paper_url
stringlengths
36
81
paper_title
stringlengths
1
242
paper_arxiv_id
stringlengths
9
16
paper_url_abs
stringlengths
18
314
paper_url_pdf
stringlengths
21
935
repo_url
stringlengths
26
200
is_official
bool
2 classes
mentioned_in_paper
bool
2 classes
mentioned_in_github
bool
2 classes
framework
stringclasses
9 values
https://paperswithcode.com/paper/fedentropy-efficient-device-grouping-for
FedEntropy: Efficient Device Grouping for Federated Learning Using Maximum Entropy Judgment
2205.12038
https://arxiv.org/abs/2205.12038v1
https://arxiv.org/pdf/2205.12038v1.pdf
https://github.com/fedentropy/fedentropy
true
true
false
pytorch
https://paperswithcode.com/paper/learning-transferable-visual-models-from
Learning Transferable Visual Models From Natural Language Supervision
2103.00020
https://arxiv.org/abs/2103.00020v1
https://arxiv.org/pdf/2103.00020v1.pdf
https://github.com/sberbank-ai/ru-clip
false
false
true
pytorch
https://paperswithcode.com/paper/tackling-fake-news-detection-by-continually
Tackling Fake News Detection by Continually Improving Social Context Representations using Graph Neural Networks
null
https://aclanthology.org/2022.acl-long.97
https://aclanthology.org/2022.acl-long.97.pdf
https://github.com/hockeybro12/fakenews_inference_operators
true
true
false
pytorch
https://paperswithcode.com/paper/bayesian-functional-principal-components-1
Bayesian modeling of nearly mutually orthogonal processes
2205.12361
https://arxiv.org/abs/2205.12361v3
https://arxiv.org/pdf/2205.12361v3.pdf
https://github.com/jamesmatuk/remo-fpca
true
true
false
none
https://paperswithcode.com/paper/bionic-tracking-using-eye-tracking-to-track
Bionic Tracking: Using Eye Tracking to Track Biological Cells in Virtual Reality
2005.00387
https://arxiv.org/abs/2005.00387v2
https://arxiv.org/pdf/2005.00387v2.pdf
https://github.com/scenerygraphics/bionic-tracking
true
true
false
none
https://paperswithcode.com/paper/the-neuro-symbolic-brain
The Neuro-Symbolic Brain
2205.13440
https://arxiv.org/abs/2205.13440v1
https://arxiv.org/pdf/2205.13440v1.pdf
https://github.com/robertlizee/neuro-symbolic-vm
true
false
true
none
https://paperswithcode.com/paper/flexible-and-fast-estimation-of-binary-merger
Flexible and Fast Estimation of Binary Merger Population Distributions with Adaptive KDE
2112.12659
https://arxiv.org/abs/2112.12659v3
https://arxiv.org/pdf/2112.12659v3.pdf
https://github.com/jamsadiq/peakdetectionalgorithm
true
true
true
none
https://paperswithcode.com/paper/domain-adaptive-faster-r-cnn-for-object
Domain Adaptive Faster R-CNN for Object Detection in the Wild
1803.03243
http://arxiv.org/abs/1803.03243v1
http://arxiv.org/pdf/1803.03243v1.pdf
https://github.com/shreyasrajesh/DA-Object-Detection
false
false
true
pytorch
https://paperswithcode.com/paper/cross-modality-discrepant-interaction-network
Cross-modality Discrepant Interaction Network for RGB-D Salient Object Detection
2108.01971
https://arxiv.org/abs/2108.01971v1
https://arxiv.org/pdf/2108.01971v1.pdf
https://github.com/kingcong/CDINet
false
false
false
mindspore
https://paperswithcode.com/paper/extending-the-design-space-of-graph-neural-1
Extending the Design Space of Graph Neural Networks by Rethinking Folklore Weisfeiler-Lehman
2306.03266
https://arxiv.org/abs/2306.03266v3
https://arxiv.org/pdf/2306.03266v3.pdf
https://github.com/jiaruifeng/n2gnn
true
true
true
pytorch
https://paperswithcode.com/paper/transfuser-imitation-with-transformer-based
TransFuser: Imitation with Transformer-Based Sensor Fusion for Autonomous Driving
2205.15997
https://arxiv.org/abs/2205.15997v1
https://arxiv.org/pdf/2205.15997v1.pdf
https://github.com/autonomousvision/transfuser
true
true
true
pytorch
https://paperswithcode.com/paper/a-unified-weight-initialization-paradigm-for
A Unified Weight Initialization Paradigm for Tensorial Convolutional Neural Networks
2205.15307
https://arxiv.org/abs/2205.15307v2
https://arxiv.org/pdf/2205.15307v2.pdf
https://github.com/tnbar/tednet
true
true
false
pytorch
https://paperswithcode.com/paper/preparing-an-endangered-language-for-the
Preparing an Endangered Language for the Digital Age: The Case of Judeo-Spanish
2205.15599
https://arxiv.org/abs/2205.15599v1
https://arxiv.org/pdf/2205.15599v1.pdf
https://github.com/collectivat-dev/espanyol-ladino-translation
true
true
false
none
https://paperswithcode.com/paper/aggregated-residual-transformations-for-deep
Aggregated Residual Transformations for Deep Neural Networks
1611.05431
http://arxiv.org/abs/1611.05431v2
http://arxiv.org/pdf/1611.05431v2.pdf
https://github.com/2023-MindSpore-1/ms-code-13
false
false
false
mindspore
https://paperswithcode.com/paper/a-theoretical-study-on-solving-continual
A Theoretical Study on Solving Continual Learning
2211.02633
https://arxiv.org/abs/2211.02633v1
https://arxiv.org/pdf/2211.02633v1.pdf
https://github.com/k-gyuhak/wptp
true
true
false
pytorch
https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
2010.11929
https://arxiv.org/abs/2010.11929v2
https://arxiv.org/pdf/2010.11929v2.pdf
https://github.com/OML-Team/open-metric-learning
false
false
false
pytorch
https://paperswithcode.com/paper/constrained-variational-policy-optimization
Constrained Variational Policy Optimization for Safe Reinforcement Learning
2201.11927
https://arxiv.org/abs/2201.11927v3
https://arxiv.org/pdf/2201.11927v3.pdf
https://github.com/liuzuxin/cvpo-safe-rl
true
true
true
pytorch
https://paperswithcode.com/paper/pgmpy-a-python-toolkit-for-bayesian-networks
pgmpy: A Python Toolkit for Bayesian Networks
2304.08639
https://arxiv.org/abs/2304.08639v1
https://arxiv.org/pdf/2304.08639v1.pdf
https://github.com/pgmpy/pgmpy
true
true
false
pytorch
https://paperswithcode.com/paper/cyclemix-a-holistic-strategy-for-medical
CycleMix: A Holistic Strategy for Medical Image Segmentation from Scribble Supervision
2203.01475
https://arxiv.org/abs/2203.01475v2
https://arxiv.org/pdf/2203.01475v2.pdf
https://github.com/bwgzk/cyclemix
true
true
true
pytorch
https://paperswithcode.com/paper/recbole-2-0-towards-a-more-up-to-date
RecBole 2.0: Towards a More Up-to-Date Recommendation Library
2206.07351
https://arxiv.org/abs/2206.07351v2
https://arxiv.org/pdf/2206.07351v2.pdf
https://github.com/rucaibox/recbole2.0
true
true
true
pytorch
https://paperswithcode.com/paper/emerging-properties-in-self-supervised-vision
Emerging Properties in Self-Supervised Vision Transformers
2104.14294
https://arxiv.org/abs/2104.14294v2
https://arxiv.org/pdf/2104.14294v2.pdf
https://github.com/OML-Team/open-metric-learning
false
false
false
pytorch
https://paperswithcode.com/paper/bevdet-high-performance-multi-camera-3d
BEVDet: High-performance Multi-camera 3D Object Detection in Bird-Eye-View
2112.11790
https://arxiv.org/abs/2112.11790v3
https://arxiv.org/pdf/2112.11790v3.pdf
https://github.com/HuangJunJie2017/BEVDet
true
true
true
pytorch
https://paperswithcode.com/paper/on-the-surprising-behaviour-of-node2vec
On the Surprising Behaviour of node2vec
2206.08252
https://arxiv.org/abs/2206.08252v2
https://arxiv.org/pdf/2206.08252v2.pdf
https://github.com/aidos-lab/node2vec-surprises
true
true
false
pytorch
https://paperswithcode.com/paper/distributionally-robust-losses-for-latent
Distributionally Robust Losses for Latent Covariate Mixtures
2007.13982
https://arxiv.org/abs/2007.13982v2
https://arxiv.org/pdf/2007.13982v2.pdf
https://github.com/hsnamkoong/marginal-dro
true
true
false
pytorch
https://paperswithcode.com/paper/projection-scrubbing-a-more-effective-data
Less is more: balancing noise reduction and data retention in fMRI with data-driven scrubbing
2108.00319
https://arxiv.org/abs/2108.00319v4
https://arxiv.org/pdf/2108.00319v4.pdf
https://github.com/cran/fMRIscrub
false
false
true
none
https://paperswithcode.com/paper/learning-stochastic-parametric-differentiable
Learning Stochastic Parametric Differentiable Predictive Control Policies
2203.01447
https://arxiv.org/abs/2203.01447v2
https://arxiv.org/pdf/2203.01447v2.pdf
https://github.com/pnnl/neuromancer
true
true
false
pytorch
https://paperswithcode.com/paper/neural-inverse-kinematics
Neural Inverse Kinematics
2205.10837
https://arxiv.org/abs/2205.10837v1
https://arxiv.org/pdf/2205.10837v1.pdf
https://github.com/RaphaelBensTAU/NeuralInverseKinematics
true
false
true
pytorch
https://paperswithcode.com/paper/instant-neural-graphics-primitives-with-a
Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
2201.05989
https://arxiv.org/abs/2201.05989v2
https://arxiv.org/pdf/2201.05989v2.pdf
https://github.com/kair-bair/nerfacc
false
false
false
pytorch
https://paperswithcode.com/paper/the-sigma-8-tension-is-a-drag
The Sigma-8 Tension is a Drag
2209.06217
https://arxiv.org/abs/2209.06217v2
https://arxiv.org/pdf/2209.06217v2.pdf
https://github.com/brinckmann/montepython_public
true
true
false
none
https://paperswithcode.com/paper/automatic-correction-of-human-translations
Automatic Correction of Human Translations
2206.08593
https://arxiv.org/abs/2206.08593v1
https://arxiv.org/pdf/2206.08593v1.pdf
https://github.com/lilt/tec
true
true
true
none
https://paperswithcode.com/paper/thompson-sampling-for-robust-transfer-in
Thompson Sampling for Robust Transfer in Multi-Task Bandits
2206.08556
https://arxiv.org/abs/2206.08556v1
https://arxiv.org/pdf/2206.08556v1.pdf
https://github.com/zhiwang123/eps-mpmab-ts
true
true
false
none
https://paperswithcode.com/paper/object-structural-points-representation-for
Object Structural Points Representation for Graph-based Semantic Monocular Localization and Mapping
2206.10263
https://arxiv.org/abs/2206.10263v1
https://arxiv.org/pdf/2206.10263v1.pdf
https://github.com/airlab-polimi/c-slam
true
true
false
none
https://paperswithcode.com/paper/diagnostic-tool-for-out-of-sample-model
Diagnostic Tool for Out-of-Sample Model Evaluation
2206.10982
https://arxiv.org/abs/2206.10982v3
https://arxiv.org/pdf/2206.10982v3.pdf
https://github.com/el-hult/lal
true
true
false
pytorch
https://paperswithcode.com/paper/panoramic-panoptic-segmentation-insights-into
Panoramic Panoptic Segmentation: Insights Into Surrounding Parsing for Mobile Agents via Unsupervised Contrastive Learning
2206.10711
https://arxiv.org/abs/2206.10711v2
https://arxiv.org/pdf/2206.10711v2.pdf
https://github.com/alexanderjaus/PPS
true
true
true
pytorch
https://paperswithcode.com/paper/a-novel-approach-for-exploring-the-light
A Novel Approach for Exploring the Light Traveling Path in the Medium with a Spherically Symmetric Refractive Index
2212.02642
https://arxiv.org/abs/2212.02642v1
https://arxiv.org/pdf/2212.02642v1.pdf
https://github.com/shengyangzhuang/A-Novel-Approach-for-Exploring-the-Light-Traveling-Path-in-the-Spherically-Symmetric-Medium
true
false
false
none
https://paperswithcode.com/paper/symmetric-network-with-spatial-relationship
Symmetric Network with Spatial Relationship Modeling for Natural Language-based Vehicle Retrieval
2206.10879
https://arxiv.org/abs/2206.10879v1
https://arxiv.org/pdf/2206.10879v1.pdf
https://github.com/hbchen121/aicity2022_track2_ssm
true
true
true
pytorch
https://paperswithcode.com/paper/visfis-visual-feature-importance-supervision
VisFIS: Visual Feature Importance Supervision with Right-for-the-Right-Reason Objectives
2206.11212
https://arxiv.org/abs/2206.11212v2
https://arxiv.org/pdf/2206.11212v2.pdf
https://github.com/zfying/visfis
true
true
true
pytorch
https://paperswithcode.com/paper/matrix-completion-and-low-rank-svd-via-fast
Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares
1410.2596
http://arxiv.org/abs/1410.2596v1
http://arxiv.org/pdf/1410.2596v1.pdf
https://github.com/travisbrady/py-soft-impute
false
false
true
none
https://paperswithcode.com/paper/block-diffusion-interpolating-between
Block Diffusion: Interpolating Between Autoregressive and Diffusion Language Models
2503.09573
https://arxiv.org/abs/2503.09573v3
https://arxiv.org/pdf/2503.09573v3.pdf
https://github.com/MindSpore-scientific/code-12/tree/main/Block_Model
false
false
false
mindspore
https://paperswithcode.com/paper/a-simple-and-efficient-sampling-based
A Simple and Efficient Sampling-based Algorithm for General Reachability Analysis
2112.05745
https://arxiv.org/abs/2112.05745v3
https://arxiv.org/pdf/2112.05745v3.pdf
https://github.com/stanfordasl/stochasticedl
false
false
true
jax
https://paperswithcode.com/paper/a-multi-head-model-for-continual-learning-via
A Multi-Head Model for Continual Learning via Out-of-Distribution Replay
2208.09734
https://arxiv.org/abs/2208.09734v1
https://arxiv.org/pdf/2208.09734v1.pdf
https://github.com/k-gyuhak/wptp
false
false
true
pytorch
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
U-Net: Convolutional Networks for Biomedical Image Segmentation
1505.04597
http://arxiv.org/abs/1505.04597v1
http://arxiv.org/pdf/1505.04597v1.pdf
https://github.com/udacity/MLND-CN-Capstone-TGSImage
false
false
true
none
https://paperswithcode.com/paper/rethinking-atrous-convolution-for-semantic
Rethinking Atrous Convolution for Semantic Image Segmentation
1706.05587
http://arxiv.org/abs/1706.05587v3
http://arxiv.org/pdf/1706.05587v3.pdf
https://github.com/udacity/MLND-CN-Capstone-TGSImage
false
false
true
none
https://paperswithcode.com/paper/image-aesthetics-assessment-using-graph
Image Aesthetics Assessment Using Graph Attention Network
2206.12869
https://arxiv.org/abs/2206.12869v2
https://arxiv.org/pdf/2206.12869v2.pdf
https://github.com/koustav123/aesthetics_assessment_using_graphs
true
true
false
pytorch
https://paperswithcode.com/paper/rethinking-cnn-models-for-audio
Rethinking CNN Models for Audio Classification
2007.11154
https://arxiv.org/abs/2007.11154v2
https://arxiv.org/pdf/2007.11154v2.pdf
https://github.com/shijing001/unicertainty_calibration_audio_classifiers
false
false
true
pytorch
https://paperswithcode.com/paper/uncertainty-calibration-for-deep-audio
Uncertainty Calibration for Deep Audio Classifiers
2206.13071
https://arxiv.org/abs/2206.13071v1
https://arxiv.org/pdf/2206.13071v1.pdf
https://github.com/shijing001/unicertainty_calibration_audio_classifiers
true
true
true
pytorch
https://paperswithcode.com/paper/enhancing-stochastic-petri-net-based
Enhancing Stochastic Petri Net-based Remaining Time Prediction using k-Nearest Neighbors
2206.13109
https://arxiv.org/abs/2206.13109v1
https://arxiv.org/pdf/2206.13109v1.pdf
https://github.com/jarnevdb/bp-time-prediction-using-knn
true
true
false
none
https://paperswithcode.com/paper/190807919
Deep High-Resolution Representation Learning for Visual Recognition
1908.07919
https://arxiv.org/abs/1908.07919v2
https://arxiv.org/pdf/1908.07919v2.pdf
https://github.com/kingcong/gpu_HRNetW48_cls
false
false
true
mindspore
https://paperswithcode.com/paper/feature-overcorrelation-in-deep-graph-neural
Feature Overcorrelation in Deep Graph Neural Networks: A New Perspective
2206.07743
https://arxiv.org/abs/2206.07743v1
https://arxiv.org/pdf/2206.07743v1.pdf
https://github.com/chandlerbang/decorr
true
true
true
pytorch
https://paperswithcode.com/paper/towards-overcoming-data-scarcity-in-materials
Towards overcoming data scarcity in materials science: unifying models and datasets with a mixture of experts framework
2207.13880
https://arxiv.org/abs/2207.13880v1
https://arxiv.org/pdf/2207.13880v1.pdf
https://github.com/rees-c/moe
true
true
false
pytorch
https://paperswithcode.com/paper/direct-preference-optimization-your-language
Direct Preference Optimization: Your Language Model is Secretly a Reward Model
2305.18290
https://arxiv.org/abs/2305.18290v3
https://arxiv.org/pdf/2305.18290v3.pdf
https://github.com/KomeijiForce/Active_Passive_Constraint_Koishiday_2024
false
false
true
pytorch
https://paperswithcode.com/paper/ego-planner-an-esdf-free-gradient-based-local
EGO-Planner: An ESDF-free Gradient-based Local Planner for Quadrotors
2008.08835
https://arxiv.org/abs/2008.08835v1
https://arxiv.org/pdf/2008.08835v1.pdf
https://github.com/j-marple-dev/ego-planner
false
false
true
none
https://paperswithcode.com/paper/learning-maritime-obstacle-detection-from
Learning Maritime Obstacle Detection from Weak Annotations by Scaffolding
2108.00564
https://arxiv.org/abs/2108.00564v1
https://arxiv.org/pdf/2108.00564v1.pdf
https://github.com/lojzezust/slr
false
false
true
pytorch
https://paperswithcode.com/paper/sparse-distillation-speeding-up-text
Sparse Distillation: Speeding Up Text Classification by Using Bigger Student Models
2110.08536
https://arxiv.org/abs/2110.08536v2
https://arxiv.org/pdf/2110.08536v2.pdf
https://github.com/ink-usc/sparse-distillation
true
true
true
pytorch
https://paperswithcode.com/paper/in-defense-of-the-triplet-loss-for-person-re
In Defense of the Triplet Loss for Person Re-Identification
1703.07737
http://arxiv.org/abs/1703.07737v4
http://arxiv.org/pdf/1703.07737v4.pdf
https://github.com/OML-Team/open-metric-learning
false
false
false
pytorch
https://paperswithcode.com/paper/non-gaussianity-in-cmb-lensing-from-full-sky
Non-Gaussianity in CMB lensing from full-sky simulations
2411.02774
https://arxiv.org/abs/2411.02774v3
https://arxiv.org/pdf/2411.02774v3.pdf
https://github.com/Kang-Yuqi/FLAReS
true
false
false
none
https://paperswithcode.com/paper/serendipity-in-dark-photon-searches
Serendipity in dark photon searches
1801.04847
https://arxiv.org/abs/1801.04847v2
https://arxiv.org/pdf/1801.04847v2.pdf
https://gitlab.com/philten/darkcast
true
true
true
none
https://paperswithcode.com/paper/transformcode-a-contrastive-learning
TransformCode: A Contrastive Learning Framework for Code Embedding via Subtree Transformation
2311.08157
https://arxiv.org/abs/2311.08157v2
https://arxiv.org/pdf/2311.08157v2.pdf
https://github.com/iamfaith/transformcode
true
true
false
pytorch
https://paperswithcode.com/paper/technical-report-large-language-models-can
Large Language Models can Strategically Deceive their Users when Put Under Pressure
2311.07590
https://arxiv.org/abs/2311.07590v4
https://arxiv.org/pdf/2311.07590v4.pdf
https://github.com/apolloresearch/insider-trading
true
true
false
none
https://paperswithcode.com/paper/detecting-covariate-drift-in-text-data-using
Detecting covariate drift in text data using document embeddings and dimensionality reduction
2309.10000
https://arxiv.org/abs/2309.10000v1
https://arxiv.org/pdf/2309.10000v1.pdf
https://github.com/vinayaksodar/nlp_drift_paper_code
true
true
false
none
https://paperswithcode.com/paper/adaptive-measurement-strategy-for-quantum
Adaptive measurement strategy for quantum subspace methods
2311.07893
https://arxiv.org/abs/2311.07893v2
https://arxiv.org/pdf/2311.07893v2.pdf
https://github.com/quantum-programming/adaptive-subspace
true
false
false
none
https://paperswithcode.com/paper/coatnet-marrying-convolution-and-attention
CoAtNet: Marrying Convolution and Attention for All Data Sizes
2106.04803
https://arxiv.org/abs/2106.04803v2
https://arxiv.org/pdf/2106.04803v2.pdf
https://github.com/MS-Mind/MS-Code-02/tree/main/configs/coat
false
false
false
mindspore
https://paperswithcode.com/paper/a-study-of-slang-representation-methods
A Study of Slang Representation Methods
2212.05613
https://arxiv.org/abs/2212.05613v3
https://arxiv.org/pdf/2212.05613v3.pdf
https://github.com/usc-isi-i2/slang-representation-learning
true
false
false
pytorch
https://paperswithcode.com/paper/traffic-state-data-imputation-an-efficient
Traffic state data imputation: An efficient generating method based on the graph aggregator
null
https://ieeexplore.ieee.org/abstract/document/9582618
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9582618
https://github.com/pihang/GA-GAN
true
false
false
none
https://paperswithcode.com/paper/ask2transformers-zero-shot-domain-labelling-1
Ask2Transformers: Zero-Shot Domain labelling with Pretrained Language Models
null
https://aclanthology.org/2021.gwc-1.6
https://aclanthology.org/2021.gwc-1.6.pdf
https://github.com/osainz59/Ask2Transformers
true
true
false
pytorch
https://paperswithcode.com/paper/a-field-test-of-bandit-algorithms-for
A Field Test of Bandit Algorithms for Recommendations: Understanding the Validity of Assumptions on Human Preferences in Multi-armed Bandits
2304.09088
https://arxiv.org/abs/2304.09088v1
https://arxiv.org/pdf/2304.09088v1.pdf
https://github.com/humainlab/human-bandit-evaluation
true
true
false
none
https://paperswithcode.com/paper/probabilistic-embeddings-for-cross-modal
Probabilistic Embeddings for Cross-Modal Retrieval
2101.05068
https://arxiv.org/abs/2101.05068v2
https://arxiv.org/pdf/2101.05068v2.pdf
https://github.com/naver-ai/pcme
true
true
true
pytorch
https://paperswithcode.com/paper/computing-and-exploiting-document-structure
Computing and Exploiting Document Structure to Improve Unsupervised Extractive Summarization of Legal Case Decisions
2211.03229
https://arxiv.org/abs/2211.03229v1
https://arxiv.org/pdf/2211.03229v1.pdf
https://github.com/cs329yangzhong/documentstructurelegalsum
true
true
false
none
https://paperswithcode.com/paper/meta-networks
Meta Networks
1703.00837
http://arxiv.org/abs/1703.00837v2
http://arxiv.org/pdf/1703.00837v2.pdf
https://bitbucket.org/tsendeemts/metanet
true
true
true
none
https://paperswithcode.com/paper/model-predictive-control-of-nonlinear-latent
Model Predictive Control of Nonlinear Latent Force Models: A Scenario-Based Approach
2207.13872
https://arxiv.org/abs/2207.13872v1
https://arxiv.org/pdf/2207.13872v1.pdf
https://github.com/KU-ISSL/MPC-NLFM-Scenario-ICRA21
true
false
false
none
https://paperswithcode.com/paper/eccv-caption-correcting-false-negatives-by
ECCV Caption: Correcting False Negatives by Collecting Machine-and-Human-verified Image-Caption Associations for MS-COCO
2204.03359
https://arxiv.org/abs/2204.03359v5
https://arxiv.org/pdf/2204.03359v5.pdf
https://github.com/naver-ai/pcme
false
false
true
pytorch
https://paperswithcode.com/paper/4k-haze-a-dehazing-benchmark-with-4k
4K-HAZE: A Dehazing Benchmark with 4K Resolution Hazy and Haze-Free Images
2303.15848
https://arxiv.org/abs/2303.15848v1
https://arxiv.org/pdf/2303.15848v1.pdf
https://github.com/zzr-idam/4KDehazing
true
true
false
pytorch
https://paperswithcode.com/paper/foundationpose-unified-6d-pose-estimation-and
FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects
2312.08344
https://arxiv.org/abs/2312.08344v2
https://arxiv.org/pdf/2312.08344v2.pdf
https://github.com/NVlabs/FoundationStereo
true
false
false
pytorch
https://paperswithcode.com/paper/a-generative-approach-for-script-event-1
A Generative Approach for Script Event Prediction via Contrastive Fine-tuning
2212.03496
https://arxiv.org/abs/2212.03496v3
https://arxiv.org/pdf/2212.03496v3.pdf
https://github.com/zhufq00/mcnc
true
true
false
pytorch
https://paperswithcode.com/paper/bootstrap-state-representation-using-style
Bootstrap State Representation using Style Transfer for Better Generalization in Deep Reinforcement Learning
2207.07749
https://arxiv.org/abs/2207.07749v1
https://arxiv.org/pdf/2207.07749v1.pdf
https://github.com/masud99r/thinker
true
true
true
pytorch
https://paperswithcode.com/paper/dual-branch-hybrid-learning-network-for
Dual-branch Hybrid Learning Network for Unbiased Scene Graph Generation
2207.07913
https://arxiv.org/abs/2207.07913v1
https://arxiv.org/pdf/2207.07913v1.pdf
https://github.com/aa200647963/sgg-dhl
true
true
true
pytorch
https://paperswithcode.com/paper/facial-expression-and-attributes-recognition-1
Facial expression and attributes recognition based on multi-task learning of lightweight neural networks
2103.17107
https://arxiv.org/abs/2103.17107v3
https://arxiv.org/pdf/2103.17107v3.pdf
https://github.com/tomas-gajarsky/facetorch
false
false
false
pytorch
https://paperswithcode.com/paper/slowly-varying-regression-under-sparsity
Slowly Varying Regression under Sparsity
2102.10773
https://arxiv.org/abs/2102.10773v5
https://arxiv.org/pdf/2102.10773v5.pdf
https://github.com/vvdigalakis/ssvregression
true
true
false
none
https://paperswithcode.com/paper/one-person-one-model-learning-compound-router
One Person, One Model--Learning Compound Router for Sequential Recommendation
2211.02824
https://arxiv.org/abs/2211.02824v2
https://arxiv.org/pdf/2211.02824v2.pdf
https://github.com/icantnamemyself/canet
true
true
false
pytorch
https://paperswithcode.com/paper/networked-federated-multi-task-learning
Clustered Federated Learning via Generalized Total Variation Minimization
2105.12769
https://arxiv.org/abs/2105.12769v4
https://arxiv.org/pdf/2105.12769v4.pdf
https://github.com/sahelyiyi/FederatedLearning
true
true
true
pytorch
https://paperswithcode.com/paper/improving-federated-learning-personalization-1
Improving Federated Learning Personalization via Model Agnostic Meta Learning
1909.12488
https://arxiv.org/abs/1909.12488v2
https://arxiv.org/pdf/1909.12488v2.pdf
https://github.com/xiuyu0000/new_papers_codes/tree/main/FSMAFL
false
false
false
mindspore
https://paperswithcode.com/paper/preconditioned-nonlinear-conjugate-gradient-2
Preconditioned Nonlinear Conjugate Gradient Method for Real-time Interior-point Hyperelasticity
2405.08001
https://arxiv.org/abs/2405.08001v1
https://arxiv.org/pdf/2405.08001v1.pdf
https://github.com/Xingbaji/PNCG_IPC
true
false
false
none
https://paperswithcode.com/paper/mfan-multi-modal-feature-enhanced-attention
MFAN: Multi-modal Feature-enhanced Attention Networks for Rumor Detection
null
https://www.ijcai.org/proceedings/2022/335
https://www.ijcai.org/proceedings/2022/0335.pdf
https://github.com/drivsaf/MFAN
false
false
false
pytorch
https://paperswithcode.com/paper/bit-depth-enhancement-detection-for
Bit-depth enhancement detection for compressed video
2211.04799
https://arxiv.org/abs/2211.04799v1
https://arxiv.org/pdf/2211.04799v1.pdf
https://github.com/msu-video-group/bdedm
true
true
false
none
https://paperswithcode.com/paper/a-hierarchical-semantic-segmentation
A hierarchical semantic segmentation framework for computer vision-based bridge damage detection
2207.08878
https://arxiv.org/abs/2207.08878v2
https://arxiv.org/pdf/2207.08878v2.pdf
https://github.com/jingxiaoliu/bridge-damage-segmentation
true
true
true
pytorch
https://paperswithcode.com/paper/kold-korean-offensive-language-dataset
KOLD: Korean Offensive Language Dataset
2205.11315
https://arxiv.org/abs/2205.11315v2
https://arxiv.org/pdf/2205.11315v2.pdf
https://github.com/boychaboy/kold
true
true
true
none
https://paperswithcode.com/paper/wenet-2-0-more-productive-end-to-end-speech
WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit
2203.15455
https://arxiv.org/abs/2203.15455v2
https://arxiv.org/pdf/2203.15455v2.pdf
https://github.com/wenet-e2e/wenet
true
true
true
pytorch
https://paperswithcode.com/paper/interpretable-semantic-photo-geolocalization
Interpretable Semantic Photo Geolocation
2104.14995
https://arxiv.org/abs/2104.14995v2
https://arxiv.org/pdf/2104.14995v2.pdf
https://github.com/jtheiner/semantic_geo_partitioning
true
true
true
pytorch
https://paperswithcode.com/paper/high-resolution-image-synthesis-with-latent
High-Resolution Image Synthesis with Latent Diffusion Models
2112.10752
https://arxiv.org/abs/2112.10752v2
https://arxiv.org/pdf/2112.10752v2.pdf
https://github.com/joanrod/ocr-vqgan
false
false
true
pytorch
https://paperswithcode.com/paper/taming-transformers-for-high-resolution-image
Taming Transformers for High-Resolution Image Synthesis
2012.09841
https://arxiv.org/abs/2012.09841v3
https://arxiv.org/pdf/2012.09841v3.pdf
https://github.com/joanrod/ocr-vqgan
false
false
true
pytorch
https://paperswithcode.com/paper/character-region-awareness-for-text-detection
Character Region Awareness for Text Detection
1904.01941
http://arxiv.org/abs/1904.01941v1
http://arxiv.org/pdf/1904.01941v1.pdf
https://github.com/joanrod/ocr-vqgan
false
false
true
pytorch
https://paperswithcode.com/paper/cryptanalyzing-an-image-encryption-algorithm-1
Cryptanalyzing an Image Encryption Algorithm Underpinned by 2D Lag-Complex Logistic Map
2208.06774
https://arxiv.org/abs/2208.06774v1
https://arxiv.org/pdf/2208.06774v1.pdf
https://github.com/chengqingli/mm-iealm
true
true
false
none
https://paperswithcode.com/paper/rethinking-image-mixture-for-unsupervised
Un-Mix: Rethinking Image Mixtures for Unsupervised Visual Representation Learning
2003.05438
https://arxiv.org/abs/2003.05438v5
https://arxiv.org/pdf/2003.05438v5.pdf
https://github.com/szq0214/Rethinking-Image-Mixture-for-Unsupervised-Learning
true
true
true
pytorch
https://paperswithcode.com/paper/tristereonet-a-trinocular-framework-for-multi
TriStereoNet: A Trinocular Framework for Multi-baseline Disparity Estimation
2111.12502
https://arxiv.org/abs/2111.12502v2
https://arxiv.org/pdf/2111.12502v2.pdf
https://github.com/cogsys-tuebingen/tristereonet
true
true
true
pytorch
https://paperswithcode.com/paper/mid-fusion-octree-based-object-level-multi
MID-Fusion: Octree-based Object-Level Multi-Instance Dynamic SLAM
1812.07976
http://arxiv.org/abs/1812.07976v4
http://arxiv.org/pdf/1812.07976v4.pdf
https://github.com/smartroboticslab/mid-fusion
true
false
true
tf
https://paperswithcode.com/paper/deep-graph-library-towards-efficient-and
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks
1909.01315
https://arxiv.org/abs/1909.01315v2
https://arxiv.org/pdf/1909.01315v2.pdf
https://github.com/OweysMomenzada/Graph-Neural-Networks-for-effecient-Recommender-Systems
false
false
true
pytorch
https://paperswithcode.com/paper/self-guided-contrastive-learning-for-bert
Self-Guided Contrastive Learning for BERT Sentence Representations
2106.07345
https://arxiv.org/abs/2106.07345v1
https://arxiv.org/pdf/2106.07345v1.pdf
https://github.com/galsang/SG-BERT
true
true
false
pytorch
https://paperswithcode.com/paper/xnor-net-imagenet-classification-using-binary
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks
1603.05279
http://arxiv.org/abs/1603.05279v4
http://arxiv.org/pdf/1603.05279v4.pdf
https://github.com/pminhtam/xnor_conv_pytorch_extension
false
false
false
pytorch
https://paperswithcode.com/paper/fleet-policy-learning-via-weight-merging-and
Robot Fleet Learning via Policy Merging
2310.01362
https://arxiv.org/abs/2310.01362v3
https://arxiv.org/pdf/2310.01362v3.pdf
https://github.com/liruiw/fleet-tools
true
true
true
none
https://paperswithcode.com/paper/multiclass-sgcn-sparse-graph-based-trajectory
Multiclass-SGCN: Sparse Graph-based Trajectory Prediction with Agent Class Embedding
2206.15275
https://arxiv.org/abs/2206.15275v1
https://arxiv.org/pdf/2206.15275v1.pdf
https://github.com/carrotsniper/multiclass-sgcn
true
true
true
pytorch