paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/improving-response-selection-in-multi-turn
|
Improving Response Selection in Multi-Turn Dialogue Systems by Incorporating Domain Knowledge
|
1809.03194
|
http://arxiv.org/abs/1809.03194v3
|
http://arxiv.org/pdf/1809.03194v3.pdf
|
https://github.com/SmartDataAnalytics/AK-DE-biGRU
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/hyperminhash-minhash-in-loglog-space
|
HyperMinHash: MinHash in LogLog space
|
1710.08436
|
https://arxiv.org/abs/1710.08436v4
|
https://arxiv.org/pdf/1710.08436v4.pdf
|
https://github.com/yunwilliamyu/hyperminhash
| true | true | true |
none
|
https://paperswithcode.com/paper/far-beyond-stacking-fully-bayesian
|
Far beyond stacking: Fully bayesian constraints on sub-microJy radio source populations over the XMM-LSS-VIDEO field
|
1503.02493
|
http://arxiv.org/abs/1503.02493v1
|
http://arxiv.org/pdf/1503.02493v1.pdf
|
https://github.com/jtlz2/bayestack
| false | false | true |
none
|
https://paperswithcode.com/paper/a-spectroscopic-and-photometric-exploration
|
A Spectroscopic and Photometric Exploration of the C/M Ratio in the Disk of M31
|
1507.06687
|
https://arxiv.org/abs/1507.06687v1
|
https://arxiv.org/pdf/1507.06687v1.pdf
|
https://github.com/rachelraikar/WeakCN2019
| false | false | true |
none
|
https://paperswithcode.com/paper/data-compression-in-cosmology-a-compressed
|
Data compression in cosmology: A compressed likelihood for Planck data
|
1909.05869
|
https://arxiv.org/abs/1909.05869v1
|
https://arxiv.org/pdf/1909.05869v1.pdf
|
https://github.com/heatherprince/cosmoped
| true | true | true |
none
|
https://paperswithcode.com/paper/a-neural-algorithm-of-artistic-style
|
A Neural Algorithm of Artistic Style
|
1508.06576
|
http://arxiv.org/abs/1508.06576v2
|
http://arxiv.org/pdf/1508.06576v2.pdf
|
https://github.com/CarpdiemLiang/style_transfer
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/efficient-softmax-approximation-for-gpus
|
Efficient softmax approximation for GPUs
|
1609.04309
|
http://arxiv.org/abs/1609.04309v3
|
http://arxiv.org/pdf/1609.04309v3.pdf
|
https://github.com/rdspring1/PyTorch_GBW_LM
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/12-in-1-multi-task-vision-and-language
|
12-in-1: Multi-Task Vision and Language Representation Learning
|
1912.02315
|
https://arxiv.org/abs/1912.02315v2
|
https://arxiv.org/pdf/1912.02315v2.pdf
|
https://github.com/jialinwu17/tmpimgs
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/lovedavidsilva/bert_old_version
| false | false | true |
tf
|
https://paperswithcode.com/paper/let-me-not-lie-learning-multinomial-logit
|
Enhancing Discrete Choice Models with Representation Learning
|
1812.09747
|
https://arxiv.org/abs/1812.09747v3
|
https://arxiv.org/pdf/1812.09747v3.pdf
|
https://github.com/BSifringer/EnhancedDCM
| true | true | true |
tf
|
https://paperswithcode.com/paper/synthesizing-number-generators-for-stochastic
|
Synthesizing Number Generators for Stochastic Computing using Mixed Integer Programming
|
1902.05971
|
https://arxiv.org/abs/1902.05971v2
|
https://arxiv.org/pdf/1902.05971v2.pdf
|
https://github.com/sweetwenwen/Stochastic-computing-based-neural-network-accelerator
| false | false | true |
none
|
https://paperswithcode.com/paper/sparse-perturbations-for-improved-convergence
|
Sparse Perturbations for Improved Convergence in Stochastic Zeroth-Order Optimization
|
2006.01759
|
https://arxiv.org/abs/2006.01759v2
|
https://arxiv.org/pdf/2006.01759v2.pdf
|
https://github.com/StatNLP/sparse_szo
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/efficient-estimation-of-mutual-information
|
Efficient Estimation of Mutual Information for Strongly Dependent Variables
|
1411.2003
|
http://arxiv.org/abs/1411.2003v3
|
http://arxiv.org/pdf/1411.2003v3.pdf
|
https://github.com/BiuBiuBiLL/NPEET_LNC
| false | false | true |
none
|
https://paperswithcode.com/paper/swinir-image-restoration-using-swin
|
SwinIR: Image Restoration Using Swin Transformer
|
2108.10257
|
https://arxiv.org/abs/2108.10257v1
|
https://arxiv.org/pdf/2108.10257v1.pdf
|
https://github.com/XPixelGroup/BasicSR
| false | false | false |
pytorch
|
https://paperswithcode.com/paper/topics-to-avoid-demoting-latent-confounds-in
|
Topics to Avoid: Demoting Latent Confounds in Text Classification
|
1909.00453
|
https://arxiv.org/abs/1909.00453v2
|
https://arxiv.org/pdf/1909.00453v2.pdf
|
https://github.com/Sachin19/adversarial-classify
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/depth-bounding-is-effective-improvements-and
|
Depth-bounding is effective: Improvements and evaluation of unsupervised PCFG induction
|
1809.03112
|
http://arxiv.org/abs/1809.03112v1
|
http://arxiv.org/pdf/1809.03112v1.pdf
|
https://github.com/lifengjin/dimi_emnlp18
| true | true | true |
none
|
https://paperswithcode.com/paper/convolutional-neural-networks-for-sentence
|
Convolutional Neural Networks for Sentence Classification
|
1408.5882
|
http://arxiv.org/abs/1408.5882v2
|
http://arxiv.org/pdf/1408.5882v2.pdf
|
https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras
| false | false | true |
tf
|
https://paperswithcode.com/paper/181001993
|
Exascale Deep Learning for Climate Analytics
|
1810.01993
|
http://arxiv.org/abs/1810.01993v1
|
http://arxiv.org/pdf/1810.01993v1.pdf
|
https://github.com/PointKernel/climate-seg-benchmark
| false | false | true |
tf
|
https://paperswithcode.com/paper/axial-attention-in-multidimensional-1
|
Axial Attention in Multidimensional Transformers
|
1912.12180
|
https://arxiv.org/abs/1912.12180v1
|
https://arxiv.org/pdf/1912.12180v1.pdf
|
https://github.com/mindspore-courses/External-Attention-MindSpore/blob/main/model/attention/Axial_attention.py
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/mastering-chess-and-shogi-by-self-play-with-a
|
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
|
1712.01815
|
http://arxiv.org/abs/1712.01815v1
|
http://arxiv.org/pdf/1712.01815v1.pdf
|
https://github.com/fantianwen/leela13_training
| false | false | true |
tf
|
https://paperswithcode.com/paper/the-privacy-policy-landscape-after-the-gdpr
|
The Privacy Policy Landscape After the GDPR
|
1809.08396
|
https://arxiv.org/abs/1809.08396v3
|
https://arxiv.org/pdf/1809.08396v3.pdf
|
https://github.com/wi-pi/GDPR
| false | false | true |
none
|
https://paperswithcode.com/paper/tisat-time-series-anomaly-transformer
|
TiSAT: Time Series Anomaly Transformer
|
2203.05167
|
https://arxiv.org/abs/2203.05167v1
|
https://arxiv.org/pdf/2203.05167v1.pdf
|
https://github.com/kevaldoshi17/TiSAT
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/explaining-deep-learning-based-networked
|
Interpreting Deep Learning-Based Networking Systems
|
1910.03835
|
https://arxiv.org/abs/1910.03835v3
|
https://arxiv.org/pdf/1910.03835v3.pdf
|
https://github.com/TranSys2020/TranSys
| false | false | true |
tf
|
https://paperswithcode.com/paper/clft-camera-lidar-fusion-transformer-for
|
CLFT: Camera-LiDAR Fusion Transformer for Semantic Segmentation in Autonomous Driving
|
2404.17793
|
https://arxiv.org/abs/2404.17793v3
|
https://arxiv.org/pdf/2404.17793v3.pdf
|
https://github.com/claud1234/fcn_transformer_object_segmentation
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deep-depth-from-focus
|
Deep Depth From Focus
|
1704.01085
|
http://arxiv.org/abs/1704.01085v3
|
http://arxiv.org/pdf/1704.01085v3.pdf
|
https://github.com/gameover27/ddff-pytorch
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/average-individual-fairness-algorithms
|
Average Individual Fairness: Algorithms, Generalization and Experiments
|
1905.10607
|
https://arxiv.org/abs/1905.10607v2
|
https://arxiv.org/pdf/1905.10607v2.pdf
|
https://github.com/SaeedSharifiMa/AIF
| true | false | true |
none
|
https://paperswithcode.com/paper/efficient-mdp-analysis-for-selfish-mining-in
|
Efficient MDP Analysis for Selfish-Mining in Blockchains
|
2007.05614
|
https://arxiv.org/abs/2007.05614v1
|
https://arxiv.org/pdf/2007.05614v1.pdf
|
https://github.com/roibarzur/pto-selfish-mining
| true | true | true |
none
|
https://paperswithcode.com/paper/learning-latent-vector-spaces-for-product
|
Learning Latent Vector Spaces for Product Search
|
1608.07253
|
http://arxiv.org/abs/1608.07253v1
|
http://arxiv.org/pdf/1608.07253v1.pdf
|
https://github.com/cvangysel/SERT
| true | true | true |
none
|
https://paperswithcode.com/paper/focal-loss-for-dense-object-detection
|
Focal Loss for Dense Object Detection
|
1708.02002
|
http://arxiv.org/abs/1708.02002v2
|
http://arxiv.org/pdf/1708.02002v2.pdf
|
https://github.com/feidfoe/AdjustBnd4Imbalance
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-clear-age-velocity-dispersion-correlation
|
A clear age-velocity dispersion correlation in Andromeda's stellar disk
|
1502.03820
|
https://arxiv.org/abs/1502.03820v1
|
https://arxiv.org/pdf/1502.03820v1.pdf
|
https://github.com/rachelraikar/WeakCN2019
| false | false | true |
none
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/anupamsingh610/bert_ner_stride
| false | false | true |
tf
|
https://paperswithcode.com/paper/reproducible-workflow-on-a-public-cloud-for
|
Reproducible Workflow on a Public Cloud for Computational Fluid Dynamics
|
1904.07981
|
https://arxiv.org/abs/1904.07981v2
|
https://arxiv.org/pdf/1904.07981v2.pdf
|
https://github.com/barbagroup/cloud-repro
| true | true | true |
none
|
https://paperswithcode.com/paper/interpreting-video-features-a-comparison-of-1
|
Interpreting video features: a comparison of 3D convolutional networks and convolutional LSTM networks
|
2002.00367
|
https://arxiv.org/abs/2002.00367v2
|
https://arxiv.org/pdf/2002.00367v2.pdf
|
https://github.com/interpreting-video-features/interpreting-video-features
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/long-term-causal-effects-estimation-via
|
Long-term Causal Effects Estimation via Latent Surrogates Representation Learning
|
2208.04589
|
https://arxiv.org/abs/2208.04589v3
|
https://arxiv.org/pdf/2208.04589v3.pdf
|
https://github.com/WeilinChen507/LASER
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/sequential-feature-classification-in-the
|
Sequential Feature Classification in the Context of Redundancies
|
2004.00658
|
https://arxiv.org/abs/2004.00658v2
|
https://arxiv.org/pdf/2004.00658v2.pdf
|
https://github.com/lpfann/squamish
| true | true | true |
none
|
https://paperswithcode.com/paper/effective-waves-for-random-three-dimensional
|
Effective Waves for Random Three-dimensional Particulate Materials
|
2010.00934
|
https://arxiv.org/abs/2010.00934v1
|
https://arxiv.org/pdf/2010.00934v1.pdf
|
https://github.com/arturgower/EffectiveWaves.jl
| false | false | true |
none
|
https://paperswithcode.com/paper/nubes-a-corpus-of-negation-and-uncertainty-in
|
NUBES: A Corpus of Negation and Uncertainty in Spanish Clinical Texts
|
2004.01092
|
https://arxiv.org/abs/2004.01092v1
|
https://arxiv.org/pdf/2004.01092v1.pdf
|
https://github.com/Vicomtech/NUBes-negation-uncertainty-biomedical-corpus
| true | true | true |
none
|
https://paperswithcode.com/paper/the-explanation-game-explaining-machine
|
The Explanation Game: Explaining Machine Learning Models Using Shapley Values
|
1909.08128
|
https://arxiv.org/abs/1909.08128v3
|
https://arxiv.org/pdf/1909.08128v3.pdf
|
https://github.com/fiddler-labs/the-explanation-game-supplemental
| false | false | true |
none
|
https://paperswithcode.com/paper/a-neural-conversational-model
|
A Neural Conversational Model
|
1506.05869
|
http://arxiv.org/abs/1506.05869v3
|
http://arxiv.org/pdf/1506.05869v3.pdf
|
https://github.com/shahrukhsf/Chatbot
| false | false | true |
tf
|
https://paperswithcode.com/paper/nonnegative-gaussian-process-tomography-for
|
Nonnegative Gaussian process tomography for generalized segmented planar detectors
|
1912.01058
|
https://arxiv.org/abs/1912.01058v1
|
https://arxiv.org/pdf/1912.01058v1.pdf
|
https://github.com/decibelcooper/nngpt
| true | true | true |
none
|
https://paperswithcode.com/paper/facenet-a-unified-embedding-for-face
|
FaceNet: A Unified Embedding for Face Recognition and Clustering
|
1503.03832
|
http://arxiv.org/abs/1503.03832v3
|
http://arxiv.org/pdf/1503.03832v3.pdf
|
https://github.com/Maninder10/face
| false | false | true |
tf
|
https://paperswithcode.com/paper/a-declarative-validator-for-gsos-languages
|
A Declarative Validator for GSOS Languages
|
2304.06397
|
https://arxiv.org/abs/2304.06397v1
|
https://arxiv.org/pdf/2304.06397v1.pdf
|
https://github.com/mcimini/gsos-validator
| true | true | false |
none
|
https://paperswithcode.com/paper/a-new-coefficient-of-correlation
|
A new coefficient of correlation
|
1909.10140
|
https://arxiv.org/abs/1909.10140v4
|
https://arxiv.org/pdf/1909.10140v4.pdf
|
https://github.com/czbiohub/pyxi
| false | false | true |
none
|
https://paperswithcode.com/paper/efficient-estimation-of-word-representations
|
Efficient Estimation of Word Representations in Vector Space
|
1301.3781
|
http://arxiv.org/abs/1301.3781v3
|
http://arxiv.org/pdf/1301.3781v3.pdf
|
https://github.com/adaisti/fin-eval
| false | false | true |
none
|
https://paperswithcode.com/paper/statistical-properties-of-paired-fixed-fields
|
Statistical properties of paired fixed fields
|
1806.01871
|
https://arxiv.org/abs/1806.01871v1
|
https://arxiv.org/pdf/1806.01871v1.pdf
|
https://github.com/HAWinther/MG-PICOLA-PUBLIC
| false | false | true |
none
|
https://paperswithcode.com/paper/learning-an-optimally-reduced-formulation-of
|
Learning an Optimally Reduced Formulation of OPF through Meta-optimization
|
1911.06784
|
https://arxiv.org/abs/1911.06784v3
|
https://arxiv.org/pdf/1911.06784v3.pdf
|
https://github.com/invenia/MetaOptOPF.jl
| true | true | true |
none
|
https://paperswithcode.com/paper/k-nearest-neighbour-classifiers-2nd-edition
|
k-Nearest Neighbour Classifiers: 2nd Edition (with Python examples)
|
2004.04523
|
https://arxiv.org/abs/2004.04523v2
|
https://arxiv.org/pdf/2004.04523v2.pdf
|
https://github.com/PadraigC/kNNTutorial
| true | true | true |
none
|
https://paperswithcode.com/paper/off-the-beaten-sidewalk-pedestrian-prediction
|
Off The Beaten Sidewalk: Pedestrian Prediction In Shared Spaces For Autonomous Vehicles
|
2006.00962
|
https://arxiv.org/abs/2006.00962v1
|
https://arxiv.org/pdf/2006.00962v1.pdf
|
https://github.com/umautobots/osp
| false | false | true |
none
|
https://paperswithcode.com/paper/larnet-lie-algebra-residual-network-for
|
LARNet: Lie Algebra Residual Network for Face Recognition
|
2103.08147
|
https://arxiv.org/abs/2103.08147v2
|
https://arxiv.org/pdf/2103.08147v2.pdf
|
https://github.com/paradocx/LARNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/analysis-of-eeg-frequency-bands-for
|
Analysis of EEG frequency bands for Envisioned Speech Recognition
|
2203.15250
|
https://arxiv.org/abs/2203.15250v1
|
https://arxiv.org/pdf/2203.15250v1.pdf
|
https://github.com/ayushayt/imaginedspeechrecognition
| true | true | false |
none
|
https://paperswithcode.com/paper/real-time-evasion-attacks-with-physical
|
Constrained Concealment Attacks against Reconstruction-based Anomaly Detectors in Industrial Control Systems
|
1907.07487
|
https://arxiv.org/abs/1907.07487v3
|
https://arxiv.org/pdf/1907.07487v3.pdf
|
https://github.com/scy-phy/ICS-Evasion-Attacks
| true | true | true |
tf
|
https://paperswithcode.com/paper/adaptive-representation-selection-in
|
Contextual Bandit with Adaptive Feature Extraction
|
1802.00981
|
https://arxiv.org/abs/1802.00981v4
|
https://arxiv.org/pdf/1802.00981v4.pdf
|
https://github.com/doerlbh/ABaCoDE
| true | true | true |
none
|
https://paperswithcode.com/paper/manifold-regularization-for-adversarial
|
Manifold Regularization for Locally Stable Deep Neural Networks
|
2003.04286
|
https://arxiv.org/abs/2003.04286v2
|
https://arxiv.org/pdf/2003.04286v2.pdf
|
https://github.com/charlesjin/adversarial_regularization
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/mnist-c-a-robustness-benchmark-for-computer
|
MNIST-C: A Robustness Benchmark for Computer Vision
|
1906.02337
|
https://arxiv.org/abs/1906.02337v1
|
https://arxiv.org/pdf/1906.02337v1.pdf
|
https://github.com/google-research/mnist-c
| true | true | true |
none
|
https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for
|
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
|
1905.11946
|
https://arxiv.org/abs/1905.11946v5
|
https://arxiv.org/pdf/1905.11946v5.pdf
|
https://github.com/rwightman/efficientnet-jax
| false | false | true |
jax
|
https://paperswithcode.com/paper/self-monitoring-navigation-agent-via
|
Self-Monitoring Navigation Agent via Auxiliary Progress Estimation
|
1901.03035
|
http://arxiv.org/abs/1901.03035v1
|
http://arxiv.org/pdf/1901.03035v1.pdf
|
https://github.com/ayusefi/Localization-Papers
| false | false | true |
none
|
https://paperswithcode.com/paper/deep-image-clustering-with-category-style
|
Deep Image Clustering with Category-Style Representation
|
2007.10004
|
https://arxiv.org/abs/2007.10004v1
|
https://arxiv.org/pdf/2007.10004v1.pdf
|
https://github.com/sKamiJ/DCCS
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/qmeq-10-an-open-source-python-package-for
|
QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices
|
1706.10104
|
http://arxiv.org/abs/1706.10104v2
|
http://arxiv.org/pdf/1706.10104v2.pdf
|
https://github.com/gedaskir/qmeq
| true | true | true |
none
|
https://paperswithcode.com/paper/non-gaussian-gaussian-processes-for-few-shot
|
Non-Gaussian Gaussian Processes for Few-Shot Regression
|
2110.13561
|
https://arxiv.org/abs/2110.13561v1
|
https://arxiv.org/pdf/2110.13561v1.pdf
|
https://github.com/gmum/non-gaussian-gaussian-processes
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/facenet-a-unified-embedding-for-face
|
FaceNet: A Unified Embedding for Face Recognition and Clustering
|
1503.03832
|
http://arxiv.org/abs/1503.03832v3
|
http://arxiv.org/pdf/1503.03832v3.pdf
|
https://github.com/Abdelhamid-bouzid/Deep-metric-learning
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/metric-learning-with-adaptive-density
|
Metric Learning with Adaptive Density Discrimination
|
1511.05939
|
http://arxiv.org/abs/1511.05939v2
|
http://arxiv.org/pdf/1511.05939v2.pdf
|
https://github.com/Abdelhamid-bouzid/Deep-metric-learning
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/abcnet-an-attention-based-method-for-particle
|
ABCNet: An attention-based method for particle tagging
|
2001.05311
|
https://arxiv.org/abs/2001.05311v2
|
https://arxiv.org/pdf/2001.05311v2.pdf
|
https://github.com/ViniciusMikuni/ABCNet
| true | false | true |
tf
|
https://paperswithcode.com/paper/mask-shadowgan-learning-to-remove-shadows
|
Mask-ShadowGAN: Learning to Remove Shadows from Unpaired Data
|
1903.10683
|
https://arxiv.org/abs/1903.10683v3
|
https://arxiv.org/pdf/1903.10683v3.pdf
|
https://github.com/wkhademi/ImageEnhancement
| false | false | true |
tf
|
https://paperswithcode.com/paper/gapnet-graph-attention-based-point-neural
|
GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature of Point Cloud
|
1905.08705
|
https://arxiv.org/abs/1905.08705v1
|
https://arxiv.org/pdf/1905.08705v1.pdf
|
https://github.com/ViniciusMikuni/ABCNet
| false | false | true |
tf
|
https://paperswithcode.com/paper/solving-inverse-problems-with-deep-neural
|
Solving Inverse Problems With Deep Neural Networks -- Robustness Included?
|
2011.04268
|
https://arxiv.org/abs/2011.04268v1
|
https://arxiv.org/pdf/2011.04268v1.pdf
|
https://github.com/jmaces/robust-nets
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/style-transfer-by-rigid-alignment-in-neural
|
Style Transfer by Rigid Alignment in Neural Net Feature Space
|
1909.13690
|
https://arxiv.org/abs/1909.13690v2
|
https://arxiv.org/pdf/1909.13690v2.pdf
|
https://github.com/ManthanBhala/Style-Transfer-by-Rigid-Alignment
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/noilin-do-noisy-labels-always-hurt
|
NoiLIn: Improving Adversarial Training and Correcting Stereotype of Noisy Labels
|
2105.14676
|
https://arxiv.org/abs/2105.14676v2
|
https://arxiv.org/pdf/2105.14676v2.pdf
|
https://github.com/zjfheart/noilin
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
|
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
|
1810.04805
|
https://arxiv.org/abs/1810.04805v2
|
https://arxiv.org/pdf/1810.04805v2.pdf
|
https://github.com/crx934080895/Bert-CRF_New2
| false | false | true |
tf
|
https://paperswithcode.com/paper/uncrowded-hypervolume-based-multi-objective
|
Uncrowded Hypervolume-based Multi-objective Optimization with Gene-pool Optimal Mixing
|
2004.05068
|
https://arxiv.org/abs/2004.05068v1
|
https://arxiv.org/pdf/2004.05068v1.pdf
|
https://github.com/DudewithPigskin/EvolutionaryAlgorithms
| false | false | true |
none
|
https://paperswithcode.com/paper/blazeface-sub-millisecond-neural-face
|
BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs
|
1907.05047
|
https://arxiv.org/abs/1907.05047v2
|
https://arxiv.org/pdf/1907.05047v2.pdf
|
https://github.com/longnguyen2/blazeface
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/interactive-classification-by-asking-1
|
Interactive Classification by Asking Informative Questions
|
1911.03598
|
https://arxiv.org/abs/1911.03598v2
|
https://arxiv.org/pdf/1911.03598v2.pdf
|
https://github.com/asappresearch/interactive-classification
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/attention-is-all-you-need
|
Attention Is All You Need
|
1706.03762
|
https://arxiv.org/abs/1706.03762v7
|
https://arxiv.org/pdf/1706.03762v7.pdf
|
https://github.com/hiun/learning-transformers
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/neural-machine-translation-by-jointly
|
Neural Machine Translation by Jointly Learning to Align and Translate
|
1409.0473
|
http://arxiv.org/abs/1409.0473v7
|
http://arxiv.org/pdf/1409.0473v7.pdf
|
https://github.com/hiun/learning-transformers
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/oteann-estimating-the-transparency-of
|
OTEANN: Estimating the Transparency of Orthographies with an Artificial Neural Network
|
1912.13321
|
https://arxiv.org/abs/1912.13321v4
|
https://arxiv.org/pdf/1912.13321v4.pdf
|
https://github.com/marxav/oteann3
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/target-driven-visual-navigation-exploiting
|
Learning hierarchical relationships for object-goal navigation
|
2003.06749
|
https://arxiv.org/abs/2003.06749v2
|
https://arxiv.org/pdf/2003.06749v2.pdf
|
https://github.com/cassieqiuyd/MJOLNIR
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/params-parameter-optimization-for-atomistic
|
ParAMS: Parameter Optimization for Atomistic and Molecular Simulations
|
2102.08843
|
https://arxiv.org/abs/2102.08843v3
|
https://arxiv.org/pdf/2102.08843v3.pdf
|
https://github.com/oiao/params_si
| true | true | true |
none
|
https://paperswithcode.com/paper/requirements-and-motivations-of-low-resource
|
Requirements and Motivations of Low-Resource Speech Synthesis for Language Revitalization
| null |
https://aclanthology.org/2022.acl-long.507
|
https://aclanthology.org/2022.acl-long.507.pdf
|
https://github.com/roedoejet/fastspeech2
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/resolving-anomalies-in-the-behaviour-of-a
|
Resolving Anomalies in the Behaviour of a Modularity Inducing Problem Domain with Distributional Fitness Evaluation
|
2110.13609
|
https://arxiv.org/abs/2110.13609v2
|
https://arxiv.org/pdf/2110.13609v2.pdf
|
https://github.com/zhenyueqin/project-maotai-modularity
| true | true | false |
none
|
https://paperswithcode.com/paper/lhco-reader-a-new-code-for-reading-and
|
LHCO_reader: A new code for reading and analyzing detector-level events stored in LHCO format
|
1510.07319
|
http://arxiv.org/abs/1510.07319v2
|
http://arxiv.org/pdf/1510.07319v2.pdf
|
https://github.com/innisfree/LHCO_reader
| true | true | true |
none
|
https://paperswithcode.com/paper/approximate-probabilistic-verification-of
|
Approximate probabilistic verification of hybrid systems
|
1412.6953
|
http://arxiv.org/abs/1412.6953v2
|
http://arxiv.org/pdf/1412.6953v2.pdf
|
https://github.com/bgyori/hybrid
| true | true | true |
none
|
https://paperswithcode.com/paper/determining-hyperbolicity-of-compact
|
Determining hyperbolicity of compact orientable 3-manifolds with torus boundary
|
1410.7115
|
http://arxiv.org/abs/1410.7115v5
|
http://arxiv.org/pdf/1410.7115v5.pdf
|
https://github.com/bobbycyiii/carrot
| true | true | true |
none
|
https://paperswithcode.com/paper/initial-semantics-for-reduction-rules
|
Initial Semantics for Reduction Rules
|
1212.5668
|
http://arxiv.org/abs/1212.5668v3
|
http://arxiv.org/pdf/1212.5668v3.pdf
|
https://github.com/benediktahrens/monads
| true | true | true |
none
|
https://paperswithcode.com/paper/log-complex-color-for-visual-pattern
|
Log Complex Color for Visual Pattern Recognition of Total Sound
|
1907.09936
|
https://arxiv.org/abs/1907.09936v1
|
https://arxiv.org/pdf/1907.09936v1.pdf
|
https://github.com/qx4845/TotalSound
| false | false | true |
none
|
https://paperswithcode.com/paper/deep-learning-of-dynamics-and-signal-noise
|
Deep learning of dynamics and signal-noise decomposition with time-stepping constraints
|
1808.02578
|
https://arxiv.org/abs/1808.02578v2
|
https://arxiv.org/pdf/1808.02578v2.pdf
|
https://github.com/oclaudio/cubic-oscillator
| false | false | true |
tf
|
https://paperswithcode.com/paper/multiple-waves-propagate-in-random
|
Multiple Waves Propagate in Random Particulate Materials
|
1810.10816
|
https://arxiv.org/abs/1810.10816v3
|
https://arxiv.org/pdf/1810.10816v3.pdf
|
https://github.com/arturgower/EffectiveWaves.jl
| true | true | true |
none
|
https://paperswithcode.com/paper/slow-cooling-of-hot-polarons-in-halide
|
Slow cooling of hot polarons in halide perovskite solar cells
|
1708.04158
|
http://arxiv.org/abs/1708.04158v1
|
http://arxiv.org/pdf/1708.04158v1.pdf
|
https://github.com/WMD-group/hot-carrier-cooling
| true | true | true |
none
|
https://paperswithcode.com/paper/analysis-of-a-certain-polycyclic-group-based
|
Analysis of a certain polycyclic-group-based cryptosystem
|
1504.05040
|
http://arxiv.org/abs/1504.05040v1
|
http://arxiv.org/pdf/1504.05040v1.pdf
|
https://github.com/mkotov/polycyclic
| true | true | true |
none
|
https://paperswithcode.com/paper/hmfcalc-an-online-tool-for-calculating-dark
|
HMFcalc: An Online Tool for Calculating Dark Matter Halo Mass Functions
|
1306.6721
|
https://arxiv.org/abs/1306.6721v1
|
https://arxiv.org/pdf/1306.6721v1.pdf
|
https://github.com/steven-murray/halomod
| false | false | true |
none
|
https://paperswithcode.com/paper/a-neuro-inspired-autoencoding-defense-against
|
A Neuro-Inspired Autoencoding Defense Against Adversarial Perturbations
|
2011.10867
|
https://arxiv.org/abs/2011.10867v2
|
https://arxiv.org/pdf/2011.10867v2.pdf
|
https://github.com/canbakiskan/neuro-inspired-defense
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/denoising-quantum-states-with-quantum
|
Denoising quantum states with Quantum Autoencoders -- Theory and Applications
|
2012.14714
|
https://arxiv.org/abs/2012.14714v1
|
https://arxiv.org/pdf/2012.14714v1.pdf
|
https://github.com/Tom-Achache/QAEs
| true | true | true |
none
|
https://paperswithcode.com/paper/multilingual-email-zoning
|
Multilingual Email Zoning
|
2102.00461
|
https://arxiv.org/abs/2102.00461v2
|
https://arxiv.org/pdf/2102.00461v2.pdf
|
https://github.com/cleverly-ai/multilingual-email-zoning
| true | true | true |
none
|
https://paperswithcode.com/paper/coherent-point-drift-networks-unsupervised
|
Coherent Point Drift Networks: Unsupervised Learning of Non-Rigid Point Set Registration
|
1906.03039
|
https://arxiv.org/abs/1906.03039v5
|
https://arxiv.org/pdf/1906.03039v5.pdf
|
https://github.com/krentzd/cpd-net
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/physics-informed-kan-pointnet-deep-learning
|
Physics-informed KAN PointNet: Deep learning for simultaneous solutions to inverse problems in incompressible flow on numerous irregular geometries
|
2504.06327
|
https://arxiv.org/abs/2504.06327v2
|
https://arxiv.org/pdf/2504.06327v2.pdf
|
https://github.com/Ali-Stanford/Physics_Informed_KAN_PointNet
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/large-scale-neural-recordings-call-for-new
|
Large-scale neural recordings call for new insights to link brain and behavior
|
2103.14662
|
https://arxiv.org/abs/2103.14662v2
|
https://arxiv.org/pdf/2103.14662v2.pdf
|
https://github.com/anne-urai/largescale_recordings
| true | true | true |
none
|
https://paperswithcode.com/paper/incremental-visual-inertial-3d-mesh
|
Incremental Visual-Inertial 3D Mesh Generation with Structural Regularities
|
1903.01067
|
https://arxiv.org/abs/1903.01067v2
|
https://arxiv.org/pdf/1903.01067v2.pdf
|
https://github.com/MIT-SPARK/Kimera-Evaluation
| false | false | true |
none
|
https://paperswithcode.com/paper/ptt5-pretraining-and-validating-the-t5-model
|
PTT5: Pretraining and validating the T5 model on Brazilian Portuguese data
|
2008.09144
|
https://arxiv.org/abs/2008.09144v2
|
https://arxiv.org/pdf/2008.09144v2.pdf
|
https://github.com/unicamp-dl/cross-lingual-analysis
| false | false | true |
none
|
https://paperswithcode.com/paper/offline-reinforcement-learning-with-implicit
|
Offline Reinforcement Learning with Implicit Q-Learning
|
2110.06169
|
https://arxiv.org/abs/2110.06169v1
|
https://arxiv.org/pdf/2110.06169v1.pdf
|
https://github.com/ikostrikov/implicit_q_learning
| true | false | true |
jax
|
https://paperswithcode.com/paper/mocogan-decomposing-motion-and-content-for
|
MoCoGAN: Decomposing Motion and Content for Video Generation
|
1707.04993
|
http://arxiv.org/abs/1707.04993v2
|
http://arxiv.org/pdf/1707.04993v2.pdf
|
https://github.com/DLHacks/mocogan
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/machine-learning-in-precision-medicine-to
|
Machine Learning in Precision Medicine to Preserve Privacy via Encryption
|
2102.03412
|
https://arxiv.org/abs/2102.03412v1
|
https://arxiv.org/pdf/2102.03412v1.pdf
|
https://github.com/isotlaboratory/Healthcare-Security-Analysis-MLE
| true | false | true |
none
|
https://paperswithcode.com/paper/revisiting-performance-of-bicgstab-methods
|
Revisiting Performance of BiCGStab Methods for Solving Systems with Multiple Right-Hand Sides
|
1907.12874
|
http://arxiv.org/abs/1907.12874v3
|
http://arxiv.org/pdf/1907.12874v3.pdf
|
https://gitlab.com/xamg/xamg
| false | false | true |
none
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.