rethinking Transformer for Unpaired Medical Image Synthesis
2406.18967
https://arxiv.org/abs/2406.18967v2
https://arxiv.org/pdf/2406.18967v2.pdf
https://github.com/hieuphan33/miccai2024-unest
true
true
false
pytorch
https://paperswithcode.com/paper/mamba-linear-time-sequence-modeling-with
Mamba: Linear-Time Sequence Modeling with Selective State Spaces
2312.00752
https://arxiv.org/abs/2312.00752v2
https://arxiv.org/pdf/2312.00752v2.pdf
https://github.com/mzeromiko/vmamba
false
false
true
pytorch
https://paperswithcode.com/paper/tc-gnn-accelerating-sparse-graph-neural
TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs
2112.02052
https://arxiv.org/abs/2112.02052v4
https://arxiv.org/pdf/2112.02052v4.pdf
https://github.com/YukeWang96/TCGNN-Pytorch
true
true
true
pytorch
https://paperswithcode.com/paper/attribute-descent-simulating-object-centric
Attribute Descent: Simulating Object-Centric Datasets on the Content Level and Beyond
2202.14034
https://arxiv.org/abs/2202.14034v2
https://arxiv.org/pdf/2202.14034v2.pdf
https://github.com/yorkeyao/VehicleX
true
true
false
pytorch
https://paperswithcode.com/paper/potter-pooling-attention-transformer-for
POTTER: Pooling Attention Transformer for Efficient Human Mesh Recovery
2303.13357
https://arxiv.org/abs/2303.13357v1
https://arxiv.org/pdf/2303.13357v1.pdf
https://github.com/zczcwh/potter
false
false
true
pytorch
https://paperswithcode.com/paper/minority-oriented-vicinity-expansion-with
Minority-Oriented Vicinity Expansion with Attentive Aggregation for Video Long-Tailed Recognition
2211.13471
https://arxiv.org/abs/2211.13471v1
https://arxiv.org/pdf/2211.13471v1.pdf
https://github.com/wjun0830/move
true
true
true
pytorch
https://paperswithcode.com/paper/py-gwbse-a-high-throughput-workflow-package
$py$GWBSE: A high throughput workflow package for GW-BSE calculations
2210.00152
https://arxiv.org/abs/2210.00152v2
https://arxiv.org/pdf/2210.00152v2.pdf
https://github.com/cmdlab/pygwbse
true
true
true
none
https://paperswithcode.com/paper/iterative-graph-alignment
Iterative Graph Alignment
2408.16667
https://arxiv.org/abs/2408.16667v1
https://arxiv.org/pdf/2408.16667v1.pdf
https://github.com/fangyuan-ksgk/ruleeval
true
true
true
none
https://paperswithcode.com/paper/hyperparameter-optimization-for-ast
Hyperparameter Optimization for AST Differencing
2011.10268
https://arxiv.org/abs/2011.10268v3
https://arxiv.org/pdf/2011.10268v3.pdf
https://github.com/GumTreeDiff/gumtree
true
true
false
none
https://paperswithcode.com/paper/improve-long-term-memory-learning-through
Improve Long-term Memory Learning Through Rescaling the Error Temporally
2307.11462
https://arxiv.org/abs/2307.11462v1
https://arxiv.org/pdf/2307.11462v1.pdf
https://github.com/radarFudan/INTEREST
false
false
true
pytorch
https://paperswithcode.com/paper/generative-modeling-helps-weak-supervision
Generative Modeling Helps Weak Supervision (and Vice Versa)
2203.12023
https://arxiv.org/abs/2203.12023v6
https://arxiv.org/pdf/2203.12023v6.pdf
https://github.com/benbo/wsgan-paper
true
true
true
pytorch
https://paperswithcode.com/paper/magic-nerf-lens-interactive-fusion-of-neural
Magic NeRF Lens: Interactive Fusion of Neural Radiance Fields for Virtual Facility Inspection
2307.09860
https://arxiv.org/abs/2307.09860v1
https://arxiv.org/pdf/2307.09860v1.pdf
https://github.com/uhhhci/immersive-ngp
true
true
true
none
https://paperswithcode.com/paper/bayesian-optimized-monte-carlo-planning
Bayesian Optimized Monte Carlo Planning
2010.03597
https://arxiv.org/abs/2010.03597v1
https://arxiv.org/pdf/2010.03597v1.pdf
https://github.com/sisl/BOMCP.jl
false
false
true
none
https://paperswithcode.com/paper/from-sparse-to-soft-mixtures-of-experts
From Sparse to Soft Mixtures of Experts
2308.00951
https://arxiv.org/abs/2308.00951v2
https://arxiv.org/pdf/2308.00951v2.pdf
https://github.com/fkodom/soft-mixture-of-experts
false
false
true
pytorch
https://paperswithcode.com/paper/learning-to-paraphrase-sentences-to-different
Learning to Paraphrase Sentences to Different Complexity Levels
2308.02226
https://arxiv.org/abs/2308.02226v1
https://arxiv.org/pdf/2308.02226v1.pdf
https://github.com/alisonhc/change-complexity
true
true
true
pytorch
https://paperswithcode.com/paper/distilbert-a-distilled-version-of-bert
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter
1910.01108
https://arxiv.org/abs/1910.01108v4
https://arxiv.org/pdf/1910.01108v4.pdf
https://github.com/philschmid/knowledge-distillation-transformers-pytorch-sagemaker
false
false
true
pytorch
https://paperswithcode.com/paper/fastformers-highly-efficient-transformer
FastFormers: Highly Efficient Transformer Models for Natural Language Understanding
2010.13382
https://arxiv.org/abs/2010.13382v1
https://arxiv.org/pdf/2010.13382v1.pdf
https://github.com/philschmid/knowledge-distillation-transformers-pytorch-sagemaker
false
false
true
pytorch
https://paperswithcode.com/paper/yolov3-an-incremental-improvement
YOLOv3: An Incremental Improvement
1804.02767
http://arxiv.org/abs/1804.02767v1
http://arxiv.org/pdf/1804.02767v1.pdf
https://github.com/MindSpore-paper-code-3/code5/tree/main/res2net_yolov3
false
false
false
mindspore
https://paperswithcode.com/paper/adarevd-adaptive-patch-exiting-reversible-1
AdaRevD: Adaptive Patch Exiting Reversible Decoder Pushes the Limit of Image Deblurring
2406.09135
https://arxiv.org/abs/2406.09135v1
https://arxiv.org/pdf/2406.09135v1.pdf
https://github.com/INVOKERer/AdaRevD
true
false
false
pytorch
https://paperswithcode.com/paper/rethinking-uncertainly-missing-and-ambiguous
Rethinking Uncertainly Missing and Ambiguous Visual Modality in Multi-Modal Entity Alignment
2307.16210
https://arxiv.org/abs/2307.16210v2
https://arxiv.org/pdf/2307.16210v2.pdf
https://github.com/zjukg/umaea
false
true
true
pytorch
https://paperswithcode.com/paper/better-speech-synthesis-through-scaling
Better speech synthesis through scaling
2305.07243
https://arxiv.org/abs/2305.07243v2
https://arxiv.org/pdf/2305.07243v2.pdf
https://github.com/neonbjb/tortoise-tts
true
true
true
pytorch
https://paperswithcode.com/paper/synthesis-of-separation-processes-with
Synthesis of separation processes with reinforcement learning
2211.04327
https://arxiv.org/abs/2211.04327v1
https://arxiv.org/pdf/2211.04327v1.pdf
https://github.com/lollcat/aspen-rl
true
true
true
jax
https://paperswithcode.com/paper/it5-large-scale-text-to-text-pretraining-for
IT5: Text-to-text Pretraining for Italian Language Understanding and Generation
2203.03759
https://arxiv.org/abs/2203.03759v2
https://arxiv.org/pdf/2203.03759v2.pdf
https://github.com/MrFeelgoood/RealEstateStocksForecasting
false
false
true
none
https://paperswithcode.com/paper/optimal-sample-size-planning-for-the-wilcoxon
Optimal Sample Size Planning for the Wilcoxon-Mann-Whitney-Test
1805.12249
http://arxiv.org/abs/1805.12249v1
http://arxiv.org/pdf/1805.12249v1.pdf
https://github.com/cran/WMWssp
false
false
true
none
https://paperswithcode.com/paper/deformation-equivariant-cross-modality-image
Deformation equivariant cross-modality image synthesis with paired non-aligned training data
2208.12491
https://arxiv.org/abs/2208.12491v2
https://arxiv.org/pdf/2208.12491v2.pdf
https://github.com/honkamj/non-aligned-i2i
true
true
false
pytorch
https://paperswithcode.com/paper/generalized-laplacian-regularized-framelet
Generalized Laplacian Regularized Framelet Graph Neural Networks
2210.15092
https://arxiv.org/abs/2210.15092v2
https://arxiv.org/pdf/2210.15092v2.pdf
https://github.com/superca729/pl-ufg
true
true
false
pytorch
https://paperswithcode.com/paper/a-quantum-of-quic-dissecting-cryptography
A Quantum of QUIC: Dissecting Cryptography with Post-Quantum Insights
2405.09264
https://arxiv.org/abs/2405.09264v1
https://arxiv.org/pdf/2405.09264v1.pdf
https://github.com/tumi8/quic-crypto-paper
true
true
false
none
https://paperswithcode.com/paper/scaling-inference-time-search-with-vision
Scaling Inference-Time Search with Vision Value Model for Improved Visual Comprehension
2412.03704
https://arxiv.org/abs/2412.03704v2
https://arxiv.org/pdf/2412.03704v2.pdf
https://github.com/si0wang/visvm
true
true
false
pytorch
https://paperswithcode.com/paper/compose-and-conquer-diffusion-based-3d-depth
Compose and Conquer: Diffusion-Based 3D Depth Aware Composable Image Synthesis
2401.09048
https://arxiv.org/abs/2401.09048v1
https://arxiv.org/pdf/2401.09048v1.pdf
https://github.com/tomtom1103/compose-and-conquer
true
true
true
pytorch