paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/transformer-interpretability-beyond-attention
|
Transformer Interpretability Beyond Attention Visualization
|
2012.09838
|
https://arxiv.org/abs/2012.09838v2
|
https://arxiv.org/pdf/2012.09838v2.pdf
|
https://github.com/TiagoFilipeSousaGoncalves/survey-attention-medical-imaging
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/optimal-vaccination-at-high-reproductive
|
Optimal vaccination at high reproductive numbers: sharp transitions and counter-intuitive allocations
|
2202.03909
|
https://arxiv.org/abs/2202.03909v1
|
https://arxiv.org/pdf/2202.03909v1.pdf
|
https://github.com/ngavish/highr0
| true | true | false |
none
|
https://paperswithcode.com/paper/spineparsenet-spine-parsing-for-volumetric-mr
|
SpineParseNet: Spine Parsing for Volumetric MR Image by a Two-Stage Segmentation Framework with Semantic Image Representation
| null |
https://ieeexplore.ieee.org/document/9201093
|
https://ieeexplore.ieee.org/document/9201093
|
https://github.com/pangshumao/SpineParseNet
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/exploiting-anti-monotonicity-of-multi-label
|
Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules
|
1812.06833
|
http://arxiv.org/abs/1812.06833v1
|
http://arxiv.org/pdf/1812.06833v1.pdf
|
https://github.com/keelm/SeCo-MLC
| true | true | true |
none
|
https://paperswithcode.com/paper/efficient-discovery-of-expressive-multi-label
|
Efficient Discovery of Expressive Multi-label Rules using Relaxed Pruning
|
1908.06874
|
https://arxiv.org/abs/1908.06874v1
|
https://arxiv.org/pdf/1908.06874v1.pdf
|
https://github.com/keelm/SeCo-MLC
| true | true | true |
none
|
https://paperswithcode.com/paper/towards-demystifying-representation-learning-1
|
Towards Demystifying Representation Learning with Non-contrastive Self-supervision
|
2110.04947
|
https://arxiv.org/abs/2110.04947v2
|
https://arxiv.org/pdf/2110.04947v2.pdf
|
https://github.com/miszkur/SelfSupervisedLearning
| false | false | true |
tf
|
https://paperswithcode.com/paper/bootstrap-your-own-latent-a-new-approach-to
|
Bootstrap your own latent: A new approach to self-supervised Learning
|
2006.07733
|
https://arxiv.org/abs/2006.07733v3
|
https://arxiv.org/pdf/2006.07733v3.pdf
|
https://github.com/miszkur/SelfSupervisedLearning
| false | false | true |
tf
|
https://paperswithcode.com/paper/grad-cam-visual-explanations-from-deep
|
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
|
1610.02391
|
https://arxiv.org/abs/1610.02391v4
|
https://arxiv.org/pdf/1610.02391v4.pdf
|
https://github.com/karandesaiii/CheXNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/chexnet-radiologist-level-pneumonia-detection
|
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning
|
1711.05225
|
http://arxiv.org/abs/1711.05225v3
|
http://arxiv.org/pdf/1711.05225v3.pdf
|
https://github.com/karandesaiii/CheXNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/learning-to-diagnose-from-scratch-by
|
Learning to diagnose from scratch by exploiting dependencies among labels
|
1710.10501
|
http://arxiv.org/abs/1710.10501v2
|
http://arxiv.org/pdf/1710.10501v2.pdf
|
https://github.com/karandesaiii/CheXNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/chestx-ray8-hospital-scale-chest-x-ray
|
ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases
|
1705.02315
|
http://arxiv.org/abs/1705.02315v5
|
http://arxiv.org/pdf/1705.02315v5.pdf
|
https://github.com/karandesaiii/CheXNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/the-r2d2-prior-for-generalized-linear-mixed
|
The R2D2 Prior for Generalized Linear Mixed Models
|
2111.10718
|
https://arxiv.org/abs/2111.10718v3
|
https://arxiv.org/pdf/2111.10718v3.pdf
|
https://github.com/eyanchenko/r2d2glmm
| true | true | true |
none
|
https://paperswithcode.com/paper/how-to-fine-tune-bert-for-text-classification
|
How to Fine-Tune BERT for Text Classification?
|
1905.05583
|
https://arxiv.org/abs/1905.05583v3
|
https://arxiv.org/pdf/1905.05583v3.pdf
|
https://github.com/Derposoft/ai-educator
| false | false | true |
none
|
https://paperswithcode.com/paper/the-network-structure-of-cultural-distances
|
Cultures as networks of cultural traits: A unifying framework for measuring culture and cultural distances
|
2007.02359
|
https://arxiv.org/abs/2007.02359v5
|
https://arxiv.org/pdf/2007.02359v5.pdf
|
https://github.com/rrondinelli/cultural-networks
| true | true | false |
none
|
https://paperswithcode.com/paper/deformable-detr-deformable-transformers-for-1
|
Deformable DETR: Deformable Transformers for End-to-End Object Detection
|
2010.04159
|
https://arxiv.org/abs/2010.04159v4
|
https://arxiv.org/pdf/2010.04159v4.pdf
|
https://github.com/Li-ai-cell/Interpretation_DETR
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/end-to-end-object-detection-with-transformers
|
End-to-End Object Detection with Transformers
|
2005.12872
|
https://arxiv.org/abs/2005.12872v3
|
https://arxiv.org/pdf/2005.12872v3.pdf
|
https://github.com/Li-ai-cell/Interpretation_DETR
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/maslow-s-hammer-for-catastrophic-forgetting
|
Maslow's Hammer for Catastrophic Forgetting: Node Re-Use vs Node Activation
|
2205.09029
|
https://arxiv.org/abs/2205.09029v1
|
https://arxiv.org/pdf/2205.09029v1.pdf
|
https://github.com/seblee97/student_teacher_catastrophic
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/auto-encoding-score-distribution-regression
|
Auto-Encoding Score Distribution Regression for Action Quality Assessment
|
2111.11029
|
https://arxiv.org/abs/2111.11029v2
|
https://arxiv.org/pdf/2111.11029v2.pdf
|
https://github.com/InfoX-SEU/DAE-AQA
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/efficient-quantized-sparse-matrix-operations
|
Efficient Quantized Sparse Matrix Operations on Tensor Cores
|
2209.06979
|
https://arxiv.org/abs/2209.06979v4
|
https://arxiv.org/pdf/2209.06979v4.pdf
|
https://github.com/shigangli/magicube
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/towards-better-stability-and-adaptability
|
Towards Better Stability and Adaptability: Improve Online Self-Training for Model Adaptation in Semantic Segmentation
| null |
http://openaccess.thecvf.com//content/CVPR2023/html/Zhao_Towards_Better_Stability_and_Adaptability_Improve_Online_Self-Training_for_Model_CVPR_2023_paper.html
|
http://openaccess.thecvf.com//content/CVPR2023/papers/Zhao_Towards_Better_Stability_and_Adaptability_Improve_Online_Self-Training_for_Model_CVPR_2023_paper.pdf
|
https://github.com/dzhaoxd/dt-st
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/random-quantum-neural-networks-rqnn-for-noisy
|
Random Quantum Neural Networks (RQNN) for Noisy Image Recognition
|
2203.01764
|
https://arxiv.org/abs/2203.01764v1
|
https://arxiv.org/pdf/2203.01764v1.pdf
|
https://github.com/darthsimpus/RQNN
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/selecting-the-best-optimizing-system
|
Selecting the Best Optimizing System
|
2201.03065
|
https://arxiv.org/abs/2201.03065v1
|
https://arxiv.org/pdf/2201.03065v1.pdf
|
https://github.com/nian-si/selectoptsys
| true | true | false |
none
|
https://paperswithcode.com/paper/exploiting-adapters-for-cross-lingual-low
|
Exploiting Adapters for Cross-lingual Low-resource Speech Recognition
|
2105.11905
|
https://arxiv.org/abs/2105.11905v2
|
https://arxiv.org/pdf/2105.11905v2.pdf
|
https://github.com/jindongwang/transferlearning
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/rate-coding-or-direct-coding-which-one-is
|
Rate Coding or Direct Coding: Which One is Better for Accurate, Robust, and Energy-efficient Spiking Neural Networks?
|
2202.03133
|
https://arxiv.org/abs/2202.03133v2
|
https://arxiv.org/pdf/2202.03133v2.pdf
|
https://github.com/intelligent-computing-lab-yale/rate-vs-direct
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/frozen-in-time-a-joint-video-and-image
|
Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval
|
2104.00650
|
https://arxiv.org/abs/2104.00650v2
|
https://arxiv.org/pdf/2104.00650v2.pdf
|
https://github.com/princetonvisualai/mqvr
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/token-labeling-training-a-85-5-top-1-accuracy
|
All Tokens Matter: Token Labeling for Training Better Vision Transformers
|
2104.10858
|
https://arxiv.org/abs/2104.10858v3
|
https://arxiv.org/pdf/2104.10858v3.pdf
|
https://github.com/sail-sg/dualformer
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/grad-cam-visual-explanations-from-deep
|
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
|
1610.02391
|
https://arxiv.org/abs/1610.02391v4
|
https://arxiv.org/pdf/1610.02391v4.pdf
|
https://github.com/sail-sg/dualformer
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/multi-scale-one-class-recurrent-neural
|
Multi-Scale One-Class Recurrent Neural Networks for Discrete Event Sequence Anomaly Detection
|
2008.13361
|
https://arxiv.org/abs/2008.13361v1
|
https://arxiv.org/pdf/2008.13361v1.pdf
|
https://github.com/KnowledgeDiscovery/OC4Seq
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/narwhal-and-tusk-a-dag-based-mempool-and
|
Narwhal and Tusk: A DAG-based Mempool and Efficient BFT Consensus
|
2105.11827
|
https://arxiv.org/abs/2105.11827v4
|
https://arxiv.org/pdf/2105.11827v4.pdf
|
https://github.com/asonnino/narwhal
| true | true | true |
none
|
https://paperswithcode.com/paper/multi-uav-path-planning-for-wireless-data
|
Multi-UAV Path Planning for Wireless Data Harvesting with Deep Reinforcement Learning
|
2010.12461
|
https://arxiv.org/abs/2010.12461v3
|
https://arxiv.org/pdf/2010.12461v3.pdf
|
https://github.com/hbayerlein/uav_data_harvesting
| true | true | true |
tf
|
https://paperswithcode.com/paper/multivariate-functional-group-sparse
|
Multivariate functional group sparse regression: functional predictor selection
|
2107.02146
|
https://arxiv.org/abs/2107.02146v2
|
https://arxiv.org/pdf/2107.02146v2.pdf
|
https://github.com/Ali-Mahzarnia/MFSGrp
| true | true | true |
none
|
https://paperswithcode.com/paper/graph-convolutional-modules-for-traffic
|
DDP-GCN: Multi-Graph Convolutional Network for Spatiotemporal Traffic Forecasting
|
1905.12256
|
https://arxiv.org/abs/1905.12256v3
|
https://arxiv.org/pdf/1905.12256v3.pdf
|
https://github.com/snu-adsl/DDP-GCN
| true | true | true |
tf
|
https://paperswithcode.com/paper/inferring-dark-matter-substructure-with
|
Inferring dark matter substructure with astrometric lensing beyond the power spectrum
|
2110.01620
|
https://arxiv.org/abs/2110.01620v2
|
https://arxiv.org/pdf/2110.01620v2.pdf
|
https://github.com/smsharma/neural-global-astrometry
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/3d-shape-reconstruction-from-free-hand
|
3D Shape Reconstruction from Free-Hand Sketches
|
2006.09694
|
https://arxiv.org/abs/2006.09694v2
|
https://arxiv.org/pdf/2006.09694v2.pdf
|
https://github.com/samaonline/3D-Shape-Reconstruction-from-Free-Hand-Sketches
| true | true | true |
tf
|
https://paperswithcode.com/paper/learning-selection-masks-for-deep-neural
|
Input Selection for Bandwidth-Limited Neural Network Inference
|
1906.04673
|
https://arxiv.org/abs/1906.04673v2
|
https://arxiv.org/pdf/1906.04673v2.pdf
|
https://github.com/stefoe/selection-masks
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/transmil-transformer-based-correlated
|
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification
|
2106.00908
|
https://arxiv.org/abs/2106.00908v2
|
https://arxiv.org/pdf/2106.00908v2.pdf
|
https://github.com/Ycblue/TransMIL
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/boosting-multiple-sclerosis-lesion
|
Boosting multiple sclerosis lesion segmentation through attention mechanism
|
2304.10790
|
https://arxiv.org/abs/2304.10790v1
|
https://arxiv.org/pdf/2304.10790v1.pdf
|
https://github.com/ictlab-unict/attention-cnn-MS-segmentation
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/latent-autoregressive-source-separation
|
Latent Autoregressive Source Separation
|
2301.08562
|
https://arxiv.org/abs/2301.08562v1
|
https://arxiv.org/pdf/2301.08562v1.pdf
|
https://github.com/gladia-research-group/latent-autoregressive-source-separation
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/on-approximate-data-reduction-for-the-rural
|
On approximate data reduction for the Rural Postman Problem: Theory and experiments
|
1812.10131
|
http://arxiv.org/abs/1812.10131v3
|
http://arxiv.org/pdf/1812.10131v3.pdf
|
https://gitlab.com/rvb/rpp-psaks
| true | true | true |
none
|
https://paperswithcode.com/paper/hvs-inspired-signal-degradation-network-for
|
HVS-Inspired Signal Degradation Network for Just Noticeable Difference Estimation
|
2208.07583
|
https://arxiv.org/abs/2208.07583v1
|
https://arxiv.org/pdf/2208.07583v1.pdf
|
https://github.com/jianjin008/hvs-sd-jnd
| true | true | false |
none
|
https://paperswithcode.com/paper/improving-unsupervised-defect-segmentation-by
|
Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders
|
1807.02011
|
http://arxiv.org/abs/1807.02011v3
|
http://arxiv.org/pdf/1807.02011v3.pdf
|
https://github.com/meitalB/NN
| false | false | true |
tf
|
https://paperswithcode.com/paper/semantic-communication-an-information
|
Semantic Information Recovery in Wireless Networks
|
2204.13366
|
https://arxiv.org/abs/2204.13366v4
|
https://arxiv.org/pdf/2204.13366v4.pdf
|
https://github.com/ant-uni-bremen/sinfony
| true | false | false |
tf
|
https://paperswithcode.com/paper/qagan-adversarial-approach-to-learning-domain
|
QAGAN: Adversarial Approach To Learning Domain Invariant Language Features
|
2206.12388
|
https://arxiv.org/abs/2206.12388v1
|
https://arxiv.org/pdf/2206.12388v1.pdf
|
https://github.com/towardsautonomy/qagan
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/adarnn-adaptive-learning-and-forecasting-of
|
AdaRNN: Adaptive Learning and Forecasting of Time Series
|
2108.04443
|
https://arxiv.org/abs/2108.04443v2
|
https://arxiv.org/pdf/2108.04443v2.pdf
|
https://github.com/jindongwang/transferlearning
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/kan-kolmogorov-arnold-networks
|
KAN: Kolmogorov-Arnold Networks
|
2404.19756
|
https://arxiv.org/abs/2404.19756v5
|
https://arxiv.org/pdf/2404.19756v5.pdf
|
https://github.com/Ipsedo/KolmogorovArnoldNetworks
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/searching-for-activation-functions
|
Searching for Activation Functions
|
1710.05941
|
http://arxiv.org/abs/1710.05941v2
|
http://arxiv.org/pdf/1710.05941v2.pdf
|
https://github.com/ShubAn1901/License-Plate-Recognition
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/temporal-robustness-of-stochastic-signals
|
Temporal Robustness of Stochastic Signals
|
2202.02583
|
https://arxiv.org/abs/2202.02583v2
|
https://arxiv.org/pdf/2202.02583v2.pdf
|
https://github.com/temporalrobrisk/temporal-robustness-risk
| true | true | false |
none
|
https://paperswithcode.com/paper/hypergraph-neural-networks-for-hypergraph
|
Hypergraph Neural Networks for Hypergraph Matching
| null |
http://openaccess.thecvf.com//content/ICCV2021/html/Liao_Hypergraph_Neural_Networks_for_Hypergraph_Matching_ICCV_2021_paper.html
|
http://openaccess.thecvf.com//content/ICCV2021/papers/Liao_Hypergraph_Neural_Networks_for_Hypergraph_Matching_ICCV_2021_paper.pdf
|
https://github.com/xwliao/hnn-hm
| true | true | false |
none
|
https://paperswithcode.com/paper/libact-pool-based-active-learning-in-python
|
libact: Pool-based Active Learning in Python
|
1710.00379
|
http://arxiv.org/abs/1710.00379v1
|
http://arxiv.org/pdf/1710.00379v1.pdf
|
https://github.com/melkherj/puddle
| false | false | true |
none
|
https://paperswithcode.com/paper/realistic-evaluation-of-deep-semi-supervised
|
Realistic Evaluation of Deep Semi-Supervised Learning Algorithms
|
1804.09170
|
https://arxiv.org/abs/1804.09170v4
|
https://arxiv.org/pdf/1804.09170v4.pdf
|
https://github.com/melkherj/puddle
| false | false | true |
none
|
https://paperswithcode.com/paper/deep-predictive-coding-networks-for-video
|
Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning
|
1605.08104
|
http://arxiv.org/abs/1605.08104v5
|
http://arxiv.org/pdf/1605.08104v5.pdf
|
https://github.com/nikolasmcneal/music-prediction
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/curriculum-learning-with-infant-egocentric
|
Curriculum Learning With Infant Egocentric Videos
| null |
https://openreview.net/forum?id=zkfyOkBVpz
|
https://openreview.net/pdf?id=zkfyOkBVpz
|
https://github.com/ssheybani/baby-vision-curriculum
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/channel-aware-contrastive-conditional
|
Channel-aware Contrastive Conditional Diffusion for Multivariate Probabilistic Time Series Forecasting
|
2410.02168
|
https://arxiv.org/abs/2410.02168v1
|
https://arxiv.org/pdf/2410.02168v1.pdf
|
https://github.com/LSY-Cython/CCDM
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-dual-input-aware-factorization-machine-for
|
A Dual Input-aware Factorization Machine for CTR Prediction
| null |
https://www.ijcai.org/proceedings/2020/434
|
https://www.ijcai.org/proceedings/2020/0434.pdf
|
https://github.com/Andy1314Chen/DIFM-Paddle
| false | false | false |
paddle
|
https://paperswithcode.com/paper/xci-sketch-extraction-of-color-information
|
XCI-Sketch: Extraction of Color Information from Images for Generation of Colored Outlines and Sketches
|
2108.11554
|
https://arxiv.org/abs/2108.11554v2
|
https://arxiv.org/pdf/2108.11554v2.pdf
|
https://github.com/Sampai28/XCI-Sketch
| false | false | true |
none
|
https://paperswithcode.com/paper/constrained-policy-optimization
|
Constrained Policy Optimization
|
1705.10528
|
http://arxiv.org/abs/1705.10528v1
|
http://arxiv.org/pdf/1705.10528v1.pdf
|
https://github.com/Bigpig4396/PyTorch-Constrained-Policy-Optimization-CPO
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/autolabel-clip-based-framework-for-open-set
|
AutoLabel: CLIP-based framework for Open-set Video Domain Adaptation
|
2304.01110
|
https://arxiv.org/abs/2304.01110v2
|
https://arxiv.org/pdf/2304.01110v2.pdf
|
https://github.com/gzaraunitn/autolabel
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/respecting-time-series-properties-makes-deep
|
Respecting Time Series Properties Makes Deep Time Series Forecasting Perfect
|
2207.10941
|
https://arxiv.org/abs/2207.10941v1
|
https://arxiv.org/pdf/2207.10941v1.pdf
|
https://github.com/origamisl/rtnet
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/algorithms-and-radiation-dynamics-for-the
|
Algorithms and radiation dynamics for the vicinity of black holes I. Methods and codes
|
2212.01532
|
https://arxiv.org/abs/2212.01532v1
|
https://arxiv.org/pdf/2212.01532v1.pdf
|
https://gitlab.com/leelamichaels/Tranquillity
| false | true | false |
none
|
https://paperswithcode.com/paper/leaping-through-tree-space-continuous
|
Leaping through tree space: continuous phylogenetic inference for rooted and unrooted trees
|
2306.05739
|
https://arxiv.org/abs/2306.05739v4
|
https://arxiv.org/pdf/2306.05739v4.pdf
|
https://github.com/neclow/gradme
| true | true | false |
jax
|
https://paperswithcode.com/paper/biomimetic-tactile-receptors-for-3d-printed
|
Artificial SA-I and RA-I Afferents for Tactile Sensing of Ridges and Gratings
|
2107.02084
|
https://arxiv.org/abs/2107.02084v3
|
https://arxiv.org/pdf/2107.02084v3.pdf
|
https://github.com/nlepora/afferents-tactile-gratings-jrsi2022
| true | true | false |
none
|
https://paperswithcode.com/paper/exploring-the-state-of-the-art-language
|
Transformers on Multilingual Clause-Level Morphology
|
2211.01736
|
https://arxiv.org/abs/2211.01736v2
|
https://arxiv.org/pdf/2211.01736v2.pdf
|
https://github.com/emrecanacikgoz/mrl2022
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/lovecon-text-driven-training-free-long-video
|
LOVECon: Text-driven Training-Free Long Video Editing with ControlNet
|
2310.09711
|
https://arxiv.org/abs/2310.09711v3
|
https://arxiv.org/pdf/2310.09711v3.pdf
|
https://github.com/zhijie-group/lovecon
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/simulations-of-crystal-nucleation-from
|
Simulations of Crystal Nucleation from Solution at Constant Chemical Potential
|
1907.04037
|
https://arxiv.org/abs/1907.04037v1
|
https://arxiv.org/pdf/1907.04037v1.pdf
|
https://github.com/Tarakk/plumed-cumd
| false | false | true |
none
|
https://paperswithcode.com/paper/convex-clustering-through-mm-an-efficient
|
Convex Clustering through MM: An Efficient Algorithm to Perform Hierarchical Clustering
|
2211.01877
|
https://arxiv.org/abs/2211.01877v2
|
https://arxiv.org/pdf/2211.01877v2.pdf
|
https://github.com/djwtouw/ccmm-paper
| true | true | false |
none
|
https://paperswithcode.com/paper/argscichat-a-dataset-for-argumentative
|
ArgSciChat: A Dataset for Argumentative Dialogues on Scientific Papers
|
2202.06690
|
https://arxiv.org/abs/2202.06690v3
|
https://arxiv.org/pdf/2202.06690v3.pdf
|
https://github.com/federicoruggeri/argscichat_project
| true | true | true |
none
|
https://paperswithcode.com/paper/hawkeye-a-pytorch-based-library-for-fine
|
Hawkeye: A PyTorch-based Library for Fine-Grained Image Recognition with Deep Learning
|
2310.09600
|
https://arxiv.org/abs/2310.09600v2
|
https://arxiv.org/pdf/2310.09600v2.pdf
|
https://github.com/hawkeye-finegrained/hawkeye
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/twitter-dataset-for-2022-russo-ukrainian
|
Twitter Dataset for 2022 Russo-Ukrainian Crisis
|
2203.02955
|
https://arxiv.org/abs/2203.02955v1
|
https://arxiv.org/pdf/2203.02955v1.pdf
|
https://github.com/ehsanulhaq1/russo_ukraine_dataset
| true | true | true |
none
|
https://paperswithcode.com/paper/an-approach-for-generating-families-of
|
An Approach for Generating Families of Energetically Optimal Gaits from Passive Dynamic Walking Gaits
|
2303.14750
|
https://arxiv.org/abs/2303.14750v2
|
https://arxiv.org/pdf/2303.14750v2.pdf
|
https://github.com/nr-codes/optimalgaitsforcompassgait
| true | true | false |
none
|
https://paperswithcode.com/paper/how-much-does-attention-actually-attend
|
How Much Does Attention Actually Attend? Questioning the Importance of Attention in Pretrained Transformers
|
2211.03495
|
https://arxiv.org/abs/2211.03495v1
|
https://arxiv.org/pdf/2211.03495v1.pdf
|
https://github.com/schwartz-lab-nlp/papa
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/on-first-order-meta-learning-algorithms
|
On First-Order Meta-Learning Algorithms
|
1803.02999
|
http://arxiv.org/abs/1803.02999v3
|
http://arxiv.org/pdf/1803.02999v3.pdf
|
https://github.com/Yuzhe-CHEN/NerfSNN
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/semantics-adaptive-activation-intervention
|
Semantics-Adaptive Activation Intervention for LLMs via Dynamic Steering Vectors
|
2410.12299
|
https://arxiv.org/abs/2410.12299v1
|
https://arxiv.org/pdf/2410.12299v1.pdf
|
https://github.com/weixuan-wang123/SADI
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-recommender-system-for-automatic-picking-of
|
A recommender system for automatic picking of subsurface formation tops
|
2202.08869
|
https://arxiv.org/abs/2202.08869v1
|
https://arxiv.org/pdf/2202.08869v1.pdf
|
https://github.com/jessepisel/matrixfactorization
| true | true | false |
none
|
https://paperswithcode.com/paper/disco-remedy-self-supervised-learning-on
|
DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning
|
2104.09124
|
https://arxiv.org/abs/2104.09124v7
|
https://arxiv.org/pdf/2104.09124v7.pdf
|
https://github.com/Yuting-Gao/DisCo-pytorch
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/dual-path-cnn-with-max-gated-block-for-text
|
Dual-path CNN with Max Gated block for Text-Based Person Re-identification
|
2009.09343
|
https://arxiv.org/abs/2009.09343v1
|
https://arxiv.org/pdf/2009.09343v1.pdf
|
https://github.com/voriarty/Dual-path-CNN-with-Max-Gated-block-for-Text-Based-Person-Re-identification
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/solving-satisfiability-modulo-counting-for
|
Solving Satisfiability Modulo Counting for Symbolic and Statistical AI Integration With Provable Guarantees
|
2309.08883
|
https://arxiv.org/abs/2309.08883v2
|
https://arxiv.org/pdf/2309.08883v2.pdf
|
https://github.com/jil016/xor-smc
| true | true | false |
none
|
https://paperswithcode.com/paper/on-automatic-feasibility-study-for-machine
|
Automatic Feasibility Study via Data Quality Analysis for ML: A Case-Study on Label Noise
|
2010.08410
|
https://arxiv.org/abs/2010.08410v4
|
https://arxiv.org/pdf/2010.08410v4.pdf
|
https://github.com/ds3lab/snoopy-paper
| true | true | false |
tf
|
https://paperswithcode.com/paper/residual-network-and-embedding-usage-new
|
Residual Network and Embedding Usage: New Tricks of Node Classification with Graph Convolutional Networks
|
2105.08330
|
https://arxiv.org/abs/2105.08330v2
|
https://arxiv.org/pdf/2105.08330v2.pdf
|
https://github.com/ytchx1999/GCN_res-CS-v2
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/talking-heads-attention
|
Talking-Heads Attention
|
2003.02436
|
https://arxiv.org/abs/2003.02436v1
|
https://arxiv.org/pdf/2003.02436v1.pdf
|
https://github.com/zygmuntz/hyperband
| true | false | false |
none
|
https://paperswithcode.com/paper/interpretable-self-aware-neural-networks-for
|
Interpretable Self-Aware Neural Networks for Robust Trajectory Prediction
|
2211.08701
|
https://arxiv.org/abs/2211.08701v1
|
https://arxiv.org/pdf/2211.08701v1.pdf
|
https://github.com/sisl/interpretableselfawareprediction
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/bsn-boundary-sensitive-network-for-temporal
|
BSN: Boundary Sensitive Network for Temporal Action Proposal Generation
|
1806.02964
|
http://arxiv.org/abs/1806.02964v3
|
http://arxiv.org/pdf/1806.02964v3.pdf
|
https://github.com/wzmsltw/BSN-boundary-sensitive-network
| false | true | true |
pytorch
|
https://paperswithcode.com/paper/type-driven-multi-turn-corrections-for
|
Type-Driven Multi-Turn Corrections for Grammatical Error Correction
|
2203.09136
|
https://arxiv.org/abs/2203.09136v1
|
https://arxiv.org/pdf/2203.09136v1.pdf
|
https://github.com/deeplearnxmu/tmtc
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/koopman-based-differentiable-predictive
|
Koopman-based Differentiable Predictive Control for the Dynamics-Aware Economic Dispatch Problem
|
2203.08984
|
https://arxiv.org/abs/2203.08984v1
|
https://arxiv.org/pdf/2203.08984v1.pdf
|
https://github.com/pnnl/neuromancer
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/modeling-microlensing-events-with-mulensmodel
|
Modeling microlensing events with MulensModel
|
1803.01003
|
http://arxiv.org/abs/1803.01003v3
|
http://arxiv.org/pdf/1803.01003v3.pdf
|
https://github.com/rpoleski/MulensModel
| true | true | true |
none
|
https://paperswithcode.com/paper/edge-based-local-push-for-personalized
|
Edge-based Local Push for Personalized PageRank
|
2203.07937
|
https://arxiv.org/abs/2203.07937v2
|
https://arxiv.org/pdf/2203.07937v2.pdf
|
https://github.com/wanghzccls/edgepush
| true | true | false |
none
|
https://paperswithcode.com/paper/streaming-velocity-effects-on-the-post
|
Streaming Velocity Effects on the Post-reionization 21 cm Baryon Acoustic Oscillation Signal
|
2107.07615
|
https://arxiv.org/abs/2107.07615v2
|
https://arxiv.org/pdf/2107.07615v2.pdf
|
https://github.com/cosmosheep/hipowerspectrum
| true | true | true |
none
|
https://paperswithcode.com/paper/a-reduction-to-binary-approach-for-debiasing
|
A Reduction to Binary Approach for Debiasing Multiclass Datasets
|
2205.15860
|
https://arxiv.org/abs/2205.15860v2
|
https://arxiv.org/pdf/2205.15860v2.pdf
|
https://github.com/google-research/google-research/tree/master/ml_debiaser
| true | false | false |
jax
|
https://paperswithcode.com/paper/dverge-diversifying-vulnerabilities-for
|
DVERGE: Diversifying Vulnerabilities for Enhanced Robust Generation of Ensembles
|
2009.14720
|
https://arxiv.org/abs/2009.14720v2
|
https://arxiv.org/pdf/2009.14720v2.pdf
|
https://github.com/wang-axis/dna
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/disrupting-adversarial-transferability-in
|
Disrupting Adversarial Transferability in Deep Neural Networks
|
2108.12492
|
https://arxiv.org/abs/2108.12492v3
|
https://arxiv.org/pdf/2108.12492v3.pdf
|
https://github.com/wang-axis/dna
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-unified-transformer-framework-for-group
|
A Unified Transformer Framework for Group-based Segmentation: Co-Segmentation, Co-Saliency Detection and Video Salient Object Detection
|
2203.04708
|
https://arxiv.org/abs/2203.04708v2
|
https://arxiv.org/pdf/2203.04708v2.pdf
|
https://github.com/suyukun666/UFO
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/end-to-end-symbolic-regression-with
|
End-to-end symbolic regression with transformers
|
2204.10532
|
https://arxiv.org/abs/2204.10532v1
|
https://arxiv.org/pdf/2204.10532v1.pdf
|
https://github.com/facebookresearch/symbolicregression
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-microlensing-search-of-700-million-vvv
|
A microlensing search of 700 million VVV light curves
|
2106.15617
|
https://arxiv.org/abs/2106.15617v1
|
https://arxiv.org/pdf/2106.15617v1.pdf
|
https://github.com/zofiakaczmarek/nested_ulens_parallax
| false | false | true |
none
|
https://paperswithcode.com/paper/dynesty-a-dynamic-nested-sampling-package-for
|
dynesty: A Dynamic Nested Sampling Package for Estimating Bayesian Posteriors and Evidences
|
1904.02180
|
http://arxiv.org/abs/1904.02180v1
|
http://arxiv.org/pdf/1904.02180v1.pdf
|
https://github.com/zofiakaczmarek/nested_ulens_parallax
| false | false | true |
none
|
https://paperswithcode.com/paper/convert-an-application-to-faq-answering
|
ConveRT for FAQ Answering
|
2108.00719
|
https://arxiv.org/abs/2108.00719v3
|
https://arxiv.org/pdf/2108.00719v3.pdf
|
https://github.com/clips/ADATaLKS
| false | false | true |
none
|
https://paperswithcode.com/paper/an-accurate-unsupervised-method-for-joint
|
An Accurate Unsupervised Method for Joint Entity Alignment and Dangling Entity Detection
|
2203.05147
|
https://arxiv.org/abs/2203.05147v1
|
https://arxiv.org/pdf/2203.05147v1.pdf
|
https://github.com/luosx18/ued
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/modeling-relational-data-with-graph
|
Modeling Relational Data with Graph Convolutional Networks
|
1703.06103
|
http://arxiv.org/abs/1703.06103v4
|
http://arxiv.org/pdf/1703.06103v4.pdf
|
https://github.com/shijx12/kqapro_baselines
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/bart-denoising-sequence-to-sequence-pre
|
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
|
1910.13461
|
https://arxiv.org/abs/1910.13461v1
|
https://arxiv.org/pdf/1910.13461v1.pdf
|
https://github.com/shijx12/kqapro_baselines
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/cross-modal-map-learning-for-vision-and
|
Cross-modal Map Learning for Vision and Language Navigation
|
2203.05137
|
https://arxiv.org/abs/2203.05137v3
|
https://arxiv.org/pdf/2203.05137v3.pdf
|
https://github.com/ggeorgak11/cm2
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/large-scale-gan-training-for-high-fidelity
|
Large Scale GAN Training for High Fidelity Natural Image Synthesis
|
1809.11096
|
http://arxiv.org/abs/1809.11096v2
|
http://arxiv.org/pdf/1809.11096v2.pdf
|
https://github.com/abhi8585/GeneratedART-NFT-VISION
| false | false | true |
tf
|
https://paperswithcode.com/paper/self-attention-generative-adversarial
|
Self-Attention Generative Adversarial Networks
|
1805.08318
|
https://arxiv.org/abs/1805.08318v2
|
https://arxiv.org/pdf/1805.08318v2.pdf
|
https://github.com/abhi8585/GeneratedART-NFT-VISION
| false | false | true |
tf
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.