paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/do-transformers-really-perform-bad-for-graph
|
Do Transformers Really Perform Bad for Graph Representation?
|
2106.05234
|
https://arxiv.org/abs/2106.05234v5
|
https://arxiv.org/pdf/2106.05234v5.pdf
|
https://github.com/microsoft/Graphormer
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/stagewise-unsupervised-domain-adaptation-with
|
Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training for Road Segmentation of Remote Sensing Images
|
2108.12611
|
https://arxiv.org/abs/2108.12611v1
|
https://arxiv.org/pdf/2108.12611v1.pdf
|
https://github.com/lanmng/roadda
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/multi-objective-conflict-based-search-for
|
A Conflict-Based Search Framework for Multi-Objective Multi-Agent Path Finding
|
2101.03805
|
https://arxiv.org/abs/2101.03805v5
|
https://arxiv.org/pdf/2101.03805v5.pdf
|
https://github.com/wonderren/public_cppmomapf
| true | true | true |
none
|
https://paperswithcode.com/paper/subdimensional-expansion-for-multi-objective
|
Subdimensional Expansion for Multi-objective Multi-agent Path Finding
|
2102.01353
|
https://arxiv.org/abs/2102.01353v2
|
https://arxiv.org/pdf/2102.01353v2.pdf
|
https://github.com/wonderren/public_cppmomapf
| false | false | true |
none
|
https://paperswithcode.com/paper/conceptual-compression-via-deep-structure-and
|
Conceptual Compression via Deep Structure and Texture Synthesis
|
2011.04976
|
https://arxiv.org/abs/2011.04976v2
|
https://arxiv.org/pdf/2011.04976v2.pdf
|
https://github.com/changjianhui/LCIC-pytorch
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/single-stream-cnn-with-learnable-architecture
|
Single-stream CNN with Learnable Architecture for Multi-source Remote Sensing Data
|
2109.06094
|
https://arxiv.org/abs/2109.06094v2
|
https://arxiv.org/pdf/2109.06094v2.pdf
|
https://github.com/yyyyangyi/multi-source-rs-dgconv
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/awardee-solution-of-kdd-cup-2021-ogb-large
|
First Place Solution of KDD Cup 2021 & OGB Large-Scale Challenge Graph Prediction Track
|
2106.08279
|
https://arxiv.org/abs/2106.08279v3
|
https://arxiv.org/pdf/2106.08279v3.pdf
|
https://github.com/microsoft/Graphormer
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/multi-objective-conflict-based-search-using
|
Multi-objective Conflict-based Search Using Safe-interval Path Planning
|
2108.00745
|
https://arxiv.org/abs/2108.00745v3
|
https://arxiv.org/pdf/2108.00745v3.pdf
|
https://github.com/wonderren/public_cppmomapf
| false | false | true |
none
|
https://paperswithcode.com/paper/an-integrated-auto-encoder-block-switching-1
|
An integrated Auto Encoder-Block Switching defense approach to prevent adversarial attacks
|
2203.10930
|
https://arxiv.org/abs/2203.10930v1
|
https://arxiv.org/pdf/2203.10930v1.pdf
|
https://github.com/anirudh9784/Adversarial-Attacks-and-Defences
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/noise-dynamics-of-quantum-annealers
|
Noise Dynamics of Quantum Annealers: Estimating the Effective Noise Using Idle Qubits
|
2209.05648
|
https://arxiv.org/abs/2209.05648v2
|
https://arxiv.org/pdf/2209.05648v2.pdf
|
https://github.com/lanl/noise-indicator-qa
| true | true | false |
none
|
https://paperswithcode.com/paper/on-the-performance-of-deep-learning-models
|
On the performance of deep learning models for time series classification in streaming
|
2003.02544
|
https://arxiv.org/abs/2003.02544v2
|
https://arxiv.org/pdf/2003.02544v2.pdf
|
https://github.com/pedrolarben/ADLStream
| true | true | true |
tf
|
https://paperswithcode.com/paper/ktrl-f-knowledge-augmented-in-document-search
|
KTRL+F: Knowledge-Augmented In-Document Search
|
2311.08329
|
https://arxiv.org/abs/2311.08329v4
|
https://arxiv.org/pdf/2311.08329v4.pdf
|
https://github.com/kaistai/ktrlf
| true | true | true |
none
|
https://paperswithcode.com/paper/depts-deep-expansion-learning-for-periodic-1
|
DEPTS: Deep Expansion Learning for Periodic Time Series Forecasting
|
2203.07681
|
https://arxiv.org/abs/2203.07681v1
|
https://arxiv.org/pdf/2203.07681v1.pdf
|
https://github.com/weifantt/depts
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/n-beats-neural-basis-expansion-analysis-for
|
N-BEATS: Neural basis expansion analysis for interpretable time series forecasting
|
1905.10437
|
https://arxiv.org/abs/1905.10437v4
|
https://arxiv.org/pdf/1905.10437v4.pdf
|
https://github.com/weifantt/depts
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/progressive-end-to-end-object-detection-in
|
Progressive End-to-End Object Detection in Crowded Scenes
|
2203.07669
|
https://arxiv.org/abs/2203.07669v3
|
https://arxiv.org/pdf/2203.07669v3.pdf
|
https://github.com/megvii-model/iter-e2edet
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/transfer-learning-with-gaussian-processes-for
|
Transfer Learning with Gaussian Processes for Bayesian Optimization
|
2111.11223
|
https://arxiv.org/abs/2111.11223v2
|
https://arxiv.org/pdf/2111.11223v2.pdf
|
https://github.com/boschresearch/transfergpbo
| true | true | true |
none
|
https://paperswithcode.com/paper/inception-v4-inception-resnet-and-the-impact
|
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
|
1602.07261
|
http://arxiv.org/abs/1602.07261v2
|
http://arxiv.org/pdf/1602.07261v2.pdf
|
https://github.com/2023-MindSpore-1/ms-code-33
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/inceptionnext-when-inception-meets-convnext
|
InceptionNeXt: When Inception Meets ConvNeXt
|
2303.16900
|
https://arxiv.org/abs/2303.16900v2
|
https://arxiv.org/pdf/2303.16900v2.pdf
|
https://github.com/leondgarse/keras_cv_attention_models/tree/main/keras_cv_attention_models/inceptionnext
| false | false | false |
tf
|
https://paperswithcode.com/paper/querying-inconsistent-prioritized-data-with
|
Querying Inconsistent Prioritized Data with ORBITS: Algorithms, Implementation, and Experiments
|
2202.07980
|
https://arxiv.org/abs/2202.07980v2
|
https://arxiv.org/pdf/2202.07980v2.pdf
|
https://github.com/bourgaux/orbits
| true | true | true |
none
|
https://paperswithcode.com/paper/diagnosis-of-covid-19-using-chest-x-ray
|
Diagnosis of COVID-19 using chest X-ray images based on modified DarkCovidNet model
| null |
https://link.springer.com/article/10.1007/s12065-021-00679-7
|
https://link.springer.com/content/pdf/10.1007/s12065-021-00679-7.pdf
|
https://github.com/Dawit1922/Modified-DarkCovidNet
| false | false | false |
none
|
https://paperswithcode.com/paper/global-filter-networks-for-image
|
Global Filter Networks for Image Classification
|
2107.00645
|
https://arxiv.org/abs/2107.00645v2
|
https://arxiv.org/pdf/2107.00645v2.pdf
|
https://github.com/dslisleedh/MLP_based_models-tensorflow2/blob/master/gfnet.py
| false | false | false |
tf
|
https://paperswithcode.com/paper/ufal-corpipe-at-crac-2022-effectivity-of
|
ÚFAL CorPipe at CRAC 2022: Effectivity of Multilingual Models for Coreference Resolution
|
2209.07278
|
https://arxiv.org/abs/2209.07278v3
|
https://arxiv.org/pdf/2209.07278v3.pdf
|
https://github.com/ufal/crac2022-corpipe
| true | true | true |
tf
|
https://paperswithcode.com/paper/certrl-formalizing-convergence-proofs-for
|
CertRL: Formalizing Convergence Proofs for Value and Policy Iteration in Coq
|
2009.11403
|
https://arxiv.org/abs/2009.11403v2
|
https://arxiv.org/pdf/2009.11403v2.pdf
|
https://github.com/IBM/FormalML
| true | false | true |
none
|
https://paperswithcode.com/paper/stochastic-subgradient-method-converges-on
|
Stochastic subgradient method converges on tame functions
|
1804.07795
|
http://arxiv.org/abs/1804.07795v3
|
http://arxiv.org/pdf/1804.07795v3.pdf
|
https://github.com/IBM/FormalML
| false | false | true |
none
|
https://paperswithcode.com/paper/explaining-and-harnessing-adversarial
|
Explaining and Harnessing Adversarial Examples
|
1412.6572
|
http://arxiv.org/abs/1412.6572v3
|
http://arxiv.org/pdf/1412.6572v3.pdf
|
https://github.com/anirudh9784/Adversarial-Attacks-and-Defences
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/formalization-of-a-stochastic-approximation
|
Formalization of a Stochastic Approximation Theorem
|
2202.05959
|
https://arxiv.org/abs/2202.05959v2
|
https://arxiv.org/pdf/2202.05959v2.pdf
|
https://github.com/IBM/FormalML
| true | true | true |
none
|
https://paperswithcode.com/paper/ssd-single-shot-multibox-detector
|
SSD: Single Shot MultiBox Detector
|
1512.02325
|
http://arxiv.org/abs/1512.02325v5
|
http://arxiv.org/pdf/1512.02325v5.pdf
|
https://github.com/manishsoni1908/mobilenet-ssd-keras
| false | false | true |
tf
|
https://paperswithcode.com/paper/tgl-a-general-framework-for-temporal-gnn
|
TGL: A General Framework for Temporal GNN Training on Billion-Scale Graphs
|
2203.14883
|
https://arxiv.org/abs/2203.14883v2
|
https://arxiv.org/pdf/2203.14883v2.pdf
|
https://github.com/amazon-research/tgl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/error-profile-for-discontinuous-galerkin-time
|
Error Profile for Discontinuous Galerkin Time Stepping of Parabolic PDEs
|
2208.03846
|
https://arxiv.org/abs/2208.03846v2
|
https://arxiv.org/pdf/2208.03846v2.pdf
|
https://github.com/billmclean/dgerrorprofile
| true | true | true |
none
|
https://paperswithcode.com/paper/reinforcement-learned-distributed-multi-robot
|
Reinforcement Learned Distributed Multi-Robot Navigation with Reciprocal Velocity Obstacle Shaped Rewards
|
2203.10229
|
https://arxiv.org/abs/2203.10229v1
|
https://arxiv.org/pdf/2203.10229v1.pdf
|
https://github.com/hanruihua/rl_rvo_nav
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/metaphors-in-pre-trained-language-models
|
Metaphors in Pre-Trained Language Models: Probing and Generalization Across Datasets and Languages
|
2203.14139
|
https://arxiv.org/abs/2203.14139v1
|
https://arxiv.org/pdf/2203.14139v1.pdf
|
https://github.com/ehsanaghazadeh/metaphors_in_plms
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/freggan-with-k-space-loss-regularization-for
|
fRegGAN with K-space Loss Regularization for Medical Image Translation
|
2303.15938
|
https://arxiv.org/abs/2303.15938v2
|
https://arxiv.org/pdf/2303.15938v2.pdf
|
https://github.com/bayer-group/freggan
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/sequential-predictive-conformal-inference-for
|
Sequential Predictive Conformal Inference for Time Series
|
2212.03463
|
https://arxiv.org/abs/2212.03463v3
|
https://arxiv.org/pdf/2212.03463v3.pdf
|
https://github.com/hamrel-cxu/spci-code
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/moving-obstacle-avoidance-a-data-driven-risk
|
Moving Obstacle Avoidance: a Data-Driven Risk-Aware Approach
|
2203.14913
|
https://arxiv.org/abs/2203.14913v1
|
https://arxiv.org/pdf/2203.14913v1.pdf
|
https://github.com/skylarxwei/riskaware_mpc_ssa_sim
| true | true | false |
none
|
https://paperswithcode.com/paper/vakyansh-asr-toolkit-for-low-resource-indic
|
Vakyansh: ASR Toolkit for Low Resource Indic languages
|
2203.16512
|
https://arxiv.org/abs/2203.16512v2
|
https://arxiv.org/pdf/2203.16512v2.pdf
|
https://github.com/Open-Speech-EkStep/vakyansh-models
| true | true | true |
none
|
https://paperswithcode.com/paper/forecast-mae-self-supervised-pre-training-for
|
Forecast-MAE: Self-supervised Pre-training for Motion Forecasting with Masked Autoencoders
|
2308.09882
|
https://arxiv.org/abs/2308.09882v1
|
https://arxiv.org/pdf/2308.09882v1.pdf
|
https://github.com/jchengai/forecast-mae
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/graph-neural-networks-in-iot-a-survey
|
Graph Neural Networks in IoT: A Survey
|
2203.15935
|
https://arxiv.org/abs/2203.15935v2
|
https://arxiv.org/pdf/2203.15935v2.pdf
|
https://github.com/guimindong/gnn4iot
| true | true | true |
none
|
https://paperswithcode.com/paper/a-fast-algorithm-for-convolutional-structured
|
A Fast Algorithm for Convolutional Structured Low-Rank Matrix Recovery
|
1609.07429
|
https://arxiv.org/abs/1609.07429v3
|
https://arxiv.org/pdf/1609.07429v3.pdf
|
https://github.com/yhao-z/GIRAF-3d-CG
| false | false | false |
none
|
https://paperswithcode.com/paper/large-language-models-are-state-of-the-art-1
|
ICE-Score: Instructing Large Language Models to Evaluate Code
|
2304.14317
|
https://arxiv.org/abs/2304.14317v2
|
https://arxiv.org/pdf/2304.14317v2.pdf
|
https://github.com/terryyz/llm-code-eval
| true | true | true |
none
|
https://paperswithcode.com/paper/mixing-dirichlet-topic-models-and-word
|
Mixing Dirichlet Topic Models and Word Embeddings to Make lda2vec
|
1605.02019
|
http://arxiv.org/abs/1605.02019v1
|
http://arxiv.org/pdf/1605.02019v1.pdf
|
https://github.com/Wurmloch/TopicModeling
| false | false | true |
none
|
https://paperswithcode.com/paper/discovering-new-intents-with-deep-aligned
|
Discovering New Intents with Deep Aligned Clustering
|
2012.08987
|
https://arxiv.org/abs/2012.08987v7
|
https://arxiv.org/pdf/2012.08987v7.pdf
|
https://github.com/hanleizhang/DeepAligned-Clustering
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/efficient-data-compression-for-3d-sparse-tpc
|
Efficient Data Compression for 3D Sparse TPC via Bicephalous Convolutional Autoencoder
|
2111.05423
|
https://arxiv.org/abs/2111.05423v1
|
https://arxiv.org/pdf/2111.05423v1.pdf
|
https://github.com/BNL-DAQ-LDRD/NeuralCompression
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/accelerating-the-super-resolution
|
Accelerating the Super-Resolution Convolutional Neural Network
|
1608.00367
|
http://arxiv.org/abs/1608.00367v1
|
http://arxiv.org/pdf/1608.00367v1.pdf
|
https://github.com/Nhat-Thanh/FSRCNN-Pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/towards-fairness-aware-adversarial-learning
|
Towards Fairness-Aware Adversarial Learning
|
2402.17729
|
https://arxiv.org/abs/2402.17729v2
|
https://arxiv.org/pdf/2402.17729v2.pdf
|
https://github.com/TrustAI/FAAL
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/rcabench-open-benchmarking-platform-for-root
|
RCABench: Open Benchmarking Platform for Root Cause Analysis
|
2303.05029
|
https://arxiv.org/abs/2303.05029v2
|
https://arxiv.org/pdf/2303.05029v2.pdf
|
https://github.com/ricseclab/rcabench
| true | true | false |
none
|
https://paperswithcode.com/paper/cicero-a-dataset-for-contextualized
|
CICERO: A Dataset for Contextualized Commonsense Inference in Dialogues
|
2203.13926
|
https://arxiv.org/abs/2203.13926v3
|
https://arxiv.org/pdf/2203.13926v3.pdf
|
https://github.com/declare-lab/CICERO
| true | false | true |
none
|
https://paperswithcode.com/paper/chordal-sparsity-for-lipschitz-constant
|
Chordal Sparsity for Lipschitz Constant Estimation of Deep Neural Networks
|
2204.00846
|
https://arxiv.org/abs/2204.00846v2
|
https://arxiv.org/pdf/2204.00846v2.pdf
|
https://github.com/antonxue/chordal-lipsdp
| true | true | false |
none
|
https://paperswithcode.com/paper/formalization-of-dependent-type-theory-the
|
Formalization of dependent type theory: The example of CaTT
|
2111.14736
|
https://arxiv.org/abs/2111.14736v1
|
https://arxiv.org/pdf/2111.14736v1.pdf
|
https://github.com/thibautbenjamin/catt-formalization
| true | true | true |
none
|
https://paperswithcode.com/paper/bimodal-distributed-binarized-neural-networks
|
Bimodal Distributed Binarized Neural Networks
|
2204.02004
|
https://arxiv.org/abs/2204.02004v1
|
https://arxiv.org/pdf/2204.02004v1.pdf
|
https://github.com/blueanon/bd-bnn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/universalner-targeted-distillation-from-large
|
UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity Recognition
|
2308.03279
|
https://arxiv.org/abs/2308.03279v2
|
https://arxiv.org/pdf/2308.03279v2.pdf
|
https://github.com/universal-ner/universal-ner
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/name-your-style-an-arbitrary-artist-aware
|
Name Your Style: An Arbitrary Artist-aware Image Style Transfer
|
2202.13562
|
https://arxiv.org/abs/2202.13562v3
|
https://arxiv.org/pdf/2202.13562v3.pdf
|
https://github.com/Holmes-Alan/TxST
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/cycle-index-polynomials-and-generalized
|
Cycle Index Polynomials and Generalized Quantum Separability Tests
|
2208.14596
|
https://arxiv.org/abs/2208.14596v3
|
https://arxiv.org/pdf/2208.14596v3.pdf
|
https://github.com/mlabo15/GeneralizedSeparability
| true | true | false |
none
|
https://paperswithcode.com/paper/nevis-22-a-stream-of-100-tasks-sampled-from
|
NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision Research
|
2211.11747
|
https://arxiv.org/abs/2211.11747v2
|
https://arxiv.org/pdf/2211.11747v2.pdf
|
https://github.com/deepmind/dm_nevis
| true | true | true |
jax
|
https://paperswithcode.com/paper/multi-class-probabilistic-classification
|
Multi-class probabilistic classification using inductive and cross Venn-Abers predictors
| null |
https://proceedings.mlr.press/v60/manokhin17a.html
|
https://proceedings.mlr.press/v60/manokhin17a.html
|
https://github.com/valeman/Multi-class-probabilistic-classification
| true | false | false |
none
|
https://paperswithcode.com/paper/deformable-model-driven-neural-rendering-for
|
Deformable Model-Driven Neural Rendering for High-Fidelity 3D Reconstruction of Human Heads Under Low-View Settings
|
2303.13855
|
https://arxiv.org/abs/2303.13855v2
|
https://arxiv.org/pdf/2303.13855v2.pdf
|
https://github.com/xubaixinxbx/3dheads
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/stabilization-of-affine-systems-with
|
Stabilization of affine systems with polytopic control value sets
|
2112.02451
|
https://arxiv.org/abs/2112.02451v2
|
https://arxiv.org/pdf/2112.02451v2.pdf
|
https://github.com/Stabilization-over-polytopic-CVS/Stabilization-of-affine-systems-with-polytopic-control-value-sets
| true | false | false |
none
|
https://paperswithcode.com/paper/thermodynamical-material-networks-for
|
Thermodynamical Material Networks for Modeling, Planning, and Control of Circular Material Flows
|
2111.10693
|
https://arxiv.org/abs/2111.10693v3
|
https://arxiv.org/pdf/2111.10693v3.pdf
|
https://github.com/fedezocco/tmnbiometh-scipy
| true | true | false |
none
|
https://paperswithcode.com/paper/deep-neural-network-representation-of-density
|
Deep-Learning Density Functional Theory Hamiltonian for Efficient ab initio Electronic-Structure Calculation
|
2104.03786
|
https://arxiv.org/abs/2104.03786v2
|
https://arxiv.org/pdf/2104.03786v2.pdf
|
https://github.com/mzjb/deeph-pack
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/ehrcon-dataset-for-checking-consistency
|
EHRCon: Dataset for Checking Consistency between Unstructured Notes and Structured Tables in Electronic Health Records
|
2406.16341
|
https://arxiv.org/abs/2406.16341v2
|
https://arxiv.org/pdf/2406.16341v2.pdf
|
https://github.com/dustn1259/ehrcon
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/a-novel-bayesian-extrapolation-design-for
|
A Novel Bayesian Extrapolation Design for Assessing Equivalence in Exposure-Response Curves between Pediatric and Adult Populations
|
2505.17397
|
https://arxiv.org/abs/2505.17397v1
|
https://arxiv.org/pdf/2505.17397v1.pdf
|
https://github.com/zhongheng-Biostatistics/Pediatric-Bayesian-Extrapolation-Design
| true | false | false |
none
|
https://paperswithcode.com/paper/ecg-arrhythmia-classification-using-a-2-d
|
ECG arrhythmia classification using a 2-D convolutional neural network
|
1804.06812
|
http://arxiv.org/abs/1804.06812v1
|
http://arxiv.org/pdf/1804.06812v1.pdf
|
https://github.com/celiedel/ECG_Classification_with_2D_CNN
| false | false | true |
none
|
https://paperswithcode.com/paper/devil-is-in-channels-contrastive-single
|
Devil is in Channels: Contrastive Single Domain Generalization for Medical Image Segmentation
|
2306.05254
|
https://arxiv.org/abs/2306.05254v2
|
https://arxiv.org/pdf/2306.05254v2.pdf
|
https://github.com/shishuaihu/ccsdg
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/automatic-classification-of-stop-realisation
|
Automatic classification of stop realisation with wav2vec2.0
|
2505.23688
|
https://arxiv.org/abs/2505.23688v2
|
https://arxiv.org/pdf/2505.23688v2.pdf
|
https://github.com/james-tanner/wav2vec-burst-detection
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/190412593
|
Density-based Community Detection/Optimization
|
1904.12593
|
http://arxiv.org/abs/1904.12593v1
|
http://arxiv.org/pdf/1904.12593v1.pdf
|
https://github.com/cran/DynComm
| false | false | true |
none
|
https://paperswithcode.com/paper/unsupervised-representation-learning-with-1
|
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
|
1511.06434
|
http://arxiv.org/abs/1511.06434v2
|
http://arxiv.org/pdf/1511.06434v2.pdf
|
https://github.com/amaranth819/dcgan-cifar10-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/local-sample-weighted-multiple-kernel
|
Local Sample-weighted Multiple Kernel Clustering with Consensus Discriminative Graph
|
2207.02846
|
https://arxiv.org/abs/2207.02846v1
|
https://arxiv.org/pdf/2207.02846v1.pdf
|
https://github.com/liliangnudt/lswmkc
| true | true | false |
none
|
https://paperswithcode.com/paper/investigating-accuracy-novelty-performance
|
Investigating Accuracy-Novelty Performance for Graph-based Collaborative Filtering
|
2204.12326
|
https://arxiv.org/abs/2204.12326v2
|
https://arxiv.org/pdf/2204.12326v2.pdf
|
https://github.com/fuxiailab/r-adjnorm
| true | true | false |
tf
|
https://paperswithcode.com/paper/low-light-maritime-image-enhancement-with
|
Low-Light Maritime Image Enhancement with Regularized Illumination Optimization and Deep Noise Suppression
|
2008.03765
|
https://arxiv.org/abs/2008.03765v1
|
https://arxiv.org/pdf/2008.03765v1.pdf
|
https://github.com/gy65896/Enhancement-Access
| false | false | false |
none
|
https://paperswithcode.com/paper/simcse-simple-contrastive-learning-of
|
SimCSE: Simple Contrastive Learning of Sentence Embeddings
|
2104.08821
|
https://arxiv.org/abs/2104.08821v4
|
https://arxiv.org/pdf/2104.08821v4.pdf
|
https://github.com/dltmddbs100/SimCSE
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/crackseg9k-a-collection-and-benchmark-for
|
CrackSeg9k: A Collection and Benchmark for Crack Segmentation Datasets and Frameworks
|
2208.13054
|
https://arxiv.org/abs/2208.13054v1
|
https://arxiv.org/pdf/2208.13054v1.pdf
|
https://github.com/Dhananjay42/crackseg9k
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/easy-and-efficient-transformer-scalable
|
Easy and Efficient Transformer : Scalable Inference Solution For large NLP model
|
2104.12470
|
https://arxiv.org/abs/2104.12470v5
|
https://arxiv.org/pdf/2104.12470v5.pdf
|
https://github.com/NetEase-FuXi/EET
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/controllable-textual-inversion-for
|
Controllable Textual Inversion for Personalized Text-to-Image Generation
|
2304.05265
|
https://arxiv.org/abs/2304.05265v3
|
https://arxiv.org/pdf/2304.05265v3.pdf
|
https://github.com/jnzju/coti
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/paradime-a-framework-for-parametric
|
ParaDime: A Framework for Parametric Dimensionality Reduction
|
2210.04582
|
https://arxiv.org/abs/2210.04582v3
|
https://arxiv.org/pdf/2210.04582v3.pdf
|
https://github.com/jku-vds-lab/paradime
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/single-index-mixture-cure-model-under
|
Single-index mixture cure model under monotonicity constraints
|
2211.09464
|
https://arxiv.org/abs/2211.09464v2
|
https://arxiv.org/pdf/2211.09464v2.pdf
|
https://github.com/tp-yuen/msic
| true | true | false |
none
|
https://paperswithcode.com/paper/a-fully-dynamic-algorithm-for-k-regret
|
A Fully Dynamic Algorithm for k-Regret Minimizing Sets
|
2005.14493
|
https://arxiv.org/abs/2005.14493v1
|
https://arxiv.org/pdf/2005.14493v1.pdf
|
https://github.com/yhwang1990/dynamic-rms
| true | true | true |
none
|
https://paperswithcode.com/paper/semi-supervised-classification-with-graph
|
Semi-Supervised Classification with Graph Convolutional Networks
|
1609.02907
|
http://arxiv.org/abs/1609.02907v4
|
http://arxiv.org/pdf/1609.02907v4.pdf
|
https://github.com/kiharalab/gnn_pocket
| false | false | true |
torch
|
https://paperswithcode.com/paper/scone-benchmarking-negation-reasoning-in
|
ScoNe: Benchmarking Negation Reasoning in Language Models With Fine-Tuning and In-Context Learning
|
2305.19426
|
https://arxiv.org/abs/2305.19426v1
|
https://arxiv.org/pdf/2305.19426v1.pdf
|
https://github.com/selenashe/scone
| true | true | false |
none
|
https://paperswithcode.com/paper/sub-word-alignment-is-still-useful-a-vest
|
Sub-Word Alignment Is Still Useful: A Vest-Pocket Method for Enhancing Low-Resource Machine Translation
|
2205.04067
|
https://arxiv.org/abs/2205.04067v1
|
https://arxiv.org/pdf/2205.04067v1.pdf
|
https://github.com/Cosmos-Break/transfer-mt-submit
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/learning-to-ignore-rethinking-attention-in
|
Learning to ignore: rethinking attention in CNNs
|
2111.05684
|
https://arxiv.org/abs/2111.05684v1
|
https://arxiv.org/pdf/2111.05684v1.pdf
|
https://github.com/firasl/inverse_attention
| true | false | true |
tf
|
https://paperswithcode.com/paper/interpretable-ai-for-relating-brain
|
Interpretable AI for relating brain structural and functional connectomes
|
2210.05672
|
https://arxiv.org/abs/2210.05672v2
|
https://arxiv.org/pdf/2210.05672v2.pdf
|
https://github.com/imkeithyang/staf-gate
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/multimodality-multi-lead-ecg-arrhythmia
|
Multimodality Multi-Lead ECG Arrhythmia Classification using Self-Supervised Learning
|
2210.06297
|
https://arxiv.org/abs/2210.06297v1
|
https://arxiv.org/pdf/2210.06297v1.pdf
|
https://github.com/uark-aicv/ecg_ssl_12lead
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/tts-cgan-a-transformer-time-series
|
TTS-CGAN: A Transformer Time-Series Conditional GAN for Biosignal Data Augmentation
|
2206.13676
|
https://arxiv.org/abs/2206.13676v1
|
https://arxiv.org/pdf/2206.13676v1.pdf
|
https://github.com/imics-lab/tts-cgan
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/neural-optimal-transport
|
Neural Optimal Transport
|
2201.12220
|
https://arxiv.org/abs/2201.12220v3
|
https://arxiv.org/pdf/2201.12220v3.pdf
|
https://github.com/iamalexkorotin/neuraloptimaltransport
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/contextual-instance-decoupling-for-robust
|
Contextual Instance Decoupling for Robust Multi-Person Pose Estimation
| null |
http://openaccess.thecvf.com//content/CVPR2022/html/Wang_Contextual_Instance_Decoupling_for_Robust_Multi-Person_Pose_Estimation_CVPR_2022_paper.html
|
http://openaccess.thecvf.com//content/CVPR2022/papers/Wang_Contextual_Instance_Decoupling_for_Robust_Multi-Person_Pose_Estimation_CVPR_2022_paper.pdf
|
https://github.com/kennethwdk/cid
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/umiformer-mining-the-correlations-between
|
UMIFormer: Mining the Correlations between Similar Tokens for Multi-View 3D Reconstruction
|
2302.13987
|
https://arxiv.org/abs/2302.13987v2
|
https://arxiv.org/pdf/2302.13987v2.pdf
|
https://github.com/garyzhu1996/umiformer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/enhancing-weak-lensing-redshift-distribution
|
Enhancing weak lensing redshift distribution characterization by optimizing the Dark Energy Survey Self-Organizing Map Photo-z method
|
2408.00922
|
https://arxiv.org/abs/2408.00922v1
|
https://arxiv.org/pdf/2408.00922v1.pdf
|
https://github.com/AndresaCampos/sompz_y6
| true | false | true |
none
|
https://paperswithcode.com/paper/emobank-studying-the-impact-of-annotation-1
|
EmoBank: Studying the Impact of Annotation Perspective and Representation Format on Dimensional Emotion Analysis
|
2205.01996
|
https://arxiv.org/abs/2205.01996v1
|
https://arxiv.org/pdf/2205.01996v1.pdf
|
https://github.com/JULIELab/EmoBank
| true | true | false |
none
|
https://paperswithcode.com/paper/data-driven-feedback-stabilization-of-1
|
Data-driven control of switched linear systems with probabilistic stability guarantees
|
2103.10823
|
https://arxiv.org/abs/2103.10823v2
|
https://arxiv.org/pdf/2103.10823v2.pdf
|
https://github.com/zhemingwang/datadrivenswitchcontrol
| true | true | false |
none
|
https://paperswithcode.com/paper/m-afl-non-intrusive-feedback-driven-fuzzing
|
$μ$AFL: Non-intrusive Feedback-driven Fuzzing for Microcontroller Firmware
|
2202.03013
|
https://arxiv.org/abs/2202.03013v3
|
https://arxiv.org/pdf/2202.03013v3.pdf
|
https://github.com/mcusec/microafl
| true | true | true |
none
|
https://paperswithcode.com/paper/zs4ie-a-toolkit-for-zero-shot-information
|
ZS4IE: A toolkit for Zero-Shot Information Extraction with simple Verbalizations
|
2203.13602
|
https://arxiv.org/abs/2203.13602v3
|
https://arxiv.org/pdf/2203.13602v3.pdf
|
https://github.com/osainz59/Ask2Transformers
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/trafficqa-a-question-answering-benchmark-and
|
SUTD-TrafficQA: A Question Answering Benchmark and an Efficient Network for Video Reasoning over Traffic Events
|
2103.15538
|
https://arxiv.org/abs/2103.15538v3
|
https://arxiv.org/pdf/2103.15538v3.pdf
|
https://github.com/MarkHershey/arxiv-dl
| false | false | true |
none
|
https://paperswithcode.com/paper/taglets-a-system-for-automatic-semi
|
TAGLETS: A System for Automatic Semi-Supervised Learning with Auxiliary Data
|
2111.04798
|
https://arxiv.org/abs/2111.04798v3
|
https://arxiv.org/pdf/2111.04798v3.pdf
|
https://github.com/batsresearch/piriyakulkij-mlsys22-code
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/hierarchical-representations-and-explicit
|
Hierarchical Representations and Explicit Memory: Learning Effective Navigation Policies on 3D Scene Graphs using Graph Neural Networks
|
2108.01176
|
https://arxiv.org/abs/2108.01176v2
|
https://arxiv.org/pdf/2108.01176v2.pdf
|
https://github.com/mit-tesse/dsg-rl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/multi-confound-regression-adversarial-network
|
Adversarial confound regression and uncertainty measurements to classify heterogeneous clinical MRI in Mass General Brigham
|
2205.02885
|
https://arxiv.org/abs/2205.02885v2
|
https://arxiv.org/pdf/2205.02885v2.pdf
|
https://github.com/mleming/mucran
| true | true | true |
tf
|
https://paperswithcode.com/paper/deep-radio-interferometric-imaging-with
|
Deep Radio Interferometric Imaging with POLISH: DSA-2000 and weak lensing
|
2111.03249
|
https://arxiv.org/abs/2111.03249v2
|
https://arxiv.org/pdf/2111.03249v2.pdf
|
https://github.com/liamconnor/polish-pub
| true | true | true |
tf
|
https://paperswithcode.com/paper/simplifying-approach-to-node-classification
|
Simplifying approach to Node Classification in Graph Neural Networks
|
2111.06748
|
https://arxiv.org/abs/2111.06748v1
|
https://arxiv.org/pdf/2111.06748v1.pdf
|
https://github.com/sunilkmaurya/FSGNN
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/memorizing-transformers-1
|
Memorizing Transformers
|
2203.08913
|
https://arxiv.org/abs/2203.08913v1
|
https://arxiv.org/pdf/2203.08913v1.pdf
|
https://github.com/lucidrains/memorizing-transformers-pytorch
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/do-transformers-need-deep-long-range-memory-1
|
Do Transformers Need Deep Long-Range Memory
|
2007.03356
|
https://arxiv.org/abs/2007.03356v1
|
https://arxiv.org/pdf/2007.03356v1.pdf
|
https://github.com/lucidrains/memorizing-transformers-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/deraincyclegan-an-attention-guided
|
DerainCycleGAN: Rain Attentive CycleGAN for Single Image Deraining and Rainmaking
|
1912.07015
|
https://arxiv.org/abs/1912.07015v4
|
https://arxiv.org/pdf/1912.07015v4.pdf
|
https://github.com/OaDsis/DerainCycleGAN
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/denseclip-extract-free-dense-labels-from-clip
|
Extract Free Dense Labels from CLIP
|
2112.01071
|
https://arxiv.org/abs/2112.01071v2
|
https://arxiv.org/pdf/2112.01071v2.pdf
|
https://github.com/chongzhou96/maskclip
| true | true | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.