code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowerCamelCase_ ( lowerCamelCase , unittest.TestCase ):
a__ = KandinskyVaaPipeline
a__ = [
'''image_embeds''',
'''negative_image_embeds''',
]
a__ = ['''image_embeds''', '''negative_image_embeds''']
a__ = [
'''generator''',
'''height''',
'''width''',
'''latents''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
a__ = False
@property
def A ( self ):
"""simple docstring"""
return 3_2
@property
def A ( self ):
"""simple docstring"""
return 3_2
@property
def A ( self ):
"""simple docstring"""
return self.time_input_dim
@property
def A ( self ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def A ( self ):
"""simple docstring"""
return 1_0_0
@property
def A ( self ):
"""simple docstring"""
torch.manual_seed(0 )
__magic_name__ :str = {
'''in_channels''': 4,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''image''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
__magic_name__ :Optional[int] = UNetaDConditionModel(**__lowerCAmelCase )
return model
@property
def A ( self ):
"""simple docstring"""
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def A ( self ):
"""simple docstring"""
torch.manual_seed(0 )
__magic_name__ :int = VQModel(**self.dummy_movq_kwargs )
return model
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = self.dummy_unet
__magic_name__ :str = self.dummy_movq
__magic_name__ :Tuple = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__lowerCAmelCase , )
__magic_name__ :Dict = {
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def A ( self , __lowerCAmelCase , __lowerCAmelCase=0 ):
"""simple docstring"""
__magic_name__ :int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
__magic_name__ :Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCAmelCase )
if str(__lowerCAmelCase ).startswith('''mps''' ):
__magic_name__ :Dict = torch.manual_seed(__lowerCAmelCase )
else:
__magic_name__ :Any = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
__magic_name__ :Union[str, Any] = {
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''generator''': generator,
'''height''': 6_4,
'''width''': 6_4,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = '''cpu'''
__magic_name__ :int = self.get_dummy_components()
__magic_name__ :List[Any] = self.pipeline_class(**__lowerCAmelCase )
__magic_name__ :Optional[int] = pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
__magic_name__ :Optional[int] = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) )
__magic_name__ :Optional[int] = output.images
__magic_name__ :Optional[int] = pipe(
**self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0]
__magic_name__ :List[Any] = image[0, -3:, -3:, -1]
__magic_name__ :Dict = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__magic_name__ :str = np.array(
[0.6237976, 1.0, 0.36441332, 1.0, 0.70639634, 0.29877186, 0.85652125, 0.5216843, 0.54454046] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class lowerCamelCase_ ( unittest.TestCase ):
def A ( self ):
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A ( self ):
"""simple docstring"""
__magic_name__ :Tuple = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' )
__magic_name__ :Dict = KandinskyVaaPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCAmelCase )
__magic_name__ :Any = KandinskyVaaPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa )
__magic_name__ :List[str] = pipeline.to(__lowerCAmelCase )
pipeline.set_progress_bar_config(disable=__lowerCAmelCase )
__magic_name__ :int = '''red cat, 4k photo'''
__magic_name__ :int = torch.Generator(device='''cuda''' ).manual_seed(0 )
__magic_name__ , __magic_name__ :int = pipe_prior(
__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
__magic_name__ :int = torch.Generator(device='''cuda''' ).manual_seed(0 )
__magic_name__ :Optional[Any] = pipeline(
image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=1_0_0 , output_type='''np''' , )
__magic_name__ :Union[str, Any] = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
| 0 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :List[str] = 'ylacombe/bark-small'
_lowerCAmelCase :int = tempfile.mkdtemp()
_lowerCAmelCase :List[str] = 'en_speaker_1'
_lowerCAmelCase :Union[str, Any] = 'This is a test string'
_lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json'
_lowerCAmelCase :str = 'speaker_embeddings'
def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ):
return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase :List[Any] = self.get_tokenizer()
_lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
_lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
_lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
_lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
_lowerCAmelCase :Any = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Tuple = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
_lowerCAmelCase :List[Any] = 35
_lowerCAmelCase :Optional[int] = 2
_lowerCAmelCase :Dict = 8
_lowerCAmelCase :Dict = {
'semantic_prompt': np.ones(_UpperCAmelCase ),
'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ),
'fine_prompt': np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
_lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
_lowerCAmelCase :List[Any] = inputs['history_prompt']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from npz file
_lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' )
np.savez(_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
_lowerCAmelCase :Optional[int] = inputs['history_prompt']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from the hub
_lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :Tuple = self.get_tokenizer()
_lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase )
_lowerCAmelCase :List[Any] = processor(text=self.input_string )
_lowerCAmelCase :List[str] = tokenizer(
self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() ) | 687 | 0 |
import itertools
import random
import unittest
import numpy as np
from transformers import ASTFeatureExtractor
from transformers.testing_utils import require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
__snake_case = random.Random()
if is_torch_available():
import torch
def _A ( _lowercase , _lowercase=1.0 , _lowercase=None , _lowercase=None ) -> Dict:
"""simple docstring"""
if rng is None:
__UpperCamelCase = global_rng
__UpperCamelCase = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class __lowerCamelCase (unittest.TestCase ):
def __init__( self: List[Any],A_: int,A_: Optional[int]=7,A_: Tuple=400,A_: Optional[int]=2000,A_: str=1,A_: Dict=0.0,A_: Any=1_6000,A_: List[Any]=True,A_: List[Any]=True,):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = min_seq_length
__UpperCamelCase = max_seq_length
__UpperCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
__UpperCamelCase = feature_size
__UpperCamelCase = padding_value
__UpperCamelCase = sampling_rate
__UpperCamelCase = return_attention_mask
__UpperCamelCase = do_normalize
def snake_case_ ( self: int ):
'''simple docstring'''
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def snake_case_ ( self: Any,A_: Tuple=False,A_: int=False ):
'''simple docstring'''
def _flatten(A_: Optional[int] ):
return list(itertools.chain(*A_ ) )
if equal_length:
__UpperCamelCase = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
__UpperCamelCase = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length,self.max_seq_length,self.seq_length_diff )
]
if numpify:
__UpperCamelCase = [np.asarray(A_ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = ASTFeatureExtractor
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = ASTFeatureExtractionTester(self )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
__UpperCamelCase = [floats_list((1, x) )[0] for x in range(800,1400,200 )]
__UpperCamelCase = [np.asarray(A_ ) for speech_input in speech_inputs]
# Test not batched input
__UpperCamelCase = feat_extract(speech_inputs[0],return_tensors='np' ).input_values
__UpperCamelCase = feat_extract(np_speech_inputs[0],return_tensors='np' ).input_values
self.assertTrue(np.allclose(A_,A_,atol=1E-3 ) )
# Test batched
__UpperCamelCase = feat_extract(A_,padding=A_,return_tensors='np' ).input_values
__UpperCamelCase = feat_extract(A_,padding=A_,return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(A_,A_ ):
self.assertTrue(np.allclose(A_,A_,atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
__UpperCamelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)]
__UpperCamelCase = np.asarray(A_ )
__UpperCamelCase = feat_extract(A_,return_tensors='np' ).input_values
__UpperCamelCase = feat_extract(A_,return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(A_,A_ ):
self.assertTrue(np.allclose(A_,A_,atol=1E-3 ) )
@require_torch
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
import torch
__UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__UpperCamelCase = np.random.rand(100 ).astype(np.floataa )
__UpperCamelCase = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
__UpperCamelCase = feature_extractor.pad([{'input_values': inputs}],return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
__UpperCamelCase = feature_extractor.pad([{'input_values': inputs}],return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def snake_case_ ( self: Any,A_: Union[str, Any] ):
'''simple docstring'''
from datasets import load_dataset
__UpperCamelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy','clean',split='validation' )
# automatic decoding with librispeech
__UpperCamelCase = ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio']
return [x["array"] for x in speech_samples]
@require_torch
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = torch.tensor(
[-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6,
-1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3,
-1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6,
-0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] )
# fmt: on
__UpperCamelCase = self._load_datasamples(1 )
__UpperCamelCase = ASTFeatureExtractor()
__UpperCamelCase = feature_extractor(A_,return_tensors='pt' ).input_values
self.assertEquals(input_values.shape,(1, 1024, 128) )
self.assertTrue(torch.allclose(input_values[0, 0, :30],A_,atol=1E-4 ) )
| 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""",
"""bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""",
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""",
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""",
"""bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json"""
),
"""wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""",
# See all BERT models at https://huggingface.co/models?filter=bert
}
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
lowerCamelCase : int = 'bert'
def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ):
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :List[Any] = vocab_size
_lowerCAmelCase :Tuple = hidden_size
_lowerCAmelCase :Dict = num_hidden_layers
_lowerCAmelCase :Optional[Any] = num_attention_heads
_lowerCAmelCase :List[Any] = hidden_act
_lowerCAmelCase :int = intermediate_size
_lowerCAmelCase :Tuple = hidden_dropout_prob
_lowerCAmelCase :Tuple = attention_probs_dropout_prob
_lowerCAmelCase :List[Any] = max_position_embeddings
_lowerCAmelCase :Dict = type_vocab_size
_lowerCAmelCase :Any = initializer_range
_lowerCAmelCase :int = layer_norm_eps
_lowerCAmelCase :List[Any] = position_embedding_type
_lowerCAmelCase :int = use_cache
_lowerCAmelCase :Union[str, Any] = classifier_dropout
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
if self.task == "multiple-choice":
_lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] ) | 687 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowerCamelCase__ ( _A , unittest.TestCase):
"""simple docstring"""
a__ : Optional[int] = KandinskyVaaControlnetPipeline
a__ : Any = ["image_embeds", "negative_image_embeds", "hint"]
a__ : str = ["image_embeds", "negative_image_embeds", "hint"]
a__ : List[Any] = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
a__ : Union[str, Any] = False
@property
def snake_case_ ( self : str ) -> List[Any]:
return 32
@property
def snake_case_ ( self : Optional[int] ) -> Optional[int]:
return 32
@property
def snake_case_ ( self : Union[str, Any] ) -> Tuple:
return self.time_input_dim
@property
def snake_case_ ( self : str ) -> Any:
return self.time_input_dim * 4
@property
def snake_case_ ( self : Optional[int] ) -> Tuple:
return 1_00
@property
def snake_case_ ( self : Tuple ) -> Union[str, Any]:
torch.manual_seed(0 )
_A = {
'''in_channels''': 8,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''image_hint''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
_A = UNetaDConditionModel(**__lowerCAmelCase )
return model
@property
def snake_case_ ( self : Tuple ) -> List[Any]:
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def snake_case_ ( self : int ) -> List[str]:
torch.manual_seed(0 )
_A = VQModel(**self.dummy_movq_kwargs )
return model
def snake_case_ ( self : List[str] ) -> Dict:
_A = self.dummy_unet
_A = self.dummy_movq
_A = DDIMScheduler(
num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__lowerCAmelCase , )
_A = {
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=0 ) -> Optional[Any]:
_A = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
_A = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCAmelCase )
# create hint
_A = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
if str(__lowerCAmelCase ).startswith('''mps''' ):
_A = torch.manual_seed(__lowerCAmelCase )
else:
_A = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
_A = {
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''hint''': hint,
'''generator''': generator,
'''height''': 64,
'''width''': 64,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def snake_case_ ( self : Any ) -> Union[str, Any]:
_A = '''cpu'''
_A = self.get_dummy_components()
_A = self.pipeline_class(**__lowerCAmelCase )
_A = pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
_A = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) )
_A = output.images
_A = pipe(
**self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0]
_A = image[0, -3:, -3:, -1]
_A = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_A = np.array(
[0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase):
"""simple docstring"""
def snake_case_ ( self : Any ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self : Tuple ) -> List[Any]:
_A = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' )
_A = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/hint_image_cat.png''' )
_A = torch.from_numpy(np.array(__lowerCAmelCase ) ).float() / 255.0
_A = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
_A = KandinskyVaaPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCAmelCase )
_A = KandinskyVaaControlnetPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa )
_A = pipeline.to(__lowerCAmelCase )
pipeline.set_progress_bar_config(disable=__lowerCAmelCase )
_A = '''A robot, 4k photo'''
_A = torch.Generator(device='''cuda''' ).manual_seed(0 )
_A , _A = pipe_prior(
__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
_A = torch.Generator(device='''cuda''' ).manual_seed(0 )
_A = pipeline(
image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , hint=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=1_00 , output_type='''np''' , )
_A = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
| 2 |
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ):
"""simple docstring"""
if isinstance(__magic_name__ , torch.Tensor ):
return image
elif isinstance(__magic_name__ , PIL.Image.Image ):
_lowerCAmelCase :Tuple = [image]
if isinstance(image[0] , PIL.Image.Image ):
_lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image]
_lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 )
_lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0
_lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 )
_lowerCAmelCase :int = 2.0 * image - 1.0
_lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ )
elif isinstance(image[0] , torch.Tensor ):
_lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 )
return image
def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ):
"""simple docstring"""
if not isinstance(__magic_name__ , np.ndarray ):
_lowerCAmelCase :Tuple = True
_lowerCAmelCase :str = va.device
_lowerCAmelCase :List[str] = va.cpu().numpy()
_lowerCAmelCase :List[str] = va.cpu().numpy()
_lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) )
if np.abs(__magic_name__ ) > DOT_THRESHOLD:
_lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va
else:
_lowerCAmelCase :int = np.arccos(__magic_name__ )
_lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ )
_lowerCAmelCase :Union[str, Any] = theta_a * t
_lowerCAmelCase :str = np.sin(__magic_name__ )
_lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a
_lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a
_lowerCAmelCase :List[Any] = sa * va + sa * va
if inputs_are_torch:
_lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ )
return va
def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
_lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 )
_lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 )
return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 )
def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
for param in model.parameters():
_lowerCAmelCase :List[str] = value
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ):
super().__init__()
self.register_modules(
vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , )
_lowerCAmelCase :int = (
feature_extractor.size
if isinstance(feature_extractor.size , _UpperCAmelCase )
else feature_extractor.size['shortest_edge']
)
_lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std )
set_requires_grad(self.text_encoder , _UpperCAmelCase )
set_requires_grad(self.clip_model , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
_lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
self.enable_attention_slicing(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
set_requires_grad(self.vae , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
set_requires_grad(self.vae , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
set_requires_grad(self.unet , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
set_requires_grad(self.unet , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ):
# get the original timestep using init_timestep
_lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase )
_lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 )
_lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ):
if not isinstance(_UpperCAmelCase , torch.Tensor ):
raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" )
_lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_lowerCAmelCase :List[Any] = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase )
]
_lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 )
else:
_lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents
_lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 )
_lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase )
# get latents
_lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :List[str] = init_latents
return latents
def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ):
_lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
_lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) )
_lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' )
def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ):
_lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase )
_lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half()
_lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase )
_lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase )
_lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ):
_lowerCAmelCase :Dict = latents.detach().requires_grad_()
_lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
# predict the noise residual
_lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
_lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep]
_lowerCAmelCase :Optional[int] = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
_lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase )
_lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , _UpperCAmelCase ):
_lowerCAmelCase :Dict = self.scheduler.sigmas[index]
_lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred
else:
raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample
_lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample
_lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 )
_lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase )
_lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype )
_lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase )
_lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase )
_lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale
_lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0]
if isinstance(self.scheduler , _UpperCAmelCase ):
_lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2)
_lowerCAmelCase :Dict = noise_pred_original
else:
_lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ):
if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size:
raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1:
_lowerCAmelCase :int = [generator] + [None] * (batch_size - 1)
_lowerCAmelCase :List[Any] = [
('model', self.coca_model is None),
('tokenizer', self.coca_tokenizer is None),
('transform', self.coca_transform is None),
]
_lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]]
_lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(_UpperCAmelCase ):
raise ValueError(
f"""Content prompt is None and CoCa [{coca_is_none_str}] is None."""
f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
_lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase )
if style_prompt is None:
if len(_UpperCAmelCase ):
raise ValueError(
f"""Style prompt is None and CoCa [{coca_is_none_str}] is None."""
f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
_lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase )
# get prompt text embeddings for content and style
_lowerCAmelCase :Any = self.tokenizer(
_UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , )
_lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
_lowerCAmelCase :int = self.tokenizer(
_UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , )
_lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
_lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# duplicate text embeddings for each generation per prompt
_lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 )
# set timesteps
_lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
_lowerCAmelCase :Dict = {}
if accepts_offset:
_lowerCAmelCase :Optional[int] = 1
self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
_lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device )
_lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase )
# Preprocess image
_lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :int = self.prepare_latents(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase )
_lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Union[str, Any] = self.prepare_latents(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase )
_lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if clip_guidance_scale > 0:
_lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Any = slerp(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
_lowerCAmelCase :int = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
_lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1]
_lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' )
_lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
_lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
_lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
_lowerCAmelCase :Optional[Any] = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
_lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to(
self.device )
else:
_lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase )
else:
if latents.shape != latents_shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
_lowerCAmelCase :int = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
_lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
_lowerCAmelCase :Any = {}
if accepts_eta:
_lowerCAmelCase :Any = eta
# check if the scheduler accepts generator
_lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
_lowerCAmelCase :List[Any] = generator
with self.progress_bar(total=_UpperCAmelCase ):
for i, t in enumerate(_UpperCAmelCase ):
# expand the latents if we are doing classifier free guidance
_lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
# predict the noise residual
_lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
_lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 )
_lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
_lowerCAmelCase :List[Any] = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
_lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , )
# compute the previous noisy sample x_t -> x_t-1
_lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents
_lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample
_lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 )
_lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase ) | 687 | 0 |
'''simple docstring'''
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def A_( A : str , A : Dict , A : Optional[Any] , A : List[str]):
for param, grad_param in zip(model_a.parameters() , model_b.parameters()):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def A_( A : Union[str, Any] , A : List[Any] , A : Optional[Any] , A : Optional[Any] , A : Tuple=True):
model.train()
UpperCamelCase = model(A)
UpperCamelCase = F.mse_loss(A , target.to(output.device))
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(A)
def A_( A : str , A : List[str]=False):
set_seed(42)
UpperCamelCase = RegressionModel()
UpperCamelCase = deepcopy(A)
UpperCamelCase = RegressionDataset(length=80)
UpperCamelCase = DataLoader(A , batch_size=16)
model.to(accelerator.device)
if sched:
UpperCamelCase = AdamW(params=model.parameters() , lr=1E-3)
UpperCamelCase = AdamW(params=ddp_model.parameters() , lr=1E-3)
UpperCamelCase = LambdaLR(A , lr_lambda=lambda A: epoch**0.65)
UpperCamelCase = LambdaLR(A , lr_lambda=lambda A: epoch**0.65)
# Make a copy of `model`
if sched:
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare(A , A , A , A)
else:
UpperCamelCase , UpperCamelCase = accelerator.prepare(A , A)
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def A_( A : Union[str, Any]):
# Test when on a single CPU or GPU that the context manager does nothing
UpperCamelCase , UpperCamelCase , UpperCamelCase = get_training_setup(A)
# Use a single batch
UpperCamelCase , UpperCamelCase = next(iter(A)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
UpperCamelCase , UpperCamelCase = accelerator.gather((ddp_input, ddp_target))
UpperCamelCase , UpperCamelCase = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(A , A , A , A)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(A):
step_model(A , A , A , A)
else:
# Sync grads
step_model(A , A , A , A)
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(A , A , A , A)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
UpperCamelCase = ddp_input[torch.randperm(len(A))]
def A_( A : Optional[int]):
# Test on distributed setup that context manager behaves properly
UpperCamelCase , UpperCamelCase , UpperCamelCase = get_training_setup(A)
# Use a single batch
UpperCamelCase , UpperCamelCase = next(iter(A)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
UpperCamelCase , UpperCamelCase = accelerator.gather((ddp_input, ddp_target))
UpperCamelCase , UpperCamelCase = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(A , A , A , A)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(A):
step_model(A , A , A , A)
else:
# Sync grads
step_model(A , A , A , A)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
UpperCamelCase = ddp_input[torch.randperm(len(A))]
def A_( A : int=False , A : Optional[Any]=False):
UpperCamelCase = Accelerator(
split_batches=A , dispatch_batches=A , gradient_accumulation_steps=2)
# Test that context manager behaves properly
UpperCamelCase , UpperCamelCase , UpperCamelCase = get_training_setup(A)
for iteration, batch in enumerate(A):
UpperCamelCase , UpperCamelCase = batch.values()
# Gather the distributed inputs and targs for the base model
UpperCamelCase , UpperCamelCase = accelerator.gather((ddp_input, ddp_target))
UpperCamelCase , UpperCamelCase = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(A , A , A , A , A)
# Do "gradient accumulation" (noop)
with accelerator.accumulate(A):
step_model(A , A , A , A)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(A) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
UpperCamelCase = ddp_input[torch.randperm(len(A))]
GradientState._reset_state()
def A_( A : Any=False , A : Optional[int]=False):
UpperCamelCase = Accelerator(
split_batches=A , dispatch_batches=A , gradient_accumulation_steps=2)
# Test that context manager behaves properly
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = get_training_setup(A , A)
for iteration, batch in enumerate(A):
UpperCamelCase , UpperCamelCase = batch.values()
# Gather the distributed inputs and targs for the base model
UpperCamelCase , UpperCamelCase = accelerator.gather((ddp_input, ddp_target))
UpperCamelCase , UpperCamelCase = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(A , A , A , A , A)
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(A)):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(A):
step_model(A , A , A , A)
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'''
UpperCamelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(A))
if accelerator.num_processes > 1:
check_model_parameters(A , A , A , A)
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
GradientState._reset_state()
def A_( ):
UpperCamelCase = Accelerator()
UpperCamelCase = RegressionDataset(length=80)
UpperCamelCase = DataLoader(A , batch_size=16)
UpperCamelCase = RegressionDataset(length=96)
UpperCamelCase = DataLoader(A , batch_size=16)
UpperCamelCase , UpperCamelCase = accelerator.prepare(A , A)
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(A):
assert id(accelerator.gradient_state.active_dataloader) == id(A)
if iteration < len(A) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(A):
assert id(accelerator.gradient_state.active_dataloader) == id(A)
if batch_num < len(A) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def A_( ):
UpperCamelCase = Accelerator()
UpperCamelCase = accelerator.state
if state.local_process_index == 0:
print('**Test `accumulate` gradient accumulation with dataloader break**')
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print('**Test NOOP `no_sync` context manager**')
test_noop_sync(A)
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print('**Test Distributed `no_sync` context manager**')
test_distributed_sync(A)
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
'**Test `accumulate` gradient accumulation, ' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(A , A)
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version('<' , '2.0') or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
'**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
'**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(A , A)
def A_( A : List[str]):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 3 |
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ):
"""simple docstring"""
_lowerCAmelCase :Optional[int] = list(__magic_name__ )
_lowerCAmelCase :Dict = list(__magic_name__ )
_lowerCAmelCase :Any = 0
for i in range(len(__magic_name__ ) ):
if lista[i] != lista[i]:
count += 1
_lowerCAmelCase :Union[str, Any] = '_'
if count > 1:
return False
else:
return "".join(__magic_name__ )
def UpperCamelCase_( __magic_name__ : list[str] ):
"""simple docstring"""
_lowerCAmelCase :int = []
while True:
_lowerCAmelCase :str = ['$'] * len(__magic_name__ )
_lowerCAmelCase :Optional[int] = []
for i in range(len(__magic_name__ ) ):
for j in range(i + 1 , len(__magic_name__ ) ):
_lowerCAmelCase :int = compare_string(binary[i] , binary[j] )
if k is False:
_lowerCAmelCase :str = '*'
_lowerCAmelCase :Union[str, Any] = '*'
temp.append('X' )
for i in range(len(__magic_name__ ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(__magic_name__ ) == 0:
return pi
_lowerCAmelCase :Any = list(set(__magic_name__ ) )
def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ):
"""simple docstring"""
_lowerCAmelCase :str = []
for minterm in minterms:
_lowerCAmelCase :Any = ''
for _ in range(__magic_name__ ):
_lowerCAmelCase :Tuple = str(minterm % 2 ) + string
minterm //= 2
temp.append(__magic_name__ )
return temp
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ):
"""simple docstring"""
_lowerCAmelCase :Optional[Any] = list(__magic_name__ )
_lowerCAmelCase :List[Any] = list(__magic_name__ )
_lowerCAmelCase :Optional[Any] = 0
for i in range(len(__magic_name__ ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ):
"""simple docstring"""
_lowerCAmelCase :str = []
_lowerCAmelCase :List[str] = [0] * len(__magic_name__ )
for i in range(len(chart[0] ) ):
_lowerCAmelCase :Dict = 0
_lowerCAmelCase :Optional[Any] = -1
for j in range(len(__magic_name__ ) ):
if chart[j][i] == 1:
count += 1
_lowerCAmelCase :List[Any] = j
if count == 1:
_lowerCAmelCase :Dict = 1
for i in range(len(__magic_name__ ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(__magic_name__ ) ):
_lowerCAmelCase :Dict = 0
temp.append(prime_implicants[i] )
while True:
_lowerCAmelCase :Dict = 0
_lowerCAmelCase :Any = -1
_lowerCAmelCase :Optional[Any] = 0
for i in range(len(__magic_name__ ) ):
_lowerCAmelCase :str = chart[i].count(1 )
if count_n > max_n:
_lowerCAmelCase :Optional[Any] = count_n
_lowerCAmelCase :Dict = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(__magic_name__ ) ):
_lowerCAmelCase :str = 0
def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ):
"""simple docstring"""
_lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )]
for i in range(len(__magic_name__ ) ):
_lowerCAmelCase :Tuple = prime_implicants[i].count('_' )
for j in range(len(__magic_name__ ) ):
if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ):
_lowerCAmelCase :str = 1
return chart
def UpperCamelCase_( ):
"""simple docstring"""
_lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) )
_lowerCAmelCase :Tuple = [
float(__magic_name__ )
for x in input(
'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split()
]
_lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ )
_lowerCAmelCase :Any = check(__magic_name__ )
print('Prime Implicants are:' )
print(__magic_name__ )
_lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ )
_lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ )
print('Essential Prime Implicants are:' )
print(__magic_name__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main() | 687 | 0 |
"""simple docstring"""
from collections import defaultdict
class a :
def __init__( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = total # total no of tasks (N)
# DP table will have a dimension of (2^M)*N
# initially all values are set to -1
lowerCAmelCase = [
[-1 for i in range(total + 1 )] for j in range(2 ** len(_snake_case ) )
]
lowerCAmelCase = defaultdict(_snake_case ) # stores the list of persons for each task
# final_mask is used to check if all persons are included by setting all bits
# to 1
lowerCAmelCase = (1 << len(_snake_case )) - 1
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
if mask == self.final_mask:
return 1
# if not everyone gets the task and no more tasks are available, return 0
if task_no > self.total_tasks:
return 0
# if case already considered
if self.dp[mask][task_no] != -1:
return self.dp[mask][task_no]
# Number of ways when we don't this task in the arrangement
lowerCAmelCase = self.count_ways_until(_snake_case , task_no + 1 )
# now assign the tasks one by one to all possible persons and recursively
# assign for the remaining tasks.
if task_no in self.task:
for p in self.task[task_no]:
# if p is already given a task
if mask & (1 << p):
continue
# assign this task to p and change the mask value. And recursively
# assign tasks with the new mask value.
total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 )
# save the value.
lowerCAmelCase = total_ways_util
return self.dp[mask][task_no]
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
for i in range(len(_snake_case ) ):
for j in task_performed[i]:
self.task[j].append(_snake_case )
# call the function to fill the DP table, final answer is stored in dp[0][1]
return self.count_ways_until(0 , 1 )
if __name__ == "__main__":
__UpperCamelCase : Tuple = 5 # total no of tasks (the value of N)
# the list of tasks that can be done by M persons.
__UpperCamelCase : str = [[1, 3, 4], [1, 2, 5], [3, 4]]
print(
AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways(
task_performed
)
)
| 4 |
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
a = """\
@INPROCEEDINGS{Papineni02bleu:a,
author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},
title = {BLEU: a Method for Automatic Evaluation of Machine Translation},
booktitle = {},
year = {2002},
pages = {311--318}
}
@inproceedings{lin-och-2004-orange,
title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",
author = \"Lin, Chin-Yew and
Och, Franz Josef\",
booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",
month = \"aug 23{--}aug 27\",
year = \"2004\",
address = \"Geneva, Switzerland\",
publisher = \"COLING\",
url = \"https://www.aclweb.org/anthology/C04-1072\",
pages = \"501--507\",
}
"""
a = """\
BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.
Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,
the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and
remains one of the most popular automated and inexpensive metrics.
Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.
Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness
are not taken into account[citation needed].
BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1
representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the
reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional
reference translations will increase the BLEU score.
"""
a = """
Computes BLEU score of translated segments against one or more references.
Args:
predictions: list of translations to score.
Each translation should be tokenized into a list of tokens.
references: list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
max_order: Maximum n-gram order to use when computing BLEU score.
smooth: Whether or not to apply Lin et al. 2004 smoothing.
Returns:
'bleu': bleu score,
'precisions': geometric mean of n-gram precisions,
'brevity_penalty': brevity penalty,
'length_ratio': ratio of lengths,
'translation_length': translation_length,
'reference_length': reference_length
Examples:
>>> predictions = [
... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample
... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample
... ]
>>> references = [
... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)
... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)
... ]
>>> bleu = datasets.load_metric(\"bleu\")
>>> results = bleu.compute(predictions=predictions, references=references)
>>> print(results[\"bleu\"])
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ (datasets.Metric ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ),
} ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[
'https://en.wikipedia.org/wiki/BLEU',
'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213',
] , )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ):
_lowerCAmelCase :Any = compute_bleu(
reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
} | 687 | 0 |
'''simple docstring'''
import argparse
import struct
import unittest
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = data
# Initialize hash values
_lowerCAmelCase = [
0x6_A_0_9_E_6_6_7,
0xB_B_6_7_A_E_8_5,
0x3_C_6_E_F_3_7_2,
0xA_5_4_F_F_5_3_A,
0x5_1_0_E_5_2_7_F,
0x9_B_0_5_6_8_8_C,
0x1_F_8_3_D_9_A_B,
0x5_B_E_0_C_D_1_9,
]
# Initialize round constants
_lowerCAmelCase = [
0x4_2_8_A_2_F_9_8,
0x7_1_3_7_4_4_9_1,
0xB_5_C_0_F_B_C_F,
0xE_9_B_5_D_B_A_5,
0x3_9_5_6_C_2_5_B,
0x5_9_F_1_1_1_F_1,
0x9_2_3_F_8_2_A_4,
0xA_B_1_C_5_E_D_5,
0xD_8_0_7_A_A_9_8,
0x1_2_8_3_5_B_0_1,
0x2_4_3_1_8_5_B_E,
0x5_5_0_C_7_D_C_3,
0x7_2_B_E_5_D_7_4,
0x8_0_D_E_B_1_F_E,
0x9_B_D_C_0_6_A_7,
0xC_1_9_B_F_1_7_4,
0xE_4_9_B_6_9_C_1,
0xE_F_B_E_4_7_8_6,
0x0_F_C_1_9_D_C_6,
0x2_4_0_C_A_1_C_C,
0x2_D_E_9_2_C_6_F,
0x4_A_7_4_8_4_A_A,
0x5_C_B_0_A_9_D_C,
0x7_6_F_9_8_8_D_A,
0x9_8_3_E_5_1_5_2,
0xA_8_3_1_C_6_6_D,
0xB_0_0_3_2_7_C_8,
0xB_F_5_9_7_F_C_7,
0xC_6_E_0_0_B_F_3,
0xD_5_A_7_9_1_4_7,
0x0_6_C_A_6_3_5_1,
0x1_4_2_9_2_9_6_7,
0x2_7_B_7_0_A_8_5,
0x2_E_1_B_2_1_3_8,
0x4_D_2_C_6_D_F_C,
0x5_3_3_8_0_D_1_3,
0x6_5_0_A_7_3_5_4,
0x7_6_6_A_0_A_B_B,
0x8_1_C_2_C_9_2_E,
0x9_2_7_2_2_C_8_5,
0xA_2_B_F_E_8_A_1,
0xA_8_1_A_6_6_4_B,
0xC_2_4_B_8_B_7_0,
0xC_7_6_C_5_1_A_3,
0xD_1_9_2_E_8_1_9,
0xD_6_9_9_0_6_2_4,
0xF_4_0_E_3_5_8_5,
0x1_0_6_A_A_0_7_0,
0x1_9_A_4_C_1_1_6,
0x1_E_3_7_6_C_0_8,
0x2_7_4_8_7_7_4_C,
0x3_4_B_0_B_C_B_5,
0x3_9_1_C_0_C_B_3,
0x4_E_D_8_A_A_4_A,
0x5_B_9_C_C_A_4_F,
0x6_8_2_E_6_F_F_3,
0x7_4_8_F_8_2_E_E,
0x7_8_A_5_6_3_6_F,
0x8_4_C_8_7_8_1_4,
0x8_C_C_7_0_2_0_8,
0x9_0_B_E_F_F_F_A,
0xA_4_5_0_6_C_E_B,
0xB_E_F_9_A_3_F_7,
0xC_6_7_1_7_8_F_2,
]
_lowerCAmelCase = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def _lowercase ( _lowercase ):
"""simple docstring"""
_lowerCAmelCase = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowercase ) + 8) % 64))
_lowerCAmelCase = struct.pack(""">Q""" , (len(_lowercase ) * 8) )
return data + padding + big_endian_integer
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data ) , 64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
_lowerCAmelCase = list(struct.unpack(""">16L""" , _lowercase ) )
# add 48 0-ed integers
words += [0] * 48
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.hashes
for index in range(0 , 64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
_lowerCAmelCase = (
self.ror(words[index - 15] , 7 )
^ self.ror(words[index - 15] , 18 )
^ (words[index - 15] >> 3)
)
_lowerCAmelCase = (
self.ror(words[index - 2] , 17 )
^ self.ror(words[index - 2] , 19 )
^ (words[index - 2] >> 10)
)
_lowerCAmelCase = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_0_0_0_0_0_0_0_0
# Compression
_lowerCAmelCase = self.ror(_lowercase , 6 ) ^ self.ror(_lowercase , 11 ) ^ self.ror(_lowercase , 25 )
_lowerCAmelCase = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g)
_lowerCAmelCase = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_0_0_0_0_0_0_0_0
_lowerCAmelCase = self.ror(_lowercase , 2 ) ^ self.ror(_lowercase , 13 ) ^ self.ror(_lowercase , 22 )
_lowerCAmelCase = (a & b) ^ (a & c) ^ (b & c)
_lowerCAmelCase = (sa + maj) % 0x1_0_0_0_0_0_0_0_0
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = (
g,
f,
e,
((d + tempa) % 0x1_0_0_0_0_0_0_0_0),
c,
b,
a,
((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0),
)
_lowerCAmelCase = [a, b, c, d, e, f, g, h]
# Modify final values
_lowerCAmelCase = [
((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0)
for index, element in enumerate(self.hashes )
]
_lowerCAmelCase = """""".join([hex(_lowercase )[2:].zfill(8 ) for value in self.hashes] )
def _lowercase ( self , _lowercase , _lowercase ):
"""simple docstring"""
return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations)
class UpperCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
import hashlib
_lowerCAmelCase = bytes("""Test String""" , """utf-8""" )
self.assertEqual(SHAaaa(_lowercase ).hash , hashlib.shaaaa(_lowercase ).hexdigest() )
def A ():
import doctest
doctest.testmod()
_lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument(
"""-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , )
parser.add_argument(
"""-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" )
_lowerCAmelCase = parser.parse_args()
_lowerCAmelCase = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , """rb""" ) as f:
_lowerCAmelCase = f.read()
else:
_lowerCAmelCase = bytes(__lowerCamelCase , """utf-8""" )
print(SHAaaa(__lowerCamelCase ).hash )
if __name__ == "__main__":
main()
| 5 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a = {
"""configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"""FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FalconForCausalLM""",
"""FalconModel""",
"""FalconPreTrainedModel""",
"""FalconForSequenceClassification""",
"""FalconForTokenClassification""",
"""FalconForQuestionAnswering""",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 687 | 0 |
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = ""
lowerCamelCase_ = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
lowerCamelCase_ = None # compression type in fsspec. ex: "gzip"
lowerCamelCase_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self :Optional[int] , __A :str = "" , __A :Optional[str] = None , __A :Optional[dict] = None , **__A :List[str] ) -> Any:
"""simple docstring"""
super().__init__(self , **__A )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
SCREAMING_SNAKE_CASE__ = fsspec.open(
__A , mode="""rb""" , protocol=__A , compression=self.compression , client_kwargs={
"""requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459
"""trust_env""": True, # Enable reading proxy env variables.
**(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed.
} , **(target_options or {}) , )
SCREAMING_SNAKE_CASE__ = os.path.basename(self.file.path.split("""::""" )[0] )
SCREAMING_SNAKE_CASE__ = (
self.compressed_name[: self.compressed_name.rindex(""".""" )]
if """.""" in self.compressed_name
else self.compressed_name
)
SCREAMING_SNAKE_CASE__ = None
@classmethod
def _snake_case ( cls :Any , __A :Tuple ) -> List[str]:
"""simple docstring"""
return super()._strip_protocol(__A ).lstrip("""/""" )
def _snake_case ( self :Union[str, Any] ) -> Tuple:
"""simple docstring"""
if self.dir_cache is None:
SCREAMING_SNAKE_CASE__ = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name}
SCREAMING_SNAKE_CASE__ = {f["""name"""]: f}
def _snake_case ( self :Optional[int] , __A :str ) -> str:
"""simple docstring"""
return self.file.open().read()
def _snake_case ( self :List[str] , __A :str , __A :str = "rb" , __A :int=None , __A :List[str]=True , __A :Optional[Any]=None , **__A :Union[str, Any] , ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self._strip_protocol(__A )
if mode != "rb":
raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' )
return self.file.open()
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "bz2"
lowerCamelCase_ = "bz2"
lowerCamelCase_ = ".bz2"
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "gzip"
lowerCamelCase_ = "gzip"
lowerCamelCase_ = ".gz"
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "lz4"
lowerCamelCase_ = "lz4"
lowerCamelCase_ = ".lz4"
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "xz"
lowerCamelCase_ = "xz"
lowerCamelCase_ = ".xz"
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "zstd"
lowerCamelCase_ = "zstd"
lowerCamelCase_ = ".zst"
def __init__( self :List[Any] , __A :str , __A :str = "rb" , __A :Optional[str] = None , __A :Optional[dict] = None , __A :int = DEFAULT_BLOCK_SIZE , **__A :Optional[int] , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
fo=__A , mode=__A , target_protocol=__A , target_options=__A , block_size=__A , **__A , )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
SCREAMING_SNAKE_CASE__ = self.file.__enter__
class UpperCamelCase_ :
def __init__( self :int , __A :Tuple ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = file_
def __enter__( self :Optional[Any] ) -> Optional[int]:
"""simple docstring"""
self._file.__enter__()
return self
def __exit__( self :Optional[Any] , *__A :List[Any] , **__A :int ) -> Tuple:
"""simple docstring"""
self._file.__exit__(*__A , **__A )
def __iter__( self :Any ) -> Optional[int]:
"""simple docstring"""
return iter(self._file )
def _snake_case ( self :Dict ) -> Dict:
"""simple docstring"""
return next(self._file )
def __getattr__( self :Union[str, Any] , __A :List[str] ) -> Optional[Any]:
"""simple docstring"""
return getattr(self._file , __A )
def fixed_enter(*__A :List[Any] , **__A :Optional[int] ):
return WrappedFile(_enter(*__A , **__A ) )
SCREAMING_SNAKE_CASE__ = fixed_enter | 6 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ):
_lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20}
_lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18}
_lowerCAmelCase :str = parent
_lowerCAmelCase :List[Any] = batch_size
_lowerCAmelCase :Optional[Any] = num_channels
_lowerCAmelCase :Optional[Any] = image_size
_lowerCAmelCase :int = min_resolution
_lowerCAmelCase :List[str] = max_resolution
_lowerCAmelCase :List[str] = do_resize
_lowerCAmelCase :Optional[int] = size
_lowerCAmelCase :str = do_center_crop
_lowerCAmelCase :int = crop_size
_lowerCAmelCase :Optional[int] = do_flip_channel_order
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class UpperCAmelCase_ (snake_case__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE__ ( self: str ):
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
_lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
_lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
_lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
pass
def SCREAMING_SNAKE_CASE__ ( self: int ):
# Initialize image_processing
_lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
_lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
# Initialize image_processing
_lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
_lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
# Initialize image_processing
_lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
_lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , ) | 687 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a = {
'''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''],
'''tokenization_roformer''': ['''RoFormerTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''RoFormerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RoFormerForCausalLM''',
'''RoFormerForMaskedLM''',
'''RoFormerForMultipleChoice''',
'''RoFormerForQuestionAnswering''',
'''RoFormerForSequenceClassification''',
'''RoFormerForTokenClassification''',
'''RoFormerLayer''',
'''RoFormerModel''',
'''RoFormerPreTrainedModel''',
'''load_tf_weights_in_roformer''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFRoFormerForCausalLM''',
'''TFRoFormerForMaskedLM''',
'''TFRoFormerForMultipleChoice''',
'''TFRoFormerForQuestionAnswering''',
'''TFRoFormerForSequenceClassification''',
'''TFRoFormerForTokenClassification''',
'''TFRoFormerLayer''',
'''TFRoFormerModel''',
'''TFRoFormerPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FlaxRoFormerForMaskedLM''',
'''FlaxRoFormerForMultipleChoice''',
'''FlaxRoFormerForQuestionAnswering''',
'''FlaxRoFormerForSequenceClassification''',
'''FlaxRoFormerForTokenClassification''',
'''FlaxRoFormerModel''',
'''FlaxRoFormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class UpperCAmelCase_ (datasets.BuilderConfig ):
"""simple docstring"""
lowerCamelCase : Optional[datasets.Features] = None
class UpperCAmelCase_ (datasets.ArrowBasedBuilder ):
"""simple docstring"""
lowerCamelCase : Any = PandasConfig
def SCREAMING_SNAKE_CASE__ ( self: int ):
return datasets.DatasetInfo(features=self.config.features )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ):
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_UpperCAmelCase , (str, list, tuple) ):
_lowerCAmelCase :Any = data_files
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_lowerCAmelCase :Dict = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
_lowerCAmelCase :Any = []
for split_name, files in data_files.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_lowerCAmelCase :str = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) )
return splits
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ):
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
_lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema )
return pa_table
def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ):
for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ):
with open(_UpperCAmelCase , 'rb' ) as f:
_lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) )
yield i, self._cast_table(_UpperCAmelCase ) | 687 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
lowercase__ : Any = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE (a__ ):
lowerCAmelCase = '''tapas'''
def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ):
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase)
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
__A : Dict = vocab_size
__A : Tuple = hidden_size
__A : Any = num_hidden_layers
__A : int = num_attention_heads
__A : Tuple = hidden_act
__A : Tuple = intermediate_size
__A : List[Any] = hidden_dropout_prob
__A : int = attention_probs_dropout_prob
__A : List[str] = max_position_embeddings
__A : Optional[int] = type_vocab_sizes
__A : str = initializer_range
__A : List[str] = layer_norm_eps
# Fine-tuning task hyperparameters
__A : List[str] = positive_label_weight
__A : List[Any] = num_aggregation_labels
__A : Optional[Any] = aggregation_loss_weight
__A : Tuple = use_answer_as_supervision
__A : List[str] = answer_loss_importance
__A : Any = use_normalized_answer_loss
__A : Any = huber_loss_delta
__A : Union[str, Any] = temperature
__A : Tuple = aggregation_temperature
__A : Optional[Any] = use_gumbel_for_cells
__A : List[str] = use_gumbel_for_aggregation
__A : Tuple = average_approximation_function
__A : List[str] = cell_selection_preference
__A : Dict = answer_loss_cutoff
__A : Union[str, Any] = max_num_rows
__A : Optional[Any] = max_num_columns
__A : int = average_logits_per_cell
__A : Optional[Any] = select_one_column
__A : int = allow_empty_column_selection
__A : List[Any] = init_cell_selection_weights_to_zero
__A : int = reset_position_index_per_cell
__A : Union[str, Any] = disable_per_token_loss
# Aggregation hyperparameters
__A : Optional[Any] = aggregation_labels
__A : List[str] = no_aggregation_label_index
if isinstance(self.aggregation_labels , _UpperCAmelCase):
__A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()} | 8 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
a = """"""
a = """"""
a = """"""
a = 1 # (0 is vertical, 1 is horizontal)
def UpperCamelCase_( ):
"""simple docstring"""
_lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ )
print('Processing...' )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ )
for index, image in enumerate(__magic_name__ ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
_lowerCAmelCase :Optional[Any] = random_chars(32 )
_lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0]
_lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"""
cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" )
_lowerCAmelCase :str = []
for anno in new_annos[index]:
_lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"""
annos_list.append(__magic_name__ )
with open(f"""/{file_root}.txt""" , 'w' ) as outfile:
outfile.write('\n'.join(line for line in annos_list ) )
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ):
"""simple docstring"""
_lowerCAmelCase :int = []
_lowerCAmelCase :Union[str, Any] = []
for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ):
_lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0]
with open(__magic_name__ ) as in_file:
_lowerCAmelCase :Union[str, Any] = in_file.readlines()
_lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" )
_lowerCAmelCase :Tuple = []
for obj_list in obj_lists:
_lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__magic_name__ )
labels.append(__magic_name__ )
return img_paths, labels
def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ):
"""simple docstring"""
_lowerCAmelCase :str = []
_lowerCAmelCase :Any = []
_lowerCAmelCase :Optional[Any] = []
for idx in range(len(__magic_name__ ) ):
_lowerCAmelCase :Optional[int] = []
_lowerCAmelCase :Optional[Any] = img_list[idx]
path_list.append(__magic_name__ )
_lowerCAmelCase :List[str] = anno_list[idx]
_lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ )
if flip_type == 1:
_lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ )
for bbox in img_annos:
_lowerCAmelCase :List[Any] = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
_lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ )
for bbox in img_annos:
_lowerCAmelCase :List[str] = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__magic_name__ )
new_imgs_list.append(__magic_name__ )
return new_imgs_list, new_annos_lists, path_list
def UpperCamelCase_( __magic_name__ : int = 32 ):
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
_lowerCAmelCase :str = ascii_lowercase + digits
return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) )
if __name__ == "__main__":
main()
print("""DONE ✅""") | 687 | 0 |
def A ( __UpperCamelCase , __UpperCamelCase ) -> str:
if not isinstance(__UpperCamelCase , __UpperCamelCase ):
raise ValueError('iterations must be defined as integers' )
if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not number >= 1:
raise ValueError(
'starting number must be\n and integer and be more than 0' )
if not iterations >= 1:
raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' )
A__ = ''
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(__UpperCamelCase )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
a = logging.get_logger(__name__)
def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
_lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ )
_lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ )
return torch.mm(__magic_name__ , normalized_text_embeds.t() )
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
lowerCamelCase : str = CLIPConfig
lowerCamelCase : Any = ['CLIPEncoderLayer']
def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ):
super().__init__(_UpperCAmelCase )
_lowerCAmelCase :Any = CLIPVisionModel(config.vision_config )
_lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase )
_lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase )
_lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase )
_lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase )
_lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase )
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ):
_lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output
_lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
_lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy()
_lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy()
_lowerCAmelCase :str = []
_lowerCAmelCase :List[Any] = image_embeds.shape[0]
for i in range(_UpperCAmelCase ):
_lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
_lowerCAmelCase :List[Any] = 0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
_lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx]
_lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item()
_lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} )
_lowerCAmelCase :Any = 0.0_1
for concept_idx in range(len(cos_dist[0] ) ):
_lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx]
_lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item()
_lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(_UpperCAmelCase )
result.append(_UpperCAmelCase )
_lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ):
_lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output
_lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase )
_lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds )
_lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
_lowerCAmelCase :Any = 0.0
_lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
_lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 )
_lowerCAmelCase :List[str] = special_care * 0.0_1
_lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
_lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
_lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts | 687 | 0 |
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
_lowerCAmelCase = abspath(join(dirname(dirname(dirname(__file__))), "src"))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="ignore", category=FutureWarning)
def _snake_case ( __snake_case ):
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(__snake_case )
def _snake_case ( __snake_case ):
from transformers.testing_utils import pytest_terminal_summary_main
_UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(__snake_case , id=__snake_case )
| 10 |
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
a = 6_3_7_8_1_3_7.0
a = 6_3_5_6_7_5_2.3_1_4_2_4_5
a = 6_378_137
def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ):
"""simple docstring"""
_lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
_lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) )
_lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) )
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
_lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS
# Intermediate P and Q values
_lowerCAmelCase :str = (b_lata + b_lata) / 2
_lowerCAmelCase :Tuple = (b_lata - b_lata) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
_lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2)
_lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2
_lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
_lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2)
_lowerCAmelCase :str = sin(sigma / 2 ) ** 2
_lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod() | 687 | 0 |
'''simple docstring'''
class __A :
'''simple docstring'''
def __init__(self ) -> None:
"""simple docstring"""
_a = {} # Mapping from char to TrieNode
_a = False
def a__ (self , A ) -> None:
"""simple docstring"""
for word in words:
self.insert(A )
def a__ (self , A ) -> None:
"""simple docstring"""
_a = self
for char in word:
if char not in curr.nodes:
_a = TrieNode()
_a = curr.nodes[char]
_a = True
def a__ (self , A ) -> bool:
"""simple docstring"""
_a = self
for char in word:
if char not in curr.nodes:
return False
_a = curr.nodes[char]
return curr.is_leaf
def a__ (self , A ) -> None:
"""simple docstring"""
def _delete(A , A , A ) -> bool:
if index == len(A ):
# If word does not exist
if not curr.is_leaf:
return False
_a = False
return len(curr.nodes ) == 0
_a = word[index]
_a = curr.nodes.get(A )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
_a = _delete(A , A , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , A , 0 )
def lowerCAmelCase (__A , __A):
"""simple docstring"""
if node.is_leaf:
print(__A , end=''' ''')
for key, value in node.nodes.items():
print_words(__A , word + key)
def lowerCAmelCase ():
"""simple docstring"""
_a = '''banana bananas bandana band apple all beast'''.split()
_a = TrieNode()
root.insert_many(__A)
# print_words(root, "")
assert all(root.find(__A) for word in words)
assert root.find('''banana''')
assert not root.find('''bandanas''')
assert not root.find('''apps''')
assert root.find('''apple''')
assert root.find('''all''')
root.delete('''all''')
assert not root.find('''all''')
root.delete('''banana''')
assert not root.find('''banana''')
assert root.find('''bananas''')
return True
def lowerCAmelCase (__A , __A):
"""simple docstring"""
print(str(__A) , '''works!''' if passes else '''doesn\'t work :(''')
def lowerCAmelCase ():
"""simple docstring"""
assert test_trie()
def lowerCAmelCase ():
"""simple docstring"""
print_results('''Testing trie functionality''' , test_trie())
if __name__ == "__main__":
main()
| 11 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
lowerCamelCase : Dict = 'encoder-decoder'
lowerCamelCase : Optional[Any] = True
def __init__( self: str , **_UpperCAmelCase: int ):
super().__init__(**_UpperCAmelCase )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
_lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' )
_lowerCAmelCase :Dict = encoder_config.pop('model_type' )
_lowerCAmelCase :str = kwargs.pop('decoder' )
_lowerCAmelCase :str = decoder_config.pop('model_type' )
from ..auto.configuration_auto import AutoConfig
_lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :Any = True
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ):
logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' )
_lowerCAmelCase :Dict = True
_lowerCAmelCase :List[str] = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Dict ):
_lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ )
_lowerCAmelCase :Optional[int] = self.encoder.to_dict()
_lowerCAmelCase :Union[str, Any] = self.decoder.to_dict()
_lowerCAmelCase :List[str] = self.__class__.model_type
return output | 687 | 0 |
import argparse
import os
import re
lowerCamelCase__ : str = """src/diffusers"""
# Pattern that looks at the indentation in a line.
lowerCamelCase__ : str = re.compile(R"""^(\s*)\S""")
# Pattern that matches `"key":" and puts `key` in group 0.
lowerCamelCase__ : Optional[Any] = re.compile(R"""^\s*\"([^\"]+)\":""")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowerCamelCase__ : str = re.compile(R"""^\s*_import_structure\[\"([^\"]+)\"\]""")
# Pattern that matches `"key",` and puts `key` in group 0.
lowerCamelCase__ : Any = re.compile(R"""^\s*\"([^\"]+)\",\s*$""")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowerCamelCase__ : Union[str, Any] = re.compile(R"""\[([^\]]+)\]""")
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Optional[Any] = _re_indent.search(lowercase_ )
return "" if search is None else search.groups()[0]
def UpperCamelCase ( lowercase_ , lowercase_="" , lowercase_=None , lowercase_=None ) -> Optional[int]:
'''simple docstring'''
lowercase__ : int = 0
lowercase__ : List[Any] = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(lowercase_ ):
index += 1
lowercase__ : Dict = ["""\n""".join(lines[:index] )]
else:
lowercase__ : Dict = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
lowercase__ : str = [lines[index]]
index += 1
while index < len(lowercase_ ) and (end_prompt is None or not lines[index].startswith(lowercase_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(lowercase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(lowercase_ ) )
if index < len(lowercase_ ) - 1:
lowercase__ : Union[str, Any] = [lines[index + 1]]
index += 1
else:
lowercase__ : Union[str, Any] = []
else:
blocks.append("""\n""".join(lowercase_ ) )
lowercase__ : List[Any] = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(lowercase_ ) > 0:
blocks.append("""\n""".join(lowercase_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(lowercase_ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def UpperCamelCase ( lowercase_ ) -> List[Any]:
'''simple docstring'''
def _inner(lowercase_ ):
return key(lowercase_ ).lower().replace("""_""" , """""" )
return _inner
def UpperCamelCase ( lowercase_ , lowercase_=None ) -> str:
'''simple docstring'''
def noop(lowercase_ ):
return x
if key is None:
lowercase__ : str = noop
# Constants are all uppercase, they go first.
lowercase__ : List[Any] = [obj for obj in objects if key(lowercase_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
lowercase__ : List[str] = [obj for obj in objects if key(lowercase_ )[0].isupper() and not key(lowercase_ ).isupper()]
# Functions begin with a lowercase, they go last.
lowercase__ : Tuple = [obj for obj in objects if not key(lowercase_ )[0].isupper()]
lowercase__ : Optional[Any] = ignore_underscore(lowercase_ )
return sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ )
def UpperCamelCase ( lowercase_ ) -> Dict:
'''simple docstring'''
def _replace(lowercase_ ):
lowercase__ : int = match.groups()[0]
if "," not in imports:
return F'[{imports}]'
lowercase__ : Tuple = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowercase__ : str = keys[:-1]
return "[" + ", ".join([F'"{k}"' for k in sort_objects(lowercase_ )] ) + "]"
lowercase__ : Optional[int] = import_statement.split("""\n""" )
if len(lowercase_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
lowercase__ : List[str] = 2 if lines[1].strip() == """[""" else 1
lowercase__ : Union[str, Any] = [(i, _re_strip_line.search(lowercase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
lowercase__ : Any = sort_objects(lowercase_ , key=lambda lowercase_ : x[1] )
lowercase__ : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(lowercase_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
lowercase__ : Any = _re_bracket_content.sub(_replace , lines[1] )
else:
lowercase__ : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowercase__ : List[str] = keys[:-1]
lowercase__ : List[str] = get_indent(lines[1] ) + """, """.join([F'"{k}"' for k in sort_objects(lowercase_ )] )
return "\n".join(lowercase_ )
else:
# Finally we have to deal with imports fitting on one line
lowercase__ : str = _re_bracket_content.sub(_replace , lowercase_ )
return import_statement
def UpperCamelCase ( lowercase_ , lowercase_=True ) -> int:
'''simple docstring'''
with open(lowercase_ , """r""" ) as f:
lowercase__ : List[Any] = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
lowercase__ : Optional[Any] = split_code_in_indented_blocks(
lowercase_ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(lowercase_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
lowercase__ : Any = main_blocks[block_idx]
lowercase__ : Union[str, Any] = block.split("""\n""" )
# Get to the start of the imports.
lowercase__ : int = 0
while line_idx < len(lowercase_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
lowercase__ : List[str] = len(lowercase_ )
else:
line_idx += 1
if line_idx >= len(lowercase_ ):
continue
# Ignore beginning and last line: they don't contain anything.
lowercase__ : List[Any] = """\n""".join(block_lines[line_idx:-1] )
lowercase__ : Optional[Any] = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
lowercase__ : Union[str, Any] = split_code_in_indented_blocks(lowercase_ , indent_level=lowercase_ )
# We have two categories of import key: list or _import_structure[key].append/extend
lowercase__ : Tuple = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
lowercase__ : Dict = [(pattern.search(lowercase_ ).groups()[0] if pattern.search(lowercase_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
lowercase__ : Any = [(i, key) for i, key in enumerate(lowercase_ ) if key is not None]
lowercase__ : List[str] = [x[0] for x in sorted(lowercase_ , key=lambda lowercase_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
lowercase__ : Any = 0
lowercase__ : Optional[int] = []
for i in range(len(lowercase_ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
lowercase__ : List[str] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(lowercase_ )
count += 1
# And we put our main block back together with its first and last line.
lowercase__ : List[Any] = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(lowercase_ ):
if check_only:
return True
else:
print(F'Overwriting {file}.' )
with open(lowercase_ , """w""" ) as f:
f.write("""\n""".join(lowercase_ ) )
def UpperCamelCase ( lowercase_=True ) -> int:
'''simple docstring'''
lowercase__ : Optional[Any] = []
for root, _, files in os.walk(lowercase_ ):
if "__init__.py" in files:
lowercase__ : int = sort_imports(os.path.join(lowercase_ , """__init__.py""" ) , check_only=lowercase_ )
if result:
lowercase__ : Dict = [os.path.join(lowercase_ , """__init__.py""" )]
if len(lowercase_ ) > 0:
raise ValueError(F'Would overwrite {len(lowercase_ )} files, run `make style`.' )
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""")
lowerCamelCase__ : str = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 12 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ):
_lowerCAmelCase :Optional[int] = parent
_lowerCAmelCase :Dict = batch_size
_lowerCAmelCase :Optional[Any] = image_size
_lowerCAmelCase :Optional[Any] = patch_size
_lowerCAmelCase :List[Any] = num_channels
_lowerCAmelCase :Optional[int] = embed_dim
_lowerCAmelCase :List[str] = hidden_sizes
_lowerCAmelCase :Union[str, Any] = depths
_lowerCAmelCase :int = num_heads
_lowerCAmelCase :Any = window_size
_lowerCAmelCase :List[Any] = mlp_ratio
_lowerCAmelCase :Optional[int] = qkv_bias
_lowerCAmelCase :Union[str, Any] = hidden_dropout_prob
_lowerCAmelCase :Optional[int] = attention_probs_dropout_prob
_lowerCAmelCase :Dict = drop_path_rate
_lowerCAmelCase :List[Any] = hidden_act
_lowerCAmelCase :Tuple = use_absolute_embeddings
_lowerCAmelCase :Optional[int] = patch_norm
_lowerCAmelCase :Optional[Any] = layer_norm_eps
_lowerCAmelCase :Union[str, Any] = initializer_range
_lowerCAmelCase :List[str] = is_training
_lowerCAmelCase :str = scope
_lowerCAmelCase :Optional[int] = use_labels
_lowerCAmelCase :List[Any] = type_sequence_label_size
_lowerCAmelCase :Union[str, Any] = encoder_stride
_lowerCAmelCase :Optional[int] = out_features
_lowerCAmelCase :List[str] = out_indices
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase :Dict = None
if self.use_labels:
_lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase :str = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self: int ):
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ):
_lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :List[str] = model(_UpperCAmelCase )
_lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ):
_lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :str = model(_UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
_lowerCAmelCase :Optional[int] = None
_lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :Any = model(_UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ):
_lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :str = model(_UpperCAmelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
_lowerCAmelCase :List[Any] = 1
_lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase :int = model(_UpperCAmelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ):
_lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size
_lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_lowerCAmelCase :Optional[int] = 1
_lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase :List[str] = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Tuple = self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs
_lowerCAmelCase :List[str] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Optional[int] = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase : Optional[Any] = (
{'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase : Tuple = False
lowerCamelCase : Union[str, Any] = False
lowerCamelCase : Union[str, Any] = False
lowerCamelCase : Any = False
lowerCamelCase : List[Any] = False
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Tuple = FocalNetModelTester(self )
_lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
return
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: int ):
_lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
_lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: str ):
_lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@unittest.skip(reason='FocalNet does not use inputs_embeds' )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
pass
@unittest.skip(reason='FocalNet does not use feedforward chunking' )
def SCREAMING_SNAKE_CASE__ ( self: str ):
pass
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
_lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_lowerCAmelCase :Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) )
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
_lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
_lowerCAmelCase :Tuple = model_class(_UpperCAmelCase )
_lowerCAmelCase :Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase :int = [*signature.parameters.keys()]
_lowerCAmelCase :List[str] = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ):
_lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
_lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
_lowerCAmelCase :List[Any] = outputs.hidden_states
_lowerCAmelCase :str = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
# FocalNet has a different seq_length
_lowerCAmelCase :Any = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
_lowerCAmelCase :List[str] = outputs.reshaped_hidden_states
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape
_lowerCAmelCase :Optional[int] = (
reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase :List[str] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
_lowerCAmelCase :Optional[int] = True
self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase :Dict = True
self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
_lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase :str = 3
_lowerCAmelCase :Union[str, Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_lowerCAmelCase :int = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
_lowerCAmelCase :List[str] = True
self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase :Union[str, Any] = True
self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) )
@slow
def SCREAMING_SNAKE_CASE__ ( self: int ):
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase )
for model_class in self.all_model_classes:
_lowerCAmelCase :str = model_class(config=_UpperCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@require_vision
@require_torch
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@cached_property
def SCREAMING_SNAKE_CASE__ ( self: Dict ):
# TODO update organization
return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE__ ( self: Any ):
_lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase )
_lowerCAmelCase :Union[str, Any] = self.default_image_processor
_lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
_lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase :Dict = model(**_UpperCAmelCase )
# verify the logits
_lowerCAmelCase :str = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
_lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 )
@require_torch
class UpperCAmelCase_ (snake_case__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else ()
lowerCamelCase : str = FocalNetConfig
lowerCamelCase : Union[str, Any] = False
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :Any = FocalNetModelTester(self ) | 687 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int ) -> float:
__lowerCamelCase : Union[str, Any] = u
for i in range(1 , UpperCAmelCase_ ):
__lowerCamelCase : Any = temp * (u - i)
return temp
def UpperCAmelCase__ ( ) -> None:
__lowerCamelCase : List[Any] = int(input('enter the numbers of values: ' ) )
__lowerCamelCase : list[list[float]] = []
for _ in range(UpperCAmelCase_ ):
y.append([] )
for i in range(UpperCAmelCase_ ):
for j in range(UpperCAmelCase_ ):
y[i].append(UpperCAmelCase_ )
__lowerCamelCase : Tuple = 0
print('enter the values of parameters in a list: ' )
__lowerCamelCase : int = list(map(UpperCAmelCase_ , input().split() ) )
print('enter the values of corresponding parameters: ' )
for i in range(UpperCAmelCase_ ):
__lowerCamelCase : Union[str, Any] = float(input() )
__lowerCamelCase : str = int(input('enter the value to interpolate: ' ) )
__lowerCamelCase : Tuple = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , UpperCAmelCase_ ):
for j in range(n - i ):
__lowerCamelCase : Union[str, Any] = y[j + 1][i - 1] - y[j][i - 1]
__lowerCamelCase : List[str] = y[0][0]
for i in range(1 , UpperCAmelCase_ ):
summ += (ucal(UpperCAmelCase_ , UpperCAmelCase_ ) * y[0][i]) / math.factorial(UpperCAmelCase_ )
print(F'the value at {value} is {summ}' )
if __name__ == "__main__":
main()
| 13 |
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
a = HfApi()
a = {}
# fmt: off
a = torch.tensor([
-0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7,
1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9,
-1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9,
0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7
])
a = torch.tensor([
-2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6,
1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8,
-2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8,
2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5
])
a = torch.tensor([
-0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9,
-0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4,
-0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5,
0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3
])
a = torch.tensor([
0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2,
-0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9,
0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5,
-0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5
])
a = torch.tensor([
0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3,
-0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5,
0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9,
-0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6
])
a = torch.tensor([
0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8,
-0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0,
0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3,
-0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1
])
a = torch.tensor([
0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2,
-0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8,
0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4,
-0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0
])
a = torch.tensor([
0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2,
-0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0,
0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6,
-0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3
])
a = torch.tensor([
-1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0,
1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3,
-2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0,
1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1])
a = torch.tensor([
-1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4,
0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1,
-2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9,
1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6
])
a = torch.tensor([
-1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2,
0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7,
-2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1,
1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5
])
a = torch.tensor([
-2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9,
1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1,
-3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1,
3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6
])
a = torch.tensor([
-2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0,
1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8,
-2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5,
2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3
])
a = torch.tensor([
-2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6,
1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8,
-3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0,
3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3
])
a = torch.tensor([
-1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4,
1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1,
-2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9,
1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9
])
# fmt: on
a = api.list_models(filter="""diffusers""")
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1]
print(F'''Started running {mod.modelId}!!!''')
if mod.modelId.startswith("""CompVis"""):
a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""")
else:
a = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
a = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
a = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3
)
print(F'''{mod.modelId} has passed successfully!!!''') | 687 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
'''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''',
'''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''',
'''uclanlp/visualbert-vqa-coco-pre''': (
'''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json'''
),
'''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''',
'''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''',
'''uclanlp/visualbert-vcr-coco-pre''': (
'''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json'''
),
'''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''',
'''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''',
'''uclanlp/visualbert-nlvr2-coco-pre''': (
'''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json'''
)
# See all VisualBERT models at https://huggingface.co/models?filter=visual_bert
}
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
UpperCAmelCase__ : List[Any] = "visual_bert"
def __init__( self , _a=3_0_5_2_2 , _a=7_6_8 , _a=5_1_2 , _a=1_2 , _a=1_2 , _a=3_0_7_2 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=2 , _a=0.02 , _a=1e-1_2 , _a=False , _a=True , _a=1 , _a=0 , _a=2 , **_a , ) -> str:
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
_a : Any = vocab_size
_a : List[str] = max_position_embeddings
_a : Dict = hidden_size
_a : Union[str, Any] = visual_embedding_dim
_a : Tuple = num_hidden_layers
_a : int = num_attention_heads
_a : Union[str, Any] = intermediate_size
_a : List[Any] = hidden_act
_a : Union[str, Any] = hidden_dropout_prob
_a : List[Any] = attention_probs_dropout_prob
_a : Optional[Any] = initializer_range
_a : Tuple = type_vocab_size
_a : List[str] = layer_norm_eps
_a : int = bypass_transformer
_a : Optional[int] = special_visual_initialize
| 14 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: int ):
_lowerCAmelCase :Optional[int] = 10
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :str = [1, 2, 3, 4]
_lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: int ):
_lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
_lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
_lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
_lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
_lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.'
_lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , [] )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
_lowerCAmelCase :Optional[int] = ''
_lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , [] )
self.assertEqual(_UpperCAmelCase , [] )
def SCREAMING_SNAKE_CASE__ ( self: str ):
_lowerCAmelCase :Optional[Any] = (
'It was the year of Our Lord one thousand seven hundred and '
'seventy-five\n\nSpiritual revelations were conceded to England '
'at that favoured period, as at this.\n@highlight\n\nIt was the best of times'
)
_lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase )
_lowerCAmelCase :Optional[Any] = [
'It was the year of Our Lord one thousand seven hundred and seventy-five.',
'Spiritual revelations were conceded to England at that favoured period, as at this.',
]
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Optional[int] = ['It was the best of times.']
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] )
_lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() )
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
_lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
_lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
_lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() )
def SCREAMING_SNAKE_CASE__ ( self: str ):
_lowerCAmelCase :List[str] = 101
_lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] )
_lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
_lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase )
np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase ) | 687 | 0 |
A : List[Any] = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
A : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}]
A : str = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 15 |
def UpperCamelCase_( __magic_name__ : int ):
"""simple docstring"""
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print("""Program to check whether a number is a Perfect number or not...""")
a = int(input("""Enter number: """).strip())
print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''') | 687 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : str , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=7 , __lowerCamelCase : Any=3 , __lowerCamelCase : Any=30 , __lowerCamelCase : Any=400 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[int]=0.9 , __lowerCamelCase : Dict=None , __lowerCamelCase : Dict=True , __lowerCamelCase : List[Any]=[0.5, 0.5, 0.5] , __lowerCamelCase : Dict=[0.5, 0.5, 0.5] , ):
SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 30}
SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"height": 30, "width": 30}
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = min_resolution
SCREAMING_SNAKE_CASE = max_resolution
SCREAMING_SNAKE_CASE = do_resize_and_center_crop
SCREAMING_SNAKE_CASE = size
SCREAMING_SNAKE_CASE = crop_pct
SCREAMING_SNAKE_CASE = crop_size
SCREAMING_SNAKE_CASE = do_normalize
SCREAMING_SNAKE_CASE = image_mean
SCREAMING_SNAKE_CASE = image_std
def _snake_case ( self : Dict ):
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = PoolFormerImageProcessor if is_vision_available() else None
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = PoolFormerImageProcessingTester(self )
@property
def _snake_case ( self : Optional[int] ):
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowerCamelCase , "do_resize_and_center_crop" ) )
self.assertTrue(hasattr(__lowerCamelCase , "size" ) )
self.assertTrue(hasattr(__lowerCamelCase , "crop_pct" ) )
self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) )
self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) )
self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) )
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 30} )
self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30} )
SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"shortest_edge": 42} )
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} )
def _snake_case ( self : List[str] ):
pass
def _snake_case ( self : List[Any] ):
# Initialize image_processing
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def _snake_case ( self : Optional[int] ):
# Initialize image_processing
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def _snake_case ( self : str ):
# Initialize image_processing
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , ) | 16 |
from __future__ import annotations
from collections.abc import MutableSequence
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ):
if len(_UpperCAmelCase ) != degree + 1:
raise ValueError(
'The number of coefficients should be equal to the degree + 1.' )
_lowerCAmelCase :list[float] = list(_UpperCAmelCase )
_lowerCAmelCase :Optional[Any] = degree
def __add__( self: str , _UpperCAmelCase: Polynomial ):
if self.degree > polynomial_a.degree:
_lowerCAmelCase :Any = self.coefficients[:]
for i in range(polynomial_a.degree + 1 ):
coefficients[i] += polynomial_a.coefficients[i]
return Polynomial(self.degree , _UpperCAmelCase )
else:
_lowerCAmelCase :List[Any] = polynomial_a.coefficients[:]
for i in range(self.degree + 1 ):
coefficients[i] += self.coefficients[i]
return Polynomial(polynomial_a.degree , _UpperCAmelCase )
def __sub__( self: str , _UpperCAmelCase: Polynomial ):
return self + polynomial_a * Polynomial(0 , [-1] )
def __neg__( self: Union[str, Any] ):
return Polynomial(self.degree , [-c for c in self.coefficients] )
def __mul__( self: int , _UpperCAmelCase: Polynomial ):
_lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1)
for i in range(self.degree + 1 ):
for j in range(polynomial_a.degree + 1 ):
coefficients[i + j] += (
self.coefficients[i] * polynomial_a.coefficients[j]
)
return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ):
_lowerCAmelCase :int | float = 0
for i in range(self.degree + 1 ):
result += self.coefficients[i] * (substitution**i)
return result
def __str__( self: Union[str, Any] ):
_lowerCAmelCase :Dict = ''
for i in range(self.degree , -1 , -1 ):
if self.coefficients[i] == 0:
continue
elif self.coefficients[i] > 0:
if polynomial:
polynomial += " + "
else:
polynomial += " - "
if i == 0:
polynomial += str(abs(self.coefficients[i] ) )
elif i == 1:
polynomial += str(abs(self.coefficients[i] ) ) + "x"
else:
polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase )
return polynomial
def __repr__( self: Optional[Any] ):
return self.__str__()
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
_lowerCAmelCase :list[float] = [0] * self.degree
for i in range(self.degree ):
_lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1)
return Polynomial(self.degree - 1 , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ):
_lowerCAmelCase :list[float] = [0] * (self.degree + 2)
_lowerCAmelCase :str = constant
for i in range(self.degree + 1 ):
_lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1)
return Polynomial(self.degree + 1 , _UpperCAmelCase )
def __eq__( self: List[Any] , _UpperCAmelCase: object ):
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return False
if self.degree != polynomial_a.degree:
return False
for i in range(self.degree + 1 ):
if self.coefficients[i] != polynomial_a.coefficients[i]:
return False
return True
def __ne__( self: Optional[Any] , _UpperCAmelCase: object ):
return not self.__eq__(_UpperCAmelCase ) | 687 | 0 |
from sklearn.metrics import recall_score
import datasets
UpperCAmelCase_ : Dict = '''
Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:
Recall = TP / (TP + FN)
Where TP is the true positives and FN is the false negatives.
'''
UpperCAmelCase_ : List[Any] = '''
Args:
- **predictions** (`list` of `int`): The predicted labels.
- **references** (`list` of `int`): The ground truth labels.
- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.
- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.
- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.
- `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.
- `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.
- `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.
- `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.
- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .
- `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.
- `0`: If there is a zero division, the return value is `0`.
- `1`: If there is a zero division, the return value is `1`.
Returns:
- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.
Examples:
Example 1-A simple example with some errors
>>> recall_metric = datasets.load_metric(\'recall\')
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])
>>> print(results)
{\'recall\': 0.6666666666666666}
Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.
>>> recall_metric = datasets.load_metric(\'recall\')
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)
>>> print(results)
{\'recall\': 0.5}
Example 3-The same example as Example 1, but with `sample_weight` included.
>>> recall_metric = datasets.load_metric(\'recall\')
>>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)
>>> print(results)
{\'recall\': 0.55}
Example 4-A multiclass example, using different averages.
>>> recall_metric = datasets.load_metric(\'recall\')
>>> predictions = [0, 2, 1, 0, 0, 1]
>>> references = [0, 1, 2, 0, 1, 2]
>>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')
>>> print(results)
{\'recall\': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')
>>> print(results)
{\'recall\': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')
>>> print(results)
{\'recall\': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average=None)
>>> print(results)
{\'recall\': array([1., 0., 0.])}
'''
UpperCAmelCase_ : Tuple = '''
@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase_ ( datasets.Metric ):
def lowerCAmelCase_ ( self : int ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""int32""" ) ),
"""references""": datasets.Sequence(datasets.Value("""int32""" ) ),
}
if self.config_name == """multilabel"""
else {
"""predictions""": datasets.Value("""int32""" ),
"""references""": datasets.Value("""int32""" ),
} ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , )
def lowerCAmelCase_ ( self : str , __A : Union[str, Any] , __A : Any , __A : Any=None , __A : str=1 , __A : int="binary" , __A : Any=None , __A : List[str]="warn" , ):
__A : Optional[Any] = recall_score(
__A , __A , labels=__A , pos_label=__A , average=__A , sample_weight=__A , zero_division=__A , )
return {"recall": float(__A ) if score.size == 1 else score}
| 17 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
a = {
"""configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"""GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GPTNeoForCausalLM""",
"""GPTNeoForQuestionAnswering""",
"""GPTNeoForSequenceClassification""",
"""GPTNeoForTokenClassification""",
"""GPTNeoModel""",
"""GPTNeoPreTrainedModel""",
"""load_tf_weights_in_gpt_neo""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"""FlaxGPTNeoForCausalLM""",
"""FlaxGPTNeoModel""",
"""FlaxGPTNeoPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 687 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json",
"microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json",
}
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Union[str, Any] = "markuplm"
def __init__( self , _lowerCAmelCase=30522 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=256 , _lowerCAmelCase=1024 , _lowerCAmelCase=216 , _lowerCAmelCase=1001 , _lowerCAmelCase=32 , _lowerCAmelCase=50 , _lowerCAmelCase="absolute" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Optional[Any]:
super().__init__(
pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_act
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = position_embedding_type
_lowerCAmelCase = use_cache
_lowerCAmelCase = classifier_dropout
# additional properties
_lowerCAmelCase = max_depth
_lowerCAmelCase = max_xpath_tag_unit_embeddings
_lowerCAmelCase = max_xpath_subs_unit_embeddings
_lowerCAmelCase = tag_pad_id
_lowerCAmelCase = subs_pad_id
_lowerCAmelCase = xpath_unit_hidden_size
| 18 |
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ):
"""simple docstring"""
_lowerCAmelCase :Optional[Any] = a
while True:
_lowerCAmelCase :str = Decimal(__magic_name__ ) - (
Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(__magic_name__ ) ) < precision: # noqa: S307
return float(__magic_name__ )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''')
# Find root of polynomial
print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''')
# Find Square Root of 5
print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''')
# Exponential Roots
print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''') | 687 | 0 |
"""simple docstring"""
_a = 8.314_4598
def lowerCamelCase__ ( __snake_case, __snake_case ) -> float:
"""simple docstring"""
if temperature < 0:
raise Exception('''Temperature cannot be less than 0 K''' )
if molar_mass <= 0:
raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
_a = 300
_a = 28
_a = rms_speed_of_molecule(temperature, molar_mass)
print(F"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
| 19 |
import argparse
import os
import torch
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
a = {
"""sample_size""": 32,
"""in_channels""": 3,
"""out_channels""": 3,
"""layers_per_block""": 2,
"""num_class_embeds""": 1_000,
"""block_out_channels""": [32, 64],
"""attention_head_dim""": 8,
"""down_block_types""": [
"""ResnetDownsampleBlock2D""",
"""AttnDownBlock2D""",
],
"""up_block_types""": [
"""AttnUpBlock2D""",
"""ResnetUpsampleBlock2D""",
],
"""resnet_time_scale_shift""": """scale_shift""",
"""upsample_type""": """resnet""",
"""downsample_type""": """resnet""",
}
a = {
"""sample_size""": 64,
"""in_channels""": 3,
"""out_channels""": 3,
"""layers_per_block""": 3,
"""num_class_embeds""": 1_000,
"""block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4],
"""attention_head_dim""": 64,
"""down_block_types""": [
"""ResnetDownsampleBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
],
"""up_block_types""": [
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""ResnetUpsampleBlock2D""",
],
"""resnet_time_scale_shift""": """scale_shift""",
"""upsample_type""": """resnet""",
"""downsample_type""": """resnet""",
}
a = {
"""sample_size""": 256,
"""in_channels""": 3,
"""out_channels""": 3,
"""layers_per_block""": 2,
"""num_class_embeds""": None,
"""block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4],
"""attention_head_dim""": 64,
"""down_block_types""": [
"""ResnetDownsampleBlock2D""",
"""ResnetDownsampleBlock2D""",
"""ResnetDownsampleBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
],
"""up_block_types""": [
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""ResnetUpsampleBlock2D""",
"""ResnetUpsampleBlock2D""",
"""ResnetUpsampleBlock2D""",
],
"""resnet_time_scale_shift""": """default""",
"""upsample_type""": """resnet""",
"""downsample_type""": """resnet""",
}
a = {
"""num_train_timesteps""": 40,
"""sigma_min""": 0.0_0_2,
"""sigma_max""": 8_0.0,
}
a = {
"""num_train_timesteps""": 201,
"""sigma_min""": 0.0_0_2,
"""sigma_max""": 8_0.0,
}
a = {
"""num_train_timesteps""": 151,
"""sigma_min""": 0.0_0_2,
"""sigma_max""": 8_0.0,
}
def UpperCamelCase_( __magic_name__ : Dict ):
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError('boolean value expected' )
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ):
"""simple docstring"""
_lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""]
_lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""]
_lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""]
_lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""]
_lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""]
_lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""]
_lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""]
_lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""]
_lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""]
_lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""]
if has_skip:
_lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""]
_lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""]
return new_checkpoint
def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ):
"""simple docstring"""
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 )
_lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""]
_lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""]
_lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :int = (
checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 )
)
_lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 )
return new_checkpoint
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ):
"""simple docstring"""
_lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' )
_lowerCAmelCase :List[Any] = {}
_lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight']
_lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias']
_lowerCAmelCase :Dict = checkpoint['time_embed.2.weight']
_lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias']
if unet_config["num_class_embeds"] is not None:
_lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight']
_lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight']
_lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias']
_lowerCAmelCase :List[Any] = unet_config['down_block_types']
_lowerCAmelCase :Any = unet_config['layers_per_block']
_lowerCAmelCase :List[Any] = unet_config['attention_head_dim']
_lowerCAmelCase :Tuple = unet_config['block_out_channels']
_lowerCAmelCase :List[str] = 1
_lowerCAmelCase :Optional[int] = channels_list[0]
for i, layer_type in enumerate(__magic_name__ ):
_lowerCAmelCase :Tuple = channels_list[i]
_lowerCAmelCase :Optional[Any] = current_channels != prev_channels
if layer_type == "ResnetDownsampleBlock2D":
for j in range(__magic_name__ ):
_lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}"""
_lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0"""
_lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False
_lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ )
current_layer += 1
elif layer_type == "AttnDownBlock2D":
for j in range(__magic_name__ ):
_lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}"""
_lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0"""
_lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False
_lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ )
_lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}"""
_lowerCAmelCase :str = f"""input_blocks.{current_layer}.1"""
_lowerCAmelCase :Optional[Any] = convert_attention(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
current_layer += 1
if i != len(__magic_name__ ) - 1:
_lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0"""
_lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0"""
_lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
current_layer += 1
_lowerCAmelCase :Dict = current_channels
# hardcoded the mid-block for now
_lowerCAmelCase :int = 'mid_block.resnets.0'
_lowerCAmelCase :Optional[Any] = 'middle_block.0'
_lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
_lowerCAmelCase :Optional[int] = 'mid_block.attentions.0'
_lowerCAmelCase :Optional[int] = 'middle_block.1'
_lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
_lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1'
_lowerCAmelCase :Optional[int] = 'middle_block.2'
_lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
_lowerCAmelCase :Tuple = 0
_lowerCAmelCase :str = unet_config['up_block_types']
for i, layer_type in enumerate(__magic_name__ ):
if layer_type == "ResnetUpsampleBlock2D":
for j in range(layers_per_block + 1 ):
_lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}"""
_lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0"""
_lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ )
current_layer += 1
if i != len(__magic_name__ ) - 1:
_lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0"""
_lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1"""
_lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
elif layer_type == "AttnUpBlock2D":
for j in range(layers_per_block + 1 ):
_lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}"""
_lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0"""
_lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ )
_lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}"""
_lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1"""
_lowerCAmelCase :int = convert_attention(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
current_layer += 1
if i != len(__magic_name__ ) - 1:
_lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0"""
_lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2"""
_lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
_lowerCAmelCase :str = checkpoint['out.0.weight']
_lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias']
_lowerCAmelCase :List[Any] = checkpoint['out.2.weight']
_lowerCAmelCase :Dict = checkpoint['out.2.bias']
return new_checkpoint
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""")
parser.add_argument(
"""--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model."""
)
parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""")
a = parser.parse_args()
a = strabool(args.class_cond)
a = os.path.basename(args.unet_path)
print(F'''Checkpoint: {ckpt_name}''')
# Get U-Net config
if "imagenet64" in ckpt_name:
a = IMAGENET_64_UNET_CONFIG
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
a = LSUN_256_UNET_CONFIG
elif "test" in ckpt_name:
a = TEST_UNET_CONFIG
else:
raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''')
if not args.class_cond:
a = None
a = con_pt_to_diffuser(args.unet_path, unet_config)
a = UNetaDModel(**unet_config)
image_unet.load_state_dict(converted_unet_ckpt)
# Get scheduler config
if "cd" in ckpt_name or "test" in ckpt_name:
a = CD_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "imagenet64" in ckpt_name:
a = CT_IMAGENET_64_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
a = CT_LSUN_256_SCHEDULER_CONFIG
else:
raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''')
a = CMStochasticIterativeScheduler(**scheduler_config)
a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler)
consistency_model.save_pretrained(args.dump_path) | 687 | 0 |
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
_lowerCAmelCase: List[Any] = abspath(join(dirname(dirname(dirname(__file__))), 'src'))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='ignore', category=FutureWarning)
def _lowercase( __a : List[Any] ):
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(__a )
def _lowercase( __a : int ):
from transformers.testing_utils import pytest_terminal_summary_main
a__ =terminalreporter.config.getoption('--make-reports' )
if make_reports:
pytest_terminal_summary_main(__a , id=__a )
| 20 |
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
a = """ \"\"\"
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"\"\"
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
"""
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: Dict ):
_lowerCAmelCase :Optional[Any] = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) )
_lowerCAmelCase :Tuple = self.diffusers_dir
shutil.copy(
os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :str = 'src/diffusers'
shutil.rmtree(self.diffusers_dir )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ):
_lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code
if overwrite_result is not None:
_lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result
_lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
_lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase )
_lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' )
with open(_UpperCAmelCase , 'w' , newline='\n' ) as f:
f.write(_UpperCAmelCase )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase )
with open(_UpperCAmelCase , 'r' ) as f:
self.assertTrue(f.read() , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
_lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
# Base copy consistency
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , )
# With no empty line at the end
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , )
# Copy consistency with rename
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
# Copy consistency with a really long name
_lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'
self.check_copy_consistency(
f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) | 687 | 0 |
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
UpperCAmelCase_ : Optional[Any] = logging.getLogger(__name__)
UpperCAmelCase_ : Union[str, Any] = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
UpperCAmelCase_ : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class __A :
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={
"""help""": (
"""The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."""
)
} , )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCamelCase__ )} , )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={
"""help""": (
"""Override some existing default config settings when a model is trained from scratch. Example: """
"""n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"""
)
} , )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
UpperCamelCase = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
"""--config_overrides can't be used in combination with --config_name or --model_name_or_path""" )
@dataclass
class __A :
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} )
UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """The input training data file (a text file)."""} )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
UpperCamelCase = field(
default=5 , metadata={
"""help""": """The percentage of the train set used as validation set in case there's no validation split"""
} , )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated. Default to the max input length of the model."""
)
} , )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , )
UpperCamelCase = field(
default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} )
UpperCamelCase = field(
default=UpperCamelCase__ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
def A__ ( self :Optional[int] ):
'''simple docstring'''
if self.train_file is not None:
__magic_name__ : Dict =self.train_file.split(""".""" )[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
__magic_name__ : Union[str, Any] =self.validation_file.split(""".""" )[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
with open(lowerCamelCase , """r""" , encoding="""utf-8""" ) as f:
__magic_name__ : Any =[json.loads(lowerCamelCase ) for line in f.read().splitlines() if (len(lowerCamelCase ) > 0 and not line.isspace())]
assert len(lowerCamelCase ) == len(lowerCamelCase )
__magic_name__ : Optional[Any] ={c: dataset[c] for c in dataset.column_names}
__magic_name__ : List[str] =refs
return Dataset.from_dict(lowerCamelCase )
def lowerCAmelCase_ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__magic_name__ : str =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__magic_name__ , __magic_name__ , __magic_name__ : int =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
__magic_name__ : List[str] =None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__magic_name__ : Optional[int] =get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. "
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None:
logger.info(
F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , lowerCamelCase )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__magic_name__ : Union[str, Any] =load_dataset(data_args.dataset_name , data_args.dataset_config_name )
if "validation" not in datasets.keys():
__magic_name__ : int =load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F"train[:{data_args.validation_split_percentage}%]" , )
__magic_name__ : Optional[Any] =load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F"train[{data_args.validation_split_percentage}%:]" , )
else:
__magic_name__ : str ={}
if data_args.train_file is not None:
__magic_name__ : List[Any] =data_args.train_file
if data_args.validation_file is not None:
__magic_name__ : str =data_args.validation_file
__magic_name__ : List[Any] =data_args.train_file.split(""".""" )[-1]
if extension == "txt":
__magic_name__ : List[str] ="""text"""
__magic_name__ : Optional[Any] =load_dataset(lowerCamelCase , data_files=lowerCamelCase )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__magic_name__ : List[Any] ={
"""cache_dir""": model_args.cache_dir,
"""revision""": model_args.model_revision,
"""use_auth_token""": True if model_args.use_auth_token else None,
}
if model_args.config_name:
__magic_name__ : Tuple =AutoConfig.from_pretrained(model_args.config_name , **lowerCamelCase )
elif model_args.model_name_or_path:
__magic_name__ : int =AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCamelCase )
else:
__magic_name__ : Any =CONFIG_MAPPING[model_args.model_type]()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.config_overrides is not None:
logger.info(F"Overriding config: {model_args.config_overrides}" )
config.update_from_string(model_args.config_overrides )
logger.info(F"New config: {config}" )
__magic_name__ : Any ={
"""cache_dir""": model_args.cache_dir,
"""use_fast""": model_args.use_fast_tokenizer,
"""revision""": model_args.model_revision,
"""use_auth_token""": True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
__magic_name__ : List[str] =AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowerCamelCase )
elif model_args.model_name_or_path:
__magic_name__ : Dict =AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowerCamelCase )
else:
raise ValueError(
"""You are instantiating a new tokenizer from scratch. This is not supported by this script."""
"""You can do it from another script, save it, and load it from here, using --tokenizer_name.""" )
if model_args.model_name_or_path:
__magic_name__ : List[str] =AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info("""Training new model from scratch""" )
__magic_name__ : List[str] =AutoModelForMaskedLM.from_config(lowerCamelCase )
model.resize_token_embeddings(len(lowerCamelCase ) )
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
__magic_name__ : Union[str, Any] =datasets["""train"""].column_names
else:
__magic_name__ : List[str] =datasets["""validation"""].column_names
__magic_name__ : Optional[Any] ="""text""" if """text""" in column_names else column_names[0]
__magic_name__ : Union[str, Any] ="""max_length""" if data_args.pad_to_max_length else False
def tokenize_function(lowerCamelCase ):
# Remove empty lines
__magic_name__ : Tuple =[line for line in examples["""text"""] if len(lowerCamelCase ) > 0 and not line.isspace()]
return tokenizer(examples["""text"""] , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=data_args.max_seq_length )
__magic_name__ : List[Any] =datasets.map(
lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , )
# Add the chinese references if provided
if data_args.train_ref_file is not None:
__magic_name__ : str =add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file )
if data_args.validation_ref_file is not None:
__magic_name__ : List[Any] =add_chinese_references(
tokenized_datasets["""validation"""] , data_args.validation_ref_file )
# If we have ref files, need to avoid it removed by trainer
__magic_name__ : str =data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
__magic_name__ : Optional[Any] =False
# Data collator
# This one will take care of randomly masking the tokens.
__magic_name__ : Any =DataCollatorForWholeWordMask(tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
__magic_name__ : Tuple =Trainer(
model=lowerCamelCase , args=lowerCamelCase , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
__magic_name__ : str =last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ):
__magic_name__ : Union[str, Any] =model_args.model_name_or_path
else:
__magic_name__ : int =None
__magic_name__ : Dict =trainer.train(resume_from_checkpoint=lowerCamelCase )
trainer.save_model() # Saves the tokenizer too for easy upload
__magic_name__ : List[str] =os.path.join(training_args.output_dir , """train_results.txt""" )
if trainer.is_world_process_zero():
with open(lowerCamelCase , """w""" ) as writer:
logger.info("""***** Train results *****""" )
for key, value in sorted(train_result.metrics.items() ):
logger.info(F" {key} = {value}" )
writer.write(F"{key} = {value}\n" )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) )
# Evaluation
__magic_name__ : Dict ={}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__magic_name__ : Tuple =trainer.evaluate()
__magic_name__ : Optional[int] =math.exp(eval_output["""eval_loss"""] )
__magic_name__ : List[Any] =perplexity
__magic_name__ : Optional[int] =os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" )
if trainer.is_world_process_zero():
with open(lowerCamelCase , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in sorted(results.items() ):
logger.info(F" {key} = {value}" )
writer.write(F"{key} = {value}\n" )
return results
def lowerCAmelCase_ ( lowerCamelCase ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 21 |
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} )
lowerCamelCase : Optional[str] = field(
default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} )
lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} )
lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} )
lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} )
lowerCamelCase : Optional[int] = field(
default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} )
lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} )
lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} )
lowerCamelCase : Optional[int] = field(
default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} )
lowerCamelCase : Optional[int] = field(
default=16 , metadata={'help': 'Number of gradient accumulation steps.'} )
lowerCamelCase : Optional[bool] = field(
default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} )
lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} )
lowerCamelCase : Optional[int] = field(
default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} )
lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} )
lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} )
lowerCamelCase : Optional[int] = field(
default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , )
lowerCamelCase : Optional[str] = field(
default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} )
lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} )
lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} )
lowerCamelCase : Optional[int] = field(
default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} )
lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} )
lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} )
lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} )
lowerCamelCase : Optional[int] = field(
default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , )
lowerCamelCase : Optional[bool] = field(
default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} )
lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} )
lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} )
lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} )
lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} )
lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} )
lowerCamelCase : Optional[int] = field(
default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} )
lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} )
lowerCamelCase : Optional[str] = field(
default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} )
lowerCamelCase : Optional[str] = field(
default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} )
lowerCamelCase : Optional[int] = field(
default=-1 , metadata={
'help': (
'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive'
' number corresponds to which GPU device id to run on.'
)
} , )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[int] = field(
default=snake_case__ , metadata={
'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.'
} , )
lowerCamelCase : Optional[str] = field(
default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} )
lowerCamelCase : Optional[int] = field(
default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} )
lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} )
lowerCamelCase : Optional[float] = field(
default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} )
lowerCamelCase : Optional[float] = field(
default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} )
lowerCamelCase : Optional[float] = field(
default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} )
lowerCamelCase : Optional[float] = field(
default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} )
lowerCamelCase : Optional[float] = field(
default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , )
lowerCamelCase : Optional[bool] = field(
default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} )
lowerCamelCase : Optional[float] = field(
default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} )
lowerCamelCase : Optional[str] = field(
default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} )
lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} )
lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} )
lowerCamelCase : Optional[int] = field(
default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} )
lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} )
lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} )
lowerCamelCase : Optional[str] = field(
default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} )
lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} )
lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} )
lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) | 687 | 0 |
'''simple docstring'''
from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : str=1e-12 ):
'''simple docstring'''
_a = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase , axis=1 ) , a_min=UpperCamelCase ) ).T
_a = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase , axis=1 ) , a_min=UpperCamelCase ) ).T
return jnp.matmul(UpperCamelCase , norm_emb_a.T )
class A ( nn.Module ):
lowercase_ = 42
lowercase_ = jnp.floataa
def __lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_a = FlaxCLIPVisionModule(self.config.vision_config )
_a = nn.Dense(self.config.projection_dim , use_bias=lowerCAmelCase_ , dtype=self.dtype )
_a = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) )
_a = self.param(
'''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) )
_a = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) )
_a = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) )
def __call__( self : Any , lowerCAmelCase_ : int ) -> List[str]:
"""simple docstring"""
_a = self.vision_model(lowerCAmelCase_ )[1]
_a = self.visual_projection(lowerCAmelCase_ )
_a = jax_cosine_distance(lowerCAmelCase_ , self.special_care_embeds )
_a = jax_cosine_distance(lowerCAmelCase_ , self.concept_embeds )
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
_a = 0.0
_a = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
_a = jnp.round(lowerCAmelCase_ , 3 )
_a = jnp.any(special_scores > 0 , axis=1 , keepdims=lowerCAmelCase_ )
# Use a lower threshold if an image has any special care concept
_a = is_special_care * 0.0_1
_a = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
_a = jnp.round(lowerCAmelCase_ , 3 )
_a = jnp.any(concept_scores > 0 , axis=1 )
return has_nsfw_concepts
class A ( _a ):
lowercase_ = CLIPConfig
lowercase_ = 'clip_input'
lowercase_ = FlaxStableDiffusionSafetyCheckerModule
def __init__( self : Optional[int] , lowerCAmelCase_ : CLIPConfig , lowerCAmelCase_ : Optional[Tuple] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : jnp.dtype = jnp.floataa , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Union[str, Any] , ) -> Optional[Any]:
"""simple docstring"""
if input_shape is None:
_a = (1, 2_24, 2_24, 3)
_a = self.module_class(config=lowerCAmelCase_ , dtype=lowerCAmelCase_ , **lowerCAmelCase_ )
super().__init__(lowerCAmelCase_ , lowerCAmelCase_ , input_shape=lowerCAmelCase_ , seed=lowerCAmelCase_ , dtype=lowerCAmelCase_ , _do_init=_do_init )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : jax.random.KeyArray , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : FrozenDict = None ) -> FrozenDict:
"""simple docstring"""
_a = jax.random.normal(lowerCAmelCase_ , lowerCAmelCase_ )
_a , _a = jax.random.split(lowerCAmelCase_ )
_a = {'''params''': params_rng, '''dropout''': dropout_rng}
_a = self.module.init(lowerCAmelCase_ , lowerCAmelCase_ )['''params''']
return random_params
def __call__( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : dict = None , ) -> int:
"""simple docstring"""
_a = jnp.transpose(lowerCAmelCase_ , (0, 2, 3, 1) )
return self.module.apply(
{'''params''': params or self.params} , jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) , rngs={} , )
| 22 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :List[str] = 'ylacombe/bark-small'
_lowerCAmelCase :int = tempfile.mkdtemp()
_lowerCAmelCase :List[str] = 'en_speaker_1'
_lowerCAmelCase :Union[str, Any] = 'This is a test string'
_lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json'
_lowerCAmelCase :str = 'speaker_embeddings'
def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ):
return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase :List[Any] = self.get_tokenizer()
_lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
_lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
_lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
_lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
_lowerCAmelCase :Any = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Tuple = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
_lowerCAmelCase :List[Any] = 35
_lowerCAmelCase :Optional[int] = 2
_lowerCAmelCase :Dict = 8
_lowerCAmelCase :Dict = {
'semantic_prompt': np.ones(_UpperCAmelCase ),
'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ),
'fine_prompt': np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
_lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
_lowerCAmelCase :List[Any] = inputs['history_prompt']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from npz file
_lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' )
np.savez(_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
_lowerCAmelCase :Optional[int] = inputs['history_prompt']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from the hub
_lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :Tuple = self.get_tokenizer()
_lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase )
_lowerCAmelCase :List[Any] = processor(text=self.input_string )
_lowerCAmelCase :List[str] = tokenizer(
self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() ) | 687 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
snake_case__ : List[Any] = {
"""configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""],
"""tokenization_roberta""": ["""RobertaTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[str] = ["""RobertaTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : str = [
"""ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RobertaForCausalLM""",
"""RobertaForMaskedLM""",
"""RobertaForMultipleChoice""",
"""RobertaForQuestionAnswering""",
"""RobertaForSequenceClassification""",
"""RobertaForTokenClassification""",
"""RobertaModel""",
"""RobertaPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[str] = [
"""TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFRobertaForCausalLM""",
"""TFRobertaForMaskedLM""",
"""TFRobertaForMultipleChoice""",
"""TFRobertaForQuestionAnswering""",
"""TFRobertaForSequenceClassification""",
"""TFRobertaForTokenClassification""",
"""TFRobertaMainLayer""",
"""TFRobertaModel""",
"""TFRobertaPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
"""FlaxRobertaForCausalLM""",
"""FlaxRobertaForMaskedLM""",
"""FlaxRobertaForMultipleChoice""",
"""FlaxRobertaForQuestionAnswering""",
"""FlaxRobertaForSequenceClassification""",
"""FlaxRobertaForTokenClassification""",
"""FlaxRobertaModel""",
"""FlaxRobertaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
snake_case__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 23 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""",
"""bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""",
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""",
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""",
"""bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json"""
),
"""wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""",
# See all BERT models at https://huggingface.co/models?filter=bert
}
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
lowerCamelCase : int = 'bert'
def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ):
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :List[Any] = vocab_size
_lowerCAmelCase :Tuple = hidden_size
_lowerCAmelCase :Dict = num_hidden_layers
_lowerCAmelCase :Optional[Any] = num_attention_heads
_lowerCAmelCase :List[Any] = hidden_act
_lowerCAmelCase :int = intermediate_size
_lowerCAmelCase :Tuple = hidden_dropout_prob
_lowerCAmelCase :Tuple = attention_probs_dropout_prob
_lowerCAmelCase :List[Any] = max_position_embeddings
_lowerCAmelCase :Dict = type_vocab_size
_lowerCAmelCase :Any = initializer_range
_lowerCAmelCase :int = layer_norm_eps
_lowerCAmelCase :List[Any] = position_embedding_type
_lowerCAmelCase :int = use_cache
_lowerCAmelCase :Union[str, Any] = classifier_dropout
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
if self.task == "multiple-choice":
_lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] ) | 687 | 0 |
'''simple docstring'''
from __future__ import annotations
from math import pi, sqrt
def _UpperCamelCase (_lowerCamelCase : float , _lowerCamelCase : float )-> tuple:
'''simple docstring'''
if inductance <= 0:
raise ValueError('''Inductance cannot be 0 or negative''' )
elif capacitance <= 0:
raise ValueError('''Capacitance cannot be 0 or negative''' )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 24 |
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ):
"""simple docstring"""
if isinstance(__magic_name__ , torch.Tensor ):
return image
elif isinstance(__magic_name__ , PIL.Image.Image ):
_lowerCAmelCase :Tuple = [image]
if isinstance(image[0] , PIL.Image.Image ):
_lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image]
_lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 )
_lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0
_lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 )
_lowerCAmelCase :int = 2.0 * image - 1.0
_lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ )
elif isinstance(image[0] , torch.Tensor ):
_lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 )
return image
def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ):
"""simple docstring"""
if not isinstance(__magic_name__ , np.ndarray ):
_lowerCAmelCase :Tuple = True
_lowerCAmelCase :str = va.device
_lowerCAmelCase :List[str] = va.cpu().numpy()
_lowerCAmelCase :List[str] = va.cpu().numpy()
_lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) )
if np.abs(__magic_name__ ) > DOT_THRESHOLD:
_lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va
else:
_lowerCAmelCase :int = np.arccos(__magic_name__ )
_lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ )
_lowerCAmelCase :Union[str, Any] = theta_a * t
_lowerCAmelCase :str = np.sin(__magic_name__ )
_lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a
_lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a
_lowerCAmelCase :List[Any] = sa * va + sa * va
if inputs_are_torch:
_lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ )
return va
def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
_lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 )
_lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 )
return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 )
def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
for param in model.parameters():
_lowerCAmelCase :List[str] = value
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ):
super().__init__()
self.register_modules(
vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , )
_lowerCAmelCase :int = (
feature_extractor.size
if isinstance(feature_extractor.size , _UpperCAmelCase )
else feature_extractor.size['shortest_edge']
)
_lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std )
set_requires_grad(self.text_encoder , _UpperCAmelCase )
set_requires_grad(self.clip_model , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
_lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
self.enable_attention_slicing(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
set_requires_grad(self.vae , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
set_requires_grad(self.vae , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
set_requires_grad(self.unet , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
set_requires_grad(self.unet , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ):
# get the original timestep using init_timestep
_lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase )
_lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 )
_lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ):
if not isinstance(_UpperCAmelCase , torch.Tensor ):
raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" )
_lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_lowerCAmelCase :List[Any] = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase )
]
_lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 )
else:
_lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents
_lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 )
_lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase )
# get latents
_lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :List[str] = init_latents
return latents
def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ):
_lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
_lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) )
_lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' )
def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ):
_lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase )
_lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half()
_lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase )
_lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase )
_lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ):
_lowerCAmelCase :Dict = latents.detach().requires_grad_()
_lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
# predict the noise residual
_lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
_lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep]
_lowerCAmelCase :Optional[int] = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
_lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase )
_lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , _UpperCAmelCase ):
_lowerCAmelCase :Dict = self.scheduler.sigmas[index]
_lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred
else:
raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample
_lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample
_lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 )
_lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase )
_lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype )
_lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase )
_lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase )
_lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale
_lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0]
if isinstance(self.scheduler , _UpperCAmelCase ):
_lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2)
_lowerCAmelCase :Dict = noise_pred_original
else:
_lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ):
if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size:
raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1:
_lowerCAmelCase :int = [generator] + [None] * (batch_size - 1)
_lowerCAmelCase :List[Any] = [
('model', self.coca_model is None),
('tokenizer', self.coca_tokenizer is None),
('transform', self.coca_transform is None),
]
_lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]]
_lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(_UpperCAmelCase ):
raise ValueError(
f"""Content prompt is None and CoCa [{coca_is_none_str}] is None."""
f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
_lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase )
if style_prompt is None:
if len(_UpperCAmelCase ):
raise ValueError(
f"""Style prompt is None and CoCa [{coca_is_none_str}] is None."""
f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
_lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase )
# get prompt text embeddings for content and style
_lowerCAmelCase :Any = self.tokenizer(
_UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , )
_lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
_lowerCAmelCase :int = self.tokenizer(
_UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , )
_lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
_lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# duplicate text embeddings for each generation per prompt
_lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 )
# set timesteps
_lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
_lowerCAmelCase :Dict = {}
if accepts_offset:
_lowerCAmelCase :Optional[int] = 1
self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
_lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device )
_lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase )
# Preprocess image
_lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :int = self.prepare_latents(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase )
_lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Union[str, Any] = self.prepare_latents(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase )
_lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if clip_guidance_scale > 0:
_lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Any = slerp(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
_lowerCAmelCase :int = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
_lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1]
_lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' )
_lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
_lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
_lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
_lowerCAmelCase :Optional[Any] = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
_lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to(
self.device )
else:
_lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase )
else:
if latents.shape != latents_shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
_lowerCAmelCase :int = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
_lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
_lowerCAmelCase :Any = {}
if accepts_eta:
_lowerCAmelCase :Any = eta
# check if the scheduler accepts generator
_lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
_lowerCAmelCase :List[Any] = generator
with self.progress_bar(total=_UpperCAmelCase ):
for i, t in enumerate(_UpperCAmelCase ):
# expand the latents if we are doing classifier free guidance
_lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
# predict the noise residual
_lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
_lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 )
_lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
_lowerCAmelCase :List[Any] = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
_lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , )
# compute the previous noisy sample x_t -> x_t-1
_lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents
_lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample
_lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 )
_lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase ) | 687 | 0 |
def lowerCamelCase__ ( _a):
SCREAMING_SNAKE_CASE : List[str] = 0
for ch in input_str:
SCREAMING_SNAKE_CASE : Optional[int] = ord(_a)
SCREAMING_SNAKE_CASE : str = pow(2 , _a)
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod() | 25 |
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ):
"""simple docstring"""
_lowerCAmelCase :Optional[int] = list(__magic_name__ )
_lowerCAmelCase :Dict = list(__magic_name__ )
_lowerCAmelCase :Any = 0
for i in range(len(__magic_name__ ) ):
if lista[i] != lista[i]:
count += 1
_lowerCAmelCase :Union[str, Any] = '_'
if count > 1:
return False
else:
return "".join(__magic_name__ )
def UpperCamelCase_( __magic_name__ : list[str] ):
"""simple docstring"""
_lowerCAmelCase :int = []
while True:
_lowerCAmelCase :str = ['$'] * len(__magic_name__ )
_lowerCAmelCase :Optional[int] = []
for i in range(len(__magic_name__ ) ):
for j in range(i + 1 , len(__magic_name__ ) ):
_lowerCAmelCase :int = compare_string(binary[i] , binary[j] )
if k is False:
_lowerCAmelCase :str = '*'
_lowerCAmelCase :Union[str, Any] = '*'
temp.append('X' )
for i in range(len(__magic_name__ ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(__magic_name__ ) == 0:
return pi
_lowerCAmelCase :Any = list(set(__magic_name__ ) )
def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ):
"""simple docstring"""
_lowerCAmelCase :str = []
for minterm in minterms:
_lowerCAmelCase :Any = ''
for _ in range(__magic_name__ ):
_lowerCAmelCase :Tuple = str(minterm % 2 ) + string
minterm //= 2
temp.append(__magic_name__ )
return temp
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ):
"""simple docstring"""
_lowerCAmelCase :Optional[Any] = list(__magic_name__ )
_lowerCAmelCase :List[Any] = list(__magic_name__ )
_lowerCAmelCase :Optional[Any] = 0
for i in range(len(__magic_name__ ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ):
"""simple docstring"""
_lowerCAmelCase :str = []
_lowerCAmelCase :List[str] = [0] * len(__magic_name__ )
for i in range(len(chart[0] ) ):
_lowerCAmelCase :Dict = 0
_lowerCAmelCase :Optional[Any] = -1
for j in range(len(__magic_name__ ) ):
if chart[j][i] == 1:
count += 1
_lowerCAmelCase :List[Any] = j
if count == 1:
_lowerCAmelCase :Dict = 1
for i in range(len(__magic_name__ ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(__magic_name__ ) ):
_lowerCAmelCase :Dict = 0
temp.append(prime_implicants[i] )
while True:
_lowerCAmelCase :Dict = 0
_lowerCAmelCase :Any = -1
_lowerCAmelCase :Optional[Any] = 0
for i in range(len(__magic_name__ ) ):
_lowerCAmelCase :str = chart[i].count(1 )
if count_n > max_n:
_lowerCAmelCase :Optional[Any] = count_n
_lowerCAmelCase :Dict = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(__magic_name__ ) ):
_lowerCAmelCase :str = 0
def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ):
"""simple docstring"""
_lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )]
for i in range(len(__magic_name__ ) ):
_lowerCAmelCase :Tuple = prime_implicants[i].count('_' )
for j in range(len(__magic_name__ ) ):
if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ):
_lowerCAmelCase :str = 1
return chart
def UpperCamelCase_( ):
"""simple docstring"""
_lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) )
_lowerCAmelCase :Tuple = [
float(__magic_name__ )
for x in input(
'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split()
]
_lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ )
_lowerCAmelCase :Any = check(__magic_name__ )
print('Prime Implicants are:' )
print(__magic_name__ )
_lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ )
_lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ )
print('Essential Prime Implicants are:' )
print(__magic_name__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main() | 687 | 0 |
'''simple docstring'''
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class _A ( tf.keras.layers.Layer ):
def __init__( self : Dict , __magic_name__ : Dict[str, int] , __magic_name__ : List[str] , __magic_name__ : int = None , __magic_name__ : int = None ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__snake_case : str = pad_token_id
__snake_case : Tuple = max_length
__snake_case : Dict = vocab
__snake_case : Optional[Any] = merges
__snake_case : Optional[Any] = BytePairTokenizer(__magic_name__ , __magic_name__ , sequence_length=__magic_name__ )
@classmethod
def lowercase__ ( cls : int , __magic_name__ : GPTaTokenizer , *__magic_name__ : int , **__magic_name__ : int ) -> List[Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = [""" """.join(__magic_name__ ) for m in tokenizer.bpe_ranks.keys()]
__snake_case : List[str] = tokenizer.get_vocab()
return cls(__magic_name__ , __magic_name__ , *__magic_name__ , **__magic_name__ )
@classmethod
def lowercase__ ( cls : int , __magic_name__ : Union[str, os.PathLike] , *__magic_name__ : Dict , **__magic_name__ : str ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Optional[int] = GPTaTokenizer.from_pretrained(__magic_name__ , *__magic_name__ , **__magic_name__ )
return cls.from_tokenizer(__magic_name__ , *__magic_name__ , **__magic_name__ )
@classmethod
def lowercase__ ( cls : Any , __magic_name__ : Dict ) -> List[Any]:
"""simple docstring"""
return cls(**__magic_name__ )
def lowercase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def lowercase__ ( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : int = None ) -> Optional[Any]:
"""simple docstring"""
__snake_case : Dict = self.tf_tokenizer(__magic_name__ )
__snake_case : Any = tf.ones_like(__magic_name__ )
if self.pad_token_id is not None:
# pad the tokens up to max length
__snake_case : Dict = max_length if max_length is not None else self.max_length
if max_length is not None:
__snake_case , __snake_case : Any = pad_model_inputs(
__magic_name__ , max_seq_length=__magic_name__ , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 26 |
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
a = """\
@INPROCEEDINGS{Papineni02bleu:a,
author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},
title = {BLEU: a Method for Automatic Evaluation of Machine Translation},
booktitle = {},
year = {2002},
pages = {311--318}
}
@inproceedings{lin-och-2004-orange,
title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",
author = \"Lin, Chin-Yew and
Och, Franz Josef\",
booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",
month = \"aug 23{--}aug 27\",
year = \"2004\",
address = \"Geneva, Switzerland\",
publisher = \"COLING\",
url = \"https://www.aclweb.org/anthology/C04-1072\",
pages = \"501--507\",
}
"""
a = """\
BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.
Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,
the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and
remains one of the most popular automated and inexpensive metrics.
Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.
Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness
are not taken into account[citation needed].
BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1
representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the
reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional
reference translations will increase the BLEU score.
"""
a = """
Computes BLEU score of translated segments against one or more references.
Args:
predictions: list of translations to score.
Each translation should be tokenized into a list of tokens.
references: list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
max_order: Maximum n-gram order to use when computing BLEU score.
smooth: Whether or not to apply Lin et al. 2004 smoothing.
Returns:
'bleu': bleu score,
'precisions': geometric mean of n-gram precisions,
'brevity_penalty': brevity penalty,
'length_ratio': ratio of lengths,
'translation_length': translation_length,
'reference_length': reference_length
Examples:
>>> predictions = [
... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample
... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample
... ]
>>> references = [
... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)
... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)
... ]
>>> bleu = datasets.load_metric(\"bleu\")
>>> results = bleu.compute(predictions=predictions, references=references)
>>> print(results[\"bleu\"])
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ (datasets.Metric ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ),
} ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[
'https://en.wikipedia.org/wiki/BLEU',
'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213',
] , )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ):
_lowerCAmelCase :Any = compute_bleu(
reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
} | 687 | 0 |
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__A : Any = logging.getLogger(__name__)
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
return (preds == labels).mean()
@dataclass
class lowerCamelCase:
'''simple docstring'''
__magic_name__ = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
__magic_name__ = field(
default=__snake_case , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
__magic_name__ = field(
default=__snake_case , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
__magic_name__ = field(
default=__snake_case , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
@dataclass
class lowerCamelCase:
'''simple docstring'''
__magic_name__ = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} )
__magic_name__ = field(metadata={'help': 'Should contain the data files for the task.'} )
__magic_name__ = field(
default=128 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
__magic_name__ = field(
default=__snake_case , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
def __lowerCAmelCase( ) -> Union[str, Any]:
"""simple docstring"""
_A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
_A, _A, _A = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
' --overwrite_output_dir to overcome.' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , _SCREAMING_SNAKE_CASE )
# Set seed
set_seed(training_args.seed )
try:
_A = processors[data_args.task_name]()
_A = processor.get_labels()
_A = len(_SCREAMING_SNAKE_CASE )
except KeyError:
raise ValueError('Task not found: %s' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_A = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_SCREAMING_SNAKE_CASE , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
_A = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_A = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , )
# Get datasets
_A = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
_A = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(_SCREAMING_SNAKE_CASE ) -> Dict:
_A = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(_SCREAMING_SNAKE_CASE , p.label_ids )}
# Data collator
_A = DataCollatorWithPadding(_SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
_A = Trainer(
model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_A = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
_A = trainer.evaluate()
_A = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_master():
with open(_SCREAMING_SNAKE_CASE , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
writer.write('%s = %s\n' % (key, value) )
results.update(_SCREAMING_SNAKE_CASE )
return results
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 27 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a = {
"""configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"""FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FalconForCausalLM""",
"""FalconModel""",
"""FalconPreTrainedModel""",
"""FalconForSequenceClassification""",
"""FalconForTokenClassification""",
"""FalconForQuestionAnswering""",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 687 | 0 |
'''simple docstring'''
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
'files' ,[
['full:README.md', 'dataset_infos.json'],
['empty:README.md', 'dataset_infos.json'],
['dataset_infos.json'],
['full:README.md'],
] ,)
def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: Optional[int] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = tmp_path_factory.mktemp('dset_infos_dir' )
if "full:README.md" in files:
with open(dataset_infos_dir / 'README.md' ,'w' ) as f:
f.write('---\ndataset_info:\n dataset_size: 42\n---' )
if "empty:README.md" in files:
with open(dataset_infos_dir / 'README.md' ,'w' ) as f:
f.write('' )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / 'dataset_infos.json' ,'w' ) as f:
f.write('{"default": {"dataset_size": 42}}' )
SCREAMING_SNAKE_CASE : Tuple = DatasetInfosDict.from_directory(__UpperCamelCase )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
'dataset_info' ,[
DatasetInfo(),
DatasetInfo(
description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,),
] ,)
def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: DatasetInfo ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = str(__UpperCamelCase )
dataset_info.write_to_directory(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = DatasetInfo.from_directory(__UpperCamelCase )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(__UpperCamelCase ,'dataset_info.json' ) )
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = DatasetInfo(
description='foo' ,citation='bar' ,homepage='https://foo.bar' ,license='CC0' ,features=Features({'a': Value('int32' )} ) ,post_processed={} ,supervised_keys=() ,task_templates=[] ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train', 'num_examples': 42}] ,download_checksums={} ,download_size=13_37 ,post_processing_size=4_42 ,dataset_size=12_34 ,size_in_bytes=13_37 + 4_42 + 12_34 ,)
SCREAMING_SNAKE_CASE : Optional[Any] = dataset_info._to_yaml_dict()
assert sorted(__UpperCamelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key] ,(list, dict, int, str) )
SCREAMING_SNAKE_CASE : List[str] = yaml.safe_dump(__UpperCamelCase )
SCREAMING_SNAKE_CASE : str = yaml.safe_load(__UpperCamelCase )
assert dataset_info_yaml_dict == reloaded
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = DatasetInfo()
SCREAMING_SNAKE_CASE : Optional[Any] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
'dataset_infos_dict' ,[
DatasetInfosDict(),
DatasetInfosDict({'default': DatasetInfo()} ),
DatasetInfosDict({'my_config_name': DatasetInfo()} ),
DatasetInfosDict(
{
'default': DatasetInfo(
description='foo' ,features=Features({'a': Value('int32' )} ) ,builder_name='builder' ,config_name='config' ,version='1.0.0' ,splits=[{'name': 'train'}] ,download_size=42 ,)
} ),
DatasetInfosDict(
{
'v1': DatasetInfo(dataset_size=42 ),
'v2': DatasetInfo(dataset_size=13_37 ),
} ),
] ,)
def lowercase__( __UpperCamelCase: Tuple ,__UpperCamelCase: DatasetInfosDict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = str(__UpperCamelCase )
dataset_infos_dict.write_to_directory(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = DatasetInfosDict.from_directory(__UpperCamelCase )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
SCREAMING_SNAKE_CASE : Any = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
SCREAMING_SNAKE_CASE : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(__UpperCamelCase ,'README.md' ) )
| 28 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ):
_lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20}
_lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18}
_lowerCAmelCase :str = parent
_lowerCAmelCase :List[Any] = batch_size
_lowerCAmelCase :Optional[Any] = num_channels
_lowerCAmelCase :Optional[Any] = image_size
_lowerCAmelCase :int = min_resolution
_lowerCAmelCase :List[str] = max_resolution
_lowerCAmelCase :List[str] = do_resize
_lowerCAmelCase :Optional[int] = size
_lowerCAmelCase :str = do_center_crop
_lowerCAmelCase :int = crop_size
_lowerCAmelCase :Optional[int] = do_flip_channel_order
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class UpperCAmelCase_ (snake_case__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE__ ( self: str ):
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
_lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
_lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
_lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
pass
def SCREAMING_SNAKE_CASE__ ( self: int ):
# Initialize image_processing
_lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
_lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
# Initialize image_processing
_lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
_lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
# Initialize image_processing
_lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
_lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , ) | 687 | 0 |
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def lowercase ( lowerCAmelCase__ ):
# vision encoder
if "img_encoder.pos_embed" in name:
lowerCamelCase_ = name.replace('''img_encoder.pos_embed''' ,'''vision_model.embeddings.position_embeddings''' )
if "img_encoder.patch_embed.proj" in name:
lowerCamelCase_ = name.replace('''img_encoder.patch_embed.proj''' ,'''vision_model.embeddings.patch_embeddings.projection''' )
if "img_encoder.patch_embed.norm" in name:
lowerCamelCase_ = name.replace('''img_encoder.patch_embed.norm''' ,'''vision_model.embeddings.layernorm''' )
if "img_encoder.layers" in name:
lowerCamelCase_ = name.replace('''img_encoder.layers''' ,'''vision_model.encoder.stages''' )
if "blocks" in name and "res" not in name:
lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' )
if "attn" in name and "pre_assign" not in name:
lowerCamelCase_ = name.replace('''attn''' ,'''self_attn''' )
if "proj" in name and "self_attn" in name and "text" not in name:
lowerCamelCase_ = name.replace('''proj''' ,'''out_proj''' )
if "pre_assign_attn.attn.proj" in name:
lowerCamelCase_ = name.replace('''pre_assign_attn.attn.proj''' ,'''pre_assign_attn.attn.out_proj''' )
if "norm1" in name:
lowerCamelCase_ = name.replace('''norm1''' ,'''layer_norm1''' )
if "norm2" in name and "pre_assign" not in name:
lowerCamelCase_ = name.replace('''norm2''' ,'''layer_norm2''' )
if "img_encoder.norm" in name:
lowerCamelCase_ = name.replace('''img_encoder.norm''' ,'''vision_model.layernorm''' )
# text encoder
if "text_encoder.token_embedding" in name:
lowerCamelCase_ = name.replace('''text_encoder.token_embedding''' ,'''text_model.embeddings.token_embedding''' )
if "text_encoder.positional_embedding" in name:
lowerCamelCase_ = name.replace('''text_encoder.positional_embedding''' ,'''text_model.embeddings.position_embedding.weight''' )
if "text_encoder.transformer.resblocks." in name:
lowerCamelCase_ = name.replace('''text_encoder.transformer.resblocks.''' ,'''text_model.encoder.layers.''' )
if "ln_1" in name:
lowerCamelCase_ = name.replace('''ln_1''' ,'''layer_norm1''' )
if "ln_2" in name:
lowerCamelCase_ = name.replace('''ln_2''' ,'''layer_norm2''' )
if "c_fc" in name:
lowerCamelCase_ = name.replace('''c_fc''' ,'''fc1''' )
if "c_proj" in name:
lowerCamelCase_ = name.replace('''c_proj''' ,'''fc2''' )
if "text_encoder" in name:
lowerCamelCase_ = name.replace('''text_encoder''' ,'''text_model''' )
if "ln_final" in name:
lowerCamelCase_ = name.replace('''ln_final''' ,'''final_layer_norm''' )
# projection layers
if "img_projector.linear_hidden." in name:
lowerCamelCase_ = name.replace('''img_projector.linear_hidden.''' ,'''visual_projection.''' )
if "img_projector.linear_out." in name:
lowerCamelCase_ = name.replace('''img_projector.linear_out.''' ,'''visual_projection.3.''' )
if "text_projector.linear_hidden" in name:
lowerCamelCase_ = name.replace('''text_projector.linear_hidden''' ,'''text_projection''' )
if "text_projector.linear_out" in name:
lowerCamelCase_ = name.replace('''text_projector.linear_out''' ,'''text_projection.3''' )
return name
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
for key in orig_state_dict.copy().keys():
lowerCamelCase_ = orig_state_dict.pop(lowerCAmelCase__ )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowerCamelCase_ = key.split('''.''' )
lowerCamelCase_ , lowerCamelCase_ = int(key_split[2] ), int(key_split[4] )
lowerCamelCase_ = config.vision_config.hidden_size
if "weight" in key:
lowerCamelCase_ = val[:dim, :]
lowerCamelCase_ = val[dim : dim * 2, :]
lowerCamelCase_ = val[-dim:, :]
else:
lowerCamelCase_ = val[:dim]
lowerCamelCase_ = val[dim : dim * 2]
lowerCamelCase_ = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowerCamelCase_ = key.split('''.''' )
lowerCamelCase_ = int(key_split[3] )
lowerCamelCase_ = config.text_config.hidden_size
if "weight" in key:
lowerCamelCase_ = val[:dim, :]
lowerCamelCase_ = val[
dim : dim * 2, :
]
lowerCamelCase_ = val[-dim:, :]
else:
lowerCamelCase_ = val[:dim]
lowerCamelCase_ = val[dim : dim * 2]
lowerCamelCase_ = val[-dim:]
else:
lowerCamelCase_ = rename_key(lowerCAmelCase__ )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
lowerCamelCase_ = val.squeeze_()
else:
lowerCamelCase_ = val
return orig_state_dict
def lowercase ( ):
lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__="groupvit-gcc-yfcc" ,lowerCAmelCase__=False ):
lowerCamelCase_ = GroupViTConfig()
lowerCamelCase_ = GroupViTModel(lowerCAmelCase__ ).eval()
lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model''']
lowerCamelCase_ = convert_state_dict(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ , lowerCamelCase_ = model.load_state_dict(lowerCAmelCase__ ,strict=lowerCAmelCase__ )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0)
# verify result
lowerCamelCase_ = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
lowerCamelCase_ = prepare_img()
lowerCamelCase_ = processor(text=['''a photo of a cat''', '''a photo of a dog'''] ,images=lowerCAmelCase__ ,padding=lowerCAmelCase__ ,return_tensors='''pt''' )
with torch.no_grad():
lowerCamelCase_ = model(**lowerCAmelCase__ )
if model_name == "groupvit-gcc-yfcc":
lowerCamelCase_ = torch.tensor([[13.3_523, 6.3_629]] )
elif model_name == "groupvit-gcc-redcaps":
lowerCamelCase_ = torch.tensor([[16.1_873, 8.6_230]] )
else:
raise ValueError(f"Model name {model_name} not supported." )
assert torch.allclose(outputs.logits_per_image ,lowerCAmelCase__ ,atol=1E-3 )
processor.save_pretrained(lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
print('''Successfully saved processor and model to''' ,lowerCAmelCase__ )
if push_to_hub:
print('''Pushing to the hub...''' )
processor.push_to_hub(lowerCAmelCase__ ,organization='''nielsr''' )
model.push_to_hub(lowerCAmelCase__ ,organization='''nielsr''' )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model."""
)
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""")
parser.add_argument(
"""--model_name""",
default="""groupvit-gccy-fcc""",
type=str,
help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""",
)
A_ = parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 29 |
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class UpperCAmelCase_ (datasets.BuilderConfig ):
"""simple docstring"""
lowerCamelCase : Optional[datasets.Features] = None
class UpperCAmelCase_ (datasets.ArrowBasedBuilder ):
"""simple docstring"""
lowerCamelCase : Any = PandasConfig
def SCREAMING_SNAKE_CASE__ ( self: int ):
return datasets.DatasetInfo(features=self.config.features )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ):
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_UpperCAmelCase , (str, list, tuple) ):
_lowerCAmelCase :Any = data_files
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_lowerCAmelCase :Dict = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
_lowerCAmelCase :Any = []
for split_name, files in data_files.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_lowerCAmelCase :str = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) )
return splits
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ):
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
_lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema )
return pa_table
def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ):
for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ):
with open(_UpperCAmelCase , 'rb' ) as f:
_lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) )
yield i, self._cast_table(_UpperCAmelCase ) | 687 | 0 |
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
__a = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n'
__a = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n'
__a = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n'
__a = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n'
__a = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __a( datasets.Metric ):
"""simple docstring"""
def a__ ( self ) -> Optional[Any]:
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' ) ),
'''references''': datasets.Value('''string''' ),
} ) ,homepage='''https://github.com/openai/human-eval''' ,codebase_urls=['''https://github.com/openai/human-eval'''] ,reference_urls=['''https://github.com/openai/human-eval'''] ,license=_LICENSE ,)
def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=[1, 10, 100] ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=3.0 ) -> int:
if os.getenv('''HF_ALLOW_CODE_EVAL''' ,0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError('''This metric is currently not supported on Windows.''' )
with ThreadPoolExecutor(max_workers=_SCREAMING_SNAKE_CASE ) as executor:
UpperCAmelCase_ : Union[str, Any] = []
UpperCAmelCase_ : List[Any] = Counter()
UpperCAmelCase_ : Any = 0
UpperCAmelCase_ : Union[str, Any] = defaultdict(_SCREAMING_SNAKE_CASE )
for task_id, (candidates, test_case) in enumerate(zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ):
for candidate in candidates:
UpperCAmelCase_ : Union[str, Any] = candidate + '''\n''' + test_case
UpperCAmelCase_ : Any = (test_program, timeout, task_id, completion_id[task_id])
UpperCAmelCase_ : List[str] = executor.submit(_SCREAMING_SNAKE_CASE ,*_SCREAMING_SNAKE_CASE )
futures.append(_SCREAMING_SNAKE_CASE )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(_SCREAMING_SNAKE_CASE ):
UpperCAmelCase_ : Tuple = future.result()
results[result["task_id"]].append((result['''completion_id'''], result) )
UpperCAmelCase_, UpperCAmelCase_ : str = [], []
for result in results.values():
result.sort()
UpperCAmelCase_ : Dict = [r[1]['''passed'''] for r in result]
total.append(len(_SCREAMING_SNAKE_CASE ) )
correct.append(sum(_SCREAMING_SNAKE_CASE ) )
UpperCAmelCase_ : List[Any] = np.array(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : int = np.array(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Optional[Any] = k
UpperCAmelCase_ : str = {f'''pass@{k}''': estimate_pass_at_k(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ):
'''simple docstring'''
def estimator(_lowercase , _lowercase , _lowercase ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(_lowercase , _lowercase ):
UpperCAmelCase_ : Union[str, Any] = itertools.repeat(_lowercase , len(_lowercase ) )
else:
assert len(_lowercase ) == len(_lowercase )
UpperCAmelCase_ : Optional[Any] = iter(_lowercase )
return np.array([estimator(int(_lowercase ) , int(_lowercase ) , _lowercase ) for n, c in zip(_lowercase , _lowercase )] ) | 30 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
a = """"""
a = """"""
a = """"""
a = 1 # (0 is vertical, 1 is horizontal)
def UpperCamelCase_( ):
"""simple docstring"""
_lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ )
print('Processing...' )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ )
for index, image in enumerate(__magic_name__ ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
_lowerCAmelCase :Optional[Any] = random_chars(32 )
_lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0]
_lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"""
cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" )
_lowerCAmelCase :str = []
for anno in new_annos[index]:
_lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"""
annos_list.append(__magic_name__ )
with open(f"""/{file_root}.txt""" , 'w' ) as outfile:
outfile.write('\n'.join(line for line in annos_list ) )
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ):
"""simple docstring"""
_lowerCAmelCase :int = []
_lowerCAmelCase :Union[str, Any] = []
for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ):
_lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0]
with open(__magic_name__ ) as in_file:
_lowerCAmelCase :Union[str, Any] = in_file.readlines()
_lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" )
_lowerCAmelCase :Tuple = []
for obj_list in obj_lists:
_lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__magic_name__ )
labels.append(__magic_name__ )
return img_paths, labels
def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ):
"""simple docstring"""
_lowerCAmelCase :str = []
_lowerCAmelCase :Any = []
_lowerCAmelCase :Optional[Any] = []
for idx in range(len(__magic_name__ ) ):
_lowerCAmelCase :Optional[int] = []
_lowerCAmelCase :Optional[Any] = img_list[idx]
path_list.append(__magic_name__ )
_lowerCAmelCase :List[str] = anno_list[idx]
_lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ )
if flip_type == 1:
_lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ )
for bbox in img_annos:
_lowerCAmelCase :List[Any] = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
_lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ )
for bbox in img_annos:
_lowerCAmelCase :List[str] = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__magic_name__ )
new_imgs_list.append(__magic_name__ )
return new_imgs_list, new_annos_lists, path_list
def UpperCamelCase_( __magic_name__ : int = 32 ):
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
_lowerCAmelCase :str = ascii_lowercase + digits
return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) )
if __name__ == "__main__":
main()
print("""DONE ✅""") | 687 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
lowerCamelCase__ : Optional[Any] = None
lowerCamelCase__ : List[str] = logging.get_logger(__name__)
lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
lowerCamelCase__ : List[str] = {
'vocab_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model',
},
'tokenizer_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json',
},
}
lowerCamelCase__ : Optional[Any] = {
'google/fnet-base': 512,
'google/fnet-large': 512,
}
lowerCamelCase__ : List[Any] = '▁'
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = ["input_ids", "token_type_ids"]
lowercase_ = FNetTokenizer
def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
SCREAMING_SNAKE_CASE_ = (
AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase )
else mask_token
)
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , )
SCREAMING_SNAKE_CASE_ = do_lower_case
SCREAMING_SNAKE_CASE_ = remove_space
SCREAMING_SNAKE_CASE_ = keep_accents
SCREAMING_SNAKE_CASE_ = vocab_file
SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True
def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE_ = [self.sep_token_id]
SCREAMING_SNAKE_CASE_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE_ = [self.sep_token_id]
SCREAMING_SNAKE_CASE_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
if not os.path.isdir(_lowerCAmelCase ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE_ = os.path.join(
_lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ):
copyfile(self.vocab_file , _lowerCAmelCase )
return (out_vocab_file,) | 31 |
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
a = logging.get_logger(__name__)
def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
_lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ )
_lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ )
return torch.mm(__magic_name__ , normalized_text_embeds.t() )
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
lowerCamelCase : str = CLIPConfig
lowerCamelCase : Any = ['CLIPEncoderLayer']
def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ):
super().__init__(_UpperCAmelCase )
_lowerCAmelCase :Any = CLIPVisionModel(config.vision_config )
_lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase )
_lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase )
_lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase )
_lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase )
_lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase )
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ):
_lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output
_lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
_lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy()
_lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy()
_lowerCAmelCase :str = []
_lowerCAmelCase :List[Any] = image_embeds.shape[0]
for i in range(_UpperCAmelCase ):
_lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
_lowerCAmelCase :List[Any] = 0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
_lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx]
_lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item()
_lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} )
_lowerCAmelCase :Any = 0.0_1
for concept_idx in range(len(cos_dist[0] ) ):
_lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx]
_lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item()
_lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(_UpperCAmelCase )
result.append(_UpperCAmelCase )
_lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ):
_lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output
_lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase )
_lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds )
_lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
_lowerCAmelCase :Any = 0.0
_lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
_lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 )
_lowerCAmelCase :List[str] = special_care * 0.0_1
_lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
_lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
_lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts | 687 | 0 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
UpperCAmelCase_ = logging.getLogger(__name__)
@dataclass
class __UpperCamelCase :
__A : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
__A : Optional[str] = field(
default=A__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
__A : Optional[str] = field(
default=A__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
__A : Optional[str] = field(
default=A__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
__A : bool = field(default=A__ , metadata={"""help""": """Whether tp freeze the encoder."""} )
__A : bool = field(default=A__ , metadata={"""help""": """Whether to freeze the embeddings."""} )
@dataclass
class __UpperCamelCase :
__A : str = field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} )
__A : Optional[str] = field(
default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , )
__A : Optional[int] = field(
default=10_24 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__A : Optional[int] = field(
default=1_28 , metadata={
"""help""": (
"""The maximum total sequence length for target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__A : Optional[int] = field(
default=1_42 , metadata={
"""help""": (
"""The maximum total sequence length for validation target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded. """
"""This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """
"""during ``evaluate`` and ``predict``."""
)
} , )
__A : Optional[int] = field(
default=1_42 , metadata={
"""help""": (
"""The maximum total sequence length for test target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__A : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} )
__A : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} )
__A : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} )
__A : Optional[str] = field(default=A__ , metadata={"""help""": """Source language id for translation."""} )
__A : Optional[str] = field(default=A__ , metadata={"""help""": """Target language id for translation."""} )
__A : Optional[int] = field(default=A__ , metadata={"""help""": """# num_beams to use for evaluation."""} )
__A : bool = field(
default=A__ , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , )
def A__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Dict:
"""simple docstring"""
logger.info(F'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(F''' {key} = {metrics[key]}''' )
save_json(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , F'''{split}_results.json''' ) )
def A__ ( ) -> int:
"""simple docstring"""
_UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses()
check_output_dir(SCREAMING_SNAKE_CASE_ )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , SCREAMING_SNAKE_CASE_ )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
assert hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
_UpperCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(SCREAMING_SNAKE_CASE_ , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
_UpperCAmelCase = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(SCREAMING_SNAKE_CASE_ , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
_UpperCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(SCREAMING_SNAKE_CASE_ )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
_UpperCAmelCase = SeqaSeqDataset
# Get datasets
_UpperCAmelCase = (
dataset_class(
SCREAMING_SNAKE_CASE_ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_train
else None
)
_UpperCAmelCase = (
dataset_class(
SCREAMING_SNAKE_CASE_ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
_UpperCAmelCase = (
dataset_class(
SCREAMING_SNAKE_CASE_ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
_UpperCAmelCase = (
build_compute_metrics_fn(data_args.task , SCREAMING_SNAKE_CASE_ ) if training_args.predict_with_generate else None
)
_UpperCAmelCase = SeqaSeqTrainer(
model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , data_args=SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , data_collator=SeqaSeqDataCollator(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , )
_UpperCAmelCase = {}
# Training
if training_args.do_train:
logger.info('''*** Train ***''' )
_UpperCAmelCase = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
_UpperCAmelCase = train_result.metrics
_UpperCAmelCase = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('''train''' , SCREAMING_SNAKE_CASE_ , training_args.output_dir )
all_metrics.update(SCREAMING_SNAKE_CASE_ )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_UpperCAmelCase = trainer.evaluate(metric_key_prefix='''val''' )
_UpperCAmelCase = data_args.n_val
_UpperCAmelCase = round(metrics['''val_loss'''] , 4 )
if trainer.is_world_process_zero():
handle_metrics('''val''' , SCREAMING_SNAKE_CASE_ , training_args.output_dir )
all_metrics.update(SCREAMING_SNAKE_CASE_ )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
_UpperCAmelCase = trainer.predict(test_dataset=SCREAMING_SNAKE_CASE_ , metric_key_prefix='''test''' )
_UpperCAmelCase = test_output.metrics
_UpperCAmelCase = data_args.n_test
if trainer.is_world_process_zero():
_UpperCAmelCase = round(metrics['''test_loss'''] , 4 )
handle_metrics('''test''' , SCREAMING_SNAKE_CASE_ , training_args.output_dir )
all_metrics.update(SCREAMING_SNAKE_CASE_ )
if training_args.predict_with_generate:
_UpperCAmelCase = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = lmap(str.strip , SCREAMING_SNAKE_CASE_ )
write_txt_file(SCREAMING_SNAKE_CASE_ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) )
if trainer.is_world_process_zero():
save_json(SCREAMING_SNAKE_CASE_ , os.path.join(training_args.output_dir , '''all_results.json''' ) )
return all_metrics
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]:
"""simple docstring"""
main()
if __name__ == "__main__":
main() | 32 |
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
a = 6_3_7_8_1_3_7.0
a = 6_3_5_6_7_5_2.3_1_4_2_4_5
a = 6_378_137
def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ):
"""simple docstring"""
_lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
_lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) )
_lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) )
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
_lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS
# Intermediate P and Q values
_lowerCAmelCase :str = (b_lata + b_lata) / 2
_lowerCAmelCase :Tuple = (b_lata - b_lata) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
_lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2)
_lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2
_lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
_lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2)
_lowerCAmelCase :str = sin(sigma / 2 ) ** 2
_lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod() | 687 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCamelCase__ : str = logging.get_logger(__name__)
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : List[Any] = ['pixel_values']
def __init__( self:Dict , _a:bool = True , _a:Dict[str, int] = None , _a:float = None , _a:PILImageResampling = PILImageResampling.BILINEAR , _a:bool = True , _a:Union[int, float] = 1 / 2_55 , _a:bool = True , _a:Optional[Union[float, List[float]]] = None , _a:Optional[Union[float, List[float]]] = None , **_a:Union[str, Any] , ):
super().__init__(**_a )
snake_case__ = size if size is not None else {'''shortest_edge''': 3_84}
snake_case__ = get_size_dict(_a , default_to_square=_a )
snake_case__ = do_resize
snake_case__ = size
# Default value set here for backwards compatibility where the value in config is None
snake_case__ = crop_pct if crop_pct is not None else 2_24 / 2_56
snake_case__ = resample
snake_case__ = do_rescale
snake_case__ = rescale_factor
snake_case__ = do_normalize
snake_case__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
snake_case__ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:np.ndarray , _a:Dict[str, int] , _a:float , _a:PILImageResampling = PILImageResampling.BICUBIC , _a:Optional[Union[str, ChannelDimension]] = None , **_a:Optional[int] , ):
snake_case__ = get_size_dict(_a , default_to_square=_a )
if "shortest_edge" not in size:
raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" )
snake_case__ = size['''shortest_edge''']
if shortest_edge < 3_84:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
snake_case__ = int(shortest_edge / crop_pct )
snake_case__ = get_resize_output_image_size(_a , size=_a , default_to_square=_a )
snake_case__ = resize(image=_a , size=_a , resample=_a , data_format=_a , **_a )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_a , size=(shortest_edge, shortest_edge) , data_format=_a , **_a )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_a , size=(shortest_edge, shortest_edge) , resample=_a , data_format=_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:int , _a:np.ndarray , _a:Union[int, float] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:int , ):
return rescale(_a , scale=_a , data_format=_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:np.ndarray , _a:Union[float, List[float]] , _a:Union[float, List[float]] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:Tuple , ):
return normalize(_a , mean=_a , std=_a , data_format=_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:ImageInput , _a:bool = None , _a:Dict[str, int] = None , _a:float = None , _a:PILImageResampling = None , _a:bool = None , _a:float = None , _a:bool = None , _a:Optional[Union[float, List[float]]] = None , _a:Optional[Union[float, List[float]]] = None , _a:Optional[Union[str, TensorType]] = None , _a:ChannelDimension = ChannelDimension.FIRST , **_a:Any , ):
snake_case__ = do_resize if do_resize is not None else self.do_resize
snake_case__ = crop_pct if crop_pct is not None else self.crop_pct
snake_case__ = resample if resample is not None else self.resample
snake_case__ = do_rescale if do_rescale is not None else self.do_rescale
snake_case__ = rescale_factor if rescale_factor is not None else self.rescale_factor
snake_case__ = do_normalize if do_normalize is not None else self.do_normalize
snake_case__ = image_mean if image_mean is not None else self.image_mean
snake_case__ = image_std if image_std is not None else self.image_std
snake_case__ = size if size is not None else self.size
snake_case__ = get_size_dict(_a , default_to_square=_a )
snake_case__ = make_list_of_images(_a )
if not valid_images(_a ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None:
raise ValueError('''crop_pct must be specified if size < 384.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
snake_case__ = [to_numpy_array(_a ) for image in images]
if do_resize:
snake_case__ = [self.resize(image=_a , size=_a , crop_pct=_a , resample=_a ) for image in images]
if do_rescale:
snake_case__ = [self.rescale(image=_a , scale=_a ) for image in images]
if do_normalize:
snake_case__ = [self.normalize(image=_a , mean=_a , std=_a ) for image in images]
snake_case__ = [to_channel_dimension_format(_a , _a ) for image in images]
snake_case__ = {'''pixel_values''': images}
return BatchFeature(data=_a , tensor_type=_a )
| 33 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
lowerCamelCase : Dict = 'encoder-decoder'
lowerCamelCase : Optional[Any] = True
def __init__( self: str , **_UpperCAmelCase: int ):
super().__init__(**_UpperCAmelCase )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
_lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' )
_lowerCAmelCase :Dict = encoder_config.pop('model_type' )
_lowerCAmelCase :str = kwargs.pop('decoder' )
_lowerCAmelCase :str = decoder_config.pop('model_type' )
from ..auto.configuration_auto import AutoConfig
_lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :Any = True
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ):
logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' )
_lowerCAmelCase :Dict = True
_lowerCAmelCase :List[str] = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Dict ):
_lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ )
_lowerCAmelCase :Optional[int] = self.encoder.to_dict()
_lowerCAmelCase :Union[str, Any] = self.decoder.to_dict()
_lowerCAmelCase :List[str] = self.__class__.model_type
return output | 687 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
SCREAMING_SNAKE_CASE_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_ = [
'VAN_PRETRAINED_MODEL_ARCHIVE_LIST',
'VanForImageClassification',
'VanModel',
'VanPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_van import (
VAN_PRETRAINED_MODEL_ARCHIVE_LIST,
VanForImageClassification,
VanModel,
VanPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure) | 34 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ):
_lowerCAmelCase :Optional[int] = parent
_lowerCAmelCase :Dict = batch_size
_lowerCAmelCase :Optional[Any] = image_size
_lowerCAmelCase :Optional[Any] = patch_size
_lowerCAmelCase :List[Any] = num_channels
_lowerCAmelCase :Optional[int] = embed_dim
_lowerCAmelCase :List[str] = hidden_sizes
_lowerCAmelCase :Union[str, Any] = depths
_lowerCAmelCase :int = num_heads
_lowerCAmelCase :Any = window_size
_lowerCAmelCase :List[Any] = mlp_ratio
_lowerCAmelCase :Optional[int] = qkv_bias
_lowerCAmelCase :Union[str, Any] = hidden_dropout_prob
_lowerCAmelCase :Optional[int] = attention_probs_dropout_prob
_lowerCAmelCase :Dict = drop_path_rate
_lowerCAmelCase :List[Any] = hidden_act
_lowerCAmelCase :Tuple = use_absolute_embeddings
_lowerCAmelCase :Optional[int] = patch_norm
_lowerCAmelCase :Optional[Any] = layer_norm_eps
_lowerCAmelCase :Union[str, Any] = initializer_range
_lowerCAmelCase :List[str] = is_training
_lowerCAmelCase :str = scope
_lowerCAmelCase :Optional[int] = use_labels
_lowerCAmelCase :List[Any] = type_sequence_label_size
_lowerCAmelCase :Union[str, Any] = encoder_stride
_lowerCAmelCase :Optional[int] = out_features
_lowerCAmelCase :List[str] = out_indices
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase :Dict = None
if self.use_labels:
_lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase :str = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self: int ):
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ):
_lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :List[str] = model(_UpperCAmelCase )
_lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ):
_lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :str = model(_UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
_lowerCAmelCase :Optional[int] = None
_lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :Any = model(_UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ):
_lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :str = model(_UpperCAmelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
_lowerCAmelCase :List[Any] = 1
_lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase :int = model(_UpperCAmelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ):
_lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size
_lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_lowerCAmelCase :Optional[int] = 1
_lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase :List[str] = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Tuple = self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs
_lowerCAmelCase :List[str] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Optional[int] = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase : Optional[Any] = (
{'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase : Tuple = False
lowerCamelCase : Union[str, Any] = False
lowerCamelCase : Union[str, Any] = False
lowerCamelCase : Any = False
lowerCamelCase : List[Any] = False
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Tuple = FocalNetModelTester(self )
_lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
return
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: int ):
_lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
_lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: str ):
_lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@unittest.skip(reason='FocalNet does not use inputs_embeds' )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
pass
@unittest.skip(reason='FocalNet does not use feedforward chunking' )
def SCREAMING_SNAKE_CASE__ ( self: str ):
pass
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
_lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_lowerCAmelCase :Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) )
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
_lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
_lowerCAmelCase :Tuple = model_class(_UpperCAmelCase )
_lowerCAmelCase :Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase :int = [*signature.parameters.keys()]
_lowerCAmelCase :List[str] = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ):
_lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
_lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
_lowerCAmelCase :List[Any] = outputs.hidden_states
_lowerCAmelCase :str = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
# FocalNet has a different seq_length
_lowerCAmelCase :Any = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
_lowerCAmelCase :List[str] = outputs.reshaped_hidden_states
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape
_lowerCAmelCase :Optional[int] = (
reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase :List[str] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
_lowerCAmelCase :Optional[int] = True
self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase :Dict = True
self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
_lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase :str = 3
_lowerCAmelCase :Union[str, Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_lowerCAmelCase :int = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
_lowerCAmelCase :List[str] = True
self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase :Union[str, Any] = True
self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) )
@slow
def SCREAMING_SNAKE_CASE__ ( self: int ):
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase )
for model_class in self.all_model_classes:
_lowerCAmelCase :str = model_class(config=_UpperCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@require_vision
@require_torch
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@cached_property
def SCREAMING_SNAKE_CASE__ ( self: Dict ):
# TODO update organization
return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE__ ( self: Any ):
_lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase )
_lowerCAmelCase :Union[str, Any] = self.default_image_processor
_lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
_lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase :Dict = model(**_UpperCAmelCase )
# verify the logits
_lowerCAmelCase :str = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
_lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 )
@require_torch
class UpperCAmelCase_ (snake_case__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else ()
lowerCamelCase : str = FocalNetConfig
lowerCamelCase : Union[str, Any] = False
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :Any = FocalNetModelTester(self ) | 687 | 0 |
from __future__ import annotations
from typing import Any
class lowercase :
def __init__( self : Optional[int] , _lowercase : int = 6 ):
SCREAMING_SNAKE_CASE__ : Node | None = None
SCREAMING_SNAKE_CASE__ : Node | None = None
self.create_linked_list(_lowercase )
def lowercase__ ( self : int , _lowercase : int ):
SCREAMING_SNAKE_CASE__ : Dict = Node()
SCREAMING_SNAKE_CASE__ : str = current_node
SCREAMING_SNAKE_CASE__ : Any = current_node
SCREAMING_SNAKE_CASE__ : Union[str, Any] = current_node
for _ in range(1 , _lowercase ):
SCREAMING_SNAKE_CASE__ : List[str] = Node()
SCREAMING_SNAKE_CASE__ : Optional[Any] = current_node
SCREAMING_SNAKE_CASE__ : Optional[Any] = previous_node
SCREAMING_SNAKE_CASE__ : Tuple = current_node
SCREAMING_SNAKE_CASE__ : List[Any] = self.front
SCREAMING_SNAKE_CASE__ : List[str] = previous_node
def lowercase__ ( self : Optional[Any] ):
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def lowercase__ ( self : List[Any] ):
self.check_can_perform_operation()
return self.front.data if self.front else None
def lowercase__ ( self : Dict , _lowercase : Any ):
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
SCREAMING_SNAKE_CASE__ : Optional[int] = self.rear.next
if self.rear:
SCREAMING_SNAKE_CASE__ : str = data
def lowercase__ ( self : str ):
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
SCREAMING_SNAKE_CASE__ : List[str] = self.front.data
SCREAMING_SNAKE_CASE__ : Any = None
return data
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.front
SCREAMING_SNAKE_CASE__ : List[Any] = old_front.next
SCREAMING_SNAKE_CASE__ : str = old_front.data
SCREAMING_SNAKE_CASE__ : List[Any] = None
return data
def lowercase__ ( self : Tuple ):
if self.is_empty():
raise Exception('''Empty Queue''' )
def lowercase__ ( self : Optional[int] ):
if self.rear and self.rear.next == self.front:
raise Exception('''Full Queue''' )
class lowercase :
def __init__( self : Optional[Any] ):
SCREAMING_SNAKE_CASE__ : Any | None = None
SCREAMING_SNAKE_CASE__ : Node | None = None
SCREAMING_SNAKE_CASE__ : Node | None = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 35 |
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
a = HfApi()
a = {}
# fmt: off
a = torch.tensor([
-0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7,
1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9,
-1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9,
0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7
])
a = torch.tensor([
-2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6,
1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8,
-2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8,
2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5
])
a = torch.tensor([
-0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9,
-0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4,
-0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5,
0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3
])
a = torch.tensor([
0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2,
-0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9,
0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5,
-0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5
])
a = torch.tensor([
0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3,
-0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5,
0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9,
-0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6
])
a = torch.tensor([
0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8,
-0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0,
0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3,
-0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1
])
a = torch.tensor([
0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2,
-0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8,
0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4,
-0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0
])
a = torch.tensor([
0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2,
-0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0,
0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6,
-0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3
])
a = torch.tensor([
-1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0,
1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3,
-2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0,
1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1])
a = torch.tensor([
-1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4,
0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1,
-2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9,
1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6
])
a = torch.tensor([
-1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2,
0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7,
-2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1,
1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5
])
a = torch.tensor([
-2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9,
1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1,
-3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1,
3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6
])
a = torch.tensor([
-2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0,
1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8,
-2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5,
2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3
])
a = torch.tensor([
-2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6,
1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8,
-3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0,
3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3
])
a = torch.tensor([
-1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4,
1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1,
-2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9,
1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9
])
# fmt: on
a = api.list_models(filter="""diffusers""")
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1]
print(F'''Started running {mod.modelId}!!!''')
if mod.modelId.startswith("""CompVis"""):
a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""")
else:
a = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
a = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
a = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3
)
print(F'''{mod.modelId} has passed successfully!!!''') | 687 | 0 |
def lowercase ( __A : int = 100 ) -> int:
'''simple docstring'''
snake_case : Dict = set()
snake_case : Optional[Any] = 0
snake_case : List[str] = n + 1 # maximum limit
for a in range(2 , __A ):
for b in range(2 , __A ):
snake_case : List[Any] = a**b # calculates the current power
collect_powers.add(__A ) # adds the result to the set
return len(__A )
if __name__ == "__main__":
print('''Number of terms ''', solution(int(str(input()).strip())))
| 36 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: int ):
_lowerCAmelCase :Optional[int] = 10
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :str = [1, 2, 3, 4]
_lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: int ):
_lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
_lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
_lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
_lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
_lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.'
_lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , [] )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
_lowerCAmelCase :Optional[int] = ''
_lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , [] )
self.assertEqual(_UpperCAmelCase , [] )
def SCREAMING_SNAKE_CASE__ ( self: str ):
_lowerCAmelCase :Optional[Any] = (
'It was the year of Our Lord one thousand seven hundred and '
'seventy-five\n\nSpiritual revelations were conceded to England '
'at that favoured period, as at this.\n@highlight\n\nIt was the best of times'
)
_lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase )
_lowerCAmelCase :Optional[Any] = [
'It was the year of Our Lord one thousand seven hundred and seventy-five.',
'Spiritual revelations were conceded to England at that favoured period, as at this.',
]
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Optional[int] = ['It was the best of times.']
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] )
_lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() )
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
_lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
_lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
_lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() )
def SCREAMING_SNAKE_CASE__ ( self: str ):
_lowerCAmelCase :List[str] = 101
_lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] )
_lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
_lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase )
np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase ) | 687 | 0 |
import math
import qiskit
def UpperCamelCase_ ( __a = 1 , __a = 1 , __a = 1 ) -> qiskit.result.counts.Counts:
if (
isinstance(__a , __a )
or isinstance(__a , __a )
or isinstance(__a , __a )
):
raise TypeError("inputs must be integers." )
if (input_a < 0) or (input_a < 0) or (carry_in < 0):
raise ValueError("inputs must be positive." )
if (
(math.floor(__a ) != input_a)
or (math.floor(__a ) != input_a)
or (math.floor(__a ) != carry_in)
):
raise ValueError("inputs must be exact integers." )
if (input_a > 2) or (input_a > 2) or (carry_in > 2):
raise ValueError("inputs must be less or equal to 2." )
# build registers
a__ : Union[str, Any] = qiskit.QuantumRegister(4 , "qr" )
a__ : Optional[Any] = qiskit.ClassicalRegister(2 , "cr" )
# list the entries
a__ : int = [input_a, input_a, carry_in]
a__ : str = qiskit.QuantumCircuit(__a , __a )
for i in range(0 , 3 ):
if entry[i] == 2:
quantum_circuit.h(__a ) # for hadamard entries
elif entry[i] == 1:
quantum_circuit.x(__a ) # for 1 entries
elif entry[i] == 0:
quantum_circuit.i(__a ) # for 0 entries
# build the circuit
quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate
quantum_circuit.cx(0 , 1 )
quantum_circuit.ccx(1 , 2 , 3 )
quantum_circuit.cx(1 , 2 )
quantum_circuit.cx(0 , 1 )
quantum_circuit.measure([2, 3] , __a ) # measure the last two qbits
a__ : Any = qiskit.Aer.get_backend("aer_simulator" )
a__ : List[Any] = qiskit.execute(__a , __a , shots=1_000 )
return job.result().get_counts(__a )
if __name__ == "__main__":
print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
| 37 |
def UpperCamelCase_( __magic_name__ : int ):
"""simple docstring"""
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print("""Program to check whether a number is a Perfect number or not...""")
a = int(input("""Enter number: """).strip())
print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''') | 687 | 0 |
'''simple docstring'''
from __future__ import annotations
def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Union[str, Any] ) -> Optional[Any]: # noqa: E741
'''simple docstring'''
while r - l > 1:
snake_case__ : Optional[Any] = (l + r) // 2
if v[m] >= key:
snake_case__ : List[str] = m
else:
snake_case__ : List[Any] = m # noqa: E741
return r
def UpperCamelCase__ ( __magic_name__ : list[int] ) -> int:
'''simple docstring'''
if len(__magic_name__ ) == 0:
return 0
snake_case__ : str = [0] * len(__magic_name__ )
snake_case__ : Any = 1
snake_case__ : Union[str, Any] = v[0]
for i in range(1 , len(__magic_name__ ) ):
if v[i] < tail[0]:
snake_case__ : List[str] = v[i]
elif v[i] > tail[length - 1]:
snake_case__ : str = v[i]
length += 1
else:
snake_case__ : List[Any] = v[i]
return length
if __name__ == "__main__":
import doctest
doctest.testmod()
| 38 |
from __future__ import annotations
from collections.abc import MutableSequence
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ):
if len(_UpperCAmelCase ) != degree + 1:
raise ValueError(
'The number of coefficients should be equal to the degree + 1.' )
_lowerCAmelCase :list[float] = list(_UpperCAmelCase )
_lowerCAmelCase :Optional[Any] = degree
def __add__( self: str , _UpperCAmelCase: Polynomial ):
if self.degree > polynomial_a.degree:
_lowerCAmelCase :Any = self.coefficients[:]
for i in range(polynomial_a.degree + 1 ):
coefficients[i] += polynomial_a.coefficients[i]
return Polynomial(self.degree , _UpperCAmelCase )
else:
_lowerCAmelCase :List[Any] = polynomial_a.coefficients[:]
for i in range(self.degree + 1 ):
coefficients[i] += self.coefficients[i]
return Polynomial(polynomial_a.degree , _UpperCAmelCase )
def __sub__( self: str , _UpperCAmelCase: Polynomial ):
return self + polynomial_a * Polynomial(0 , [-1] )
def __neg__( self: Union[str, Any] ):
return Polynomial(self.degree , [-c for c in self.coefficients] )
def __mul__( self: int , _UpperCAmelCase: Polynomial ):
_lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1)
for i in range(self.degree + 1 ):
for j in range(polynomial_a.degree + 1 ):
coefficients[i + j] += (
self.coefficients[i] * polynomial_a.coefficients[j]
)
return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ):
_lowerCAmelCase :int | float = 0
for i in range(self.degree + 1 ):
result += self.coefficients[i] * (substitution**i)
return result
def __str__( self: Union[str, Any] ):
_lowerCAmelCase :Dict = ''
for i in range(self.degree , -1 , -1 ):
if self.coefficients[i] == 0:
continue
elif self.coefficients[i] > 0:
if polynomial:
polynomial += " + "
else:
polynomial += " - "
if i == 0:
polynomial += str(abs(self.coefficients[i] ) )
elif i == 1:
polynomial += str(abs(self.coefficients[i] ) ) + "x"
else:
polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase )
return polynomial
def __repr__( self: Optional[Any] ):
return self.__str__()
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
_lowerCAmelCase :list[float] = [0] * self.degree
for i in range(self.degree ):
_lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1)
return Polynomial(self.degree - 1 , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ):
_lowerCAmelCase :list[float] = [0] * (self.degree + 2)
_lowerCAmelCase :str = constant
for i in range(self.degree + 1 ):
_lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1)
return Polynomial(self.degree + 1 , _UpperCAmelCase )
def __eq__( self: List[Any] , _UpperCAmelCase: object ):
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return False
if self.degree != polynomial_a.degree:
return False
for i in range(self.degree + 1 ):
if self.coefficients[i] != polynomial_a.coefficients[i]:
return False
return True
def __ne__( self: Optional[Any] , _UpperCAmelCase: object ):
return not self.__eq__(_UpperCAmelCase ) | 687 | 0 |
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = "isbn/0140328726" ):
snake_case_ = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes
if new_olid.count('''/''' ) != 1:
snake_case_ = F'''{olid} is not a valid Open Library olid'''
raise ValueError(SCREAMING_SNAKE_CASE__ )
return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json()
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = {
'''title''': '''Title''',
'''publish_date''': '''Publish date''',
'''authors''': '''Authors''',
'''number_of_pages''': '''Number of pages:''',
'''first_sentence''': '''First sentence''',
'''isbn_10''': '''ISBN (10)''',
'''isbn_13''': '''ISBN (13)''',
}
snake_case_ = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
snake_case_ = [
get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors''']
]
snake_case_ = data['''First sentence''']['''value''']
for key, value in data.items():
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = ''', '''.join(SCREAMING_SNAKE_CASE__ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
lowerCAmelCase_ = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(f"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""")
continue
print(f"""\nSearching Open Library for ISBN: {isbn}...\n""")
try:
lowerCAmelCase_ = summarize_book(get_openlibrary_data(f"""isbn/{isbn}"""))
print('''\n'''.join(f"""{key}: {value}""" for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(f"""Sorry, there are no results for ISBN: {isbn}.""") | 39 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
a = {
"""configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"""GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GPTNeoForCausalLM""",
"""GPTNeoForQuestionAnswering""",
"""GPTNeoForSequenceClassification""",
"""GPTNeoForTokenClassification""",
"""GPTNeoModel""",
"""GPTNeoPreTrainedModel""",
"""load_tf_weights_in_gpt_neo""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"""FlaxGPTNeoForCausalLM""",
"""FlaxGPTNeoModel""",
"""FlaxGPTNeoPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 687 | 0 |
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCAmelCase_ ( a__ , unittest.TestCase ):
UpperCAmelCase__ : int = BlenderbotSmallTokenizer
UpperCAmelCase__ : Any = False
def snake_case_ ( self ) -> Any:
super().setUp()
UpperCamelCase : Dict = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__']
UpperCamelCase : int = dict(zip(SCREAMING_SNAKE_CASE_, range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
UpperCamelCase : List[str] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', '']
UpperCamelCase : int = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'}
UpperCamelCase : List[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file, 'w', encoding='utf-8' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' )
with open(self.merges_file, 'w', encoding='utf-8' ) as fp:
fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) )
def snake_case_ ( self, **SCREAMING_SNAKE_CASE_ ) -> Tuple:
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
UpperCamelCase : List[str] = 'adapt act apte'
UpperCamelCase : List[Any] = 'adapt act apte'
return input_text, output_text
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : Union[str, Any] = BlenderbotSmallTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map )
UpperCamelCase : List[Any] = 'adapt act apte'
UpperCamelCase : List[Any] = ['adapt', 'act', 'ap@@', 'te']
UpperCamelCase : Optional[int] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
UpperCamelCase : Union[str, Any] = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> int:
UpperCamelCase : Dict = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' )
assert tok('sam' ).input_ids == [1384]
UpperCamelCase : List[str] = 'I am a small frog.'
UpperCamelCase : Optional[Any] = tok([src_text], padding=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_ )['input_ids']
UpperCamelCase : int = tok.batch_decode(SCREAMING_SNAKE_CASE_, skip_special_tokens=SCREAMING_SNAKE_CASE_, clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def snake_case_ ( self ) -> List[Any]:
UpperCamelCase : str = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' )
UpperCamelCase : Tuple = 'I am a small frog .'
UpperCamelCase : List[str] = '.'
UpperCamelCase : str = tok(SCREAMING_SNAKE_CASE_ )['input_ids']
UpperCamelCase : List[Any] = tok(SCREAMING_SNAKE_CASE_ )['input_ids']
assert encoded[-1] == encoded_dot[0]
| 40 |
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ):
"""simple docstring"""
_lowerCAmelCase :Optional[Any] = a
while True:
_lowerCAmelCase :str = Decimal(__magic_name__ ) - (
Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(__magic_name__ ) ) < precision: # noqa: S307
return float(__magic_name__ )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''')
# Find root of polynomial
print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''')
# Find Square Root of 5
print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''')
# Exponential Roots
print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''') | 687 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class lowercase_ :
"""simple docstring"""
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : Node | None = None
SCREAMING_SNAKE_CASE : Node | None = None
def _A ( ):
"""simple docstring"""
__lowercase = Node(1 )
__lowercase = Node(2 )
__lowercase = Node(3 )
__lowercase = Node(4 )
__lowercase = Node(5 )
return tree
def _A ( A__ ):
"""simple docstring"""
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def _A ( A__ ):
"""simple docstring"""
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def _A ( A__ ):
"""simple docstring"""
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def _A ( A__ ):
"""simple docstring"""
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def _A ( A__ ):
"""simple docstring"""
__lowercase = []
if root is None:
return output
__lowercase = deque([root] )
while process_queue:
__lowercase = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def _A ( A__ , A__ ):
"""simple docstring"""
__lowercase = []
def populate_output(A__ , A__ ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(A__ , A__ )
return output
def _A ( A__ , A__ ):
"""simple docstring"""
__lowercase = []
def populate_output(A__ , A__ ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(A__ , A__ )
return output
def _A ( A__ ):
"""simple docstring"""
if root is None:
return []
__lowercase = []
__lowercase = 0
__lowercase = height(A__ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(A__ , A__ ) )
__lowercase = 1
else:
output.append(get_nodes_from_right_to_left(A__ , A__ ) )
__lowercase = 0
return output
def _A ( ): # Main function for testing.
"""simple docstring"""
__lowercase = make_tree()
print(F"In-order Traversal: {inorder(A__ )}" )
print(F"Pre-order Traversal: {preorder(A__ )}" )
print(F"Post-order Traversal: {postorder(A__ )}" , '''\n''' )
print(F"Height of Tree: {height(A__ )}" , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(A__ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(A__ ) + 1 ):
print(F"Level {level}:" , get_nodes_from_left_to_right(A__ , level=A__ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(A__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 41 |
import argparse
import os
import torch
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
a = {
"""sample_size""": 32,
"""in_channels""": 3,
"""out_channels""": 3,
"""layers_per_block""": 2,
"""num_class_embeds""": 1_000,
"""block_out_channels""": [32, 64],
"""attention_head_dim""": 8,
"""down_block_types""": [
"""ResnetDownsampleBlock2D""",
"""AttnDownBlock2D""",
],
"""up_block_types""": [
"""AttnUpBlock2D""",
"""ResnetUpsampleBlock2D""",
],
"""resnet_time_scale_shift""": """scale_shift""",
"""upsample_type""": """resnet""",
"""downsample_type""": """resnet""",
}
a = {
"""sample_size""": 64,
"""in_channels""": 3,
"""out_channels""": 3,
"""layers_per_block""": 3,
"""num_class_embeds""": 1_000,
"""block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4],
"""attention_head_dim""": 64,
"""down_block_types""": [
"""ResnetDownsampleBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
],
"""up_block_types""": [
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""ResnetUpsampleBlock2D""",
],
"""resnet_time_scale_shift""": """scale_shift""",
"""upsample_type""": """resnet""",
"""downsample_type""": """resnet""",
}
a = {
"""sample_size""": 256,
"""in_channels""": 3,
"""out_channels""": 3,
"""layers_per_block""": 2,
"""num_class_embeds""": None,
"""block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4],
"""attention_head_dim""": 64,
"""down_block_types""": [
"""ResnetDownsampleBlock2D""",
"""ResnetDownsampleBlock2D""",
"""ResnetDownsampleBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
],
"""up_block_types""": [
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""ResnetUpsampleBlock2D""",
"""ResnetUpsampleBlock2D""",
"""ResnetUpsampleBlock2D""",
],
"""resnet_time_scale_shift""": """default""",
"""upsample_type""": """resnet""",
"""downsample_type""": """resnet""",
}
a = {
"""num_train_timesteps""": 40,
"""sigma_min""": 0.0_0_2,
"""sigma_max""": 8_0.0,
}
a = {
"""num_train_timesteps""": 201,
"""sigma_min""": 0.0_0_2,
"""sigma_max""": 8_0.0,
}
a = {
"""num_train_timesteps""": 151,
"""sigma_min""": 0.0_0_2,
"""sigma_max""": 8_0.0,
}
def UpperCamelCase_( __magic_name__ : Dict ):
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError('boolean value expected' )
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ):
"""simple docstring"""
_lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""]
_lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""]
_lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""]
_lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""]
_lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""]
_lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""]
_lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""]
_lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""]
_lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""]
_lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""]
if has_skip:
_lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""]
_lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""]
return new_checkpoint
def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ):
"""simple docstring"""
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 )
_lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""]
_lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""]
_lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :int = (
checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 )
)
_lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 )
return new_checkpoint
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ):
"""simple docstring"""
_lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' )
_lowerCAmelCase :List[Any] = {}
_lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight']
_lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias']
_lowerCAmelCase :Dict = checkpoint['time_embed.2.weight']
_lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias']
if unet_config["num_class_embeds"] is not None:
_lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight']
_lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight']
_lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias']
_lowerCAmelCase :List[Any] = unet_config['down_block_types']
_lowerCAmelCase :Any = unet_config['layers_per_block']
_lowerCAmelCase :List[Any] = unet_config['attention_head_dim']
_lowerCAmelCase :Tuple = unet_config['block_out_channels']
_lowerCAmelCase :List[str] = 1
_lowerCAmelCase :Optional[int] = channels_list[0]
for i, layer_type in enumerate(__magic_name__ ):
_lowerCAmelCase :Tuple = channels_list[i]
_lowerCAmelCase :Optional[Any] = current_channels != prev_channels
if layer_type == "ResnetDownsampleBlock2D":
for j in range(__magic_name__ ):
_lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}"""
_lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0"""
_lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False
_lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ )
current_layer += 1
elif layer_type == "AttnDownBlock2D":
for j in range(__magic_name__ ):
_lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}"""
_lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0"""
_lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False
_lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ )
_lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}"""
_lowerCAmelCase :str = f"""input_blocks.{current_layer}.1"""
_lowerCAmelCase :Optional[Any] = convert_attention(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
current_layer += 1
if i != len(__magic_name__ ) - 1:
_lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0"""
_lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0"""
_lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
current_layer += 1
_lowerCAmelCase :Dict = current_channels
# hardcoded the mid-block for now
_lowerCAmelCase :int = 'mid_block.resnets.0'
_lowerCAmelCase :Optional[Any] = 'middle_block.0'
_lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
_lowerCAmelCase :Optional[int] = 'mid_block.attentions.0'
_lowerCAmelCase :Optional[int] = 'middle_block.1'
_lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
_lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1'
_lowerCAmelCase :Optional[int] = 'middle_block.2'
_lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
_lowerCAmelCase :Tuple = 0
_lowerCAmelCase :str = unet_config['up_block_types']
for i, layer_type in enumerate(__magic_name__ ):
if layer_type == "ResnetUpsampleBlock2D":
for j in range(layers_per_block + 1 ):
_lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}"""
_lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0"""
_lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ )
current_layer += 1
if i != len(__magic_name__ ) - 1:
_lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0"""
_lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1"""
_lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
elif layer_type == "AttnUpBlock2D":
for j in range(layers_per_block + 1 ):
_lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}"""
_lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0"""
_lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ )
_lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}"""
_lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1"""
_lowerCAmelCase :int = convert_attention(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
current_layer += 1
if i != len(__magic_name__ ) - 1:
_lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0"""
_lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2"""
_lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
_lowerCAmelCase :str = checkpoint['out.0.weight']
_lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias']
_lowerCAmelCase :List[Any] = checkpoint['out.2.weight']
_lowerCAmelCase :Dict = checkpoint['out.2.bias']
return new_checkpoint
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""")
parser.add_argument(
"""--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model."""
)
parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""")
a = parser.parse_args()
a = strabool(args.class_cond)
a = os.path.basename(args.unet_path)
print(F'''Checkpoint: {ckpt_name}''')
# Get U-Net config
if "imagenet64" in ckpt_name:
a = IMAGENET_64_UNET_CONFIG
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
a = LSUN_256_UNET_CONFIG
elif "test" in ckpt_name:
a = TEST_UNET_CONFIG
else:
raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''')
if not args.class_cond:
a = None
a = con_pt_to_diffuser(args.unet_path, unet_config)
a = UNetaDModel(**unet_config)
image_unet.load_state_dict(converted_unet_ckpt)
# Get scheduler config
if "cd" in ckpt_name or "test" in ckpt_name:
a = CD_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "imagenet64" in ckpt_name:
a = CT_IMAGENET_64_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
a = CT_LSUN_256_SCHEDULER_CONFIG
else:
raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''')
a = CMStochasticIterativeScheduler(**scheduler_config)
a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler)
consistency_model.save_pretrained(args.dump_path) | 687 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A_ = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ["XLNetTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ["XLNetTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLNetForMultipleChoice",
"XLNetForQuestionAnswering",
"XLNetForQuestionAnsweringSimple",
"XLNetForSequenceClassification",
"XLNetForTokenClassification",
"XLNetLMHeadModel",
"XLNetModel",
"XLNetPreTrainedModel",
"load_tf_weights_in_xlnet",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLNetForMultipleChoice",
"TFXLNetForQuestionAnsweringSimple",
"TFXLNetForSequenceClassification",
"TFXLNetForTokenClassification",
"TFXLNetLMHeadModel",
"TFXLNetMainLayer",
"TFXLNetModel",
"TFXLNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 42 |
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
a = """ \"\"\"
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"\"\"
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
"""
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: Dict ):
_lowerCAmelCase :Optional[Any] = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) )
_lowerCAmelCase :Tuple = self.diffusers_dir
shutil.copy(
os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :str = 'src/diffusers'
shutil.rmtree(self.diffusers_dir )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ):
_lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code
if overwrite_result is not None:
_lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result
_lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
_lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase )
_lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' )
with open(_UpperCAmelCase , 'w' , newline='\n' ) as f:
f.write(_UpperCAmelCase )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase )
with open(_UpperCAmelCase , 'r' ) as f:
self.assertTrue(f.read() , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
_lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
# Base copy consistency
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , )
# With no empty line at the end
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , )
# Copy consistency with rename
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
# Copy consistency with a really long name
_lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'
self.check_copy_consistency(
f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) | 687 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = torch.device('cpu')
def _a ( ):
"""simple docstring"""
lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
return im
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1703E00, 2.1107E00, -2.0811E00, 8.8685E-01, 2.4360E-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9636E-01, 2.3478E-01, -1.6963E00, -1.7381E00, -8.6337E-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2768E-01, -4.7429E-01, -1.0897E00, -1.0248E00, 3.5523E-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5330E-01, 2.4211E-01, -6.0185E-01, -8.2789E-01, -6.0446E-02] )
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = dct.pop(SCREAMING_SNAKE_CASE )
lowercase__ = val
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = []
for k in state_dict.keys():
lowercase__ = k
if ".pwconv" in k:
lowercase__ = k_new.replace('''.pwconv''' , '''.point_wise_conv''' )
if ".dwconv" in k:
lowercase__ = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' )
if ".Proj." in k:
lowercase__ = k_new.replace('''.Proj.''' , '''.proj.''' )
if "patch_embed" in k_new:
lowercase__ = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' )
if "network" in k_new:
lowercase__ = k_new.split('''.''' )
if ls[2].isdigit():
lowercase__ = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] )
else:
lowercase__ = k_new.replace('''network''' , '''swiftformer.encoder.network''' )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
lowercase__ = 10_00
lowercase__ = '''huggingface/label-files'''
lowercase__ = '''imagenet-1k-id2label.json'''
lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) )
lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
lowercase__ = idalabel
lowercase__ = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
lowercase__ = [3, 3, 6, 4]
lowercase__ = [48, 56, 1_12, 2_20]
elif swiftformer_name == "swiftformer_s":
lowercase__ = [3, 3, 9, 6]
lowercase__ = [48, 64, 1_68, 2_24]
elif swiftformer_name == "swiftformer_l1":
lowercase__ = [4, 3, 10, 5]
lowercase__ = [48, 96, 1_92, 3_84]
elif swiftformer_name == "swiftformer_l3":
lowercase__ = [4, 4, 12, 6]
lowercase__ = [64, 1_28, 3_20, 5_12]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith('''https''' ):
lowercase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='''cpu''' , check_hash=SCREAMING_SNAKE_CASE )
else:
lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' )
lowercase__ = checkpoint
lowercase__ = create_rename_keys(SCREAMING_SNAKE_CASE )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# load HuggingFace model
lowercase__ = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE ).eval()
hf_model.load_state_dict(SCREAMING_SNAKE_CASE )
# prepare test inputs
lowercase__ = prepare_img()
lowercase__ = ViTImageProcessor.from_pretrained('''preprocessor_config''' )
lowercase__ = processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' )
# compare outputs from both models
lowercase__ = get_expected_output(SCREAMING_SNAKE_CASE )
lowercase__ = hf_model(inputs['''pixel_values'''] ).logits
assert hf_logits.shape == torch.Size([1, 10_00] )
assert torch.allclose(hf_logits[0, 0:5] , SCREAMING_SNAKE_CASE , atol=1E-3 )
Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE )
print(f'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' )
hf_model.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--swiftformer_name',
default='swiftformer_xs',
choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'],
type=str,
help='Name of the SwiftFormer model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='./converted_outputs/',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.')
lowerCAmelCase = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 43 |
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} )
lowerCamelCase : Optional[str] = field(
default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} )
lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} )
lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} )
lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} )
lowerCamelCase : Optional[int] = field(
default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} )
lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} )
lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} )
lowerCamelCase : Optional[int] = field(
default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} )
lowerCamelCase : Optional[int] = field(
default=16 , metadata={'help': 'Number of gradient accumulation steps.'} )
lowerCamelCase : Optional[bool] = field(
default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} )
lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} )
lowerCamelCase : Optional[int] = field(
default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} )
lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} )
lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} )
lowerCamelCase : Optional[int] = field(
default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , )
lowerCamelCase : Optional[str] = field(
default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} )
lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} )
lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} )
lowerCamelCase : Optional[int] = field(
default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} )
lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} )
lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} )
lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} )
lowerCamelCase : Optional[int] = field(
default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , )
lowerCamelCase : Optional[bool] = field(
default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} )
lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} )
lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} )
lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} )
lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} )
lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} )
lowerCamelCase : Optional[int] = field(
default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} )
lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} )
lowerCamelCase : Optional[str] = field(
default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} )
lowerCamelCase : Optional[str] = field(
default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} )
lowerCamelCase : Optional[int] = field(
default=-1 , metadata={
'help': (
'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive'
' number corresponds to which GPU device id to run on.'
)
} , )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[int] = field(
default=snake_case__ , metadata={
'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.'
} , )
lowerCamelCase : Optional[str] = field(
default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} )
lowerCamelCase : Optional[int] = field(
default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} )
lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} )
lowerCamelCase : Optional[float] = field(
default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} )
lowerCamelCase : Optional[float] = field(
default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} )
lowerCamelCase : Optional[float] = field(
default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} )
lowerCamelCase : Optional[float] = field(
default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} )
lowerCamelCase : Optional[float] = field(
default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , )
lowerCamelCase : Optional[bool] = field(
default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} )
lowerCamelCase : Optional[float] = field(
default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} )
lowerCamelCase : Optional[str] = field(
default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} )
lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} )
lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} )
lowerCamelCase : Optional[int] = field(
default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} )
lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} )
lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} )
lowerCamelCase : Optional[str] = field(
default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} )
lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} )
lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} )
lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) | 687 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase_ : str = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Optional[int] = ['FNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : List[Any] = ['FNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : List[str] = [
'FNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FNetForMaskedLM',
'FNetForMultipleChoice',
'FNetForNextSentencePrediction',
'FNetForPreTraining',
'FNetForQuestionAnswering',
'FNetForSequenceClassification',
'FNetForTokenClassification',
'FNetLayer',
'FNetModel',
'FNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 44 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :List[str] = 'ylacombe/bark-small'
_lowerCAmelCase :int = tempfile.mkdtemp()
_lowerCAmelCase :List[str] = 'en_speaker_1'
_lowerCAmelCase :Union[str, Any] = 'This is a test string'
_lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json'
_lowerCAmelCase :str = 'speaker_embeddings'
def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ):
return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase :List[Any] = self.get_tokenizer()
_lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
_lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
_lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
_lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
_lowerCAmelCase :Any = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Tuple = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
_lowerCAmelCase :List[Any] = 35
_lowerCAmelCase :Optional[int] = 2
_lowerCAmelCase :Dict = 8
_lowerCAmelCase :Dict = {
'semantic_prompt': np.ones(_UpperCAmelCase ),
'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ),
'fine_prompt': np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
_lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
_lowerCAmelCase :List[Any] = inputs['history_prompt']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from npz file
_lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' )
np.savez(_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
_lowerCAmelCase :Optional[int] = inputs['history_prompt']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from the hub
_lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :Tuple = self.get_tokenizer()
_lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase )
_lowerCAmelCase :List[Any] = processor(text=self.input_string )
_lowerCAmelCase :List[str] = tokenizer(
self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() ) | 687 | 0 |
from __future__ import annotations
import math
from collections.abc import Callable
def A ( lowercase__ : Callable[[int | float], int | float] , lowercase__ : int | float , lowercase__ : int | float , lowercase__ : int = 100 , ) -> float:
UpperCamelCase__ :int = x_start
UpperCamelCase__ :List[Any] = fnc(lowercase__ )
UpperCamelCase__ :List[Any] = 0.0
for _ in range(lowercase__ ):
# Approximates curve as a sequence of linear lines and sums their length
UpperCamelCase__ :Optional[int] = (x_end - x_start) / steps + xa
UpperCamelCase__ :List[Any] = fnc(lowercase__ )
length += math.hypot(xa - xa , fxa - fxa )
# Increment step
UpperCamelCase__ :Dict = xa
UpperCamelCase__ :List[str] = fxa
return length
if __name__ == "__main__":
def A ( lowercase__ : Dict ) -> List[str]:
return math.sin(10 * x )
print("f(x) = sin(10 * x)")
print("The length of the curve from x = -10 to x = 10 is:")
UpperCamelCase = 10
while i <= 100_000:
print(f'''With {i} steps: {line_length(f, -10, 10, i)}''')
i *= 10 | 45 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""",
"""bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""",
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""",
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""",
"""bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json"""
),
"""wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""",
# See all BERT models at https://huggingface.co/models?filter=bert
}
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
lowerCamelCase : int = 'bert'
def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ):
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :List[Any] = vocab_size
_lowerCAmelCase :Tuple = hidden_size
_lowerCAmelCase :Dict = num_hidden_layers
_lowerCAmelCase :Optional[Any] = num_attention_heads
_lowerCAmelCase :List[Any] = hidden_act
_lowerCAmelCase :int = intermediate_size
_lowerCAmelCase :Tuple = hidden_dropout_prob
_lowerCAmelCase :Tuple = attention_probs_dropout_prob
_lowerCAmelCase :List[Any] = max_position_embeddings
_lowerCAmelCase :Dict = type_vocab_size
_lowerCAmelCase :Any = initializer_range
_lowerCAmelCase :int = layer_norm_eps
_lowerCAmelCase :List[Any] = position_embedding_type
_lowerCAmelCase :int = use_cache
_lowerCAmelCase :Union[str, Any] = classifier_dropout
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
if self.task == "multiple-choice":
_lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] ) | 687 | 0 |
"""simple docstring"""
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A_ ( _a ):
lowerCAmelCase__ = ['image_processor', 'tokenizer']
lowerCAmelCase__ = 'ViltImageProcessor'
lowerCAmelCase__ = ('BertTokenizer', 'BertTokenizerFast')
def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=None ,__lowerCAmelCase: str=None ,**__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : str = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." ,__lowerCAmelCase ,)
_lowerCamelCase : Optional[Any] = kwargs.pop("feature_extractor" )
_lowerCamelCase : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = self.image_processor
def __call__( self: str ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Union[bool, str, PaddingStrategy] = False ,__lowerCAmelCase: Union[bool, str, TruncationStrategy] = None ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: int = 0 ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Optional[bool] = None ,__lowerCAmelCase: Optional[bool] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[Union[str, TensorType]] = None ,**__lowerCAmelCase: int ,):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = self.tokenizer(
text=__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ,padding=__lowerCAmelCase ,truncation=__lowerCAmelCase ,max_length=__lowerCAmelCase ,stride=__lowerCAmelCase ,pad_to_multiple_of=__lowerCAmelCase ,return_token_type_ids=__lowerCAmelCase ,return_attention_mask=__lowerCAmelCase ,return_overflowing_tokens=__lowerCAmelCase ,return_special_tokens_mask=__lowerCAmelCase ,return_offsets_mapping=__lowerCAmelCase ,return_length=__lowerCAmelCase ,verbose=__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ,)
# add pixel_values + pixel_mask
_lowerCamelCase : int = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase )
encoding.update(__lowerCAmelCase )
return encoding
def _lowercase ( self: Any ,*__lowerCAmelCase: str ,**__lowerCAmelCase: int ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__lowerCAmelCase ,**__lowerCAmelCase )
def _lowercase ( self: Dict ,*__lowerCAmelCase: int ,**__lowerCAmelCase: List[str] ):
'''simple docstring'''
return self.tokenizer.decode(*__lowerCAmelCase ,**__lowerCAmelCase )
@property
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = self.tokenizer.model_input_names
_lowerCamelCase : int = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." ,__lowerCAmelCase ,)
return self.image_processor_class
@property
def _lowercase ( self: str ):
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." ,__lowerCAmelCase ,)
return self.image_processor | 46 |
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ):
"""simple docstring"""
if isinstance(__magic_name__ , torch.Tensor ):
return image
elif isinstance(__magic_name__ , PIL.Image.Image ):
_lowerCAmelCase :Tuple = [image]
if isinstance(image[0] , PIL.Image.Image ):
_lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image]
_lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 )
_lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0
_lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 )
_lowerCAmelCase :int = 2.0 * image - 1.0
_lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ )
elif isinstance(image[0] , torch.Tensor ):
_lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 )
return image
def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ):
"""simple docstring"""
if not isinstance(__magic_name__ , np.ndarray ):
_lowerCAmelCase :Tuple = True
_lowerCAmelCase :str = va.device
_lowerCAmelCase :List[str] = va.cpu().numpy()
_lowerCAmelCase :List[str] = va.cpu().numpy()
_lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) )
if np.abs(__magic_name__ ) > DOT_THRESHOLD:
_lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va
else:
_lowerCAmelCase :int = np.arccos(__magic_name__ )
_lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ )
_lowerCAmelCase :Union[str, Any] = theta_a * t
_lowerCAmelCase :str = np.sin(__magic_name__ )
_lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a
_lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a
_lowerCAmelCase :List[Any] = sa * va + sa * va
if inputs_are_torch:
_lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ )
return va
def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
_lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 )
_lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 )
return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 )
def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
for param in model.parameters():
_lowerCAmelCase :List[str] = value
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ):
super().__init__()
self.register_modules(
vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , )
_lowerCAmelCase :int = (
feature_extractor.size
if isinstance(feature_extractor.size , _UpperCAmelCase )
else feature_extractor.size['shortest_edge']
)
_lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std )
set_requires_grad(self.text_encoder , _UpperCAmelCase )
set_requires_grad(self.clip_model , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
_lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
self.enable_attention_slicing(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
set_requires_grad(self.vae , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
set_requires_grad(self.vae , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
set_requires_grad(self.unet , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
set_requires_grad(self.unet , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ):
# get the original timestep using init_timestep
_lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase )
_lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 )
_lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ):
if not isinstance(_UpperCAmelCase , torch.Tensor ):
raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" )
_lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_lowerCAmelCase :List[Any] = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase )
]
_lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 )
else:
_lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents
_lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 )
_lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase )
# get latents
_lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :List[str] = init_latents
return latents
def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ):
_lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
_lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) )
_lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' )
def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ):
_lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase )
_lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half()
_lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase )
_lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase )
_lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ):
_lowerCAmelCase :Dict = latents.detach().requires_grad_()
_lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
# predict the noise residual
_lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
_lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep]
_lowerCAmelCase :Optional[int] = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
_lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase )
_lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , _UpperCAmelCase ):
_lowerCAmelCase :Dict = self.scheduler.sigmas[index]
_lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred
else:
raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample
_lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample
_lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 )
_lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase )
_lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype )
_lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase )
_lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase )
_lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale
_lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0]
if isinstance(self.scheduler , _UpperCAmelCase ):
_lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2)
_lowerCAmelCase :Dict = noise_pred_original
else:
_lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ):
if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size:
raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1:
_lowerCAmelCase :int = [generator] + [None] * (batch_size - 1)
_lowerCAmelCase :List[Any] = [
('model', self.coca_model is None),
('tokenizer', self.coca_tokenizer is None),
('transform', self.coca_transform is None),
]
_lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]]
_lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(_UpperCAmelCase ):
raise ValueError(
f"""Content prompt is None and CoCa [{coca_is_none_str}] is None."""
f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
_lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase )
if style_prompt is None:
if len(_UpperCAmelCase ):
raise ValueError(
f"""Style prompt is None and CoCa [{coca_is_none_str}] is None."""
f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
_lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase )
# get prompt text embeddings for content and style
_lowerCAmelCase :Any = self.tokenizer(
_UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , )
_lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
_lowerCAmelCase :int = self.tokenizer(
_UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , )
_lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
_lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# duplicate text embeddings for each generation per prompt
_lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 )
# set timesteps
_lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
_lowerCAmelCase :Dict = {}
if accepts_offset:
_lowerCAmelCase :Optional[int] = 1
self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
_lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device )
_lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase )
# Preprocess image
_lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :int = self.prepare_latents(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase )
_lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Union[str, Any] = self.prepare_latents(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase )
_lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if clip_guidance_scale > 0:
_lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Any = slerp(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
_lowerCAmelCase :int = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
_lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1]
_lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' )
_lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
_lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
_lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
_lowerCAmelCase :Optional[Any] = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
_lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to(
self.device )
else:
_lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase )
else:
if latents.shape != latents_shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
_lowerCAmelCase :int = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
_lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
_lowerCAmelCase :Any = {}
if accepts_eta:
_lowerCAmelCase :Any = eta
# check if the scheduler accepts generator
_lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
_lowerCAmelCase :List[Any] = generator
with self.progress_bar(total=_UpperCAmelCase ):
for i, t in enumerate(_UpperCAmelCase ):
# expand the latents if we are doing classifier free guidance
_lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
# predict the noise residual
_lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
_lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 )
_lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
_lowerCAmelCase :List[Any] = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
_lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , )
# compute the previous noisy sample x_t -> x_t-1
_lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents
_lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample
_lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 )
_lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase ) | 687 | 0 |
def UpperCAmelCase__ ( lowerCamelCase_ : int = 5_0 ):
__a : int = [1] * (length + 1)
for row_length in range(3 , length + 1 ):
for block_length in range(3 , row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(F"{solution() = }")
| 47 |
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ):
"""simple docstring"""
_lowerCAmelCase :Optional[int] = list(__magic_name__ )
_lowerCAmelCase :Dict = list(__magic_name__ )
_lowerCAmelCase :Any = 0
for i in range(len(__magic_name__ ) ):
if lista[i] != lista[i]:
count += 1
_lowerCAmelCase :Union[str, Any] = '_'
if count > 1:
return False
else:
return "".join(__magic_name__ )
def UpperCamelCase_( __magic_name__ : list[str] ):
"""simple docstring"""
_lowerCAmelCase :int = []
while True:
_lowerCAmelCase :str = ['$'] * len(__magic_name__ )
_lowerCAmelCase :Optional[int] = []
for i in range(len(__magic_name__ ) ):
for j in range(i + 1 , len(__magic_name__ ) ):
_lowerCAmelCase :int = compare_string(binary[i] , binary[j] )
if k is False:
_lowerCAmelCase :str = '*'
_lowerCAmelCase :Union[str, Any] = '*'
temp.append('X' )
for i in range(len(__magic_name__ ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(__magic_name__ ) == 0:
return pi
_lowerCAmelCase :Any = list(set(__magic_name__ ) )
def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ):
"""simple docstring"""
_lowerCAmelCase :str = []
for minterm in minterms:
_lowerCAmelCase :Any = ''
for _ in range(__magic_name__ ):
_lowerCAmelCase :Tuple = str(minterm % 2 ) + string
minterm //= 2
temp.append(__magic_name__ )
return temp
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ):
"""simple docstring"""
_lowerCAmelCase :Optional[Any] = list(__magic_name__ )
_lowerCAmelCase :List[Any] = list(__magic_name__ )
_lowerCAmelCase :Optional[Any] = 0
for i in range(len(__magic_name__ ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ):
"""simple docstring"""
_lowerCAmelCase :str = []
_lowerCAmelCase :List[str] = [0] * len(__magic_name__ )
for i in range(len(chart[0] ) ):
_lowerCAmelCase :Dict = 0
_lowerCAmelCase :Optional[Any] = -1
for j in range(len(__magic_name__ ) ):
if chart[j][i] == 1:
count += 1
_lowerCAmelCase :List[Any] = j
if count == 1:
_lowerCAmelCase :Dict = 1
for i in range(len(__magic_name__ ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(__magic_name__ ) ):
_lowerCAmelCase :Dict = 0
temp.append(prime_implicants[i] )
while True:
_lowerCAmelCase :Dict = 0
_lowerCAmelCase :Any = -1
_lowerCAmelCase :Optional[Any] = 0
for i in range(len(__magic_name__ ) ):
_lowerCAmelCase :str = chart[i].count(1 )
if count_n > max_n:
_lowerCAmelCase :Optional[Any] = count_n
_lowerCAmelCase :Dict = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(__magic_name__ ) ):
_lowerCAmelCase :str = 0
def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ):
"""simple docstring"""
_lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )]
for i in range(len(__magic_name__ ) ):
_lowerCAmelCase :Tuple = prime_implicants[i].count('_' )
for j in range(len(__magic_name__ ) ):
if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ):
_lowerCAmelCase :str = 1
return chart
def UpperCamelCase_( ):
"""simple docstring"""
_lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) )
_lowerCAmelCase :Tuple = [
float(__magic_name__ )
for x in input(
'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split()
]
_lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ )
_lowerCAmelCase :Any = check(__magic_name__ )
print('Prime Implicants are:' )
print(__magic_name__ )
_lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ )
_lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ )
print('Essential Prime Implicants are:' )
print(__magic_name__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main() | 687 | 0 |
'''simple docstring'''
UpperCAmelCase__ : Tuple = 6_55_21
def A ( UpperCamelCase_ : str ) -> int:
'''simple docstring'''
lowerCAmelCase__ = 1
lowerCAmelCase__ = 0
for plain_chr in plain_text:
lowerCAmelCase__ = (a + ord(UpperCamelCase_ )) % MOD_ADLER
lowerCAmelCase__ = (b + a) % MOD_ADLER
return (b << 16) | a
| 48 |
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
a = """\
@INPROCEEDINGS{Papineni02bleu:a,
author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},
title = {BLEU: a Method for Automatic Evaluation of Machine Translation},
booktitle = {},
year = {2002},
pages = {311--318}
}
@inproceedings{lin-och-2004-orange,
title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",
author = \"Lin, Chin-Yew and
Och, Franz Josef\",
booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",
month = \"aug 23{--}aug 27\",
year = \"2004\",
address = \"Geneva, Switzerland\",
publisher = \"COLING\",
url = \"https://www.aclweb.org/anthology/C04-1072\",
pages = \"501--507\",
}
"""
a = """\
BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.
Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,
the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and
remains one of the most popular automated and inexpensive metrics.
Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.
Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness
are not taken into account[citation needed].
BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1
representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the
reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional
reference translations will increase the BLEU score.
"""
a = """
Computes BLEU score of translated segments against one or more references.
Args:
predictions: list of translations to score.
Each translation should be tokenized into a list of tokens.
references: list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
max_order: Maximum n-gram order to use when computing BLEU score.
smooth: Whether or not to apply Lin et al. 2004 smoothing.
Returns:
'bleu': bleu score,
'precisions': geometric mean of n-gram precisions,
'brevity_penalty': brevity penalty,
'length_ratio': ratio of lengths,
'translation_length': translation_length,
'reference_length': reference_length
Examples:
>>> predictions = [
... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample
... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample
... ]
>>> references = [
... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)
... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)
... ]
>>> bleu = datasets.load_metric(\"bleu\")
>>> results = bleu.compute(predictions=predictions, references=references)
>>> print(results[\"bleu\"])
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ (datasets.Metric ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ),
} ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[
'https://en.wikipedia.org/wiki/BLEU',
'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213',
] , )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ):
_lowerCAmelCase :Any = compute_bleu(
reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
} | 687 | 0 |
"""simple docstring"""
import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TextGenerationPipeline,
logging,
pipeline,
)
from transformers.testing_utils import (
CaptureLogger,
is_pipeline_test,
require_accelerate,
require_tf,
require_torch,
require_torch_gpu,
require_torch_or_tf,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class _UpperCAmelCase ( unittest.TestCase ):
a__ : List[str] = MODEL_FOR_CAUSAL_LM_MAPPING
a__ : Optional[int] = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def a ( self : Tuple ):
__UpperCAmelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' )
# Using `do_sample=False` to force deterministic output
__UpperCAmelCase = text_generator('''This is a test''' , do_sample=_lowercase )
self.assertEqual(
_lowercase , [
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
] , )
__UpperCAmelCase = text_generator(['''This is a test''', '''This is a second test'''] )
self.assertEqual(
_lowercase , [
[
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy'''
''' oscope. oscope. FiliFili@@'''
)
}
],
] , )
__UpperCAmelCase = text_generator('''This is a test''' , do_sample=_lowercase , num_return_sequences=2 , return_tensors=_lowercase )
self.assertEqual(
_lowercase , [
{'''generated_token_ids''': ANY(_lowercase )},
{'''generated_token_ids''': ANY(_lowercase )},
] , )
__UpperCAmelCase = text_generator.model.config.eos_token_id
__UpperCAmelCase = '''<pad>'''
__UpperCAmelCase = text_generator(
['''This is a test''', '''This is a second test'''] , do_sample=_lowercase , num_return_sequences=2 , batch_size=2 , return_tensors=_lowercase , )
self.assertEqual(
_lowercase , [
[
{'''generated_token_ids''': ANY(_lowercase )},
{'''generated_token_ids''': ANY(_lowercase )},
],
[
{'''generated_token_ids''': ANY(_lowercase )},
{'''generated_token_ids''': ANY(_lowercase )},
],
] , )
@require_tf
def a ( self : Dict ):
__UpperCAmelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' )
# Using `do_sample=False` to force deterministic output
__UpperCAmelCase = text_generator('''This is a test''' , do_sample=_lowercase )
self.assertEqual(
_lowercase , [
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
] , )
__UpperCAmelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_lowercase )
self.assertEqual(
_lowercase , [
[
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes'''
''' Cannes 閲閲Cannes Cannes Cannes 攵 please,'''
)
}
],
] , )
def a ( self : Any , _lowercase : str , _lowercase : Optional[int] , _lowercase : str ):
__UpperCAmelCase = TextGenerationPipeline(model=_lowercase , tokenizer=_lowercase )
return text_generator, ["This is a test", "Another test"]
def a ( self : List[Any] ):
__UpperCAmelCase = '''Hello I believe in'''
__UpperCAmelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
__UpperCAmelCase = text_generator(_lowercase )
self.assertEqual(
_lowercase , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , )
__UpperCAmelCase = text_generator(_lowercase , stop_sequence=''' fe''' )
self.assertEqual(_lowercase , [{'''generated_text''': '''Hello I believe in fe'''}] )
def a ( self : Optional[int] , _lowercase : List[Any] , _lowercase : str ):
__UpperCAmelCase = text_generator.model
__UpperCAmelCase = text_generator.tokenizer
__UpperCAmelCase = text_generator('''This is a test''' )
self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
__UpperCAmelCase = text_generator('''This is a test''' , return_full_text=_lowercase )
self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
__UpperCAmelCase = pipeline(task='''text-generation''' , model=_lowercase , tokenizer=_lowercase , return_full_text=_lowercase )
__UpperCAmelCase = text_generator('''This is a test''' )
self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
__UpperCAmelCase = text_generator('''This is a test''' , return_full_text=_lowercase )
self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
__UpperCAmelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_lowercase )
self.assertEqual(
_lowercase , [
[{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}],
[{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}],
] , )
if text_generator.tokenizer.pad_token is not None:
__UpperCAmelCase = text_generator(
['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_lowercase )
self.assertEqual(
_lowercase , [
[{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}],
[{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}],
] , )
with self.assertRaises(_lowercase ):
__UpperCAmelCase = text_generator('''test''' , return_full_text=_lowercase , return_text=_lowercase )
with self.assertRaises(_lowercase ):
__UpperCAmelCase = text_generator('''test''' , return_full_text=_lowercase , return_tensors=_lowercase )
with self.assertRaises(_lowercase ):
__UpperCAmelCase = text_generator('''test''' , return_text=_lowercase , return_tensors=_lowercase )
# Empty prompt is slighly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if (
text_generator.tokenizer.bos_token_id is not None
or "Pegasus" in tokenizer.__class__.__name__
or "Git" in model.__class__.__name__
):
__UpperCAmelCase = text_generator('''''' )
self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] )
else:
with self.assertRaises((ValueError, AssertionError) ):
__UpperCAmelCase = text_generator('''''' )
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
return
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
__UpperCAmelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM''']
if (
tokenizer.model_max_length < 1_00_00
and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
):
# Handling of large generations
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ):
text_generator('''This is a test''' * 5_00 , max_new_tokens=20 )
__UpperCAmelCase = text_generator('''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=20 )
# Hole strategy cannot work
with self.assertRaises(_lowercase ):
text_generator(
'''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , )
@require_torch
@require_accelerate
@require_torch_gpu
def a ( self : List[Any] ):
import torch
# Classic `model_kwargs`
__UpperCAmelCase = pipeline(
model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
__UpperCAmelCase = pipe('''This is a test''' )
self.assertEqual(
_lowercase , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
__UpperCAmelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
__UpperCAmelCase = pipe('''This is a test''' )
self.assertEqual(
_lowercase , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
__UpperCAmelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa )
__UpperCAmelCase = pipe('''This is a test''' )
self.assertEqual(
_lowercase , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
@require_torch
@require_torch_gpu
def a ( self : Union[str, Any] ):
import torch
__UpperCAmelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa )
pipe('''This is a test''' )
@require_torch
@require_accelerate
@require_torch_gpu
def a ( self : int ):
import torch
__UpperCAmelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa )
pipe('''This is a test''' , do_sample=_lowercase , top_p=0.5 )
def a ( self : int ):
__UpperCAmelCase = '''Hello world'''
__UpperCAmelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
if text_generator.model.framework == "tf":
__UpperCAmelCase = logging.get_logger('''transformers.generation.tf_utils''' )
else:
__UpperCAmelCase = logging.get_logger('''transformers.generation.utils''' )
__UpperCAmelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test
# Both are set by the user -> log warning
with CaptureLogger(_lowercase ) as cl:
__UpperCAmelCase = text_generator(_lowercase , max_length=10 , max_new_tokens=1 )
self.assertIn(_lowercase , cl.out )
# The user only sets one -> no warning
with CaptureLogger(_lowercase ) as cl:
__UpperCAmelCase = text_generator(_lowercase , max_new_tokens=1 )
self.assertNotIn(_lowercase , cl.out )
with CaptureLogger(_lowercase ) as cl:
__UpperCAmelCase = text_generator(_lowercase , max_length=10 )
self.assertNotIn(_lowercase , cl.out )
| 49 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a = {
"""configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"""FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FalconForCausalLM""",
"""FalconModel""",
"""FalconPreTrainedModel""",
"""FalconForSequenceClassification""",
"""FalconForTokenClassification""",
"""FalconForQuestionAnswering""",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 687 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase : List[str] = {
'configuration_x_clip': [
'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'XCLIPConfig',
'XCLIPTextConfig',
'XCLIPVisionConfig',
],
'processing_x_clip': ['XCLIPProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Union[str, Any] = [
'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'XCLIPModel',
'XCLIPPreTrainedModel',
'XCLIPTextModel',
'XCLIPVisionModel',
]
if TYPE_CHECKING:
from .configuration_x_clip import (
XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
XCLIPConfig,
XCLIPTextConfig,
XCLIPVisionConfig,
)
from .processing_x_clip import XCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_x_clip import (
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
XCLIPModel,
XCLIPPreTrainedModel,
XCLIPTextModel,
XCLIPVisionModel,
)
else:
import sys
UpperCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ):
_lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20}
_lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18}
_lowerCAmelCase :str = parent
_lowerCAmelCase :List[Any] = batch_size
_lowerCAmelCase :Optional[Any] = num_channels
_lowerCAmelCase :Optional[Any] = image_size
_lowerCAmelCase :int = min_resolution
_lowerCAmelCase :List[str] = max_resolution
_lowerCAmelCase :List[str] = do_resize
_lowerCAmelCase :Optional[int] = size
_lowerCAmelCase :str = do_center_crop
_lowerCAmelCase :int = crop_size
_lowerCAmelCase :Optional[int] = do_flip_channel_order
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class UpperCAmelCase_ (snake_case__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE__ ( self: str ):
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
_lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
_lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
_lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
pass
def SCREAMING_SNAKE_CASE__ ( self: int ):
# Initialize image_processing
_lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
_lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
# Initialize image_processing
_lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
_lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
# Initialize image_processing
_lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
_lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , ) | 687 | 0 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split()
UpperCAmelCase = dict(zip(a__ , range(len(a__ ) ) ) )
UpperCAmelCase = {
'''unk_token''': '''<unk>''',
'''bos_token''': '''<s>''',
'''eos_token''': '''</s>''',
}
UpperCAmelCase = {
'''feature_size''': 1,
'''padding_value''': 0.0,
'''sampling_rate''': 16000,
'''return_attention_mask''': False,
'''do_normalize''': True,
}
UpperCAmelCase = tempfile.mkdtemp()
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase = os.path.join(self.tmpdirname , a__ )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(a__ ) + '''\n''' )
with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(a__ ) + '''\n''' )
# load decoder from hub
UpperCAmelCase = '''hf-internal-testing/ngram-beam-search-decoder'''
def __snake_case ( self : int , **a__ : Optional[int] ):
UpperCAmelCase = self.add_kwargs_tokens_map.copy()
kwargs.update(a__ )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **a__ )
def __snake_case ( self : int , **a__ : str ):
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **a__ )
def __snake_case ( self : List[str] , **a__ : Optional[Any] ):
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **a__ )
def __snake_case ( self : int ):
shutil.rmtree(self.tmpdirname )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_feature_extractor()
UpperCAmelCase = self.get_decoder()
UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , a__ )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , a__ )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , a__ )
def __snake_case ( self : Any ):
UpperCAmelCase = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(['''xx'''] )
with self.assertRaisesRegex(a__ , '''include''' ):
WavaVecaProcessorWithLM(
tokenizer=a__ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def __snake_case ( self : Optional[int] ):
UpperCAmelCase = self.get_feature_extractor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_decoder()
UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ )
UpperCAmelCase = floats_list((3, 1000) )
UpperCAmelCase = feature_extractor(a__ , return_tensors='''np''' )
UpperCAmelCase = processor(a__ , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __snake_case ( self : Any ):
UpperCAmelCase = self.get_feature_extractor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_decoder()
UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ )
UpperCAmelCase = '''This is a test string'''
UpperCAmelCase = processor(text=a__ )
UpperCAmelCase = tokenizer(a__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __snake_case ( self : int , a__ : int=(2, 10, 16) , a__ : List[Any]=77 ):
np.random.seed(a__ )
return np.random.rand(*a__ )
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = self.get_feature_extractor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_decoder()
UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ )
UpperCAmelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 )
UpperCAmelCase = processor.decode(a__ )
UpperCAmelCase = decoder.decode_beams(a__ )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual('''</s> <s> </s>''' , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ['''fork'''], ['''spawn''']] )
def __snake_case ( self : Any , a__ : str ):
UpperCAmelCase = self.get_feature_extractor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_decoder()
UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ )
UpperCAmelCase = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
UpperCAmelCase = processor.batch_decode(a__ )
else:
with get_context(a__ ).Pool() as pool:
UpperCAmelCase = processor.batch_decode(a__ , a__ )
UpperCAmelCase = list(a__ )
with get_context('''fork''' ).Pool() as p:
UpperCAmelCase = decoder.decode_beams_batch(a__ , a__ )
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(a__ , decoded_processor.text )
self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text )
self.assertListEqual(a__ , decoded_processor.logit_score )
self.assertListEqual(a__ , decoded_processor.lm_score )
def __snake_case ( self : Dict ):
UpperCAmelCase = self.get_feature_extractor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_decoder()
UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ )
UpperCAmelCase = self._get_dummy_logits()
UpperCAmelCase = 15
UpperCAmelCase = -20.0
UpperCAmelCase = -4.0
UpperCAmelCase = processor.batch_decode(
a__ , beam_width=a__ , beam_prune_logp=a__ , token_min_logp=a__ , )
UpperCAmelCase = decoded_processor_out.text
UpperCAmelCase = list(a__ )
with get_context('''fork''' ).Pool() as pool:
UpperCAmelCase = decoder.decode_beams_batch(
a__ , a__ , beam_width=a__ , beam_prune_logp=a__ , token_min_logp=a__ , )
UpperCAmelCase = [d[0][0] for d in decoded_decoder_out]
UpperCAmelCase = [d[0][2] for d in decoded_decoder_out]
UpperCAmelCase = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(a__ , a__ )
self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , a__ )
self.assertTrue(np.array_equal(a__ , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , a__ , atol=1e-3 ) )
self.assertTrue(np.array_equal(a__ , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9_474] , a__ , atol=1e-3 ) )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.get_feature_extractor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_decoder()
UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ )
UpperCAmelCase = self._get_dummy_logits()
UpperCAmelCase = 2.0
UpperCAmelCase = 5.0
UpperCAmelCase = -20.0
UpperCAmelCase = True
UpperCAmelCase = processor.batch_decode(
a__ , alpha=a__ , beta=a__ , unk_score_offset=a__ , lm_score_boundary=a__ , )
UpperCAmelCase = decoded_processor_out.text
UpperCAmelCase = list(a__ )
decoder.reset_params(
alpha=a__ , beta=a__ , unk_score_offset=a__ , lm_score_boundary=a__ , )
with get_context('''fork''' ).Pool() as pool:
UpperCAmelCase = decoder.decode_beams_batch(
a__ , a__ , )
UpperCAmelCase = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(a__ , a__ )
self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , a__ )
UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , a__ )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key]
UpperCAmelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute()
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = ['''alphabet.json''', '''language_model''']
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(a__ , a__ )
def __snake_case ( self : str ):
UpperCAmelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' )
UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(a__ )
UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key]
UpperCAmelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute()
UpperCAmelCase = os.listdir(a__ )
UpperCAmelCase = os.listdir(a__ )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(a__ , a__ )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
UpperCAmelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' )
UpperCAmelCase = floats_list((3, 1000) )
UpperCAmelCase = processor_wavaveca(a__ , return_tensors='''np''' )
UpperCAmelCase = processor_auto(a__ , return_tensors='''np''' )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 )
UpperCAmelCase = self._get_dummy_logits()
UpperCAmelCase = processor_wavaveca.batch_decode(a__ )
UpperCAmelCase = processor_auto.batch_decode(a__ )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.get_feature_extractor()
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_decoder()
UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , )
@staticmethod
def __snake_case ( a__ : Tuple , a__ : int ):
UpperCAmelCase = [d[key] for d in offsets]
return retrieved_list
def __snake_case ( self : Dict ):
UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
UpperCAmelCase = self._get_dummy_logits()[0]
UpperCAmelCase = processor.decode(a__ , output_word_offsets=a__ )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''word_offsets''' in outputs )
self.assertTrue(isinstance(a__ , a__ ) )
self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] )
def __snake_case ( self : Any ):
UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
UpperCAmelCase = self._get_dummy_logits()
UpperCAmelCase = processor.batch_decode(a__ , output_word_offsets=a__ )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''word_offsets''' in outputs )
self.assertTrue(isinstance(a__ , a__ ) )
self.assertListEqual(
[''' '''.join(self.get_from_offsets(a__ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def __snake_case ( self : Dict ):
import torch
UpperCAmelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=a__ )
UpperCAmelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16000 ) )
UpperCAmelCase = iter(a__ )
UpperCAmelCase = next(a__ )
UpperCAmelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' )
UpperCAmelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
UpperCAmelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values
with torch.no_grad():
UpperCAmelCase = model(a__ ).logits.cpu().numpy()
UpperCAmelCase = processor.decode(logits[0] , output_word_offsets=a__ )
UpperCAmelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
UpperCAmelCase = [
{
'''start_time''': d['''start_offset'''] * time_offset,
'''end_time''': d['''end_offset'''] * time_offset,
'''word''': d['''word'''],
}
for d in output['''word_offsets''']
]
UpperCAmelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL'''
# output words
self.assertEqual(''' '''.join(self.get_from_offsets(a__ , '''word''' ) ) , a__ )
self.assertEqual(''' '''.join(self.get_from_offsets(a__ , '''word''' ) ) , output.text )
# output times
UpperCAmelCase = torch.tensor(self.get_from_offsets(a__ , '''start_time''' ) )
UpperCAmelCase = torch.tensor(self.get_from_offsets(a__ , '''end_time''' ) )
# fmt: off
UpperCAmelCase = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] )
UpperCAmelCase = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(a__ , a__ , atol=0.01 ) )
self.assertTrue(torch.allclose(a__ , a__ , atol=0.01 ) )
| 51 |
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class UpperCAmelCase_ (datasets.BuilderConfig ):
"""simple docstring"""
lowerCamelCase : Optional[datasets.Features] = None
class UpperCAmelCase_ (datasets.ArrowBasedBuilder ):
"""simple docstring"""
lowerCamelCase : Any = PandasConfig
def SCREAMING_SNAKE_CASE__ ( self: int ):
return datasets.DatasetInfo(features=self.config.features )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ):
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_UpperCAmelCase , (str, list, tuple) ):
_lowerCAmelCase :Any = data_files
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_lowerCAmelCase :Dict = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
_lowerCAmelCase :Any = []
for split_name, files in data_files.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_lowerCAmelCase :str = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) )
return splits
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ):
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
_lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema )
return pa_table
def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ):
for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ):
with open(_UpperCAmelCase , 'rb' ) as f:
_lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) )
yield i, self._cast_table(_UpperCAmelCase ) | 687 | 0 |
"""simple docstring"""
import random
def __A ( a_ :int , a_ :float , a_ :bool = False) -> dict:
__a : dict = {i: [] for i in range(a_)}
# if probability is greater or equal than 1, then generate a complete graph
if probability >= 1:
return complete_graph(a_)
# if probability is lower or equal than 0, then return a graph without edges
if probability <= 0:
return graph
# for each couple of nodes, add an edge from u to v
# if the number randomly generated is greater than probability probability
for i in range(a_):
for j in range(i + 1 , a_):
if random.random() < probability:
graph[i].append(a_)
if not directed:
# if the graph is undirected, add an edge in from j to i, either
graph[j].append(a_)
return graph
def __A ( a_ :int) -> dict:
return {
i: [j for j in range(a_) if i != j] for i in range(a_)
}
if __name__ == "__main__":
import doctest
doctest.testmod() | 52 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
a = """"""
a = """"""
a = """"""
a = 1 # (0 is vertical, 1 is horizontal)
def UpperCamelCase_( ):
"""simple docstring"""
_lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ )
print('Processing...' )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ )
for index, image in enumerate(__magic_name__ ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
_lowerCAmelCase :Optional[Any] = random_chars(32 )
_lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0]
_lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"""
cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" )
_lowerCAmelCase :str = []
for anno in new_annos[index]:
_lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"""
annos_list.append(__magic_name__ )
with open(f"""/{file_root}.txt""" , 'w' ) as outfile:
outfile.write('\n'.join(line for line in annos_list ) )
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ):
"""simple docstring"""
_lowerCAmelCase :int = []
_lowerCAmelCase :Union[str, Any] = []
for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ):
_lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0]
with open(__magic_name__ ) as in_file:
_lowerCAmelCase :Union[str, Any] = in_file.readlines()
_lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" )
_lowerCAmelCase :Tuple = []
for obj_list in obj_lists:
_lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__magic_name__ )
labels.append(__magic_name__ )
return img_paths, labels
def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ):
"""simple docstring"""
_lowerCAmelCase :str = []
_lowerCAmelCase :Any = []
_lowerCAmelCase :Optional[Any] = []
for idx in range(len(__magic_name__ ) ):
_lowerCAmelCase :Optional[int] = []
_lowerCAmelCase :Optional[Any] = img_list[idx]
path_list.append(__magic_name__ )
_lowerCAmelCase :List[str] = anno_list[idx]
_lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ )
if flip_type == 1:
_lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ )
for bbox in img_annos:
_lowerCAmelCase :List[Any] = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
_lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ )
for bbox in img_annos:
_lowerCAmelCase :List[str] = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__magic_name__ )
new_imgs_list.append(__magic_name__ )
return new_imgs_list, new_annos_lists, path_list
def UpperCamelCase_( __magic_name__ : int = 32 ):
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
_lowerCAmelCase :str = ascii_lowercase + digits
return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) )
if __name__ == "__main__":
main()
print("""DONE ✅""") | 687 | 0 |
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
_snake_case : Tuple = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8')
_snake_case : List[Any] = (
subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode('utf-8').split()
)
_snake_case : Optional[int] = '|'.join(sys.argv[1:])
_snake_case : str = re.compile(RF"""^({joined_dirs}).*?\.py$""")
_snake_case : List[Any] = [x for x in modified_files if regex.match(x)]
print(' '.join(relevant_modified_files), end='')
| 53 |
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
a = logging.get_logger(__name__)
def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
_lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ )
_lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ )
return torch.mm(__magic_name__ , normalized_text_embeds.t() )
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
lowerCamelCase : str = CLIPConfig
lowerCamelCase : Any = ['CLIPEncoderLayer']
def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ):
super().__init__(_UpperCAmelCase )
_lowerCAmelCase :Any = CLIPVisionModel(config.vision_config )
_lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase )
_lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase )
_lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase )
_lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase )
_lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase )
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ):
_lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output
_lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
_lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy()
_lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy()
_lowerCAmelCase :str = []
_lowerCAmelCase :List[Any] = image_embeds.shape[0]
for i in range(_UpperCAmelCase ):
_lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
_lowerCAmelCase :List[Any] = 0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
_lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx]
_lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item()
_lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} )
_lowerCAmelCase :Any = 0.0_1
for concept_idx in range(len(cos_dist[0] ) ):
_lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx]
_lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item()
_lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(_UpperCAmelCase )
result.append(_UpperCAmelCase )
_lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ):
_lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output
_lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase )
_lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds )
_lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
_lowerCAmelCase :Any = 0.0
_lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
_lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 )
_lowerCAmelCase :List[str] = special_care * 0.0_1
_lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
_lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
_lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts | 687 | 0 |
import argparse
import json
import os
from collections import OrderedDict
import numpy as np
import tensorflow as tf
import torch
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =os.path.join(args.tf_model_dir , "parameters.json" )
UpperCAmelCase_ =json.loads(open(lowercase__ ).read() )
if not params:
raise ValueError(
F'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' )
if not args.output.endswith(".pt" ):
UpperCAmelCase_ =args.output + ".pt"
UpperCAmelCase_ =OrderedDict()
with tf.device("/CPU:0" ):
UpperCAmelCase_ =tf.train.load_checkpoint(args.tf_model_dir )
UpperCAmelCase_ =reader.get_variable_to_shape_map()
for key_name in shapes.keys():
UpperCAmelCase_ =reader.get_tensor(lowercase__ ).astype(np.floataa )
if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ):
continue
if key_name.startswith("pasts/" ):
if key_name.startswith("pasts/mlp" ):
UpperCAmelCase_ =int(key_name[9] )
elif key_name.startswith("pasts/out" ):
UpperCAmelCase_ =8
UpperCAmelCase_ ="model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time
UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ =torch.tensor(lowercase__ )
elif key_name.startswith("model/moe" ):
UpperCAmelCase_ =int(key_name[9:].split("/" )[0] )
if key_name.endswith("/switch_gating/kernel" ):
UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player
UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ =torch.tensor(lowercase__ )
elif key_name.endswith("/softmlp/kernel" ):
UpperCAmelCase_ ="model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player
UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ =torch.tensor(lowercase__ )
elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ):
UpperCAmelCase_ =key_name[-9:-7]
for i in range(1_6 ):
UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer)
UpperCAmelCase_ =(
vnp[i].transpose([1, 0] ).copy()
) # In Mesh-Tensorflow, it is one array, so it is divided
UpperCAmelCase_ =torch.tensor(lowercase__ )
elif key_name.startswith("model/mlp" ):
UpperCAmelCase_ =int(key_name[9:].split("/" )[0] )
if key_name.endswith("/p1/kernel" ):
UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.wi.weight" % player
UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ =torch.tensor(lowercase__ )
elif key_name.endswith("/p1/bias" ):
UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.wi.bias" % player
UpperCAmelCase_ =vnp.copy() # same because it is one dimensional
UpperCAmelCase_ =torch.tensor(lowercase__ )
elif key_name.endswith("/p2/kernel" ):
UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.wo.weight" % player
UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ =torch.tensor(lowercase__ )
elif key_name.endswith("/p2/bias" ):
UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.wo.bias" % player
UpperCAmelCase_ =vnp.copy() # same because it is one dimensional
UpperCAmelCase_ =torch.tensor(lowercase__ )
elif key_name.startswith("model/ln" ):
UpperCAmelCase_ =int(key_name[8:].split("/" )[0] )
if key_name.endswith("/b" ):
UpperCAmelCase_ ="model.blocks.%d.feed_forward.norm.bias" % player
UpperCAmelCase_ =vnp.copy() # same because it is one dimensional
UpperCAmelCase_ =torch.tensor(lowercase__ )
elif key_name.endswith("/g" ):
UpperCAmelCase_ ="model.blocks.%d.feed_forward.norm.weight" % player
UpperCAmelCase_ =vnp.copy() # same because it is one dimensional
UpperCAmelCase_ =torch.tensor(lowercase__ )
elif key_name.startswith("model/att" ):
UpperCAmelCase_ =int(key_name[9:].split("/" )[0] )
if key_name.endswith("/qkv/kernel" ):
UpperCAmelCase_ =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum
UpperCAmelCase_ =state[:, 0, :, :]
UpperCAmelCase_ =state[:, 1, :, :]
UpperCAmelCase_ =state[:, 2, :, :]
UpperCAmelCase_ =(
state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ =(
state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ =(
state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ ="model.blocks.%d.self_attn.self_attn.q_proj.weight" % player
UpperCAmelCase_ =torch.tensor(lowercase__ )
UpperCAmelCase_ ="model.blocks.%d.self_attn.self_attn.k_proj.weight" % player
UpperCAmelCase_ =torch.tensor(lowercase__ )
UpperCAmelCase_ ="model.blocks.%d.self_attn.self_attn.v_proj.weight" % player
UpperCAmelCase_ =torch.tensor(lowercase__ )
elif key_name.endswith("/o/kernel" ):
UpperCAmelCase_ ="model.blocks.%d.self_attn.self_attn.out_proj.weight" % player
UpperCAmelCase_ =(
vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy()
) # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ =torch.tensor(lowercase__ )
elif key_name.startswith("model/an" ):
UpperCAmelCase_ =int(key_name[8:].split("/" )[0] )
if key_name.endswith("/b" ):
UpperCAmelCase_ ="model.blocks.%d.self_attn.norm.bias" % player
UpperCAmelCase_ =vnp.copy() # same because it is one dimensional
UpperCAmelCase_ =torch.tensor(lowercase__ )
elif key_name.endswith("/g" ):
UpperCAmelCase_ ="model.blocks.%d.self_attn.norm.weight" % player
UpperCAmelCase_ =vnp.copy() # same because it is one dimensional
UpperCAmelCase_ =torch.tensor(lowercase__ )
elif (
key_name.startswith("model/wte" )
or key_name.startswith("model/wpe" )
or key_name.startswith("model/ete" )
):
UpperCAmelCase_ ={"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[
key_name[-3:]
]
UpperCAmelCase_ ="model.%s.weight" % nlayer
UpperCAmelCase_ =vnp.copy() # same in embedded
UpperCAmelCase_ =torch.tensor(lowercase__ )
if key_name.startswith("model/wte" ):
UpperCAmelCase_ ="lm_head.weight"
UpperCAmelCase_ =vnp.copy() # same in embedded
UpperCAmelCase_ =torch.tensor(lowercase__ )
elif key_name.startswith("model/wob" ):
UpperCAmelCase_ ="final_logits_bias"
UpperCAmelCase_ =vnp.copy() # same in embedded
UpperCAmelCase_ =state.reshape((1, -1) )
UpperCAmelCase_ =torch.tensor(lowercase__ )
elif key_name == "model/dense/kernel":
UpperCAmelCase_ ="model.last_project.weight"
UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ =torch.tensor(lowercase__ )
elif key_name == "model/dense_1/bias":
UpperCAmelCase_ ="model.last_project.bias"
UpperCAmelCase_ =vnp.copy() # same because it is one dimensional
UpperCAmelCase_ =torch.tensor(lowercase__ )
torch.save(lowercase__ , args.output )
if __name__ == "__main__":
__lowercase : Optional[int] =argparse.ArgumentParser(
description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""")
parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""")
__lowercase : List[str] =parser.parse_args()
convert_tf_gptsan_to_pt(args)
| 54 |
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
a = 6_3_7_8_1_3_7.0
a = 6_3_5_6_7_5_2.3_1_4_2_4_5
a = 6_378_137
def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ):
"""simple docstring"""
_lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
_lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) )
_lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) )
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
_lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS
# Intermediate P and Q values
_lowerCAmelCase :str = (b_lata + b_lata) / 2
_lowerCAmelCase :Tuple = (b_lata - b_lata) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
_lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2)
_lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2
_lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
_lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2)
_lowerCAmelCase :str = sin(sigma / 2 ) ** 2
_lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod() | 687 | 0 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : Any ):
__A = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A ,"tf_padding" ) )
self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = depth_multiplier
__A = min_depth
__A = tf_padding
__A = int(last_hidden_size * depth_multiplier )
__A = output_stride
__A = hidden_act
__A = classifier_dropout_prob
__A = use_labels
__A = is_training
__A = num_labels
__A = initializer_range
__A = scope
def UpperCamelCase_ ( self : Optional[int] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.num_labels )
__A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
__A = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : Any ):
return MobileNetVaConfig(
num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,)
def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ):
__A = MobileNetVaModel(config=A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ):
__A = self.num_labels
__A = MobileNetVaForImageClassification(A )
model.to(A )
model.eval()
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : Tuple ):
__A = self.prepare_config_and_inputs()
__A , __A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else ()
snake_case_ = (
{"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : Any ):
__A = MobileNetVaModelTester(self )
__A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A )
def UpperCamelCase_ ( self : str ):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileNetV1 does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
@unittest.skip(reason="MobileNetV1 does not support input and output embeddings" )
def UpperCamelCase_ ( self : Tuple ):
pass
@unittest.skip(reason="MobileNetV1 does not output attentions" )
def UpperCamelCase_ ( self : Any ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[int] ):
def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ):
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.hidden_states
__A = 26
self.assertEqual(len(A ) ,A )
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = True
check_hidden_states_output(A ,A ,A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A = True
check_hidden_states_output(A ,A ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def UpperCamelCase_ ( self : Union[str, Any] ):
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = MobileNetVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : List[str] ):
return (
MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None
)
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
__A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
# verify the logits
__A = torch.Size((1, 10_01) )
self.assertEqual(outputs.logits.shape ,A )
__A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
lowerCamelCase : Dict = 'encoder-decoder'
lowerCamelCase : Optional[Any] = True
def __init__( self: str , **_UpperCAmelCase: int ):
super().__init__(**_UpperCAmelCase )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
_lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' )
_lowerCAmelCase :Dict = encoder_config.pop('model_type' )
_lowerCAmelCase :str = kwargs.pop('decoder' )
_lowerCAmelCase :str = decoder_config.pop('model_type' )
from ..auto.configuration_auto import AutoConfig
_lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :Any = True
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ):
logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' )
_lowerCAmelCase :Dict = True
_lowerCAmelCase :List[str] = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Dict ):
_lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ )
_lowerCAmelCase :Optional[int] = self.encoder.to_dict()
_lowerCAmelCase :Union[str, Any] = self.decoder.to_dict()
_lowerCAmelCase :List[str] = self.__class__.model_type
return output | 687 | 0 |
'''simple docstring'''
def _a (lowercase__ : list , lowercase__ : int , lowercase__ : int = 0 , lowercase__ : int = 0 ) -> int:
"""simple docstring"""
__snake_case = right or len(lowercase__ ) - 1
if left > right:
return -1
elif list_data[left] == key:
return left
elif list_data[right] == key:
return right
else:
return search(lowercase__ , lowercase__ , left + 1 , right - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 56 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ):
_lowerCAmelCase :Optional[int] = parent
_lowerCAmelCase :Dict = batch_size
_lowerCAmelCase :Optional[Any] = image_size
_lowerCAmelCase :Optional[Any] = patch_size
_lowerCAmelCase :List[Any] = num_channels
_lowerCAmelCase :Optional[int] = embed_dim
_lowerCAmelCase :List[str] = hidden_sizes
_lowerCAmelCase :Union[str, Any] = depths
_lowerCAmelCase :int = num_heads
_lowerCAmelCase :Any = window_size
_lowerCAmelCase :List[Any] = mlp_ratio
_lowerCAmelCase :Optional[int] = qkv_bias
_lowerCAmelCase :Union[str, Any] = hidden_dropout_prob
_lowerCAmelCase :Optional[int] = attention_probs_dropout_prob
_lowerCAmelCase :Dict = drop_path_rate
_lowerCAmelCase :List[Any] = hidden_act
_lowerCAmelCase :Tuple = use_absolute_embeddings
_lowerCAmelCase :Optional[int] = patch_norm
_lowerCAmelCase :Optional[Any] = layer_norm_eps
_lowerCAmelCase :Union[str, Any] = initializer_range
_lowerCAmelCase :List[str] = is_training
_lowerCAmelCase :str = scope
_lowerCAmelCase :Optional[int] = use_labels
_lowerCAmelCase :List[Any] = type_sequence_label_size
_lowerCAmelCase :Union[str, Any] = encoder_stride
_lowerCAmelCase :Optional[int] = out_features
_lowerCAmelCase :List[str] = out_indices
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase :Dict = None
if self.use_labels:
_lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase :str = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self: int ):
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ):
_lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :List[str] = model(_UpperCAmelCase )
_lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ):
_lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :str = model(_UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
_lowerCAmelCase :Optional[int] = None
_lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :Any = model(_UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ):
_lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :str = model(_UpperCAmelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
_lowerCAmelCase :List[Any] = 1
_lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase :int = model(_UpperCAmelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ):
_lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size
_lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_lowerCAmelCase :Optional[int] = 1
_lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase :List[str] = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Tuple = self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs
_lowerCAmelCase :List[str] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Optional[int] = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase : Optional[Any] = (
{'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase : Tuple = False
lowerCamelCase : Union[str, Any] = False
lowerCamelCase : Union[str, Any] = False
lowerCamelCase : Any = False
lowerCamelCase : List[Any] = False
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Tuple = FocalNetModelTester(self )
_lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
return
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: int ):
_lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
_lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: str ):
_lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@unittest.skip(reason='FocalNet does not use inputs_embeds' )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
pass
@unittest.skip(reason='FocalNet does not use feedforward chunking' )
def SCREAMING_SNAKE_CASE__ ( self: str ):
pass
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
_lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_lowerCAmelCase :Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) )
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
_lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
_lowerCAmelCase :Tuple = model_class(_UpperCAmelCase )
_lowerCAmelCase :Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase :int = [*signature.parameters.keys()]
_lowerCAmelCase :List[str] = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ):
_lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
_lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
_lowerCAmelCase :List[Any] = outputs.hidden_states
_lowerCAmelCase :str = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
# FocalNet has a different seq_length
_lowerCAmelCase :Any = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
_lowerCAmelCase :List[str] = outputs.reshaped_hidden_states
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape
_lowerCAmelCase :Optional[int] = (
reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase :List[str] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
_lowerCAmelCase :Optional[int] = True
self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase :Dict = True
self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
_lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase :str = 3
_lowerCAmelCase :Union[str, Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_lowerCAmelCase :int = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
_lowerCAmelCase :List[str] = True
self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase :Union[str, Any] = True
self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) )
@slow
def SCREAMING_SNAKE_CASE__ ( self: int ):
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase )
for model_class in self.all_model_classes:
_lowerCAmelCase :str = model_class(config=_UpperCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@require_vision
@require_torch
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@cached_property
def SCREAMING_SNAKE_CASE__ ( self: Dict ):
# TODO update organization
return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE__ ( self: Any ):
_lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase )
_lowerCAmelCase :Union[str, Any] = self.default_image_processor
_lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
_lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase :Dict = model(**_UpperCAmelCase )
# verify the logits
_lowerCAmelCase :str = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
_lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 )
@require_torch
class UpperCAmelCase_ (snake_case__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else ()
lowerCamelCase : str = FocalNetConfig
lowerCamelCase : Union[str, Any] = False
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :Any = FocalNetModelTester(self ) | 687 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
A_ : Tuple = {
'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Any = [
'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'GraphormerForGraphClassification',
'GraphormerModel',
'GraphormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
A_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 57 |
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
a = HfApi()
a = {}
# fmt: off
a = torch.tensor([
-0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7,
1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9,
-1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9,
0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7
])
a = torch.tensor([
-2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6,
1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8,
-2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8,
2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5
])
a = torch.tensor([
-0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9,
-0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4,
-0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5,
0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3
])
a = torch.tensor([
0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2,
-0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9,
0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5,
-0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5
])
a = torch.tensor([
0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3,
-0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5,
0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9,
-0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6
])
a = torch.tensor([
0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8,
-0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0,
0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3,
-0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1
])
a = torch.tensor([
0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2,
-0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8,
0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4,
-0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0
])
a = torch.tensor([
0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2,
-0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0,
0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6,
-0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3
])
a = torch.tensor([
-1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0,
1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3,
-2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0,
1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1])
a = torch.tensor([
-1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4,
0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1,
-2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9,
1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6
])
a = torch.tensor([
-1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2,
0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7,
-2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1,
1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5
])
a = torch.tensor([
-2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9,
1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1,
-3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1,
3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6
])
a = torch.tensor([
-2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0,
1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8,
-2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5,
2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3
])
a = torch.tensor([
-2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6,
1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8,
-3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0,
3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3
])
a = torch.tensor([
-1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4,
1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1,
-2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9,
1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9
])
# fmt: on
a = api.list_models(filter="""diffusers""")
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1]
print(F'''Started running {mod.modelId}!!!''')
if mod.modelId.startswith("""CompVis"""):
a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""")
else:
a = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
a = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
a = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3
)
print(F'''{mod.modelId} has passed successfully!!!''') | 687 | 0 |
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 58 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: int ):
_lowerCAmelCase :Optional[int] = 10
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :str = [1, 2, 3, 4]
_lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: int ):
_lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
_lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
_lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
_lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
_lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.'
_lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , [] )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
_lowerCAmelCase :Optional[int] = ''
_lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , [] )
self.assertEqual(_UpperCAmelCase , [] )
def SCREAMING_SNAKE_CASE__ ( self: str ):
_lowerCAmelCase :Optional[Any] = (
'It was the year of Our Lord one thousand seven hundred and '
'seventy-five\n\nSpiritual revelations were conceded to England '
'at that favoured period, as at this.\n@highlight\n\nIt was the best of times'
)
_lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase )
_lowerCAmelCase :Optional[Any] = [
'It was the year of Our Lord one thousand seven hundred and seventy-five.',
'Spiritual revelations were conceded to England at that favoured period, as at this.',
]
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Optional[int] = ['It was the best of times.']
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] )
_lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() )
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
_lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
_lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
_lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() )
def SCREAMING_SNAKE_CASE__ ( self: str ):
_lowerCAmelCase :List[str] = 101
_lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] )
_lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
_lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase )
np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase ) | 687 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__A = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["FNetTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["FNetTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"FNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"FNetForMaskedLM",
"FNetForMultipleChoice",
"FNetForNextSentencePrediction",
"FNetForPreTraining",
"FNetForQuestionAnswering",
"FNetForSequenceClassification",
"FNetForTokenClassification",
"FNetLayer",
"FNetModel",
"FNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 59 |
def UpperCamelCase_( __magic_name__ : int ):
"""simple docstring"""
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print("""Program to check whether a number is a Perfect number or not...""")
a = int(input("""Enter number: """).strip())
print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''') | 687 | 0 |
from __future__ import annotations
lowerCAmelCase_ = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0]
lowerCAmelCase_ = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1]
def lowerCamelCase_ ( _UpperCamelCase ) -> list[float]:
"""simple docstring"""
snake_case_ : List[Any] = []
snake_case_ : Any = len(_UpperCamelCase )
for i in range(_UpperCamelCase ):
snake_case_ : float = -1
for j in range(i + 1 , _UpperCamelCase ):
if arr[i] < arr[j]:
snake_case_ : List[Any] = arr[j]
break
result.append(_UpperCamelCase )
return result
def lowerCamelCase_ ( _UpperCamelCase ) -> list[float]:
"""simple docstring"""
snake_case_ : List[str] = []
for i, outer in enumerate(_UpperCamelCase ):
snake_case_ : float = -1
for inner in arr[i + 1 :]:
if outer < inner:
snake_case_ : int = inner
break
result.append(_UpperCamelCase )
return result
def lowerCamelCase_ ( _UpperCamelCase ) -> list[float]:
"""simple docstring"""
snake_case_ : Tuple = len(_UpperCamelCase )
snake_case_ : list[float] = []
snake_case_ : list[float] = [-1] * arr_size
for index in reversed(range(_UpperCamelCase ) ):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
snake_case_ : Optional[Any] = stack[-1]
stack.append(arr[index] )
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
lowerCAmelCase_ = (
'''from __main__ import arr, next_greatest_element_slow, '''
'''next_greatest_element_fast, next_greatest_element'''
)
print(
'''next_greatest_element_slow():''',
timeit('''next_greatest_element_slow(arr)''', setup=setup),
)
print(
'''next_greatest_element_fast():''',
timeit('''next_greatest_element_fast(arr)''', setup=setup),
)
print(
''' next_greatest_element():''',
timeit('''next_greatest_element(arr)''', setup=setup),
)
| 60 |
from __future__ import annotations
from collections.abc import MutableSequence
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ):
if len(_UpperCAmelCase ) != degree + 1:
raise ValueError(
'The number of coefficients should be equal to the degree + 1.' )
_lowerCAmelCase :list[float] = list(_UpperCAmelCase )
_lowerCAmelCase :Optional[Any] = degree
def __add__( self: str , _UpperCAmelCase: Polynomial ):
if self.degree > polynomial_a.degree:
_lowerCAmelCase :Any = self.coefficients[:]
for i in range(polynomial_a.degree + 1 ):
coefficients[i] += polynomial_a.coefficients[i]
return Polynomial(self.degree , _UpperCAmelCase )
else:
_lowerCAmelCase :List[Any] = polynomial_a.coefficients[:]
for i in range(self.degree + 1 ):
coefficients[i] += self.coefficients[i]
return Polynomial(polynomial_a.degree , _UpperCAmelCase )
def __sub__( self: str , _UpperCAmelCase: Polynomial ):
return self + polynomial_a * Polynomial(0 , [-1] )
def __neg__( self: Union[str, Any] ):
return Polynomial(self.degree , [-c for c in self.coefficients] )
def __mul__( self: int , _UpperCAmelCase: Polynomial ):
_lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1)
for i in range(self.degree + 1 ):
for j in range(polynomial_a.degree + 1 ):
coefficients[i + j] += (
self.coefficients[i] * polynomial_a.coefficients[j]
)
return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ):
_lowerCAmelCase :int | float = 0
for i in range(self.degree + 1 ):
result += self.coefficients[i] * (substitution**i)
return result
def __str__( self: Union[str, Any] ):
_lowerCAmelCase :Dict = ''
for i in range(self.degree , -1 , -1 ):
if self.coefficients[i] == 0:
continue
elif self.coefficients[i] > 0:
if polynomial:
polynomial += " + "
else:
polynomial += " - "
if i == 0:
polynomial += str(abs(self.coefficients[i] ) )
elif i == 1:
polynomial += str(abs(self.coefficients[i] ) ) + "x"
else:
polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase )
return polynomial
def __repr__( self: Optional[Any] ):
return self.__str__()
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
_lowerCAmelCase :list[float] = [0] * self.degree
for i in range(self.degree ):
_lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1)
return Polynomial(self.degree - 1 , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ):
_lowerCAmelCase :list[float] = [0] * (self.degree + 2)
_lowerCAmelCase :str = constant
for i in range(self.degree + 1 ):
_lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1)
return Polynomial(self.degree + 1 , _UpperCAmelCase )
def __eq__( self: List[Any] , _UpperCAmelCase: object ):
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return False
if self.degree != polynomial_a.degree:
return False
for i in range(self.degree + 1 ):
if self.coefficients[i] != polynomial_a.coefficients[i]:
return False
return True
def __ne__( self: Optional[Any] , _UpperCAmelCase: object ):
return not self.__eq__(_UpperCAmelCase ) | 687 | 0 |
UpperCamelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []}
UpperCamelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]}
def _A ( lowerCAmelCase_ : dict[int, list[int]] , lowerCAmelCase_ : int , lowerCAmelCase_ : list[bool] ):
"""simple docstring"""
lowerCAmelCase__ = True
lowerCAmelCase__ = []
for neighbour in graph[vert]:
if not visited[neighbour]:
order += topology_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
order.append(lowerCAmelCase_ )
return order
def _A ( lowerCAmelCase_ : dict[int, list[int]] , lowerCAmelCase_ : int , lowerCAmelCase_ : list[bool] ):
"""simple docstring"""
lowerCAmelCase__ = True
lowerCAmelCase__ = [vert]
for neighbour in reversed_graph[vert]:
if not visited[neighbour]:
component += find_components(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
return component
def _A ( lowerCAmelCase_ : dict[int, list[int]] ):
"""simple docstring"""
lowerCAmelCase__ = len(lowerCAmelCase_ ) * [False]
lowerCAmelCase__ = {vert: [] for vert in range(len(lowerCAmelCase_ ) )}
for vert, neighbours in graph.items():
for neighbour in neighbours:
reversed_graph[neighbour].append(lowerCAmelCase_ )
lowerCAmelCase__ = []
for i, was_visited in enumerate(lowerCAmelCase_ ):
if not was_visited:
order += topology_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
lowerCAmelCase__ = []
lowerCAmelCase__ = len(lowerCAmelCase_ ) * [False]
for i in range(len(lowerCAmelCase_ ) ):
lowerCAmelCase__ = order[len(lowerCAmelCase_ ) - i - 1]
if not visited[vert]:
lowerCAmelCase__ = find_components(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
components_list.append(lowerCAmelCase_ )
return components_list
| 61 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
a = {
"""configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"""GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GPTNeoForCausalLM""",
"""GPTNeoForQuestionAnswering""",
"""GPTNeoForSequenceClassification""",
"""GPTNeoForTokenClassification""",
"""GPTNeoModel""",
"""GPTNeoPreTrainedModel""",
"""load_tf_weights_in_gpt_neo""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"""FlaxGPTNeoForCausalLM""",
"""FlaxGPTNeoModel""",
"""FlaxGPTNeoPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 687 | 0 |
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
snake_case = """bart"""
snake_case = True
@st.cache(allow_output_mutation=lowercase )
def lowerCamelCase__ ( ):
"""simple docstring"""
if LOAD_DENSE_INDEX:
SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" )
SCREAMING_SNAKE_CASE : Optional[int] = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" )
SCREAMING_SNAKE_CASE : Union[str, Any] = qar_model.eval()
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = (None, None)
if MODEL_TYPE == "bart":
SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained("yjernite/bart_eli5" )
SCREAMING_SNAKE_CASE : Dict = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" )
SCREAMING_SNAKE_CASE : List[str] = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" )
sas_model.load_state_dict(save_dict["model"] )
SCREAMING_SNAKE_CASE : List[Any] = sas_model.eval()
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = make_qa_sas_model(
model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=lowercase )
def lowerCamelCase__ ( ):
"""simple docstring"""
if LOAD_DENSE_INDEX:
SCREAMING_SNAKE_CASE : str = faiss.StandardGpuResources()
SCREAMING_SNAKE_CASE : Union[str, Any] = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"]
SCREAMING_SNAKE_CASE : int = np.memmap(
"wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 128) , )
SCREAMING_SNAKE_CASE : Optional[int] = faiss.IndexFlatIP(128 )
SCREAMING_SNAKE_CASE : int = faiss.index_cpu_to_gpu(lowercase , 1 , lowercase )
wikiaab_gpu_index_flat.add(lowercase ) # TODO fix for larger GPU
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = (None, None)
SCREAMING_SNAKE_CASE : List[str] = Elasticsearch([{"host": "localhost", "port": "9200"}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=lowercase )
def lowerCamelCase__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = datasets.load_dataset("eli5" , name="LFQA_reddit" )
SCREAMING_SNAKE_CASE : Any = elia["train_eli5"]
SCREAMING_SNAKE_CASE : Optional[int] = np.memmap(
"eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 128) )
SCREAMING_SNAKE_CASE : Union[str, Any] = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(lowercase )
return (elia_train, eli5_train_q_index)
snake_case , snake_case , snake_case = load_indexes()
snake_case , snake_case , snake_case , snake_case = load_models()
snake_case , snake_case = load_train_data()
def lowerCamelCase__ ( lowercase , lowercase=10 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = embed_questions_for_retrieval([question] , lowercase , lowercase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = eli5_train_q_index.search(lowercase , lowercase )
SCREAMING_SNAKE_CASE : List[str] = [elia_train[int(lowercase )] for i in I[0]]
return nn_examples
def lowerCamelCase__ ( lowercase , lowercase="wiki40b" , lowercase="dense" , lowercase=10 ):
"""simple docstring"""
if source == "none":
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = (" <P> ".join(["" for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = query_qa_dense_index(
lowercase , lowercase , lowercase , lowercase , lowercase , lowercase )
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = query_es_index(
lowercase , lowercase , index_name="english_wiki40b_snippets_100w" , n_results=lowercase , )
SCREAMING_SNAKE_CASE : Union[str, Any] = [
(res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst
]
SCREAMING_SNAKE_CASE : Tuple = "question: {} context: {}".format(lowercase , lowercase )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda lowercase : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowercase : None),
} )
def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase=64 , lowercase=256 , lowercase=False , lowercase=2 , lowercase=0.95 , lowercase=0.8 ):
"""simple docstring"""
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[Any] = qa_sas_generate(
lowercase , lowercase , lowercase , num_answers=1 , num_beams=lowercase , min_len=lowercase , max_len=lowercase , do_sample=lowercase , temp=lowercase , top_p=lowercase , top_k=lowercase , max_input_length=1024 , device="cuda:0" , )[0]
return (answer, support_list)
st.title("""Long Form Question Answering with ELI5""")
# Start sidebar
snake_case = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>"""
snake_case = """
<html>
<head>
<style>
.img-container {
padding-left: 90px;
padding-right: 90px;
padding-top: 50px;
padding-bottom: 50px;
background-color: #f0f3f9;
}
</style>
</head>
<body>
<span class=\"img-container\"> <!-- Inline parent element -->
%s
</span>
</body>
</html>
""" % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
snake_case = """
This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).
First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,
a pre-processed fixed snapshot of Wikipedia.
"""
st.sidebar.markdown(description, unsafe_allow_html=True)
snake_case = [
"""Answer the question""",
"""View the retrieved document only""",
"""View the most similar ELI5 question and answer""",
"""Show me everything, please!""",
]
snake_case = st.sidebar.checkbox("""Demo options""")
if demo_options:
snake_case = st.sidebar.selectbox(
"""""",
action_list,
index=3,
)
snake_case = action_list.index(action_st)
snake_case = st.sidebar.selectbox(
"""""",
["""Show full text of passages""", """Show passage section titles"""],
index=0,
)
snake_case = show_type == """Show full text of passages"""
else:
snake_case = 3
snake_case = True
snake_case = st.sidebar.checkbox("""Retrieval options""")
if retrieval_options:
snake_case = """
### Information retriever options
The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding
trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.
The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.
"""
st.sidebar.markdown(retriever_info)
snake_case = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""])
snake_case = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""])
else:
snake_case = """wiki40b"""
snake_case = """dense"""
snake_case = """beam"""
snake_case = 2
snake_case = 64
snake_case = 256
snake_case = None
snake_case = None
snake_case = st.sidebar.checkbox("""Generation options""")
if generate_options:
snake_case = """
### Answer generation options
The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)
weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with
**beam** search, or **sample** from the decoder's output probabilities.
"""
st.sidebar.markdown(generate_info)
snake_case = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""])
snake_case = st.sidebar.slider(
"""Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
snake_case = st.sidebar.slider(
"""Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
snake_case = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
snake_case = st.sidebar.slider(
"""Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None
)
snake_case = st.sidebar.slider(
"""Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None
)
snake_case = None
# start main text
snake_case = [
"""<MY QUESTION>""",
"""How do people make chocolate?""",
"""Why do we get a fever when we are sick?""",
"""How can different animals perceive different colors?""",
"""What is natural language processing?""",
"""What's the best way to treat a sunburn?""",
"""What exactly are vitamins ?""",
"""How does nuclear energy provide electricity?""",
"""What's the difference between viruses and bacteria?""",
"""Why are flutes classified as woodwinds when most of them are made out of metal ?""",
"""Why do people like drinking coffee even though it tastes so bad?""",
"""What happens when wine ages? How does it make the wine taste better?""",
"""If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""",
"""How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""",
"""How does New Zealand have so many large bird predators?""",
]
snake_case = st.selectbox(
"""What would you like to ask? ---- select <MY QUESTION> to enter a new query""",
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
snake_case = st.text_input("""Enter your question here:""", """""")
else:
snake_case = question_s
if st.button("""Show me!"""):
if action in [0, 1, 3]:
if index_type == "mixed":
snake_case , snake_case = make_support(question, source=wiki_source, method="""dense""", n_results=10)
snake_case , snake_case = make_support(question, source=wiki_source, method="""sparse""", n_results=10)
snake_case = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
snake_case = support_list[:10]
snake_case = """<P> """ + """ <P> """.join([res[-1] for res in support_list])
else:
snake_case , snake_case = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
snake_case , snake_case = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == """sampled"""),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown("""### The model generated answer is:""")
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""")
for i, res in enumerate(support_list):
snake_case = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_"""))
snake_case = res[1].strip()
if sec_titles == "":
snake_case = """[{}]({})""".format(res[0], wiki_url)
else:
snake_case = sec_titles.split(""" & """)
snake_case = """ & """.join(
["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list]
)
st.markdown(
"""{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
"""> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True
)
if action in [2, 3]:
snake_case = find_nearest_training(question)
snake_case = nn_train_list[0]
st.markdown(
"""--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""])
)
snake_case = [
"""{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""]))
for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""]))
if i == 0 or sc > 2
]
st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st)))
snake_case = """
---
**Disclaimer**
*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.
Evaluating biases of such a model and ensuring factual generations are still very much open research problems.
Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*
"""
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 62 |
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ):
"""simple docstring"""
_lowerCAmelCase :Optional[Any] = a
while True:
_lowerCAmelCase :str = Decimal(__magic_name__ ) - (
Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(__magic_name__ ) ) < precision: # noqa: S307
return float(__magic_name__ )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''')
# Find root of polynomial
print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''')
# Find Square Root of 5
print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''')
# Exponential Roots
print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''') | 687 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
a : str = {
"configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[int] = [
"ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
"ErnieForCausalLM",
"ErnieForMaskedLM",
"ErnieForMultipleChoice",
"ErnieForNextSentencePrediction",
"ErnieForPreTraining",
"ErnieForQuestionAnswering",
"ErnieForSequenceClassification",
"ErnieForTokenClassification",
"ErnieModel",
"ErniePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ernie import (
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
ErnieForCausalLM,
ErnieForMaskedLM,
ErnieForMultipleChoice,
ErnieForNextSentencePrediction,
ErnieForPreTraining,
ErnieForQuestionAnswering,
ErnieForSequenceClassification,
ErnieForTokenClassification,
ErnieModel,
ErniePreTrainedModel,
)
else:
import sys
a : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 63 |
import argparse
import os
import torch
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
a = {
"""sample_size""": 32,
"""in_channels""": 3,
"""out_channels""": 3,
"""layers_per_block""": 2,
"""num_class_embeds""": 1_000,
"""block_out_channels""": [32, 64],
"""attention_head_dim""": 8,
"""down_block_types""": [
"""ResnetDownsampleBlock2D""",
"""AttnDownBlock2D""",
],
"""up_block_types""": [
"""AttnUpBlock2D""",
"""ResnetUpsampleBlock2D""",
],
"""resnet_time_scale_shift""": """scale_shift""",
"""upsample_type""": """resnet""",
"""downsample_type""": """resnet""",
}
a = {
"""sample_size""": 64,
"""in_channels""": 3,
"""out_channels""": 3,
"""layers_per_block""": 3,
"""num_class_embeds""": 1_000,
"""block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4],
"""attention_head_dim""": 64,
"""down_block_types""": [
"""ResnetDownsampleBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
],
"""up_block_types""": [
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""ResnetUpsampleBlock2D""",
],
"""resnet_time_scale_shift""": """scale_shift""",
"""upsample_type""": """resnet""",
"""downsample_type""": """resnet""",
}
a = {
"""sample_size""": 256,
"""in_channels""": 3,
"""out_channels""": 3,
"""layers_per_block""": 2,
"""num_class_embeds""": None,
"""block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4],
"""attention_head_dim""": 64,
"""down_block_types""": [
"""ResnetDownsampleBlock2D""",
"""ResnetDownsampleBlock2D""",
"""ResnetDownsampleBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
],
"""up_block_types""": [
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""ResnetUpsampleBlock2D""",
"""ResnetUpsampleBlock2D""",
"""ResnetUpsampleBlock2D""",
],
"""resnet_time_scale_shift""": """default""",
"""upsample_type""": """resnet""",
"""downsample_type""": """resnet""",
}
a = {
"""num_train_timesteps""": 40,
"""sigma_min""": 0.0_0_2,
"""sigma_max""": 8_0.0,
}
a = {
"""num_train_timesteps""": 201,
"""sigma_min""": 0.0_0_2,
"""sigma_max""": 8_0.0,
}
a = {
"""num_train_timesteps""": 151,
"""sigma_min""": 0.0_0_2,
"""sigma_max""": 8_0.0,
}
def UpperCamelCase_( __magic_name__ : Dict ):
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError('boolean value expected' )
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ):
"""simple docstring"""
_lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""]
_lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""]
_lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""]
_lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""]
_lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""]
_lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""]
_lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""]
_lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""]
_lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""]
_lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""]
if has_skip:
_lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""]
_lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""]
return new_checkpoint
def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ):
"""simple docstring"""
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 )
_lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""]
_lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""]
_lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :int = (
checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 )
)
_lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 )
return new_checkpoint
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ):
"""simple docstring"""
_lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' )
_lowerCAmelCase :List[Any] = {}
_lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight']
_lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias']
_lowerCAmelCase :Dict = checkpoint['time_embed.2.weight']
_lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias']
if unet_config["num_class_embeds"] is not None:
_lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight']
_lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight']
_lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias']
_lowerCAmelCase :List[Any] = unet_config['down_block_types']
_lowerCAmelCase :Any = unet_config['layers_per_block']
_lowerCAmelCase :List[Any] = unet_config['attention_head_dim']
_lowerCAmelCase :Tuple = unet_config['block_out_channels']
_lowerCAmelCase :List[str] = 1
_lowerCAmelCase :Optional[int] = channels_list[0]
for i, layer_type in enumerate(__magic_name__ ):
_lowerCAmelCase :Tuple = channels_list[i]
_lowerCAmelCase :Optional[Any] = current_channels != prev_channels
if layer_type == "ResnetDownsampleBlock2D":
for j in range(__magic_name__ ):
_lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}"""
_lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0"""
_lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False
_lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ )
current_layer += 1
elif layer_type == "AttnDownBlock2D":
for j in range(__magic_name__ ):
_lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}"""
_lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0"""
_lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False
_lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ )
_lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}"""
_lowerCAmelCase :str = f"""input_blocks.{current_layer}.1"""
_lowerCAmelCase :Optional[Any] = convert_attention(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
current_layer += 1
if i != len(__magic_name__ ) - 1:
_lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0"""
_lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0"""
_lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
current_layer += 1
_lowerCAmelCase :Dict = current_channels
# hardcoded the mid-block for now
_lowerCAmelCase :int = 'mid_block.resnets.0'
_lowerCAmelCase :Optional[Any] = 'middle_block.0'
_lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
_lowerCAmelCase :Optional[int] = 'mid_block.attentions.0'
_lowerCAmelCase :Optional[int] = 'middle_block.1'
_lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
_lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1'
_lowerCAmelCase :Optional[int] = 'middle_block.2'
_lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
_lowerCAmelCase :Tuple = 0
_lowerCAmelCase :str = unet_config['up_block_types']
for i, layer_type in enumerate(__magic_name__ ):
if layer_type == "ResnetUpsampleBlock2D":
for j in range(layers_per_block + 1 ):
_lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}"""
_lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0"""
_lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ )
current_layer += 1
if i != len(__magic_name__ ) - 1:
_lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0"""
_lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1"""
_lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
elif layer_type == "AttnUpBlock2D":
for j in range(layers_per_block + 1 ):
_lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}"""
_lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0"""
_lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ )
_lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}"""
_lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1"""
_lowerCAmelCase :int = convert_attention(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
current_layer += 1
if i != len(__magic_name__ ) - 1:
_lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0"""
_lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2"""
_lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
_lowerCAmelCase :str = checkpoint['out.0.weight']
_lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias']
_lowerCAmelCase :List[Any] = checkpoint['out.2.weight']
_lowerCAmelCase :Dict = checkpoint['out.2.bias']
return new_checkpoint
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""")
parser.add_argument(
"""--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model."""
)
parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""")
a = parser.parse_args()
a = strabool(args.class_cond)
a = os.path.basename(args.unet_path)
print(F'''Checkpoint: {ckpt_name}''')
# Get U-Net config
if "imagenet64" in ckpt_name:
a = IMAGENET_64_UNET_CONFIG
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
a = LSUN_256_UNET_CONFIG
elif "test" in ckpt_name:
a = TEST_UNET_CONFIG
else:
raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''')
if not args.class_cond:
a = None
a = con_pt_to_diffuser(args.unet_path, unet_config)
a = UNetaDModel(**unet_config)
image_unet.load_state_dict(converted_unet_ckpt)
# Get scheduler config
if "cd" in ckpt_name or "test" in ckpt_name:
a = CD_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "imagenet64" in ckpt_name:
a = CT_IMAGENET_64_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
a = CT_LSUN_256_SCHEDULER_CONFIG
else:
raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''')
a = CMStochasticIterativeScheduler(**scheduler_config)
a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler)
consistency_model.save_pretrained(args.dump_path) | 687 | 0 |
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
StableDiffusionControlNetImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
__a = StableDiffusionControlNetImgaImgPipeline
__a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
__a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__a = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} )
__a = IMAGE_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase_ ( self ) -> str:
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__: int= UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__: str= ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__: str= DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__: List[str]= AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__: List[Any]= CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
SCREAMING_SNAKE_CASE__: List[str]= CLIPTextModel(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: int= CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
SCREAMING_SNAKE_CASE__: Union[str, Any]= {
'''unet''': unet,
'''controlnet''': controlnet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase=0 ) -> Optional[Any]:
if str(lowerCAmelCase ).startswith('''mps''' ):
SCREAMING_SNAKE_CASE__: Optional[int]= torch.manual_seed(lowerCAmelCase )
else:
SCREAMING_SNAKE_CASE__: Union[str, Any]= torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: int= 2
SCREAMING_SNAKE_CASE__: Tuple= randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase , device=torch.device(lowerCAmelCase ) , )
SCREAMING_SNAKE_CASE__: int= floats_tensor(control_image.shape , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: Optional[int]= image.cpu().permute(0 , 2 , 3 , 1 )[0]
SCREAMING_SNAKE_CASE__: str= Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('''RGB''' ).resize((64, 64) )
SCREAMING_SNAKE_CASE__: Tuple= {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
'''image''': image,
'''control_image''': control_image,
}
return inputs
def UpperCamelCase_ ( self ) -> Tuple:
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def UpperCamelCase_ ( self ) -> Dict:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 )
def UpperCamelCase_ ( self ) -> str:
self._test_inference_batch_single_identical(expected_max_diff=2e-3 )
class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
__a = StableDiffusionControlNetImgaImgPipeline
__a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
__a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__a = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def UpperCamelCase_ ( self ) -> Dict:
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__: int= UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
torch.manual_seed(0 )
def init_weights(lowerCAmelCase ):
if isinstance(lowerCAmelCase , torch.nn.Convad ):
torch.nn.init.normal(m.weight )
m.bias.data.fill_(1.0 )
SCREAMING_SNAKE_CASE__: Any= ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(lowerCAmelCase )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__: Tuple= ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(lowerCAmelCase )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__: Tuple= DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__: Tuple= AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__: Optional[int]= CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
SCREAMING_SNAKE_CASE__: Any= CLIPTextModel(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: List[str]= CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
SCREAMING_SNAKE_CASE__: Dict= MultiControlNetModel([controlneta, controlneta] )
SCREAMING_SNAKE_CASE__: int= {
'''unet''': unet,
'''controlnet''': controlnet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase=0 ) -> List[Any]:
if str(lowerCAmelCase ).startswith('''mps''' ):
SCREAMING_SNAKE_CASE__: str= torch.manual_seed(lowerCAmelCase )
else:
SCREAMING_SNAKE_CASE__: Optional[int]= torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: Any= 2
SCREAMING_SNAKE_CASE__: Tuple= [
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase , device=torch.device(lowerCAmelCase ) , ),
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase , device=torch.device(lowerCAmelCase ) , ),
]
SCREAMING_SNAKE_CASE__: Union[str, Any]= floats_tensor(control_image[0].shape , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: Dict= image.cpu().permute(0 , 2 , 3 , 1 )[0]
SCREAMING_SNAKE_CASE__: Union[str, Any]= Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('''RGB''' ).resize((64, 64) )
SCREAMING_SNAKE_CASE__: int= {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
'''image''': image,
'''control_image''': control_image,
}
return inputs
def UpperCamelCase_ ( self ) -> List[Any]:
SCREAMING_SNAKE_CASE__: List[Any]= self.get_dummy_components()
SCREAMING_SNAKE_CASE__: str= self.pipeline_class(**lowerCAmelCase )
pipe.to(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: List[Any]= 10.0
SCREAMING_SNAKE_CASE__: Any= 4
SCREAMING_SNAKE_CASE__: Optional[Any]= self.get_dummy_inputs(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: int= steps
SCREAMING_SNAKE_CASE__: int= scale
SCREAMING_SNAKE_CASE__: List[Any]= pipe(**lowerCAmelCase )[0]
SCREAMING_SNAKE_CASE__: Tuple= self.get_dummy_inputs(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: Dict= steps
SCREAMING_SNAKE_CASE__: List[Any]= scale
SCREAMING_SNAKE_CASE__: int= pipe(**lowerCAmelCase , control_guidance_start=0.1 , control_guidance_end=0.2 )[0]
SCREAMING_SNAKE_CASE__: Dict= self.get_dummy_inputs(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: List[str]= steps
SCREAMING_SNAKE_CASE__: List[Any]= scale
SCREAMING_SNAKE_CASE__: str= pipe(**lowerCAmelCase , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0]
SCREAMING_SNAKE_CASE__: Optional[int]= self.get_dummy_inputs(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: int= steps
SCREAMING_SNAKE_CASE__: int= scale
SCREAMING_SNAKE_CASE__: Any= pipe(**lowerCAmelCase , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_a - output_a ) ) > 1e-3
assert np.sum(np.abs(output_a - output_a ) ) > 1e-3
assert np.sum(np.abs(output_a - output_a ) ) > 1e-3
def UpperCamelCase_ ( self ) -> int:
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def UpperCamelCase_ ( self ) -> Dict:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 )
def UpperCamelCase_ ( self ) -> Union[str, Any]:
self._test_inference_batch_single_identical(expected_max_diff=2e-3 )
def UpperCamelCase_ ( self ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__: Any= self.get_dummy_components()
SCREAMING_SNAKE_CASE__: Union[str, Any]= self.pipeline_class(**lowerCAmelCase )
pipe.to(lowerCAmelCase )
pipe.set_progress_bar_config(disable=lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(lowerCAmelCase )
except NotImplementedError:
pass
@slow
@require_torch_gpu
class _lowerCamelCase ( unittest.TestCase ):
def UpperCamelCase_ ( self ) -> Dict:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self ) -> Tuple:
SCREAMING_SNAKE_CASE__: Optional[int]= ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' )
SCREAMING_SNAKE_CASE__: Tuple= StableDiffusionControlNetImgaImgPipeline.from_pretrained(
'''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCAmelCase , controlnet=lowerCAmelCase )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=lowerCAmelCase )
SCREAMING_SNAKE_CASE__: Tuple= torch.Generator(device='''cpu''' ).manual_seed(0 )
SCREAMING_SNAKE_CASE__: List[Any]= '''evil space-punk bird'''
SCREAMING_SNAKE_CASE__: List[str]= load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) )
SCREAMING_SNAKE_CASE__: List[Any]= load_image(
'''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) )
SCREAMING_SNAKE_CASE__: Optional[Any]= pipe(
lowerCAmelCase , lowerCAmelCase , control_image=lowerCAmelCase , generator=lowerCAmelCase , output_type='''np''' , num_inference_steps=50 , strength=0.6 , )
SCREAMING_SNAKE_CASE__: Union[str, Any]= output.images[0]
assert image.shape == (512, 512, 3)
SCREAMING_SNAKE_CASE__: str= load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' )
assert np.abs(expected_image - image ).max() < 9e-2
| 64 |
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
a = """ \"\"\"
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"\"\"
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
"""
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: Dict ):
_lowerCAmelCase :Optional[Any] = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) )
_lowerCAmelCase :Tuple = self.diffusers_dir
shutil.copy(
os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :str = 'src/diffusers'
shutil.rmtree(self.diffusers_dir )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ):
_lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code
if overwrite_result is not None:
_lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result
_lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
_lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase )
_lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' )
with open(_UpperCAmelCase , 'w' , newline='\n' ) as f:
f.write(_UpperCAmelCase )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase )
with open(_UpperCAmelCase , 'r' ) as f:
self.assertTrue(f.read() , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
_lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
# Base copy consistency
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , )
# With no empty line at the end
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , )
# Copy consistency with rename
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
# Copy consistency with a really long name
_lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'
self.check_copy_consistency(
f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) | 687 | 0 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __lowercase ( __lowerCamelCase ):
def __init__( self : Optional[Any] ,A : str ,A : Tuple ):
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
UpperCAmelCase__ : Any = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=A ,scheduler=A )
@torch.no_grad()
def __call__( self : List[Any] ,A : int = 1 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : float = 0.0 ,A : int = 50 ,A : Optional[bool] = None ,A : Optional[str] = "pil" ,A : bool = True ,):
'''simple docstring'''
# Sample gaussian noise to begin loop
if isinstance(self.unet.config.sample_size ,A ):
UpperCAmelCase__ : Optional[int] = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
UpperCAmelCase__ : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(A ,A ) and len(A ) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(A )}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators." )
UpperCAmelCase__ : Optional[Any] = randn_tensor(A ,generator=A ,device=self.device ,dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(A )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
UpperCAmelCase__ : Tuple = self.unet(A ,A ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
UpperCAmelCase__ : Tuple = self.scheduler.step(
A ,A ,A ,eta=A ,use_clipped_model_output=A ,generator=A ).prev_sample
UpperCAmelCase__ : Optional[Any] = (image / 2 + 0.5).clamp(0 ,1 )
UpperCAmelCase__ : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).numpy()
if output_type == "pil":
UpperCAmelCase__ : List[str] = self.numpy_to_pil(A )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A )
| 65 |
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} )
lowerCamelCase : Optional[str] = field(
default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} )
lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} )
lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} )
lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} )
lowerCamelCase : Optional[int] = field(
default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} )
lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} )
lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} )
lowerCamelCase : Optional[int] = field(
default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} )
lowerCamelCase : Optional[int] = field(
default=16 , metadata={'help': 'Number of gradient accumulation steps.'} )
lowerCamelCase : Optional[bool] = field(
default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} )
lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} )
lowerCamelCase : Optional[int] = field(
default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} )
lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} )
lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} )
lowerCamelCase : Optional[int] = field(
default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , )
lowerCamelCase : Optional[str] = field(
default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} )
lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} )
lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} )
lowerCamelCase : Optional[int] = field(
default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} )
lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} )
lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} )
lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} )
lowerCamelCase : Optional[int] = field(
default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , )
lowerCamelCase : Optional[bool] = field(
default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} )
lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} )
lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} )
lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} )
lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} )
lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} )
lowerCamelCase : Optional[int] = field(
default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} )
lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} )
lowerCamelCase : Optional[str] = field(
default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} )
lowerCamelCase : Optional[str] = field(
default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} )
lowerCamelCase : Optional[int] = field(
default=-1 , metadata={
'help': (
'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive'
' number corresponds to which GPU device id to run on.'
)
} , )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[int] = field(
default=snake_case__ , metadata={
'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.'
} , )
lowerCamelCase : Optional[str] = field(
default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} )
lowerCamelCase : Optional[int] = field(
default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} )
lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} )
lowerCamelCase : Optional[float] = field(
default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} )
lowerCamelCase : Optional[float] = field(
default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} )
lowerCamelCase : Optional[float] = field(
default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} )
lowerCamelCase : Optional[float] = field(
default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} )
lowerCamelCase : Optional[float] = field(
default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , )
lowerCamelCase : Optional[bool] = field(
default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} )
lowerCamelCase : Optional[float] = field(
default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} )
lowerCamelCase : Optional[str] = field(
default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} )
lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} )
lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} )
lowerCamelCase : Optional[int] = field(
default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} )
lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} )
lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} )
lowerCamelCase : Optional[str] = field(
default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} )
lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} )
lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} )
lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) | 687 | 0 |
def __magic_name__ ( SCREAMING_SNAKE_CASE = 50 ) -> int:
_lowercase : Optional[int] = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 66 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :List[str] = 'ylacombe/bark-small'
_lowerCAmelCase :int = tempfile.mkdtemp()
_lowerCAmelCase :List[str] = 'en_speaker_1'
_lowerCAmelCase :Union[str, Any] = 'This is a test string'
_lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json'
_lowerCAmelCase :str = 'speaker_embeddings'
def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ):
return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase :List[Any] = self.get_tokenizer()
_lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
_lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
_lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
_lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
_lowerCAmelCase :Any = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Tuple = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
_lowerCAmelCase :List[Any] = 35
_lowerCAmelCase :Optional[int] = 2
_lowerCAmelCase :Dict = 8
_lowerCAmelCase :Dict = {
'semantic_prompt': np.ones(_UpperCAmelCase ),
'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ),
'fine_prompt': np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
_lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
_lowerCAmelCase :List[Any] = inputs['history_prompt']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from npz file
_lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' )
np.savez(_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
_lowerCAmelCase :Optional[int] = inputs['history_prompt']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from the hub
_lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :Tuple = self.get_tokenizer()
_lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase )
_lowerCAmelCase :List[Any] = processor(text=self.input_string )
_lowerCAmelCase :List[str] = tokenizer(
self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() ) | 687 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
snake_case = logging.get_logger(__name__)
snake_case = {
"""google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""",
"""google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""",
"""google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""",
# See all BigBird models at https://huggingface.co/models?filter=big_bird
}
class A_ ( UpperCAmelCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = '''big_bird'''
def __init__( self : str ,__A : Union[str, Any]=5_0358 ,__A : Any=768 ,__A : List[str]=12 ,__A : Union[str, Any]=12 ,__A : int=3072 ,__A : Tuple="gelu_new" ,__A : Any=0.1 ,__A : Optional[Any]=0.1 ,__A : Tuple=4096 ,__A : int=2 ,__A : Union[str, Any]=0.02 ,__A : Optional[int]=1e-12 ,__A : List[str]=True ,__A : List[Any]=0 ,__A : Optional[Any]=1 ,__A : Optional[int]=2 ,__A : Optional[int]=66 ,__A : Tuple="block_sparse" ,__A : Optional[int]=True ,__A : Optional[int]=False ,__A : Tuple=64 ,__A : str=3 ,__A : Optional[int]=None ,**__A : Dict ,) -> Union[str, Any]:
super().__init__(
pad_token_id=__A ,bos_token_id=__A ,eos_token_id=__A ,sep_token_id=__A ,**__A ,)
_lowercase = vocab_size
_lowercase = max_position_embeddings
_lowercase = hidden_size
_lowercase = num_hidden_layers
_lowercase = num_attention_heads
_lowercase = intermediate_size
_lowercase = hidden_act
_lowercase = hidden_dropout_prob
_lowercase = attention_probs_dropout_prob
_lowercase = initializer_range
_lowercase = type_vocab_size
_lowercase = layer_norm_eps
_lowercase = use_cache
_lowercase = rescale_embeddings
_lowercase = attention_type
_lowercase = use_bias
_lowercase = block_size
_lowercase = num_random_blocks
_lowercase = classifier_dropout
class A_ ( UpperCAmelCase ):
"""simple docstring"""
@property
def __UpperCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_lowercase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_lowercase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] ) | 67 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""",
"""bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""",
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""",
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""",
"""bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json"""
),
"""wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""",
# See all BERT models at https://huggingface.co/models?filter=bert
}
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
lowerCamelCase : int = 'bert'
def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ):
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :List[Any] = vocab_size
_lowerCAmelCase :Tuple = hidden_size
_lowerCAmelCase :Dict = num_hidden_layers
_lowerCAmelCase :Optional[Any] = num_attention_heads
_lowerCAmelCase :List[Any] = hidden_act
_lowerCAmelCase :int = intermediate_size
_lowerCAmelCase :Tuple = hidden_dropout_prob
_lowerCAmelCase :Tuple = attention_probs_dropout_prob
_lowerCAmelCase :List[Any] = max_position_embeddings
_lowerCAmelCase :Dict = type_vocab_size
_lowerCAmelCase :Any = initializer_range
_lowerCAmelCase :int = layer_norm_eps
_lowerCAmelCase :List[Any] = position_embedding_type
_lowerCAmelCase :int = use_cache
_lowerCAmelCase :Union[str, Any] = classifier_dropout
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
if self.task == "multiple-choice":
_lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] ) | 687 | 0 |
import flax.linen as nn
import jax
import jax.numpy as jnp
class _A ( nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def _a ( self : Union[str, Any] ) -> List[Any]:
__UpperCAmelCase =nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : Any , __SCREAMING_SNAKE_CASE : List[Any] ) -> str:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =hidden_states.shape
__UpperCAmelCase =jax.image.resize(
__SCREAMING_SNAKE_CASE , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , )
__UpperCAmelCase =self.conv(__SCREAMING_SNAKE_CASE )
return hidden_states
class _A ( nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def _a ( self : List[str] ) -> Any:
__UpperCAmelCase =nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : Any , __SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
__UpperCAmelCase =self.conv(__SCREAMING_SNAKE_CASE )
return hidden_states
class _A ( nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : int = None
lowerCamelCase : float = 0.0
lowerCamelCase : bool = None
lowerCamelCase : jnp.dtype = jnp.floataa
def _a ( self : Union[str, Any] ) -> Tuple:
__UpperCAmelCase =self.in_channels if self.out_channels is None else self.out_channels
__UpperCAmelCase =nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
__UpperCAmelCase =nn.Conv(
__SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__UpperCAmelCase =nn.Dense(__SCREAMING_SNAKE_CASE , dtype=self.dtype )
__UpperCAmelCase =nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
__UpperCAmelCase =nn.Dropout(self.dropout_prob )
__UpperCAmelCase =nn.Conv(
__SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__UpperCAmelCase =self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__UpperCAmelCase =None
if use_nin_shortcut:
__UpperCAmelCase =nn.Conv(
__SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , )
def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict=True ) -> Dict:
__UpperCAmelCase =hidden_states
__UpperCAmelCase =self.norma(__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =nn.swish(__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =self.conva(__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =self.time_emb_proj(nn.swish(__SCREAMING_SNAKE_CASE ) )
__UpperCAmelCase =jnp.expand_dims(jnp.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , 1 )
__UpperCAmelCase =hidden_states + temb
__UpperCAmelCase =self.norma(__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =nn.swish(__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =self.dropout(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
__UpperCAmelCase =self.conva(__SCREAMING_SNAKE_CASE )
if self.conv_shortcut is not None:
__UpperCAmelCase =self.conv_shortcut(__SCREAMING_SNAKE_CASE )
return hidden_states + residual
| 68 |
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ):
"""simple docstring"""
if isinstance(__magic_name__ , torch.Tensor ):
return image
elif isinstance(__magic_name__ , PIL.Image.Image ):
_lowerCAmelCase :Tuple = [image]
if isinstance(image[0] , PIL.Image.Image ):
_lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image]
_lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 )
_lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0
_lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 )
_lowerCAmelCase :int = 2.0 * image - 1.0
_lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ )
elif isinstance(image[0] , torch.Tensor ):
_lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 )
return image
def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ):
"""simple docstring"""
if not isinstance(__magic_name__ , np.ndarray ):
_lowerCAmelCase :Tuple = True
_lowerCAmelCase :str = va.device
_lowerCAmelCase :List[str] = va.cpu().numpy()
_lowerCAmelCase :List[str] = va.cpu().numpy()
_lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) )
if np.abs(__magic_name__ ) > DOT_THRESHOLD:
_lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va
else:
_lowerCAmelCase :int = np.arccos(__magic_name__ )
_lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ )
_lowerCAmelCase :Union[str, Any] = theta_a * t
_lowerCAmelCase :str = np.sin(__magic_name__ )
_lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a
_lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a
_lowerCAmelCase :List[Any] = sa * va + sa * va
if inputs_are_torch:
_lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ )
return va
def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
_lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 )
_lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 )
return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 )
def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
for param in model.parameters():
_lowerCAmelCase :List[str] = value
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ):
super().__init__()
self.register_modules(
vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , )
_lowerCAmelCase :int = (
feature_extractor.size
if isinstance(feature_extractor.size , _UpperCAmelCase )
else feature_extractor.size['shortest_edge']
)
_lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std )
set_requires_grad(self.text_encoder , _UpperCAmelCase )
set_requires_grad(self.clip_model , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
_lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
self.enable_attention_slicing(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
set_requires_grad(self.vae , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
set_requires_grad(self.vae , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
set_requires_grad(self.unet , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
set_requires_grad(self.unet , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ):
# get the original timestep using init_timestep
_lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase )
_lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 )
_lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ):
if not isinstance(_UpperCAmelCase , torch.Tensor ):
raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" )
_lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_lowerCAmelCase :List[Any] = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase )
]
_lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 )
else:
_lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents
_lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 )
_lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase )
# get latents
_lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :List[str] = init_latents
return latents
def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ):
_lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
_lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) )
_lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' )
def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ):
_lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase )
_lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half()
_lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase )
_lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase )
_lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ):
_lowerCAmelCase :Dict = latents.detach().requires_grad_()
_lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
# predict the noise residual
_lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
_lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep]
_lowerCAmelCase :Optional[int] = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
_lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase )
_lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , _UpperCAmelCase ):
_lowerCAmelCase :Dict = self.scheduler.sigmas[index]
_lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred
else:
raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample
_lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample
_lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 )
_lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase )
_lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype )
_lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase )
_lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase )
_lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale
_lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0]
if isinstance(self.scheduler , _UpperCAmelCase ):
_lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2)
_lowerCAmelCase :Dict = noise_pred_original
else:
_lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ):
if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size:
raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1:
_lowerCAmelCase :int = [generator] + [None] * (batch_size - 1)
_lowerCAmelCase :List[Any] = [
('model', self.coca_model is None),
('tokenizer', self.coca_tokenizer is None),
('transform', self.coca_transform is None),
]
_lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]]
_lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(_UpperCAmelCase ):
raise ValueError(
f"""Content prompt is None and CoCa [{coca_is_none_str}] is None."""
f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
_lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase )
if style_prompt is None:
if len(_UpperCAmelCase ):
raise ValueError(
f"""Style prompt is None and CoCa [{coca_is_none_str}] is None."""
f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
_lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase )
# get prompt text embeddings for content and style
_lowerCAmelCase :Any = self.tokenizer(
_UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , )
_lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
_lowerCAmelCase :int = self.tokenizer(
_UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , )
_lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
_lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# duplicate text embeddings for each generation per prompt
_lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 )
# set timesteps
_lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
_lowerCAmelCase :Dict = {}
if accepts_offset:
_lowerCAmelCase :Optional[int] = 1
self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
_lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device )
_lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase )
# Preprocess image
_lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :int = self.prepare_latents(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase )
_lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Union[str, Any] = self.prepare_latents(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase )
_lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if clip_guidance_scale > 0:
_lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Any = slerp(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
_lowerCAmelCase :int = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
_lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1]
_lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' )
_lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
_lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
_lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
_lowerCAmelCase :Optional[Any] = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
_lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to(
self.device )
else:
_lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase )
else:
if latents.shape != latents_shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
_lowerCAmelCase :int = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
_lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
_lowerCAmelCase :Any = {}
if accepts_eta:
_lowerCAmelCase :Any = eta
# check if the scheduler accepts generator
_lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
_lowerCAmelCase :List[Any] = generator
with self.progress_bar(total=_UpperCAmelCase ):
for i, t in enumerate(_UpperCAmelCase ):
# expand the latents if we are doing classifier free guidance
_lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
# predict the noise residual
_lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
_lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 )
_lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
_lowerCAmelCase :List[Any] = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
_lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , )
# compute the previous noisy sample x_t -> x_t-1
_lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents
_lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample
_lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 )
_lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase ) | 687 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
def __UpperCAmelCase ( _UpperCAmelCase : int ) -> list[int]:
if num <= 0:
__snake_case = F'''{num}: Invalid input, please enter a positive integer.'''
raise ValueError(_UpperCAmelCase )
__snake_case = [True] * (num + 1)
__snake_case = []
__snake_case = 2
__snake_case = int(math.sqrt(_UpperCAmelCase ) )
while start <= end:
# If start is a prime
if sieve[start] is True:
prime.append(_UpperCAmelCase )
# Set multiples of start be False
for i in range(start * start , num + 1 , _UpperCAmelCase ):
if sieve[i] is True:
__snake_case = False
start += 1
for j in range(end + 1 , num + 1 ):
if sieve[j] is True:
prime.append(_UpperCAmelCase )
return prime
if __name__ == "__main__":
print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
| 69 |
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ):
"""simple docstring"""
_lowerCAmelCase :Optional[int] = list(__magic_name__ )
_lowerCAmelCase :Dict = list(__magic_name__ )
_lowerCAmelCase :Any = 0
for i in range(len(__magic_name__ ) ):
if lista[i] != lista[i]:
count += 1
_lowerCAmelCase :Union[str, Any] = '_'
if count > 1:
return False
else:
return "".join(__magic_name__ )
def UpperCamelCase_( __magic_name__ : list[str] ):
"""simple docstring"""
_lowerCAmelCase :int = []
while True:
_lowerCAmelCase :str = ['$'] * len(__magic_name__ )
_lowerCAmelCase :Optional[int] = []
for i in range(len(__magic_name__ ) ):
for j in range(i + 1 , len(__magic_name__ ) ):
_lowerCAmelCase :int = compare_string(binary[i] , binary[j] )
if k is False:
_lowerCAmelCase :str = '*'
_lowerCAmelCase :Union[str, Any] = '*'
temp.append('X' )
for i in range(len(__magic_name__ ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(__magic_name__ ) == 0:
return pi
_lowerCAmelCase :Any = list(set(__magic_name__ ) )
def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ):
"""simple docstring"""
_lowerCAmelCase :str = []
for minterm in minterms:
_lowerCAmelCase :Any = ''
for _ in range(__magic_name__ ):
_lowerCAmelCase :Tuple = str(minterm % 2 ) + string
minterm //= 2
temp.append(__magic_name__ )
return temp
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ):
"""simple docstring"""
_lowerCAmelCase :Optional[Any] = list(__magic_name__ )
_lowerCAmelCase :List[Any] = list(__magic_name__ )
_lowerCAmelCase :Optional[Any] = 0
for i in range(len(__magic_name__ ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ):
"""simple docstring"""
_lowerCAmelCase :str = []
_lowerCAmelCase :List[str] = [0] * len(__magic_name__ )
for i in range(len(chart[0] ) ):
_lowerCAmelCase :Dict = 0
_lowerCAmelCase :Optional[Any] = -1
for j in range(len(__magic_name__ ) ):
if chart[j][i] == 1:
count += 1
_lowerCAmelCase :List[Any] = j
if count == 1:
_lowerCAmelCase :Dict = 1
for i in range(len(__magic_name__ ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(__magic_name__ ) ):
_lowerCAmelCase :Dict = 0
temp.append(prime_implicants[i] )
while True:
_lowerCAmelCase :Dict = 0
_lowerCAmelCase :Any = -1
_lowerCAmelCase :Optional[Any] = 0
for i in range(len(__magic_name__ ) ):
_lowerCAmelCase :str = chart[i].count(1 )
if count_n > max_n:
_lowerCAmelCase :Optional[Any] = count_n
_lowerCAmelCase :Dict = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(__magic_name__ ) ):
_lowerCAmelCase :str = 0
def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ):
"""simple docstring"""
_lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )]
for i in range(len(__magic_name__ ) ):
_lowerCAmelCase :Tuple = prime_implicants[i].count('_' )
for j in range(len(__magic_name__ ) ):
if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ):
_lowerCAmelCase :str = 1
return chart
def UpperCamelCase_( ):
"""simple docstring"""
_lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) )
_lowerCAmelCase :Tuple = [
float(__magic_name__ )
for x in input(
'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split()
]
_lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ )
_lowerCAmelCase :Any = check(__magic_name__ )
print('Prime Implicants are:' )
print(__magic_name__ )
_lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ )
_lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ )
print('Essential Prime Implicants are:' )
print(__magic_name__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main() | 687 | 0 |
def _SCREAMING_SNAKE_CASE ( lowercase : int = 50_00_00_00 ):
'''simple docstring'''
lowerCamelCase_ = set()
lowerCamelCase_ = int((limit - 24) ** (1 / 2) )
lowerCamelCase_ = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) )
for primea in primes:
lowerCamelCase_ = primea * primea
for primea in primes:
lowerCamelCase_ = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
lowerCamelCase_ = primea * primea * primea * primea
lowerCamelCase_ = square + cube + tetr
if total >= limit:
break
ret.add(lowercase )
return len(lowercase )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 70 |
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
a = """\
@INPROCEEDINGS{Papineni02bleu:a,
author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},
title = {BLEU: a Method for Automatic Evaluation of Machine Translation},
booktitle = {},
year = {2002},
pages = {311--318}
}
@inproceedings{lin-och-2004-orange,
title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",
author = \"Lin, Chin-Yew and
Och, Franz Josef\",
booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",
month = \"aug 23{--}aug 27\",
year = \"2004\",
address = \"Geneva, Switzerland\",
publisher = \"COLING\",
url = \"https://www.aclweb.org/anthology/C04-1072\",
pages = \"501--507\",
}
"""
a = """\
BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.
Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,
the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and
remains one of the most popular automated and inexpensive metrics.
Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.
Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness
are not taken into account[citation needed].
BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1
representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the
reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional
reference translations will increase the BLEU score.
"""
a = """
Computes BLEU score of translated segments against one or more references.
Args:
predictions: list of translations to score.
Each translation should be tokenized into a list of tokens.
references: list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
max_order: Maximum n-gram order to use when computing BLEU score.
smooth: Whether or not to apply Lin et al. 2004 smoothing.
Returns:
'bleu': bleu score,
'precisions': geometric mean of n-gram precisions,
'brevity_penalty': brevity penalty,
'length_ratio': ratio of lengths,
'translation_length': translation_length,
'reference_length': reference_length
Examples:
>>> predictions = [
... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample
... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample
... ]
>>> references = [
... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)
... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)
... ]
>>> bleu = datasets.load_metric(\"bleu\")
>>> results = bleu.compute(predictions=predictions, references=references)
>>> print(results[\"bleu\"])
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ (datasets.Metric ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ),
} ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[
'https://en.wikipedia.org/wiki/BLEU',
'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213',
] , )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ):
_lowerCAmelCase :Any = compute_bleu(
reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
} | 687 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
class _snake_case :
def __init__( self ,_snake_case ):
UpperCAmelCase_ : list[dict] = []
self.adlist.append(
{"value": "", "next_states": [], "fail_state": 0, "output": []} )
for keyword in keywords:
self.add_keyword(_snake_case )
self.set_fail_transitions()
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ):
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def UpperCamelCase__ ( self ,_snake_case ):
UpperCAmelCase_ : Optional[int] = 0
for character in keyword:
UpperCAmelCase_ : List[str] = self.find_next_state(_snake_case ,_snake_case )
if next_state is None:
self.adlist.append(
{
"value": character,
"next_states": [],
"fail_state": 0,
"output": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
UpperCAmelCase_ : str = len(self.adlist ) - 1
else:
UpperCAmelCase_ : str = next_state
self.adlist[current_state]["output"].append(_snake_case )
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : deque = deque()
for node in self.adlist[0]["next_states"]:
q.append(_snake_case )
UpperCAmelCase_ : Optional[int] = 0
while q:
UpperCAmelCase_ : int = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(_snake_case )
UpperCAmelCase_ : int = self.adlist[r]["fail_state"]
while (
self.find_next_state(_snake_case ,self.adlist[child]["value"] ) is None
and state != 0
):
UpperCAmelCase_ : Tuple = self.adlist[state]["fail_state"]
UpperCAmelCase_ : Union[str, Any] = self.find_next_state(
_snake_case ,self.adlist[child]["value"] )
if self.adlist[child]["fail_state"] is None:
UpperCAmelCase_ : Tuple = 0
UpperCAmelCase_ : Union[str, Any] = (
self.adlist[child]["output"]
+ self.adlist[self.adlist[child]["fail_state"]]["output"]
)
def UpperCamelCase__ ( self ,_snake_case ):
UpperCAmelCase_ : dict = {} # returns a dict with keywords and list of its occurrences
UpperCAmelCase_ : Optional[Any] = 0
for i in range(len(_snake_case ) ):
while (
self.find_next_state(_snake_case ,string[i] ) is None
and current_state != 0
):
UpperCAmelCase_ : List[str] = self.adlist[current_state]["fail_state"]
UpperCAmelCase_ : Union[str, Any] = self.find_next_state(_snake_case ,string[i] )
if next_state is None:
UpperCAmelCase_ : Optional[Any] = 0
else:
UpperCAmelCase_ : Union[str, Any] = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
UpperCAmelCase_ : int = []
result[key].append(i - len(_snake_case ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 71 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a = {
"""configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"""FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FalconForCausalLM""",
"""FalconModel""",
"""FalconPreTrainedModel""",
"""FalconForSequenceClassification""",
"""FalconForTokenClassification""",
"""FalconForQuestionAnswering""",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 687 | 0 |
'''simple docstring'''
import math
import os
import sys
def UpperCamelCase ( lowercase_ : str ) -> str:
'''simple docstring'''
lowercase =''''''
try:
with open(lowercase_ , '''rb''' ) as binary_file:
lowercase =binary_file.read()
for dat in data:
lowercase =f'{dat:08b}'
result += curr_byte
return result
except OSError:
print('''File not accessible''' )
sys.exit()
def UpperCamelCase ( lowercase_ : dict[str, str] , lowercase_ : str , lowercase_ : int , lowercase_ : str ) -> None:
'''simple docstring'''
lexicon.pop(lowercase_ )
lowercase =last_match_id
if math.loga(lowercase_ ).is_integer():
for curr_key in lexicon:
lowercase ='''0''' + lexicon[curr_key]
lowercase =bin(lowercase_ )[2:]
def UpperCamelCase ( lowercase_ : str ) -> str:
'''simple docstring'''
lowercase ={'''0''': '''0''', '''1''': '''1'''}
lowercase , lowercase ='''''', ''''''
lowercase =len(lowercase_ )
for i in range(len(lowercase_ ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
lowercase =lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
index += 1
lowercase =''''''
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
lowercase =lexicon[curr_string]
result += last_match_id
return result
def UpperCamelCase ( lowercase_ : str , lowercase_ : str ) -> str:
'''simple docstring'''
lowercase =os.path.getsize(lowercase_ )
lowercase =bin(lowercase_ )[2:]
lowercase =len(lowercase_ )
return "0" * (length_length - 1) + file_length_binary + compressed
def UpperCamelCase ( lowercase_ : str , lowercase_ : str ) -> None:
'''simple docstring'''
lowercase =8
try:
with open(lowercase_ , '''wb''' ) as opened_file:
lowercase =[
to_write[i : i + byte_length]
for i in range(0 , len(lowercase_ ) , lowercase_ )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('''10000000''' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(lowercase_ , 2 ).to_bytes(1 , byteorder='''big''' ) )
except OSError:
print('''File not accessible''' )
sys.exit()
def UpperCamelCase ( lowercase_ : str , lowercase_ : str ) -> None:
'''simple docstring'''
lowercase =read_file_binary(lowercase_ )
lowercase =compress_data(lowercase_ )
lowercase =add_file_length(lowercase_ , lowercase_ )
write_file_binary(lowercase_ , lowercase_ )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 72 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ):
_lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20}
_lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18}
_lowerCAmelCase :str = parent
_lowerCAmelCase :List[Any] = batch_size
_lowerCAmelCase :Optional[Any] = num_channels
_lowerCAmelCase :Optional[Any] = image_size
_lowerCAmelCase :int = min_resolution
_lowerCAmelCase :List[str] = max_resolution
_lowerCAmelCase :List[str] = do_resize
_lowerCAmelCase :Optional[int] = size
_lowerCAmelCase :str = do_center_crop
_lowerCAmelCase :int = crop_size
_lowerCAmelCase :Optional[int] = do_flip_channel_order
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class UpperCAmelCase_ (snake_case__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE__ ( self: str ):
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
_lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
_lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
_lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
pass
def SCREAMING_SNAKE_CASE__ ( self: int ):
# Initialize image_processing
_lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
_lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
# Initialize image_processing
_lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
_lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
# Initialize image_processing
_lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
_lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , ) | 687 | 0 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ : int = logging.get_logger(__name__)
a_ : List[str] = {
'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json',
}
class _snake_case ( A__ ):
_lowercase : Any = '''git_vision_model'''
def __init__( self , a=768 , a=3072 , a=12 , a=12 , a=3 , a=224 , a=16 , a="quick_gelu" , a=1E-5 , a=0.0 , a=0.02 , **a , ) -> Optional[int]:
super().__init__(**a)
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = attention_dropout
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = hidden_act
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls , a , **a) -> "PretrainedConfig":
cls._set_token_in_kwargs(a)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(a , **a)
# get the vision config dict if we are loading from GITConfig
if config_dict.get('model_type') == "git":
SCREAMING_SNAKE_CASE = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''')
return cls.from_dict(a , **a)
class _snake_case ( A__ ):
_lowercase : List[Any] = '''git'''
def __init__( self , a=None , a=3_0522 , a=768 , a=6 , a=12 , a=3072 , a="gelu" , a=0.1 , a=0.1 , a=1024 , a=0.02 , a=1E-12 , a=0 , a="absolute" , a=True , a=False , a=101 , a=102 , a=None , **a , ) -> Dict:
super().__init__(bos_token_id=a , eos_token_id=a , pad_token_id=a , **a)
if vision_config is None:
SCREAMING_SNAKE_CASE = {}
logger.info('vision_config is None. initializing the GitVisionConfig with default values.')
SCREAMING_SNAKE_CASE = GitVisionConfig(**a)
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = position_embedding_type
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = tie_word_embeddings
SCREAMING_SNAKE_CASE = num_image_with_embedding
SCREAMING_SNAKE_CASE = bos_token_id
SCREAMING_SNAKE_CASE = eos_token_id
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__)
SCREAMING_SNAKE_CASE = self.vision_config.to_dict()
SCREAMING_SNAKE_CASE = self.__class__.model_type
return output
| 73 |
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class UpperCAmelCase_ (datasets.BuilderConfig ):
"""simple docstring"""
lowerCamelCase : Optional[datasets.Features] = None
class UpperCAmelCase_ (datasets.ArrowBasedBuilder ):
"""simple docstring"""
lowerCamelCase : Any = PandasConfig
def SCREAMING_SNAKE_CASE__ ( self: int ):
return datasets.DatasetInfo(features=self.config.features )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ):
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_UpperCAmelCase , (str, list, tuple) ):
_lowerCAmelCase :Any = data_files
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_lowerCAmelCase :Dict = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
_lowerCAmelCase :Any = []
for split_name, files in data_files.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_lowerCAmelCase :str = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) )
return splits
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ):
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
_lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema )
return pa_table
def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ):
for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ):
with open(_UpperCAmelCase , 'rb' ) as f:
_lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) )
yield i, self._cast_table(_UpperCAmelCase ) | 687 | 0 |
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def a__ ( snake_case , snake_case ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = checkpoint
__SCREAMING_SNAKE_CASE : Optional[int] = {}
__SCREAMING_SNAKE_CASE : Union[str, Any] = vae_state_dict['''encoder.conv_in.weight''']
__SCREAMING_SNAKE_CASE : List[Any] = vae_state_dict['''encoder.conv_in.bias''']
__SCREAMING_SNAKE_CASE : List[str] = vae_state_dict['''encoder.conv_out.weight''']
__SCREAMING_SNAKE_CASE : List[str] = vae_state_dict['''encoder.conv_out.bias''']
__SCREAMING_SNAKE_CASE : int = vae_state_dict['''encoder.norm_out.weight''']
__SCREAMING_SNAKE_CASE : str = vae_state_dict['''encoder.norm_out.bias''']
__SCREAMING_SNAKE_CASE : List[str] = vae_state_dict['''decoder.conv_in.weight''']
__SCREAMING_SNAKE_CASE : List[str] = vae_state_dict['''decoder.conv_in.bias''']
__SCREAMING_SNAKE_CASE : Optional[int] = vae_state_dict['''decoder.conv_out.weight''']
__SCREAMING_SNAKE_CASE : Any = vae_state_dict['''decoder.conv_out.bias''']
__SCREAMING_SNAKE_CASE : List[Any] = vae_state_dict['''decoder.norm_out.weight''']
__SCREAMING_SNAKE_CASE : Tuple = vae_state_dict['''decoder.norm_out.bias''']
__SCREAMING_SNAKE_CASE : Optional[Any] = vae_state_dict['''quant_conv.weight''']
__SCREAMING_SNAKE_CASE : List[str] = vae_state_dict['''quant_conv.bias''']
__SCREAMING_SNAKE_CASE : Tuple = vae_state_dict['''post_quant_conv.weight''']
__SCREAMING_SNAKE_CASE : Dict = vae_state_dict['''post_quant_conv.bias''']
# Retrieves the keys for the encoder down blocks only
__SCREAMING_SNAKE_CASE : Union[str, Any] = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} )
__SCREAMING_SNAKE_CASE : Union[str, Any] = {
layer_id: [key for key in vae_state_dict if F'''down.{layer_id}''' in key] for layer_id in range(snake_case )
}
# Retrieves the keys for the decoder up blocks only
__SCREAMING_SNAKE_CASE : str = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} )
__SCREAMING_SNAKE_CASE : Union[str, Any] = {
layer_id: [key for key in vae_state_dict if F'''up.{layer_id}''' in key] for layer_id in range(snake_case )
}
for i in range(snake_case ):
__SCREAMING_SNAKE_CASE : Optional[int] = [key for key in down_blocks[i] if F'''down.{i}''' in key and F'''down.{i}.downsample''' not in key]
if F'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict:
__SCREAMING_SNAKE_CASE : Union[str, Any] = vae_state_dict.pop(
F'''encoder.down.{i}.downsample.conv.weight''' )
__SCREAMING_SNAKE_CASE : Any = vae_state_dict.pop(
F'''encoder.down.{i}.downsample.conv.bias''' )
__SCREAMING_SNAKE_CASE : Any = renew_vae_resnet_paths(snake_case )
__SCREAMING_SNAKE_CASE : Union[str, Any] = {'''old''': F'''down.{i}.block''', '''new''': F'''down_blocks.{i}.resnets'''}
assign_to_checkpoint(snake_case , snake_case , snake_case , additional_replacements=[meta_path] , config=snake_case )
__SCREAMING_SNAKE_CASE : Dict = [key for key in vae_state_dict if '''encoder.mid.block''' in key]
__SCREAMING_SNAKE_CASE : List[str] = 2
for i in range(1 , num_mid_res_blocks + 1 ):
__SCREAMING_SNAKE_CASE : str = [key for key in mid_resnets if F'''encoder.mid.block_{i}''' in key]
__SCREAMING_SNAKE_CASE : List[Any] = renew_vae_resnet_paths(snake_case )
__SCREAMING_SNAKE_CASE : List[str] = {'''old''': F'''mid.block_{i}''', '''new''': F'''mid_block.resnets.{i - 1}'''}
assign_to_checkpoint(snake_case , snake_case , snake_case , additional_replacements=[meta_path] , config=snake_case )
__SCREAMING_SNAKE_CASE : Optional[int] = [key for key in vae_state_dict if '''encoder.mid.attn''' in key]
__SCREAMING_SNAKE_CASE : str = renew_vae_attention_paths(snake_case )
__SCREAMING_SNAKE_CASE : int = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''}
assign_to_checkpoint(snake_case , snake_case , snake_case , additional_replacements=[meta_path] , config=snake_case )
conv_attn_to_linear(snake_case )
for i in range(snake_case ):
__SCREAMING_SNAKE_CASE : Any = num_up_blocks - 1 - i
__SCREAMING_SNAKE_CASE : Union[str, Any] = [
key for key in up_blocks[block_id] if F'''up.{block_id}''' in key and F'''up.{block_id}.upsample''' not in key
]
if F'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict:
__SCREAMING_SNAKE_CASE : Optional[Any] = vae_state_dict[
F'''decoder.up.{block_id}.upsample.conv.weight'''
]
__SCREAMING_SNAKE_CASE : Dict = vae_state_dict[
F'''decoder.up.{block_id}.upsample.conv.bias'''
]
__SCREAMING_SNAKE_CASE : Tuple = renew_vae_resnet_paths(snake_case )
__SCREAMING_SNAKE_CASE : Tuple = {'''old''': F'''up.{block_id}.block''', '''new''': F'''up_blocks.{i}.resnets'''}
assign_to_checkpoint(snake_case , snake_case , snake_case , additional_replacements=[meta_path] , config=snake_case )
__SCREAMING_SNAKE_CASE : Union[str, Any] = [key for key in vae_state_dict if '''decoder.mid.block''' in key]
__SCREAMING_SNAKE_CASE : List[Any] = 2
for i in range(1 , num_mid_res_blocks + 1 ):
__SCREAMING_SNAKE_CASE : Tuple = [key for key in mid_resnets if F'''decoder.mid.block_{i}''' in key]
__SCREAMING_SNAKE_CASE : Optional[Any] = renew_vae_resnet_paths(snake_case )
__SCREAMING_SNAKE_CASE : Tuple = {'''old''': F'''mid.block_{i}''', '''new''': F'''mid_block.resnets.{i - 1}'''}
assign_to_checkpoint(snake_case , snake_case , snake_case , additional_replacements=[meta_path] , config=snake_case )
__SCREAMING_SNAKE_CASE : List[Any] = [key for key in vae_state_dict if '''decoder.mid.attn''' in key]
__SCREAMING_SNAKE_CASE : Optional[Any] = renew_vae_attention_paths(snake_case )
__SCREAMING_SNAKE_CASE : Union[str, Any] = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''}
assign_to_checkpoint(snake_case , snake_case , snake_case , additional_replacements=[meta_path] , config=snake_case )
conv_attn_to_linear(snake_case )
return new_checkpoint
def a__ ( snake_case , snake_case , ):
"""simple docstring"""
# Only support V1
__SCREAMING_SNAKE_CASE : List[Any] = requests.get(
''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' )
__SCREAMING_SNAKE_CASE : Dict = io.BytesIO(r.content )
__SCREAMING_SNAKE_CASE : Tuple = OmegaConf.load(snake_case )
__SCREAMING_SNAKE_CASE : Dict = 512
__SCREAMING_SNAKE_CASE : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu'''
if checkpoint_path.endswith('''safetensors''' ):
from safetensors import safe_open
__SCREAMING_SNAKE_CASE : Optional[Any] = {}
with safe_open(snake_case , framework='''pt''' , device='''cpu''' ) as f:
for key in f.keys():
__SCREAMING_SNAKE_CASE : Dict = f.get_tensor(snake_case )
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(snake_case , map_location=snake_case )['''state_dict''']
# Convert the VAE model.
__SCREAMING_SNAKE_CASE : int = create_vae_diffusers_config(snake_case , image_size=snake_case )
__SCREAMING_SNAKE_CASE : Union[str, Any] = custom_convert_ldm_vae_checkpoint(snake_case , snake_case )
__SCREAMING_SNAKE_CASE : Optional[int] = AutoencoderKL(**snake_case )
vae.load_state_dict(snake_case )
vae.save_pretrained(snake_case )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""")
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""")
lowercase_ = parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| 74 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
a = """"""
a = """"""
a = """"""
a = 1 # (0 is vertical, 1 is horizontal)
def UpperCamelCase_( ):
"""simple docstring"""
_lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ )
print('Processing...' )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ )
for index, image in enumerate(__magic_name__ ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
_lowerCAmelCase :Optional[Any] = random_chars(32 )
_lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0]
_lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"""
cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" )
_lowerCAmelCase :str = []
for anno in new_annos[index]:
_lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"""
annos_list.append(__magic_name__ )
with open(f"""/{file_root}.txt""" , 'w' ) as outfile:
outfile.write('\n'.join(line for line in annos_list ) )
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ):
"""simple docstring"""
_lowerCAmelCase :int = []
_lowerCAmelCase :Union[str, Any] = []
for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ):
_lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0]
with open(__magic_name__ ) as in_file:
_lowerCAmelCase :Union[str, Any] = in_file.readlines()
_lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" )
_lowerCAmelCase :Tuple = []
for obj_list in obj_lists:
_lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__magic_name__ )
labels.append(__magic_name__ )
return img_paths, labels
def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ):
"""simple docstring"""
_lowerCAmelCase :str = []
_lowerCAmelCase :Any = []
_lowerCAmelCase :Optional[Any] = []
for idx in range(len(__magic_name__ ) ):
_lowerCAmelCase :Optional[int] = []
_lowerCAmelCase :Optional[Any] = img_list[idx]
path_list.append(__magic_name__ )
_lowerCAmelCase :List[str] = anno_list[idx]
_lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ )
if flip_type == 1:
_lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ )
for bbox in img_annos:
_lowerCAmelCase :List[Any] = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
_lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ )
for bbox in img_annos:
_lowerCAmelCase :List[str] = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__magic_name__ )
new_imgs_list.append(__magic_name__ )
return new_imgs_list, new_annos_lists, path_list
def UpperCamelCase_( __magic_name__ : int = 32 ):
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
_lowerCAmelCase :str = ascii_lowercase + digits
return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) )
if __name__ == "__main__":
main()
print("""DONE ✅""") | 687 | 0 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class lowerCamelCase_ :
def __init__( self : Optional[int] , _A : Optional[Any] , _A : Tuple=2 , _A : Tuple=3 , _A : Optional[Any]=4 , _A : List[Any]=2 , _A : List[Any]=7 , _A : int=True , _A : Dict=True , _A : int=True , _A : Dict=True , _A : Tuple=99 , _A : Union[str, Any]=36 , _A : int=2 , _A : List[str]=4 , _A : int=37 , _A : List[Any]="gelu" , _A : str=0.1 , _A : str=0.1 , _A : Tuple=512 , _A : Dict=16 , _A : Tuple=2 , _A : Union[str, Any]=0.0_2 , _A : Any=6 , _A : Union[str, Any]=6 , _A : str=3 , _A : str=4 , _A : Tuple=None , _A : int=1_000 , ):
'''simple docstring'''
UpperCAmelCase__ : int = parent
UpperCAmelCase__ : Optional[int] = batch_size
UpperCAmelCase__ : str = num_channels
UpperCAmelCase__ : str = image_size
UpperCAmelCase__ : List[str] = patch_size
UpperCAmelCase__ : Any = is_training
UpperCAmelCase__ : List[str] = use_input_mask
UpperCAmelCase__ : Tuple = use_token_type_ids
UpperCAmelCase__ : str = use_labels
UpperCAmelCase__ : int = vocab_size
UpperCAmelCase__ : List[Any] = hidden_size
UpperCAmelCase__ : Optional[int] = num_hidden_layers
UpperCAmelCase__ : List[str] = num_attention_heads
UpperCAmelCase__ : Tuple = intermediate_size
UpperCAmelCase__ : Dict = hidden_act
UpperCAmelCase__ : int = hidden_dropout_prob
UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase__ : List[str] = max_position_embeddings
UpperCAmelCase__ : Tuple = type_vocab_size
UpperCAmelCase__ : Any = type_sequence_label_size
UpperCAmelCase__ : List[str] = initializer_range
UpperCAmelCase__ : List[str] = coordinate_size
UpperCAmelCase__ : Tuple = shape_size
UpperCAmelCase__ : Optional[int] = num_labels
UpperCAmelCase__ : Optional[Any] = num_choices
UpperCAmelCase__ : Union[str, Any] = scope
UpperCAmelCase__ : Optional[Any] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
UpperCAmelCase__ : str = text_seq_length
UpperCAmelCase__ : Tuple = (image_size // patch_size) ** 2 + 1
UpperCAmelCase__ : Tuple = self.text_seq_length + self.image_seq_length
def lowercase_ ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
UpperCAmelCase__ : int = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase__ : str = bbox[i, j, 3]
UpperCAmelCase__ : Dict = bbox[i, j, 1]
UpperCAmelCase__ : str = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase__ : Optional[int] = bbox[i, j, 2]
UpperCAmelCase__ : Any = bbox[i, j, 0]
UpperCAmelCase__ : List[Any] = tmp_coordinate
UpperCAmelCase__ : str = tf.constant(_A )
UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ : Any = None
if self.use_input_mask:
UpperCAmelCase__ : Any = random_attention_mask([self.batch_size, self.text_seq_length] )
UpperCAmelCase__ : Any = None
if self.use_token_type_ids:
UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
UpperCAmelCase__ : Optional[int] = None
UpperCAmelCase__ : List[str] = None
if self.use_labels:
UpperCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
UpperCAmelCase__ : Optional[int] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def lowercase_ ( self : Union[str, Any] , _A : int , _A : str , _A : Optional[int] , _A : Optional[int] , _A : List[str] , _A : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : int = TFLayoutLMvaModel(config=_A )
# text + image
UpperCAmelCase__ : Tuple = model(_A , pixel_values=_A , training=_A )
UpperCAmelCase__ : Tuple = model(
_A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , training=_A , )
UpperCAmelCase__ : Optional[Any] = model(_A , bbox=_A , pixel_values=_A , training=_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
UpperCAmelCase__ : Any = model(_A , training=_A )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
UpperCAmelCase__ : str = model({'''pixel_values''': pixel_values} , training=_A )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def lowercase_ ( self : Union[str, Any] , _A : Optional[int] , _A : Optional[Any] , _A : Dict , _A : List[Any] , _A : List[Any] , _A : Any , _A : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.num_labels
UpperCAmelCase__ : int = TFLayoutLMvaForSequenceClassification(config=_A )
UpperCAmelCase__ : Union[str, Any] = model(
_A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , training=_A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase_ ( self : Dict , _A : List[Any] , _A : Any , _A : Dict , _A : str , _A : Optional[int] , _A : str , _A : str ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = self.num_labels
UpperCAmelCase__ : Union[str, Any] = TFLayoutLMvaForTokenClassification(config=_A )
UpperCAmelCase__ : Optional[int] = model(
_A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , training=_A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def lowercase_ ( self : Dict , _A : Dict , _A : List[str] , _A : Union[str, Any] , _A : int , _A : Tuple , _A : Dict , _A : str ):
'''simple docstring'''
UpperCAmelCase__ : str = 2
UpperCAmelCase__ : Dict = TFLayoutLMvaForQuestionAnswering(config=_A )
UpperCAmelCase__ : str = model(
_A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , training=_A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase_ ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : int = self.prepare_config_and_inputs()
((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) : List[str] = config_and_inputs
UpperCAmelCase__ : List[Any] = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''pixel_values''': pixel_values,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_tf
class lowerCamelCase_ ( __a , __a , unittest.TestCase ):
lowerCAmelCase__ = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
lowerCAmelCase__ = (
{'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
def lowercase_ ( self : List[Any] , _A : Union[str, Any] , _A : str , _A : List[Any] , _A : Dict , _A : List[str] ):
'''simple docstring'''
return True
def lowercase_ ( self : Optional[Any] , _A : Tuple , _A : Any , _A : Dict=False ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = copy.deepcopy(_A )
if model_class in get_values(_A ):
UpperCAmelCase__ : Tuple = {
k: tf.tile(tf.expand_dims(_A , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(_A , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(_A ):
UpperCAmelCase__ : Dict = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(_A ):
UpperCAmelCase__ : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
UpperCAmelCase__ : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(_A ):
UpperCAmelCase__ : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(_A ):
UpperCAmelCase__ : int = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def lowercase_ ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Any = TFLayoutLMvaModelTester(self )
UpperCAmelCase__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 )
def lowercase_ ( self : str ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase_ ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Optional[Any] = model_class(_A )
if getattr(_A , '''hf_compute_loss''' , _A ):
# The number of elements in the loss should be the same as the number of elements in the label
UpperCAmelCase__ : Tuple = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A )
UpperCAmelCase__ : List[Any] = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_A )[0]
]
UpperCAmelCase__ : Optional[Any] = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
UpperCAmelCase__ : Any = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A )
UpperCAmelCase__ : Tuple = prepared_for_class.pop('''input_ids''' )
UpperCAmelCase__ : List[Any] = model(_A , **_A )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
UpperCAmelCase__ : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A )
UpperCAmelCase__ : Tuple = prepared_for_class.pop('''input_ids''' )
if "labels" in prepared_for_class:
UpperCAmelCase__ : Optional[Any] = prepared_for_class['''labels'''].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
UpperCAmelCase__ : Any = -100
UpperCAmelCase__ : Union[str, Any] = tf.convert_to_tensor(_A )
UpperCAmelCase__ : int = model(_A , **_A )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
UpperCAmelCase__ : Optional[int] = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A )
UpperCAmelCase__ : Dict = model(_A )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
UpperCAmelCase__ : Dict = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A )
# Get keys that were added with the _prepare_for_class function
UpperCAmelCase__ : Optional[int] = prepared_for_class.keys() - inputs_dict.keys()
UpperCAmelCase__ : int = inspect.signature(model.call ).parameters
UpperCAmelCase__ : Union[str, Any] = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
UpperCAmelCase__ : Dict = {0: '''input_ids'''}
for label_key in label_keys:
UpperCAmelCase__ : str = signature_names.index(_A )
UpperCAmelCase__ : List[Any] = label_key
UpperCAmelCase__ : Dict = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
UpperCAmelCase__ : Tuple = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
UpperCAmelCase__ : Any = prepared_for_class[value]
UpperCAmelCase__ : Tuple = tuple(_A )
# Send to model
UpperCAmelCase__ : Optional[Any] = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def lowercase_ ( self : int ):
'''simple docstring'''
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(_A , _A , _A , _A , _A , _A )
def lowercase_ ( self : Tuple ):
'''simple docstring'''
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) : int = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase__ : Union[str, Any] = type
self.model_tester.create_and_check_model(_A , _A , _A , _A , _A , _A )
def lowercase_ ( self : List[str] ):
'''simple docstring'''
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
_A , _A , _A , _A , _A , _A , _A )
def lowercase_ ( self : Any ):
'''simple docstring'''
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
_A , _A , _A , _A , _A , _A , _A )
def lowercase_ ( self : Optional[int] ):
'''simple docstring'''
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
_A , _A , _A , _A , _A , _A , _A )
@slow
def lowercase_ ( self : List[Any] ):
'''simple docstring'''
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : List[str] = TFLayoutLMvaModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def a__ ( ) -> List[str]:
UpperCAmelCase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
class lowerCamelCase_ ( unittest.TestCase ):
@cached_property
def lowercase_ ( self : Dict ):
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=_A ) if is_vision_available() else None
@slow
def lowercase_ ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : str = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' )
UpperCAmelCase__ : Dict = self.default_image_processor
UpperCAmelCase__ : Any = prepare_img()
UpperCAmelCase__ : int = image_processor(images=_A , return_tensors='''tf''' ).pixel_values
UpperCAmelCase__ : str = tf.constant([[1, 2]] )
UpperCAmelCase__ : Optional[Any] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
UpperCAmelCase__ : int = model(input_ids=_A , bbox=_A , pixel_values=_A , training=_A )
# verify the logits
UpperCAmelCase__ : Optional[int] = (1, 199, 768)
self.assertEqual(outputs.last_hidden_state.shape , _A )
UpperCAmelCase__ : Dict = tf.constant(
[[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _A , atol=1e-4 ) )
| 75 |
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
a = logging.get_logger(__name__)
def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
_lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ )
_lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ )
return torch.mm(__magic_name__ , normalized_text_embeds.t() )
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
lowerCamelCase : str = CLIPConfig
lowerCamelCase : Any = ['CLIPEncoderLayer']
def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ):
super().__init__(_UpperCAmelCase )
_lowerCAmelCase :Any = CLIPVisionModel(config.vision_config )
_lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase )
_lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase )
_lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase )
_lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase )
_lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase )
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ):
_lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output
_lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
_lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy()
_lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy()
_lowerCAmelCase :str = []
_lowerCAmelCase :List[Any] = image_embeds.shape[0]
for i in range(_UpperCAmelCase ):
_lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
_lowerCAmelCase :List[Any] = 0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
_lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx]
_lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item()
_lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} )
_lowerCAmelCase :Any = 0.0_1
for concept_idx in range(len(cos_dist[0] ) ):
_lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx]
_lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item()
_lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(_UpperCAmelCase )
result.append(_UpperCAmelCase )
_lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ):
_lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output
_lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase )
_lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds )
_lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
_lowerCAmelCase :Any = 0.0
_lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
_lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 )
_lowerCAmelCase :List[str] = special_care * 0.0_1
_lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
_lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
_lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts | 687 | 0 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
a_ = 'hf-internal-testing/tiny-random-bert'
a_ = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert')
a_ = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6'
class UpperCAmelCase_ ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> List[Any]:
__lowercase : Dict = cached_file(UpperCamelCase_ , UpperCamelCase_ )
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(UpperCamelCase_ ) )
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) )
with open(os.path.join(UpperCamelCase_ , '''refs''' , '''main''' ) ) as f:
__lowercase : str = f.read()
self.assertEqual(UpperCamelCase_ , os.path.join(UpperCamelCase_ , '''snapshots''' , UpperCamelCase_ , UpperCamelCase_ ) )
self.assertTrue(os.path.isfile(UpperCamelCase_ ) )
# File is cached at the same place the second time.
__lowercase : Optional[int] = cached_file(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
# Using a specific revision to test the full commit hash.
__lowercase : List[str] = cached_file(UpperCamelCase_ , UpperCamelCase_ , revision='''9b8c223''' )
self.assertEqual(UpperCamelCase_ , os.path.join(UpperCamelCase_ , '''snapshots''' , UpperCamelCase_ , UpperCamelCase_ ) )
def _lowerCamelCase ( self ) -> List[Any]:
with self.assertRaisesRegex(UpperCamelCase_ , '''is not a valid model identifier''' ):
__lowercase : Optional[int] = cached_file('''tiny-random-bert''' , UpperCamelCase_ )
with self.assertRaisesRegex(UpperCamelCase_ , '''is not a valid git identifier''' ):
__lowercase : List[str] = cached_file(UpperCamelCase_ , UpperCamelCase_ , revision='''aaaa''' )
with self.assertRaisesRegex(UpperCamelCase_ , '''does not appear to have a file named''' ):
__lowercase : Tuple = cached_file(UpperCamelCase_ , '''conf''' )
def _lowerCamelCase ( self ) -> Dict:
with self.assertRaisesRegex(UpperCamelCase_ , '''does not appear to have a file named''' ):
__lowercase : Dict = cached_file(UpperCamelCase_ , '''conf''' )
with open(os.path.join(UpperCamelCase_ , '''refs''' , '''main''' ) ) as f:
__lowercase : str = f.read()
self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase_ , '''.no_exist''' , UpperCamelCase_ , '''conf''' ) ) )
__lowercase : List[Any] = cached_file(UpperCamelCase_ , '''conf''' , _raise_exceptions_for_missing_entries=UpperCamelCase_ )
self.assertIsNone(UpperCamelCase_ )
__lowercase : Optional[int] = cached_file(UpperCamelCase_ , '''conf''' , local_files_only=UpperCamelCase_ , _raise_exceptions_for_missing_entries=UpperCamelCase_ )
self.assertIsNone(UpperCamelCase_ )
__lowercase : Any = mock.Mock()
__lowercase : Optional[int] = 5_00
__lowercase : Dict = {}
__lowercase : List[Any] = HTTPError
__lowercase : Optional[int] = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('''requests.Session.request''' , return_value=UpperCamelCase_ ) as mock_head:
__lowercase : List[str] = cached_file(UpperCamelCase_ , '''conf''' , _raise_exceptions_for_connection_errors=UpperCamelCase_ )
self.assertIsNone(UpperCamelCase_ )
# This check we did call the fake head request
mock_head.assert_called()
def _lowerCamelCase ( self ) -> Any:
self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase_ ) )
self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase_ ) )
self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase_ ) )
def _lowerCamelCase ( self ) -> int:
# `get_file_from_repo` returns None if the file does not exist
self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) )
# The function raises if the repository does not exist.
with self.assertRaisesRegex(UpperCamelCase_ , '''is not a valid model identifier''' ):
get_file_from_repo('''bert-base-case''' , UpperCamelCase_ )
# The function raises if the revision does not exist.
with self.assertRaisesRegex(UpperCamelCase_ , '''is not a valid git identifier''' ):
get_file_from_repo('''bert-base-cased''' , UpperCamelCase_ , revision='''ahaha''' )
__lowercase : Dict = get_file_from_repo('''bert-base-cased''' , UpperCamelCase_ )
# The name is the cached name which is not very easy to test, so instead we load the content.
__lowercase : List[str] = json.loads(open(UpperCamelCase_ , '''r''' ).read() )
self.assertEqual(config['''hidden_size'''] , 7_68 )
def _lowerCamelCase ( self ) -> Optional[int]:
with tempfile.TemporaryDirectory() as tmp_dir:
__lowercase : Dict = Path(UpperCamelCase_ ) / '''a.txt'''
filename.touch()
self.assertEqual(get_file_from_repo(UpperCamelCase_ , '''a.txt''' ) , str(UpperCamelCase_ ) )
self.assertIsNone(get_file_from_repo(UpperCamelCase_ , '''b.txt''' ) )
| 76 |
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
a = 6_3_7_8_1_3_7.0
a = 6_3_5_6_7_5_2.3_1_4_2_4_5
a = 6_378_137
def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ):
"""simple docstring"""
_lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
_lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) )
_lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) )
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
_lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS
# Intermediate P and Q values
_lowerCAmelCase :str = (b_lata + b_lata) / 2
_lowerCAmelCase :Tuple = (b_lata - b_lata) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
_lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2)
_lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2
_lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
_lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2)
_lowerCAmelCase :str = sin(sigma / 2 ) ** 2
_lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod() | 687 | 0 |
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def _UpperCamelCase ( UpperCamelCase ) -> int:
"""simple docstring"""
__UpperCAmelCase : List[Any] = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(UpperCamelCase , UpperCamelCase )
def _UpperCamelCase ( UpperCamelCase ) -> Tuple:
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : List[Any] = emb.weight.shape
__UpperCAmelCase : Optional[Any] = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase )
__UpperCAmelCase : Optional[Any] = emb.weight.data
return lin_layer
def _UpperCamelCase ( UpperCamelCase ) -> Dict:
"""simple docstring"""
__UpperCAmelCase : Any = torch.load(UpperCamelCase , map_location="cpu" )
__UpperCAmelCase : Union[str, Any] = mam_aaa["args"] or mam_aaa["cfg"]["model"]
__UpperCAmelCase : Optional[Any] = mam_aaa["model"]
remove_ignore_keys_(UpperCamelCase )
__UpperCAmelCase : int = state_dict["encoder.embed_tokens.weight"].shape[0]
__UpperCAmelCase : int = MaMaaaConfig(
vocab_size=UpperCamelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , )
__UpperCAmelCase : Optional[int] = state_dict["decoder.embed_tokens.weight"]
__UpperCAmelCase : List[str] = MaMaaaForConditionalGeneration(UpperCamelCase )
model.model.load_state_dict(UpperCamelCase , strict=UpperCamelCase )
__UpperCAmelCase : Any = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
A = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""")
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
A = parser.parse_args()
A = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 77 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
lowerCamelCase : Dict = 'encoder-decoder'
lowerCamelCase : Optional[Any] = True
def __init__( self: str , **_UpperCAmelCase: int ):
super().__init__(**_UpperCAmelCase )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
_lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' )
_lowerCAmelCase :Dict = encoder_config.pop('model_type' )
_lowerCAmelCase :str = kwargs.pop('decoder' )
_lowerCAmelCase :str = decoder_config.pop('model_type' )
from ..auto.configuration_auto import AutoConfig
_lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :Any = True
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ):
logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' )
_lowerCAmelCase :Dict = True
_lowerCAmelCase :List[str] = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Dict ):
_lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ )
_lowerCAmelCase :Optional[int] = self.encoder.to_dict()
_lowerCAmelCase :Union[str, Any] = self.decoder.to_dict()
_lowerCAmelCase :List[str] = self.__class__.model_type
return output | 687 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM
@require_tf
@require_sentencepiece
@require_tokenizers
class __A ( unittest.TestCase ):
@slow
def _lowercase (self : List[Any] ):
UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" )
UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" )
UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="tf" ).input_ids
UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="tf" ).input_ids
UpperCAmelCase_ = model(__a , labels=__a ).loss
UpperCAmelCase_ = -tf.math.reduce_mean(__a ).numpy()
UpperCAmelCase_ = -21.22_81_68
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
| 78 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ):
_lowerCAmelCase :Optional[int] = parent
_lowerCAmelCase :Dict = batch_size
_lowerCAmelCase :Optional[Any] = image_size
_lowerCAmelCase :Optional[Any] = patch_size
_lowerCAmelCase :List[Any] = num_channels
_lowerCAmelCase :Optional[int] = embed_dim
_lowerCAmelCase :List[str] = hidden_sizes
_lowerCAmelCase :Union[str, Any] = depths
_lowerCAmelCase :int = num_heads
_lowerCAmelCase :Any = window_size
_lowerCAmelCase :List[Any] = mlp_ratio
_lowerCAmelCase :Optional[int] = qkv_bias
_lowerCAmelCase :Union[str, Any] = hidden_dropout_prob
_lowerCAmelCase :Optional[int] = attention_probs_dropout_prob
_lowerCAmelCase :Dict = drop_path_rate
_lowerCAmelCase :List[Any] = hidden_act
_lowerCAmelCase :Tuple = use_absolute_embeddings
_lowerCAmelCase :Optional[int] = patch_norm
_lowerCAmelCase :Optional[Any] = layer_norm_eps
_lowerCAmelCase :Union[str, Any] = initializer_range
_lowerCAmelCase :List[str] = is_training
_lowerCAmelCase :str = scope
_lowerCAmelCase :Optional[int] = use_labels
_lowerCAmelCase :List[Any] = type_sequence_label_size
_lowerCAmelCase :Union[str, Any] = encoder_stride
_lowerCAmelCase :Optional[int] = out_features
_lowerCAmelCase :List[str] = out_indices
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase :Dict = None
if self.use_labels:
_lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase :str = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self: int ):
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ):
_lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :List[str] = model(_UpperCAmelCase )
_lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ):
_lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :str = model(_UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
_lowerCAmelCase :Optional[int] = None
_lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :Any = model(_UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ):
_lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :str = model(_UpperCAmelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
_lowerCAmelCase :List[Any] = 1
_lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase :int = model(_UpperCAmelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ):
_lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size
_lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_lowerCAmelCase :Optional[int] = 1
_lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase :List[str] = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Tuple = self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs
_lowerCAmelCase :List[str] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Optional[int] = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase : Optional[Any] = (
{'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase : Tuple = False
lowerCamelCase : Union[str, Any] = False
lowerCamelCase : Union[str, Any] = False
lowerCamelCase : Any = False
lowerCamelCase : List[Any] = False
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Tuple = FocalNetModelTester(self )
_lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
return
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: int ):
_lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
_lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: str ):
_lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@unittest.skip(reason='FocalNet does not use inputs_embeds' )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
pass
@unittest.skip(reason='FocalNet does not use feedforward chunking' )
def SCREAMING_SNAKE_CASE__ ( self: str ):
pass
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
_lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_lowerCAmelCase :Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) )
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
_lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
_lowerCAmelCase :Tuple = model_class(_UpperCAmelCase )
_lowerCAmelCase :Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase :int = [*signature.parameters.keys()]
_lowerCAmelCase :List[str] = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ):
_lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
_lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
_lowerCAmelCase :List[Any] = outputs.hidden_states
_lowerCAmelCase :str = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
# FocalNet has a different seq_length
_lowerCAmelCase :Any = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
_lowerCAmelCase :List[str] = outputs.reshaped_hidden_states
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape
_lowerCAmelCase :Optional[int] = (
reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase :List[str] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
_lowerCAmelCase :Optional[int] = True
self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase :Dict = True
self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
_lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase :str = 3
_lowerCAmelCase :Union[str, Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_lowerCAmelCase :int = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
_lowerCAmelCase :List[str] = True
self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase :Union[str, Any] = True
self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) )
@slow
def SCREAMING_SNAKE_CASE__ ( self: int ):
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase )
for model_class in self.all_model_classes:
_lowerCAmelCase :str = model_class(config=_UpperCAmelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@require_vision
@require_torch
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@cached_property
def SCREAMING_SNAKE_CASE__ ( self: Dict ):
# TODO update organization
return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE__ ( self: Any ):
_lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase )
_lowerCAmelCase :Union[str, Any] = self.default_image_processor
_lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
_lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
_lowerCAmelCase :Dict = model(**_UpperCAmelCase )
# verify the logits
_lowerCAmelCase :str = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
_lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 )
@require_torch
class UpperCAmelCase_ (snake_case__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else ()
lowerCamelCase : str = FocalNetConfig
lowerCamelCase : Union[str, Any] = False
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :Any = FocalNetModelTester(self ) | 687 | 0 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFXLMRobertaModel
@require_tf
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase_ ( unittest.TestCase ):
@slow
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : str = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" )
UpperCAmelCase__ : Dict = {
"""input_ids""": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute"
"""attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ),
}
UpperCAmelCase__ : Union[str, Any] = model(_lowerCAmelCase )["""last_hidden_state"""]
UpperCAmelCase__ : List[str] = tf.TensorShape((1, 6, 768) )
self.assertEqual(output.shape , _lowerCAmelCase )
# compare the actual values for a slice.
UpperCAmelCase__ : int = tf.convert_to_tensor(
[
[
[0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4],
[-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4],
[-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 79 |
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
a = HfApi()
a = {}
# fmt: off
a = torch.tensor([
-0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7,
1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9,
-1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9,
0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7
])
a = torch.tensor([
-2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6,
1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8,
-2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8,
2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5
])
a = torch.tensor([
-0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9,
-0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4,
-0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5,
0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3
])
a = torch.tensor([
0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2,
-0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9,
0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5,
-0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5
])
a = torch.tensor([
0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3,
-0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5,
0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9,
-0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6
])
a = torch.tensor([
0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8,
-0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0,
0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3,
-0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1
])
a = torch.tensor([
0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2,
-0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8,
0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4,
-0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0
])
a = torch.tensor([
0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2,
-0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0,
0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6,
-0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3
])
a = torch.tensor([
-1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0,
1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3,
-2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0,
1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1])
a = torch.tensor([
-1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4,
0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1,
-2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9,
1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6
])
a = torch.tensor([
-1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2,
0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7,
-2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1,
1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5
])
a = torch.tensor([
-2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9,
1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1,
-3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1,
3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6
])
a = torch.tensor([
-2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0,
1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8,
-2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5,
2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3
])
a = torch.tensor([
-2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6,
1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8,
-3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0,
3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3
])
a = torch.tensor([
-1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4,
1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1,
-2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9,
1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9
])
# fmt: on
a = api.list_models(filter="""diffusers""")
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1]
print(F'''Started running {mod.modelId}!!!''')
if mod.modelId.startswith("""CompVis"""):
a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""")
else:
a = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
a = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
a = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3
)
print(F'''{mod.modelId} has passed successfully!!!''') | 687 | 0 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class __UpperCamelCase :
def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[Any]=10 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : str=32 * 4 , _lowerCAmelCase : List[str]=32 * 6 , _lowerCAmelCase : int=4 , _lowerCAmelCase : int=32 , ) -> Dict:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = is_training
__lowercase = use_auxiliary_loss
__lowercase = num_queries
__lowercase = num_channels
__lowercase = min_size
__lowercase = max_size
__lowercase = num_labels
__lowercase = mask_feature_size
def _a ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
_lowerCAmelCase )
__lowercase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCAmelCase )
__lowercase = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCAmelCase ) > 0.5
).float()
__lowercase = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCAmelCase ) > 0.5).long()
__lowercase = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def _a ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def _a ( self : int ) -> List[str]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase = self.prepare_config_and_inputs()
__lowercase = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def _a ( self : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict ) -> Optional[Any]:
"""simple docstring"""
__lowercase = output.encoder_hidden_states
__lowercase = output.pixel_decoder_hidden_states
__lowercase = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_lowerCAmelCase ) , config.decoder_config.decoder_layers )
def _a ( self : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=False ) -> int:
"""simple docstring"""
with torch.no_grad():
__lowercase = MaskFormerModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__lowercase = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase )
__lowercase = model(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(_lowerCAmelCase , _lowerCAmelCase )
def _a ( self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ) -> Dict:
"""simple docstring"""
__lowercase = MaskFormerForInstanceSegmentation(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
def comm_check_on_output(_lowerCAmelCase : List[str] ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
__lowercase = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase )
__lowercase = model(_lowerCAmelCase )
comm_check_on_output(_lowerCAmelCase )
__lowercase = model(
pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase )
comm_check_on_output(_lowerCAmelCase )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
__snake_case :str = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
__snake_case :Optional[int] = (
{'feature-extraction': MaskFormerModel, 'image-segmentation': MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
__snake_case :Any = False
__snake_case :str = False
__snake_case :Any = False
__snake_case :Optional[int] = False
def _a ( self : Dict ) -> Dict:
"""simple docstring"""
__lowercase = MaskFormerModelTester(self )
__lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase )
def _a ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
def _a ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase )
def _a ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_lowerCAmelCase )
@unittest.skip(reason="""MaskFormer does not use inputs_embeds""" )
def _a ( self : Tuple ) -> Any:
"""simple docstring"""
pass
@unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" )
def _a ( self : List[str] ) -> str:
"""simple docstring"""
pass
@unittest.skip(reason="""MaskFormer is not a generative model""" )
def _a ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
pass
@unittest.skip(reason="""MaskFormer does not use token embeddings""" )
def _a ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _a ( self : Union[str, Any] ) -> int:
"""simple docstring"""
pass
def _a ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(_lowerCAmelCase )
__lowercase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _lowerCAmelCase )
@slow
def _a ( self : Optional[int] ) -> Dict:
"""simple docstring"""
for model_name in ["facebook/maskformer-swin-small-coco"]:
__lowercase = MaskFormerModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def _a ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = (self.model_tester.min_size,) * 2
__lowercase = {
"""pixel_values""": torch.randn((2, 3, *size) , device=_lowerCAmelCase ),
"""mask_labels""": torch.randn((2, 10, *size) , device=_lowerCAmelCase ),
"""class_labels""": torch.zeros(2 , 10 , device=_lowerCAmelCase ).long(),
}
__lowercase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_lowerCAmelCase )
__lowercase = model(**_lowerCAmelCase )
self.assertTrue(outputs.loss is not None )
def _a ( self : List[Any] ) -> Dict:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase )
def _a ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(_lowerCAmelCase ).to(_lowerCAmelCase )
__lowercase = model(**_lowerCAmelCase , output_attentions=_lowerCAmelCase )
self.assertTrue(outputs.attentions is not None )
def _a ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
__lowercase = self.all_model_classes[1]
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs()
__lowercase = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.train()
__lowercase = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ).loss
loss.backward()
def _a ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.all_model_classes[1]
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs()
__lowercase = True
__lowercase = True
__lowercase = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.train()
__lowercase = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase )
__lowercase = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
__lowercase = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
__lowercase = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
__lowercase = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=_lowerCAmelCase )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__UpperCamelCase : Dict = 1e-4
def snake_case ( ):
'''simple docstring'''
__lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class __UpperCamelCase ( unittest.TestCase ):
@cached_property
def _a ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
return (
MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" )
if is_vision_available()
else None
)
def _a ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(_lowerCAmelCase )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase )
__lowercase = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
__lowercase = model(**_lowerCAmelCase )
__lowercase = torch.tensor(
[[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(_lowerCAmelCase )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) )
__lowercase = torch.tensor(
[[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(_lowerCAmelCase )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) )
__lowercase = torch.tensor(
[[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(_lowerCAmelCase )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) )
def _a ( self : List[str] ) -> List[str]:
"""simple docstring"""
__lowercase = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(_lowerCAmelCase )
.eval()
)
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase )
__lowercase = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
__lowercase = model(**_lowerCAmelCase )
# masks_queries_logits
__lowercase = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
__lowercase = [
[-1.3_737_124, -1.7_724_937, -1.9_364_233],
[-1.5_977_281, -1.9_867_939, -2.1_523_695],
[-1.5_795_398, -1.9_269_832, -2.093_942],
]
__lowercase = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) )
# class_queries_logits
__lowercase = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
__lowercase = torch.tensor(
[
[1.6512e00, -5.2572e00, -3.3519e00],
[3.6169e-02, -5.9025e00, -2.9313e00],
[1.0766e-04, -7.7630e00, -5.1263e00],
] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) )
def _a ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" )
.to(_lowerCAmelCase )
.eval()
)
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase )
__lowercase = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_lowerCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
__lowercase = model(**_lowerCAmelCase )
# masks_queries_logits
__lowercase = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
__lowercase = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]]
__lowercase = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) )
# class_queries_logits
__lowercase = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
__lowercase = torch.tensor(
[[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) )
def _a ( self : str ) -> str:
"""simple docstring"""
__lowercase = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(_lowerCAmelCase )
.eval()
)
__lowercase = self.default_image_processor
__lowercase = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , )
__lowercase = inputs["""pixel_values"""].to(_lowerCAmelCase )
__lowercase = [el.to(_lowerCAmelCase ) for el in inputs["""mask_labels"""]]
__lowercase = [el.to(_lowerCAmelCase ) for el in inputs["""class_labels"""]]
with torch.no_grad():
__lowercase = model(**_lowerCAmelCase )
self.assertTrue(outputs.loss is not None )
| 80 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: int ):
_lowerCAmelCase :Optional[int] = 10
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :str = [1, 2, 3, 4]
_lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: int ):
_lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
_lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
_lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
_lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
_lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.'
_lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , [] )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
_lowerCAmelCase :Optional[int] = ''
_lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , [] )
self.assertEqual(_UpperCAmelCase , [] )
def SCREAMING_SNAKE_CASE__ ( self: str ):
_lowerCAmelCase :Optional[Any] = (
'It was the year of Our Lord one thousand seven hundred and '
'seventy-five\n\nSpiritual revelations were conceded to England '
'at that favoured period, as at this.\n@highlight\n\nIt was the best of times'
)
_lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase )
_lowerCAmelCase :Optional[Any] = [
'It was the year of Our Lord one thousand seven hundred and seventy-five.',
'Spiritual revelations were conceded to England at that favoured period, as at this.',
]
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Optional[int] = ['It was the best of times.']
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] )
_lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() )
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
_lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
_lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
_lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() )
def SCREAMING_SNAKE_CASE__ ( self: str ):
_lowerCAmelCase :List[str] = 101
_lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] )
_lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
_lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase )
np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase ) | 687 | 0 |
import numpy as np
_snake_case : str = [
["a", "b", "c", "d", "e"],
["f", "g", "h", "i", "k"],
["l", "m", "n", "o", "p"],
["q", "r", "s", "t", "u"],
["v", "w", "x", "y", "z"],
]
class a :
"""simple docstring"""
def __init__( self : Optional[int] ) -> None:
__snake_case : Optional[int] = np.array(lowerCamelCase )
def __snake_case ( self : Union[str, Any] , lowerCamelCase : str ) -> np.ndarray:
__snake_case , __snake_case : Optional[int] = np.where(letter == self.SQUARE )
__snake_case : Union[str, Any] = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def __snake_case ( self : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : int ) -> str:
__snake_case : Optional[int] = self.SQUARE[indexa - 1, indexa - 1]
return letter
def __snake_case ( self : Union[str, Any] , lowerCamelCase : str ) -> str:
__snake_case : Dict = message.lower()
__snake_case : List[Any] = message.replace(" " , "" )
__snake_case : List[Any] = message.replace("j" , "i" )
__snake_case : Optional[Any] = np.empty((2, len(lowerCamelCase )) )
for letter_index in range(len(lowerCamelCase ) ):
__snake_case : List[Any] = self.letter_to_numbers(message[letter_index] )
__snake_case : Any = numbers[0]
__snake_case : Dict = numbers[1]
__snake_case : Optional[Any] = first_step.reshape(2 * len(lowerCamelCase ) )
__snake_case : str = ""
for numbers_index in range(len(lowerCamelCase ) ):
__snake_case : str = int(second_step[numbers_index * 2] )
__snake_case : List[Any] = int(second_step[(numbers_index * 2) + 1] )
__snake_case : Optional[Any] = self.numbers_to_letter(lowerCamelCase , lowerCamelCase )
__snake_case : Union[str, Any] = encoded_message + letter
return encoded_message
def __snake_case ( self : Any , lowerCamelCase : str ) -> str:
__snake_case : Tuple = message.lower()
message.replace(" " , "" )
__snake_case : Dict = np.empty(2 * len(lowerCamelCase ) )
for letter_index in range(len(lowerCamelCase ) ):
__snake_case : str = self.letter_to_numbers(message[letter_index] )
__snake_case : Dict = numbers[0]
__snake_case : Union[str, Any] = numbers[1]
__snake_case : int = first_step.reshape((2, len(lowerCamelCase )) )
__snake_case : List[Any] = ""
for numbers_index in range(len(lowerCamelCase ) ):
__snake_case : List[Any] = int(second_step[0, numbers_index] )
__snake_case : Optional[Any] = int(second_step[1, numbers_index] )
__snake_case : str = self.numbers_to_letter(lowerCamelCase , lowerCamelCase )
__snake_case : List[Any] = decoded_message + letter
return decoded_message
| 81 |
def UpperCamelCase_( __magic_name__ : int ):
"""simple docstring"""
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print("""Program to check whether a number is a Perfect number or not...""")
a = int(input("""Enter number: """).strip())
print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''') | 687 | 0 |
"""simple docstring"""
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
lowerCamelCase = logging.getLogger(__name__)
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : str=-1 ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = label_idx
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[Split, str] ) -> List[InputExample]:
'''simple docstring'''
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCAmelCase_ = mode.value
UpperCAmelCase_ = os.path.join(_UpperCAmelCase , F"""{mode}.txt""" )
UpperCAmelCase_ = 1
UpperCAmelCase_ = []
with open(_UpperCAmelCase , encoding="utf-8" ) as f:
UpperCAmelCase_ = []
UpperCAmelCase_ = []
for line in f:
if line.startswith("-DOCSTART-" ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) )
guid_index += 1
UpperCAmelCase_ = []
UpperCAmelCase_ = []
else:
UpperCAmelCase_ = line.split(" " )
words.append(splits[0] )
if len(_UpperCAmelCase ) > 1:
labels.append(splits[self.label_idx].replace("\n" , "" ) )
else:
# Examples could have no label for mode = "test"
labels.append("O" )
if words:
examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) )
return examples
def lowercase__ ( self : Dict , _UpperCAmelCase : TextIO , _UpperCAmelCase : TextIO , _UpperCAmelCase : List ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = 0
for line in test_input_reader:
if line.startswith("-DOCSTART-" ) or line == "" or line == "\n":
writer.write(_UpperCAmelCase )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
UpperCAmelCase_ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n"
writer.write(_UpperCAmelCase )
else:
logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] )
def lowercase__ ( self : str , _UpperCAmelCase : str ) -> List[str]:
'''simple docstring'''
if path:
with open(_UpperCAmelCase , "r" ) as f:
UpperCAmelCase_ = f.read().splitlines()
if "O" not in labels:
UpperCAmelCase_ = ["O"] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
super().__init__(label_idx=-2 )
def lowercase__ ( self : Any , _UpperCAmelCase : str ) -> List[str]:
'''simple docstring'''
if path:
with open(_UpperCAmelCase , "r" ) as f:
UpperCAmelCase_ = f.read().splitlines()
if "O" not in labels:
UpperCAmelCase_ = ["O"] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[Split, str] ) -> List[InputExample]:
'''simple docstring'''
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCAmelCase_ = mode.value
UpperCAmelCase_ = os.path.join(_UpperCAmelCase , F"""{mode}.txt""" )
UpperCAmelCase_ = 1
UpperCAmelCase_ = []
with open(_UpperCAmelCase , encoding="utf-8" ) as f:
for sentence in parse_incr(_UpperCAmelCase ):
UpperCAmelCase_ = []
UpperCAmelCase_ = []
for token in sentence:
words.append(token["form"] )
labels.append(token["upos"] )
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase )
if words:
examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) )
guid_index += 1
return examples
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : TextIO , _UpperCAmelCase : TextIO , _UpperCAmelCase : List ) -> int:
'''simple docstring'''
UpperCAmelCase_ = 0
for sentence in parse_incr(_UpperCAmelCase ):
UpperCAmelCase_ = preds_list[example_id]
UpperCAmelCase_ = ""
for token in sentence:
out += F"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """
out += "\n"
writer.write(_UpperCAmelCase )
example_id += 1
def lowercase__ ( self : List[str] , _UpperCAmelCase : str ) -> List[str]:
'''simple docstring'''
if path:
with open(_UpperCAmelCase , "r" ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 82 |
from __future__ import annotations
from collections.abc import MutableSequence
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ):
if len(_UpperCAmelCase ) != degree + 1:
raise ValueError(
'The number of coefficients should be equal to the degree + 1.' )
_lowerCAmelCase :list[float] = list(_UpperCAmelCase )
_lowerCAmelCase :Optional[Any] = degree
def __add__( self: str , _UpperCAmelCase: Polynomial ):
if self.degree > polynomial_a.degree:
_lowerCAmelCase :Any = self.coefficients[:]
for i in range(polynomial_a.degree + 1 ):
coefficients[i] += polynomial_a.coefficients[i]
return Polynomial(self.degree , _UpperCAmelCase )
else:
_lowerCAmelCase :List[Any] = polynomial_a.coefficients[:]
for i in range(self.degree + 1 ):
coefficients[i] += self.coefficients[i]
return Polynomial(polynomial_a.degree , _UpperCAmelCase )
def __sub__( self: str , _UpperCAmelCase: Polynomial ):
return self + polynomial_a * Polynomial(0 , [-1] )
def __neg__( self: Union[str, Any] ):
return Polynomial(self.degree , [-c for c in self.coefficients] )
def __mul__( self: int , _UpperCAmelCase: Polynomial ):
_lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1)
for i in range(self.degree + 1 ):
for j in range(polynomial_a.degree + 1 ):
coefficients[i + j] += (
self.coefficients[i] * polynomial_a.coefficients[j]
)
return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ):
_lowerCAmelCase :int | float = 0
for i in range(self.degree + 1 ):
result += self.coefficients[i] * (substitution**i)
return result
def __str__( self: Union[str, Any] ):
_lowerCAmelCase :Dict = ''
for i in range(self.degree , -1 , -1 ):
if self.coefficients[i] == 0:
continue
elif self.coefficients[i] > 0:
if polynomial:
polynomial += " + "
else:
polynomial += " - "
if i == 0:
polynomial += str(abs(self.coefficients[i] ) )
elif i == 1:
polynomial += str(abs(self.coefficients[i] ) ) + "x"
else:
polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase )
return polynomial
def __repr__( self: Optional[Any] ):
return self.__str__()
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
_lowerCAmelCase :list[float] = [0] * self.degree
for i in range(self.degree ):
_lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1)
return Polynomial(self.degree - 1 , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ):
_lowerCAmelCase :list[float] = [0] * (self.degree + 2)
_lowerCAmelCase :str = constant
for i in range(self.degree + 1 ):
_lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1)
return Polynomial(self.degree + 1 , _UpperCAmelCase )
def __eq__( self: List[Any] , _UpperCAmelCase: object ):
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return False
if self.degree != polynomial_a.degree:
return False
for i in range(self.degree + 1 ):
if self.coefficients[i] != polynomial_a.coefficients[i]:
return False
return True
def __ne__( self: Optional[Any] , _UpperCAmelCase: object ):
return not self.__eq__(_UpperCAmelCase ) | 687 | 0 |
"""simple docstring"""
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def snake_case_ ( A_ : List[Any] ):
'''simple docstring'''
if is_torch_version('''<''', '''2.0.0''' ) or not hasattr(A_, '''_dynamo''' ):
return False
return isinstance(A_, torch._dynamo.eval_frame.OptimizedModule )
def snake_case_ ( A_ : List[str], A_ : bool = True ):
'''simple docstring'''
_lowerCamelCase : Tuple = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
_lowerCamelCase : Any = is_compiled_module(A_ )
if is_compiled:
_lowerCamelCase : Dict = model
_lowerCamelCase : Any = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(A_, A_ ):
_lowerCamelCase : List[Any] = model.module
if not keep_fpaa_wrapper:
_lowerCamelCase : int = getattr(A_, '''forward''' )
_lowerCamelCase : int = model.__dict__.pop('''_original_forward''', A_ )
if original_forward is not None:
while hasattr(A_, '''__wrapped__''' ):
_lowerCamelCase : Union[str, Any] = forward.__wrapped__
if forward == original_forward:
break
_lowerCamelCase : int = forward
if getattr(A_, '''_converted_to_transformer_engine''', A_ ):
convert_model(A_, to_transformer_engine=A_ )
if is_compiled:
_lowerCamelCase : Dict = model
_lowerCamelCase : int = compiled_model
return model
def snake_case_ ( ):
'''simple docstring'''
PartialState().wait_for_everyone()
def snake_case_ ( A_ : Optional[int], A_ : str ):
'''simple docstring'''
if PartialState().distributed_type == DistributedType.TPU:
xm.save(A_, A_ )
elif PartialState().local_process_index == 0:
torch.save(A_, A_ )
@contextmanager
def snake_case_ ( **A_ : Any ):
'''simple docstring'''
for key, value in kwargs.items():
_lowerCamelCase : Union[str, Any] = str(A_ )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def snake_case_ ( A_ : Any ):
'''simple docstring'''
if not hasattr(A_, '''__qualname__''' ) and not hasattr(A_, '''__name__''' ):
_lowerCamelCase : Union[str, Any] = getattr(A_, '''__class__''', A_ )
if hasattr(A_, '''__qualname__''' ):
return obj.__qualname__
if hasattr(A_, '''__name__''' ):
return obj.__name__
return str(A_ )
def snake_case_ ( A_ : Any, A_ : Dict ):
'''simple docstring'''
for key, value in source.items():
if isinstance(A_, A_ ):
_lowerCamelCase : Optional[Any] = destination.setdefault(A_, {} )
merge_dicts(A_, A_ )
else:
_lowerCamelCase : Any = value
return destination
def snake_case_ ( A_ : int = None ):
'''simple docstring'''
if port is None:
_lowerCamelCase : Optional[int] = 2_95_00
with socket.socket(socket.AF_INET, socket.SOCK_STREAM ) as s:
return s.connect_ex(('''localhost''', port) ) == 0
| 83 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
a = {
"""configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"""GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GPTNeoForCausalLM""",
"""GPTNeoForQuestionAnswering""",
"""GPTNeoForSequenceClassification""",
"""GPTNeoForTokenClassification""",
"""GPTNeoModel""",
"""GPTNeoPreTrainedModel""",
"""load_tf_weights_in_gpt_neo""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"""FlaxGPTNeoForCausalLM""",
"""FlaxGPTNeoModel""",
"""FlaxGPTNeoPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 687 | 0 |
from sklearn.metrics import mean_squared_error
import datasets
UpperCAmelCase = '''\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
UpperCAmelCase = '''\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
'''
UpperCAmelCase = '''
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
"raw_values" : Returns a full set of errors in case of multioutput input.
"uniform_average" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric("mse")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{\'mse\': 0.6123724356957945}
If you\'re using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric("mse", "multilist")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{\'mse\': array([0.41666667, 1. ])}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html'
] , )
def SCREAMING_SNAKE_CASE__ ( self ):
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value('float' ) ),
"references": datasets.Sequence(datasets.Value('float' ) ),
}
else:
return {
"predictions": datasets.Value('float' ),
"references": datasets.Value('float' ),
}
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case=None , snake_case="uniform_average" , snake_case=True ):
lowercase = mean_squared_error(
snake_case , snake_case , sample_weight=snake_case , multioutput=snake_case , squared=snake_case )
return {"mse": mse}
| 84 |
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ):
"""simple docstring"""
_lowerCAmelCase :Optional[Any] = a
while True:
_lowerCAmelCase :str = Decimal(__magic_name__ ) - (
Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(__magic_name__ ) ) < precision: # noqa: S307
return float(__magic_name__ )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''')
# Find root of polynomial
print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''')
# Find Square Root of 5
print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''')
# Exponential Roots
print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''') | 687 | 0 |
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available
from ...utils import OptionalDependencyNotAvailable
SCREAMING_SNAKE_CASE__ : Any = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : List[str] = ["DPTFeatureExtractor"]
SCREAMING_SNAKE_CASE__ : Tuple = ["DPTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = [
"DPT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DPTForDepthEstimation",
"DPTForSemanticSegmentation",
"DPTModel",
"DPTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_dpt import DPTFeatureExtractor
from .image_processing_dpt import DPTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dpt import (
DPT_PRETRAINED_MODEL_ARCHIVE_LIST,
DPTForDepthEstimation,
DPTForSemanticSegmentation,
DPTModel,
DPTPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 85 |
import argparse
import os
import torch
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
a = {
"""sample_size""": 32,
"""in_channels""": 3,
"""out_channels""": 3,
"""layers_per_block""": 2,
"""num_class_embeds""": 1_000,
"""block_out_channels""": [32, 64],
"""attention_head_dim""": 8,
"""down_block_types""": [
"""ResnetDownsampleBlock2D""",
"""AttnDownBlock2D""",
],
"""up_block_types""": [
"""AttnUpBlock2D""",
"""ResnetUpsampleBlock2D""",
],
"""resnet_time_scale_shift""": """scale_shift""",
"""upsample_type""": """resnet""",
"""downsample_type""": """resnet""",
}
a = {
"""sample_size""": 64,
"""in_channels""": 3,
"""out_channels""": 3,
"""layers_per_block""": 3,
"""num_class_embeds""": 1_000,
"""block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4],
"""attention_head_dim""": 64,
"""down_block_types""": [
"""ResnetDownsampleBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
],
"""up_block_types""": [
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""ResnetUpsampleBlock2D""",
],
"""resnet_time_scale_shift""": """scale_shift""",
"""upsample_type""": """resnet""",
"""downsample_type""": """resnet""",
}
a = {
"""sample_size""": 256,
"""in_channels""": 3,
"""out_channels""": 3,
"""layers_per_block""": 2,
"""num_class_embeds""": None,
"""block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4],
"""attention_head_dim""": 64,
"""down_block_types""": [
"""ResnetDownsampleBlock2D""",
"""ResnetDownsampleBlock2D""",
"""ResnetDownsampleBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
"""AttnDownBlock2D""",
],
"""up_block_types""": [
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""AttnUpBlock2D""",
"""ResnetUpsampleBlock2D""",
"""ResnetUpsampleBlock2D""",
"""ResnetUpsampleBlock2D""",
],
"""resnet_time_scale_shift""": """default""",
"""upsample_type""": """resnet""",
"""downsample_type""": """resnet""",
}
a = {
"""num_train_timesteps""": 40,
"""sigma_min""": 0.0_0_2,
"""sigma_max""": 8_0.0,
}
a = {
"""num_train_timesteps""": 201,
"""sigma_min""": 0.0_0_2,
"""sigma_max""": 8_0.0,
}
a = {
"""num_train_timesteps""": 151,
"""sigma_min""": 0.0_0_2,
"""sigma_max""": 8_0.0,
}
def UpperCamelCase_( __magic_name__ : Dict ):
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError('boolean value expected' )
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ):
"""simple docstring"""
_lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""]
_lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""]
_lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""]
_lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""]
_lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""]
_lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""]
_lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""]
_lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""]
_lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""]
_lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""]
if has_skip:
_lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""]
_lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""]
return new_checkpoint
def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ):
"""simple docstring"""
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 )
_lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""]
_lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""]
_lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 )
_lowerCAmelCase :int = (
checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 )
)
_lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 )
return new_checkpoint
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ):
"""simple docstring"""
_lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' )
_lowerCAmelCase :List[Any] = {}
_lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight']
_lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias']
_lowerCAmelCase :Dict = checkpoint['time_embed.2.weight']
_lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias']
if unet_config["num_class_embeds"] is not None:
_lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight']
_lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight']
_lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias']
_lowerCAmelCase :List[Any] = unet_config['down_block_types']
_lowerCAmelCase :Any = unet_config['layers_per_block']
_lowerCAmelCase :List[Any] = unet_config['attention_head_dim']
_lowerCAmelCase :Tuple = unet_config['block_out_channels']
_lowerCAmelCase :List[str] = 1
_lowerCAmelCase :Optional[int] = channels_list[0]
for i, layer_type in enumerate(__magic_name__ ):
_lowerCAmelCase :Tuple = channels_list[i]
_lowerCAmelCase :Optional[Any] = current_channels != prev_channels
if layer_type == "ResnetDownsampleBlock2D":
for j in range(__magic_name__ ):
_lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}"""
_lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0"""
_lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False
_lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ )
current_layer += 1
elif layer_type == "AttnDownBlock2D":
for j in range(__magic_name__ ):
_lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}"""
_lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0"""
_lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False
_lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ )
_lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}"""
_lowerCAmelCase :str = f"""input_blocks.{current_layer}.1"""
_lowerCAmelCase :Optional[Any] = convert_attention(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
current_layer += 1
if i != len(__magic_name__ ) - 1:
_lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0"""
_lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0"""
_lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
current_layer += 1
_lowerCAmelCase :Dict = current_channels
# hardcoded the mid-block for now
_lowerCAmelCase :int = 'mid_block.resnets.0'
_lowerCAmelCase :Optional[Any] = 'middle_block.0'
_lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
_lowerCAmelCase :Optional[int] = 'mid_block.attentions.0'
_lowerCAmelCase :Optional[int] = 'middle_block.1'
_lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
_lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1'
_lowerCAmelCase :Optional[int] = 'middle_block.2'
_lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
_lowerCAmelCase :Tuple = 0
_lowerCAmelCase :str = unet_config['up_block_types']
for i, layer_type in enumerate(__magic_name__ ):
if layer_type == "ResnetUpsampleBlock2D":
for j in range(layers_per_block + 1 ):
_lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}"""
_lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0"""
_lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ )
current_layer += 1
if i != len(__magic_name__ ) - 1:
_lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0"""
_lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1"""
_lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
elif layer_type == "AttnUpBlock2D":
for j in range(layers_per_block + 1 ):
_lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}"""
_lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0"""
_lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ )
_lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}"""
_lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1"""
_lowerCAmelCase :int = convert_attention(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
current_layer += 1
if i != len(__magic_name__ ) - 1:
_lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0"""
_lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2"""
_lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
_lowerCAmelCase :str = checkpoint['out.0.weight']
_lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias']
_lowerCAmelCase :List[Any] = checkpoint['out.2.weight']
_lowerCAmelCase :Dict = checkpoint['out.2.bias']
return new_checkpoint
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""")
parser.add_argument(
"""--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model."""
)
parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""")
a = parser.parse_args()
a = strabool(args.class_cond)
a = os.path.basename(args.unet_path)
print(F'''Checkpoint: {ckpt_name}''')
# Get U-Net config
if "imagenet64" in ckpt_name:
a = IMAGENET_64_UNET_CONFIG
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
a = LSUN_256_UNET_CONFIG
elif "test" in ckpt_name:
a = TEST_UNET_CONFIG
else:
raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''')
if not args.class_cond:
a = None
a = con_pt_to_diffuser(args.unet_path, unet_config)
a = UNetaDModel(**unet_config)
image_unet.load_state_dict(converted_unet_ckpt)
# Get scheduler config
if "cd" in ckpt_name or "test" in ckpt_name:
a = CD_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "imagenet64" in ckpt_name:
a = CT_IMAGENET_64_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
a = CT_LSUN_256_SCHEDULER_CONFIG
else:
raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''')
a = CMStochasticIterativeScheduler(**scheduler_config)
a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler)
consistency_model.save_pretrained(args.dump_path) | 687 | 0 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__a :Dict = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Tuple=False ):
"""simple docstring"""
A_ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "vit.embeddings.cls_token"),
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
("pre_logits.fc.weight", "pooler.dense.weight"),
("pre_logits.fc.bias", "pooler.dense.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
A_ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Any=False ):
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
A_ = ""
else:
A_ = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A_ = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' )
A_ = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
A_ = in_proj_weight[
: config.hidden_size, :
]
A_ = in_proj_bias[: config.hidden_size]
A_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A_ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A_ = in_proj_weight[
-config.hidden_size :, :
]
A_ = in_proj_bias[-config.hidden_size :]
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(__UpperCamelCase ,__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : List[str] ):
"""simple docstring"""
A_ = dct.pop(__UpperCamelCase )
A_ = val
def __snake_case ( ):
"""simple docstring"""
A_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw )
return im
@torch.no_grad()
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int] ):
"""simple docstring"""
A_ = ViTConfig()
A_ = False
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
if vit_name[-5:] == "in21k":
A_ = True
A_ = int(vit_name[-12:-10] )
A_ = int(vit_name[-9:-6] )
else:
A_ = 1000
A_ = "huggingface/label-files"
A_ = "imagenet-1k-id2label.json"
A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) )
A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
A_ = idalabel
A_ = {v: k for k, v in idalabel.items()}
A_ = int(vit_name[-6:-4] )
A_ = int(vit_name[-3:] )
# size of the architecture
if "deit" in vit_name:
if vit_name[9:].startswith("tiny" ):
A_ = 192
A_ = 768
A_ = 12
A_ = 3
elif vit_name[9:].startswith("small" ):
A_ = 384
A_ = 1536
A_ = 12
A_ = 6
else:
pass
else:
if vit_name[4:].startswith("small" ):
A_ = 768
A_ = 2304
A_ = 8
A_ = 8
elif vit_name[4:].startswith("base" ):
pass
elif vit_name[4:].startswith("large" ):
A_ = 1024
A_ = 4096
A_ = 24
A_ = 16
elif vit_name[4:].startswith("huge" ):
A_ = 1280
A_ = 5120
A_ = 32
A_ = 16
# load original model from timm
A_ = timm.create_model(__UpperCamelCase ,pretrained=__UpperCamelCase )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
A_ = timm_model.state_dict()
if base_model:
remove_classification_head_(__UpperCamelCase )
A_ = create_rename_keys(__UpperCamelCase ,__UpperCamelCase )
for src, dest in rename_keys:
rename_key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
read_in_q_k_v(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# load HuggingFace model
if vit_name[-5:] == "in21k":
A_ = ViTModel(__UpperCamelCase ).eval()
else:
A_ = ViTForImageClassification(__UpperCamelCase ).eval()
model.load_state_dict(__UpperCamelCase )
# Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
if "deit" in vit_name:
A_ = DeiTImageProcessor(size=config.image_size )
else:
A_ = ViTImageProcessor(size=config.image_size )
A_ = image_processor(images=prepare_img() ,return_tensors="pt" )
A_ = encoding["pixel_values"]
A_ = model(__UpperCamelCase )
if base_model:
A_ = timm_model.forward_features(__UpperCamelCase )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(__UpperCamelCase ,outputs.pooler_output ,atol=1E-3 )
else:
A_ = timm_model(__UpperCamelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__UpperCamelCase ,outputs.logits ,atol=1E-3 )
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--vit_name',
default='vit_base_patch16_224',
type=str,
help='Name of the ViT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
__a :Optional[int] = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path) | 86 |
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
a = """ \"\"\"
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"\"\"
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
"""
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: Dict ):
_lowerCAmelCase :Optional[Any] = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) )
_lowerCAmelCase :Tuple = self.diffusers_dir
shutil.copy(
os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :str = 'src/diffusers'
shutil.rmtree(self.diffusers_dir )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ):
_lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code
if overwrite_result is not None:
_lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result
_lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
_lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase )
_lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' )
with open(_UpperCAmelCase , 'w' , newline='\n' ) as f:
f.write(_UpperCAmelCase )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase )
with open(_UpperCAmelCase , 'r' ) as f:
self.assertTrue(f.read() , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
_lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
# Base copy consistency
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , )
# With no empty line at the end
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , )
# Copy consistency with rename
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
# Copy consistency with a really long name
_lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'
self.check_copy_consistency(
f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) | 687 | 0 |
def SCREAMING_SNAKE_CASE ( lowercase_ = 100 ) -> int:
"""simple docstring"""
A__ = (n * (n + 1) // 2) ** 2
A__ = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(F'''{solution() = }''')
| 87 |
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} )
lowerCamelCase : Optional[str] = field(
default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} )
lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} )
lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} )
lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} )
lowerCamelCase : Optional[int] = field(
default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} )
lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} )
lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} )
lowerCamelCase : Optional[int] = field(
default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} )
lowerCamelCase : Optional[int] = field(
default=16 , metadata={'help': 'Number of gradient accumulation steps.'} )
lowerCamelCase : Optional[bool] = field(
default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} )
lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} )
lowerCamelCase : Optional[int] = field(
default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} )
lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} )
lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} )
lowerCamelCase : Optional[int] = field(
default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , )
lowerCamelCase : Optional[str] = field(
default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} )
lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} )
lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} )
lowerCamelCase : Optional[int] = field(
default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} )
lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} )
lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} )
lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} )
lowerCamelCase : Optional[int] = field(
default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , )
lowerCamelCase : Optional[bool] = field(
default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} )
lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} )
lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} )
lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} )
lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} )
lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} )
lowerCamelCase : Optional[int] = field(
default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} )
lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} )
lowerCamelCase : Optional[str] = field(
default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} )
lowerCamelCase : Optional[str] = field(
default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} )
lowerCamelCase : Optional[int] = field(
default=-1 , metadata={
'help': (
'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive'
' number corresponds to which GPU device id to run on.'
)
} , )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[int] = field(
default=snake_case__ , metadata={
'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.'
} , )
lowerCamelCase : Optional[str] = field(
default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} )
lowerCamelCase : Optional[int] = field(
default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} )
lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} )
lowerCamelCase : Optional[float] = field(
default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} )
lowerCamelCase : Optional[float] = field(
default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} )
lowerCamelCase : Optional[float] = field(
default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} )
lowerCamelCase : Optional[float] = field(
default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} )
lowerCamelCase : Optional[float] = field(
default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , )
lowerCamelCase : Optional[bool] = field(
default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} )
lowerCamelCase : Optional[float] = field(
default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} )
lowerCamelCase : Optional[str] = field(
default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} )
lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} )
lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} )
lowerCamelCase : Optional[int] = field(
default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} )
lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} )
lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} )
lowerCamelCase : Optional[str] = field(
default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} )
lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} )
lowerCamelCase : Optional[str] = field(
default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} )
lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} )
lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) | 687 | 0 |
"""simple docstring"""
import torch
def _snake_case ( ):
"""simple docstring"""
if torch.cuda.is_available():
_lowerCamelCase : Tuple = torch.cuda.device_count()
else:
_lowerCamelCase : str = 0
print(F'Successfully ran on {num_gpus} GPUs' )
if __name__ == "__main__":
main()
| 88 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :List[str] = 'ylacombe/bark-small'
_lowerCAmelCase :int = tempfile.mkdtemp()
_lowerCAmelCase :List[str] = 'en_speaker_1'
_lowerCAmelCase :Union[str, Any] = 'This is a test string'
_lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json'
_lowerCAmelCase :str = 'speaker_embeddings'
def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ):
return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase :List[Any] = self.get_tokenizer()
_lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
_lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
_lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
_lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
_lowerCAmelCase :Any = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Tuple = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
_lowerCAmelCase :List[Any] = 35
_lowerCAmelCase :Optional[int] = 2
_lowerCAmelCase :Dict = 8
_lowerCAmelCase :Dict = {
'semantic_prompt': np.ones(_UpperCAmelCase ),
'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ),
'fine_prompt': np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
_lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
_lowerCAmelCase :List[Any] = inputs['history_prompt']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from npz file
_lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' )
np.savez(_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase )
_lowerCAmelCase :Optional[int] = inputs['history_prompt']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() )
# test loading voice preset from the hub
_lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :Tuple = self.get_tokenizer()
_lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase )
_lowerCAmelCase :List[Any] = processor(text=self.input_string )
_lowerCAmelCase :List[str] = tokenizer(
self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() ) | 687 | 0 |
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
SCREAMING_SNAKE_CASE : int = False
class _lowerCamelCase( unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class _lowerCamelCase( unittest.TestCase ):
def UpperCamelCase ( self) -> int:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase ( self) -> Tuple:
"""simple docstring"""
_lowercase : Union[str, Any] = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion')
# remove text_unet
pipe.remove_unused_weights()
pipe.to(lowerCamelCase)
pipe.set_progress_bar_config(disable=lowerCamelCase)
_lowercase : Union[str, Any] = 'A painting of a squirrel eating a burger '
_lowercase : List[Any] = torch.manual_seed(0)
_lowercase : str = pipe(
prompt=lowerCamelCase, generator=lowerCamelCase, guidance_scale=7.5, num_inference_steps=2, output_type='numpy').images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowerCamelCase)
_lowercase : Tuple = VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCamelCase)
pipe.to(lowerCamelCase)
pipe.set_progress_bar_config(disable=lowerCamelCase)
_lowercase : Optional[int] = generator.manual_seed(0)
_lowercase : Dict = pipe(
prompt=lowerCamelCase, generator=lowerCamelCase, guidance_scale=7.5, num_inference_steps=2, output_type='numpy').images
assert np.abs(image - new_image).sum() < 1E-5, "Models don't have the same forward pass"
def UpperCamelCase ( self) -> Any:
"""simple docstring"""
_lowercase : Any = VersatileDiffusionTextToImagePipeline.from_pretrained(
'shi-labs/versatile-diffusion', torch_dtype=torch.floataa)
pipe.to(lowerCamelCase)
pipe.set_progress_bar_config(disable=lowerCamelCase)
_lowercase : Union[str, Any] = 'A painting of a squirrel eating a burger '
_lowercase : List[Any] = torch.manual_seed(0)
_lowercase : Optional[int] = pipe(
prompt=lowerCamelCase, generator=lowerCamelCase, guidance_scale=7.5, num_inference_steps=50, output_type='numpy').images
_lowercase : List[Any] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_lowercase : List[str] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
| 89 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""",
"""bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""",
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""",
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""",
"""bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json"""
),
"""wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""",
# See all BERT models at https://huggingface.co/models?filter=bert
}
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
lowerCamelCase : int = 'bert'
def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ):
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :List[Any] = vocab_size
_lowerCAmelCase :Tuple = hidden_size
_lowerCAmelCase :Dict = num_hidden_layers
_lowerCAmelCase :Optional[Any] = num_attention_heads
_lowerCAmelCase :List[Any] = hidden_act
_lowerCAmelCase :int = intermediate_size
_lowerCAmelCase :Tuple = hidden_dropout_prob
_lowerCAmelCase :Tuple = attention_probs_dropout_prob
_lowerCAmelCase :List[Any] = max_position_embeddings
_lowerCAmelCase :Dict = type_vocab_size
_lowerCAmelCase :Any = initializer_range
_lowerCAmelCase :int = layer_norm_eps
_lowerCAmelCase :List[Any] = position_embedding_type
_lowerCAmelCase :int = use_cache
_lowerCAmelCase :Union[str, Any] = classifier_dropout
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
if self.task == "multiple-choice":
_lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] ) | 687 | 0 |
'''simple docstring'''
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class a__ ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]:
lowerCAmelCase__ = '''ylacombe/bark-small'''
lowerCAmelCase__ = tempfile.mkdtemp()
lowerCAmelCase__ = '''en_speaker_1'''
lowerCAmelCase__ = '''This is a test string'''
lowerCAmelCase__ = '''speaker_embeddings_path.json'''
lowerCAmelCase__ = '''speaker_embeddings'''
def __SCREAMING_SNAKE_CASE ( self , **lowerCamelCase_ ) -> int:
return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCamelCase_ )
def __SCREAMING_SNAKE_CASE ( self ) -> Tuple:
shutil.rmtree(self.tmpdirname )
def __SCREAMING_SNAKE_CASE ( self ) -> int:
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = BarkProcessor(tokenizer=lowerCamelCase_ )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def __SCREAMING_SNAKE_CASE ( self ) -> int:
lowerCAmelCase__ = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
lowerCAmelCase__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
lowerCAmelCase__ = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
lowerCAmelCase__ = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
lowerCAmelCase__ = 35
lowerCAmelCase__ = 2
lowerCAmelCase__ = 8
lowerCAmelCase__ = {
'''semantic_prompt''': np.ones(lowerCamelCase_ ),
'''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ),
'''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
lowerCAmelCase__ = processor(text=self.input_string , voice_preset=lowerCamelCase_ )
lowerCAmelCase__ = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
lowerCAmelCase__ = os.path.join(self.tmpdirname , '''file.npz''' )
np.savez(lowerCamelCase_ , **lowerCamelCase_ )
lowerCAmelCase__ = processor(text=self.input_string , voice_preset=lowerCamelCase_ )
lowerCAmelCase__ = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
lowerCAmelCase__ = processor(text=self.input_string , voice_preset=self.voice_preset )
def __SCREAMING_SNAKE_CASE ( self ) -> Any:
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = BarkProcessor(tokenizer=lowerCamelCase_ )
lowerCAmelCase__ = processor(text=self.input_string )
lowerCAmelCase__ = tokenizer(
self.input_string , padding='''max_length''' , max_length=2_56 , add_special_tokens=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() ) | 90 |
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ):
"""simple docstring"""
if isinstance(__magic_name__ , torch.Tensor ):
return image
elif isinstance(__magic_name__ , PIL.Image.Image ):
_lowerCAmelCase :Tuple = [image]
if isinstance(image[0] , PIL.Image.Image ):
_lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image]
_lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 )
_lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0
_lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 )
_lowerCAmelCase :int = 2.0 * image - 1.0
_lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ )
elif isinstance(image[0] , torch.Tensor ):
_lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 )
return image
def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ):
"""simple docstring"""
if not isinstance(__magic_name__ , np.ndarray ):
_lowerCAmelCase :Tuple = True
_lowerCAmelCase :str = va.device
_lowerCAmelCase :List[str] = va.cpu().numpy()
_lowerCAmelCase :List[str] = va.cpu().numpy()
_lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) )
if np.abs(__magic_name__ ) > DOT_THRESHOLD:
_lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va
else:
_lowerCAmelCase :int = np.arccos(__magic_name__ )
_lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ )
_lowerCAmelCase :Union[str, Any] = theta_a * t
_lowerCAmelCase :str = np.sin(__magic_name__ )
_lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a
_lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a
_lowerCAmelCase :List[Any] = sa * va + sa * va
if inputs_are_torch:
_lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ )
return va
def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
_lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 )
_lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 )
return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 )
def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
for param in model.parameters():
_lowerCAmelCase :List[str] = value
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ):
super().__init__()
self.register_modules(
vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , )
_lowerCAmelCase :int = (
feature_extractor.size
if isinstance(feature_extractor.size , _UpperCAmelCase )
else feature_extractor.size['shortest_edge']
)
_lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std )
set_requires_grad(self.text_encoder , _UpperCAmelCase )
set_requires_grad(self.clip_model , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
_lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
self.enable_attention_slicing(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
set_requires_grad(self.vae , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
set_requires_grad(self.vae , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
set_requires_grad(self.unet , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
set_requires_grad(self.unet , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ):
# get the original timestep using init_timestep
_lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase )
_lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 )
_lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ):
if not isinstance(_UpperCAmelCase , torch.Tensor ):
raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" )
_lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_lowerCAmelCase :List[Any] = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase )
]
_lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 )
else:
_lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents
_lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 )
_lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase )
# get latents
_lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :List[str] = init_latents
return latents
def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ):
_lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
_lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) )
_lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' )
def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ):
_lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase )
_lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half()
_lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase )
_lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase )
_lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ):
_lowerCAmelCase :Dict = latents.detach().requires_grad_()
_lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
# predict the noise residual
_lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
_lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep]
_lowerCAmelCase :Optional[int] = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
_lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase )
_lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , _UpperCAmelCase ):
_lowerCAmelCase :Dict = self.scheduler.sigmas[index]
_lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred
else:
raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample
_lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample
_lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 )
_lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase )
_lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype )
_lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase )
_lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase )
_lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale
_lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0]
if isinstance(self.scheduler , _UpperCAmelCase ):
_lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2)
_lowerCAmelCase :Dict = noise_pred_original
else:
_lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ):
if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size:
raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1:
_lowerCAmelCase :int = [generator] + [None] * (batch_size - 1)
_lowerCAmelCase :List[Any] = [
('model', self.coca_model is None),
('tokenizer', self.coca_tokenizer is None),
('transform', self.coca_transform is None),
]
_lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]]
_lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(_UpperCAmelCase ):
raise ValueError(
f"""Content prompt is None and CoCa [{coca_is_none_str}] is None."""
f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
_lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase )
if style_prompt is None:
if len(_UpperCAmelCase ):
raise ValueError(
f"""Style prompt is None and CoCa [{coca_is_none_str}] is None."""
f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
_lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase )
# get prompt text embeddings for content and style
_lowerCAmelCase :Any = self.tokenizer(
_UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , )
_lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
_lowerCAmelCase :int = self.tokenizer(
_UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , )
_lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
_lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# duplicate text embeddings for each generation per prompt
_lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 )
# set timesteps
_lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
_lowerCAmelCase :Dict = {}
if accepts_offset:
_lowerCAmelCase :Optional[int] = 1
self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
_lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device )
_lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase )
# Preprocess image
_lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :int = self.prepare_latents(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase )
_lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Union[str, Any] = self.prepare_latents(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase )
_lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if clip_guidance_scale > 0:
_lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase )
_lowerCAmelCase :Any = slerp(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
_lowerCAmelCase :int = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
_lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1]
_lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' )
_lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
_lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
_lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
_lowerCAmelCase :Optional[Any] = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
_lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to(
self.device )
else:
_lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase )
else:
if latents.shape != latents_shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
_lowerCAmelCase :int = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
_lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
_lowerCAmelCase :Any = {}
if accepts_eta:
_lowerCAmelCase :Any = eta
# check if the scheduler accepts generator
_lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
_lowerCAmelCase :List[Any] = generator
with self.progress_bar(total=_UpperCAmelCase ):
for i, t in enumerate(_UpperCAmelCase ):
# expand the latents if we are doing classifier free guidance
_lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
# predict the noise residual
_lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
_lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 )
_lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
_lowerCAmelCase :List[Any] = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
_lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , )
# compute the previous noisy sample x_t -> x_t-1
_lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents
_lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample
_lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 )
_lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase ) | 687 | 0 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : str ): # noqa: E741
while r - l > 1:
A = (l + r) // 2
if v[m] >= key:
A = m
else:
A = m # noqa: E741
return r
def _snake_case ( snake_case__ : list[int] ):
if len(snake_case__ ) == 0:
return 0
A = [0] * len(snake_case__ )
A = 1
A = v[0]
for i in range(1 , len(snake_case__ ) ):
if v[i] < tail[0]:
A = v[i]
elif v[i] > tail[length - 1]:
A = v[i]
length += 1
else:
A = v[i]
return length
if __name__ == "__main__":
import doctest
doctest.testmod() | 91 |
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ):
"""simple docstring"""
_lowerCAmelCase :Optional[int] = list(__magic_name__ )
_lowerCAmelCase :Dict = list(__magic_name__ )
_lowerCAmelCase :Any = 0
for i in range(len(__magic_name__ ) ):
if lista[i] != lista[i]:
count += 1
_lowerCAmelCase :Union[str, Any] = '_'
if count > 1:
return False
else:
return "".join(__magic_name__ )
def UpperCamelCase_( __magic_name__ : list[str] ):
"""simple docstring"""
_lowerCAmelCase :int = []
while True:
_lowerCAmelCase :str = ['$'] * len(__magic_name__ )
_lowerCAmelCase :Optional[int] = []
for i in range(len(__magic_name__ ) ):
for j in range(i + 1 , len(__magic_name__ ) ):
_lowerCAmelCase :int = compare_string(binary[i] , binary[j] )
if k is False:
_lowerCAmelCase :str = '*'
_lowerCAmelCase :Union[str, Any] = '*'
temp.append('X' )
for i in range(len(__magic_name__ ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(__magic_name__ ) == 0:
return pi
_lowerCAmelCase :Any = list(set(__magic_name__ ) )
def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ):
"""simple docstring"""
_lowerCAmelCase :str = []
for minterm in minterms:
_lowerCAmelCase :Any = ''
for _ in range(__magic_name__ ):
_lowerCAmelCase :Tuple = str(minterm % 2 ) + string
minterm //= 2
temp.append(__magic_name__ )
return temp
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ):
"""simple docstring"""
_lowerCAmelCase :Optional[Any] = list(__magic_name__ )
_lowerCAmelCase :List[Any] = list(__magic_name__ )
_lowerCAmelCase :Optional[Any] = 0
for i in range(len(__magic_name__ ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ):
"""simple docstring"""
_lowerCAmelCase :str = []
_lowerCAmelCase :List[str] = [0] * len(__magic_name__ )
for i in range(len(chart[0] ) ):
_lowerCAmelCase :Dict = 0
_lowerCAmelCase :Optional[Any] = -1
for j in range(len(__magic_name__ ) ):
if chart[j][i] == 1:
count += 1
_lowerCAmelCase :List[Any] = j
if count == 1:
_lowerCAmelCase :Dict = 1
for i in range(len(__magic_name__ ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(__magic_name__ ) ):
_lowerCAmelCase :Dict = 0
temp.append(prime_implicants[i] )
while True:
_lowerCAmelCase :Dict = 0
_lowerCAmelCase :Any = -1
_lowerCAmelCase :Optional[Any] = 0
for i in range(len(__magic_name__ ) ):
_lowerCAmelCase :str = chart[i].count(1 )
if count_n > max_n:
_lowerCAmelCase :Optional[Any] = count_n
_lowerCAmelCase :Dict = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(__magic_name__ ) ):
_lowerCAmelCase :str = 0
def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ):
"""simple docstring"""
_lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )]
for i in range(len(__magic_name__ ) ):
_lowerCAmelCase :Tuple = prime_implicants[i].count('_' )
for j in range(len(__magic_name__ ) ):
if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ):
_lowerCAmelCase :str = 1
return chart
def UpperCamelCase_( ):
"""simple docstring"""
_lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) )
_lowerCAmelCase :Tuple = [
float(__magic_name__ )
for x in input(
'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split()
]
_lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ )
_lowerCAmelCase :Any = check(__magic_name__ )
print('Prime Implicants are:' )
print(__magic_name__ )
_lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ )
_lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ )
print('Essential Prime Implicants are:' )
print(__magic_name__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main() | 687 | 0 |
'''simple docstring'''
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def __init__( self : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Optional[int]=32 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Tuple=10 , UpperCAmelCase__ : List[str]=[10, 20, 30, 40] , UpperCAmelCase__ : Any=[1, 1, 2, 1] , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : List[Any]="relu" , UpperCAmelCase__ : Optional[Any]=3 , UpperCAmelCase__ : Tuple=None , ):
'''simple docstring'''
lowercase : List[Any] =parent
lowercase : str =batch_size
lowercase : Optional[int] =image_size
lowercase : List[Any] =num_channels
lowercase : Tuple =embeddings_size
lowercase : int =hidden_sizes
lowercase : List[str] =depths
lowercase : Any =is_training
lowercase : List[Any] =use_labels
lowercase : Tuple =hidden_act
lowercase : Dict =num_labels
lowercase : List[str] =scope
lowercase : Dict =len(UpperCAmelCase__ )
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
lowercase : Any =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase : int =self.get_config()
return config, pixel_values
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] ):
'''simple docstring'''
lowercase : Tuple =FlaxRegNetModel(config=UpperCAmelCase__ )
lowercase : int =model(UpperCAmelCase__ )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCamelCase_ ( self : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] ):
'''simple docstring'''
lowercase : Dict =self.num_labels
lowercase : Optional[Any] =FlaxRegNetForImageClassification(config=UpperCAmelCase__ )
lowercase : List[str] =model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
lowercase : Optional[Any] =self.prepare_config_and_inputs()
lowercase , lowercase : Any =config_and_inputs
lowercase : Tuple ={'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class __SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ):
lowerCamelCase_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = False
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
lowercase : int =FlaxRegNetModelTester(self )
lowercase : Tuple =ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ )
def lowerCamelCase_ ( self : Tuple ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
return
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
lowercase : List[str] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def lowerCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
lowercase : Tuple =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ )
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def lowerCamelCase_ ( self : str ):
'''simple docstring'''
pass
def lowerCamelCase_ ( self : List[str] ):
'''simple docstring'''
lowercase , lowercase : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase : Any =model_class(UpperCAmelCase__ )
lowercase : str =inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase : List[Any] =[*signature.parameters.keys()]
lowercase : List[str] =['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase__ )
def lowerCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
def check_hidden_states_output(UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] ):
lowercase : Union[str, Any] =model_class(UpperCAmelCase__ )
lowercase : Tuple =model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) )
lowercase : Union[str, Any] =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowercase : int =self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase__ ) , expected_num_stages + 1 )
lowercase , lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase : List[str] =True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase : str =True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
lowercase , lowercase : List[str] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowercase : List[Any] =self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ )
lowercase : Optional[Any] =model_class(UpperCAmelCase__ )
@jax.jit
def model_jitted(UpperCAmelCase__ : Any , **UpperCAmelCase__ : List[Any] ):
return model(pixel_values=UpperCAmelCase__ , **UpperCAmelCase__ )
with self.subTest('''JIT Enabled''' ):
lowercase : Union[str, Any] =model_jitted(**UpperCAmelCase__ ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
lowercase : int =model_jitted(**UpperCAmelCase__ ).to_tuple()
self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) )
for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ):
self.assertEqual(jitted_output.shape , output.shape )
def _lowerCAmelCase ( ) -> int:
lowercase : Dict =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_flax
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@cached_property
def lowerCamelCase_ ( self : List[Any] ):
'''simple docstring'''
return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None
@slow
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
lowercase : int =FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' )
lowercase : Tuple =self.default_image_processor
lowercase : Union[str, Any] =prepare_img()
lowercase : Any =image_processor(images=UpperCAmelCase__ , return_tensors='''np''' )
lowercase : Union[str, Any] =model(**UpperCAmelCase__ )
# verify the logits
lowercase : str =(1, 1000)
self.assertEqual(outputs.logits.shape , UpperCAmelCase__ )
lowercase : Dict =jnp.array([-0.41_80, -1.50_51, -3.48_36] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) )
| 92 |
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
a = """\
@INPROCEEDINGS{Papineni02bleu:a,
author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},
title = {BLEU: a Method for Automatic Evaluation of Machine Translation},
booktitle = {},
year = {2002},
pages = {311--318}
}
@inproceedings{lin-och-2004-orange,
title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",
author = \"Lin, Chin-Yew and
Och, Franz Josef\",
booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",
month = \"aug 23{--}aug 27\",
year = \"2004\",
address = \"Geneva, Switzerland\",
publisher = \"COLING\",
url = \"https://www.aclweb.org/anthology/C04-1072\",
pages = \"501--507\",
}
"""
a = """\
BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.
Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,
the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and
remains one of the most popular automated and inexpensive metrics.
Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.
Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness
are not taken into account[citation needed].
BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1
representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the
reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional
reference translations will increase the BLEU score.
"""
a = """
Computes BLEU score of translated segments against one or more references.
Args:
predictions: list of translations to score.
Each translation should be tokenized into a list of tokens.
references: list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
max_order: Maximum n-gram order to use when computing BLEU score.
smooth: Whether or not to apply Lin et al. 2004 smoothing.
Returns:
'bleu': bleu score,
'precisions': geometric mean of n-gram precisions,
'brevity_penalty': brevity penalty,
'length_ratio': ratio of lengths,
'translation_length': translation_length,
'reference_length': reference_length
Examples:
>>> predictions = [
... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample
... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample
... ]
>>> references = [
... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)
... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)
... ]
>>> bleu = datasets.load_metric(\"bleu\")
>>> results = bleu.compute(predictions=predictions, references=references)
>>> print(results[\"bleu\"])
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ (datasets.Metric ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ),
} ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[
'https://en.wikipedia.org/wiki/BLEU',
'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213',
] , )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ):
_lowerCAmelCase :Any = compute_bleu(
reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase )
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
} | 687 | 0 |
"""simple docstring"""
import collections
import os
import re
from pathlib import Path
__A = """src/transformers"""
# Matches is_xxx_available()
__A = re.compile(R"""is\_([a-z_]*)_available()""")
# Catches a one-line _import_struct = {xxx}
__A = re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
__A = re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""")
# Catches a line if not is_foo_available
__A = re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""")
# Catches a line _import_struct["bla"].append("foo")
__A = re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
__A = re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""")
# Catches a line with an object between quotes and a comma: "MyModel",
__A = re.compile(R"""^\s+\"([^\"]+)\",""")
# Catches a line with objects between brackets only: ["foo", "bar"],
__A = re.compile(R"""^\s+\[([^\]]+)\]""")
# Catches a line with from foo import bar, bla, boo
__A = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
# Catches a line with try:
__A = re.compile(R"""^\s*try:""")
# Catches a line with else:
__A = re.compile(R"""^\s*else:""")
def __A (_SCREAMING_SNAKE_CASE ) ->List[Any]:
"""simple docstring"""
if _re_test_backend.search(_SCREAMING_SNAKE_CASE ) is None:
return None
lowerCAmelCase__ :Optional[Any] = [b[0] for b in _re_backend.findall(_SCREAMING_SNAKE_CASE )]
backends.sort()
return "_and_".join(_SCREAMING_SNAKE_CASE )
def __A (_SCREAMING_SNAKE_CASE ) ->str:
"""simple docstring"""
with open(_SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
lowerCAmelCase__ :Any = f.readlines()
lowerCAmelCase__ :int = 0
while line_index < len(_SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(_SCREAMING_SNAKE_CASE ):
return None
# First grab the objects without a specific backend in _import_structure
lowerCAmelCase__ :str = []
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
lowerCAmelCase__ :Tuple = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ):
lowerCAmelCase__ :int = _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ).groups()[0]
lowerCAmelCase__ :Any = re.findall(r'\[([^\]]+)\]' , _SCREAMING_SNAKE_CASE )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
lowerCAmelCase__ :Optional[int] = _re_import_struct_key_value.search(_SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
lowerCAmelCase__ :List[Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(_SCREAMING_SNAKE_CASE ) > 0]
objects.extend(_SCREAMING_SNAKE_CASE )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
lowerCAmelCase__ :Optional[Any] = {'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowerCAmelCase__ :Dict = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase__ :Optional[int] = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase__ :Optional[int] = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
lowerCAmelCase__ :Dict = lines[line_index]
if _re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ).groups()[0] )
elif _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ) is not None:
lowerCAmelCase__ :List[Any] = _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
lowerCAmelCase__ :Dict = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0]
objects.extend(_SCREAMING_SNAKE_CASE )
elif _re_between_brackets.search(_SCREAMING_SNAKE_CASE ) is not None:
lowerCAmelCase__ :Optional[Any] = _re_between_brackets.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
lowerCAmelCase__ :str = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0]
objects.extend(_SCREAMING_SNAKE_CASE )
elif _re_quote_object.search(_SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_quote_object.search(_SCREAMING_SNAKE_CASE ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
lowerCAmelCase__ :Union[str, Any] = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowerCAmelCase__ :Optional[int] = []
while (
line_index < len(_SCREAMING_SNAKE_CASE )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
lowerCAmelCase__ :str = lines[line_index]
lowerCAmelCase__ :int = _re_import.search(_SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowerCAmelCase__ :Dict = {'none': objects}
# Let's continue with backend-specific objects
while line_index < len(_SCREAMING_SNAKE_CASE ):
# If the line is an if is_backend_available, we grab all objects associated.
lowerCAmelCase__ :Optional[Any] = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase__ :Union[str, Any] = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase__ :Dict = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
lowerCAmelCase__ :Tuple = lines[line_index]
lowerCAmelCase__ :Dict = _re_import.search(_SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
lowerCAmelCase__ :Optional[Any] = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]:
"""simple docstring"""
def find_duplicates(_SCREAMING_SNAKE_CASE ):
return [k for k, v in collections.Counter(_SCREAMING_SNAKE_CASE ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowerCAmelCase__ :Any = []
for key in import_dict_objects.keys():
lowerCAmelCase__ :List[str] = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" )
lowerCAmelCase__ :Union[str, Any] = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowerCAmelCase__ :int = 'base imports' if key == 'none' else F"{key} backend"
errors.append(F"Differences for {name}:" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F" {a} in TYPE_HINT but not in _import_structure." )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F" {a} in _import_structure but not in TYPE_HINT." )
return errors
def __A () ->str:
"""simple docstring"""
lowerCAmelCase__ :Union[str, Any] = []
for root, _, files in os.walk(_SCREAMING_SNAKE_CASE ):
if "__init__.py" in files:
lowerCAmelCase__ :Tuple = os.path.join(_SCREAMING_SNAKE_CASE , '__init__.py' )
lowerCAmelCase__ :List[Any] = parse_init(_SCREAMING_SNAKE_CASE )
if objects is not None:
lowerCAmelCase__ :Dict = analyze_results(*_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
lowerCAmelCase__ :int = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"
failures.append('\n'.join(_SCREAMING_SNAKE_CASE ) )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError('\n\n'.join(_SCREAMING_SNAKE_CASE ) )
def __A () ->int:
"""simple docstring"""
lowerCAmelCase__ :Optional[Any] = []
for path, directories, files in os.walk(_SCREAMING_SNAKE_CASE ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(_SCREAMING_SNAKE_CASE )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(_SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0:
continue
lowerCAmelCase__ :Optional[Any] = str((Path(_SCREAMING_SNAKE_CASE ) / folder).relative_to(_SCREAMING_SNAKE_CASE ) )
lowerCAmelCase__ :List[str] = short_path.replace(os.path.sep , '.' )
submodules.append(_SCREAMING_SNAKE_CASE )
for fname in files:
if fname == "__init__.py":
continue
lowerCAmelCase__ :int = str((Path(_SCREAMING_SNAKE_CASE ) / fname).relative_to(_SCREAMING_SNAKE_CASE ) )
lowerCAmelCase__ :Optional[Any] = short_path.replace('.py' , '' ).replace(os.path.sep , '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(_SCREAMING_SNAKE_CASE )
return submodules
__A = [
"""convert_pytorch_checkpoint_to_tf2""",
"""modeling_flax_pytorch_utils""",
"""models.esm.openfold_utils""",
]
def __A () ->Tuple:
"""simple docstring"""
from transformers.utils import direct_transformers_import
lowerCAmelCase__ :Dict = direct_transformers_import(_SCREAMING_SNAKE_CASE )
lowerCAmelCase__ :Optional[int] = set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(_SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' ) as f:
lowerCAmelCase__ :Optional[Any] = f.read()
import_structure_keys.update(set(re.findall(r'import_structure\[\"([^\"]*)\"\]' , _SCREAMING_SNAKE_CASE ) ) )
lowerCAmelCase__ :Optional[int] = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(_SCREAMING_SNAKE_CASE ) > 0:
lowerCAmelCase__ :List[Any] = '\n'.join(F"- {module}" for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registed in the main init of Transformers:\n'
F"{list_of_modules}\n"
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 93 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a = {
"""configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"""FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FalconForCausalLM""",
"""FalconModel""",
"""FalconPreTrainedModel""",
"""FalconForSequenceClassification""",
"""FalconForTokenClassification""",
"""FalconForQuestionAnswering""",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 687 | 0 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
# See all BART models at https://huggingface.co/models?filter=bart
SCREAMING_SNAKE_CASE = {
'vocab_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json',
},
'merges_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt',
},
'tokenizer_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json',
},
}
SCREAMING_SNAKE_CASE = {
'facebook/bart-base': 1_024,
'facebook/bart-large': 1_024,
'facebook/bart-large-mnli': 1_024,
'facebook/bart-large-cnn': 1_024,
'facebook/bart-large-xsum': 1_024,
'yjernite/bart_eli5': 1_024,
}
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = ['''input_ids''', '''attention_mask''']
UpperCamelCase_ = BartTokenizer
def __init__( self : int , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : int=None , UpperCAmelCase : str="replace" , UpperCAmelCase : Any="<s>" , UpperCAmelCase : Any="</s>" , UpperCAmelCase : int="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : Optional[int]="<unk>" , UpperCAmelCase : Optional[int]="<pad>" , UpperCAmelCase : Tuple="<mask>" , UpperCAmelCase : Any=False , UpperCAmelCase : Union[str, Any]=True , **UpperCAmelCase : Optional[Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(
UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , )
lowercase : Any =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase ) != add_prefix_space:
lowercase : int =getattr(UpperCAmelCase , pre_tok_state.pop('''type''' ) )
lowercase : List[Any] =add_prefix_space
lowercase : List[str] =pre_tok_class(**UpperCAmelCase )
lowercase : Optional[Any] =add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
lowercase : Dict ='''post_processor'''
lowercase : Optional[Any] =getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase )
if tokenizer_component_instance:
lowercase : str =json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase : Optional[int] =tuple(state['''sep'''] )
if "cls" in state:
lowercase : int =tuple(state['''cls'''] )
lowercase : Any =False
if state.get('''add_prefix_space''' , UpperCAmelCase ) != add_prefix_space:
lowercase : Union[str, Any] =add_prefix_space
lowercase : str =True
if state.get('''trim_offsets''' , UpperCAmelCase ) != trim_offsets:
lowercase : List[Any] =trim_offsets
lowercase : Tuple =True
if changes_to_apply:
lowercase : List[str] =getattr(UpperCAmelCase , state.pop('''type''' ) )
lowercase : str =component_class(**UpperCAmelCase )
setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase )
@property
def A__ ( self : int ) -> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('''Using mask_token, but it is not set yet.''' )
return None
return str(self._mask_token )
@mask_token.setter
def A__ ( self : Optional[Any] , UpperCAmelCase : str ) -> Optional[Any]:
'''simple docstring'''
lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value
lowercase : str =value
def A__ ( self : int , *UpperCAmelCase : Dict , **UpperCAmelCase : Dict ) -> BatchEncoding:
'''simple docstring'''
lowercase : Optional[Any] =kwargs.get('''is_split_into_words''' , UpperCAmelCase )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
'''to use it with pretokenized inputs.''' )
return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ) -> BatchEncoding:
'''simple docstring'''
lowercase : str =kwargs.get('''is_split_into_words''' , UpperCAmelCase )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
'''to use it with pretokenized inputs.''' )
return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase )
def A__ ( self : str , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
lowercase : Optional[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : List[Any]=None ) -> Union[str, Any]:
'''simple docstring'''
lowercase : Optional[Any] =[self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def A__ ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowercase : Union[str, Any] =[self.sep_token_id]
lowercase : str =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 94 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ):
_lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20}
_lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18}
_lowerCAmelCase :str = parent
_lowerCAmelCase :List[Any] = batch_size
_lowerCAmelCase :Optional[Any] = num_channels
_lowerCAmelCase :Optional[Any] = image_size
_lowerCAmelCase :int = min_resolution
_lowerCAmelCase :List[str] = max_resolution
_lowerCAmelCase :List[str] = do_resize
_lowerCAmelCase :Optional[int] = size
_lowerCAmelCase :str = do_center_crop
_lowerCAmelCase :int = crop_size
_lowerCAmelCase :Optional[int] = do_flip_channel_order
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class UpperCAmelCase_ (snake_case__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ):
_lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE__ ( self: str ):
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
_lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
_lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
_lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
pass
def SCREAMING_SNAKE_CASE__ ( self: int ):
# Initialize image_processing
_lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
_lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
# Initialize image_processing
_lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
_lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def SCREAMING_SNAKE_CASE__ ( self: Any ):
# Initialize image_processing
_lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
_lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , ) | 687 | 0 |
"""simple docstring"""
import requests
lowerCamelCase_ = '''YOUR API KEY'''
def snake_case ( A__ ,A__ = giphy_api_key ):
UpperCAmelCase_ : str = "+".join(query.split() )
UpperCAmelCase_ : Any = F"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}"""
UpperCAmelCase_ : str = requests.get(A__ ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('''\n'''.join(get_gifs('''space ship''')))
| 95 |
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class UpperCAmelCase_ (datasets.BuilderConfig ):
"""simple docstring"""
lowerCamelCase : Optional[datasets.Features] = None
class UpperCAmelCase_ (datasets.ArrowBasedBuilder ):
"""simple docstring"""
lowerCamelCase : Any = PandasConfig
def SCREAMING_SNAKE_CASE__ ( self: int ):
return datasets.DatasetInfo(features=self.config.features )
def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ):
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_UpperCAmelCase , (str, list, tuple) ):
_lowerCAmelCase :Any = data_files
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_lowerCAmelCase :Dict = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
_lowerCAmelCase :Any = []
for split_name, files in data_files.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_lowerCAmelCase :str = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) )
return splits
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ):
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
_lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema )
return pa_table
def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ):
for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ):
with open(_UpperCAmelCase , 'rb' ) as f:
_lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) )
yield i, self._cast_table(_UpperCAmelCase ) | 687 | 0 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
class __A :
def __init__( self : List[str] , __snake_case : list[str] ) -> Optional[Any]:
__magic_name__: list[dict] = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(__snake_case )
self.set_fail_transitions()
def lowerCamelCase__ ( self : Dict , __snake_case : int , __snake_case : str ) -> int | None:
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def lowerCamelCase__ ( self : Dict , __snake_case : str ) -> None:
__magic_name__: str = 0
for character in keyword:
__magic_name__: Tuple = self.find_next_state(__snake_case , __snake_case )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
__magic_name__: List[Any] = len(self.adlist ) - 1
else:
__magic_name__: str = next_state
self.adlist[current_state]["output"].append(__snake_case )
def lowerCamelCase__ ( self : List[str] ) -> None:
__magic_name__: deque = deque()
for node in self.adlist[0]["next_states"]:
q.append(__snake_case )
__magic_name__: Optional[int] = 0
while q:
__magic_name__: Any = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(__snake_case )
__magic_name__: str = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(__snake_case , self.adlist[child]["""value"""] ) is None
and state != 0
):
__magic_name__: Dict = self.adlist[state]["""fail_state"""]
__magic_name__: Union[str, Any] = self.find_next_state(
__snake_case , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
__magic_name__: Optional[int] = 0
__magic_name__: int = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def lowerCamelCase__ ( self : Tuple , __snake_case : str ) -> dict[str, list[int]]:
__magic_name__: dict = {} # returns a dict with keywords and list of its occurrences
__magic_name__: Any = 0
for i in range(len(__snake_case ) ):
while (
self.find_next_state(__snake_case , string[i] ) is None
and current_state != 0
):
__magic_name__: Optional[Any] = self.adlist[current_state]["""fail_state"""]
__magic_name__: str = self.find_next_state(__snake_case , string[i] )
if next_state is None:
__magic_name__: Dict = 0
else:
__magic_name__: Optional[Any] = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
__magic_name__: Optional[Any] = []
result[key].append(i - len(__snake_case ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 96 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
a = """"""
a = """"""
a = """"""
a = 1 # (0 is vertical, 1 is horizontal)
def UpperCamelCase_( ):
"""simple docstring"""
_lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ )
print('Processing...' )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ )
for index, image in enumerate(__magic_name__ ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
_lowerCAmelCase :Optional[Any] = random_chars(32 )
_lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0]
_lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"""
cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" )
_lowerCAmelCase :str = []
for anno in new_annos[index]:
_lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"""
annos_list.append(__magic_name__ )
with open(f"""/{file_root}.txt""" , 'w' ) as outfile:
outfile.write('\n'.join(line for line in annos_list ) )
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ):
"""simple docstring"""
_lowerCAmelCase :int = []
_lowerCAmelCase :Union[str, Any] = []
for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ):
_lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0]
with open(__magic_name__ ) as in_file:
_lowerCAmelCase :Union[str, Any] = in_file.readlines()
_lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" )
_lowerCAmelCase :Tuple = []
for obj_list in obj_lists:
_lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__magic_name__ )
labels.append(__magic_name__ )
return img_paths, labels
def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ):
"""simple docstring"""
_lowerCAmelCase :str = []
_lowerCAmelCase :Any = []
_lowerCAmelCase :Optional[Any] = []
for idx in range(len(__magic_name__ ) ):
_lowerCAmelCase :Optional[int] = []
_lowerCAmelCase :Optional[Any] = img_list[idx]
path_list.append(__magic_name__ )
_lowerCAmelCase :List[str] = anno_list[idx]
_lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ )
if flip_type == 1:
_lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ )
for bbox in img_annos:
_lowerCAmelCase :List[Any] = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
_lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ )
for bbox in img_annos:
_lowerCAmelCase :List[str] = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__magic_name__ )
new_imgs_list.append(__magic_name__ )
return new_imgs_list, new_annos_lists, path_list
def UpperCamelCase_( __magic_name__ : int = 32 ):
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
_lowerCAmelCase :str = ascii_lowercase + digits
return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) )
if __name__ == "__main__":
main()
print("""DONE ✅""") | 687 | 0 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
__a = logging.getLogger(__name__)
@dataclass
class lowercase__:
"""simple docstring"""
a :str = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
a :Optional[str] = field(
default=UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
a :Optional[str] = field(
default=UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
a :Optional[str] = field(
default=UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
a :bool = field(default=UpperCAmelCase , metadata={'help': 'Whether tp freeze the encoder.'} )
a :bool = field(default=UpperCAmelCase , metadata={'help': 'Whether to freeze the embeddings.'} )
@dataclass
class lowercase__:
"""simple docstring"""
a :str = field(
metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} )
a :Optional[str] = field(
default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , )
a :Optional[int] = field(
default=1_024 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
a :Optional[int] = field(
default=128 , metadata={
'help': (
'The maximum total sequence length for target text after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
a :Optional[int] = field(
default=142 , metadata={
'help': (
'The maximum total sequence length for validation target text after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded. '
'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used '
'during ``evaluate`` and ``predict``.'
)
} , )
a :Optional[int] = field(
default=142 , metadata={
'help': (
'The maximum total sequence length for test target text after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
a :Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} )
a :Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} )
a :Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} )
a :Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'Source language id for translation.'} )
a :Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'Target language id for translation.'} )
a :Optional[int] = field(default=UpperCAmelCase , metadata={'help': '# num_beams to use for evaluation.'} )
a :bool = field(
default=UpperCAmelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , )
def a ( snake_case__: Dict , snake_case__: Optional[int] , snake_case__: List[str] ):
'''simple docstring'''
logger.info(F'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(F''' {key} = {metrics[key]}''' )
save_json(snake_case__ , os.path.join(snake_case__ , F'''{split}_results.json''' ) )
def a ( ):
'''simple docstring'''
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses()
check_output_dir(snake_case__ )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('''Training/evaluation parameters %s''' , snake_case__ )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase_ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
lowercase_ = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(snake_case__ , snake_case__ , snake_case__ ):
assert hasattr(snake_case__ , snake_case__ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(snake_case__ , snake_case__ , getattr(snake_case__ , snake_case__ ) )
lowercase_ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
lowercase_ = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=snake_case__ , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(snake_case__ , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
lowercase_ = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(snake_case__ , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(snake_case__ , snake_case__ ):
lowercase_ = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
lowercase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(snake_case__ )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
lowercase_ = SeqaSeqDataset
# Get datasets
lowercase_ = (
dataset_class(
snake_case__ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_train
else None
)
lowercase_ = (
dataset_class(
snake_case__ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
lowercase_ = (
dataset_class(
snake_case__ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
lowercase_ = (
build_compute_metrics_fn(data_args.task , snake_case__ ) if training_args.predict_with_generate else None
)
lowercase_ = SeqaSeqTrainer(
model=snake_case__ , args=snake_case__ , data_args=snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , data_collator=SeqaSeqDataCollator(
snake_case__ , snake_case__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case__ , tokenizer=snake_case__ , )
lowercase_ = {}
# Training
if training_args.do_train:
logger.info('''*** Train ***''' )
lowercase_ = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
lowercase_ = train_result.metrics
lowercase_ = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('''train''' , snake_case__ , training_args.output_dir )
all_metrics.update(snake_case__ )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowercase_ = trainer.evaluate(metric_key_prefix='''val''' )
lowercase_ = data_args.n_val
lowercase_ = round(metrics['''val_loss'''] , 4 )
if trainer.is_world_process_zero():
handle_metrics('''val''' , snake_case__ , training_args.output_dir )
all_metrics.update(snake_case__ )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
lowercase_ = trainer.predict(test_dataset=snake_case__ , metric_key_prefix='''test''' )
lowercase_ = test_output.metrics
lowercase_ = data_args.n_test
if trainer.is_world_process_zero():
lowercase_ = round(metrics['''test_loss'''] , 4 )
handle_metrics('''test''' , snake_case__ , training_args.output_dir )
all_metrics.update(snake_case__ )
if training_args.predict_with_generate:
lowercase_ = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )
lowercase_ = lmap(str.strip , snake_case__ )
write_txt_file(snake_case__ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) )
if trainer.is_world_process_zero():
save_json(snake_case__ , os.path.join(training_args.output_dir , '''all_results.json''' ) )
return all_metrics
def a ( snake_case__: List[str] ):
'''simple docstring'''
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 97 |
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
a = logging.get_logger(__name__)
def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ):
"""simple docstring"""
_lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ )
_lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ )
return torch.mm(__magic_name__ , normalized_text_embeds.t() )
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
lowerCamelCase : str = CLIPConfig
lowerCamelCase : Any = ['CLIPEncoderLayer']
def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ):
super().__init__(_UpperCAmelCase )
_lowerCAmelCase :Any = CLIPVisionModel(config.vision_config )
_lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase )
_lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase )
_lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase )
_lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase )
_lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase )
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ):
_lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output
_lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
_lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy()
_lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy()
_lowerCAmelCase :str = []
_lowerCAmelCase :List[Any] = image_embeds.shape[0]
for i in range(_UpperCAmelCase ):
_lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
_lowerCAmelCase :List[Any] = 0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
_lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx]
_lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item()
_lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} )
_lowerCAmelCase :Any = 0.0_1
for concept_idx in range(len(cos_dist[0] ) ):
_lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx]
_lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item()
_lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(_UpperCAmelCase )
result.append(_UpperCAmelCase )
_lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ):
_lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output
_lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase )
_lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds )
_lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
_lowerCAmelCase :Any = 0.0
_lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
_lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 )
_lowerCAmelCase :List[str] = special_care * 0.0_1
_lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
_lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
_lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts | 687 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
lowercase__ : int = {
'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json',
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[Any] = 'donut-swin'
_snake_case : Union[str, Any] = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self : Optional[Any] , lowerCAmelCase__ : Any=224 , lowerCAmelCase__ : Union[str, Any]=4 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Union[str, Any]=96 , lowerCAmelCase__ : Optional[int]=[2, 2, 6, 2] , lowerCAmelCase__ : int=[3, 6, 12, 24] , lowerCAmelCase__ : Dict=7 , lowerCAmelCase__ : Dict=4.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-5 , **lowerCAmelCase__ : List[Any] , ) -> Dict:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = image_size
_UpperCamelCase = patch_size
_UpperCamelCase = num_channels
_UpperCamelCase = embed_dim
_UpperCamelCase = depths
_UpperCamelCase = len(lowerCAmelCase__ )
_UpperCamelCase = num_heads
_UpperCamelCase = window_size
_UpperCamelCase = mlp_ratio
_UpperCamelCase = qkv_bias
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = drop_path_rate
_UpperCamelCase = hidden_act
_UpperCamelCase = use_absolute_embeddings
_UpperCamelCase = layer_norm_eps
_UpperCamelCase = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_UpperCamelCase = int(embed_dim * 2 ** (len(lowerCAmelCase__ ) - 1) )
| 98 |
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
a = 6_3_7_8_1_3_7.0
a = 6_3_5_6_7_5_2.3_1_4_2_4_5
a = 6_378_137
def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ):
"""simple docstring"""
_lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
_lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) )
_lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) )
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
_lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS
# Intermediate P and Q values
_lowerCAmelCase :str = (b_lata + b_lata) / 2
_lowerCAmelCase :Tuple = (b_lata - b_lata) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
_lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2)
_lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2
_lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
_lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2)
_lowerCAmelCase :str = sin(sigma / 2 ) ** 2
_lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod() | 687 | 0 |
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class __UpperCAmelCase :
"""simple docstring"""
def snake_case_ ( self , __A , __A , __A ):
return None
class __UpperCAmelCase :
"""simple docstring"""
def snake_case_ ( self , __A , __A , __A , __A ):
return None
class __UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase = [
# (model_name, model_kwargs)
("""bert-base-cased""", {}),
("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def snake_case_ ( self ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__A , """tf""" , 12 , **__A )
@require_torch
@slow
def snake_case_ ( self ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__A , """pt""" , 12 , **__A )
@require_torch
@slow
def snake_case_ ( self ):
from transformers import BertModel
__a = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""]
with NamedTemporaryFile(mode="""w+t""" ) as vocab_file:
vocab_file.write("""\n""".join(__A ) )
vocab_file.flush()
__a = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
__a = BertModel(BertConfig(vocab_size=len(__A ) ) )
model.save_pretrained(__A )
self._test_export(__A , """pt""" , 12 , __A )
@require_tf
@slow
def snake_case_ ( self ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
__a = self._test_export(__A , """tf""" , 12 , **__A )
__a = quantize(Path(__A ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__A ).stat().st_size:
self.fail("""Quantized model is bigger than initial ONNX model""" )
@require_torch
@slow
def snake_case_ ( self ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
__a = self._test_export(__A , """pt""" , 12 , **__A )
__a = quantize(__A )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__A ).stat().st_size:
self.fail("""Quantized model is bigger than initial ONNX model""" )
def snake_case_ ( self , __A , __A , __A , __A=None , **__A ):
try:
# Compute path
with TemporaryDirectory() as tempdir:
__a = Path(__A ).joinpath("""model.onnx""" )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__A , __A , __A , __A , __A , **__A )
return path
except Exception as e:
self.fail(__A )
@require_torch
@require_tokenizers
@slow
def snake_case_ ( self ):
from transformers import BertModel
__a = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) )
__a = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" )
self._test_infer_dynamic_axis(__A , __A , """pt""" )
@require_tf
@require_tokenizers
@slow
def snake_case_ ( self ):
from transformers import TFBertModel
__a = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) )
__a = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" )
self._test_infer_dynamic_axis(__A , __A , """tf""" )
def snake_case_ ( self , __A , __A , __A ):
__a = FeatureExtractionPipeline(__A , __A )
__a = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""]
__a , __a , __a , __a = infer_shapes(__A , __A )
# Assert all variables are present
self.assertEqual(len(__A ) , len(__A ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , __A )
self.assertSequenceEqual(variable_names[3:] , __A )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} )
self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} )
def snake_case_ ( self ):
__a = ["""input_ids""", """attention_mask""", """token_type_ids"""]
__a = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]}
__a , __a = ensure_valid_input(FuncContiguousArgs() , __A , __A )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__A ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(__A ) , set(__A ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__A , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
__a , __a = ensure_valid_input(FuncNonContiguousArgs() , __A , __A )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__A ) , 1 )
self.assertEqual(len(__A ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens["""input_ids"""] )
self.assertEqual(ordered_input_names[0] , """input_ids""" )
def snake_case_ ( self ):
__a = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" )
self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
| 99 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
class UpperCAmelCase_ (snake_case__ ):
"""simple docstring"""
lowerCamelCase : Dict = 'encoder-decoder'
lowerCamelCase : Optional[Any] = True
def __init__( self: str , **_UpperCAmelCase: int ):
super().__init__(**_UpperCAmelCase )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
_lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' )
_lowerCAmelCase :Dict = encoder_config.pop('model_type' )
_lowerCAmelCase :str = kwargs.pop('decoder' )
_lowerCAmelCase :str = decoder_config.pop('model_type' )
from ..auto.configuration_auto import AutoConfig
_lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase :Any = True
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ):
logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' )
_lowerCAmelCase :Dict = True
_lowerCAmelCase :List[str] = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self: Dict ):
_lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ )
_lowerCAmelCase :Optional[int] = self.encoder.to_dict()
_lowerCAmelCase :Union[str, Any] = self.decoder.to_dict()
_lowerCAmelCase :List[str] = self.__class__.model_type
return output | 687 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.