code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase_ ( lowerCamelCase , unittest.TestCase ): a__ = KandinskyVaaPipeline a__ = [ '''image_embeds''', '''negative_image_embeds''', ] a__ = ['''image_embeds''', '''negative_image_embeds'''] a__ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] a__ = False @property def A ( self ): """simple docstring""" return 3_2 @property def A ( self ): """simple docstring""" return 3_2 @property def A ( self ): """simple docstring""" return self.time_input_dim @property def A ( self ): """simple docstring""" return self.time_input_dim * 4 @property def A ( self ): """simple docstring""" return 1_0_0 @property def A ( self ): """simple docstring""" torch.manual_seed(0 ) __magic_name__ :str = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __magic_name__ :Optional[int] = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def A ( self ): """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A ( self ): """simple docstring""" torch.manual_seed(0 ) __magic_name__ :int = VQModel(**self.dummy_movq_kwargs ) return model def A ( self ): """simple docstring""" __magic_name__ :Dict = self.dummy_unet __magic_name__ :str = self.dummy_movq __magic_name__ :Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__lowerCAmelCase , ) __magic_name__ :Dict = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" __magic_name__ :int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) __magic_name__ :Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCAmelCase ) if str(__lowerCAmelCase ).startswith('''mps''' ): __magic_name__ :Dict = torch.manual_seed(__lowerCAmelCase ) else: __magic_name__ :Any = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def A ( self ): """simple docstring""" __magic_name__ :Dict = '''cpu''' __magic_name__ :int = self.get_dummy_components() __magic_name__ :List[Any] = self.pipeline_class(**__lowerCAmelCase ) __magic_name__ :Optional[int] = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) __magic_name__ :Optional[int] = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) __magic_name__ :Optional[int] = output.images __magic_name__ :Optional[int] = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] __magic_name__ :List[Any] = image[0, -3:, -3:, -1] __magic_name__ :Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __magic_name__ :str = np.array( [0.6237976, 1.0, 0.36441332, 1.0, 0.70639634, 0.29877186, 0.85652125, 0.5216843, 0.54454046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def A ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self ): """simple docstring""" __magic_name__ :Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) __magic_name__ :Dict = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) __magic_name__ :Any = KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) __magic_name__ :List[str] = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) __magic_name__ :int = '''red cat, 4k photo''' __magic_name__ :int = torch.Generator(device='''cuda''' ).manual_seed(0 ) __magic_name__ , __magic_name__ :int = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __magic_name__ :int = torch.Generator(device='''cuda''' ).manual_seed(0 ) __magic_name__ :Optional[Any] = pipeline( image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=1_0_0 , output_type='''np''' , ) __magic_name__ :Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[str] = 'ylacombe/bark-small' _lowerCAmelCase :int = tempfile.mkdtemp() _lowerCAmelCase :List[str] = 'en_speaker_1' _lowerCAmelCase :Union[str, Any] = 'This is a test string' _lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json' _lowerCAmelCase :str = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[Any] = self.get_tokenizer() _lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase :Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase :List[Any] = 35 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :Dict = 8 _lowerCAmelCase :Dict = { 'semantic_prompt': np.ones(_UpperCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Tuple = self.get_tokenizer() _lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = processor(text=self.input_string ) _lowerCAmelCase :List[str] = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
687
0
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case = random.Random() if is_torch_available(): import torch def _A ( _lowercase , _lowercase=1.0 , _lowercase=None , _lowercase=None ) -> Dict: """simple docstring""" if rng is None: __UpperCamelCase = global_rng __UpperCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowerCamelCase (unittest.TestCase ): def __init__( self: List[Any],A_: int,A_: Optional[int]=7,A_: Tuple=400,A_: Optional[int]=2000,A_: str=1,A_: Dict=0.0,A_: Any=1_6000,A_: List[Any]=True,A_: List[Any]=True,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = min_seq_length __UpperCamelCase = max_seq_length __UpperCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCamelCase = feature_size __UpperCamelCase = padding_value __UpperCamelCase = sampling_rate __UpperCamelCase = return_attention_mask __UpperCamelCase = do_normalize def snake_case_ ( self: int ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case_ ( self: Any,A_: Tuple=False,A_: int=False ): '''simple docstring''' def _flatten(A_: Optional[int] ): return list(itertools.chain(*A_ ) ) if equal_length: __UpperCamelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __UpperCamelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length,self.max_seq_length,self.seq_length_diff ) ] if numpify: __UpperCamelCase = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = ASTFeatureExtractor def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = ASTFeatureExtractionTester(self ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCamelCase = [floats_list((1, x) )[0] for x in range(800,1400,200 )] __UpperCamelCase = [np.asarray(A_ ) for speech_input in speech_inputs] # Test not batched input __UpperCamelCase = feat_extract(speech_inputs[0],return_tensors='np' ).input_values __UpperCamelCase = feat_extract(np_speech_inputs[0],return_tensors='np' ).input_values self.assertTrue(np.allclose(A_,A_,atol=1E-3 ) ) # Test batched __UpperCamelCase = feat_extract(A_,padding=A_,return_tensors='np' ).input_values __UpperCamelCase = feat_extract(A_,padding=A_,return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(A_,A_ ): self.assertTrue(np.allclose(A_,A_,atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __UpperCamelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] __UpperCamelCase = np.asarray(A_ ) __UpperCamelCase = feat_extract(A_,return_tensors='np' ).input_values __UpperCamelCase = feat_extract(A_,return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(A_,A_ ): self.assertTrue(np.allclose(A_,A_,atol=1E-3 ) ) @require_torch def snake_case_ ( self: Optional[Any] ): '''simple docstring''' import torch __UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase = np.random.rand(100 ).astype(np.floataa ) __UpperCamelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCamelCase = feature_extractor.pad([{'input_values': inputs}],return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __UpperCamelCase = feature_extractor.pad([{'input_values': inputs}],return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def snake_case_ ( self: Any,A_: Union[str, Any] ): '''simple docstring''' from datasets import load_dataset __UpperCamelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy','clean',split='validation' ) # automatic decoding with librispeech __UpperCamelCase = ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on __UpperCamelCase = self._load_datasamples(1 ) __UpperCamelCase = ASTFeatureExtractor() __UpperCamelCase = feature_extractor(A_,return_tensors='pt' ).input_values self.assertEquals(input_values.shape,(1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30],A_,atol=1E-4 ) )
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = 'bert' def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :Dict = num_hidden_layers _lowerCAmelCase :Optional[Any] = num_attention_heads _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = intermediate_size _lowerCAmelCase :Tuple = hidden_dropout_prob _lowerCAmelCase :Tuple = attention_probs_dropout_prob _lowerCAmelCase :List[Any] = max_position_embeddings _lowerCAmelCase :Dict = type_vocab_size _lowerCAmelCase :Any = initializer_range _lowerCAmelCase :int = layer_norm_eps _lowerCAmelCase :List[Any] = position_embedding_type _lowerCAmelCase :int = use_cache _lowerCAmelCase :Union[str, Any] = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): if self.task == "multiple-choice": _lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
687
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : Optional[int] = KandinskyVaaControlnetPipeline a__ : Any = ["image_embeds", "negative_image_embeds", "hint"] a__ : str = ["image_embeds", "negative_image_embeds", "hint"] a__ : List[Any] = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a__ : Union[str, Any] = False @property def snake_case_ ( self : str ) -> List[Any]: return 32 @property def snake_case_ ( self : Optional[int] ) -> Optional[int]: return 32 @property def snake_case_ ( self : Union[str, Any] ) -> Tuple: return self.time_input_dim @property def snake_case_ ( self : str ) -> Any: return self.time_input_dim * 4 @property def snake_case_ ( self : Optional[int] ) -> Tuple: return 1_00 @property def snake_case_ ( self : Tuple ) -> Union[str, Any]: torch.manual_seed(0 ) _A = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _A = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def snake_case_ ( self : Tuple ) -> List[Any]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case_ ( self : int ) -> List[str]: torch.manual_seed(0 ) _A = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self : List[str] ) -> Dict: _A = self.dummy_unet _A = self.dummy_movq _A = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__lowerCAmelCase , ) _A = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=0 ) -> Optional[Any]: _A = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) _A = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCAmelCase ) # create hint _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) if str(__lowerCAmelCase ).startswith('''mps''' ): _A = torch.manual_seed(__lowerCAmelCase ) else: _A = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _A = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def snake_case_ ( self : Any ) -> Union[str, Any]: _A = '''cpu''' _A = self.get_dummy_components() _A = self.pipeline_class(**__lowerCAmelCase ) _A = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _A = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) _A = output.images _A = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A = np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Any ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self : Tuple ) -> List[Any]: _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) _A = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) _A = torch.from_numpy(np.array(__lowerCAmelCase ) ).float() / 255.0 _A = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _A = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) _A = KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) _A = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) _A = '''A robot, 4k photo''' _A = torch.Generator(device='''cuda''' ).manual_seed(0 ) _A , _A = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _A = torch.Generator(device='''cuda''' ).manual_seed(0 ) _A = pipeline( image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , hint=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=1_00 , output_type='''np''' , ) _A = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
2
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
0
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def A_( A : str , A : Dict , A : Optional[Any] , A : List[str]): for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def A_( A : Union[str, Any] , A : List[Any] , A : Optional[Any] , A : Optional[Any] , A : Tuple=True): model.train() UpperCamelCase = model(A) UpperCamelCase = F.mse_loss(A , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(A) def A_( A : str , A : List[str]=False): set_seed(42) UpperCamelCase = RegressionModel() UpperCamelCase = deepcopy(A) UpperCamelCase = RegressionDataset(length=80) UpperCamelCase = DataLoader(A , batch_size=16) model.to(accelerator.device) if sched: UpperCamelCase = AdamW(params=model.parameters() , lr=1E-3) UpperCamelCase = AdamW(params=ddp_model.parameters() , lr=1E-3) UpperCamelCase = LambdaLR(A , lr_lambda=lambda A: epoch**0.65) UpperCamelCase = LambdaLR(A , lr_lambda=lambda A: epoch**0.65) # Make a copy of `model` if sched: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare(A , A , A , A) else: UpperCamelCase , UpperCamelCase = accelerator.prepare(A , A) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def A_( A : Union[str, Any]): # Test when on a single CPU or GPU that the context manager does nothing UpperCamelCase , UpperCamelCase , UpperCamelCase = get_training_setup(A) # Use a single batch UpperCamelCase , UpperCamelCase = next(iter(A)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model UpperCamelCase , UpperCamelCase = accelerator.gather((ddp_input, ddp_target)) UpperCamelCase , UpperCamelCase = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(A , A , A , A) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(A): step_model(A , A , A , A) else: # Sync grads step_model(A , A , A , A) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(A , A , A , A) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) UpperCamelCase = ddp_input[torch.randperm(len(A))] def A_( A : Optional[int]): # Test on distributed setup that context manager behaves properly UpperCamelCase , UpperCamelCase , UpperCamelCase = get_training_setup(A) # Use a single batch UpperCamelCase , UpperCamelCase = next(iter(A)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model UpperCamelCase , UpperCamelCase = accelerator.gather((ddp_input, ddp_target)) UpperCamelCase , UpperCamelCase = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(A , A , A , A) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(A): step_model(A , A , A , A) else: # Sync grads step_model(A , A , A , A) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) UpperCamelCase = ddp_input[torch.randperm(len(A))] def A_( A : int=False , A : Optional[Any]=False): UpperCamelCase = Accelerator( split_batches=A , dispatch_batches=A , gradient_accumulation_steps=2) # Test that context manager behaves properly UpperCamelCase , UpperCamelCase , UpperCamelCase = get_training_setup(A) for iteration, batch in enumerate(A): UpperCamelCase , UpperCamelCase = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase , UpperCamelCase = accelerator.gather((ddp_input, ddp_target)) UpperCamelCase , UpperCamelCase = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(A , A , A , A , A) # Do "gradient accumulation" (noop) with accelerator.accumulate(A): step_model(A , A , A , A) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(A) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) UpperCamelCase = ddp_input[torch.randperm(len(A))] GradientState._reset_state() def A_( A : Any=False , A : Optional[int]=False): UpperCamelCase = Accelerator( split_batches=A , dispatch_batches=A , gradient_accumulation_steps=2) # Test that context manager behaves properly UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = get_training_setup(A , A) for iteration, batch in enumerate(A): UpperCamelCase , UpperCamelCase = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase , UpperCamelCase = accelerator.gather((ddp_input, ddp_target)) UpperCamelCase , UpperCamelCase = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(A , A , A , A , A) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(A)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(A): step_model(A , A , A , A) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' UpperCamelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(A)) if accelerator.num_processes > 1: check_model_parameters(A , A , A , A) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def A_( ): UpperCamelCase = Accelerator() UpperCamelCase = RegressionDataset(length=80) UpperCamelCase = DataLoader(A , batch_size=16) UpperCamelCase = RegressionDataset(length=96) UpperCamelCase = DataLoader(A , batch_size=16) UpperCamelCase , UpperCamelCase = accelerator.prepare(A , A) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(A): assert id(accelerator.gradient_state.active_dataloader) == id(A) if iteration < len(A) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(A): assert id(accelerator.gradient_state.active_dataloader) == id(A) if batch_num < len(A) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def A_( ): UpperCamelCase = Accelerator() UpperCamelCase = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**') test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**') test_noop_sync(A) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**') test_distributed_sync(A) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(A , A) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0') or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(A , A) def A_( A : List[str]): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
3
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
0
"""simple docstring""" from collections import defaultdict class a : def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 lowerCAmelCase = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(_snake_case ) ) ] lowerCAmelCase = defaultdict(_snake_case ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 lowerCAmelCase = (1 << len(_snake_case )) - 1 def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement lowerCAmelCase = self.count_ways_until(_snake_case , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. lowerCAmelCase = total_ways_util return self.dp[mask][task_no] def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" for i in range(len(_snake_case ) ): for j in task_performed[i]: self.task[j].append(_snake_case ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": __UpperCamelCase : Tuple = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __UpperCamelCase : str = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
4
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
0
'''simple docstring''' import argparse import struct import unittest class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = data # Initialize hash values _lowerCAmelCase = [ 0x6_A_0_9_E_6_6_7, 0xB_B_6_7_A_E_8_5, 0x3_C_6_E_F_3_7_2, 0xA_5_4_F_F_5_3_A, 0x5_1_0_E_5_2_7_F, 0x9_B_0_5_6_8_8_C, 0x1_F_8_3_D_9_A_B, 0x5_B_E_0_C_D_1_9, ] # Initialize round constants _lowerCAmelCase = [ 0x4_2_8_A_2_F_9_8, 0x7_1_3_7_4_4_9_1, 0xB_5_C_0_F_B_C_F, 0xE_9_B_5_D_B_A_5, 0x3_9_5_6_C_2_5_B, 0x5_9_F_1_1_1_F_1, 0x9_2_3_F_8_2_A_4, 0xA_B_1_C_5_E_D_5, 0xD_8_0_7_A_A_9_8, 0x1_2_8_3_5_B_0_1, 0x2_4_3_1_8_5_B_E, 0x5_5_0_C_7_D_C_3, 0x7_2_B_E_5_D_7_4, 0x8_0_D_E_B_1_F_E, 0x9_B_D_C_0_6_A_7, 0xC_1_9_B_F_1_7_4, 0xE_4_9_B_6_9_C_1, 0xE_F_B_E_4_7_8_6, 0x0_F_C_1_9_D_C_6, 0x2_4_0_C_A_1_C_C, 0x2_D_E_9_2_C_6_F, 0x4_A_7_4_8_4_A_A, 0x5_C_B_0_A_9_D_C, 0x7_6_F_9_8_8_D_A, 0x9_8_3_E_5_1_5_2, 0xA_8_3_1_C_6_6_D, 0xB_0_0_3_2_7_C_8, 0xB_F_5_9_7_F_C_7, 0xC_6_E_0_0_B_F_3, 0xD_5_A_7_9_1_4_7, 0x0_6_C_A_6_3_5_1, 0x1_4_2_9_2_9_6_7, 0x2_7_B_7_0_A_8_5, 0x2_E_1_B_2_1_3_8, 0x4_D_2_C_6_D_F_C, 0x5_3_3_8_0_D_1_3, 0x6_5_0_A_7_3_5_4, 0x7_6_6_A_0_A_B_B, 0x8_1_C_2_C_9_2_E, 0x9_2_7_2_2_C_8_5, 0xA_2_B_F_E_8_A_1, 0xA_8_1_A_6_6_4_B, 0xC_2_4_B_8_B_7_0, 0xC_7_6_C_5_1_A_3, 0xD_1_9_2_E_8_1_9, 0xD_6_9_9_0_6_2_4, 0xF_4_0_E_3_5_8_5, 0x1_0_6_A_A_0_7_0, 0x1_9_A_4_C_1_1_6, 0x1_E_3_7_6_C_0_8, 0x2_7_4_8_7_7_4_C, 0x3_4_B_0_B_C_B_5, 0x3_9_1_C_0_C_B_3, 0x4_E_D_8_A_A_4_A, 0x5_B_9_C_C_A_4_F, 0x6_8_2_E_6_F_F_3, 0x7_4_8_F_8_2_E_E, 0x7_8_A_5_6_3_6_F, 0x8_4_C_8_7_8_1_4, 0x8_C_C_7_0_2_0_8, 0x9_0_B_E_F_F_F_A, 0xA_4_5_0_6_C_E_B, 0xB_E_F_9_A_3_F_7, 0xC_6_7_1_7_8_F_2, ] _lowerCAmelCase = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowercase ( _lowercase ): """simple docstring""" _lowerCAmelCase = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowercase ) + 8) % 64)) _lowerCAmelCase = struct.pack(""">Q""" , (len(_lowercase ) * 8) ) return data + padding + big_endian_integer def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase = list(struct.unpack(""">16L""" , _lowercase ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0_0_0_0_0_0_0_0 # Compression _lowerCAmelCase = self.ror(_lowercase , 6 ) ^ self.ror(_lowercase , 11 ) ^ self.ror(_lowercase , 25 ) _lowerCAmelCase = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g) _lowerCAmelCase = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0_0_0_0_0_0_0_0 _lowerCAmelCase = self.ror(_lowercase , 2 ) ^ self.ror(_lowercase , 13 ) ^ self.ror(_lowercase , 22 ) _lowerCAmelCase = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase = (sa + maj) % 0x1_0_0_0_0_0_0_0_0 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = ( g, f, e, ((d + tempa) % 0x1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0), ) _lowerCAmelCase = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase = [ ((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase = """""".join([hex(_lowercase )[2:].zfill(8 ) for value in self.hashes] ) def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" import hashlib _lowerCAmelCase = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(_lowercase ).hash , hashlib.shaaaa(_lowercase ).hexdigest() ) def A (): import doctest doctest.testmod() _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: _lowerCAmelCase = f.read() else: _lowerCAmelCase = bytes(__lowerCamelCase , """utf-8""" ) print(SHAaaa(__lowerCamelCase ).hash ) if __name__ == "__main__": main()
5
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
0
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "" lowerCamelCase_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCamelCase_ = None # compression type in fsspec. ex: "gzip" lowerCamelCase_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self :Optional[int] , __A :str = "" , __A :Optional[str] = None , __A :Optional[dict] = None , **__A :List[str] ) -> Any: """simple docstring""" super().__init__(self , **__A ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode SCREAMING_SNAKE_CASE__ = fsspec.open( __A , mode="""rb""" , protocol=__A , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) SCREAMING_SNAKE_CASE__ = os.path.basename(self.file.path.split("""::""" )[0] ) SCREAMING_SNAKE_CASE__ = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) SCREAMING_SNAKE_CASE__ = None @classmethod def _snake_case ( cls :Any , __A :Tuple ) -> List[str]: """simple docstring""" return super()._strip_protocol(__A ).lstrip("""/""" ) def _snake_case ( self :Union[str, Any] ) -> Tuple: """simple docstring""" if self.dir_cache is None: SCREAMING_SNAKE_CASE__ = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} SCREAMING_SNAKE_CASE__ = {f["""name"""]: f} def _snake_case ( self :Optional[int] , __A :str ) -> str: """simple docstring""" return self.file.open().read() def _snake_case ( self :List[str] , __A :str , __A :str = "rb" , __A :int=None , __A :List[str]=True , __A :Optional[Any]=None , **__A :Union[str, Any] , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self._strip_protocol(__A ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "bz2" lowerCamelCase_ = "bz2" lowerCamelCase_ = ".bz2" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "gzip" lowerCamelCase_ = "gzip" lowerCamelCase_ = ".gz" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "lz4" lowerCamelCase_ = "lz4" lowerCamelCase_ = ".lz4" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "xz" lowerCamelCase_ = "xz" lowerCamelCase_ = ".xz" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "zstd" lowerCamelCase_ = "zstd" lowerCamelCase_ = ".zst" def __init__( self :List[Any] , __A :str , __A :str = "rb" , __A :Optional[str] = None , __A :Optional[dict] = None , __A :int = DEFAULT_BLOCK_SIZE , **__A :Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__( fo=__A , mode=__A , target_protocol=__A , target_options=__A , block_size=__A , **__A , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 SCREAMING_SNAKE_CASE__ = self.file.__enter__ class UpperCamelCase_ : def __init__( self :int , __A :Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = file_ def __enter__( self :Optional[Any] ) -> Optional[int]: """simple docstring""" self._file.__enter__() return self def __exit__( self :Optional[Any] , *__A :List[Any] , **__A :int ) -> Tuple: """simple docstring""" self._file.__exit__(*__A , **__A ) def __iter__( self :Any ) -> Optional[int]: """simple docstring""" return iter(self._file ) def _snake_case ( self :Dict ) -> Dict: """simple docstring""" return next(self._file ) def __getattr__( self :Union[str, Any] , __A :List[str] ) -> Optional[Any]: """simple docstring""" return getattr(self._file , __A ) def fixed_enter(*__A :List[Any] , **__A :Optional[int] ): return WrappedFile(_enter(*__A , **__A ) ) SCREAMING_SNAKE_CASE__ = fixed_enter
6
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ): _lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20} _lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase :str = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :Optional[Any] = num_channels _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :int = min_resolution _lowerCAmelCase :List[str] = max_resolution _lowerCAmelCase :List[str] = do_resize _lowerCAmelCase :Optional[int] = size _lowerCAmelCase :str = do_center_crop _lowerCAmelCase :int = crop_size _lowerCAmelCase :Optional[int] = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: int ): # Initialize image_processing _lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # Initialize image_processing _lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any ): # Initialize image_processing _lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
687
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
7
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Any = PandasConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :Any = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Any = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
687
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
import glob import os import random from string import ascii_lowercase, digits import cva a = """""" a = """""" a = """""" a = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ ) print('Processing...' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase :Optional[Any] = random_chars(32 ) _lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" ) _lowerCAmelCase :str = [] for anno in new_annos[index]: _lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__magic_name__ ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = [] _lowerCAmelCase :Union[str, Any] = [] for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ): _lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__magic_name__ ) as in_file: _lowerCAmelCase :Union[str, Any] = in_file.readlines() _lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" ) _lowerCAmelCase :Tuple = [] for obj_list in obj_lists: _lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :Any = [] _lowerCAmelCase :Optional[Any] = [] for idx in range(len(__magic_name__ ) ): _lowerCAmelCase :Optional[int] = [] _lowerCAmelCase :Optional[Any] = img_list[idx] path_list.append(__magic_name__ ) _lowerCAmelCase :List[str] = anno_list[idx] _lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ ) if flip_type == 1: _lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_( __magic_name__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase :str = ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
687
0
def A ( __UpperCamelCase , __UpperCamelCase ) -> str: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError('iterations must be defined as integers' ) if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) A__ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__UpperCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
9
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ ) _lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ ) return torch.mm(__magic_name__ , normalized_text_embeds.t() ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = CLIPConfig lowerCamelCase : Any = ['CLIPEncoderLayer'] def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ): super().__init__(_UpperCAmelCase ) _lowerCAmelCase :Any = CLIPVisionModel(config.vision_config ) _lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) _lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase :str = [] _lowerCAmelCase :List[Any] = image_embeds.shape[0] for i in range(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx] _lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowerCAmelCase :Any = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx] _lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) _lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ): _lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) _lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :Any = 0.0 _lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase :List[str] = special_care * 0.0_1 _lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowerCAmelCase = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def _snake_case ( __snake_case ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__snake_case ) def _snake_case ( __snake_case ): from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__snake_case , id=__snake_case )
10
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
0
'''simple docstring''' class __A : '''simple docstring''' def __init__(self ) -> None: """simple docstring""" _a = {} # Mapping from char to TrieNode _a = False def a__ (self , A ) -> None: """simple docstring""" for word in words: self.insert(A ) def a__ (self , A ) -> None: """simple docstring""" _a = self for char in word: if char not in curr.nodes: _a = TrieNode() _a = curr.nodes[char] _a = True def a__ (self , A ) -> bool: """simple docstring""" _a = self for char in word: if char not in curr.nodes: return False _a = curr.nodes[char] return curr.is_leaf def a__ (self , A ) -> None: """simple docstring""" def _delete(A , A , A ) -> bool: if index == len(A ): # If word does not exist if not curr.is_leaf: return False _a = False return len(curr.nodes ) == 0 _a = word[index] _a = curr.nodes.get(A ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _a = _delete(A , A , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , A , 0 ) def lowerCAmelCase (__A , __A): """simple docstring""" if node.is_leaf: print(__A , end=''' ''') for key, value in node.nodes.items(): print_words(__A , word + key) def lowerCAmelCase (): """simple docstring""" _a = '''banana bananas bandana band apple all beast'''.split() _a = TrieNode() root.insert_many(__A) # print_words(root, "") assert all(root.find(__A) for word in words) assert root.find('''banana''') assert not root.find('''bandanas''') assert not root.find('''apps''') assert root.find('''apple''') assert root.find('''all''') root.delete('''all''') assert not root.find('''all''') root.delete('''banana''') assert not root.find('''banana''') assert root.find('''bananas''') return True def lowerCAmelCase (__A , __A): """simple docstring""" print(str(__A) , '''works!''' if passes else '''doesn\'t work :(''') def lowerCAmelCase (): """simple docstring""" assert test_trie() def lowerCAmelCase (): """simple docstring""" print_results('''Testing trie functionality''' , test_trie()) if __name__ == "__main__": main()
11
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'encoder-decoder' lowerCamelCase : Optional[Any] = True def __init__( self: str , **_UpperCAmelCase: int ): super().__init__(**_UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' ) _lowerCAmelCase :Dict = encoder_config.pop('model_type' ) _lowerCAmelCase :str = kwargs.pop('decoder' ) _lowerCAmelCase :str = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCAmelCase :Dict = True _lowerCAmelCase :List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :Optional[int] = self.encoder.to_dict() _lowerCAmelCase :Union[str, Any] = self.decoder.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output
687
0
import argparse import os import re lowerCamelCase__ : str = """src/diffusers""" # Pattern that looks at the indentation in a line. lowerCamelCase__ : str = re.compile(R"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowerCamelCase__ : Optional[Any] = re.compile(R"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCamelCase__ : str = re.compile(R"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowerCamelCase__ : Any = re.compile(R"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCamelCase__ : Union[str, Any] = re.compile(R"""\[([^\]]+)\]""") def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' lowercase__ : Optional[Any] = _re_indent.search(lowercase_ ) return "" if search is None else search.groups()[0] def UpperCamelCase ( lowercase_ , lowercase_="" , lowercase_=None , lowercase_=None ) -> Optional[int]: '''simple docstring''' lowercase__ : int = 0 lowercase__ : List[Any] = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(lowercase_ ): index += 1 lowercase__ : Dict = ["""\n""".join(lines[:index] )] else: lowercase__ : Dict = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase__ : str = [lines[index]] index += 1 while index < len(lowercase_ ) and (end_prompt is None or not lines[index].startswith(lowercase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowercase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(lowercase_ ) ) if index < len(lowercase_ ) - 1: lowercase__ : Union[str, Any] = [lines[index + 1]] index += 1 else: lowercase__ : Union[str, Any] = [] else: blocks.append("""\n""".join(lowercase_ ) ) lowercase__ : List[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowercase_ ) > 0: blocks.append("""\n""".join(lowercase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowercase_ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def UpperCamelCase ( lowercase_ ) -> List[Any]: '''simple docstring''' def _inner(lowercase_ ): return key(lowercase_ ).lower().replace("""_""" , """""" ) return _inner def UpperCamelCase ( lowercase_ , lowercase_=None ) -> str: '''simple docstring''' def noop(lowercase_ ): return x if key is None: lowercase__ : str = noop # Constants are all uppercase, they go first. lowercase__ : List[Any] = [obj for obj in objects if key(lowercase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase__ : List[str] = [obj for obj in objects if key(lowercase_ )[0].isupper() and not key(lowercase_ ).isupper()] # Functions begin with a lowercase, they go last. lowercase__ : Tuple = [obj for obj in objects if not key(lowercase_ )[0].isupper()] lowercase__ : Optional[Any] = ignore_underscore(lowercase_ ) return sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ ) def UpperCamelCase ( lowercase_ ) -> Dict: '''simple docstring''' def _replace(lowercase_ ): lowercase__ : int = match.groups()[0] if "," not in imports: return F'[{imports}]' lowercase__ : Tuple = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ : str = keys[:-1] return "[" + ", ".join([F'"{k}"' for k in sort_objects(lowercase_ )] ) + "]" lowercase__ : Optional[int] = import_statement.split("""\n""" ) if len(lowercase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase__ : List[str] = 2 if lines[1].strip() == """[""" else 1 lowercase__ : Union[str, Any] = [(i, _re_strip_line.search(lowercase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase__ : Any = sort_objects(lowercase_ , key=lambda lowercase_ : x[1] ) lowercase__ : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowercase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase__ : Any = _re_bracket_content.sub(_replace , lines[1] ) else: lowercase__ : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase__ : List[str] = keys[:-1] lowercase__ : List[str] = get_indent(lines[1] ) + """, """.join([F'"{k}"' for k in sort_objects(lowercase_ )] ) return "\n".join(lowercase_ ) else: # Finally we have to deal with imports fitting on one line lowercase__ : str = _re_bracket_content.sub(_replace , lowercase_ ) return import_statement def UpperCamelCase ( lowercase_ , lowercase_=True ) -> int: '''simple docstring''' with open(lowercase_ , """r""" ) as f: lowercase__ : List[Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase__ : Optional[Any] = split_code_in_indented_blocks( lowercase_ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowercase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase__ : Any = main_blocks[block_idx] lowercase__ : Union[str, Any] = block.split("""\n""" ) # Get to the start of the imports. lowercase__ : int = 0 while line_idx < len(lowercase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase__ : List[str] = len(lowercase_ ) else: line_idx += 1 if line_idx >= len(lowercase_ ): continue # Ignore beginning and last line: they don't contain anything. lowercase__ : List[Any] = """\n""".join(block_lines[line_idx:-1] ) lowercase__ : Optional[Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase__ : Union[str, Any] = split_code_in_indented_blocks(lowercase_ , indent_level=lowercase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase__ : Tuple = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase__ : Dict = [(pattern.search(lowercase_ ).groups()[0] if pattern.search(lowercase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase__ : Any = [(i, key) for i, key in enumerate(lowercase_ ) if key is not None] lowercase__ : List[str] = [x[0] for x in sorted(lowercase_ , key=lambda lowercase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase__ : Any = 0 lowercase__ : Optional[int] = [] for i in range(len(lowercase_ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowercase__ : List[str] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(lowercase_ ) count += 1 # And we put our main block back together with its first and last line. lowercase__ : List[Any] = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(lowercase_ ): if check_only: return True else: print(F'Overwriting {file}.' ) with open(lowercase_ , """w""" ) as f: f.write("""\n""".join(lowercase_ ) ) def UpperCamelCase ( lowercase_=True ) -> int: '''simple docstring''' lowercase__ : Optional[Any] = [] for root, _, files in os.walk(lowercase_ ): if "__init__.py" in files: lowercase__ : int = sort_imports(os.path.join(lowercase_ , """__init__.py""" ) , check_only=lowercase_ ) if result: lowercase__ : Dict = [os.path.join(lowercase_ , """__init__.py""" )] if len(lowercase_ ) > 0: raise ValueError(F'Would overwrite {len(lowercase_ )} files, run `make style`.' ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCamelCase__ : str = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
12
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
0
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int ) -> float: __lowerCamelCase : Union[str, Any] = u for i in range(1 , UpperCAmelCase_ ): __lowerCamelCase : Any = temp * (u - i) return temp def UpperCAmelCase__ ( ) -> None: __lowerCamelCase : List[Any] = int(input('enter the numbers of values: ' ) ) __lowerCamelCase : list[list[float]] = [] for _ in range(UpperCAmelCase_ ): y.append([] ) for i in range(UpperCAmelCase_ ): for j in range(UpperCAmelCase_ ): y[i].append(UpperCAmelCase_ ) __lowerCamelCase : Tuple = 0 print('enter the values of parameters in a list: ' ) __lowerCamelCase : int = list(map(UpperCAmelCase_ , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(UpperCAmelCase_ ): __lowerCamelCase : Union[str, Any] = float(input() ) __lowerCamelCase : str = int(input('enter the value to interpolate: ' ) ) __lowerCamelCase : Tuple = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCAmelCase_ ): for j in range(n - i ): __lowerCamelCase : Union[str, Any] = y[j + 1][i - 1] - y[j][i - 1] __lowerCamelCase : List[str] = y[0][0] for i in range(1 , UpperCAmelCase_ ): summ += (ucal(UpperCAmelCase_ , UpperCAmelCase_ ) * y[0][i]) / math.factorial(UpperCAmelCase_ ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
13
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[Any] = "visual_bert" def __init__( self , _a=3_0_5_2_2 , _a=7_6_8 , _a=5_1_2 , _a=1_2 , _a=1_2 , _a=3_0_7_2 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=2 , _a=0.02 , _a=1e-1_2 , _a=False , _a=True , _a=1 , _a=0 , _a=2 , **_a , ) -> str: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _a : Any = vocab_size _a : List[str] = max_position_embeddings _a : Dict = hidden_size _a : Union[str, Any] = visual_embedding_dim _a : Tuple = num_hidden_layers _a : int = num_attention_heads _a : Union[str, Any] = intermediate_size _a : List[Any] = hidden_act _a : Union[str, Any] = hidden_dropout_prob _a : List[Any] = attention_probs_dropout_prob _a : Optional[Any] = initializer_range _a : Tuple = type_vocab_size _a : List[str] = layer_norm_eps _a : int = bypass_transformer _a : Optional[int] = special_visual_initialize
14
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[int] = 10 def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :str = [1, 2, 3, 4] _lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[int] = '' _lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = ['It was the best of times.'] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[str] = 101 _lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
687
0
A : List[Any] = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' A : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] A : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
15
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
687
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=7 , __lowerCamelCase : Any=3 , __lowerCamelCase : Any=30 , __lowerCamelCase : Any=400 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[int]=0.9 , __lowerCamelCase : Dict=None , __lowerCamelCase : Dict=True , __lowerCamelCase : List[Any]=[0.5, 0.5, 0.5] , __lowerCamelCase : Dict=[0.5, 0.5, 0.5] , ): SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 30} SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"height": 30, "width": 30} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize_and_center_crop SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = crop_pct SCREAMING_SNAKE_CASE = crop_size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std def _snake_case ( self : Dict ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = PoolFormerImageProcessor if is_vision_available() else None def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = PoolFormerImageProcessingTester(self ) @property def _snake_case ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize_and_center_crop" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) self.assertTrue(hasattr(__lowerCamelCase , "crop_pct" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30} ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _snake_case ( self : List[str] ): pass def _snake_case ( self : List[Any] ): # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _snake_case ( self : Optional[int] ): # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _snake_case ( self : str ): # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
16
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
0
from sklearn.metrics import recall_score import datasets UpperCAmelCase_ : Dict = ''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' UpperCAmelCase_ : List[Any] = ''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' UpperCAmelCase_ : Tuple = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def lowerCAmelCase_ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowerCAmelCase_ ( self : str , __A : Union[str, Any] , __A : Any , __A : Any=None , __A : str=1 , __A : int="binary" , __A : Any=None , __A : List[str]="warn" , ): __A : Optional[Any] = recall_score( __A , __A , labels=__A , pos_label=__A , average=__A , sample_weight=__A , zero_division=__A , ) return {"recall": float(__A ) if score.size == 1 else score}
17
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "markuplm" def __init__( self , _lowerCAmelCase=30522 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=256 , _lowerCAmelCase=1024 , _lowerCAmelCase=216 , _lowerCAmelCase=1001 , _lowerCAmelCase=32 , _lowerCAmelCase=50 , _lowerCAmelCase="absolute" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Optional[Any]: super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout # additional properties _lowerCAmelCase = max_depth _lowerCAmelCase = max_xpath_tag_unit_embeddings _lowerCAmelCase = max_xpath_subs_unit_embeddings _lowerCAmelCase = tag_pad_id _lowerCAmelCase = subs_pad_id _lowerCAmelCase = xpath_unit_hidden_size
18
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
0
"""simple docstring""" _a = 8.314_4598 def lowerCamelCase__ ( __snake_case, __snake_case ) -> float: """simple docstring""" if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _a = 300 _a = 28 _a = rms_speed_of_molecule(temperature, molar_mass) print(F"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
19
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ): """simple docstring""" _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] _lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] _lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""] _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""] _lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :int = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' ) _lowerCAmelCase :List[Any] = {} _lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight'] _lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias'] _lowerCAmelCase :Dict = checkpoint['time_embed.2.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias'] _lowerCAmelCase :List[Any] = unet_config['down_block_types'] _lowerCAmelCase :Any = unet_config['layers_per_block'] _lowerCAmelCase :List[Any] = unet_config['attention_head_dim'] _lowerCAmelCase :Tuple = unet_config['block_out_channels'] _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Optional[int] = channels_list[0] for i, layer_type in enumerate(__magic_name__ ): _lowerCAmelCase :Tuple = channels_list[i] _lowerCAmelCase :Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}""" _lowerCAmelCase :str = f"""input_blocks.{current_layer}.1""" _lowerCAmelCase :Optional[Any] = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0""" _lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 _lowerCAmelCase :Dict = current_channels # hardcoded the mid-block for now _lowerCAmelCase :int = 'mid_block.resnets.0' _lowerCAmelCase :Optional[Any] = 'middle_block.0' _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = 'mid_block.attentions.0' _lowerCAmelCase :Optional[int] = 'middle_block.1' _lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1' _lowerCAmelCase :Optional[int] = 'middle_block.2' _lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :str = unet_config['up_block_types'] for i, layer_type in enumerate(__magic_name__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1""" _lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}""" _lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1""" _lowerCAmelCase :int = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = checkpoint['out.0.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias'] _lowerCAmelCase :List[Any] = checkpoint['out.2.weight'] _lowerCAmelCase :Dict = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
687
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowerCAmelCase: List[Any] = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def _lowercase( __a : List[Any] ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__a ) def _lowercase( __a : int ): from transformers.testing_utils import pytest_terminal_summary_main a__ =terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(__a , id=__a )
20
import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) _lowerCAmelCase :Tuple = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ): _lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
687
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase_ : Optional[Any] = logging.getLogger(__name__) UpperCAmelCase_ : Union[str, Any] = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase_ : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A : UpperCamelCase = field( default=UpperCamelCase__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCamelCase__ )} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def A__ ( self :Union[str, Any] ): '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class __A : UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """The input training data file (a text file)."""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCamelCase = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCamelCase = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def A__ ( self :Optional[int] ): '''simple docstring''' if self.train_file is not None: __magic_name__ : Dict =self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __magic_name__ : Union[str, Any] =self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with open(lowerCamelCase , """r""" , encoding="""utf-8""" ) as f: __magic_name__ : Any =[json.loads(lowerCamelCase ) for line in f.read().splitlines() if (len(lowerCamelCase ) > 0 and not line.isspace())] assert len(lowerCamelCase ) == len(lowerCamelCase ) __magic_name__ : Optional[Any] ={c: dataset[c] for c in dataset.column_names} __magic_name__ : List[str] =refs return Dataset.from_dict(lowerCamelCase ) def lowerCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __magic_name__ : str =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __magic_name__ , __magic_name__ , __magic_name__ : int =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =parser.parse_args_into_dataclasses() # Detecting last checkpoint. __magic_name__ : List[str] =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __magic_name__ : Optional[int] =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __magic_name__ : Union[str, Any] =load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): __magic_name__ : int =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , ) __magic_name__ : Optional[Any] =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , ) else: __magic_name__ : str ={} if data_args.train_file is not None: __magic_name__ : List[Any] =data_args.train_file if data_args.validation_file is not None: __magic_name__ : str =data_args.validation_file __magic_name__ : List[Any] =data_args.train_file.split(""".""" )[-1] if extension == "txt": __magic_name__ : List[str] ="""text""" __magic_name__ : Optional[Any] =load_dataset(lowerCamelCase , data_files=lowerCamelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __magic_name__ : List[Any] ={ """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: __magic_name__ : Tuple =AutoConfig.from_pretrained(model_args.config_name , **lowerCamelCase ) elif model_args.model_name_or_path: __magic_name__ : int =AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCamelCase ) else: __magic_name__ : Any =CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) __magic_name__ : Any ={ """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __magic_name__ : List[str] =AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowerCamelCase ) elif model_args.model_name_or_path: __magic_name__ : Dict =AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowerCamelCase ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: __magic_name__ : List[str] =AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) __magic_name__ : List[str] =AutoModelForMaskedLM.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __magic_name__ : Union[str, Any] =datasets["""train"""].column_names else: __magic_name__ : List[str] =datasets["""validation"""].column_names __magic_name__ : Optional[Any] ="""text""" if """text""" in column_names else column_names[0] __magic_name__ : Union[str, Any] ="""max_length""" if data_args.pad_to_max_length else False def tokenize_function(lowerCamelCase ): # Remove empty lines __magic_name__ : Tuple =[line for line in examples["""text"""] if len(lowerCamelCase ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=data_args.max_seq_length ) __magic_name__ : List[Any] =datasets.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: __magic_name__ : str =add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: __magic_name__ : List[Any] =add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __magic_name__ : str =data_args.train_ref_file or data_args.validation_ref_file if has_ref: __magic_name__ : Optional[Any] =False # Data collator # This one will take care of randomly masking the tokens. __magic_name__ : Any =DataCollatorForWholeWordMask(tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __magic_name__ : Tuple =Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: __magic_name__ : str =last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __magic_name__ : Union[str, Any] =model_args.model_name_or_path else: __magic_name__ : int =None __magic_name__ : Dict =trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __magic_name__ : List[str] =os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation __magic_name__ : Dict ={} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __magic_name__ : Tuple =trainer.evaluate() __magic_name__ : Optional[int] =math.exp(eval_output["""eval_loss"""] ) __magic_name__ : List[Any] =perplexity __magic_name__ : Optional[int] =os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) return results def lowerCAmelCase_ ( lowerCamelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
21
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
0
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : str=1e-12 ): '''simple docstring''' _a = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase , axis=1 ) , a_min=UpperCamelCase ) ).T _a = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase , axis=1 ) , a_min=UpperCamelCase ) ).T return jnp.matmul(UpperCamelCase , norm_emb_a.T ) class A ( nn.Module ): lowercase_ = 42 lowercase_ = jnp.floataa def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _a = FlaxCLIPVisionModule(self.config.vision_config ) _a = nn.Dense(self.config.projection_dim , use_bias=lowerCAmelCase_ , dtype=self.dtype ) _a = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) _a = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) _a = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) _a = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self : Any , lowerCAmelCase_ : int ) -> List[str]: """simple docstring""" _a = self.vision_model(lowerCAmelCase_ )[1] _a = self.visual_projection(lowerCAmelCase_ ) _a = jax_cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) _a = jax_cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs _a = 0.0 _a = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment _a = jnp.round(lowerCAmelCase_ , 3 ) _a = jnp.any(special_scores > 0 , axis=1 , keepdims=lowerCAmelCase_ ) # Use a lower threshold if an image has any special care concept _a = is_special_care * 0.0_1 _a = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment _a = jnp.round(lowerCAmelCase_ , 3 ) _a = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class A ( _a ): lowercase_ = CLIPConfig lowercase_ = 'clip_input' lowercase_ = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Optional[int] , lowerCAmelCase_ : CLIPConfig , lowerCAmelCase_ : Optional[Tuple] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : jnp.dtype = jnp.floataa , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" if input_shape is None: _a = (1, 2_24, 2_24, 3) _a = self.module_class(config=lowerCAmelCase_ , dtype=lowerCAmelCase_ , **lowerCAmelCase_ ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ , input_shape=lowerCAmelCase_ , seed=lowerCAmelCase_ , dtype=lowerCAmelCase_ , _do_init=_do_init ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : jax.random.KeyArray , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : FrozenDict = None ) -> FrozenDict: """simple docstring""" _a = jax.random.normal(lowerCAmelCase_ , lowerCAmelCase_ ) _a , _a = jax.random.split(lowerCAmelCase_ ) _a = {'''params''': params_rng, '''dropout''': dropout_rng} _a = self.module.init(lowerCAmelCase_ , lowerCAmelCase_ )['''params'''] return random_params def __call__( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : dict = None , ) -> int: """simple docstring""" _a = jnp.transpose(lowerCAmelCase_ , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) , rngs={} , )
22
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[str] = 'ylacombe/bark-small' _lowerCAmelCase :int = tempfile.mkdtemp() _lowerCAmelCase :List[str] = 'en_speaker_1' _lowerCAmelCase :Union[str, Any] = 'This is a test string' _lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json' _lowerCAmelCase :str = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[Any] = self.get_tokenizer() _lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase :Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase :List[Any] = 35 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :Dict = 8 _lowerCAmelCase :Dict = { 'semantic_prompt': np.ones(_UpperCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Tuple = self.get_tokenizer() _lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = processor(text=self.input_string ) _lowerCAmelCase :List[str] = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
687
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ : List[Any] = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : str = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys snake_case__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
23
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = 'bert' def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :Dict = num_hidden_layers _lowerCAmelCase :Optional[Any] = num_attention_heads _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = intermediate_size _lowerCAmelCase :Tuple = hidden_dropout_prob _lowerCAmelCase :Tuple = attention_probs_dropout_prob _lowerCAmelCase :List[Any] = max_position_embeddings _lowerCAmelCase :Dict = type_vocab_size _lowerCAmelCase :Any = initializer_range _lowerCAmelCase :int = layer_norm_eps _lowerCAmelCase :List[Any] = position_embedding_type _lowerCAmelCase :int = use_cache _lowerCAmelCase :Union[str, Any] = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): if self.task == "multiple-choice": _lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
687
0
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def _UpperCamelCase (_lowerCamelCase : float , _lowerCamelCase : float )-> tuple: '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
24
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
0
def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[str] = 0 for ch in input_str: SCREAMING_SNAKE_CASE : Optional[int] = ord(_a) SCREAMING_SNAKE_CASE : str = pow(2 , _a) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
25
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
0
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _A ( tf.keras.layers.Layer ): def __init__( self : Dict , __magic_name__ : Dict[str, int] , __magic_name__ : List[str] , __magic_name__ : int = None , __magic_name__ : int = None ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : str = pad_token_id __snake_case : Tuple = max_length __snake_case : Dict = vocab __snake_case : Optional[Any] = merges __snake_case : Optional[Any] = BytePairTokenizer(__magic_name__ , __magic_name__ , sequence_length=__magic_name__ ) @classmethod def lowercase__ ( cls : int , __magic_name__ : GPTaTokenizer , *__magic_name__ : int , **__magic_name__ : int ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [""" """.join(__magic_name__ ) for m in tokenizer.bpe_ranks.keys()] __snake_case : List[str] = tokenizer.get_vocab() return cls(__magic_name__ , __magic_name__ , *__magic_name__ , **__magic_name__ ) @classmethod def lowercase__ ( cls : int , __magic_name__ : Union[str, os.PathLike] , *__magic_name__ : Dict , **__magic_name__ : str ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = GPTaTokenizer.from_pretrained(__magic_name__ , *__magic_name__ , **__magic_name__ ) return cls.from_tokenizer(__magic_name__ , *__magic_name__ , **__magic_name__ ) @classmethod def lowercase__ ( cls : Any , __magic_name__ : Dict ) -> List[Any]: """simple docstring""" return cls(**__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> str: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase__ ( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : int = None ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.tf_tokenizer(__magic_name__ ) __snake_case : Any = tf.ones_like(__magic_name__ ) if self.pad_token_id is not None: # pad the tokens up to max length __snake_case : Dict = max_length if max_length is not None else self.max_length if max_length is not None: __snake_case , __snake_case : Any = pad_model_inputs( __magic_name__ , max_seq_length=__magic_name__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
26
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __A : Any = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return (preds == labels).mean() @dataclass class lowerCamelCase: '''simple docstring''' __magic_name__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __magic_name__ = field( default=__snake_case , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __magic_name__ = field( default=__snake_case , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __magic_name__ = field( default=__snake_case , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class lowerCamelCase: '''simple docstring''' __magic_name__ = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) __magic_name__ = field(metadata={'help': 'Should contain the data files for the task.'} ) __magic_name__ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __magic_name__ = field( default=__snake_case , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def __lowerCAmelCase( ) -> Union[str, Any]: """simple docstring""" _A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _A, _A, _A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) try: _A = processors[data_args.task_name]() _A = processor.get_labels() _A = len(_SCREAMING_SNAKE_CASE ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_SCREAMING_SNAKE_CASE , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _A = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # Get datasets _A = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _A = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_SCREAMING_SNAKE_CASE ) -> Dict: _A = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_SCREAMING_SNAKE_CASE , p.label_ids )} # Data collator _A = DataCollatorWithPadding(_SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _A = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _A = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _A = trainer.evaluate() _A = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(_SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) writer.write('%s = %s\n' % (key, value) ) results.update(_SCREAMING_SNAKE_CASE ) return results def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" main() if __name__ == "__main__": main()
27
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' ,[ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] ,) def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' ,'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' ,'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' ,'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) SCREAMING_SNAKE_CASE : Tuple = DatasetInfosDict.from_directory(__UpperCamelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' ,[ DatasetInfo(), DatasetInfo( description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,), ] ,) def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: DatasetInfo ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = str(__UpperCamelCase ) dataset_info.write_to_directory(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = DatasetInfo.from_directory(__UpperCamelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__UpperCamelCase ,'dataset_info.json' ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = DatasetInfo( description='foo' ,citation='bar' ,homepage='https://foo.bar' ,license='CC0' ,features=Features({'a': Value('int32' )} ) ,post_processed={} ,supervised_keys=() ,task_templates=[] ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train', 'num_examples': 42}] ,download_checksums={} ,download_size=13_37 ,post_processing_size=4_42 ,dataset_size=12_34 ,size_in_bytes=13_37 + 4_42 + 12_34 ,) SCREAMING_SNAKE_CASE : Optional[Any] = dataset_info._to_yaml_dict() assert sorted(__UpperCamelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] ,(list, dict, int, str) ) SCREAMING_SNAKE_CASE : List[str] = yaml.safe_dump(__UpperCamelCase ) SCREAMING_SNAKE_CASE : str = yaml.safe_load(__UpperCamelCase ) assert dataset_info_yaml_dict == reloaded def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DatasetInfo() SCREAMING_SNAKE_CASE : Optional[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' ,[ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] ,) def lowercase__( __UpperCamelCase: Tuple ,__UpperCamelCase: DatasetInfosDict ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = str(__UpperCamelCase ) dataset_infos_dict.write_to_directory(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = DatasetInfosDict.from_directory(__UpperCamelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): SCREAMING_SNAKE_CASE : Any = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml SCREAMING_SNAKE_CASE : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__UpperCamelCase ,'README.md' ) )
28
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ): _lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20} _lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase :str = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :Optional[Any] = num_channels _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :int = min_resolution _lowerCAmelCase :List[str] = max_resolution _lowerCAmelCase :List[str] = do_resize _lowerCAmelCase :Optional[int] = size _lowerCAmelCase :str = do_center_crop _lowerCAmelCase :int = crop_size _lowerCAmelCase :Optional[int] = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: int ): # Initialize image_processing _lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # Initialize image_processing _lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any ): # Initialize image_processing _lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
687
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowercase ( lowerCAmelCase__ ): # vision encoder if "img_encoder.pos_embed" in name: lowerCamelCase_ = name.replace('''img_encoder.pos_embed''' ,'''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: lowerCamelCase_ = name.replace('''img_encoder.patch_embed.proj''' ,'''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: lowerCamelCase_ = name.replace('''img_encoder.patch_embed.norm''' ,'''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: lowerCamelCase_ = name.replace('''img_encoder.layers''' ,'''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' ) if "attn" in name and "pre_assign" not in name: lowerCamelCase_ = name.replace('''attn''' ,'''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCamelCase_ = name.replace('''proj''' ,'''out_proj''' ) if "pre_assign_attn.attn.proj" in name: lowerCamelCase_ = name.replace('''pre_assign_attn.attn.proj''' ,'''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: lowerCamelCase_ = name.replace('''norm1''' ,'''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: lowerCamelCase_ = name.replace('''norm2''' ,'''layer_norm2''' ) if "img_encoder.norm" in name: lowerCamelCase_ = name.replace('''img_encoder.norm''' ,'''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: lowerCamelCase_ = name.replace('''text_encoder.token_embedding''' ,'''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: lowerCamelCase_ = name.replace('''text_encoder.positional_embedding''' ,'''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: lowerCamelCase_ = name.replace('''text_encoder.transformer.resblocks.''' ,'''text_model.encoder.layers.''' ) if "ln_1" in name: lowerCamelCase_ = name.replace('''ln_1''' ,'''layer_norm1''' ) if "ln_2" in name: lowerCamelCase_ = name.replace('''ln_2''' ,'''layer_norm2''' ) if "c_fc" in name: lowerCamelCase_ = name.replace('''c_fc''' ,'''fc1''' ) if "c_proj" in name: lowerCamelCase_ = name.replace('''c_proj''' ,'''fc2''' ) if "text_encoder" in name: lowerCamelCase_ = name.replace('''text_encoder''' ,'''text_model''' ) if "ln_final" in name: lowerCamelCase_ = name.replace('''ln_final''' ,'''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: lowerCamelCase_ = name.replace('''img_projector.linear_hidden.''' ,'''visual_projection.''' ) if "img_projector.linear_out." in name: lowerCamelCase_ = name.replace('''img_projector.linear_out.''' ,'''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: lowerCamelCase_ = name.replace('''text_projector.linear_hidden''' ,'''text_projection''' ) if "text_projector.linear_out" in name: lowerCamelCase_ = name.replace('''text_projector.linear_out''' ,'''text_projection.3''' ) return name def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCamelCase_ = key.split('''.''' ) lowerCamelCase_ , lowerCamelCase_ = int(key_split[2] ), int(key_split[4] ) lowerCamelCase_ = config.vision_config.hidden_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[dim : dim * 2, :] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCamelCase_ = key.split('''.''' ) lowerCamelCase_ = int(key_split[3] ) lowerCamelCase_ = config.text_config.hidden_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCamelCase_ = val.squeeze_() else: lowerCamelCase_ = val return orig_state_dict def lowercase ( ): lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__="groupvit-gcc-yfcc" ,lowerCAmelCase__=False ): lowerCamelCase_ = GroupViTConfig() lowerCamelCase_ = GroupViTModel(lowerCAmelCase__ ).eval() lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] lowerCamelCase_ = convert_state_dict(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = model.load_state_dict(lowerCAmelCase__ ,strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowerCamelCase_ = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = processor(text=['''a photo of a cat''', '''a photo of a dog'''] ,images=lowerCAmelCase__ ,padding=lowerCAmelCase__ ,return_tensors='''pt''' ) with torch.no_grad(): lowerCamelCase_ = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowerCamelCase_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowerCamelCase_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f"Model name {model_name} not supported." ) assert torch.allclose(outputs.logits_per_image ,lowerCAmelCase__ ,atol=1E-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print('''Successfully saved processor and model to''' ,lowerCAmelCase__ ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ ,organization='''nielsr''' ) model.push_to_hub(lowerCAmelCase__ ,organization='''nielsr''' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) A_ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
29
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Any = PandasConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :Any = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Any = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
687
0
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness __a = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' __a = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' __a = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' __a = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' __a = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a( datasets.Metric ): """simple docstring""" def a__ ( self ) -> Optional[Any]: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) ,homepage='''https://github.com/openai/human-eval''' ,codebase_urls=['''https://github.com/openai/human-eval'''] ,reference_urls=['''https://github.com/openai/human-eval'''] ,license=_LICENSE ,) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=[1, 10, 100] ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=3.0 ) -> int: if os.getenv('''HF_ALLOW_CODE_EVAL''' ,0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=_SCREAMING_SNAKE_CASE ) as executor: UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : List[Any] = Counter() UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : Union[str, Any] = defaultdict(_SCREAMING_SNAKE_CASE ) for task_id, (candidates, test_case) in enumerate(zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ): for candidate in candidates: UpperCAmelCase_ : Union[str, Any] = candidate + '''\n''' + test_case UpperCAmelCase_ : Any = (test_program, timeout, task_id, completion_id[task_id]) UpperCAmelCase_ : List[str] = executor.submit(_SCREAMING_SNAKE_CASE ,*_SCREAMING_SNAKE_CASE ) futures.append(_SCREAMING_SNAKE_CASE ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) UpperCAmelCase_, UpperCAmelCase_ : str = [], [] for result in results.values(): result.sort() UpperCAmelCase_ : Dict = [r[1]['''passed'''] for r in result] total.append(len(_SCREAMING_SNAKE_CASE ) ) correct.append(sum(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : List[Any] = np.array(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = np.array(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = k UpperCAmelCase_ : str = {f'''pass@{k}''': estimate_pass_at_k(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' def estimator(_lowercase , _lowercase , _lowercase ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(_lowercase , _lowercase ): UpperCAmelCase_ : Union[str, Any] = itertools.repeat(_lowercase , len(_lowercase ) ) else: assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase_ : Optional[Any] = iter(_lowercase ) return np.array([estimator(int(_lowercase ) , int(_lowercase ) , _lowercase ) for n, c in zip(_lowercase , _lowercase )] )
30
import glob import os import random from string import ascii_lowercase, digits import cva a = """""" a = """""" a = """""" a = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ ) print('Processing...' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase :Optional[Any] = random_chars(32 ) _lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" ) _lowerCAmelCase :str = [] for anno in new_annos[index]: _lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__magic_name__ ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = [] _lowerCAmelCase :Union[str, Any] = [] for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ): _lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__magic_name__ ) as in_file: _lowerCAmelCase :Union[str, Any] = in_file.readlines() _lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" ) _lowerCAmelCase :Tuple = [] for obj_list in obj_lists: _lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :Any = [] _lowerCAmelCase :Optional[Any] = [] for idx in range(len(__magic_name__ ) ): _lowerCAmelCase :Optional[int] = [] _lowerCAmelCase :Optional[Any] = img_list[idx] path_list.append(__magic_name__ ) _lowerCAmelCase :List[str] = anno_list[idx] _lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ ) if flip_type == 1: _lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_( __magic_name__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase :str = ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
687
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ : List[Any] = '▁' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "token_type_ids"] lowercase_ = FNetTokenizer def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
31
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ ) _lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ ) return torch.mm(__magic_name__ , normalized_text_embeds.t() ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = CLIPConfig lowerCamelCase : Any = ['CLIPEncoderLayer'] def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ): super().__init__(_UpperCAmelCase ) _lowerCAmelCase :Any = CLIPVisionModel(config.vision_config ) _lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) _lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase :str = [] _lowerCAmelCase :List[Any] = image_embeds.shape[0] for i in range(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx] _lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowerCAmelCase :Any = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx] _lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) _lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ): _lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) _lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :Any = 0.0 _lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase :List[str] = special_care * 0.0_1 _lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ = logging.getLogger(__name__) @dataclass class __UpperCamelCase : __A : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __A : Optional[str] = field( default=A__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __A : Optional[str] = field( default=A__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __A : Optional[str] = field( default=A__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __A : bool = field(default=A__ , metadata={"""help""": """Whether tp freeze the encoder."""} ) __A : bool = field(default=A__ , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class __UpperCamelCase : __A : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) __A : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) __A : Optional[int] = field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __A : Optional[int] = field( default=1_28 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __A : Optional[int] = field( default=1_42 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) __A : Optional[int] = field( default=1_42 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __A : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) __A : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) __A : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) __A : Optional[str] = field(default=A__ , metadata={"""help""": """Source language id for translation."""} ) __A : Optional[str] = field(default=A__ , metadata={"""help""": """Target language id for translation."""} ) __A : Optional[int] = field(default=A__ , metadata={"""help""": """# num_beams to use for evaluation."""} ) __A : bool = field( default=A__ , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def A__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Dict: """simple docstring""" logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , F'''{split}_results.json''' ) ) def A__ ( ) -> int: """simple docstring""" _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(SCREAMING_SNAKE_CASE_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , SCREAMING_SNAKE_CASE_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) _UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(SCREAMING_SNAKE_CASE_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _UpperCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(SCREAMING_SNAKE_CASE_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _UpperCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(SCREAMING_SNAKE_CASE_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _UpperCAmelCase = SeqaSeqDataset # Get datasets _UpperCAmelCase = ( dataset_class( SCREAMING_SNAKE_CASE_ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) _UpperCAmelCase = ( dataset_class( SCREAMING_SNAKE_CASE_ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _UpperCAmelCase = ( dataset_class( SCREAMING_SNAKE_CASE_ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer _UpperCAmelCase = ( build_compute_metrics_fn(data_args.task , SCREAMING_SNAKE_CASE_ ) if training_args.predict_with_generate else None ) _UpperCAmelCase = SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , data_args=SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , data_collator=SeqaSeqDataCollator( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , ) _UpperCAmelCase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) _UpperCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _UpperCAmelCase = train_result.metrics _UpperCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , SCREAMING_SNAKE_CASE_ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCAmelCase = trainer.evaluate(metric_key_prefix='''val''' ) _UpperCAmelCase = data_args.n_val _UpperCAmelCase = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , SCREAMING_SNAKE_CASE_ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) _UpperCAmelCase = trainer.predict(test_dataset=SCREAMING_SNAKE_CASE_ , metric_key_prefix='''test''' ) _UpperCAmelCase = test_output.metrics _UpperCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _UpperCAmelCase = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , SCREAMING_SNAKE_CASE_ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE_ ) if training_args.predict_with_generate: _UpperCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = lmap(str.strip , SCREAMING_SNAKE_CASE_ ) write_txt_file(SCREAMING_SNAKE_CASE_ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(SCREAMING_SNAKE_CASE_ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: """simple docstring""" main() if __name__ == "__main__": main()
32
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase__ : str = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[Any] = ['pixel_values'] def __init__( self:Dict , _a:bool = True , _a:Dict[str, int] = None , _a:float = None , _a:PILImageResampling = PILImageResampling.BILINEAR , _a:bool = True , _a:Union[int, float] = 1 / 2_55 , _a:bool = True , _a:Optional[Union[float, List[float]]] = None , _a:Optional[Union[float, List[float]]] = None , **_a:Union[str, Any] , ): super().__init__(**_a ) snake_case__ = size if size is not None else {'''shortest_edge''': 3_84} snake_case__ = get_size_dict(_a , default_to_square=_a ) snake_case__ = do_resize snake_case__ = size # Default value set here for backwards compatibility where the value in config is None snake_case__ = crop_pct if crop_pct is not None else 2_24 / 2_56 snake_case__ = resample snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_normalize snake_case__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:np.ndarray , _a:Dict[str, int] , _a:float , _a:PILImageResampling = PILImageResampling.BICUBIC , _a:Optional[Union[str, ChannelDimension]] = None , **_a:Optional[int] , ): snake_case__ = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) snake_case__ = size['''shortest_edge'''] if shortest_edge < 3_84: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct snake_case__ = int(shortest_edge / crop_pct ) snake_case__ = get_resize_output_image_size(_a , size=_a , default_to_square=_a ) snake_case__ = resize(image=_a , size=_a , resample=_a , data_format=_a , **_a ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_a , size=(shortest_edge, shortest_edge) , data_format=_a , **_a ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _a , size=(shortest_edge, shortest_edge) , resample=_a , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:np.ndarray , _a:Union[int, float] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:int , ): return rescale(_a , scale=_a , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:np.ndarray , _a:Union[float, List[float]] , _a:Union[float, List[float]] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:Tuple , ): return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:ImageInput , _a:bool = None , _a:Dict[str, int] = None , _a:float = None , _a:PILImageResampling = None , _a:bool = None , _a:float = None , _a:bool = None , _a:Optional[Union[float, List[float]]] = None , _a:Optional[Union[float, List[float]]] = None , _a:Optional[Union[str, TensorType]] = None , _a:ChannelDimension = ChannelDimension.FIRST , **_a:Any , ): snake_case__ = do_resize if do_resize is not None else self.do_resize snake_case__ = crop_pct if crop_pct is not None else self.crop_pct snake_case__ = resample if resample is not None else self.resample snake_case__ = do_rescale if do_rescale is not None else self.do_rescale snake_case__ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ = do_normalize if do_normalize is not None else self.do_normalize snake_case__ = image_mean if image_mean is not None else self.image_mean snake_case__ = image_std if image_std is not None else self.image_std snake_case__ = size if size is not None else self.size snake_case__ = get_size_dict(_a , default_to_square=_a ) snake_case__ = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. snake_case__ = [to_numpy_array(_a ) for image in images] if do_resize: snake_case__ = [self.resize(image=_a , size=_a , crop_pct=_a , resample=_a ) for image in images] if do_rescale: snake_case__ = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: snake_case__ = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] snake_case__ = [to_channel_dimension_format(_a , _a ) for image in images] snake_case__ = {'''pixel_values''': images} return BatchFeature(data=_a , tensor_type=_a )
33
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'encoder-decoder' lowerCamelCase : Optional[Any] = True def __init__( self: str , **_UpperCAmelCase: int ): super().__init__(**_UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' ) _lowerCAmelCase :Dict = encoder_config.pop('model_type' ) _lowerCAmelCase :str = kwargs.pop('decoder' ) _lowerCAmelCase :str = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCAmelCase :Dict = True _lowerCAmelCase :List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :Optional[int] = self.encoder.to_dict() _lowerCAmelCase :Union[str, Any] = self.decoder.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output
687
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
34
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
0
from __future__ import annotations from typing import Any class lowercase : def __init__( self : Optional[int] , _lowercase : int = 6 ): SCREAMING_SNAKE_CASE__ : Node | None = None SCREAMING_SNAKE_CASE__ : Node | None = None self.create_linked_list(_lowercase ) def lowercase__ ( self : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Dict = Node() SCREAMING_SNAKE_CASE__ : str = current_node SCREAMING_SNAKE_CASE__ : Any = current_node SCREAMING_SNAKE_CASE__ : Union[str, Any] = current_node for _ in range(1 , _lowercase ): SCREAMING_SNAKE_CASE__ : List[str] = Node() SCREAMING_SNAKE_CASE__ : Optional[Any] = current_node SCREAMING_SNAKE_CASE__ : Optional[Any] = previous_node SCREAMING_SNAKE_CASE__ : Tuple = current_node SCREAMING_SNAKE_CASE__ : List[Any] = self.front SCREAMING_SNAKE_CASE__ : List[str] = previous_node def lowercase__ ( self : Optional[Any] ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowercase__ ( self : List[Any] ): self.check_can_perform_operation() return self.front.data if self.front else None def lowercase__ ( self : Dict , _lowercase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): SCREAMING_SNAKE_CASE__ : Optional[int] = self.rear.next if self.rear: SCREAMING_SNAKE_CASE__ : str = data def lowercase__ ( self : str ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: SCREAMING_SNAKE_CASE__ : List[str] = self.front.data SCREAMING_SNAKE_CASE__ : Any = None return data SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.front SCREAMING_SNAKE_CASE__ : List[Any] = old_front.next SCREAMING_SNAKE_CASE__ : str = old_front.data SCREAMING_SNAKE_CASE__ : List[Any] = None return data def lowercase__ ( self : Tuple ): if self.is_empty(): raise Exception('''Empty Queue''' ) def lowercase__ ( self : Optional[int] ): if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class lowercase : def __init__( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any | None = None SCREAMING_SNAKE_CASE__ : Node | None = None SCREAMING_SNAKE_CASE__ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
35
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
0
def lowercase ( __A : int = 100 ) -> int: '''simple docstring''' snake_case : Dict = set() snake_case : Optional[Any] = 0 snake_case : List[str] = n + 1 # maximum limit for a in range(2 , __A ): for b in range(2 , __A ): snake_case : List[Any] = a**b # calculates the current power collect_powers.add(__A ) # adds the result to the set return len(__A ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
36
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[int] = 10 def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :str = [1, 2, 3, 4] _lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[int] = '' _lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = ['It was the best of times.'] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[str] = 101 _lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
687
0
import math import qiskit def UpperCamelCase_ ( __a = 1 , __a = 1 , __a = 1 ) -> qiskit.result.counts.Counts: if ( isinstance(__a , __a ) or isinstance(__a , __a ) or isinstance(__a , __a ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(__a ) != input_a) or (math.floor(__a ) != input_a) or (math.floor(__a ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers a__ : Union[str, Any] = qiskit.QuantumRegister(4 , "qr" ) a__ : Optional[Any] = qiskit.ClassicalRegister(2 , "cr" ) # list the entries a__ : int = [input_a, input_a, carry_in] a__ : str = qiskit.QuantumCircuit(__a , __a ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__a ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__a ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__a ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __a ) # measure the last two qbits a__ : Any = qiskit.Aer.get_backend("aer_simulator" ) a__ : List[Any] = qiskit.execute(__a , __a , shots=1_000 ) return job.result().get_counts(__a ) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
37
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
687
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Union[str, Any] ) -> Optional[Any]: # noqa: E741 '''simple docstring''' while r - l > 1: snake_case__ : Optional[Any] = (l + r) // 2 if v[m] >= key: snake_case__ : List[str] = m else: snake_case__ : List[Any] = m # noqa: E741 return r def UpperCamelCase__ ( __magic_name__ : list[int] ) -> int: '''simple docstring''' if len(__magic_name__ ) == 0: return 0 snake_case__ : str = [0] * len(__magic_name__ ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = v[0] for i in range(1 , len(__magic_name__ ) ): if v[i] < tail[0]: snake_case__ : List[str] = v[i] elif v[i] > tail[length - 1]: snake_case__ : str = v[i] length += 1 else: snake_case__ : List[Any] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
38
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = "isbn/0140328726" ): snake_case_ = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: snake_case_ = F'''{olid} is not a valid Open Library olid''' raise ValueError(SCREAMING_SNAKE_CASE__ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } snake_case_ = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} snake_case_ = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] snake_case_ = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = ''', '''.join(SCREAMING_SNAKE_CASE__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCAmelCase_ = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(f"""\nSearching Open Library for ISBN: {isbn}...\n""") try: lowerCAmelCase_ = summarize_book(get_openlibrary_data(f"""isbn/{isbn}""")) print('''\n'''.join(f"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f"""Sorry, there are no results for ISBN: {isbn}.""")
39
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : int = BlenderbotSmallTokenizer UpperCAmelCase__ : Any = False def snake_case_ ( self ) -> Any: super().setUp() UpperCamelCase : Dict = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] UpperCamelCase : int = dict(zip(SCREAMING_SNAKE_CASE_, range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) UpperCamelCase : List[str] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] UpperCamelCase : int = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} UpperCamelCase : List[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self, **SCREAMING_SNAKE_CASE_ ) -> Tuple: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : List[str] = 'adapt act apte' UpperCamelCase : List[Any] = 'adapt act apte' return input_text, output_text def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Union[str, Any] = BlenderbotSmallTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCamelCase : List[Any] = 'adapt act apte' UpperCamelCase : List[Any] = ['adapt', 'act', 'ap@@', 'te'] UpperCamelCase : Optional[int] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCamelCase : Union[str, Any] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> int: UpperCamelCase : Dict = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] UpperCamelCase : List[str] = 'I am a small frog.' UpperCamelCase : Optional[Any] = tok([src_text], padding=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_ )['input_ids'] UpperCamelCase : int = tok.batch_decode(SCREAMING_SNAKE_CASE_, skip_special_tokens=SCREAMING_SNAKE_CASE_, clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def snake_case_ ( self ) -> List[Any]: UpperCamelCase : str = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) UpperCamelCase : Tuple = 'I am a small frog .' UpperCamelCase : List[str] = '.' UpperCamelCase : str = tok(SCREAMING_SNAKE_CASE_ )['input_ids'] UpperCamelCase : List[Any] = tok(SCREAMING_SNAKE_CASE_ )['input_ids'] assert encoded[-1] == encoded_dot[0]
40
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Node | None = None SCREAMING_SNAKE_CASE : Node | None = None def _A ( ): """simple docstring""" __lowercase = Node(1 ) __lowercase = Node(2 ) __lowercase = Node(3 ) __lowercase = Node(4 ) __lowercase = Node(5 ) return tree def _A ( A__ ): """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _A ( A__ ): """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _A ( A__ ): """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _A ( A__ ): """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _A ( A__ ): """simple docstring""" __lowercase = [] if root is None: return output __lowercase = deque([root] ) while process_queue: __lowercase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _A ( A__ , A__ ): """simple docstring""" __lowercase = [] def populate_output(A__ , A__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(A__ , A__ ) return output def _A ( A__ , A__ ): """simple docstring""" __lowercase = [] def populate_output(A__ , A__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(A__ , A__ ) return output def _A ( A__ ): """simple docstring""" if root is None: return [] __lowercase = [] __lowercase = 0 __lowercase = height(A__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(A__ , A__ ) ) __lowercase = 1 else: output.append(get_nodes_from_right_to_left(A__ , A__ ) ) __lowercase = 0 return output def _A ( ): # Main function for testing. """simple docstring""" __lowercase = make_tree() print(F"In-order Traversal: {inorder(A__ )}" ) print(F"Pre-order Traversal: {preorder(A__ )}" ) print(F"Post-order Traversal: {postorder(A__ )}" , '''\n''' ) print(F"Height of Tree: {height(A__ )}" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(A__ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(A__ ) + 1 ): print(F"Level {level}:" , get_nodes_from_left_to_right(A__ , level=A__ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
41
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ): """simple docstring""" _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] _lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] _lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""] _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""] _lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :int = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' ) _lowerCAmelCase :List[Any] = {} _lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight'] _lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias'] _lowerCAmelCase :Dict = checkpoint['time_embed.2.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias'] _lowerCAmelCase :List[Any] = unet_config['down_block_types'] _lowerCAmelCase :Any = unet_config['layers_per_block'] _lowerCAmelCase :List[Any] = unet_config['attention_head_dim'] _lowerCAmelCase :Tuple = unet_config['block_out_channels'] _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Optional[int] = channels_list[0] for i, layer_type in enumerate(__magic_name__ ): _lowerCAmelCase :Tuple = channels_list[i] _lowerCAmelCase :Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}""" _lowerCAmelCase :str = f"""input_blocks.{current_layer}.1""" _lowerCAmelCase :Optional[Any] = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0""" _lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 _lowerCAmelCase :Dict = current_channels # hardcoded the mid-block for now _lowerCAmelCase :int = 'mid_block.resnets.0' _lowerCAmelCase :Optional[Any] = 'middle_block.0' _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = 'mid_block.attentions.0' _lowerCAmelCase :Optional[int] = 'middle_block.1' _lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1' _lowerCAmelCase :Optional[int] = 'middle_block.2' _lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :str = unet_config['up_block_types'] for i, layer_type in enumerate(__magic_name__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1""" _lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}""" _lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1""" _lowerCAmelCase :int = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = checkpoint['out.0.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias'] _lowerCAmelCase :List[Any] = checkpoint['out.2.weight'] _lowerCAmelCase :Dict = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) _lowerCAmelCase :Tuple = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ): _lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
687
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = torch.device('cpu') def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703E00, 2.1107E00, -2.0811E00, 8.8685E-01, 2.4360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636E-01, 2.3478E-01, -1.6963E00, -1.7381E00, -8.6337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768E-01, -4.7429E-01, -1.0897E00, -1.0248E00, 3.5523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330E-01, 2.4211E-01, -6.0185E-01, -8.2789E-01, -6.0446E-02] ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = dct.pop(SCREAMING_SNAKE_CASE ) lowercase__ = val def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] for k in state_dict.keys(): lowercase__ = k if ".pwconv" in k: lowercase__ = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: lowercase__ = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: lowercase__ = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: lowercase__ = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: lowercase__ = k_new.split('''.''' ) if ls[2].isdigit(): lowercase__ = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: lowercase__ = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowercase__ = 10_00 lowercase__ = '''huggingface/label-files''' lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowercase__ = [3, 3, 6, 4] lowercase__ = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": lowercase__ = [3, 3, 9, 6] lowercase__ = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": lowercase__ = [4, 3, 10, 5] lowercase__ = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": lowercase__ = [4, 4, 12, 6] lowercase__ = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): lowercase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='''cpu''' , check_hash=SCREAMING_SNAKE_CASE ) else: lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) lowercase__ = checkpoint lowercase__ = create_rename_keys(SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load HuggingFace model lowercase__ = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE ).eval() hf_model.load_state_dict(SCREAMING_SNAKE_CASE ) # prepare test inputs lowercase__ = prepare_img() lowercase__ = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) lowercase__ = processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) # compare outputs from both models lowercase__ = get_expected_output(SCREAMING_SNAKE_CASE ) lowercase__ = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , SCREAMING_SNAKE_CASE , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') lowerCAmelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
43
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : str = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[str] = 'ylacombe/bark-small' _lowerCAmelCase :int = tempfile.mkdtemp() _lowerCAmelCase :List[str] = 'en_speaker_1' _lowerCAmelCase :Union[str, Any] = 'This is a test string' _lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json' _lowerCAmelCase :str = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[Any] = self.get_tokenizer() _lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase :Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase :List[Any] = 35 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :Dict = 8 _lowerCAmelCase :Dict = { 'semantic_prompt': np.ones(_UpperCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Tuple = self.get_tokenizer() _lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = processor(text=self.input_string ) _lowerCAmelCase :List[str] = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
687
0
from __future__ import annotations import math from collections.abc import Callable def A ( lowercase__ : Callable[[int | float], int | float] , lowercase__ : int | float , lowercase__ : int | float , lowercase__ : int = 100 , ) -> float: UpperCamelCase__ :int = x_start UpperCamelCase__ :List[Any] = fnc(lowercase__ ) UpperCamelCase__ :List[Any] = 0.0 for _ in range(lowercase__ ): # Approximates curve as a sequence of linear lines and sums their length UpperCamelCase__ :Optional[int] = (x_end - x_start) / steps + xa UpperCamelCase__ :List[Any] = fnc(lowercase__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step UpperCamelCase__ :Dict = xa UpperCamelCase__ :List[str] = fxa return length if __name__ == "__main__": def A ( lowercase__ : Dict ) -> List[str]: return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") UpperCamelCase = 10 while i <= 100_000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
45
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = 'bert' def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :Dict = num_hidden_layers _lowerCAmelCase :Optional[Any] = num_attention_heads _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = intermediate_size _lowerCAmelCase :Tuple = hidden_dropout_prob _lowerCAmelCase :Tuple = attention_probs_dropout_prob _lowerCAmelCase :List[Any] = max_position_embeddings _lowerCAmelCase :Dict = type_vocab_size _lowerCAmelCase :Any = initializer_range _lowerCAmelCase :int = layer_norm_eps _lowerCAmelCase :List[Any] = position_embedding_type _lowerCAmelCase :int = use_cache _lowerCAmelCase :Union[str, Any] = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): if self.task == "multiple-choice": _lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
687
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'tokenizer'] lowerCAmelCase__ = 'ViltImageProcessor' lowerCAmelCase__ = ('BertTokenizer', 'BertTokenizerFast') def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,__lowerCAmelCase ,) _lowerCamelCase : Optional[Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.image_processor def __call__( self: str ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Union[bool, str, PaddingStrategy] = False ,__lowerCAmelCase: Union[bool, str, TruncationStrategy] = None ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: int = 0 ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Optional[bool] = None ,__lowerCAmelCase: Optional[bool] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[Union[str, TensorType]] = None ,**__lowerCAmelCase: int ,): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.tokenizer( text=__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ,padding=__lowerCAmelCase ,truncation=__lowerCAmelCase ,max_length=__lowerCAmelCase ,stride=__lowerCAmelCase ,pad_to_multiple_of=__lowerCAmelCase ,return_token_type_ids=__lowerCAmelCase ,return_attention_mask=__lowerCAmelCase ,return_overflowing_tokens=__lowerCAmelCase ,return_special_tokens_mask=__lowerCAmelCase ,return_offsets_mapping=__lowerCAmelCase ,return_length=__lowerCAmelCase ,verbose=__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ,) # add pixel_values + pixel_mask _lowerCamelCase : int = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ) encoding.update(__lowerCAmelCase ) return encoding def _lowercase ( self: Any ,*__lowerCAmelCase: str ,**__lowerCAmelCase: int ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: Dict ,*__lowerCAmelCase: int ,**__lowerCAmelCase: List[str] ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase ,**__lowerCAmelCase ) @property def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.tokenizer.model_input_names _lowerCamelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." ,__lowerCAmelCase ,) return self.image_processor_class @property def _lowercase ( self: str ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." ,__lowerCAmelCase ,) return self.image_processor
46
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
0
def UpperCAmelCase__ ( lowerCamelCase_ : int = 5_0 ): __a : int = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"{solution() = }")
47
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
0
'''simple docstring''' UpperCAmelCase__ : Tuple = 6_55_21 def A ( UpperCamelCase_ : str ) -> int: '''simple docstring''' lowerCAmelCase__ = 1 lowerCAmelCase__ = 0 for plain_chr in plain_text: lowerCAmelCase__ = (a + ord(UpperCamelCase_ )) % MOD_ADLER lowerCAmelCase__ = (b + a) % MOD_ADLER return (b << 16) | a
48
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _UpperCAmelCase ( unittest.TestCase ): a__ : List[str] = MODEL_FOR_CAUSAL_LM_MAPPING a__ : Optional[int] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a ( self : Tuple ): __UpperCAmelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output __UpperCAmelCase = text_generator('''This is a test''' , do_sample=_lowercase ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) __UpperCAmelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _lowercase , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) __UpperCAmelCase = text_generator('''This is a test''' , do_sample=_lowercase , num_return_sequences=2 , return_tensors=_lowercase ) self.assertEqual( _lowercase , [ {'''generated_token_ids''': ANY(_lowercase )}, {'''generated_token_ids''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = text_generator.model.config.eos_token_id __UpperCAmelCase = '''<pad>''' __UpperCAmelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_lowercase , num_return_sequences=2 , batch_size=2 , return_tensors=_lowercase , ) self.assertEqual( _lowercase , [ [ {'''generated_token_ids''': ANY(_lowercase )}, {'''generated_token_ids''': ANY(_lowercase )}, ], [ {'''generated_token_ids''': ANY(_lowercase )}, {'''generated_token_ids''': ANY(_lowercase )}, ], ] , ) @require_tf def a ( self : Dict ): __UpperCAmelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output __UpperCAmelCase = text_generator('''This is a test''' , do_sample=_lowercase ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) __UpperCAmelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_lowercase ) self.assertEqual( _lowercase , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def a ( self : Any , _lowercase : str , _lowercase : Optional[int] , _lowercase : str ): __UpperCAmelCase = TextGenerationPipeline(model=_lowercase , tokenizer=_lowercase ) return text_generator, ["This is a test", "Another test"] def a ( self : List[Any] ): __UpperCAmelCase = '''Hello I believe in''' __UpperCAmelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = text_generator(_lowercase ) self.assertEqual( _lowercase , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) __UpperCAmelCase = text_generator(_lowercase , stop_sequence=''' fe''' ) self.assertEqual(_lowercase , [{'''generated_text''': '''Hello I believe in fe'''}] ) def a ( self : Optional[int] , _lowercase : List[Any] , _lowercase : str ): __UpperCAmelCase = text_generator.model __UpperCAmelCase = text_generator.tokenizer __UpperCAmelCase = text_generator('''This is a test''' ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __UpperCAmelCase = text_generator('''This is a test''' , return_full_text=_lowercase ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) __UpperCAmelCase = pipeline(task='''text-generation''' , model=_lowercase , tokenizer=_lowercase , return_full_text=_lowercase ) __UpperCAmelCase = text_generator('''This is a test''' ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) __UpperCAmelCase = text_generator('''This is a test''' , return_full_text=_lowercase ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __UpperCAmelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_lowercase ) self.assertEqual( _lowercase , [ [{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}], [{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}], ] , ) if text_generator.tokenizer.pad_token is not None: __UpperCAmelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_lowercase ) self.assertEqual( _lowercase , [ [{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}], [{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}], ] , ) with self.assertRaises(_lowercase ): __UpperCAmelCase = text_generator('''test''' , return_full_text=_lowercase , return_text=_lowercase ) with self.assertRaises(_lowercase ): __UpperCAmelCase = text_generator('''test''' , return_full_text=_lowercase , return_tensors=_lowercase ) with self.assertRaises(_lowercase ): __UpperCAmelCase = text_generator('''test''' , return_text=_lowercase , return_tensors=_lowercase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __UpperCAmelCase = text_generator('''''' ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): __UpperCAmelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __UpperCAmelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 5_00 , max_new_tokens=20 ) __UpperCAmelCase = text_generator('''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_lowercase ): text_generator( '''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a ( self : List[Any] ): import torch # Classic `model_kwargs` __UpperCAmelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __UpperCAmelCase = pipe('''This is a test''' ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __UpperCAmelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __UpperCAmelCase = pipe('''This is a test''' ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __UpperCAmelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) __UpperCAmelCase = pipe('''This is a test''' ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def a ( self : Union[str, Any] ): import torch __UpperCAmelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def a ( self : int ): import torch __UpperCAmelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_lowercase , top_p=0.5 ) def a ( self : int ): __UpperCAmelCase = '''Hello world''' __UpperCAmelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": __UpperCAmelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: __UpperCAmelCase = logging.get_logger('''transformers.generation.utils''' ) __UpperCAmelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_lowercase ) as cl: __UpperCAmelCase = text_generator(_lowercase , max_length=10 , max_new_tokens=1 ) self.assertIn(_lowercase , cl.out ) # The user only sets one -> no warning with CaptureLogger(_lowercase ) as cl: __UpperCAmelCase = text_generator(_lowercase , max_new_tokens=1 ) self.assertNotIn(_lowercase , cl.out ) with CaptureLogger(_lowercase ) as cl: __UpperCAmelCase = text_generator(_lowercase , max_length=10 ) self.assertNotIn(_lowercase , cl.out )
49
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : List[str] = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ): _lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20} _lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase :str = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :Optional[Any] = num_channels _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :int = min_resolution _lowerCAmelCase :List[str] = max_resolution _lowerCAmelCase :List[str] = do_resize _lowerCAmelCase :Optional[int] = size _lowerCAmelCase :str = do_center_crop _lowerCAmelCase :int = crop_size _lowerCAmelCase :Optional[int] = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: int ): # Initialize image_processing _lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # Initialize image_processing _lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any ): # Initialize image_processing _lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
687
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Optional[int] ): UpperCAmelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() UpperCAmelCase = dict(zip(a__ , range(len(a__ ) ) ) ) UpperCAmelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } UpperCAmelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join(self.tmpdirname , a__ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a__ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a__ ) + '''\n''' ) # load decoder from hub UpperCAmelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def __snake_case ( self : int , **a__ : Optional[int] ): UpperCAmelCase = self.add_kwargs_tokens_map.copy() kwargs.update(a__ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __snake_case ( self : int , **a__ : str ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **a__ ) def __snake_case ( self : List[str] , **a__ : Optional[Any] ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **a__ ) def __snake_case ( self : int ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , a__ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , a__ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , a__ ) def __snake_case ( self : Any ): UpperCAmelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(a__ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=a__ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) UpperCAmelCase = floats_list((3, 1000) ) UpperCAmelCase = feature_extractor(a__ , return_tensors='''np''' ) UpperCAmelCase = processor(a__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case ( self : Any ): UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) UpperCAmelCase = '''This is a test string''' UpperCAmelCase = processor(text=a__ ) UpperCAmelCase = tokenizer(a__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self : int , a__ : int=(2, 10, 16) , a__ : List[Any]=77 ): np.random.seed(a__ ) return np.random.rand(*a__ ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) UpperCAmelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) UpperCAmelCase = processor.decode(a__ ) UpperCAmelCase = decoder.decode_beams(a__ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def __snake_case ( self : Any , a__ : str ): UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) UpperCAmelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase = processor.batch_decode(a__ ) else: with get_context(a__ ).Pool() as pool: UpperCAmelCase = processor.batch_decode(a__ , a__ ) UpperCAmelCase = list(a__ ) with get_context('''fork''' ).Pool() as p: UpperCAmelCase = decoder.decode_beams_batch(a__ , a__ ) UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(a__ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(a__ , decoded_processor.logit_score ) self.assertListEqual(a__ , decoded_processor.lm_score ) def __snake_case ( self : Dict ): UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) UpperCAmelCase = self._get_dummy_logits() UpperCAmelCase = 15 UpperCAmelCase = -20.0 UpperCAmelCase = -4.0 UpperCAmelCase = processor.batch_decode( a__ , beam_width=a__ , beam_prune_logp=a__ , token_min_logp=a__ , ) UpperCAmelCase = decoded_processor_out.text UpperCAmelCase = list(a__ ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase = decoder.decode_beams_batch( a__ , a__ , beam_width=a__ , beam_prune_logp=a__ , token_min_logp=a__ , ) UpperCAmelCase = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(a__ , a__ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , a__ ) self.assertTrue(np.array_equal(a__ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , a__ , atol=1e-3 ) ) self.assertTrue(np.array_equal(a__ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , a__ , atol=1e-3 ) ) def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) UpperCAmelCase = self._get_dummy_logits() UpperCAmelCase = 2.0 UpperCAmelCase = 5.0 UpperCAmelCase = -20.0 UpperCAmelCase = True UpperCAmelCase = processor.batch_decode( a__ , alpha=a__ , beta=a__ , unk_score_offset=a__ , lm_score_boundary=a__ , ) UpperCAmelCase = decoded_processor_out.text UpperCAmelCase = list(a__ ) decoder.reset_params( alpha=a__ , beta=a__ , unk_score_offset=a__ , lm_score_boundary=a__ , ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase = decoder.decode_beams_batch( a__ , a__ , ) UpperCAmelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(a__ , a__ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , a__ ) UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , a__ ) def __snake_case ( self : List[Any] ): UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(a__ , a__ ) def __snake_case ( self : str ): UpperCAmelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(a__ ) UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = os.listdir(a__ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(a__ , a__ ) def __snake_case ( self : List[Any] ): UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase = floats_list((3, 1000) ) UpperCAmelCase = processor_wavaveca(a__ , return_tensors='''np''' ) UpperCAmelCase = processor_auto(a__ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) UpperCAmelCase = self._get_dummy_logits() UpperCAmelCase = processor_wavaveca.batch_decode(a__ ) UpperCAmelCase = processor_auto.batch_decode(a__ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def __snake_case ( a__ : Tuple , a__ : int ): UpperCAmelCase = [d[key] for d in offsets] return retrieved_list def __snake_case ( self : Dict ): UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase = self._get_dummy_logits()[0] UpperCAmelCase = processor.decode(a__ , output_word_offsets=a__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(a__ , a__ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def __snake_case ( self : Any ): UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase = self._get_dummy_logits() UpperCAmelCase = processor.batch_decode(a__ , output_word_offsets=a__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(a__ , a__ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(a__ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __snake_case ( self : Dict ): import torch UpperCAmelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=a__ ) UpperCAmelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16000 ) ) UpperCAmelCase = iter(a__ ) UpperCAmelCase = next(a__ ) UpperCAmelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) UpperCAmelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): UpperCAmelCase = model(a__ ).logits.cpu().numpy() UpperCAmelCase = processor.decode(logits[0] , output_word_offsets=a__ ) UpperCAmelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] UpperCAmelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(a__ , '''word''' ) ) , a__ ) self.assertEqual(''' '''.join(self.get_from_offsets(a__ , '''word''' ) ) , output.text ) # output times UpperCAmelCase = torch.tensor(self.get_from_offsets(a__ , '''start_time''' ) ) UpperCAmelCase = torch.tensor(self.get_from_offsets(a__ , '''end_time''' ) ) # fmt: off UpperCAmelCase = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) UpperCAmelCase = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(a__ , a__ , atol=0.01 ) ) self.assertTrue(torch.allclose(a__ , a__ , atol=0.01 ) )
51
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Any = PandasConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :Any = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Any = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
687
0
"""simple docstring""" import random def __A ( a_ :int , a_ :float , a_ :bool = False) -> dict: __a : dict = {i: [] for i in range(a_)} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(a_) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(a_): for j in range(i + 1 , a_): if random.random() < probability: graph[i].append(a_) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(a_) return graph def __A ( a_ :int) -> dict: return { i: [j for j in range(a_) if i != j] for i in range(a_) } if __name__ == "__main__": import doctest doctest.testmod()
52
import glob import os import random from string import ascii_lowercase, digits import cva a = """""" a = """""" a = """""" a = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ ) print('Processing...' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase :Optional[Any] = random_chars(32 ) _lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" ) _lowerCAmelCase :str = [] for anno in new_annos[index]: _lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__magic_name__ ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = [] _lowerCAmelCase :Union[str, Any] = [] for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ): _lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__magic_name__ ) as in_file: _lowerCAmelCase :Union[str, Any] = in_file.readlines() _lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" ) _lowerCAmelCase :Tuple = [] for obj_list in obj_lists: _lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :Any = [] _lowerCAmelCase :Optional[Any] = [] for idx in range(len(__magic_name__ ) ): _lowerCAmelCase :Optional[int] = [] _lowerCAmelCase :Optional[Any] = img_list[idx] path_list.append(__magic_name__ ) _lowerCAmelCase :List[str] = anno_list[idx] _lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ ) if flip_type == 1: _lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_( __magic_name__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase :str = ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
687
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _snake_case : Tuple = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') _snake_case : List[Any] = ( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode('utf-8').split() ) _snake_case : Optional[int] = '|'.join(sys.argv[1:]) _snake_case : str = re.compile(RF"""^({joined_dirs}).*?\.py$""") _snake_case : List[Any] = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
53
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ ) _lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ ) return torch.mm(__magic_name__ , normalized_text_embeds.t() ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = CLIPConfig lowerCamelCase : Any = ['CLIPEncoderLayer'] def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ): super().__init__(_UpperCAmelCase ) _lowerCAmelCase :Any = CLIPVisionModel(config.vision_config ) _lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) _lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase :str = [] _lowerCAmelCase :List[Any] = image_embeds.shape[0] for i in range(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx] _lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowerCAmelCase :Any = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx] _lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) _lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ): _lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) _lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :Any = 0.0 _lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase :List[str] = special_care * 0.0_1 _lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
0
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =os.path.join(args.tf_model_dir , "parameters.json" ) UpperCAmelCase_ =json.loads(open(lowercase__ ).read() ) if not params: raise ValueError( F'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith(".pt" ): UpperCAmelCase_ =args.output + ".pt" UpperCAmelCase_ =OrderedDict() with tf.device("/CPU:0" ): UpperCAmelCase_ =tf.train.load_checkpoint(args.tf_model_dir ) UpperCAmelCase_ =reader.get_variable_to_shape_map() for key_name in shapes.keys(): UpperCAmelCase_ =reader.get_tensor(lowercase__ ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): UpperCAmelCase_ =int(key_name[9] ) elif key_name.startswith("pasts/out" ): UpperCAmelCase_ =8 UpperCAmelCase_ ="model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.startswith("model/moe" ): UpperCAmelCase_ =int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.endswith("/softmlp/kernel" ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): UpperCAmelCase_ =key_name[-9:-7] for i in range(1_6 ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) UpperCAmelCase_ =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.startswith("model/mlp" ): UpperCAmelCase_ =int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.wi.weight" % player UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.endswith("/p1/bias" ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.wi.bias" % player UpperCAmelCase_ =vnp.copy() # same because it is one dimensional UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.endswith("/p2/kernel" ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.wo.weight" % player UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.endswith("/p2/bias" ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.wo.bias" % player UpperCAmelCase_ =vnp.copy() # same because it is one dimensional UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.startswith("model/ln" ): UpperCAmelCase_ =int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.norm.bias" % player UpperCAmelCase_ =vnp.copy() # same because it is one dimensional UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.endswith("/g" ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.norm.weight" % player UpperCAmelCase_ =vnp.copy() # same because it is one dimensional UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.startswith("model/att" ): UpperCAmelCase_ =int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): UpperCAmelCase_ =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum UpperCAmelCase_ =state[:, 0, :, :] UpperCAmelCase_ =state[:, 1, :, :] UpperCAmelCase_ =state[:, 2, :, :] UpperCAmelCase_ =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ ="model.blocks.%d.self_attn.self_attn.q_proj.weight" % player UpperCAmelCase_ =torch.tensor(lowercase__ ) UpperCAmelCase_ ="model.blocks.%d.self_attn.self_attn.k_proj.weight" % player UpperCAmelCase_ =torch.tensor(lowercase__ ) UpperCAmelCase_ ="model.blocks.%d.self_attn.self_attn.v_proj.weight" % player UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.endswith("/o/kernel" ): UpperCAmelCase_ ="model.blocks.%d.self_attn.self_attn.out_proj.weight" % player UpperCAmelCase_ =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.startswith("model/an" ): UpperCAmelCase_ =int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): UpperCAmelCase_ ="model.blocks.%d.self_attn.norm.bias" % player UpperCAmelCase_ =vnp.copy() # same because it is one dimensional UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.endswith("/g" ): UpperCAmelCase_ ="model.blocks.%d.self_attn.norm.weight" % player UpperCAmelCase_ =vnp.copy() # same because it is one dimensional UpperCAmelCase_ =torch.tensor(lowercase__ ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): UpperCAmelCase_ ={"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] UpperCAmelCase_ ="model.%s.weight" % nlayer UpperCAmelCase_ =vnp.copy() # same in embedded UpperCAmelCase_ =torch.tensor(lowercase__ ) if key_name.startswith("model/wte" ): UpperCAmelCase_ ="lm_head.weight" UpperCAmelCase_ =vnp.copy() # same in embedded UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.startswith("model/wob" ): UpperCAmelCase_ ="final_logits_bias" UpperCAmelCase_ =vnp.copy() # same in embedded UpperCAmelCase_ =state.reshape((1, -1) ) UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name == "model/dense/kernel": UpperCAmelCase_ ="model.last_project.weight" UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name == "model/dense_1/bias": UpperCAmelCase_ ="model.last_project.bias" UpperCAmelCase_ =vnp.copy() # same because it is one dimensional UpperCAmelCase_ =torch.tensor(lowercase__ ) torch.save(lowercase__ , args.output ) if __name__ == "__main__": __lowercase : Optional[int] =argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") __lowercase : List[str] =parser.parse_args() convert_tf_gptsan_to_pt(args)
54
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"tf_padding" ) ) self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = min_depth __A = tf_padding __A = int(last_hidden_size * depth_multiplier ) __A = output_stride __A = hidden_act __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ): __A = MobileNetVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ): __A = self.num_labels __A = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 26 self.assertEqual(len(A ) ,A ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'encoder-decoder' lowerCamelCase : Optional[Any] = True def __init__( self: str , **_UpperCAmelCase: int ): super().__init__(**_UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' ) _lowerCAmelCase :Dict = encoder_config.pop('model_type' ) _lowerCAmelCase :str = kwargs.pop('decoder' ) _lowerCAmelCase :str = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCAmelCase :Dict = True _lowerCAmelCase :List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :Optional[int] = self.encoder.to_dict() _lowerCAmelCase :Union[str, Any] = self.decoder.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output
687
0
'''simple docstring''' def _a (lowercase__ : list , lowercase__ : int , lowercase__ : int = 0 , lowercase__ : int = 0 ) -> int: """simple docstring""" __snake_case = right or len(lowercase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowercase__ , lowercase__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
56
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Tuple = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
58
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[int] = 10 def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :str = [1, 2, 3, 4] _lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[int] = '' _lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = ['It was the best of times.'] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[str] = 101 _lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
687
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
59
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
687
0
from __future__ import annotations lowerCAmelCase_ = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] lowerCAmelCase_ = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def lowerCamelCase_ ( _UpperCamelCase ) -> list[float]: """simple docstring""" snake_case_ : List[Any] = [] snake_case_ : Any = len(_UpperCamelCase ) for i in range(_UpperCamelCase ): snake_case_ : float = -1 for j in range(i + 1 , _UpperCamelCase ): if arr[i] < arr[j]: snake_case_ : List[Any] = arr[j] break result.append(_UpperCamelCase ) return result def lowerCamelCase_ ( _UpperCamelCase ) -> list[float]: """simple docstring""" snake_case_ : List[str] = [] for i, outer in enumerate(_UpperCamelCase ): snake_case_ : float = -1 for inner in arr[i + 1 :]: if outer < inner: snake_case_ : int = inner break result.append(_UpperCamelCase ) return result def lowerCamelCase_ ( _UpperCamelCase ) -> list[float]: """simple docstring""" snake_case_ : Tuple = len(_UpperCamelCase ) snake_case_ : list[float] = [] snake_case_ : list[float] = [-1] * arr_size for index in reversed(range(_UpperCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: snake_case_ : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase_ = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
60
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
0
UpperCamelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} UpperCamelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _A ( lowerCAmelCase_ : dict[int, list[int]] , lowerCAmelCase_ : int , lowerCAmelCase_ : list[bool] ): """simple docstring""" lowerCAmelCase__ = True lowerCAmelCase__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) order.append(lowerCAmelCase_ ) return order def _A ( lowerCAmelCase_ : dict[int, list[int]] , lowerCAmelCase_ : int , lowerCAmelCase_ : list[bool] ): """simple docstring""" lowerCAmelCase__ = True lowerCAmelCase__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return component def _A ( lowerCAmelCase_ : dict[int, list[int]] ): """simple docstring""" lowerCAmelCase__ = len(lowerCAmelCase_ ) * [False] lowerCAmelCase__ = {vert: [] for vert in range(len(lowerCAmelCase_ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(lowerCAmelCase_ ) lowerCAmelCase__ = [] for i, was_visited in enumerate(lowerCAmelCase_ ): if not was_visited: order += topology_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = len(lowerCAmelCase_ ) * [False] for i in range(len(lowerCAmelCase_ ) ): lowerCAmelCase__ = order[len(lowerCAmelCase_ ) - i - 1] if not visited[vert]: lowerCAmelCase__ = find_components(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) components_list.append(lowerCAmelCase_ ) return components_list
61
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
0
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer snake_case = """bart""" snake_case = True @st.cache(allow_output_mutation=lowercase ) def lowerCamelCase__ ( ): """simple docstring""" if LOAD_DENSE_INDEX: SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) SCREAMING_SNAKE_CASE : Optional[int] = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) SCREAMING_SNAKE_CASE : Union[str, Any] = qar_model.eval() else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = (None, None) if MODEL_TYPE == "bart": SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) SCREAMING_SNAKE_CASE : Dict = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) SCREAMING_SNAKE_CASE : List[str] = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) SCREAMING_SNAKE_CASE : List[Any] = sas_model.eval() else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowercase ) def lowerCamelCase__ ( ): """simple docstring""" if LOAD_DENSE_INDEX: SCREAMING_SNAKE_CASE : str = faiss.StandardGpuResources() SCREAMING_SNAKE_CASE : Union[str, Any] = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"] SCREAMING_SNAKE_CASE : int = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 128) , ) SCREAMING_SNAKE_CASE : Optional[int] = faiss.IndexFlatIP(128 ) SCREAMING_SNAKE_CASE : int = faiss.index_cpu_to_gpu(lowercase , 1 , lowercase ) wikiaab_gpu_index_flat.add(lowercase ) # TODO fix for larger GPU else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = (None, None) SCREAMING_SNAKE_CASE : List[str] = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowercase ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = datasets.load_dataset("eli5" , name="LFQA_reddit" ) SCREAMING_SNAKE_CASE : Any = elia["train_eli5"] SCREAMING_SNAKE_CASE : Optional[int] = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 128) ) SCREAMING_SNAKE_CASE : Union[str, Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowercase ) return (elia_train, eli5_train_q_index) snake_case , snake_case , snake_case = load_indexes() snake_case , snake_case , snake_case , snake_case = load_models() snake_case , snake_case = load_train_data() def lowerCamelCase__ ( lowercase , lowercase=10 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = embed_questions_for_retrieval([question] , lowercase , lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = eli5_train_q_index.search(lowercase , lowercase ) SCREAMING_SNAKE_CASE : List[str] = [elia_train[int(lowercase )] for i in I[0]] return nn_examples def lowerCamelCase__ ( lowercase , lowercase="wiki40b" , lowercase="dense" , lowercase=10 ): """simple docstring""" if source == "none": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = (" <P> ".join(["" for _ in range(11 )] ).strip(), []) else: if method == "dense": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = query_qa_dense_index( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = query_es_index( lowercase , lowercase , index_name="english_wiki40b_snippets_100w" , n_results=lowercase , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] SCREAMING_SNAKE_CASE : Tuple = "question: {} context: {}".format(lowercase , lowercase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowercase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowercase : None), } ) def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase=64 , lowercase=256 , lowercase=False , lowercase=2 , lowercase=0.95 , lowercase=0.8 ): """simple docstring""" with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = qa_sas_generate( lowercase , lowercase , lowercase , num_answers=1 , num_beams=lowercase , min_len=lowercase , max_len=lowercase , do_sample=lowercase , temp=lowercase , top_p=lowercase , top_k=lowercase , max_input_length=1024 , device="cuda:0" , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar snake_case = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" snake_case = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia snake_case = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) snake_case = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] snake_case = st.sidebar.checkbox("""Demo options""") if demo_options: snake_case = st.sidebar.selectbox( """""", action_list, index=3, ) snake_case = action_list.index(action_st) snake_case = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) snake_case = show_type == """Show full text of passages""" else: snake_case = 3 snake_case = True snake_case = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: snake_case = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) snake_case = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) snake_case = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: snake_case = """wiki40b""" snake_case = """dense""" snake_case = """beam""" snake_case = 2 snake_case = 64 snake_case = 256 snake_case = None snake_case = None snake_case = st.sidebar.checkbox("""Generation options""") if generate_options: snake_case = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) snake_case = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) snake_case = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) snake_case = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": snake_case = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: snake_case = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) snake_case = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) snake_case = None # start main text snake_case = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] snake_case = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": snake_case = st.text_input("""Enter your question here:""", """""") else: snake_case = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": snake_case , snake_case = make_support(question, source=wiki_source, method="""dense""", n_results=10) snake_case , snake_case = make_support(question, source=wiki_source, method="""sparse""", n_results=10) snake_case = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] snake_case = support_list[:10] snake_case = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: snake_case , snake_case = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: snake_case , snake_case = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): snake_case = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) snake_case = res[1].strip() if sec_titles == "": snake_case = """[{}]({})""".format(res[0], wiki_url) else: snake_case = sec_titles.split(""" & """) snake_case = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: snake_case = find_nearest_training(question) snake_case = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) snake_case = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) snake_case = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
62
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available a : str = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys a : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
63
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ): """simple docstring""" _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] _lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] _lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""] _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""] _lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :int = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' ) _lowerCAmelCase :List[Any] = {} _lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight'] _lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias'] _lowerCAmelCase :Dict = checkpoint['time_embed.2.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias'] _lowerCAmelCase :List[Any] = unet_config['down_block_types'] _lowerCAmelCase :Any = unet_config['layers_per_block'] _lowerCAmelCase :List[Any] = unet_config['attention_head_dim'] _lowerCAmelCase :Tuple = unet_config['block_out_channels'] _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Optional[int] = channels_list[0] for i, layer_type in enumerate(__magic_name__ ): _lowerCAmelCase :Tuple = channels_list[i] _lowerCAmelCase :Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}""" _lowerCAmelCase :str = f"""input_blocks.{current_layer}.1""" _lowerCAmelCase :Optional[Any] = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0""" _lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 _lowerCAmelCase :Dict = current_channels # hardcoded the mid-block for now _lowerCAmelCase :int = 'mid_block.resnets.0' _lowerCAmelCase :Optional[Any] = 'middle_block.0' _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = 'mid_block.attentions.0' _lowerCAmelCase :Optional[int] = 'middle_block.1' _lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1' _lowerCAmelCase :Optional[int] = 'middle_block.2' _lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :str = unet_config['up_block_types'] for i, layer_type in enumerate(__magic_name__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1""" _lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}""" _lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1""" _lowerCAmelCase :int = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = checkpoint['out.0.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias'] _lowerCAmelCase :List[Any] = checkpoint['out.2.weight'] _lowerCAmelCase :Dict = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
687
0
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): __a = StableDiffusionControlNetImgaImgPipeline __a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __a = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) __a = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self ) -> str: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: int= UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: str= ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: str= DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: List[str]= AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: List[Any]= CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE__: List[str]= CLIPTextModel(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE__: Union[str, Any]= { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase=0 ) -> Optional[Any]: if str(lowerCAmelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__: Optional[int]= torch.manual_seed(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__: Union[str, Any]= torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= 2 SCREAMING_SNAKE_CASE__: Tuple= randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase , device=torch.device(lowerCAmelCase ) , ) SCREAMING_SNAKE_CASE__: int= floats_tensor(control_image.shape , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[int]= image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__: str= Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) SCREAMING_SNAKE_CASE__: Tuple= { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCamelCase_ ( self ) -> Tuple: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCamelCase_ ( self ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCamelCase_ ( self ) -> str: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): __a = StableDiffusionControlNetImgaImgPipeline __a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __a = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCamelCase_ ( self ) -> Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: int= UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(lowerCAmelCase ): if isinstance(lowerCAmelCase , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) SCREAMING_SNAKE_CASE__: Any= ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCAmelCase ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: Tuple= ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCAmelCase ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: Tuple= DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: Tuple= AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: Optional[int]= CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE__: Any= CLIPTextModel(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE__: Dict= MultiControlNetModel([controlneta, controlneta] ) SCREAMING_SNAKE_CASE__: int= { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase=0 ) -> List[Any]: if str(lowerCAmelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__: str= torch.manual_seed(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__: Optional[int]= torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Any= 2 SCREAMING_SNAKE_CASE__: Tuple= [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase , device=torch.device(lowerCAmelCase ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase , device=torch.device(lowerCAmelCase ) , ), ] SCREAMING_SNAKE_CASE__: Union[str, Any]= floats_tensor(control_image[0].shape , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__: Union[str, Any]= Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) SCREAMING_SNAKE_CASE__: int= { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def UpperCamelCase_ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE__: List[Any]= self.get_dummy_components() SCREAMING_SNAKE_CASE__: str= self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= 10.0 SCREAMING_SNAKE_CASE__: Any= 4 SCREAMING_SNAKE_CASE__: Optional[Any]= self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= steps SCREAMING_SNAKE_CASE__: int= scale SCREAMING_SNAKE_CASE__: List[Any]= pipe(**lowerCAmelCase )[0] SCREAMING_SNAKE_CASE__: Tuple= self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= steps SCREAMING_SNAKE_CASE__: List[Any]= scale SCREAMING_SNAKE_CASE__: int= pipe(**lowerCAmelCase , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] SCREAMING_SNAKE_CASE__: Dict= self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= steps SCREAMING_SNAKE_CASE__: List[Any]= scale SCREAMING_SNAKE_CASE__: str= pipe(**lowerCAmelCase , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] SCREAMING_SNAKE_CASE__: Optional[int]= self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= steps SCREAMING_SNAKE_CASE__: int= scale SCREAMING_SNAKE_CASE__: Any= pipe(**lowerCAmelCase , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def UpperCamelCase_ ( self ) -> int: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCamelCase_ ( self ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCamelCase_ ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def UpperCamelCase_ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Any= self.get_dummy_components() SCREAMING_SNAKE_CASE__: Union[str, Any]= self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowerCAmelCase ) except NotImplementedError: pass @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: Optional[int]= ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) SCREAMING_SNAKE_CASE__: Tuple= StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCAmelCase , controlnet=lowerCAmelCase ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__: List[Any]= '''evil space-punk bird''' SCREAMING_SNAKE_CASE__: List[str]= load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) SCREAMING_SNAKE_CASE__: List[Any]= load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) SCREAMING_SNAKE_CASE__: Optional[Any]= pipe( lowerCAmelCase , lowerCAmelCase , control_image=lowerCAmelCase , generator=lowerCAmelCase , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) SCREAMING_SNAKE_CASE__: Union[str, Any]= output.images[0] assert image.shape == (512, 512, 3) SCREAMING_SNAKE_CASE__: str= load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9e-2
64
import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) _lowerCAmelCase :Tuple = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ): _lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
687
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowercase ( __lowerCamelCase ): def __init__( self : Optional[Any] ,A : str ,A : Tuple ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM UpperCAmelCase__ : Any = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=A ,scheduler=A ) @torch.no_grad() def __call__( self : List[Any] ,A : int = 1 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : float = 0.0 ,A : int = 50 ,A : Optional[bool] = None ,A : Optional[str] = "pil" ,A : bool = True ,): '''simple docstring''' # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size ,A ): UpperCAmelCase__ : Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: UpperCAmelCase__ : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(A ,A ) and len(A ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(A )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) UpperCAmelCase__ : Optional[Any] = randn_tensor(A ,generator=A ,device=self.device ,dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCAmelCase__ : Tuple = self.unet(A ,A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCAmelCase__ : Tuple = self.scheduler.step( A ,A ,A ,eta=A ,use_clipped_model_output=A ,generator=A ).prev_sample UpperCAmelCase__ : Optional[Any] = (image / 2 + 0.5).clamp(0 ,1 ) UpperCAmelCase__ : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": UpperCAmelCase__ : List[str] = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
65
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
0
def __magic_name__ ( SCREAMING_SNAKE_CASE = 50 ) -> int: _lowercase : Optional[int] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
66
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[str] = 'ylacombe/bark-small' _lowerCAmelCase :int = tempfile.mkdtemp() _lowerCAmelCase :List[str] = 'en_speaker_1' _lowerCAmelCase :Union[str, Any] = 'This is a test string' _lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json' _lowerCAmelCase :str = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[Any] = self.get_tokenizer() _lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase :Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase :List[Any] = 35 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :Dict = 8 _lowerCAmelCase :Dict = { 'semantic_prompt': np.ones(_UpperCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Tuple = self.get_tokenizer() _lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = processor(text=self.input_string ) _lowerCAmelCase :List[str] = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
687
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = '''big_bird''' def __init__( self : str ,__A : Union[str, Any]=5_0358 ,__A : Any=768 ,__A : List[str]=12 ,__A : Union[str, Any]=12 ,__A : int=3072 ,__A : Tuple="gelu_new" ,__A : Any=0.1 ,__A : Optional[Any]=0.1 ,__A : Tuple=4096 ,__A : int=2 ,__A : Union[str, Any]=0.02 ,__A : Optional[int]=1e-12 ,__A : List[str]=True ,__A : List[Any]=0 ,__A : Optional[Any]=1 ,__A : Optional[int]=2 ,__A : Optional[int]=66 ,__A : Tuple="block_sparse" ,__A : Optional[int]=True ,__A : Optional[int]=False ,__A : Tuple=64 ,__A : str=3 ,__A : Optional[int]=None ,**__A : Dict ,) -> Union[str, Any]: super().__init__( pad_token_id=__A ,bos_token_id=__A ,eos_token_id=__A ,sep_token_id=__A ,**__A ,) _lowercase = vocab_size _lowercase = max_position_embeddings _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = intermediate_size _lowercase = hidden_act _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = initializer_range _lowercase = type_vocab_size _lowercase = layer_norm_eps _lowercase = use_cache _lowercase = rescale_embeddings _lowercase = attention_type _lowercase = use_bias _lowercase = block_size _lowercase = num_random_blocks _lowercase = classifier_dropout class A_ ( UpperCAmelCase ): """simple docstring""" @property def __UpperCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowercase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
67
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = 'bert' def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :Dict = num_hidden_layers _lowerCAmelCase :Optional[Any] = num_attention_heads _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = intermediate_size _lowerCAmelCase :Tuple = hidden_dropout_prob _lowerCAmelCase :Tuple = attention_probs_dropout_prob _lowerCAmelCase :List[Any] = max_position_embeddings _lowerCAmelCase :Dict = type_vocab_size _lowerCAmelCase :Any = initializer_range _lowerCAmelCase :int = layer_norm_eps _lowerCAmelCase :List[Any] = position_embedding_type _lowerCAmelCase :int = use_cache _lowerCAmelCase :Union[str, Any] = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): if self.task == "multiple-choice": _lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
687
0
import flax.linen as nn import jax import jax.numpy as jnp class _A ( nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def _a ( self : Union[str, Any] ) -> List[Any]: __UpperCAmelCase =nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Any , __SCREAMING_SNAKE_CASE : List[Any] ) -> str: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =hidden_states.shape __UpperCAmelCase =jax.image.resize( __SCREAMING_SNAKE_CASE , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) __UpperCAmelCase =self.conv(__SCREAMING_SNAKE_CASE ) return hidden_states class _A ( nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def _a ( self : List[str] ) -> Any: __UpperCAmelCase =nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Any , __SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __UpperCAmelCase =self.conv(__SCREAMING_SNAKE_CASE ) return hidden_states class _A ( nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int = None lowerCamelCase : float = 0.0 lowerCamelCase : bool = None lowerCamelCase : jnp.dtype = jnp.floataa def _a ( self : Union[str, Any] ) -> Tuple: __UpperCAmelCase =self.in_channels if self.out_channels is None else self.out_channels __UpperCAmelCase =nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase =nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase =nn.Dense(__SCREAMING_SNAKE_CASE , dtype=self.dtype ) __UpperCAmelCase =nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase =nn.Dropout(self.dropout_prob ) __UpperCAmelCase =nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase =self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __UpperCAmelCase =None if use_nin_shortcut: __UpperCAmelCase =nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=True ) -> Dict: __UpperCAmelCase =hidden_states __UpperCAmelCase =self.norma(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =nn.swish(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.conva(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.time_emb_proj(nn.swish(__SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase =jnp.expand_dims(jnp.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , 1 ) __UpperCAmelCase =hidden_states + temb __UpperCAmelCase =self.norma(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =nn.swish(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.dropout(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.conva(__SCREAMING_SNAKE_CASE ) if self.conv_shortcut is not None: __UpperCAmelCase =self.conv_shortcut(__SCREAMING_SNAKE_CASE ) return hidden_states + residual
68
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
0
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( _UpperCAmelCase : int ) -> list[int]: if num <= 0: __snake_case = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(_UpperCAmelCase ) __snake_case = [True] * (num + 1) __snake_case = [] __snake_case = 2 __snake_case = int(math.sqrt(_UpperCAmelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_UpperCAmelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , _UpperCAmelCase ): if sieve[i] is True: __snake_case = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_UpperCAmelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
69
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
0
def _SCREAMING_SNAKE_CASE ( lowercase : int = 50_00_00_00 ): '''simple docstring''' lowerCamelCase_ = set() lowerCamelCase_ = int((limit - 24) ** (1 / 2) ) lowerCamelCase_ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) ) for primea in primes: lowerCamelCase_ = primea * primea for primea in primes: lowerCamelCase_ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCamelCase_ = primea * primea * primea * primea lowerCamelCase_ = square + cube + tetr if total >= limit: break ret.add(lowercase ) return len(lowercase ) if __name__ == "__main__": print(F"""{solution() = }""")
70
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
0
'''simple docstring''' from __future__ import annotations from collections import deque class _snake_case : def __init__( self ,_snake_case ): UpperCAmelCase_ : list[dict] = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(_snake_case ) self.set_fail_transitions() def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Optional[int] = 0 for character in keyword: UpperCAmelCase_ : List[str] = self.find_next_state(_snake_case ,_snake_case ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCAmelCase_ : str = len(self.adlist ) - 1 else: UpperCAmelCase_ : str = next_state self.adlist[current_state]["output"].append(_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : deque = deque() for node in self.adlist[0]["next_states"]: q.append(_snake_case ) UpperCAmelCase_ : Optional[int] = 0 while q: UpperCAmelCase_ : int = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_snake_case ) UpperCAmelCase_ : int = self.adlist[r]["fail_state"] while ( self.find_next_state(_snake_case ,self.adlist[child]["value"] ) is None and state != 0 ): UpperCAmelCase_ : Tuple = self.adlist[state]["fail_state"] UpperCAmelCase_ : Union[str, Any] = self.find_next_state( _snake_case ,self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Union[str, Any] = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : dict = {} # returns a dict with keywords and list of its occurrences UpperCAmelCase_ : Optional[Any] = 0 for i in range(len(_snake_case ) ): while ( self.find_next_state(_snake_case ,string[i] ) is None and current_state != 0 ): UpperCAmelCase_ : List[str] = self.adlist[current_state]["fail_state"] UpperCAmelCase_ : Union[str, Any] = self.find_next_state(_snake_case ,string[i] ) if next_state is None: UpperCAmelCase_ : Optional[Any] = 0 else: UpperCAmelCase_ : Union[str, Any] = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCAmelCase_ : int = [] result[key].append(i - len(_snake_case ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
71
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import math import os import sys def UpperCamelCase ( lowercase_ : str ) -> str: '''simple docstring''' lowercase ='''''' try: with open(lowercase_ , '''rb''' ) as binary_file: lowercase =binary_file.read() for dat in data: lowercase =f'{dat:08b}' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def UpperCamelCase ( lowercase_ : dict[str, str] , lowercase_ : str , lowercase_ : int , lowercase_ : str ) -> None: '''simple docstring''' lexicon.pop(lowercase_ ) lowercase =last_match_id if math.loga(lowercase_ ).is_integer(): for curr_key in lexicon: lowercase ='''0''' + lexicon[curr_key] lowercase =bin(lowercase_ )[2:] def UpperCamelCase ( lowercase_ : str ) -> str: '''simple docstring''' lowercase ={'''0''': '''0''', '''1''': '''1'''} lowercase , lowercase ='''''', '''''' lowercase =len(lowercase_ ) for i in range(len(lowercase_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase =lexicon[curr_string] result += last_match_id add_key_to_lexicon(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) index += 1 lowercase ='''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": lowercase =lexicon[curr_string] result += last_match_id return result def UpperCamelCase ( lowercase_ : str , lowercase_ : str ) -> str: '''simple docstring''' lowercase =os.path.getsize(lowercase_ ) lowercase =bin(lowercase_ )[2:] lowercase =len(lowercase_ ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCamelCase ( lowercase_ : str , lowercase_ : str ) -> None: '''simple docstring''' lowercase =8 try: with open(lowercase_ , '''wb''' ) as opened_file: lowercase =[ to_write[i : i + byte_length] for i in range(0 , len(lowercase_ ) , lowercase_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(lowercase_ , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def UpperCamelCase ( lowercase_ : str , lowercase_ : str ) -> None: '''simple docstring''' lowercase =read_file_binary(lowercase_ ) lowercase =compress_data(lowercase_ ) lowercase =add_file_length(lowercase_ , lowercase_ ) write_file_binary(lowercase_ , lowercase_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
72
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ): _lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20} _lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase :str = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :Optional[Any] = num_channels _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :int = min_resolution _lowerCAmelCase :List[str] = max_resolution _lowerCAmelCase :List[str] = do_resize _lowerCAmelCase :Optional[int] = size _lowerCAmelCase :str = do_center_crop _lowerCAmelCase :int = crop_size _lowerCAmelCase :Optional[int] = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: int ): # Initialize image_processing _lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # Initialize image_processing _lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any ): # Initialize image_processing _lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
687
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : int = logging.get_logger(__name__) a_ : List[str] = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class _snake_case ( A__ ): _lowercase : Any = '''git_vision_model''' def __init__( self , a=768 , a=3072 , a=12 , a=12 , a=3 , a=224 , a=16 , a="quick_gelu" , a=1E-5 , a=0.0 , a=0.02 , **a , ) -> Optional[int]: super().__init__(**a) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = hidden_act @classmethod def SCREAMING_SNAKE_CASE__ ( cls , a , **a) -> "PretrainedConfig": cls._set_token_in_kwargs(a) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(a , **a) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type') == "git": SCREAMING_SNAKE_CASE = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(a , **a) class _snake_case ( A__ ): _lowercase : List[Any] = '''git''' def __init__( self , a=None , a=3_0522 , a=768 , a=6 , a=12 , a=3072 , a="gelu" , a=0.1 , a=0.1 , a=1024 , a=0.02 , a=1E-12 , a=0 , a="absolute" , a=True , a=False , a=101 , a=102 , a=None , **a , ) -> Dict: super().__init__(bos_token_id=a , eos_token_id=a , pad_token_id=a , **a) if vision_config is None: SCREAMING_SNAKE_CASE = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.') SCREAMING_SNAKE_CASE = GitVisionConfig(**a) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = tie_word_embeddings SCREAMING_SNAKE_CASE = num_image_with_embedding SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__) SCREAMING_SNAKE_CASE = self.vision_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output
73
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Any = PandasConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :Any = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Any = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
687
0
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = checkpoint __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : Union[str, Any] = vae_state_dict['''encoder.conv_in.weight'''] __SCREAMING_SNAKE_CASE : List[Any] = vae_state_dict['''encoder.conv_in.bias'''] __SCREAMING_SNAKE_CASE : List[str] = vae_state_dict['''encoder.conv_out.weight'''] __SCREAMING_SNAKE_CASE : List[str] = vae_state_dict['''encoder.conv_out.bias'''] __SCREAMING_SNAKE_CASE : int = vae_state_dict['''encoder.norm_out.weight'''] __SCREAMING_SNAKE_CASE : str = vae_state_dict['''encoder.norm_out.bias'''] __SCREAMING_SNAKE_CASE : List[str] = vae_state_dict['''decoder.conv_in.weight'''] __SCREAMING_SNAKE_CASE : List[str] = vae_state_dict['''decoder.conv_in.bias'''] __SCREAMING_SNAKE_CASE : Optional[int] = vae_state_dict['''decoder.conv_out.weight'''] __SCREAMING_SNAKE_CASE : Any = vae_state_dict['''decoder.conv_out.bias'''] __SCREAMING_SNAKE_CASE : List[Any] = vae_state_dict['''decoder.norm_out.weight'''] __SCREAMING_SNAKE_CASE : Tuple = vae_state_dict['''decoder.norm_out.bias'''] __SCREAMING_SNAKE_CASE : Optional[Any] = vae_state_dict['''quant_conv.weight'''] __SCREAMING_SNAKE_CASE : List[str] = vae_state_dict['''quant_conv.bias'''] __SCREAMING_SNAKE_CASE : Tuple = vae_state_dict['''post_quant_conv.weight'''] __SCREAMING_SNAKE_CASE : Dict = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only __SCREAMING_SNAKE_CASE : Union[str, Any] = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { layer_id: [key for key in vae_state_dict if F'''down.{layer_id}''' in key] for layer_id in range(snake_case ) } # Retrieves the keys for the decoder up blocks only __SCREAMING_SNAKE_CASE : str = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { layer_id: [key for key in vae_state_dict if F'''up.{layer_id}''' in key] for layer_id in range(snake_case ) } for i in range(snake_case ): __SCREAMING_SNAKE_CASE : Optional[int] = [key for key in down_blocks[i] if F'''down.{i}''' in key and F'''down.{i}.downsample''' not in key] if F'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: __SCREAMING_SNAKE_CASE : Union[str, Any] = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.weight''' ) __SCREAMING_SNAKE_CASE : Any = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.bias''' ) __SCREAMING_SNAKE_CASE : Any = renew_vae_resnet_paths(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''old''': F'''down.{i}.block''', '''new''': F'''down_blocks.{i}.resnets'''} assign_to_checkpoint(snake_case , snake_case , snake_case , additional_replacements=[meta_path] , config=snake_case ) __SCREAMING_SNAKE_CASE : Dict = [key for key in vae_state_dict if '''encoder.mid.block''' in key] __SCREAMING_SNAKE_CASE : List[str] = 2 for i in range(1 , num_mid_res_blocks + 1 ): __SCREAMING_SNAKE_CASE : str = [key for key in mid_resnets if F'''encoder.mid.block_{i}''' in key] __SCREAMING_SNAKE_CASE : List[Any] = renew_vae_resnet_paths(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = {'''old''': F'''mid.block_{i}''', '''new''': F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(snake_case , snake_case , snake_case , additional_replacements=[meta_path] , config=snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] __SCREAMING_SNAKE_CASE : str = renew_vae_attention_paths(snake_case ) __SCREAMING_SNAKE_CASE : int = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(snake_case , snake_case , snake_case , additional_replacements=[meta_path] , config=snake_case ) conv_attn_to_linear(snake_case ) for i in range(snake_case ): __SCREAMING_SNAKE_CASE : Any = num_up_blocks - 1 - i __SCREAMING_SNAKE_CASE : Union[str, Any] = [ key for key in up_blocks[block_id] if F'''up.{block_id}''' in key and F'''up.{block_id}.upsample''' not in key ] if F'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: __SCREAMING_SNAKE_CASE : Optional[Any] = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.weight''' ] __SCREAMING_SNAKE_CASE : Dict = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.bias''' ] __SCREAMING_SNAKE_CASE : Tuple = renew_vae_resnet_paths(snake_case ) __SCREAMING_SNAKE_CASE : Tuple = {'''old''': F'''up.{block_id}.block''', '''new''': F'''up_blocks.{i}.resnets'''} assign_to_checkpoint(snake_case , snake_case , snake_case , additional_replacements=[meta_path] , config=snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [key for key in vae_state_dict if '''decoder.mid.block''' in key] __SCREAMING_SNAKE_CASE : List[Any] = 2 for i in range(1 , num_mid_res_blocks + 1 ): __SCREAMING_SNAKE_CASE : Tuple = [key for key in mid_resnets if F'''decoder.mid.block_{i}''' in key] __SCREAMING_SNAKE_CASE : Optional[Any] = renew_vae_resnet_paths(snake_case ) __SCREAMING_SNAKE_CASE : Tuple = {'''old''': F'''mid.block_{i}''', '''new''': F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(snake_case , snake_case , snake_case , additional_replacements=[meta_path] , config=snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] __SCREAMING_SNAKE_CASE : Optional[Any] = renew_vae_attention_paths(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(snake_case , snake_case , snake_case , additional_replacements=[meta_path] , config=snake_case ) conv_attn_to_linear(snake_case ) return new_checkpoint def a__ ( snake_case , snake_case , ): """simple docstring""" # Only support V1 __SCREAMING_SNAKE_CASE : List[Any] = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) __SCREAMING_SNAKE_CASE : Dict = io.BytesIO(r.content ) __SCREAMING_SNAKE_CASE : Tuple = OmegaConf.load(snake_case ) __SCREAMING_SNAKE_CASE : Dict = 512 __SCREAMING_SNAKE_CASE : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open __SCREAMING_SNAKE_CASE : Optional[Any] = {} with safe_open(snake_case , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): __SCREAMING_SNAKE_CASE : Dict = f.get_tensor(snake_case ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(snake_case , map_location=snake_case )['''state_dict'''] # Convert the VAE model. __SCREAMING_SNAKE_CASE : int = create_vae_diffusers_config(snake_case , image_size=snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = custom_convert_ldm_vae_checkpoint(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = AutoencoderKL(**snake_case ) vae.load_state_dict(snake_case ) vae.save_pretrained(snake_case ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") lowercase_ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
74
import glob import os import random from string import ascii_lowercase, digits import cva a = """""" a = """""" a = """""" a = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ ) print('Processing...' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase :Optional[Any] = random_chars(32 ) _lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" ) _lowerCAmelCase :str = [] for anno in new_annos[index]: _lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__magic_name__ ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = [] _lowerCAmelCase :Union[str, Any] = [] for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ): _lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__magic_name__ ) as in_file: _lowerCAmelCase :Union[str, Any] = in_file.readlines() _lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" ) _lowerCAmelCase :Tuple = [] for obj_list in obj_lists: _lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :Any = [] _lowerCAmelCase :Optional[Any] = [] for idx in range(len(__magic_name__ ) ): _lowerCAmelCase :Optional[int] = [] _lowerCAmelCase :Optional[Any] = img_list[idx] path_list.append(__magic_name__ ) _lowerCAmelCase :List[str] = anno_list[idx] _lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ ) if flip_type == 1: _lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_( __magic_name__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase :str = ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
687
0
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase_ : def __init__( self : Optional[int] , _A : Optional[Any] , _A : Tuple=2 , _A : Tuple=3 , _A : Optional[Any]=4 , _A : List[Any]=2 , _A : List[Any]=7 , _A : int=True , _A : Dict=True , _A : int=True , _A : Dict=True , _A : Tuple=99 , _A : Union[str, Any]=36 , _A : int=2 , _A : List[str]=4 , _A : int=37 , _A : List[Any]="gelu" , _A : str=0.1 , _A : str=0.1 , _A : Tuple=512 , _A : Dict=16 , _A : Tuple=2 , _A : Union[str, Any]=0.0_2 , _A : Any=6 , _A : Union[str, Any]=6 , _A : str=3 , _A : str=4 , _A : Tuple=None , _A : int=1_000 , ): '''simple docstring''' UpperCAmelCase__ : int = parent UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : str = num_channels UpperCAmelCase__ : str = image_size UpperCAmelCase__ : List[str] = patch_size UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : List[str] = use_input_mask UpperCAmelCase__ : Tuple = use_token_type_ids UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : int = vocab_size UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Optional[int] = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase__ : List[str] = max_position_embeddings UpperCAmelCase__ : Tuple = type_vocab_size UpperCAmelCase__ : Any = type_sequence_label_size UpperCAmelCase__ : List[str] = initializer_range UpperCAmelCase__ : List[str] = coordinate_size UpperCAmelCase__ : Tuple = shape_size UpperCAmelCase__ : Optional[int] = num_labels UpperCAmelCase__ : Optional[Any] = num_choices UpperCAmelCase__ : Union[str, Any] = scope UpperCAmelCase__ : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCAmelCase__ : str = text_seq_length UpperCAmelCase__ : Tuple = (image_size // patch_size) ** 2 + 1 UpperCAmelCase__ : Tuple = self.text_seq_length + self.image_seq_length def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCAmelCase__ : int = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase__ : str = bbox[i, j, 3] UpperCAmelCase__ : Dict = bbox[i, j, 1] UpperCAmelCase__ : str = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase__ : Optional[int] = bbox[i, j, 2] UpperCAmelCase__ : Any = bbox[i, j, 0] UpperCAmelCase__ : List[Any] = tmp_coordinate UpperCAmelCase__ : str = tf.constant(_A ) UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Any = None if self.use_input_mask: UpperCAmelCase__ : Any = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCAmelCase__ : Any = None if self.use_token_type_ids: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : List[str] = None if self.use_labels: UpperCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCAmelCase__ : Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase_ ( self : Union[str, Any] , _A : int , _A : str , _A : Optional[int] , _A : Optional[int] , _A : List[str] , _A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : int = TFLayoutLMvaModel(config=_A ) # text + image UpperCAmelCase__ : Tuple = model(_A , pixel_values=_A , training=_A ) UpperCAmelCase__ : Tuple = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , training=_A , ) UpperCAmelCase__ : Optional[Any] = model(_A , bbox=_A , pixel_values=_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCAmelCase__ : Any = model(_A , training=_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCAmelCase__ : str = model({'''pixel_values''': pixel_values} , training=_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase_ ( self : Union[str, Any] , _A : Optional[int] , _A : Optional[Any] , _A : Dict , _A : List[Any] , _A : List[Any] , _A : Any , _A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.num_labels UpperCAmelCase__ : int = TFLayoutLMvaForSequenceClassification(config=_A ) UpperCAmelCase__ : Union[str, Any] = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , training=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Dict , _A : List[Any] , _A : Any , _A : Dict , _A : str , _A : Optional[int] , _A : str , _A : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.num_labels UpperCAmelCase__ : Union[str, Any] = TFLayoutLMvaForTokenClassification(config=_A ) UpperCAmelCase__ : Optional[int] = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , training=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase_ ( self : Dict , _A : Dict , _A : List[str] , _A : Union[str, Any] , _A : int , _A : Tuple , _A : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : str = 2 UpperCAmelCase__ : Dict = TFLayoutLMvaForQuestionAnswering(config=_A ) UpperCAmelCase__ : str = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , training=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : int = self.prepare_config_and_inputs() ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) : List[str] = config_and_inputs UpperCAmelCase__ : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase__ = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : List[Any] , _A : Union[str, Any] , _A : str , _A : List[Any] , _A : Dict , _A : List[str] ): '''simple docstring''' return True def lowercase_ ( self : Optional[Any] , _A : Tuple , _A : Any , _A : Dict=False ): '''simple docstring''' UpperCAmelCase__ : List[Any] = copy.deepcopy(_A ) if model_class in get_values(_A ): UpperCAmelCase__ : Tuple = { k: tf.tile(tf.expand_dims(_A , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_A , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_A ): UpperCAmelCase__ : Dict = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_A ): UpperCAmelCase__ : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCAmelCase__ : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_A ): UpperCAmelCase__ : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_A ): UpperCAmelCase__ : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = TFLayoutLMvaModelTester(self ) UpperCAmelCase__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def lowercase_ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = model_class(_A ) if getattr(_A , '''hf_compute_loss''' , _A ): # The number of elements in the loss should be the same as the number of elements in the label UpperCAmelCase__ : Tuple = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) UpperCAmelCase__ : List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_A )[0] ] UpperCAmelCase__ : Optional[Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCAmelCase__ : Any = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) UpperCAmelCase__ : Tuple = prepared_for_class.pop('''input_ids''' ) UpperCAmelCase__ : List[Any] = model(_A , **_A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCAmelCase__ : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) UpperCAmelCase__ : Tuple = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: UpperCAmelCase__ : Optional[Any] = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCAmelCase__ : Any = -100 UpperCAmelCase__ : Union[str, Any] = tf.convert_to_tensor(_A ) UpperCAmelCase__ : int = model(_A , **_A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCAmelCase__ : Optional[int] = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) UpperCAmelCase__ : Dict = model(_A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCAmelCase__ : Dict = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) # Get keys that were added with the _prepare_for_class function UpperCAmelCase__ : Optional[int] = prepared_for_class.keys() - inputs_dict.keys() UpperCAmelCase__ : int = inspect.signature(model.call ).parameters UpperCAmelCase__ : Union[str, Any] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCAmelCase__ : Dict = {0: '''input_ids'''} for label_key in label_keys: UpperCAmelCase__ : str = signature_names.index(_A ) UpperCAmelCase__ : List[Any] = label_key UpperCAmelCase__ : Dict = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCAmelCase__ : Tuple = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCAmelCase__ : Any = prepared_for_class[value] UpperCAmelCase__ : Tuple = tuple(_A ) # Send to model UpperCAmelCase__ : Optional[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase_ ( self : int ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_A , _A , _A , _A , _A , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : Union[str, Any] = type self.model_tester.create_and_check_model(_A , _A , _A , _A , _A , _A ) def lowercase_ ( self : List[str] ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _A , _A , _A , _A , _A , _A , _A ) def lowercase_ ( self : Any ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _A , _A , _A , _A , _A , _A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _A , _A , _A , _A , _A , _A , _A ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[str] = TFLayoutLMvaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def a__ ( ) -> List[str]: UpperCAmelCase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase_ ( self : Dict ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=_A ) if is_vision_available() else None @slow def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) UpperCAmelCase__ : Dict = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : int = image_processor(images=_A , return_tensors='''tf''' ).pixel_values UpperCAmelCase__ : str = tf.constant([[1, 2]] ) UpperCAmelCase__ : Optional[Any] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCAmelCase__ : int = model(input_ids=_A , bbox=_A , pixel_values=_A , training=_A ) # verify the logits UpperCAmelCase__ : Optional[int] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , _A ) UpperCAmelCase__ : Dict = tf.constant( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _A , atol=1e-4 ) )
75
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ ) _lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ ) return torch.mm(__magic_name__ , normalized_text_embeds.t() ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = CLIPConfig lowerCamelCase : Any = ['CLIPEncoderLayer'] def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ): super().__init__(_UpperCAmelCase ) _lowerCAmelCase :Any = CLIPVisionModel(config.vision_config ) _lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) _lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase :str = [] _lowerCAmelCase :List[Any] = image_embeds.shape[0] for i in range(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx] _lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowerCAmelCase :Any = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx] _lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) _lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ): _lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) _lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :Any = 0.0 _lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase :List[str] = special_care * 0.0_1 _lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
0
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) a_ = 'hf-internal-testing/tiny-random-bert' a_ = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') a_ = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> List[Any]: __lowercase : Dict = cached_file(UpperCamelCase_ , UpperCamelCase_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCamelCase_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) ) with open(os.path.join(UpperCamelCase_ , '''refs''' , '''main''' ) ) as f: __lowercase : str = f.read() self.assertEqual(UpperCamelCase_ , os.path.join(UpperCamelCase_ , '''snapshots''' , UpperCamelCase_ , UpperCamelCase_ ) ) self.assertTrue(os.path.isfile(UpperCamelCase_ ) ) # File is cached at the same place the second time. __lowercase : Optional[int] = cached_file(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # Using a specific revision to test the full commit hash. __lowercase : List[str] = cached_file(UpperCamelCase_ , UpperCamelCase_ , revision='''9b8c223''' ) self.assertEqual(UpperCamelCase_ , os.path.join(UpperCamelCase_ , '''snapshots''' , UpperCamelCase_ , UpperCamelCase_ ) ) def _lowerCamelCase ( self ) -> List[Any]: with self.assertRaisesRegex(UpperCamelCase_ , '''is not a valid model identifier''' ): __lowercase : Optional[int] = cached_file('''tiny-random-bert''' , UpperCamelCase_ ) with self.assertRaisesRegex(UpperCamelCase_ , '''is not a valid git identifier''' ): __lowercase : List[str] = cached_file(UpperCamelCase_ , UpperCamelCase_ , revision='''aaaa''' ) with self.assertRaisesRegex(UpperCamelCase_ , '''does not appear to have a file named''' ): __lowercase : Tuple = cached_file(UpperCamelCase_ , '''conf''' ) def _lowerCamelCase ( self ) -> Dict: with self.assertRaisesRegex(UpperCamelCase_ , '''does not appear to have a file named''' ): __lowercase : Dict = cached_file(UpperCamelCase_ , '''conf''' ) with open(os.path.join(UpperCamelCase_ , '''refs''' , '''main''' ) ) as f: __lowercase : str = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase_ , '''.no_exist''' , UpperCamelCase_ , '''conf''' ) ) ) __lowercase : List[Any] = cached_file(UpperCamelCase_ , '''conf''' , _raise_exceptions_for_missing_entries=UpperCamelCase_ ) self.assertIsNone(UpperCamelCase_ ) __lowercase : Optional[int] = cached_file(UpperCamelCase_ , '''conf''' , local_files_only=UpperCamelCase_ , _raise_exceptions_for_missing_entries=UpperCamelCase_ ) self.assertIsNone(UpperCamelCase_ ) __lowercase : Any = mock.Mock() __lowercase : Optional[int] = 5_00 __lowercase : Dict = {} __lowercase : List[Any] = HTTPError __lowercase : Optional[int] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=UpperCamelCase_ ) as mock_head: __lowercase : List[str] = cached_file(UpperCamelCase_ , '''conf''' , _raise_exceptions_for_connection_errors=UpperCamelCase_ ) self.assertIsNone(UpperCamelCase_ ) # This check we did call the fake head request mock_head.assert_called() def _lowerCamelCase ( self ) -> Any: self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase_ ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase_ ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase_ ) ) def _lowerCamelCase ( self ) -> int: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCamelCase_ , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , UpperCamelCase_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCamelCase_ , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , UpperCamelCase_ , revision='''ahaha''' ) __lowercase : Dict = get_file_from_repo('''bert-base-cased''' , UpperCamelCase_ ) # The name is the cached name which is not very easy to test, so instead we load the content. __lowercase : List[str] = json.loads(open(UpperCamelCase_ , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 7_68 ) def _lowerCamelCase ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: __lowercase : Dict = Path(UpperCamelCase_ ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(UpperCamelCase_ , '''a.txt''' ) , str(UpperCamelCase_ ) ) self.assertIsNone(get_file_from_repo(UpperCamelCase_ , '''b.txt''' ) )
76
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def _UpperCamelCase ( UpperCamelCase ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) def _UpperCamelCase ( UpperCamelCase ) -> Tuple: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : List[Any] = emb.weight.shape __UpperCAmelCase : Optional[Any] = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = emb.weight.data return lin_layer def _UpperCamelCase ( UpperCamelCase ) -> Dict: """simple docstring""" __UpperCAmelCase : Any = torch.load(UpperCamelCase , map_location="cpu" ) __UpperCAmelCase : Union[str, Any] = mam_aaa["args"] or mam_aaa["cfg"]["model"] __UpperCAmelCase : Optional[Any] = mam_aaa["model"] remove_ignore_keys_(UpperCamelCase ) __UpperCAmelCase : int = state_dict["encoder.embed_tokens.weight"].shape[0] __UpperCAmelCase : int = MaMaaaConfig( vocab_size=UpperCamelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) __UpperCAmelCase : Optional[int] = state_dict["decoder.embed_tokens.weight"] __UpperCAmelCase : List[str] = MaMaaaForConditionalGeneration(UpperCamelCase ) model.model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) __UpperCAmelCase : Any = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") A = parser.parse_args() A = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
77
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'encoder-decoder' lowerCamelCase : Optional[Any] = True def __init__( self: str , **_UpperCAmelCase: int ): super().__init__(**_UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' ) _lowerCAmelCase :Dict = encoder_config.pop('model_type' ) _lowerCAmelCase :str = kwargs.pop('decoder' ) _lowerCAmelCase :str = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCAmelCase :Dict = True _lowerCAmelCase :List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :Optional[int] = self.encoder.to_dict() _lowerCAmelCase :Union[str, Any] = self.decoder.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output
687
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): @slow def _lowercase (self : List[Any] ): UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="tf" ).input_ids UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="tf" ).input_ids UpperCAmelCase_ = model(__a , labels=__a ).loss UpperCAmelCase_ = -tf.math.reduce_mean(__a ).numpy() UpperCAmelCase_ = -21.22_81_68 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
78
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : str = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) UpperCAmelCase__ : Dict = { """input_ids""": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } UpperCAmelCase__ : Union[str, Any] = model(_lowerCAmelCase )["""last_hidden_state"""] UpperCAmelCase__ : List[str] = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) # compare the actual values for a slice. UpperCAmelCase__ : int = tf.convert_to_tensor( [ [ [0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4], [-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4], [-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
79
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __UpperCamelCase : def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[Any]=10 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : str=32 * 4 , _lowerCAmelCase : List[str]=32 * 6 , _lowerCAmelCase : int=4 , _lowerCAmelCase : int=32 , ) -> Dict: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = is_training __lowercase = use_auxiliary_loss __lowercase = num_queries __lowercase = num_channels __lowercase = min_size __lowercase = max_size __lowercase = num_labels __lowercase = mask_feature_size def _a ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCAmelCase ) __lowercase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCAmelCase ) __lowercase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCAmelCase ) > 0.5 ).float() __lowercase = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCAmelCase ) > 0.5).long() __lowercase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def _a ( self : int ) -> List[str]: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = self.prepare_config_and_inputs() __lowercase = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def _a ( self : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = output.encoder_hidden_states __lowercase = output.pixel_decoder_hidden_states __lowercase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , config.decoder_config.decoder_layers ) def _a ( self : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=False ) -> int: """simple docstring""" with torch.no_grad(): __lowercase = MaskFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = MaskFormerForInstanceSegmentation(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() def comm_check_on_output(_lowerCAmelCase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowercase = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) __lowercase = model( pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :str = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __snake_case :Optional[int] = ( {'feature-extraction': MaskFormerModel, 'image-segmentation': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __snake_case :Any = False __snake_case :str = False __snake_case :Any = False __snake_case :Optional[int] = False def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = MaskFormerModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_lowerCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def _a ( self : Tuple ) -> Any: """simple docstring""" pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def _a ( self : List[str] ) -> str: """simple docstring""" pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def _a ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" pass def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Dict: """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: __lowercase = MaskFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = (self.model_tester.min_size,) * 2 __lowercase = { """pixel_values""": torch.randn((2, 3, *size) , device=_lowerCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) , device=_lowerCAmelCase ), """class_labels""": torch.zeros(2 , 10 , device=_lowerCAmelCase ).long(), } __lowercase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_lowerCAmelCase ) __lowercase = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def _a ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) __lowercase = model(**_lowerCAmelCase , output_attentions=_lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss __lowercase = self.all_model_classes[1] __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs() __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() __lowercase = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ).loss loss.backward() def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.all_model_classes[1] __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs() __lowercase = True __lowercase = True __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() __lowercase = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowercase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't __lowercase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowercase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __UpperCamelCase : Dict = 1e-4 def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(_lowerCAmelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) __lowercase = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) __lowercase = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) __lowercase = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) __lowercase = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(_lowerCAmelCase ) .eval() ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) __lowercase = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) # masks_queries_logits __lowercase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) __lowercase = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] __lowercase = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) # class_queries_logits __lowercase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) __lowercase = torch.tensor( [ [1.6512e00, -5.2572e00, -3.3519e00], [3.6169e-02, -5.9025e00, -2.9313e00], [1.0766e-04, -7.7630e00, -5.1263e00], ] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def _a ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(_lowerCAmelCase ) .eval() ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) __lowercase = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) # masks_queries_logits __lowercase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) __lowercase = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] __lowercase = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) # class_queries_logits __lowercase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) __lowercase = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def _a ( self : str ) -> str: """simple docstring""" __lowercase = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(_lowerCAmelCase ) .eval() ) __lowercase = self.default_image_processor __lowercase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) __lowercase = inputs["""pixel_values"""].to(_lowerCAmelCase ) __lowercase = [el.to(_lowerCAmelCase ) for el in inputs["""mask_labels"""]] __lowercase = [el.to(_lowerCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
80
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[int] = 10 def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :str = [1, 2, 3, 4] _lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[int] = '' _lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = ['It was the best of times.'] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[str] = 101 _lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
687
0
import numpy as np _snake_case : str = [ ["a", "b", "c", "d", "e"], ["f", "g", "h", "i", "k"], ["l", "m", "n", "o", "p"], ["q", "r", "s", "t", "u"], ["v", "w", "x", "y", "z"], ] class a : """simple docstring""" def __init__( self : Optional[int] ) -> None: __snake_case : Optional[int] = np.array(lowerCamelCase ) def __snake_case ( self : Union[str, Any] , lowerCamelCase : str ) -> np.ndarray: __snake_case , __snake_case : Optional[int] = np.where(letter == self.SQUARE ) __snake_case : Union[str, Any] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : int ) -> str: __snake_case : Optional[int] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self : Union[str, Any] , lowerCamelCase : str ) -> str: __snake_case : Dict = message.lower() __snake_case : List[Any] = message.replace(" " , "" ) __snake_case : List[Any] = message.replace("j" , "i" ) __snake_case : Optional[Any] = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __snake_case : List[Any] = self.letter_to_numbers(message[letter_index] ) __snake_case : Any = numbers[0] __snake_case : Dict = numbers[1] __snake_case : Optional[Any] = first_step.reshape(2 * len(lowerCamelCase ) ) __snake_case : str = "" for numbers_index in range(len(lowerCamelCase ) ): __snake_case : str = int(second_step[numbers_index * 2] ) __snake_case : List[Any] = int(second_step[(numbers_index * 2) + 1] ) __snake_case : Optional[Any] = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __snake_case : Union[str, Any] = encoded_message + letter return encoded_message def __snake_case ( self : Any , lowerCamelCase : str ) -> str: __snake_case : Tuple = message.lower() message.replace(" " , "" ) __snake_case : Dict = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __snake_case : str = self.letter_to_numbers(message[letter_index] ) __snake_case : Dict = numbers[0] __snake_case : Union[str, Any] = numbers[1] __snake_case : int = first_step.reshape((2, len(lowerCamelCase )) ) __snake_case : List[Any] = "" for numbers_index in range(len(lowerCamelCase ) ): __snake_case : List[Any] = int(second_step[0, numbers_index] ) __snake_case : Optional[Any] = int(second_step[1, numbers_index] ) __snake_case : str = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __snake_case : List[Any] = decoded_message + letter return decoded_message
81
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
687
0
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowerCamelCase = logging.getLogger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : str=-1 ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = label_idx def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[Split, str] ) -> List[InputExample]: '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase_ = mode.value UpperCAmelCase_ = os.path.join(_UpperCAmelCase , F"""{mode}.txt""" ) UpperCAmelCase_ = 1 UpperCAmelCase_ = [] with open(_UpperCAmelCase , encoding="utf-8" ) as f: UpperCAmelCase_ = [] UpperCAmelCase_ = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) ) guid_index += 1 UpperCAmelCase_ = [] UpperCAmelCase_ = [] else: UpperCAmelCase_ = line.split(" " ) words.append(splits[0] ) if len(_UpperCAmelCase ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) ) return examples def lowercase__ ( self : Dict , _UpperCAmelCase : TextIO , _UpperCAmelCase : TextIO , _UpperCAmelCase : List ) -> Dict: '''simple docstring''' UpperCAmelCase_ = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(_UpperCAmelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: UpperCAmelCase_ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(_UpperCAmelCase ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def lowercase__ ( self : str , _UpperCAmelCase : str ) -> List[str]: '''simple docstring''' if path: with open(_UpperCAmelCase , "r" ) as f: UpperCAmelCase_ = f.read().splitlines() if "O" not in labels: UpperCAmelCase_ = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] ) -> Optional[int]: '''simple docstring''' super().__init__(label_idx=-2 ) def lowercase__ ( self : Any , _UpperCAmelCase : str ) -> List[str]: '''simple docstring''' if path: with open(_UpperCAmelCase , "r" ) as f: UpperCAmelCase_ = f.read().splitlines() if "O" not in labels: UpperCAmelCase_ = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[Split, str] ) -> List[InputExample]: '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase_ = mode.value UpperCAmelCase_ = os.path.join(_UpperCAmelCase , F"""{mode}.txt""" ) UpperCAmelCase_ = 1 UpperCAmelCase_ = [] with open(_UpperCAmelCase , encoding="utf-8" ) as f: for sentence in parse_incr(_UpperCAmelCase ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) ) guid_index += 1 return examples def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : TextIO , _UpperCAmelCase : TextIO , _UpperCAmelCase : List ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 for sentence in parse_incr(_UpperCAmelCase ): UpperCAmelCase_ = preds_list[example_id] UpperCAmelCase_ = "" for token in sentence: out += F"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """ out += "\n" writer.write(_UpperCAmelCase ) example_id += 1 def lowercase__ ( self : List[str] , _UpperCAmelCase : str ) -> List[str]: '''simple docstring''' if path: with open(_UpperCAmelCase , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
82
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
0
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def snake_case_ ( A_ : List[Any] ): '''simple docstring''' if is_torch_version('''<''', '''2.0.0''' ) or not hasattr(A_, '''_dynamo''' ): return False return isinstance(A_, torch._dynamo.eval_frame.OptimizedModule ) def snake_case_ ( A_ : List[str], A_ : bool = True ): '''simple docstring''' _lowerCamelCase : Tuple = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _lowerCamelCase : Any = is_compiled_module(A_ ) if is_compiled: _lowerCamelCase : Dict = model _lowerCamelCase : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(A_, A_ ): _lowerCamelCase : List[Any] = model.module if not keep_fpaa_wrapper: _lowerCamelCase : int = getattr(A_, '''forward''' ) _lowerCamelCase : int = model.__dict__.pop('''_original_forward''', A_ ) if original_forward is not None: while hasattr(A_, '''__wrapped__''' ): _lowerCamelCase : Union[str, Any] = forward.__wrapped__ if forward == original_forward: break _lowerCamelCase : int = forward if getattr(A_, '''_converted_to_transformer_engine''', A_ ): convert_model(A_, to_transformer_engine=A_ ) if is_compiled: _lowerCamelCase : Dict = model _lowerCamelCase : int = compiled_model return model def snake_case_ ( ): '''simple docstring''' PartialState().wait_for_everyone() def snake_case_ ( A_ : Optional[int], A_ : str ): '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(A_, A_ ) elif PartialState().local_process_index == 0: torch.save(A_, A_ ) @contextmanager def snake_case_ ( **A_ : Any ): '''simple docstring''' for key, value in kwargs.items(): _lowerCamelCase : Union[str, Any] = str(A_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def snake_case_ ( A_ : Any ): '''simple docstring''' if not hasattr(A_, '''__qualname__''' ) and not hasattr(A_, '''__name__''' ): _lowerCamelCase : Union[str, Any] = getattr(A_, '''__class__''', A_ ) if hasattr(A_, '''__qualname__''' ): return obj.__qualname__ if hasattr(A_, '''__name__''' ): return obj.__name__ return str(A_ ) def snake_case_ ( A_ : Any, A_ : Dict ): '''simple docstring''' for key, value in source.items(): if isinstance(A_, A_ ): _lowerCamelCase : Optional[Any] = destination.setdefault(A_, {} ) merge_dicts(A_, A_ ) else: _lowerCamelCase : Any = value return destination def snake_case_ ( A_ : int = None ): '''simple docstring''' if port is None: _lowerCamelCase : Optional[int] = 2_95_00 with socket.socket(socket.AF_INET, socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
83
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
0
from sklearn.metrics import mean_squared_error import datasets UpperCAmelCase = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' UpperCAmelCase = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' UpperCAmelCase = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def SCREAMING_SNAKE_CASE__ ( self ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case=None , snake_case="uniform_average" , snake_case=True ): lowercase = mean_squared_error( snake_case , snake_case , sample_weight=snake_case , multioutput=snake_case , squared=snake_case ) return {"mse": mse}
84
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable SCREAMING_SNAKE_CASE__ : Any = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = ["DPTFeatureExtractor"] SCREAMING_SNAKE_CASE__ : Tuple = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ): """simple docstring""" _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] _lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] _lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""] _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""] _lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :int = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' ) _lowerCAmelCase :List[Any] = {} _lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight'] _lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias'] _lowerCAmelCase :Dict = checkpoint['time_embed.2.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias'] _lowerCAmelCase :List[Any] = unet_config['down_block_types'] _lowerCAmelCase :Any = unet_config['layers_per_block'] _lowerCAmelCase :List[Any] = unet_config['attention_head_dim'] _lowerCAmelCase :Tuple = unet_config['block_out_channels'] _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Optional[int] = channels_list[0] for i, layer_type in enumerate(__magic_name__ ): _lowerCAmelCase :Tuple = channels_list[i] _lowerCAmelCase :Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}""" _lowerCAmelCase :str = f"""input_blocks.{current_layer}.1""" _lowerCAmelCase :Optional[Any] = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0""" _lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 _lowerCAmelCase :Dict = current_channels # hardcoded the mid-block for now _lowerCAmelCase :int = 'mid_block.resnets.0' _lowerCAmelCase :Optional[Any] = 'middle_block.0' _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = 'mid_block.attentions.0' _lowerCAmelCase :Optional[int] = 'middle_block.1' _lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1' _lowerCAmelCase :Optional[int] = 'middle_block.2' _lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :str = unet_config['up_block_types'] for i, layer_type in enumerate(__magic_name__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1""" _lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}""" _lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1""" _lowerCAmelCase :int = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = checkpoint['out.0.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias'] _lowerCAmelCase :List[Any] = checkpoint['out.2.weight'] _lowerCAmelCase :Dict = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
687
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __a :Dict = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Tuple=False ): """simple docstring""" A_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A_ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Any=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A_ = "" else: A_ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) A_ = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[ : config.hidden_size, : ] A_ = in_proj_bias[: config.hidden_size] A_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ = in_proj_weight[ -config.hidden_size :, : ] A_ = in_proj_bias[-config.hidden_size :] def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" A_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__UpperCamelCase ,__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : List[str] ): """simple docstring""" A_ = dct.pop(__UpperCamelCase ) A_ = val def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int] ): """simple docstring""" A_ = ViTConfig() A_ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": A_ = True A_ = int(vit_name[-12:-10] ) A_ = int(vit_name[-9:-6] ) else: A_ = 1000 A_ = "huggingface/label-files" A_ = "imagenet-1k-id2label.json" A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} A_ = int(vit_name[-6:-4] ) A_ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): A_ = 192 A_ = 768 A_ = 12 A_ = 3 elif vit_name[9:].startswith("small" ): A_ = 384 A_ = 1536 A_ = 12 A_ = 6 else: pass else: if vit_name[4:].startswith("small" ): A_ = 768 A_ = 2304 A_ = 8 A_ = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): A_ = 1024 A_ = 4096 A_ = 24 A_ = 16 elif vit_name[4:].startswith("huge" ): A_ = 1280 A_ = 5120 A_ = 32 A_ = 16 # load original model from timm A_ = timm.create_model(__UpperCamelCase ,pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A_ = timm_model.state_dict() if base_model: remove_classification_head_(__UpperCamelCase ) A_ = create_rename_keys(__UpperCamelCase ,__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) read_in_q_k_v(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": A_ = ViTModel(__UpperCamelCase ).eval() else: A_ = ViTForImageClassification(__UpperCamelCase ).eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: A_ = DeiTImageProcessor(size=config.image_size ) else: A_ = ViTImageProcessor(size=config.image_size ) A_ = image_processor(images=prepare_img() ,return_tensors="pt" ) A_ = encoding["pixel_values"] A_ = model(__UpperCamelCase ) if base_model: A_ = timm_model.forward_features(__UpperCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__UpperCamelCase ,outputs.pooler_output ,atol=1E-3 ) else: A_ = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase ,outputs.logits ,atol=1E-3 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __a :Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
86
import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) _lowerCAmelCase :Tuple = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ): _lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
687
0
def SCREAMING_SNAKE_CASE ( lowercase_ = 100 ) -> int: """simple docstring""" A__ = (n * (n + 1) // 2) ** 2 A__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
87
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
0
"""simple docstring""" import torch def _snake_case ( ): """simple docstring""" if torch.cuda.is_available(): _lowerCamelCase : Tuple = torch.cuda.device_count() else: _lowerCamelCase : str = 0 print(F'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
88
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[str] = 'ylacombe/bark-small' _lowerCAmelCase :int = tempfile.mkdtemp() _lowerCAmelCase :List[str] = 'en_speaker_1' _lowerCAmelCase :Union[str, Any] = 'This is a test string' _lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json' _lowerCAmelCase :str = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[Any] = self.get_tokenizer() _lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase :Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase :List[Any] = 35 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :Dict = 8 _lowerCAmelCase :Dict = { 'semantic_prompt': np.ones(_UpperCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Tuple = self.get_tokenizer() _lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = processor(text=self.input_string ) _lowerCAmelCase :List[str] = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
687
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device SCREAMING_SNAKE_CASE : int = False class _lowerCamelCase( unittest.TestCase ): pass @nightly @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion') # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Union[str, Any] = 'A painting of a squirrel eating a burger ' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : str = pipe( prompt=lowerCamelCase, generator=lowerCamelCase, guidance_scale=7.5, num_inference_steps=2, output_type='numpy').images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase) _lowercase : Tuple = VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = generator.manual_seed(0) _lowercase : Dict = pipe( prompt=lowerCamelCase, generator=lowerCamelCase, guidance_scale=7.5, num_inference_steps=2, output_type='numpy').images assert np.abs(image - new_image).sum() < 1E-5, "Models don't have the same forward pass" def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Any = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion', torch_dtype=torch.floataa) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Union[str, Any] = 'A painting of a squirrel eating a burger ' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : Optional[int] = pipe( prompt=lowerCamelCase, generator=lowerCamelCase, guidance_scale=7.5, num_inference_steps=50, output_type='numpy').images _lowercase : List[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : List[str] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
89
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = 'bert' def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :Dict = num_hidden_layers _lowerCAmelCase :Optional[Any] = num_attention_heads _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = intermediate_size _lowerCAmelCase :Tuple = hidden_dropout_prob _lowerCAmelCase :Tuple = attention_probs_dropout_prob _lowerCAmelCase :List[Any] = max_position_embeddings _lowerCAmelCase :Dict = type_vocab_size _lowerCAmelCase :Any = initializer_range _lowerCAmelCase :int = layer_norm_eps _lowerCAmelCase :List[Any] = position_embedding_type _lowerCAmelCase :int = use_cache _lowerCAmelCase :Union[str, Any] = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): if self.task == "multiple-choice": _lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
687
0
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = '''ylacombe/bark-small''' lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = '''en_speaker_1''' lowerCAmelCase__ = '''This is a test string''' lowerCAmelCase__ = '''speaker_embeddings_path.json''' lowerCAmelCase__ = '''speaker_embeddings''' def __SCREAMING_SNAKE_CASE ( self , **lowerCamelCase_ ) -> int: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BarkProcessor(tokenizer=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCAmelCase__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCAmelCase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCAmelCase__ = 35 lowerCAmelCase__ = 2 lowerCAmelCase__ = 8 lowerCAmelCase__ = { '''semantic_prompt''': np.ones(lowerCamelCase_ ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowerCAmelCase__ = processor(text=self.input_string , voice_preset=lowerCamelCase_ ) lowerCAmelCase__ = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowerCAmelCase__ = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = processor(text=self.input_string , voice_preset=lowerCamelCase_ ) lowerCAmelCase__ = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowerCAmelCase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = BarkProcessor(tokenizer=lowerCamelCase_ ) lowerCAmelCase__ = processor(text=self.input_string ) lowerCAmelCase__ = tokenizer( self.input_string , padding='''max_length''' , max_length=2_56 , add_special_tokens=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
90
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
0
"""simple docstring""" from __future__ import annotations def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : str ): # noqa: E741 while r - l > 1: A = (l + r) // 2 if v[m] >= key: A = m else: A = m # noqa: E741 return r def _snake_case ( snake_case__ : list[int] ): if len(snake_case__ ) == 0: return 0 A = [0] * len(snake_case__ ) A = 1 A = v[0] for i in range(1 , len(snake_case__ ) ): if v[i] < tail[0]: A = v[i] elif v[i] > tail[length - 1]: A = v[i] length += 1 else: A = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
91
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Optional[int]=32 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Tuple=10 , UpperCAmelCase__ : List[str]=[10, 20, 30, 40] , UpperCAmelCase__ : Any=[1, 1, 2, 1] , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : List[Any]="relu" , UpperCAmelCase__ : Optional[Any]=3 , UpperCAmelCase__ : Tuple=None , ): '''simple docstring''' lowercase : List[Any] =parent lowercase : str =batch_size lowercase : Optional[int] =image_size lowercase : List[Any] =num_channels lowercase : Tuple =embeddings_size lowercase : int =hidden_sizes lowercase : List[str] =depths lowercase : Any =is_training lowercase : List[Any] =use_labels lowercase : Tuple =hidden_act lowercase : Dict =num_labels lowercase : List[str] =scope lowercase : Dict =len(UpperCAmelCase__ ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Any =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : int =self.get_config() return config, pixel_values def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] ): '''simple docstring''' lowercase : Tuple =FlaxRegNetModel(config=UpperCAmelCase__ ) lowercase : int =model(UpperCAmelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] ): '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =FlaxRegNetForImageClassification(config=UpperCAmelCase__ ) lowercase : List[str] =model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : str ): '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() lowercase , lowercase : Any =config_and_inputs lowercase : Tuple ={'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): lowerCamelCase_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : int =FlaxRegNetModelTester(self ) lowercase : Tuple =ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def lowerCamelCase_ ( self : str ): '''simple docstring''' pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def lowerCamelCase_ ( self : str ): '''simple docstring''' pass def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase , lowercase : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Any =model_class(UpperCAmelCase__ ) lowercase : str =inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : List[Any] =[*signature.parameters.keys()] lowercase : List[str] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] ): lowercase : Union[str, Any] =model_class(UpperCAmelCase__ ) lowercase : Tuple =model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowercase : Union[str, Any] =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase : int =self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase__ ) , expected_num_stages + 1 ) lowercase , lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : List[str] =True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : str =True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase , lowercase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase : List[Any] =self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : Optional[Any] =model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(UpperCAmelCase__ : Any , **UpperCAmelCase__ : List[Any] ): return model(pixel_values=UpperCAmelCase__ , **UpperCAmelCase__ ) with self.subTest('''JIT Enabled''' ): lowercase : Union[str, Any] =model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase : int =model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCAmelCase ( ) -> int: lowercase : Dict =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowercase : int =FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) lowercase : Tuple =self.default_image_processor lowercase : Union[str, Any] =prepare_img() lowercase : Any =image_processor(images=UpperCAmelCase__ , return_tensors='''np''' ) lowercase : Union[str, Any] =model(**UpperCAmelCase__ ) # verify the logits lowercase : str =(1, 1000) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) lowercase : Dict =jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) )
92
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
0
"""simple docstring""" import collections import os import re from pathlib import Path __A = """src/transformers""" # Matches is_xxx_available() __A = re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} __A = re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __A = re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available __A = re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") __A = re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __A = re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", __A = re.compile(R"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], __A = re.compile(R"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo __A = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: __A = re.compile(R"""^\s*try:""") # Catches a line with else: __A = re.compile(R"""^\s*else:""") def __A (_SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" if _re_test_backend.search(_SCREAMING_SNAKE_CASE ) is None: return None lowerCAmelCase__ :Optional[Any] = [b[0] for b in _re_backend.findall(_SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(_SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase__ :Any = f.readlines() lowerCAmelCase__ :int = 0 while line_index < len(_SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase__ :str = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase__ :Tuple = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :int = _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ).groups()[0] lowerCAmelCase__ :Any = re.findall(r'\[([^\]]+)\]' , _SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue lowerCAmelCase__ :Optional[int] = _re_import_struct_key_value.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: lowerCAmelCase__ :List[Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase__ :Optional[Any] = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase__ :Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ :Optional[int] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ :Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): lowerCAmelCase__ :Dict = lines[line_index] if _re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ) is not None: lowerCAmelCase__ :List[Any] = _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) lowerCAmelCase__ :Dict = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(_SCREAMING_SNAKE_CASE ) is not None: lowerCAmelCase__ :Optional[Any] = _re_between_brackets.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) lowerCAmelCase__ :str = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(_SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(_SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase__ :Union[str, Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase__ :Optional[int] = [] while ( line_index < len(_SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): lowerCAmelCase__ :str = lines[line_index] lowerCAmelCase__ :int = _re_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase__ :Dict = {'none': objects} # Let's continue with backend-specific objects while line_index < len(_SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase__ :Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ :Union[str, Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ :Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): lowerCAmelCase__ :Tuple = lines[line_index] lowerCAmelCase__ :Dict = _re_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase__ :Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" def find_duplicates(_SCREAMING_SNAKE_CASE ): return [k for k, v in collections.Counter(_SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase__ :Any = [] for key in import_dict_objects.keys(): lowerCAmelCase__ :List[str] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) lowerCAmelCase__ :Union[str, Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase__ :int = 'base imports' if key == 'none' else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def __A () ->str: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = [] for root, _, files in os.walk(_SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase__ :Tuple = os.path.join(_SCREAMING_SNAKE_CASE , '__init__.py' ) lowerCAmelCase__ :List[Any] = parse_init(_SCREAMING_SNAKE_CASE ) if objects is not None: lowerCAmelCase__ :Dict = analyze_results(*_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase__ :int = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append('\n'.join(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError('\n\n'.join(_SCREAMING_SNAKE_CASE ) ) def __A () ->int: """simple docstring""" lowerCAmelCase__ :Optional[Any] = [] for path, directories, files in os.walk(_SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(_SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0: continue lowerCAmelCase__ :Optional[Any] = str((Path(_SCREAMING_SNAKE_CASE ) / folder).relative_to(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ :List[str] = short_path.replace(os.path.sep , '.' ) submodules.append(_SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase__ :int = str((Path(_SCREAMING_SNAKE_CASE ) / fname).relative_to(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ :Optional[Any] = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(_SCREAMING_SNAKE_CASE ) return submodules __A = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def __A () ->Tuple: """simple docstring""" from transformers.utils import direct_transformers_import lowerCAmelCase__ :Dict = direct_transformers_import(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[int] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' ) as f: lowerCAmelCase__ :Optional[Any] = f.read() import_structure_keys.update(set(re.findall(r'import_structure\[\"([^\"]*)\"\]' , _SCREAMING_SNAKE_CASE ) ) ) lowerCAmelCase__ :Optional[int] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase__ :List[Any] = '\n'.join(F"- {module}" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registed in the main init of Transformers:\n' F"{list_of_modules}\n" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
93
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'facebook/bart-base': 1_024, 'facebook/bart-large': 1_024, 'facebook/bart-large-mnli': 1_024, 'facebook/bart-large-cnn': 1_024, 'facebook/bart-large-xsum': 1_024, 'yjernite/bart_eli5': 1_024, } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] UpperCamelCase_ = BartTokenizer def __init__( self : int , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : int=None , UpperCAmelCase : str="replace" , UpperCAmelCase : Any="<s>" , UpperCAmelCase : Any="</s>" , UpperCAmelCase : int="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : Optional[int]="<unk>" , UpperCAmelCase : Optional[int]="<pad>" , UpperCAmelCase : Tuple="<mask>" , UpperCAmelCase : Any=False , UpperCAmelCase : Union[str, Any]=True , **UpperCAmelCase : Optional[Any] , ) -> Tuple: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) lowercase : Any =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase ) != add_prefix_space: lowercase : int =getattr(UpperCAmelCase , pre_tok_state.pop('''type''' ) ) lowercase : List[Any] =add_prefix_space lowercase : List[str] =pre_tok_class(**UpperCAmelCase ) lowercase : Optional[Any] =add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase : Dict ='''post_processor''' lowercase : Optional[Any] =getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: lowercase : str =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase : Optional[int] =tuple(state['''sep'''] ) if "cls" in state: lowercase : int =tuple(state['''cls'''] ) lowercase : Any =False if state.get('''add_prefix_space''' , UpperCAmelCase ) != add_prefix_space: lowercase : Union[str, Any] =add_prefix_space lowercase : str =True if state.get('''trim_offsets''' , UpperCAmelCase ) != trim_offsets: lowercase : List[Any] =trim_offsets lowercase : Tuple =True if changes_to_apply: lowercase : List[str] =getattr(UpperCAmelCase , state.pop('''type''' ) ) lowercase : str =component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property def A__ ( self : int ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self : Optional[Any] , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value lowercase : str =value def A__ ( self : int , *UpperCAmelCase : Dict , **UpperCAmelCase : Dict ) -> BatchEncoding: '''simple docstring''' lowercase : Optional[Any] =kwargs.get('''is_split_into_words''' , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ) -> BatchEncoding: '''simple docstring''' lowercase : str =kwargs.get('''is_split_into_words''' , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : str , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : Optional[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : List[Any]=None ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Union[str, Any] =[self.sep_token_id] lowercase : str =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
94
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ): _lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20} _lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase :str = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :Optional[Any] = num_channels _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :int = min_resolution _lowerCAmelCase :List[str] = max_resolution _lowerCAmelCase :List[str] = do_resize _lowerCAmelCase :Optional[int] = size _lowerCAmelCase :str = do_center_crop _lowerCAmelCase :int = crop_size _lowerCAmelCase :Optional[int] = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: int ): # Initialize image_processing _lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # Initialize image_processing _lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any ): # Initialize image_processing _lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
687
0
"""simple docstring""" import requests lowerCamelCase_ = '''YOUR API KEY''' def snake_case ( A__ ,A__ = giphy_api_key ): UpperCAmelCase_ : str = "+".join(query.split() ) UpperCAmelCase_ : Any = F"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" UpperCAmelCase_ : str = requests.get(A__ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('''\n'''.join(get_gifs('''space ship''')))
95
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Any = PandasConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :Any = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Any = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
687
0
"""simple docstring""" from __future__ import annotations from collections import deque class __A : def __init__( self : List[str] , __snake_case : list[str] ) -> Optional[Any]: __magic_name__: list[dict] = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(__snake_case ) self.set_fail_transitions() def lowerCamelCase__ ( self : Dict , __snake_case : int , __snake_case : str ) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowerCamelCase__ ( self : Dict , __snake_case : str ) -> None: __magic_name__: str = 0 for character in keyword: __magic_name__: Tuple = self.find_next_state(__snake_case , __snake_case ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __magic_name__: List[Any] = len(self.adlist ) - 1 else: __magic_name__: str = next_state self.adlist[current_state]["output"].append(__snake_case ) def lowerCamelCase__ ( self : List[str] ) -> None: __magic_name__: deque = deque() for node in self.adlist[0]["next_states"]: q.append(__snake_case ) __magic_name__: Optional[int] = 0 while q: __magic_name__: Any = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__snake_case ) __magic_name__: str = self.adlist[r]["""fail_state"""] while ( self.find_next_state(__snake_case , self.adlist[child]["""value"""] ) is None and state != 0 ): __magic_name__: Dict = self.adlist[state]["""fail_state"""] __magic_name__: Union[str, Any] = self.find_next_state( __snake_case , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: __magic_name__: Optional[int] = 0 __magic_name__: int = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def lowerCamelCase__ ( self : Tuple , __snake_case : str ) -> dict[str, list[int]]: __magic_name__: dict = {} # returns a dict with keywords and list of its occurrences __magic_name__: Any = 0 for i in range(len(__snake_case ) ): while ( self.find_next_state(__snake_case , string[i] ) is None and current_state != 0 ): __magic_name__: Optional[Any] = self.adlist[current_state]["""fail_state"""] __magic_name__: str = self.find_next_state(__snake_case , string[i] ) if next_state is None: __magic_name__: Dict = 0 else: __magic_name__: Optional[Any] = next_state for key in self.adlist[current_state]["output"]: if key not in result: __magic_name__: Optional[Any] = [] result[key].append(i - len(__snake_case ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
96
import glob import os import random from string import ascii_lowercase, digits import cva a = """""" a = """""" a = """""" a = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ ) print('Processing...' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase :Optional[Any] = random_chars(32 ) _lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" ) _lowerCAmelCase :str = [] for anno in new_annos[index]: _lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__magic_name__ ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = [] _lowerCAmelCase :Union[str, Any] = [] for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ): _lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__magic_name__ ) as in_file: _lowerCAmelCase :Union[str, Any] = in_file.readlines() _lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" ) _lowerCAmelCase :Tuple = [] for obj_list in obj_lists: _lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :Any = [] _lowerCAmelCase :Optional[Any] = [] for idx in range(len(__magic_name__ ) ): _lowerCAmelCase :Optional[int] = [] _lowerCAmelCase :Optional[Any] = img_list[idx] path_list.append(__magic_name__ ) _lowerCAmelCase :List[str] = anno_list[idx] _lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ ) if flip_type == 1: _lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_( __magic_name__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase :str = ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
687
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __a = logging.getLogger(__name__) @dataclass class lowercase__: """simple docstring""" a :str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a :Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a :Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a :Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a :bool = field(default=UpperCAmelCase , metadata={'help': 'Whether tp freeze the encoder.'} ) a :bool = field(default=UpperCAmelCase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class lowercase__: """simple docstring""" a :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) a :Optional[str] = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) a :Optional[int] = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a :Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a :Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) a :Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a :Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) a :Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) a :Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) a :Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'Source language id for translation.'} ) a :Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'Target language id for translation.'} ) a :Optional[int] = field(default=UpperCAmelCase , metadata={'help': '# num_beams to use for evaluation.'} ) a :bool = field( default=UpperCAmelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def a ( snake_case__: Dict , snake_case__: Optional[int] , snake_case__: List[str] ): '''simple docstring''' logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(snake_case__ , os.path.join(snake_case__ , F'''{split}_results.json''' ) ) def a ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() check_output_dir(snake_case__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , snake_case__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase_ = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(snake_case__ , snake_case__ , snake_case__ ): assert hasattr(snake_case__ , snake_case__ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(snake_case__ , snake_case__ , getattr(snake_case__ , snake_case__ ) ) lowercase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=snake_case__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case__ , snake_case__ ): lowercase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase_ = SeqaSeqDataset # Get datasets lowercase_ = ( dataset_class( snake_case__ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) lowercase_ = ( dataset_class( snake_case__ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase_ = ( dataset_class( snake_case__ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase_ = ( build_compute_metrics_fn(data_args.task , snake_case__ ) if training_args.predict_with_generate else None ) lowercase_ = SeqaSeqTrainer( model=snake_case__ , args=snake_case__ , data_args=snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , data_collator=SeqaSeqDataCollator( snake_case__ , snake_case__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case__ , tokenizer=snake_case__ , ) lowercase_ = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) lowercase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase_ = train_result.metrics lowercase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , snake_case__ , training_args.output_dir ) all_metrics.update(snake_case__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase_ = trainer.evaluate(metric_key_prefix='''val''' ) lowercase_ = data_args.n_val lowercase_ = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , snake_case__ , training_args.output_dir ) all_metrics.update(snake_case__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) lowercase_ = trainer.predict(test_dataset=snake_case__ , metric_key_prefix='''test''' ) lowercase_ = test_output.metrics lowercase_ = data_args.n_test if trainer.is_world_process_zero(): lowercase_ = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , snake_case__ , training_args.output_dir ) all_metrics.update(snake_case__ ) if training_args.predict_with_generate: lowercase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) lowercase_ = lmap(str.strip , snake_case__ ) write_txt_file(snake_case__ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(snake_case__ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def a ( snake_case__: List[str] ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
97
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ ) _lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ ) return torch.mm(__magic_name__ , normalized_text_embeds.t() ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = CLIPConfig lowerCamelCase : Any = ['CLIPEncoderLayer'] def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ): super().__init__(_UpperCAmelCase ) _lowerCAmelCase :Any = CLIPVisionModel(config.vision_config ) _lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) _lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase :str = [] _lowerCAmelCase :List[Any] = image_embeds.shape[0] for i in range(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx] _lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowerCAmelCase :Any = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx] _lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) _lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ): _lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) _lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :Any = 0.0 _lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase :List[str] = special_care * 0.0_1 _lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[Any] = 'donut-swin' _snake_case : Union[str, Any] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[Any] , lowerCAmelCase__ : Any=224 , lowerCAmelCase__ : Union[str, Any]=4 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Union[str, Any]=96 , lowerCAmelCase__ : Optional[int]=[2, 2, 6, 2] , lowerCAmelCase__ : int=[3, 6, 12, 24] , lowerCAmelCase__ : Dict=7 , lowerCAmelCase__ : Dict=4.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-5 , **lowerCAmelCase__ : List[Any] , ) -> Dict: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = embed_dim _UpperCamelCase = depths _UpperCamelCase = len(lowerCAmelCase__ ) _UpperCamelCase = num_heads _UpperCamelCase = window_size _UpperCamelCase = mlp_ratio _UpperCamelCase = qkv_bias _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = drop_path_rate _UpperCamelCase = hidden_act _UpperCamelCase = use_absolute_embeddings _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCamelCase = int(embed_dim * 2 ** (len(lowerCAmelCase__ ) - 1) )
98
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __UpperCAmelCase : """simple docstring""" def snake_case_ ( self , __A , __A , __A ): return None class __UpperCAmelCase : """simple docstring""" def snake_case_ ( self , __A , __A , __A , __A ): return None class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def snake_case_ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__A , """tf""" , 12 , **__A ) @require_torch @slow def snake_case_ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__A , """pt""" , 12 , **__A ) @require_torch @slow def snake_case_ ( self ): from transformers import BertModel __a = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(__A ) ) vocab_file.flush() __a = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __a = BertModel(BertConfig(vocab_size=len(__A ) ) ) model.save_pretrained(__A ) self._test_export(__A , """pt""" , 12 , __A ) @require_tf @slow def snake_case_ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __a = self._test_export(__A , """tf""" , 12 , **__A ) __a = quantize(Path(__A ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__A ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def snake_case_ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __a = self._test_export(__A , """pt""" , 12 , **__A ) __a = quantize(__A ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__A ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def snake_case_ ( self , __A , __A , __A , __A=None , **__A ): try: # Compute path with TemporaryDirectory() as tempdir: __a = Path(__A ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__A , __A , __A , __A , __A , **__A ) return path except Exception as e: self.fail(__A ) @require_torch @require_tokenizers @slow def snake_case_ ( self ): from transformers import BertModel __a = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) __a = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__A , __A , """pt""" ) @require_tf @require_tokenizers @slow def snake_case_ ( self ): from transformers import TFBertModel __a = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) __a = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(__A , __A , """tf""" ) def snake_case_ ( self , __A , __A , __A ): __a = FeatureExtractionPipeline(__A , __A ) __a = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] __a , __a , __a , __a = infer_shapes(__A , __A ) # Assert all variables are present self.assertEqual(len(__A ) , len(__A ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __A ) self.assertSequenceEqual(variable_names[3:] , __A ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} ) def snake_case_ ( self ): __a = ["""input_ids""", """attention_mask""", """token_type_ids"""] __a = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} __a , __a = ensure_valid_input(FuncContiguousArgs() , __A , __A ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__A ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__A ) , set(__A ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__A , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __a , __a = ensure_valid_input(FuncNonContiguousArgs() , __A , __A ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__A ) , 1 ) self.assertEqual(len(__A ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] , """input_ids""" ) def snake_case_ ( self ): __a = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
99
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'encoder-decoder' lowerCamelCase : Optional[Any] = True def __init__( self: str , **_UpperCAmelCase: int ): super().__init__(**_UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' ) _lowerCAmelCase :Dict = encoder_config.pop('model_type' ) _lowerCAmelCase :str = kwargs.pop('decoder' ) _lowerCAmelCase :str = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCAmelCase :Dict = True _lowerCAmelCase :List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :Optional[int] = self.encoder.to_dict() _lowerCAmelCase :Union[str, Any] = self.decoder.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output
687
0