paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/benchmarking-chinese-text-recognition
|
Benchmarking Chinese Text Recognition: Datasets, Baselines, and an Empirical Study
|
2112.15093
|
https://arxiv.org/abs/2112.15093v2
|
https://arxiv.org/pdf/2112.15093v2.pdf
|
https://github.com/fudanvi/benchmarking-chinese-text-recognition
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fbnetgen-task-aware-gnn-based-fmri-analysis
|
FBNETGEN: Task-aware GNN-based fMRI Analysis via Functional Brain Network Generation
|
2205.12465
|
https://arxiv.org/abs/2205.12465v2
|
https://arxiv.org/pdf/2205.12465v2.pdf
|
https://github.com/wayfear/fbnetgen
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/affect2mm-affective-analysis-of-multimedia
|
Affect2MM: Affective Analysis of Multimedia Content Using Emotion Causality
|
2103.06541
|
https://arxiv.org/abs/2103.06541v1
|
https://arxiv.org/pdf/2103.06541v1.pdf
|
https://github.com/mikecheninoulu/Emotional-gesture-papers
| false | false | true |
none
|
https://paperswithcode.com/paper/survey-on-emotional-body-gesture-recognition
|
Survey on Emotional Body Gesture Recognition
|
1801.07481
|
http://arxiv.org/abs/1801.07481v1
|
http://arxiv.org/pdf/1801.07481v1.pdf
|
https://github.com/mikecheninoulu/Emotional-gesture-papers
| false | false | true |
none
|
https://paperswithcode.com/paper/a-prototype-oriented-framework-for
|
A Prototype-Oriented Framework for Unsupervised Domain Adaptation
|
2110.12024
|
https://arxiv.org/abs/2110.12024v1
|
https://arxiv.org/pdf/2110.12024v1.pdf
|
https://github.com/korawat-tanwisuth/proto_da
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/visually-dehallucinative-instruction-1
|
Visually Dehallucinative Instruction Generation: Know What You Don't Know
|
2402.09717
|
https://arxiv.org/abs/2402.09717v1
|
https://arxiv.org/pdf/2402.09717v1.pdf
|
https://github.com/ncsoft/idk
| true | true | true |
none
|
https://paperswithcode.com/paper/sub-instruction-aware-vision-and-language
|
Sub-Instruction Aware Vision-and-Language Navigation
|
2004.02707
|
https://arxiv.org/abs/2004.02707v2
|
https://arxiv.org/pdf/2004.02707v2.pdf
|
https://github.com/YicongHong/Fine-Grained-R2R
| true | true | true |
none
|
https://paperswithcode.com/paper/meta-learning-via-learned-loss
|
Meta-Learning via Learned Loss
|
1906.05374
|
https://arxiv.org/abs/1906.05374v4
|
https://arxiv.org/pdf/1906.05374v4.pdf
|
https://github.com/facebookresearch/higher
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/global-convergence-and-induced-kernels-of
|
Global Convergence and Generalization Bound of Gradient-Based Meta-Learning with Deep Neural Nets
|
2006.14606
|
https://arxiv.org/abs/2006.14606v2
|
https://arxiv.org/pdf/2006.14606v2.pdf
|
https://github.com/facebookresearch/higher
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/meta-learning-symmetries-by
|
Meta-Learning Symmetries by Reparameterization
|
2007.02933
|
https://arxiv.org/abs/2007.02933v3
|
https://arxiv.org/pdf/2007.02933v3.pdf
|
https://github.com/facebookresearch/higher
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/fat-deepffm-field-attentive-deep-field-aware
|
FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine
|
1905.06336
|
https://arxiv.org/abs/1905.06336v1
|
https://arxiv.org/pdf/1905.06336v1.pdf
|
https://github.com/mindspore-ai/models/tree/master/research/recommend/Fat-DeepFFM
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/statistically-unbiased-prediction-enables
|
Statistically unbiased prediction enables accurate denoising of voltage imaging data
| null |
https://www.biorxiv.org/content/10.1101/2022.11.17.516709v1.abstract
|
https://www.biorxiv.org/content/10.1101/2022.11.17.516709v1.full.pdf
|
https://github.com/NICALab/SUPPORT
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/pinto-faithful-language-reasoning-using
|
PINTO: Faithful Language Reasoning Using Prompt-Generated Rationales
|
2211.01562
|
https://arxiv.org/abs/2211.01562v3
|
https://arxiv.org/pdf/2211.01562v3.pdf
|
https://github.com/wangpf3/pinto-faithful-language-reasoning
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/unsupervised-selective-rationalization-with
|
Unsupervised Selective Rationalization with Noise Injection
|
2305.17534
|
https://arxiv.org/abs/2305.17534v1
|
https://arxiv.org/pdf/2305.17534v1.pdf
|
https://github.com/adamstorek/noise_injection
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/you-only-look-once-unified-real-time-object
|
You Only Look Once: Unified, Real-Time Object Detection
|
1506.02640
|
http://arxiv.org/abs/1506.02640v5
|
http://arxiv.org/pdf/1506.02640v5.pdf
|
https://github.com/Kartik-Aggarwal/Real-Time-Traffic-Sign-Detection
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/or-gym-a-reinforcement-learning-library-for
|
OR-Gym: A Reinforcement Learning Library for Operations Research Problems
|
2008.06319
|
https://arxiv.org/abs/2008.06319v2
|
https://arxiv.org/pdf/2008.06319v2.pdf
|
https://github.com/ashwin-M-D/DM-Gym
| false | false | true |
none
|
https://paperswithcode.com/paper/caching-in-networks-without-regret
|
LeadCache: Regret-Optimal Caching in Networks
|
2009.08228
|
https://arxiv.org/abs/2009.08228v4
|
https://arxiv.org/pdf/2009.08228v4.pdf
|
https://github.com/abhishekmitiitm/leadcache-neurips21
| true | true | false |
none
|
https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object
|
YOLOv4: Optimal Speed and Accuracy of Object Detection
|
2004.10934
|
https://arxiv.org/abs/2004.10934v1
|
https://arxiv.org/pdf/2004.10934v1.pdf
|
https://github.com/david8862/keras-YOLOv3-model-set
| false | false | true |
tf
|
https://paperswithcode.com/paper/data-engineering-for-scaling-language-models
|
Data Engineering for Scaling Language Models to 128K Context
|
2402.10171
|
https://arxiv.org/abs/2402.10171v1
|
https://arxiv.org/pdf/2402.10171v1.pdf
|
https://github.com/franxyao/long-context-data-engineering
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/implicit-sparse-regularization-the-impact-of
|
Implicit Sparse Regularization: The Impact of Depth and Early Stopping
|
2108.05574
|
https://arxiv.org/abs/2108.05574v2
|
https://arxiv.org/pdf/2108.05574v2.pdf
|
https://github.com/jiangyuan2li/implicit-sparse-regularization
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/discourse-aware-unsupervised-summarization
|
Discourse-Aware Unsupervised Summarization for Long Scientific Documents
| null |
https://aclanthology.org/2021.eacl-main.93
|
https://aclanthology.org/2021.eacl-main.93.pdf
|
https://github.com/mirandrom/HipoRank
| true | true | false |
none
|
https://paperswithcode.com/paper/crowd-counting-on-images-with-scale-variation
|
Crowd Counting on Images with Scale Variation and Isolated Clusters
|
1909.03839
|
https://arxiv.org/abs/1909.03839v1
|
https://arxiv.org/pdf/1909.03839v1.pdf
|
https://github.com/HaoyueBaiZJU/SACANet-VisDrone-Crowd
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/multi-agent-variational-occlusion-inference
|
Multi-Agent Variational Occlusion Inference Using People as Sensors
|
2109.02173
|
https://arxiv.org/abs/2109.02173v3
|
https://arxiv.org/pdf/2109.02173v3.pdf
|
https://github.com/sisl/MultiAgentVariationalOcclusionInference
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/neural-discrete-representation-learning
|
Neural Discrete Representation Learning
|
1711.00937
|
http://arxiv.org/abs/1711.00937v2
|
http://arxiv.org/pdf/1711.00937v2.pdf
|
https://github.com/sisl/MultiAgentVariationalOcclusionInference
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/adam-a-method-for-stochastic-optimization
|
Adam: A Method for Stochastic Optimization
|
1412.6980
|
http://arxiv.org/abs/1412.6980v9
|
http://arxiv.org/pdf/1412.6980v9.pdf
|
https://github.com/sisl/MultiAgentVariationalOcclusionInference
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/leveraging-locality-in-abstractive-text
|
Leveraging Locality in Abstractive Text Summarization
|
2205.12476
|
https://arxiv.org/abs/2205.12476v2
|
https://arxiv.org/pdf/2205.12476v2.pdf
|
https://github.com/yixinl7/pagesum
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/reflection-from-a-multi-species-material-and
|
Reflection from a multi-species material and its transmitted effective wavenumber
|
1712.05427
|
http://arxiv.org/abs/1712.05427v3
|
http://arxiv.org/pdf/1712.05427v3.pdf
|
https://github.com/arturgower/EffectiveWaves.jl
| true | true | true |
none
|
https://paperswithcode.com/paper/intermediate-layers-matter-in-momentum
|
Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning
|
2110.14805
|
https://arxiv.org/abs/2110.14805v1
|
https://arxiv.org/pdf/2110.14805v1.pdf
|
https://github.com/aakashrkaku/intermdiate_layer_matter_ssl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/bag-of-tricks-and-a-strong-baseline-for-image
|
Bag of Tricks and A Strong baseline for Image Copy Detection
|
2111.08004
|
https://arxiv.org/abs/2111.08004v2
|
https://arxiv.org/pdf/2111.08004v2.pdf
|
https://github.com/wangwenhao0716/isc-track2-submission
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/domain-decomposition-for-entropy-regularized
|
Domain decomposition for entropy regularized optimal transport
|
2001.10986
|
https://arxiv.org/abs/2001.10986v2
|
https://arxiv.org/pdf/2001.10986v2.pdf
|
https://github.com/ismedina/DomDecOT.jl
| false | false | true |
none
|
https://paperswithcode.com/paper/computational-performance-of-deep
|
Computational Performance of Deep Reinforcement Learning to find Nash Equilibria
|
2104.12895
|
https://arxiv.org/abs/2104.12895v1
|
https://arxiv.org/pdf/2104.12895v1.pdf
|
https://github.com/ckrk/bidding_learning
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/multimodal-knowledge-expansion
|
Multimodal Knowledge Expansion
|
2103.14431
|
https://arxiv.org/abs/2103.14431v3
|
https://arxiv.org/pdf/2103.14431v3.pdf
|
https://github.com/zihuixue/mke
| true | true | true |
none
|
https://paperswithcode.com/paper/accelerating-the-super-resolution
|
Accelerating the Super-Resolution Convolutional Neural Network
|
1608.00367
|
http://arxiv.org/abs/1608.00367v1
|
http://arxiv.org/pdf/1608.00367v1.pdf
|
https://github.com/MohammedAlkhrashi/TMA
| false | false | true |
none
|
https://paperswithcode.com/paper/learning-soccer-juggling-skills-with-layer
|
Learning Soccer Juggling Skills with Layer-wise Mixture-of-Experts
| null |
https://dl.acm.org/doi/10.1145/3528233.3530735
|
https://www.cs.ubc.ca/~van/papers/2022-SIGGRAPH-juggle/soccer_juggling.pdf
|
https://github.com/ZhaomingXie/soccer_juggle_release
| false | true | false |
pytorch
|
https://paperswithcode.com/paper/time-series-forecasting-with-llms
|
Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities
|
2402.10835
|
https://arxiv.org/abs/2402.10835v5
|
https://arxiv.org/pdf/2402.10835v5.pdf
|
https://github.com/mingyuj666/time-series-forecasting-with-llms
| true | true | false |
jax
|
https://paperswithcode.com/paper/proton-probing-schema-linking-information
|
Proton: Probing Schema Linking Information from Pre-trained Language Models for Text-to-SQL Parsing
|
2206.14017
|
https://arxiv.org/abs/2206.14017v2
|
https://arxiv.org/pdf/2206.14017v2.pdf
|
https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/proton
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/person-transfer-gan-to-bridge-domain-gap-for
|
Person Transfer GAN to Bridge Domain Gap for Person Re-Identification
|
1711.08565
|
http://arxiv.org/abs/1711.08565v2
|
http://arxiv.org/pdf/1711.08565v2.pdf
|
https://github.com/ucas-vg/groupsampling
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/on-monte-carlo-tree-search-for-weighted
|
On Monte Carlo Tree Search for Weighted Vertex Coloring
|
2202.01665
|
https://arxiv.org/abs/2202.01665v2
|
https://arxiv.org/pdf/2202.01665v2.pdf
|
https://github.com/cyril-grelier/gc_wvcp_mcts
| true | true | true |
none
|
https://paperswithcode.com/paper/a-theory-of-continuous-generative-flow
|
A theory of continuous generative flow networks
|
2301.12594
|
https://arxiv.org/abs/2301.12594v2
|
https://arxiv.org/pdf/2301.12594v2.pdf
|
https://github.com/saleml/continuous-gfn
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/nlatool-an-application-for-enhanced-deep-text
|
NLATool: an Application for Enhanced Deep Text Understanding
| null |
https://aclanthology.org/C18-2026
|
https://aclanthology.org/C18-2026.pdf
|
https://github.com/interactionlab/nlatool
| true | true | false |
none
|
https://paperswithcode.com/paper/sub-word-information-in-pre-trained
|
Sub-word information in pre-trained biomedical word representations: evaluation and hyper-parameter optimization
| null |
https://aclanthology.org/W18-2307
|
https://aclanthology.org/W18-2307.pdf
|
https://github.com/dterg/bionlp-embed
| true | true | false |
none
|
https://paperswithcode.com/paper/deep-polarization-reconstruction-with-pdavis
|
Deep Polarization Reconstruction With PDAVIS Events
| null |
http://openaccess.thecvf.com//content/CVPR2023/html/Mei_Deep_Polarization_Reconstruction_With_PDAVIS_Events_CVPR_2023_paper.html
|
http://openaccess.thecvf.com//content/CVPR2023/papers/Mei_Deep_Polarization_Reconstruction_With_PDAVIS_Events_CVPR_2023_paper.pdf
|
https://github.com/sensorsini/e2p
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-perturbation-based-out-of-sample-extension
|
A Perturbation-Based Kernel Approximation Framework
|
2009.02955
|
https://arxiv.org/abs/2009.02955v2
|
https://arxiv.org/pdf/2009.02955v2.pdf
|
https://github.com/roymitz/perturbation_out_of_sample_extension
| true | true | true |
none
|
https://paperswithcode.com/paper/unbiased-risk-estimation-in-the-normal-means
|
Unbiased Risk Estimation in the Normal Means Problem via Coupled Bootstrap Techniques
|
2111.09447
|
https://arxiv.org/abs/2111.09447v3
|
https://arxiv.org/pdf/2111.09447v3.pdf
|
https://github.com/nloliveira/coupled-bootstrap-risk-estimation
| true | true | false |
none
|
https://paperswithcode.com/paper/intrinsic-dimensionality-estimation-within
|
Intrinsic Dimensionality Estimation within Tight Localities: A Theoretical and Experimental Analysis
|
2209.14475
|
https://arxiv.org/abs/2209.14475v1
|
https://arxiv.org/pdf/2209.14475v1.pdf
|
https://github.com/radacha/tle
| true | true | false |
none
|
https://paperswithcode.com/paper/real-time-classification-geolocation-and
|
Real-time Classification, Geolocation and Interactive Visualization of COVID-19 Information Shared on Social Media to Better Understand Global Developments
| null |
https://aclanthology.org/2020.nlpcovid19-2.37
|
https://aclanthology.org/2020.nlpcovid19-2.37.pdf
|
https://github.com/mirandrom/crisistweetmap
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/dialogstitch-synthetic-deeper-and-multi
|
DialogStitch: Synthetic Deeper and Multi-Context Task-Oriented Dialogs
| null |
https://aclanthology.org/2021.sigdial-1.3
|
https://aclanthology.org/2021.sigdial-1.3.pdf
|
https://github.com/facebookresearch/dialogstitch
| true | true | false |
none
|
https://paperswithcode.com/paper/effective-approaches-to-attention-based
|
Effective Approaches to Attention-based Neural Machine Translation
|
1508.04025
|
http://arxiv.org/abs/1508.04025v5
|
http://arxiv.org/pdf/1508.04025v5.pdf
|
https://github.com/bplank/teaching-dl4nlp
| false | false | true |
none
|
https://paperswithcode.com/paper/deep-contextualized-word-representations
|
Deep contextualized word representations
|
1802.05365
|
http://arxiv.org/abs/1802.05365v2
|
http://arxiv.org/pdf/1802.05365v2.pdf
|
https://github.com/bplank/teaching-dl4nlp
| false | false | true |
none
|
https://paperswithcode.com/paper/simcse-simple-contrastive-learning-of
|
SimCSE: Simple Contrastive Learning of Sentence Embeddings
|
2104.08821
|
https://arxiv.org/abs/2104.08821v4
|
https://arxiv.org/pdf/2104.08821v4.pdf
|
https://github.com/shuxinyin/SimCSE-Pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/panoptic-segformer
|
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers
|
2109.03814
|
https://arxiv.org/abs/2109.03814v4
|
https://arxiv.org/pdf/2109.03814v4.pdf
|
https://github.com/zhiqi-li/Panoptic-SegFormer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/memory-efficient-meta-learning-with-large
|
Memory Efficient Meta-Learning with Large Images
|
2107.01105
|
https://arxiv.org/abs/2107.01105v2
|
https://arxiv.org/pdf/2107.01105v2.pdf
|
https://github.com/cambridge-mlg/LITE
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/reduced-operator-inference-for-nonlinear
|
Reduced operator inference for nonlinear partial differential equations
|
2102.00083
|
https://arxiv.org/abs/2102.00083v2
|
https://arxiv.org/pdf/2102.00083v2.pdf
|
https://github.com/elizqian/operator-inference
| true | true | true |
none
|
https://paperswithcode.com/paper/learning-to-compose-with-professional
|
Learning to Compose with Professional Photographs on the Web
|
1702.00503
|
http://arxiv.org/abs/1702.00503v2
|
http://arxiv.org/pdf/1702.00503v2.pdf
|
https://github.com/yiling-chen/view-finding-network
| true | true | true |
tf
|
https://paperswithcode.com/paper/lift-learn-physics-informed-machine-learning
|
Lift & Learn: Physics-informed machine learning for large-scale nonlinear dynamical systems
|
1912.08177
|
https://arxiv.org/abs/1912.08177v5
|
https://arxiv.org/pdf/1912.08177v5.pdf
|
https://github.com/elizqian/operator-inference
| false | false | true |
none
|
https://paperswithcode.com/paper/ucc-uncertainty-guided-cross-head-co-training
|
UCC: Uncertainty guided Cross-head Co-training for Semi-Supervised Semantic Segmentation
|
2205.10334
|
https://arxiv.org/abs/2205.10334v2
|
https://arxiv.org/pdf/2205.10334v2.pdf
|
https://github.com/voldemortX/DST-CBC
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/towards-gradient-based-bilevel-optimization
|
Towards Gradient-based Bilevel Optimization with Non-convex Followers and Beyond
|
2110.00455
|
https://arxiv.org/abs/2110.00455v2
|
https://arxiv.org/pdf/2110.00455v2.pdf
|
https://github.com/vis-opt-group/iaptt-gm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/adam-a-method-for-stochastic-optimization
|
Adam: A Method for Stochastic Optimization
|
1412.6980
|
http://arxiv.org/abs/1412.6980v9
|
http://arxiv.org/pdf/1412.6980v9.pdf
|
https://github.com/mirzaevinom/data_science_bowl_2018
| false | false | true |
tf
|
https://paperswithcode.com/paper/mask-r-cnn
|
Mask R-CNN
|
1703.06870
|
http://arxiv.org/abs/1703.06870v3
|
http://arxiv.org/pdf/1703.06870v3.pdf
|
https://github.com/mirzaevinom/data_science_bowl_2018
| false | false | true |
tf
|
https://paperswithcode.com/paper/learning-prototype-representations-across-few
|
Learning Prototype Representations Across Few-Shot Tasks for Event Detection
| null |
https://aclanthology.org/2021.emnlp-main.427
|
https://aclanthology.org/2021.emnlp-main.427.pdf
|
https://github.com/laiviet/fsl-proact
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/generative-planning-for-temporally-1
|
Generative Planning for Temporally Coordinated Exploration in Reinforcement Learning
|
2201.09765
|
https://arxiv.org/abs/2201.09765v2
|
https://arxiv.org/pdf/2201.09765v2.pdf
|
https://github.com/Haichao-Zhang/generative-planning
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/metric-learning-cross-entropy-vs-pairwise
|
A unifying mutual information view of metric learning: cross-entropy vs. pairwise losses
|
2003.08983
|
https://arxiv.org/abs/2003.08983v3
|
https://arxiv.org/pdf/2003.08983v3.pdf
|
https://github.com/jeromerony/dml_cross_entropy
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/fully-convolutional-siamese-neural-networks
|
Fully convolutional Siamese neural networks for buildings damage assessment from satellite images
|
2111.00508
|
https://arxiv.org/abs/2111.00508v1
|
https://arxiv.org/pdf/2111.00508v1.pdf
|
https://github.com/bloodaxe/xview2-solution
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/progressive-growing-of-gans-for-improved
|
Progressive Growing of GANs for Improved Quality, Stability, and Variation
|
1710.10196
|
http://arxiv.org/abs/1710.10196v3
|
http://arxiv.org/pdf/1710.10196v3.pdf
|
https://github.com/valentingol/GANJax
| false | false | true |
jax
|
https://paperswithcode.com/paper/cross-domain-cross-architecture-black-box
|
Cross-domain Cross-architecture Black-box Attacks on Fine-tuned Models with Transferred Evolutionary Strategies
|
2208.13182
|
https://arxiv.org/abs/2208.13182v1
|
https://arxiv.org/pdf/2208.13182v1.pdf
|
https://github.com/hkust-knowcomp/tes
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/visual-reasoning-strategies-for-effect-size
|
Visual Reasoning Strategies for Effect Size Judgments and Decisions
|
2007.14516
|
https://arxiv.org/abs/2007.14516v3
|
https://arxiv.org/pdf/2007.14516v3.pdf
|
https://github.com/fredhohman/awesome-mathematical-notation-design
| false | false | true |
none
|
https://paperswithcode.com/paper/sciencemeter-tracking-scientific-knowledge
|
ScienceMeter: Tracking Scientific Knowledge Updates in Language Models
|
2505.24302
|
https://arxiv.org/abs/2505.24302v1
|
https://arxiv.org/pdf/2505.24302v1.pdf
|
https://github.com/yikee/sciencemeter
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fast-3d-registration-with-accurate
|
Fast 3D registration with accurate optimisation and little learning for Learn2Reg 2021
|
2112.03053
|
https://arxiv.org/abs/2112.03053v1
|
https://arxiv.org/pdf/2112.03053v1.pdf
|
https://github.com/multimodallearning/convexadam
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/melgan-generative-adversarial-networks-for
|
MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis
|
1910.06711
|
https://arxiv.org/abs/1910.06711v3
|
https://arxiv.org/pdf/1910.06711v3.pdf
|
https://github.com/jaywalnut310/melgan-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/mcmi-multi-cycle-image-translation-with
|
MCMI: Multi-Cycle Image Translation with Mutual Information Constraints
|
2007.02919
|
https://arxiv.org/abs/2007.02919v1
|
https://arxiv.org/pdf/2007.02919v1.pdf
|
https://github.com/yuzhenmao/MI_P2V
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/pix2vox-multi-scale-context-aware-3d-object
|
Pix2Vox++: Multi-scale Context-aware 3D Object Reconstruction from Single and Multiple Images
|
2006.12250
|
https://arxiv.org/abs/2006.12250v2
|
https://arxiv.org/pdf/2006.12250v2.pdf
|
https://github.com/yuzhenmao/MI_P2V
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-unified-view-on-graph-neural-networks-as-1
|
A Unified View on Graph Neural Networks as Graph Signal Denoising
|
2010.01777
|
https://arxiv.org/abs/2010.01777v2
|
https://arxiv.org/pdf/2010.01777v2.pdf
|
https://github.com/alge24/ADA-UGNN
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/systematic-analysis-of-programming-languages
|
Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks
|
2111.12528
|
https://arxiv.org/abs/2111.12528v1
|
https://arxiv.org/pdf/2111.12528v1.pdf
|
https://github.com/misc0110/pteditor
| false | false | true |
none
|
https://paperswithcode.com/paper/merger-rate-density-of-binary-black-holes-1
|
Merger rate density of binary black holes through isolated Population I, II, III and extremely metal-poor binary star evolution
|
2110.10846
|
https://arxiv.org/abs/2110.10846v4
|
https://arxiv.org/pdf/2110.10846v4.pdf
|
https://github.com/atrtnkw/bseemp
| true | true | false |
none
|
https://paperswithcode.com/paper/physics-based-model-to-predict-the-acoustic
|
Physics-based model to predict the acoustic detection distance of terrestrial autonomous recording units over the diel cycle and across seasons: insights from an Alpine and a Neotropical forest
|
2211.16077
|
https://arxiv.org/abs/2211.16077v1
|
https://arxiv.org/pdf/2211.16077v1.pdf
|
https://github.com/shaupert/haupert_mee_2022
| true | true | false |
none
|
https://paperswithcode.com/paper/multidimensional-representations-in-late-life
|
Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics
|
2110.11347
|
https://arxiv.org/abs/2110.11347v2
|
https://arxiv.org/pdf/2110.11347v2.pdf
|
https://github.com/anbai106/mlni
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/reproducible-evaluation-of-diffusion-mri
|
Reproducible evaluation of diffusion MRI features for automatic classification of patients with Alzheimers disease
|
1812.11183
|
https://arxiv.org/abs/1812.11183v4
|
https://arxiv.org/pdf/1812.11183v4.pdf
|
https://github.com/anbai106/mlni
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/are-transformers-more-robust-than-cnns
|
Are Transformers More Robust Than CNNs?
|
2111.05464
|
https://arxiv.org/abs/2111.05464v1
|
https://arxiv.org/pdf/2111.05464v1.pdf
|
https://github.com/ytongbai/ViTs-vs-CNNs
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/controlled-text-generation-as-continuous
|
Controlled Text Generation as Continuous Optimization with Multiple Constraints
|
2108.01850
|
https://arxiv.org/abs/2108.01850v1
|
https://arxiv.org/pdf/2108.01850v1.pdf
|
https://github.com/sachin19/mucoco
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/texttt-express-extensible-high-level
|
$\texttt{express}$: extensible, high-level workflows for swifter $\textit{ab initio}$ materials modeling
|
2109.11724
|
https://arxiv.org/abs/2109.11724v1
|
https://arxiv.org/pdf/2109.11724v1.pdf
|
https://github.com/MineralsCloud/Express.jl
| true | true | true |
none
|
https://paperswithcode.com/paper/let-each-quantum-bit-choose-its-basis-gates
|
Let Each Quantum Bit Choose Its Basis Gates
|
2208.13380
|
https://arxiv.org/abs/2208.13380v2
|
https://arxiv.org/pdf/2208.13380v2.pdf
|
https://github.com/sophlin/nonstandard_2qbasis_gates
| true | true | false |
none
|
https://paperswithcode.com/paper/issafe-improving-semantic-segmentation-in
|
ISSAFE: Improving Semantic Segmentation in Accidents by Fusing Event-based Data
|
2008.08974
|
https://arxiv.org/abs/2008.08974v2
|
https://arxiv.org/pdf/2008.08974v2.pdf
|
https://github.com/jamycheung/ISSAFE
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/exploring-event-driven-dynamic-context-for
|
Exploring Event-driven Dynamic Context for Accident Scene Segmentation
|
2112.05006
|
https://arxiv.org/abs/2112.05006v1
|
https://arxiv.org/pdf/2112.05006v1.pdf
|
https://github.com/jamycheung/ISSAFE
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/antipodal-robotic-grasping-using-generative
|
Antipodal Robotic Grasping using Generative Residual Convolutional Neural Network
|
1909.04810
|
https://arxiv.org/abs/1909.04810v4
|
https://arxiv.org/pdf/1909.04810v4.pdf
|
https://github.com/SteveHao74/shahao_GR-ConvNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/physics-guided-deep-learning-for-data
|
Utilising physics-guided deep learning to overcome data scarcity
|
2211.15664
|
https://arxiv.org/abs/2211.15664v3
|
https://arxiv.org/pdf/2211.15664v3.pdf
|
https://github.com/jinshuaibai/pgdl_review
| true | true | true |
tf
|
https://paperswithcode.com/paper/yake-keyword-extraction-from-single-documents
|
YAKE! Keyword extraction from single documents using multiple local features
| null |
https://repositorio.inesctec.pt/server/api/core/bitstreams/ef121a01-a0a6-4be8-945d-3324a58fc944/content
|
https://repositorio.inesctec.pt/server/api/core/bitstreams/ef121a01-a0a6-4be8-945d-3324a58fc944/content
|
https://github.com/LIAAD/yake
| false | false | false |
tf
|
https://paperswithcode.com/paper/denoising-of-3d-mr-images-using-a-voxel-wise
|
Denoising of 3D MR images using a voxel-wise hybrid residual MLP-CNN model to improve small lesion diagnostic confidence
|
2209.13818
|
https://arxiv.org/abs/2209.13818v1
|
https://arxiv.org/pdf/2209.13818v1.pdf
|
https://github.com/laowangbobo/residual_mlp_cnn_mixer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/detect-consolidate-delineate-scalable-mapping
|
Detect, consolidate, delineate: scalable mapping of field boundaries using satellite images
| null |
https://www.mdpi.com/2072-4292/13/11/2197
|
https://www.mdpi.com/2072-4292/13/11/2197/pdf
|
https://github.com/waldnerf/decode
| false | true | false |
mxnet
|
https://paperswithcode.com/paper/size-limits-sensitivity-in-all-kinetic
|
Size limits sensitivity in all kinetic schemes
|
2112.07777
|
https://arxiv.org/abs/2112.07777v1
|
https://arxiv.org/pdf/2112.07777v1.pdf
|
https://github.com/jaowen/nested-hysteresis
| true | true | true |
none
|
https://paperswithcode.com/paper/generalization-bounds-for-meta-learning-an
|
Generalization Bounds For Meta-Learning: An Information-Theoretic Analysis
|
2109.14595
|
https://arxiv.org/abs/2109.14595v2
|
https://arxiv.org/pdf/2109.14595v2.pdf
|
https://github.com/livreq/meta-sgld
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/optab-public-code-for-generating-gas-opacity
|
Optab: Public code for generating gas opacity tables for radiation hydrodynamics simulations
|
2112.05689
|
https://arxiv.org/abs/2112.05689v1
|
https://arxiv.org/pdf/2112.05689v1.pdf
|
https://github.com/nombac/optab
| true | true | true |
none
|
https://paperswithcode.com/paper/automatically-learning-compact-quality-aware
|
Automatically Learning Compact Quality-aware Surrogates for Optimization Problems
|
2006.10815
|
https://arxiv.org/abs/2006.10815v2
|
https://arxiv.org/pdf/2006.10815v2.pdf
|
https://github.com/PredOptwithSoftConstraint/PredOptwithSoftConstraint
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/an-imaging-search-for-post-main-sequence
|
An Imaging Search for Post-Main-Sequence Planets of Sirius B
|
2112.05234
|
https://arxiv.org/abs/2112.05234v1
|
https://arxiv.org/pdf/2112.05234v1.pdf
|
https://github.com/mileslucas/sirius-b
| true | true | true |
none
|
https://paperswithcode.com/paper/online-mixed-integer-optimization-in
|
Online Mixed-Integer Optimization in Milliseconds
|
1907.02206
|
https://arxiv.org/abs/1907.02206v4
|
https://arxiv.org/pdf/1907.02206v4.pdf
|
https://github.com/bstellato/mlopt
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-mixed-integer-convex-optimization
|
Learning Mixed-Integer Convex Optimization Strategies for Robot Planning and Control
|
2004.03736
|
https://arxiv.org/abs/2004.03736v2
|
https://arxiv.org/pdf/2004.03736v2.pdf
|
https://github.com/bstellato/mlopt
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-twin-decoder-structure-for-incompressible
|
A twin-decoder structure for incompressible laminar flow reconstruction with uncertainty estimation around 2D obstacles
|
2104.03619
|
https://arxiv.org/abs/2104.03619v2
|
https://arxiv.org/pdf/2104.03619v2.pdf
|
https://github.com/jviquerat/twin_autoencoder
| true | true | true |
tf
|
https://paperswithcode.com/paper/a-deep-knowledge-distillation-framework-for
|
A Deep Knowledge Distillation framework for EEG assisted enhancement of single-lead ECG based sleep staging
|
2112.07252
|
https://arxiv.org/abs/2112.07252v2
|
https://arxiv.org/pdf/2112.07252v2.pdf
|
https://github.com/acrophase/sleep_staging_kd
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/efficient-convnet-for-real-time-semantic
|
Efficient ConvNet for Real-time Semantic Segmentation
| null |
https://ieeexplore.ieee.org/document/7995966
|
https://ieeexplore.ieee.org/document/7995966
|
https://github.com/yangyucheng000/erfnet
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/u-time-a-fully-convolutional-network-for-time
|
U-Time: A Fully Convolutional Network for Time Series Segmentation Applied to Sleep Staging
|
1910.11162
|
https://arxiv.org/abs/1910.11162v1
|
https://arxiv.org/pdf/1910.11162v1.pdf
|
https://github.com/acrophase/sleep_staging_kd
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/product1m-towards-weakly-supervised-instance
|
Product1M: Towards Weakly Supervised Instance-Level Product Retrieval via Cross-modal Pretraining
|
2107.14572
|
https://arxiv.org/abs/2107.14572v2
|
https://arxiv.org/pdf/2107.14572v2.pdf
|
https://github.com/zhanxlin/product1m
| true | true | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.