code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Optional[Any] = 'mobilenet_v1' def __init__( self: Dict , _UpperCAmelCase: List[str]=3 , _UpperCAmelCase: Tuple=224 , _UpperCAmelCase: str=1.0 , _UpperCAmelCase: int=8 , _UpperCAmelCase: str="relu6" , _UpperCAmelCase: str=True , _UpperCAmelCase: str=0.9_9_9 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=0.0_0_1 , **_UpperCAmelCase: Optional[Any] , ): super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCAmelCase :str = num_channels _lowerCAmelCase :Union[str, Any] = image_size _lowerCAmelCase :Any = depth_multiplier _lowerCAmelCase :List[str] = min_depth _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Optional[int] = tf_padding _lowerCAmelCase :Optional[int] = classifier_dropout_prob _lowerCAmelCase :Optional[Any] = initializer_range _lowerCAmelCase :List[str] = layer_norm_eps class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Any = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self: Tuple ): return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def SCREAMING_SNAKE_CASE__ ( self: Any ): return 1e-4
687
import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) _lowerCAmelCase :Tuple = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ): _lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
687
1
from __future__ import annotations def UpperCamelCase_( __magic_name__ : int | str ): """simple docstring""" _lowerCAmelCase :Dict = str(__magic_name__ ) return n == n[::-1] def UpperCamelCase_( __magic_name__ : int = 1000000 ): """simple docstring""" _lowerCAmelCase :str = 0 for i in range(1 , __magic_name__ ): if is_palindrome(__magic_name__ ) and is_palindrome(bin(__magic_name__ ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
687
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType a = None a = """<""" if sys.byteorder == """little""" else """>""" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image a = [ np.dtype("""|b1"""), np.dtype("""|u1"""), np.dtype("""<u2"""), np.dtype(""">u2"""), np.dtype("""<i2"""), np.dtype(""">i2"""), np.dtype("""<u4"""), np.dtype(""">u4"""), np.dtype("""<i4"""), np.dtype(""">i4"""), np.dtype("""<f4"""), np.dtype(""">f4"""), np.dtype("""<f8"""), np.dtype(""">f8"""), ] @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : bool = True lowerCamelCase : Optional[str] = None # Automatically constructed lowerCamelCase : ClassVar[str] = "PIL.Image.Image" lowerCamelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCamelCase : str = field(default='Image' , init=snake_case__ , repr=snake_case__ ) def __call__( self: Union[str, Any] ): return self.pa_type def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Optional[int] = np.array(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return {"path": value, "bytes": None} elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): return {"path": None, "bytes": value} elif isinstance(_UpperCAmelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_UpperCAmelCase ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( f"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: dict , _UpperCAmelCase: Any=None ): if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: _lowerCAmelCase :Union[str, Any] = {} _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(_UpperCAmelCase ): _lowerCAmelCase :Any = PIL.Image.open(_UpperCAmelCase ) else: _lowerCAmelCase :str = path.split('::' )[-1] try: _lowerCAmelCase :List[str] = string_to_dict(_UpperCAmelCase , config.HUB_DATASETS_URL )['repo_id'] _lowerCAmelCase :int = token_per_repo_id.get(_UpperCAmelCase ) except ValueError: _lowerCAmelCase :List[str] = None with xopen(_UpperCAmelCase , 'rb' , use_auth_token=_UpperCAmelCase ) as f: _lowerCAmelCase :Optional[int] = BytesIO(f.read() ) _lowerCAmelCase :List[Any] = PIL.Image.open(bytes_ ) else: _lowerCAmelCase :Any = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def SCREAMING_SNAKE_CASE__ ( self: int ): from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): _lowerCAmelCase :Optional[Any] = pa.array([None] * len(_UpperCAmelCase ) , type=pa.binary() ) _lowerCAmelCase :Union[str, Any] = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCAmelCase :Optional[Any] = pa.array([None] * len(_UpperCAmelCase ) , type=pa.string() ) _lowerCAmelCase :Union[str, Any] = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: _lowerCAmelCase :List[str] = storage.field('bytes' ) else: _lowerCAmelCase :Optional[int] = pa.array([None] * len(_UpperCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: _lowerCAmelCase :Optional[int] = storage.field('path' ) else: _lowerCAmelCase :Optional[int] = pa.array([None] * len(_UpperCAmelCase ) , type=pa.string() ) _lowerCAmelCase :Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): _lowerCAmelCase :Tuple = pa.array( [encode_np_array(np.array(_UpperCAmelCase ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) _lowerCAmelCase :Any = pa.array([None] * len(_UpperCAmelCase ) , type=pa.string() ) _lowerCAmelCase :Union[str, Any] = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_UpperCAmelCase , self.pa_type ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(_UpperCAmelCase: Optional[int] ): with xopen(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[int] = f.read() return bytes_ _lowerCAmelCase :Union[str, Any] = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _lowerCAmelCase :Dict = pa.array( [os.path.basename(_UpperCAmelCase ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) _lowerCAmelCase :Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_UpperCAmelCase , self.pa_type ) def UpperCamelCase_( ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _lowerCAmelCase :Any = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def UpperCamelCase_( __magic_name__ : "PIL.Image.Image" ): """simple docstring""" _lowerCAmelCase :int = BytesIO() if image.format in list_image_compression_formats(): _lowerCAmelCase :Any = image.format else: _lowerCAmelCase :Dict = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(__magic_name__ , format=__magic_name__ ) return buffer.getvalue() def UpperCamelCase_( __magic_name__ : "PIL.Image.Image" ): """simple docstring""" if hasattr(__magic_name__ , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__magic_name__ )} def UpperCamelCase_( __magic_name__ : np.ndarray ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) _lowerCAmelCase :List[Any] = array.dtype _lowerCAmelCase :Tuple = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER _lowerCAmelCase :Union[str, Any] = dtype.kind _lowerCAmelCase :int = dtype.itemsize _lowerCAmelCase :List[str] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _lowerCAmelCase :Union[str, Any] = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( f"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _lowerCAmelCase :List[str] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _lowerCAmelCase :int = dtype_byteorder + dtype_kind + str(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.dtype(__magic_name__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) _lowerCAmelCase :Dict = PIL.Image.fromarray(array.astype(__magic_name__ ) ) return {"path": None, "bytes": image_to_bytes(__magic_name__ )} def UpperCamelCase_( __magic_name__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: _lowerCAmelCase , _lowerCAmelCase :Optional[int] = first_non_null_value(__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Any = no_op_if_value_is_null(__magic_name__ ) return [obj_to_image_dict_func(__magic_name__ ) for obj in objs] elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Dict = no_op_if_value_is_null(__magic_name__ ) return [obj_to_image_dict_func(__magic_name__ ) for obj in objs] else: return objs else: return objs
687
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[str] = 'ylacombe/bark-small' _lowerCAmelCase :int = tempfile.mkdtemp() _lowerCAmelCase :List[str] = 'en_speaker_1' _lowerCAmelCase :Union[str, Any] = 'This is a test string' _lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json' _lowerCAmelCase :str = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[Any] = self.get_tokenizer() _lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase :Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase :List[Any] = 35 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :Dict = 8 _lowerCAmelCase :Dict = { 'semantic_prompt': np.ones(_UpperCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Tuple = self.get_tokenizer() _lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = processor(text=self.input_string ) _lowerCAmelCase :List[str] = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
687
1
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ ) _lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ ) return torch.mm(__magic_name__ , normalized_text_embeds.t() ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = CLIPConfig lowerCamelCase : Any = ['CLIPEncoderLayer'] def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ): super().__init__(_UpperCAmelCase ) _lowerCAmelCase :Any = CLIPVisionModel(config.vision_config ) _lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) _lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase :str = [] _lowerCAmelCase :List[Any] = image_embeds.shape[0] for i in range(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx] _lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowerCAmelCase :Any = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx] _lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) _lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ): _lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) _lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :Any = 0.0 _lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase :List[str] = special_care * 0.0_1 _lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = 'bert' def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :Dict = num_hidden_layers _lowerCAmelCase :Optional[Any] = num_attention_heads _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = intermediate_size _lowerCAmelCase :Tuple = hidden_dropout_prob _lowerCAmelCase :Tuple = attention_probs_dropout_prob _lowerCAmelCase :List[Any] = max_position_embeddings _lowerCAmelCase :Dict = type_vocab_size _lowerCAmelCase :Any = initializer_range _lowerCAmelCase :int = layer_norm_eps _lowerCAmelCase :List[Any] = position_embedding_type _lowerCAmelCase :int = use_cache _lowerCAmelCase :Union[str, Any] = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): if self.task == "multiple-choice": _lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
687
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed a = logging.getLogger(__name__) def UpperCamelCase_( __magic_name__ : Dict=2 , __magic_name__ : Optional[int]=3 , __magic_name__ : Optional[int]=16 , __magic_name__ : int = 10 , __magic_name__ : int = 2 ): """simple docstring""" def get_dataset(__magic_name__ : List[Any] ): _lowerCAmelCase :Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__magic_name__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) _lowerCAmelCase :int = get_dataset(__magic_name__ ) _lowerCAmelCase :Optional[Any] = get_dataset(__magic_name__ ) _lowerCAmelCase :str = DataLoader(__magic_name__ , shuffle=__magic_name__ , batch_size=__magic_name__ , num_workers=4 ) _lowerCAmelCase :Optional[int] = DataLoader(__magic_name__ , shuffle=__magic_name__ , batch_size=__magic_name__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None ): """simple docstring""" _lowerCAmelCase :Tuple = [] for epoch in range(__magic_name__ ): # Train quickly model.train() for batch in dataloader: _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = batch _lowerCAmelCase :Tuple = model(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = torch.nn.functional.mse_loss(__magic_name__ , __magic_name__ ) accelerator.backward(__magic_name__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class UpperCAmelCase_ (nn.Module ): """simple docstring""" def __init__( self: Any ): super().__init__() _lowerCAmelCase :Optional[int] = nn.Parameter(torch.randn(1 ) ) _lowerCAmelCase :str = nn.Parameter(torch.randn(1 ) ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Tuple ): return x * self.a + self.b class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: str ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCAmelCase :Optional[int] = DummyModel() _lowerCAmelCase :Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _lowerCAmelCase , _lowerCAmelCase :int = dummy_dataloaders() _lowerCAmelCase :List[Any] = ProjectConfiguration(total_limit=1 , project_dir=_UpperCAmelCase , automatic_checkpoint_naming=_UpperCAmelCase ) # Train baseline _lowerCAmelCase :str = Accelerator(project_config=_UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Dict = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCAmelCase :Optional[Any] = DummyModel() _lowerCAmelCase :int = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _lowerCAmelCase , _lowerCAmelCase :List[str] = dummy_dataloaders() # Train baseline _lowerCAmelCase :Dict = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save initial _lowerCAmelCase :Optional[Any] = os.path.join(_UpperCAmelCase , 'initial' ) accelerator.save_state(_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase)) :Dict = model.a.item(), model.b.item() _lowerCAmelCase :Optional[Any] = optimizer.state_dict() _lowerCAmelCase :Union[str, Any] = train(3 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase)) :Optional[Any] = model.a.item(), model.b.item() _lowerCAmelCase :Optional[int] = optimizer.state_dict() # Train partially set_seed(42 ) _lowerCAmelCase :Optional[int] = DummyModel() _lowerCAmelCase :Tuple = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _lowerCAmelCase , _lowerCAmelCase :List[str] = dummy_dataloaders() _lowerCAmelCase :str = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) accelerator.load_state(_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase)) :Any = model.a.item(), model.b.item() _lowerCAmelCase :Optional[int] = optimizer.state_dict() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Tuple = train(2 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save everything _lowerCAmelCase :str = os.path.join(_UpperCAmelCase , 'checkpoint' ) accelerator.save_state(_UpperCAmelCase ) # Load everything back in and make sure all states work accelerator.load_state(_UpperCAmelCase ) test_rands += train(1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase)) :Any = model.a.item(), model.b.item() _lowerCAmelCase :str = optimizer.state_dict() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCAmelCase :Dict = DummyModel() _lowerCAmelCase :Dict = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = dummy_dataloaders() _lowerCAmelCase :Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=_UpperCAmelCase ) # Train baseline _lowerCAmelCase :Optional[int] = Accelerator(project_dir=_UpperCAmelCase , project_config=_UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save initial accelerator.save_state() ((_lowerCAmelCase) , (_lowerCAmelCase)) :Any = model.a.item(), model.b.item() _lowerCAmelCase :Any = optimizer.state_dict() _lowerCAmelCase :str = train(3 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase)) :Optional[int] = model.a.item(), model.b.item() _lowerCAmelCase :Any = optimizer.state_dict() # Train partially set_seed(42 ) _lowerCAmelCase :List[Any] = DummyModel() _lowerCAmelCase :Dict = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _lowerCAmelCase , _lowerCAmelCase :List[str] = dummy_dataloaders() _lowerCAmelCase :Tuple = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = Accelerator(project_dir=_UpperCAmelCase , project_config=_UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) accelerator.load_state(os.path.join(_UpperCAmelCase , 'checkpoints' , 'checkpoint_0' ) ) ((_lowerCAmelCase) , (_lowerCAmelCase)) :Optional[int] = model.a.item(), model.b.item() _lowerCAmelCase :str = optimizer.state_dict() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = train(2 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCAmelCase , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase)) :List[str] = model.a.item(), model.b.item() _lowerCAmelCase :str = optimizer.state_dict() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[int] = torch.tensor([1, 2, 3] ) _lowerCAmelCase :Any = torch.tensor([2, 3, 4] ) _lowerCAmelCase :int = DummyModel() _lowerCAmelCase :int = torch.optim.Adam(net.parameters() ) _lowerCAmelCase :Optional[Any] = Accelerator() with self.assertRaises(_UpperCAmelCase ) as ve: accelerator.register_for_checkpointing(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def SCREAMING_SNAKE_CASE__ ( self: str ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCAmelCase :List[str] = DummyModel() _lowerCAmelCase :Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) _lowerCAmelCase :Any = torch.optim.lr_scheduler.StepLR(_UpperCAmelCase , step_size=1 , gamma=0.9_9 ) _lowerCAmelCase , _lowerCAmelCase :List[str] = dummy_dataloaders() _lowerCAmelCase :str = ProjectConfiguration(automatic_checkpoint_naming=_UpperCAmelCase ) # Train baseline _lowerCAmelCase :Union[str, Any] = Accelerator(project_dir=_UpperCAmelCase , project_config=_UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :List[str] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save initial accelerator.save_state() _lowerCAmelCase :List[str] = scheduler.state_dict() train(3 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCAmelCase , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(_UpperCAmelCase , scheduler.state_dict() ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCAmelCase :Optional[int] = DummyModel() _lowerCAmelCase :int = ProjectConfiguration(automatic_checkpoint_naming=_UpperCAmelCase , total_limit=2 ) # Train baseline _lowerCAmelCase :Optional[Any] = Accelerator(project_dir=_UpperCAmelCase , project_config=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = accelerator.prepare(_UpperCAmelCase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_UpperCAmelCase , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": a = """/tmp/accelerate/state_checkpointing""" a = DummyModel() a = torch.optim.Adam(params=model.parameters(), lr=1E-3) a = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) a , a = dummy_dataloaders() a = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline a = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) a , a , a , a , a = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) a , a = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: a = group["""params"""][0].device break assert param_device.type == accelerator.device.type a = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: a = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: a = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
687
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCAmelCase_ (unittest.TestCase , snake_case__ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :str = load_tool('text-classification' ) self.tool.setup() _lowerCAmelCase :Dict = load_tool('text-classification' , remote=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[Any] = self.tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(_UpperCAmelCase , 'positive' ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :Union[str, Any] = self.remote_tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(_UpperCAmelCase , 'positive' ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = self.tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(_UpperCAmelCase , 'positive' ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(_UpperCAmelCase , 'positive' )
687
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
1
from sklearn.metrics import mean_squared_error import datasets a = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: List[Any]=None , _UpperCAmelCase: Union[str, Any]="uniform_average" , _UpperCAmelCase: Any=True ): _lowerCAmelCase :Any = mean_squared_error( _UpperCAmelCase , _UpperCAmelCase , sample_weight=_UpperCAmelCase , multioutput=_UpperCAmelCase , squared=_UpperCAmelCase ) return {"mse": mse}
687
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Union[str, Any] , *_UpperCAmelCase: Any , **_UpperCAmelCase: List[Any] ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
687
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
from __future__ import annotations import requests a = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : int = 1 , __magic_name__ : str = "new" , __magic_name__ : list | None = None ): """simple docstring""" _lowerCAmelCase :List[str] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__magic_name__ ) - valid_terms ) ): _lowerCAmelCase :str = f"""Invalid search term: {invalid_search_terms}""" raise ValueError(__magic_name__ ) _lowerCAmelCase :str = requests.get( f"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={'User-agent': 'A random string'} , ) if response.status_code == 429: raise requests.HTTPError _lowerCAmelCase :int = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__magic_name__ )} _lowerCAmelCase :Any = {} for id_ in range(__magic_name__ ): _lowerCAmelCase :Tuple = { item: data['data']['children'][id_]['data'][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
687
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ): _lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20} _lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase :str = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :Optional[Any] = num_channels _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :int = min_resolution _lowerCAmelCase :List[str] = max_resolution _lowerCAmelCase :List[str] = do_resize _lowerCAmelCase :Optional[int] = size _lowerCAmelCase :str = do_center_crop _lowerCAmelCase :int = crop_size _lowerCAmelCase :Optional[int] = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: int ): # Initialize image_processing _lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # Initialize image_processing _lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any ): # Initialize image_processing _lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
687
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class UpperCAmelCase_ (snake_case__ , snake_case__ ): """simple docstring""" lowerCamelCase : str = 1 @register_to_config def __init__( self: Optional[int] , _UpperCAmelCase: int = 1000 , _UpperCAmelCase: Optional[Union[np.ndarray, List[float]]] = None ): # set `betas`, `alphas`, `timesteps` self.set_timesteps(_UpperCAmelCase ) # standard deviation of the initial noise distribution _lowerCAmelCase :Union[str, Any] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. _lowerCAmelCase :Optional[int] = 4 # running values _lowerCAmelCase :Dict = [] def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, torch.device] = None ): _lowerCAmelCase :int = num_inference_steps _lowerCAmelCase :List[Any] = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] _lowerCAmelCase :int = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: _lowerCAmelCase :List[str] = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: _lowerCAmelCase :str = torch.sin(steps * math.pi / 2 ) ** 2 _lowerCAmelCase :List[str] = (1.0 - self.betas**2) ** 0.5 _lowerCAmelCase :Optional[int] = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] _lowerCAmelCase :Tuple = timesteps.to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = [] def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: int , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: bool = True , ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) _lowerCAmelCase :Optional[int] = (self.timesteps == timestep).nonzero().item() _lowerCAmelCase :List[Any] = timestep_index + 1 _lowerCAmelCase :Dict = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(_UpperCAmelCase ) if len(self.ets ) == 1: _lowerCAmelCase :List[Any] = self.ets[-1] elif len(self.ets ) == 2: _lowerCAmelCase :List[str] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: _lowerCAmelCase :Optional[int] = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: _lowerCAmelCase :Union[str, Any] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) _lowerCAmelCase :Optional[int] = self._get_prev_sample(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: torch.FloatTensor , *_UpperCAmelCase: Optional[int] , **_UpperCAmelCase: Optional[int] ): return sample def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: List[str] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = self.alphas[timestep_index] _lowerCAmelCase :Union[str, Any] = self.betas[timestep_index] _lowerCAmelCase :List[Any] = self.alphas[prev_timestep_index] _lowerCAmelCase :Any = self.betas[prev_timestep_index] _lowerCAmelCase :Optional[int] = (sample - sigma * ets) / max(_UpperCAmelCase , 1e-8 ) _lowerCAmelCase :str = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self: Optional[Any] ): return self.config.num_train_timesteps
687
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Any = PandasConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :Any = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Any = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
687
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : torch.FloatTensor class UpperCAmelCase_ (snake_case__ , snake_case__ ): """simple docstring""" @register_to_config def __init__( self: Any , _UpperCAmelCase: int = 3 , _UpperCAmelCase: int = 3 , _UpperCAmelCase: Tuple[str] = ("DownEncoderBlock2D",) , _UpperCAmelCase: Tuple[str] = ("UpDecoderBlock2D",) , _UpperCAmelCase: Tuple[int] = (64,) , _UpperCAmelCase: int = 1 , _UpperCAmelCase: str = "silu" , _UpperCAmelCase: int = 3 , _UpperCAmelCase: int = 32 , _UpperCAmelCase: int = 256 , _UpperCAmelCase: int = 32 , _UpperCAmelCase: Optional[int] = None , _UpperCAmelCase: float = 0.1_8_2_1_5 , _UpperCAmelCase: str = "group" , ): super().__init__() # pass init params to Encoder _lowerCAmelCase :Union[str, Any] = Encoder( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , down_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , act_fn=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , double_z=_UpperCAmelCase , ) _lowerCAmelCase :str = vq_embed_dim if vq_embed_dim is not None else latent_channels _lowerCAmelCase :Optional[int] = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , 1 ) _lowerCAmelCase :str = VectorQuantizer(_UpperCAmelCase , _UpperCAmelCase , beta=0.2_5 , remap=_UpperCAmelCase , sane_index_shape=_UpperCAmelCase ) _lowerCAmelCase :Dict = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , 1 ) # pass init params to Decoder _lowerCAmelCase :str = Decoder( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , up_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , act_fn=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , norm_type=_UpperCAmelCase , ) @apply_forward_hook def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: bool = True ): _lowerCAmelCase :int = self.encoder(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = self.quant_conv(_UpperCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=_UpperCAmelCase ) @apply_forward_hook def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: bool = False , _UpperCAmelCase: bool = True ): # also go through quantization layer if not force_not_quantize: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = self.quantize(_UpperCAmelCase ) else: _lowerCAmelCase :int = h _lowerCAmelCase :Union[str, Any] = self.post_quant_conv(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.decoder(_UpperCAmelCase , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: bool = True ): _lowerCAmelCase :Tuple = sample _lowerCAmelCase :List[str] = self.encode(_UpperCAmelCase ).latents _lowerCAmelCase :Dict = self.decode(_UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase )
687
import glob import os import random from string import ascii_lowercase, digits import cva a = """""" a = """""" a = """""" a = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ ) print('Processing...' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase :Optional[Any] = random_chars(32 ) _lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" ) _lowerCAmelCase :str = [] for anno in new_annos[index]: _lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__magic_name__ ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = [] _lowerCAmelCase :Union[str, Any] = [] for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ): _lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__magic_name__ ) as in_file: _lowerCAmelCase :Union[str, Any] = in_file.readlines() _lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" ) _lowerCAmelCase :Tuple = [] for obj_list in obj_lists: _lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :Any = [] _lowerCAmelCase :Optional[Any] = [] for idx in range(len(__magic_name__ ) ): _lowerCAmelCase :Optional[int] = [] _lowerCAmelCase :Optional[Any] = img_list[idx] path_list.append(__magic_name__ ) _lowerCAmelCase :List[str] = anno_list[idx] _lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ ) if flip_type == 1: _lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_( __magic_name__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase :str = ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
687
1
def UpperCamelCase_( __magic_name__ : int = 100 ): """simple docstring""" _lowerCAmelCase :List[str] = set() _lowerCAmelCase :Any = 0 _lowerCAmelCase :Union[str, Any] = n + 1 # maximum limit for a in range(2 , __magic_name__ ): for b in range(2 , __magic_name__ ): _lowerCAmelCase :Tuple = a**b # calculates the current power collect_powers.add(__magic_name__ ) # adds the result to the set return len(__magic_name__ ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
687
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ ) _lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ ) return torch.mm(__magic_name__ , normalized_text_embeds.t() ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = CLIPConfig lowerCamelCase : Any = ['CLIPEncoderLayer'] def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ): super().__init__(_UpperCAmelCase ) _lowerCAmelCase :Any = CLIPVisionModel(config.vision_config ) _lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) _lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase :str = [] _lowerCAmelCase :List[Any] = image_embeds.shape[0] for i in range(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx] _lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowerCAmelCase :Any = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx] _lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) _lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ): _lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) _lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :Any = 0.0 _lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase :List[str] = special_care * 0.0_1 _lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
1
from __future__ import annotations from typing import Any class UpperCAmelCase_ : """simple docstring""" def __init__( self: str , _UpperCAmelCase: int = 6 ): _lowerCAmelCase :Node | None = None _lowerCAmelCase :Node | None = None self.create_linked_list(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: int ): _lowerCAmelCase :str = Node() _lowerCAmelCase :Optional[Any] = current_node _lowerCAmelCase :Dict = current_node _lowerCAmelCase :Dict = current_node for _ in range(1 , _UpperCAmelCase ): _lowerCAmelCase :List[str] = Node() _lowerCAmelCase :Tuple = current_node _lowerCAmelCase :List[str] = previous_node _lowerCAmelCase :Any = current_node _lowerCAmelCase :Union[str, Any] = self.front _lowerCAmelCase :Any = previous_node def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): self.check_can_perform_operation() return self.front.data if self.front else None def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): _lowerCAmelCase :str = self.rear.next if self.rear: _lowerCAmelCase :Union[str, Any] = data def SCREAMING_SNAKE_CASE__ ( self: Tuple ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: _lowerCAmelCase :Dict = self.front.data _lowerCAmelCase :Dict = None return data _lowerCAmelCase :Optional[Any] = self.front _lowerCAmelCase :Any = old_front.next _lowerCAmelCase :Union[str, Any] = old_front.data _lowerCAmelCase :Dict = None return data def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): if self.is_empty(): raise Exception('Empty Queue' ) def SCREAMING_SNAKE_CASE__ ( self: int ): if self.rear and self.rear.next == self.front: raise Exception('Full Queue' ) class UpperCAmelCase_ : """simple docstring""" def __init__( self: Optional[Any] ): _lowerCAmelCase :Any | None = None _lowerCAmelCase :Node | None = None _lowerCAmelCase :Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
687
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : List[str] = 'levit' def __init__( self: Dict , _UpperCAmelCase: List[Any]=224 , _UpperCAmelCase: List[str]=3 , _UpperCAmelCase: Dict=3 , _UpperCAmelCase: Any=2 , _UpperCAmelCase: Optional[Any]=1 , _UpperCAmelCase: List[Any]=16 , _UpperCAmelCase: Optional[Any]=[128, 256, 384] , _UpperCAmelCase: Tuple=[4, 8, 12] , _UpperCAmelCase: List[str]=[4, 4, 4] , _UpperCAmelCase: Optional[Any]=[16, 16, 16] , _UpperCAmelCase: int=0 , _UpperCAmelCase: Optional[int]=[2, 2, 2] , _UpperCAmelCase: List[str]=[2, 2, 2] , _UpperCAmelCase: Dict=0.0_2 , **_UpperCAmelCase: int , ): super().__init__(**_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = image_size _lowerCAmelCase :List[str] = num_channels _lowerCAmelCase :Optional[Any] = kernel_size _lowerCAmelCase :Union[str, Any] = stride _lowerCAmelCase :List[Any] = padding _lowerCAmelCase :Dict = hidden_sizes _lowerCAmelCase :Optional[int] = num_attention_heads _lowerCAmelCase :Tuple = depths _lowerCAmelCase :str = key_dim _lowerCAmelCase :List[Any] = drop_path_rate _lowerCAmelCase :Tuple = patch_size _lowerCAmelCase :Optional[int] = attention_ratio _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Tuple = initializer_range _lowerCAmelCase :Tuple = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Optional[int] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return 1e-4
687
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'encoder-decoder' lowerCamelCase : Optional[Any] = True def __init__( self: str , **_UpperCAmelCase: int ): super().__init__(**_UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' ) _lowerCAmelCase :Dict = encoder_config.pop('model_type' ) _lowerCAmelCase :str = kwargs.pop('decoder' ) _lowerCAmelCase :str = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCAmelCase :Dict = True _lowerCAmelCase :List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :Optional[int] = self.encoder.to_dict() _lowerCAmelCase :Union[str, Any] = self.decoder.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output
687
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path a = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def UpperCamelCase_( __magic_name__ : List[Any]=True ): """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=snake_case__ ) ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = None lowerCamelCase : Tuple = None def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[Any] ): with TemporaryDirectory() as tmp_dir: _lowerCAmelCase :Dict = dataset_module_factory(_UpperCAmelCase , cache_dir=_UpperCAmelCase ) _lowerCAmelCase :Any = import_main_class(dataset_module.module_path , dataset=_UpperCAmelCase ) _lowerCAmelCase :DatasetBuilder = builder_cls( cache_dir=_UpperCAmelCase , config_name=_UpperCAmelCase , hash=dataset_module.hash , ) _lowerCAmelCase :List[Any] = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_UpperCAmelCase ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) _lowerCAmelCase :List[str] = cached_path(_UpperCAmelCase , cache_dir=_UpperCAmelCase ) self.assertTrue(os.path.exists(_UpperCAmelCase ) ) @pytest.mark.integration def UpperCamelCase_( __magic_name__ : List[Any] ): """simple docstring""" _lowerCAmelCase :List[str] = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _lowerCAmelCase :List[str] = dataset_module_factory('wikipedia' , cache_dir=__magic_name__ ) _lowerCAmelCase :Union[str, Any] = import_main_class(dataset_module.module_path ) _lowerCAmelCase :DatasetBuilder = builder_cls( cache_dir=__magic_name__ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _lowerCAmelCase :Optional[Any] = None builder_instance.download_and_prepare() _lowerCAmelCase :Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def UpperCamelCase_( __magic_name__ : Any ): """simple docstring""" _lowerCAmelCase :Tuple = dataset_module_factory('wikipedia' , cache_dir=__magic_name__ ) _lowerCAmelCase :List[str] = import_main_class(dataset_module.module_path , dataset=__magic_name__ ) _lowerCAmelCase :DatasetBuilder = builder_cls( cache_dir=__magic_name__ , config_name='20220301.frr' , hash=dataset_module.hash , ) _lowerCAmelCase :int = builder_instance.as_streaming_dataset() assert ds assert isinstance(__magic_name__ , __magic_name__ ) assert "train" in ds assert isinstance(ds['train'] , __magic_name__ ) assert next(iter(ds['train'] ) )
687
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ): _lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20} _lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase :str = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :Optional[Any] = num_channels _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :int = min_resolution _lowerCAmelCase :List[str] = max_resolution _lowerCAmelCase :List[str] = do_resize _lowerCAmelCase :Optional[int] = size _lowerCAmelCase :str = do_center_crop _lowerCAmelCase :int = crop_size _lowerCAmelCase :Optional[int] = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: int ): # Initialize image_processing _lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # Initialize image_processing _lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any ): # Initialize image_processing _lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
687
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
1
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } a = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } a = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" _lowerCAmelCase :Tuple = set() _lowerCAmelCase :str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase :Optional[Any] = char _lowerCAmelCase :Any = set(__magic_name__ ) return pairs class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : List[Any] = VOCAB_FILES_NAMES lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self: List[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Any , _UpperCAmelCase: str="<s>" , _UpperCAmelCase: Optional[Any]="</s>" , _UpperCAmelCase: Dict="</s>" , _UpperCAmelCase: Optional[int]="<s>" , _UpperCAmelCase: List[str]="<unk>" , _UpperCAmelCase: str="<pad>" , _UpperCAmelCase: str="<mask>" , **_UpperCAmelCase: List[str] , ): super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) _lowerCAmelCase :Union[str, Any] = vocab_file _lowerCAmelCase :List[Any] = merges_file _lowerCAmelCase :Union[str, Any] = {} _lowerCAmelCase :Optional[int] = 0 _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :str = 3 self.add_from_file(_UpperCAmelCase ) _lowerCAmelCase :str = {v: k for k, v in self.encoder.items()} with open(_UpperCAmelCase , encoding='utf-8' ) as merges_handle: _lowerCAmelCase :Tuple = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase :int = [tuple(merge.split()[:-1] ) for merge in merges] _lowerCAmelCase :Optional[int] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) _lowerCAmelCase :Union[str, Any] = {} def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: List[int] , _UpperCAmelCase: Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase :int = [self.cls_token_id] _lowerCAmelCase :str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: List[int] , _UpperCAmelCase: Optional[List[int]] = None , _UpperCAmelCase: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: List[int] , _UpperCAmelCase: Optional[List[int]] = None ): _lowerCAmelCase :Dict = [self.sep_token_id] _lowerCAmelCase :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return len(self.encoder ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[Any] ): if token in self.cache: return self.cache[token] _lowerCAmelCase :Dict = tuple(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) _lowerCAmelCase :Optional[int] = get_pairs(_UpperCAmelCase ) if not pairs: return token while True: _lowerCAmelCase :List[str] = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase , _lowerCAmelCase :int = bigram _lowerCAmelCase :Union[str, Any] = [] _lowerCAmelCase :List[str] = 0 while i < len(_UpperCAmelCase ): try: _lowerCAmelCase :int = word.index(_UpperCAmelCase , _UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase :Optional[int] = j if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase :Union[str, Any] = tuple(_UpperCAmelCase ) _lowerCAmelCase :Tuple = new_word if len(_UpperCAmelCase ) == 1: break else: _lowerCAmelCase :List[str] = get_pairs(_UpperCAmelCase ) _lowerCAmelCase :Tuple = '@@ '.join(_UpperCAmelCase ) _lowerCAmelCase :Dict = word[:-4] _lowerCAmelCase :List[str] = word return word def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Dict ): _lowerCAmelCase :List[Any] = [] _lowerCAmelCase :Optional[int] = re.findall(r'\S+\n?' , _UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(_UpperCAmelCase ).split(' ' ) ) ) return split_tokens def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int ): return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Any = ' '.join(_UpperCAmelCase ).replace('@@ ' , '' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: str , _UpperCAmelCase: Optional[str] = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase :int = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase :Union[str, Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.merges_file , _UpperCAmelCase ) return out_vocab_file, out_merge_file def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): try: with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(_UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"""Incorrect encoding detected in {f}, please rebuild the dataset""" ) return _lowerCAmelCase :str = f.readlines() for lineTmp in lines: _lowerCAmelCase :str = lineTmp.strip() _lowerCAmelCase :Tuple = line.rfind(' ' ) if idx == -1: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt>\'' ) _lowerCAmelCase :Optional[int] = line[:idx] _lowerCAmelCase :Dict = len(self.encoder )
687
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[int] = 10 def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :str = [1, 2, 3, 4] _lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[int] = '' _lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = ['It was the best of times.'] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[str] = 101 _lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
687
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'tf_padding' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'depth_multiplier' ) ) class UpperCAmelCase_ : """simple docstring""" def __init__( self: Dict , _UpperCAmelCase: Any , _UpperCAmelCase: Any=13 , _UpperCAmelCase: Any=3 , _UpperCAmelCase: Dict=32 , _UpperCAmelCase: Tuple=0.2_5 , _UpperCAmelCase: List[Any]=8 , _UpperCAmelCase: Dict=8 , _UpperCAmelCase: Dict=6 , _UpperCAmelCase: List[str]=32 , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: List[str]=True , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Optional[Any]="relu6" , _UpperCAmelCase: Union[str, Any]=1280 , _UpperCAmelCase: Any=0.1 , _UpperCAmelCase: Dict=0.0_2 , _UpperCAmelCase: List[str]=True , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: int=10 , _UpperCAmelCase: List[Any]=None , ): _lowerCAmelCase :List[Any] = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :str = num_channels _lowerCAmelCase :Dict = image_size _lowerCAmelCase :Dict = depth_multiplier _lowerCAmelCase :List[str] = depth_divisible_by _lowerCAmelCase :str = min_depth _lowerCAmelCase :Tuple = expand_ratio _lowerCAmelCase :Any = tf_padding _lowerCAmelCase :int = output_stride _lowerCAmelCase :Any = first_layer_is_expansion _lowerCAmelCase :List[str] = finegrained_output _lowerCAmelCase :int = hidden_act _lowerCAmelCase :Any = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) _lowerCAmelCase :int = classifier_dropout_prob _lowerCAmelCase :Dict = use_labels _lowerCAmelCase :Optional[int] = is_training _lowerCAmelCase :Tuple = num_labels _lowerCAmelCase :str = initializer_range _lowerCAmelCase :List[Any] = scope def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :str = None _lowerCAmelCase :Optional[Any] = None if self.use_labels: _lowerCAmelCase :Tuple = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase :int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE__ ( self: Tuple ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Tuple ): _lowerCAmelCase :Dict = MobileNetVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Any , _UpperCAmelCase: str ): _lowerCAmelCase :Tuple = self.num_labels _lowerCAmelCase :Union[str, Any] = MobileNetVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: int , _UpperCAmelCase: Tuple , _UpperCAmelCase: str , _UpperCAmelCase: List[Any] ): _lowerCAmelCase :List[str] = self.num_labels _lowerCAmelCase :int = MobileNetVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _lowerCAmelCase :Optional[int] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[int] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Dict = config_and_inputs _lowerCAmelCase :int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase : Optional[int] = ( { 'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification, 'image-segmentation': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase : Optional[Any] = False lowerCamelCase : Dict = False lowerCamelCase : Tuple = False lowerCamelCase : Any = False def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :int = MobileNetVaModelTester(self ) _lowerCAmelCase :Optional[int] = MobileNetVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): pass def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) _lowerCAmelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :Tuple = [*signature.parameters.keys()] _lowerCAmelCase :Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): def check_hidden_states_output(_UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: int ): _lowerCAmelCase :str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :Dict = outputs.hidden_states _lowerCAmelCase :str = 16 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase :Dict = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :int = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self: Tuple ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[str] = MobileNetVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: str ): return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Dict = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(_UpperCAmelCase ) _lowerCAmelCase :Any = self.default_image_processor _lowerCAmelCase :List[str] = prepare_img() _lowerCAmelCase :Optional[Any] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Any = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :List[Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Any = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) _lowerCAmelCase :Tuple = model.to(_UpperCAmelCase ) _lowerCAmelCase :str = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) _lowerCAmelCase :str = prepare_img() _lowerCAmelCase :Union[str, Any] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Tuple = model(**_UpperCAmelCase ) _lowerCAmelCase :List[Any] = outputs.logits # verify the logits _lowerCAmelCase :Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , _UpperCAmelCase ) _lowerCAmelCase :int = torch.tensor( [ [[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
687
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
687
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": a = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") a = F'''https://www.google.com/search?q={query}&num=100''' a = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: a = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: a = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
687
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
1
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar a = TypeVar("""T""") class UpperCAmelCase_ (Generic[T] ): """simple docstring""" def __init__( self: Optional[int] , _UpperCAmelCase: bool = True ): _lowerCAmelCase :dict[T, list[T]] = {} # dictionary of lists _lowerCAmelCase :int = directed def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: T , _UpperCAmelCase: T ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase ) self.adj_list[destination_vertex].append(_UpperCAmelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase ) _lowerCAmelCase :Dict = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _lowerCAmelCase :Tuple = [destination_vertex] _lowerCAmelCase :Tuple = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _lowerCAmelCase :int = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _lowerCAmelCase :Any = [destination_vertex] _lowerCAmelCase :List[Any] = [] return self def __repr__( self: List[Any] ): return pformat(self.adj_list )
687
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCAmelCase_ : """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] ): return None class UpperCAmelCase_ : """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: List[Any] ): return None class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_UpperCAmelCase , 'tf' , 12 , **_UpperCAmelCase ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self: str ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_UpperCAmelCase , 'pt' , 12 , **_UpperCAmelCase ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self: Dict ): from transformers import BertModel _lowerCAmelCase :Optional[int] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(_UpperCAmelCase ) ) vocab_file.flush() _lowerCAmelCase :int = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _lowerCAmelCase :Optional[Any] = BertModel(BertConfig(vocab_size=len(_UpperCAmelCase ) ) ) model.save_pretrained(_UpperCAmelCase ) self._test_export(_UpperCAmelCase , 'pt' , 12 , _UpperCAmelCase ) @require_tf @slow def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowerCAmelCase :Dict = self._test_export(_UpperCAmelCase , 'tf' , 12 , **_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = quantize(Path(_UpperCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_UpperCAmelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowerCAmelCase :Union[str, Any] = self._test_export(_UpperCAmelCase , 'pt' , 12 , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = quantize(_UpperCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_UpperCAmelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int=None , **_UpperCAmelCase: Optional[int] ): try: # Compute path with TemporaryDirectory() as tempdir: _lowerCAmelCase :List[Any] = Path(_UpperCAmelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) return path except Exception as e: self.fail(_UpperCAmelCase ) @require_torch @require_tokenizers @slow def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): from transformers import BertModel _lowerCAmelCase :List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _lowerCAmelCase :str = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(_UpperCAmelCase , _UpperCAmelCase , 'pt' ) @require_tf @require_tokenizers @slow def SCREAMING_SNAKE_CASE__ ( self: Dict ): from transformers import TFBertModel _lowerCAmelCase :int = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _lowerCAmelCase :Dict = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(_UpperCAmelCase , _UpperCAmelCase , 'tf' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Any , _UpperCAmelCase: str ): _lowerCAmelCase :Tuple = FeatureExtractionPipeline(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Tuple = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = infer_shapes(_UpperCAmelCase , _UpperCAmelCase ) # Assert all variables are present self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , _UpperCAmelCase ) self.assertSequenceEqual(variable_names[3:] , _UpperCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Dict = ['input_ids', 'attention_mask', 'token_type_ids'] _lowerCAmelCase :Optional[Any] = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} _lowerCAmelCase , _lowerCAmelCase :int = ensure_valid_input(FuncContiguousArgs() , _UpperCAmelCase , _UpperCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(_UpperCAmelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(_UpperCAmelCase ) , set(_UpperCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(_UpperCAmelCase , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = ensure_valid_input(FuncNonContiguousArgs() , _UpperCAmelCase , _UpperCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(_UpperCAmelCase ) , 1 ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[str] = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
687
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging a = logging.get_logger(__name__) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. _lowerCAmelCase :Tuple = json.loads(__magic_name__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. _lowerCAmelCase :Union[str, Any] = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". _lowerCAmelCase :Any = json.loads(__magic_name__ ) if not mpi_options.get('sagemaker_mpi_enabled' , __magic_name__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , _UpperCAmelCase , ) @cached_property def SCREAMING_SNAKE_CASE__ ( self: str ): logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: _lowerCAmelCase :str = torch.device('cpu' ) _lowerCAmelCase :List[str] = 0 elif is_sagemaker_model_parallel_available(): _lowerCAmelCase :Any = smp.local_rank() _lowerCAmelCase :int = torch.device('cuda' , _UpperCAmelCase ) _lowerCAmelCase :str = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) _lowerCAmelCase :List[str] = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) _lowerCAmelCase :List[Any] = torch.device('cuda' , self.local_rank ) _lowerCAmelCase :Tuple = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 _lowerCAmelCase :Tuple = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. _lowerCAmelCase :Tuple = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) _lowerCAmelCase :Any = torch.device('cuda' , self.local_rank ) _lowerCAmelCase :Union[str, Any] = 1 if device.type == "cuda": torch.cuda.set_device(_UpperCAmelCase ) return device @property def SCREAMING_SNAKE_CASE__ ( self: List[str] ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE__ ( self: Dict ): return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE__ ( self: List[str] ): return False
687
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ): """simple docstring""" _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] _lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] _lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""] _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""] _lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :int = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' ) _lowerCAmelCase :List[Any] = {} _lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight'] _lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias'] _lowerCAmelCase :Dict = checkpoint['time_embed.2.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias'] _lowerCAmelCase :List[Any] = unet_config['down_block_types'] _lowerCAmelCase :Any = unet_config['layers_per_block'] _lowerCAmelCase :List[Any] = unet_config['attention_head_dim'] _lowerCAmelCase :Tuple = unet_config['block_out_channels'] _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Optional[int] = channels_list[0] for i, layer_type in enumerate(__magic_name__ ): _lowerCAmelCase :Tuple = channels_list[i] _lowerCAmelCase :Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}""" _lowerCAmelCase :str = f"""input_blocks.{current_layer}.1""" _lowerCAmelCase :Optional[Any] = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0""" _lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 _lowerCAmelCase :Dict = current_channels # hardcoded the mid-block for now _lowerCAmelCase :int = 'mid_block.resnets.0' _lowerCAmelCase :Optional[Any] = 'middle_block.0' _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = 'mid_block.attentions.0' _lowerCAmelCase :Optional[int] = 'middle_block.1' _lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1' _lowerCAmelCase :Optional[int] = 'middle_block.2' _lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :str = unet_config['up_block_types'] for i, layer_type in enumerate(__magic_name__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1""" _lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}""" _lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1""" _lowerCAmelCase :int = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = checkpoint['out.0.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias'] _lowerCAmelCase :List[Any] = checkpoint['out.2.weight'] _lowerCAmelCase :Dict = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
687
1
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) _lowerCAmelCase :Tuple = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ): _lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
687
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer a = logging.get_logger(__name__) a = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp a = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } a = { """RUCAIBox/mvp""": 1_024, } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = VOCAB_FILES_NAMES lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Tuple = ['input_ids', 'attention_mask'] lowerCamelCase : List[Any] = MvpTokenizer def __init__( self: List[Any] , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: List[str]=None , _UpperCAmelCase: List[str]=None , _UpperCAmelCase: Dict="replace" , _UpperCAmelCase: List[Any]="<s>" , _UpperCAmelCase: Tuple="</s>" , _UpperCAmelCase: Any="</s>" , _UpperCAmelCase: Dict="<s>" , _UpperCAmelCase: Any="<unk>" , _UpperCAmelCase: Tuple="<pad>" , _UpperCAmelCase: Any="<mask>" , _UpperCAmelCase: Optional[int]=False , _UpperCAmelCase: List[Any]=True , **_UpperCAmelCase: Any , ): super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase , **_UpperCAmelCase , ) _lowerCAmelCase :Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _UpperCAmelCase ) != add_prefix_space: _lowerCAmelCase :Tuple = getattr(_UpperCAmelCase , pre_tok_state.pop('type' ) ) _lowerCAmelCase :int = add_prefix_space _lowerCAmelCase :str = pre_tok_class(**_UpperCAmelCase ) _lowerCAmelCase :str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCAmelCase :List[str] = 'post_processor' _lowerCAmelCase :Union[str, Any] = getattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) if tokenizer_component_instance: _lowerCAmelCase :Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase :Dict = tuple(state['sep'] ) if "cls" in state: _lowerCAmelCase :Tuple = tuple(state['cls'] ) _lowerCAmelCase :Tuple = False if state.get('add_prefix_space' , _UpperCAmelCase ) != add_prefix_space: _lowerCAmelCase :List[Any] = add_prefix_space _lowerCAmelCase :List[str] = True if state.get('trim_offsets' , _UpperCAmelCase ) != trim_offsets: _lowerCAmelCase :str = trim_offsets _lowerCAmelCase :List[Any] = True if changes_to_apply: _lowerCAmelCase :str = getattr(_UpperCAmelCase , state.pop('type' ) ) _lowerCAmelCase :Any = component_class(**_UpperCAmelCase ) setattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) @property def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Optional[int] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else value _lowerCAmelCase :List[Any] = value def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , *_UpperCAmelCase: Optional[int] , **_UpperCAmelCase: List[Any] ): _lowerCAmelCase :Tuple = kwargs.get('is_split_into_words' , _UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , *_UpperCAmelCase: Optional[Any] , **_UpperCAmelCase: Any ): _lowerCAmelCase :str = kwargs.get('is_split_into_words' , _UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: str , _UpperCAmelCase: Optional[str] = None ): _lowerCAmelCase :Tuple = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: str , _UpperCAmelCase: Any=None ): _lowerCAmelCase :Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: List[int] , _UpperCAmelCase: Optional[List[int]] = None ): _lowerCAmelCase :List[Any] = [self.sep_token_id] _lowerCAmelCase :List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
687
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
1
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(__magic_name__ , __magic_name__ ): raise TypeError('Input value must be a \'int\' type' ) return bin(__magic_name__ ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
687
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[str] = 'ylacombe/bark-small' _lowerCAmelCase :int = tempfile.mkdtemp() _lowerCAmelCase :List[str] = 'en_speaker_1' _lowerCAmelCase :Union[str, Any] = 'This is a test string' _lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json' _lowerCAmelCase :str = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[Any] = self.get_tokenizer() _lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase :Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase :List[Any] = 35 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :Dict = 8 _lowerCAmelCase :Dict = { 'semantic_prompt': np.ones(_UpperCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Tuple = self.get_tokenizer() _lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = processor(text=self.input_string ) _lowerCAmelCase :List[str] = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
687
1
from typing import Dict, Optional import numpy as np import datasets a = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ a = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ a = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : bool , __magic_name__ : Optional[Dict[int, int]] = None , __magic_name__ : bool = False , ): """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): _lowerCAmelCase :Dict = new_id # turn into Numpy arrays _lowerCAmelCase :Tuple = np.array(__magic_name__ ) _lowerCAmelCase :List[str] = np.array(__magic_name__ ) if reduce_labels: _lowerCAmelCase :List[Any] = 255 _lowerCAmelCase :Optional[Any] = label - 1 _lowerCAmelCase :Union[str, Any] = 255 _lowerCAmelCase :str = label != ignore_index _lowerCAmelCase :List[str] = np.not_equal(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = pred_label[mask] _lowerCAmelCase :Dict = np.array(__magic_name__ )[mask] _lowerCAmelCase :List[Any] = pred_label[pred_label == label] _lowerCAmelCase :Dict = np.histogram(__magic_name__ , bins=__magic_name__ , range=(0, num_labels - 1) )[0] _lowerCAmelCase :Optional[int] = np.histogram(__magic_name__ , bins=__magic_name__ , range=(0, num_labels - 1) )[0] _lowerCAmelCase :Any = np.histogram(__magic_name__ , bins=__magic_name__ , range=(0, num_labels - 1) )[0] _lowerCAmelCase :List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCamelCase_( __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : bool , __magic_name__ : Optional[Dict[int, int]] = None , __magic_name__ : bool = False , ): """simple docstring""" _lowerCAmelCase :Any = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCAmelCase :List[str] = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCAmelCase :Union[str, Any] = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCAmelCase :Tuple = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(__magic_name__ , __magic_name__ ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = intersect_and_union( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : bool , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[Dict[int, int]] = None , __magic_name__ : bool = False , ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Optional[int] = total_intersect_and_union( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # compute metrics _lowerCAmelCase :Optional[int] = {} _lowerCAmelCase :List[str] = total_area_intersect.sum() / total_area_label.sum() _lowerCAmelCase :Dict = total_area_intersect / total_area_union _lowerCAmelCase :List[str] = total_area_intersect / total_area_label _lowerCAmelCase :Optional[Any] = np.nanmean(__magic_name__ ) _lowerCAmelCase :List[str] = np.nanmean(__magic_name__ ) _lowerCAmelCase :Optional[Any] = all_acc _lowerCAmelCase :str = iou _lowerCAmelCase :str = acc if nan_to_num is not None: _lowerCAmelCase :Optional[int] = {metric: np.nan_to_num(__magic_name__ , nan=__magic_name__ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Dict , _UpperCAmelCase: Dict , _UpperCAmelCase: int , _UpperCAmelCase: bool , _UpperCAmelCase: Optional[int] = None , _UpperCAmelCase: Optional[Dict[int, int]] = None , _UpperCAmelCase: bool = False , ): _lowerCAmelCase :Union[str, Any] = mean_iou( results=_UpperCAmelCase , gt_seg_maps=_UpperCAmelCase , num_labels=_UpperCAmelCase , ignore_index=_UpperCAmelCase , nan_to_num=_UpperCAmelCase , label_map=_UpperCAmelCase , reduce_labels=_UpperCAmelCase , ) return iou_result
687
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = 'bert' def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :Dict = num_hidden_layers _lowerCAmelCase :Optional[Any] = num_attention_heads _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = intermediate_size _lowerCAmelCase :Tuple = hidden_dropout_prob _lowerCAmelCase :Tuple = attention_probs_dropout_prob _lowerCAmelCase :List[Any] = max_position_embeddings _lowerCAmelCase :Dict = type_vocab_size _lowerCAmelCase :Any = initializer_range _lowerCAmelCase :int = layer_norm_eps _lowerCAmelCase :List[Any] = position_embedding_type _lowerCAmelCase :int = use_cache _lowerCAmelCase :Union[str, Any] = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): if self.task == "multiple-choice": _lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
687
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType a = logging.get_logger(__name__) a = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : List[str] = 'layoutlmv3' def __init__( self: Any , _UpperCAmelCase: Any=5_0265 , _UpperCAmelCase: Tuple=768 , _UpperCAmelCase: Optional[int]=12 , _UpperCAmelCase: str=12 , _UpperCAmelCase: int=3072 , _UpperCAmelCase: Tuple="gelu" , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: Optional[int]=0.1 , _UpperCAmelCase: Optional[Any]=512 , _UpperCAmelCase: Union[str, Any]=2 , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Tuple=1e-5 , _UpperCAmelCase: Dict=1 , _UpperCAmelCase: Dict=0 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Dict=1024 , _UpperCAmelCase: List[str]=128 , _UpperCAmelCase: List[Any]=128 , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Any=32 , _UpperCAmelCase: str=128 , _UpperCAmelCase: Optional[Any]=64 , _UpperCAmelCase: Optional[int]=256 , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=True , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: List[str]=224 , _UpperCAmelCase: str=3 , _UpperCAmelCase: List[Any]=16 , _UpperCAmelCase: int=None , **_UpperCAmelCase: Tuple , ): super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) _lowerCAmelCase :List[str] = max_ad_position_embeddings _lowerCAmelCase :Dict = coordinate_size _lowerCAmelCase :Tuple = shape_size _lowerCAmelCase :List[Any] = has_relative_attention_bias _lowerCAmelCase :str = rel_pos_bins _lowerCAmelCase :Union[str, Any] = max_rel_pos _lowerCAmelCase :Union[str, Any] = has_spatial_attention_bias _lowerCAmelCase :List[Any] = rel_ad_pos_bins _lowerCAmelCase :Optional[Any] = max_rel_ad_pos _lowerCAmelCase :Any = text_embed _lowerCAmelCase :Tuple = visual_embed _lowerCAmelCase :List[Any] = input_size _lowerCAmelCase :Dict = num_channels _lowerCAmelCase :Optional[int] = patch_size _lowerCAmelCase :Dict = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : List[str] = version.parse('1.12' ) @property def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return 1e-5 @property def SCREAMING_SNAKE_CASE__ ( self: str ): return 12 def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: "ProcessorMixin" , _UpperCAmelCase: int = -1 , _UpperCAmelCase: int = -1 , _UpperCAmelCase: bool = False , _UpperCAmelCase: Optional["TensorType"] = None , _UpperCAmelCase: int = 3 , _UpperCAmelCase: int = 40 , _UpperCAmelCase: int = 40 , ): setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCAmelCase :Optional[Any] = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase :Optional[int] = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) _lowerCAmelCase :Any = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase :Optional[Any] = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _lowerCAmelCase :Optional[int] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _lowerCAmelCase :Union[str, Any] = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
687
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Tuple = BartphoTokenizer lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = True def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): super().setUp() _lowerCAmelCase :int = ['▁This', '▁is', '▁a', '▁t', 'est'] _lowerCAmelCase :str = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) _lowerCAmelCase :List[str] = {'unk_token': '<unk>'} _lowerCAmelCase :List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) _lowerCAmelCase :Optional[int] = BartphoTokenizer(_UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , **_UpperCAmelCase: Dict ): kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :int = 'This is a là test' _lowerCAmelCase :Optional[int] = 'This is a<unk><unk> test' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :Any = BartphoTokenizer(_UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) _lowerCAmelCase :Dict = 'This is a là test' _lowerCAmelCase :Dict = '▁This ▁is ▁a ▁l à ▁t est'.split() _lowerCAmelCase :int = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase :int = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
687
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
1
def UpperCamelCase_( __magic_name__ : int = 10**12 ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = 1 _lowerCAmelCase :str = 0 _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Any = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F'''{solution() = }''')
687
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
1
def UpperCamelCase_( __magic_name__ : float ): """simple docstring""" return 10 - x * x def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float ): """simple docstring""" if equation(__magic_name__ ) * equation(__magic_name__ ) >= 0: raise ValueError('Wrong space!' ) _lowerCAmelCase :str = a while (b - a) >= 0.01: # Find middle point _lowerCAmelCase :int = (a + b) / 2 # Check if middle point is root if equation(__magic_name__ ) == 0.0: break # Decide the side to repeat the steps if equation(__magic_name__ ) * equation(__magic_name__ ) < 0: _lowerCAmelCase :List[str] = c else: _lowerCAmelCase :List[Any] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
687
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ): _lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20} _lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase :str = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :Optional[Any] = num_channels _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :int = min_resolution _lowerCAmelCase :List[str] = max_resolution _lowerCAmelCase :List[str] = do_resize _lowerCAmelCase :Optional[int] = size _lowerCAmelCase :str = do_center_crop _lowerCAmelCase :int = crop_size _lowerCAmelCase :Optional[int] = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: int ): # Initialize image_processing _lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # Initialize image_processing _lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any ): # Initialize image_processing _lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
687
1
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand a = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) a = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) a = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) a = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) a = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) a = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) a = ( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :int = randrange(len(__magic_name__ ) ), randrange(len(__magic_name__ ) ) _lowerCAmelCase :Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] _lowerCAmelCase , _lowerCAmelCase :List[str] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def UpperCamelCase_( __magic_name__ : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(__magic_name__ )) @pytest.mark.parametrize('hand, expected' , __magic_name__ ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : str ): """simple docstring""" assert PokerHand(__magic_name__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __magic_name__ ) def UpperCamelCase_( __magic_name__ : List[str] , __magic_name__ : Optional[Any] ): """simple docstring""" assert PokerHand(__magic_name__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __magic_name__ ) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = PokerHand(__magic_name__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __magic_name__ ) def UpperCamelCase_( __magic_name__ : List[Any] , __magic_name__ : Dict ): """simple docstring""" assert PokerHand(__magic_name__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __magic_name__ ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Any ): """simple docstring""" assert PokerHand(__magic_name__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __magic_name__ ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ): """simple docstring""" assert PokerHand(__magic_name__ ).compare_with(PokerHand(__magic_name__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : List[Any] ): """simple docstring""" assert PokerHand(__magic_name__ ).compare_with(PokerHand(__magic_name__ ) ) == expected def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Any = [PokerHand(__magic_name__ ) for hand in SORTED_HANDS] _lowerCAmelCase :Optional[int] = poker_hands.copy() shuffle(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = chain(sorted(__magic_name__ ) ) for index, hand in enumerate(__magic_name__ ): assert hand == poker_hands[index] def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :int = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__magic_name__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Dict = PokerHand('2C 4S AS 3D 5C' ) _lowerCAmelCase :Any = True _lowerCAmelCase :List[str] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Optional[Any] = 0 _lowerCAmelCase :int = os.path.abspath(os.path.dirname(__magic_name__ ) ) _lowerCAmelCase :Union[str, Any] = os.path.join(__magic_name__ , 'poker_hands.txt' ) with open(__magic_name__ ) as file_hand: for line in file_hand: _lowerCAmelCase :Tuple = line[:14].strip() _lowerCAmelCase :Union[str, Any] = line[15:].strip() _lowerCAmelCase , _lowerCAmelCase :str = PokerHand(__magic_name__ ), PokerHand(__magic_name__ ) _lowerCAmelCase :int = player.compare_with(__magic_name__ ) if output == "Win": answer += 1 assert answer == 376
687
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Any = PandasConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :Any = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Any = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
687
1
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("""0.8.3"""): raise Exception("""requires gluonnlp == 0.8.3""") if version.parse(mx.__version__) != version.parse("""1.5.0"""): raise Exception("""requires mxnet == 1.5.0""") logging.set_verbosity_info() a = logging.get_logger(__name__) a = """The Nymphenburg Palace is a beautiful palace in Munich!""" def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 1024, 'hidden_size': 768, 'max_length': 512, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 1024, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } _lowerCAmelCase :List[Any] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py _lowerCAmelCase :Optional[int] = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=__magic_name__ , output_all_encodings=__magic_name__ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , __magic_name__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later _lowerCAmelCase :str = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab _lowerCAmelCase :Optional[Any] = os.path.join(get_home_dir() , 'models' ) _lowerCAmelCase :Union[str, Any] = _load_vocab(__magic_name__ , __magic_name__ , __magic_name__ , cls=__magic_name__ ) _lowerCAmelCase :Tuple = nlp.model.BERTModel( __magic_name__ , len(__magic_name__ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=__magic_name__ , use_token_type_embed=__magic_name__ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=__magic_name__ , use_decoder=__magic_name__ , ) original_bort.load_parameters(__magic_name__ , cast_dtype=__magic_name__ , ignore_extra=__magic_name__ ) _lowerCAmelCase :List[str] = original_bort._collect_params_with_prefix() # Build our config 🤗 _lowerCAmelCase :Dict = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(__magic_name__ ), } _lowerCAmelCase :Tuple = BertConfig.from_dict(__magic_name__ ) _lowerCAmelCase :Optional[int] = BertForMaskedLM(__magic_name__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__magic_name__ : Tuple ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): _lowerCAmelCase :str = hf_param.shape _lowerCAmelCase :List[Any] = to_torch(params[gluon_param] ) _lowerCAmelCase :str = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param _lowerCAmelCase :str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) _lowerCAmelCase :Dict = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) _lowerCAmelCase :List[str] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) _lowerCAmelCase :Any = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) _lowerCAmelCase :Union[str, Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): _lowerCAmelCase :BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention _lowerCAmelCase :BertSelfAttention = layer.attention.self _lowerCAmelCase :Any = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) _lowerCAmelCase :int = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) _lowerCAmelCase :str = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) _lowerCAmelCase :Tuple = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) _lowerCAmelCase :Dict = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) _lowerCAmelCase :Tuple = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output _lowerCAmelCase :BertSelfOutput = layer.attention.output _lowerCAmelCase :int = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) _lowerCAmelCase :int = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) _lowerCAmelCase :Dict = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) _lowerCAmelCase :List[str] = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate _lowerCAmelCase :BertIntermediate = layer.intermediate _lowerCAmelCase :List[Any] = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) _lowerCAmelCase :List[Any] = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output _lowerCAmelCase :BertOutput = layer.output _lowerCAmelCase :Tuple = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) _lowerCAmelCase :Tuple = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) _lowerCAmelCase :Tuple = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) _lowerCAmelCase :Optional[int] = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models _lowerCAmelCase :List[str] = RobertaTokenizer.from_pretrained('roberta-base' ) _lowerCAmelCase :str = tokenizer.encode_plus(__magic_name__ )['input_ids'] # Get gluon output _lowerCAmelCase :List[str] = mx.nd.array([input_ids] ) _lowerCAmelCase :Any = original_bort(inputs=__magic_name__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__magic_name__ ) _lowerCAmelCase :Any = BertModel.from_pretrained(__magic_name__ ) hf_bort_model.eval() _lowerCAmelCase :Union[str, Any] = tokenizer.encode_plus(__magic_name__ , return_tensors='pt' ) _lowerCAmelCase :str = hf_bort_model(**__magic_name__ )[0] _lowerCAmelCase :Union[str, Any] = output_gluon[0].asnumpy() _lowerCAmelCase :Dict = output_hf[0].detach().numpy() _lowerCAmelCase :Optional[int] = np.max(np.abs(hf_layer - gluon_layer ) ).item() _lowerCAmelCase :Union[str, Any] = np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , __magic_name__ ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
687
import glob import os import random from string import ascii_lowercase, digits import cva a = """""" a = """""" a = """""" a = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ ) print('Processing...' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase :Optional[Any] = random_chars(32 ) _lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" ) _lowerCAmelCase :str = [] for anno in new_annos[index]: _lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__magic_name__ ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = [] _lowerCAmelCase :Union[str, Any] = [] for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ): _lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__magic_name__ ) as in_file: _lowerCAmelCase :Union[str, Any] = in_file.readlines() _lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" ) _lowerCAmelCase :Tuple = [] for obj_list in obj_lists: _lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :Any = [] _lowerCAmelCase :Optional[Any] = [] for idx in range(len(__magic_name__ ) ): _lowerCAmelCase :Optional[int] = [] _lowerCAmelCase :Optional[Any] = img_list[idx] path_list.append(__magic_name__ ) _lowerCAmelCase :List[str] = anno_list[idx] _lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ ) if flip_type == 1: _lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_( __magic_name__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase :str = ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
687
1
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline a = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict ): super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self: Optional[Any] , _UpperCAmelCase: int = 1 , _UpperCAmelCase: int = 100 , _UpperCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase: Optional[float] = None , _UpperCAmelCase: bool = True , ): if audio_length_in_s is None: _lowerCAmelCase :Any = self.unet.config.sample_size / self.unet.config.sample_rate _lowerCAmelCase :Union[str, Any] = audio_length_in_s * self.unet.config.sample_rate _lowerCAmelCase :Tuple = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) _lowerCAmelCase :str = int(_UpperCAmelCase ) if sample_size % down_scale_factor != 0: _lowerCAmelCase :Dict = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ' process.' ) _lowerCAmelCase :List[Any] = int(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = next(iter(self.unet.parameters() ) ).dtype _lowerCAmelCase :int = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(_UpperCAmelCase )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _lowerCAmelCase :Tuple = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase , device=audio.device ) _lowerCAmelCase :Tuple = self.scheduler.timesteps.to(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _lowerCAmelCase :Optional[int] = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 _lowerCAmelCase :int = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample _lowerCAmelCase :Optional[int] = audio.clamp(-1 , 1 ).float().cpu().numpy() _lowerCAmelCase :Any = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_UpperCAmelCase )
687
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ ) _lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ ) return torch.mm(__magic_name__ , normalized_text_embeds.t() ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = CLIPConfig lowerCamelCase : Any = ['CLIPEncoderLayer'] def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ): super().__init__(_UpperCAmelCase ) _lowerCAmelCase :Any = CLIPVisionModel(config.vision_config ) _lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) _lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase :str = [] _lowerCAmelCase :List[Any] = image_embeds.shape[0] for i in range(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx] _lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowerCAmelCase :Any = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx] _lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) _lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ): _lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) _lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :Any = 0.0 _lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase :List[str] = special_care * 0.0_1 _lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
1
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Any = PandasConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :Any = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Any = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
687
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : UNetaDModel lowerCamelCase : KarrasVeScheduler def __init__( self: Optional[Any] , _UpperCAmelCase: UNetaDModel , _UpperCAmelCase: KarrasVeScheduler ): super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self: int , _UpperCAmelCase: int = 1 , _UpperCAmelCase: int = 50 , _UpperCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , **_UpperCAmelCase: Tuple , ): _lowerCAmelCase :Any = self.unet.config.sample_size _lowerCAmelCase :Dict = (batch_size, 3, img_size, img_size) _lowerCAmelCase :Any = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _lowerCAmelCase :List[Any] = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _lowerCAmelCase :List[str] = self.scheduler.schedule[t] _lowerCAmelCase :Dict = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _lowerCAmelCase , _lowerCAmelCase :Tuple = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _lowerCAmelCase :Dict = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _lowerCAmelCase :Tuple = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _lowerCAmelCase :Tuple = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _lowerCAmelCase :List[str] = self.scheduler.step_correct( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , ) _lowerCAmelCase :Optional[Any] = step_output.prev_sample _lowerCAmelCase :int = (sample / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :Optional[int] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
687
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'encoder-decoder' lowerCamelCase : Optional[Any] = True def __init__( self: str , **_UpperCAmelCase: int ): super().__init__(**_UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' ) _lowerCAmelCase :Dict = encoder_config.pop('model_type' ) _lowerCAmelCase :str = kwargs.pop('decoder' ) _lowerCAmelCase :str = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCAmelCase :Dict = True _lowerCAmelCase :List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :Optional[int] = self.encoder.to_dict() _lowerCAmelCase :Union[str, Any] = self.decoder.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output
687
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ): """simple docstring""" _lowerCAmelCase :str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" _lowerCAmelCase :Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def UpperCamelCase_( __magic_name__ : Any , __magic_name__ : int , __magic_name__ : List[str]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase :Union[str, Any] = '' else: _lowerCAmelCase :str = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase :str = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) _lowerCAmelCase :Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase :Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase :List[Any] = in_proj_bias[: config.hidden_size] _lowerCAmelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase :Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase :List[Any] = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase :Tuple = in_proj_bias[-config.hidden_size :] def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :List[str] = dct.pop(__magic_name__ ) _lowerCAmelCase :Tuple = val def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :str = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase :Union[str, Any] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def UpperCamelCase_( __magic_name__ : List[Any] , __magic_name__ : List[str] ): """simple docstring""" _lowerCAmelCase :Dict = DeiTConfig() # all deit models have fine-tuned heads _lowerCAmelCase :Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size _lowerCAmelCase :Union[str, Any] = 1000 _lowerCAmelCase :Tuple = 'huggingface/label-files' _lowerCAmelCase :Dict = 'imagenet-1k-id2label.json' _lowerCAmelCase :Optional[int] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase :Any = {int(__magic_name__ ): v for k, v in idalabel.items()} _lowerCAmelCase :str = idalabel _lowerCAmelCase :str = {v: k for k, v in idalabel.items()} _lowerCAmelCase :Optional[Any] = int(deit_name[-6:-4] ) _lowerCAmelCase :List[str] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): _lowerCAmelCase :Dict = 192 _lowerCAmelCase :List[Any] = 768 _lowerCAmelCase :List[Any] = 12 _lowerCAmelCase :List[Any] = 3 elif deit_name[9:].startswith('small' ): _lowerCAmelCase :str = 384 _lowerCAmelCase :Union[str, Any] = 1536 _lowerCAmelCase :str = 12 _lowerCAmelCase :List[str] = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): _lowerCAmelCase :Optional[int] = 1024 _lowerCAmelCase :Optional[int] = 4096 _lowerCAmelCase :List[Any] = 24 _lowerCAmelCase :Any = 16 # load original model from timm _lowerCAmelCase :Tuple = timm.create_model(__magic_name__ , pretrained=__magic_name__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase :Union[str, Any] = timm_model.state_dict() _lowerCAmelCase :Tuple = create_rename_keys(__magic_name__ , __magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , __magic_name__ ) # load HuggingFace model _lowerCAmelCase :Optional[int] = DeiTForImageClassificationWithTeacher(__magic_name__ ).eval() model.load_state_dict(__magic_name__ ) # Check outputs on an image, prepared by DeiTImageProcessor _lowerCAmelCase :Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 _lowerCAmelCase :Union[str, Any] = DeiTImageProcessor(size=__magic_name__ , crop_size=config.image_size ) _lowerCAmelCase :int = image_processor(images=prepare_img() , return_tensors='pt' ) _lowerCAmelCase :List[str] = encoding['pixel_values'] _lowerCAmelCase :List[str] = model(__magic_name__ ) _lowerCAmelCase :List[Any] = timm_model(__magic_name__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__magic_name__ , outputs.logits , atol=1e-3 ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
687
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser a = re.compile(R"""\s+""") def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return {"hash": hashlib.mda(re.sub(__magic_name__ , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def UpperCamelCase_( __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = [len(__magic_name__ ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__magic_name__ ), "line_max": max(__magic_name__ )} def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Any = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : List[Any]=5 ): """simple docstring""" _lowerCAmelCase :Tuple = ['auto-generated', 'autogenerated', 'automatically generated'] _lowerCAmelCase :Optional[int] = example['content'].splitlines() for _, line in zip(range(__magic_name__ ) , __magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def UpperCamelCase_( __magic_name__ : Dict , __magic_name__ : Optional[Any]=5 , __magic_name__ : Optional[int]=0.05 ): """simple docstring""" _lowerCAmelCase :List[Any] = ['unit tests', 'test file', 'configuration file'] _lowerCAmelCase :Union[str, Any] = example['content'].splitlines() _lowerCAmelCase :Dict = 0 _lowerCAmelCase :str = 0 # first test for _, line in zip(range(__magic_name__ ) , __magic_name__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCAmelCase :str = example['content'].count('\n' ) _lowerCAmelCase :List[str] = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def UpperCamelCase_( __magic_name__ : Any ): """simple docstring""" _lowerCAmelCase :Dict = ['def ', 'class ', 'for ', 'while '] _lowerCAmelCase :Tuple = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any]=4 ): """simple docstring""" _lowerCAmelCase :Optional[int] = example['content'].splitlines() _lowerCAmelCase :List[Any] = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :int = tokenizer(example['content'] , truncation=__magic_name__ )['input_ids'] _lowerCAmelCase :List[Any] = len(example['content'] ) / len(__magic_name__ ) return {"ratio": ratio} def UpperCamelCase_( __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :str = {} results.update(get_hash(__magic_name__ ) ) results.update(line_stats(__magic_name__ ) ) results.update(alpha_stats(__magic_name__ ) ) results.update(char_token_ratio(__magic_name__ ) ) results.update(is_autogenerated(__magic_name__ ) ) results.update(is_config_or_test(__magic_name__ ) ) results.update(has_no_keywords(__magic_name__ ) ) results.update(has_few_assignments(__magic_name__ ) ) return results def UpperCamelCase_( __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Optional[int] ): """simple docstring""" if not check_uniques(__magic_name__ , __magic_name__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def UpperCamelCase_( __magic_name__ : Union[str, Any] ): """simple docstring""" with open(__magic_name__ , 'rb' ) as f_in: with gzip.open(str(__magic_name__ ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(__magic_name__ , __magic_name__ ) os.unlink(__magic_name__ ) # Settings a = HfArgumentParser(PreprocessingArguments) a = parser.parse_args() if args.num_workers is None: a = multiprocessing.cpu_count() a = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset a = time.time() a = load_dataset(args.dataset_name, split="""train""") print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing a = time.time() a = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes a = set(ds.unique("""hash""")) a = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics a = time.time() a = ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: a = time.time() a , a = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file a = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) a = output_dir / """data""" data_dir.mkdir(exist_ok=True) a = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): a = str(data_dir / F'''file-{file_number+1:012}.json''') a = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
687
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[int] = 10 def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :str = [1, 2, 3, 4] _lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[int] = '' _lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = ['It was the best of times.'] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[str] = 101 _lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
687
1
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase_ : """simple docstring""" def __init__( self: Any , _UpperCAmelCase: Collection[float] | None = None ): if components is None: _lowerCAmelCase :List[str] = [] _lowerCAmelCase :Tuple = list(_UpperCAmelCase ) def __len__( self: Optional[int] ): return len(self.__components ) def __str__( self: Any ): return "(" + ",".join(map(_UpperCAmelCase , self.__components ) ) + ")" def __add__( self: Optional[Any] , _UpperCAmelCase: Vector ): _lowerCAmelCase :Union[str, Any] = len(self ) if size == len(_UpperCAmelCase ): _lowerCAmelCase :Tuple = [self.__components[i] + other.component(_UpperCAmelCase ) for i in range(_UpperCAmelCase )] return Vector(_UpperCAmelCase ) else: raise Exception('must have the same size' ) def __sub__( self: Optional[Any] , _UpperCAmelCase: Vector ): _lowerCAmelCase :List[str] = len(self ) if size == len(_UpperCAmelCase ): _lowerCAmelCase :str = [self.__components[i] - other.component(_UpperCAmelCase ) for i in range(_UpperCAmelCase )] return Vector(_UpperCAmelCase ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self: str , _UpperCAmelCase: float ): ... @overload def __mul__( self: int , _UpperCAmelCase: Vector ): ... def __mul__( self: Any , _UpperCAmelCase: float | Vector ): if isinstance(_UpperCAmelCase , (float, int) ): _lowerCAmelCase :Optional[int] = [c * other for c in self.__components] return Vector(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(self ) == len(_UpperCAmelCase ): _lowerCAmelCase :str = len(self ) _lowerCAmelCase :Tuple = [self.__components[i] * other.component(_UpperCAmelCase ) for i in range(_UpperCAmelCase )] return sum(_UpperCAmelCase ) else: # error case raise Exception('invalid operand!' ) def SCREAMING_SNAKE_CASE__ ( self: Any ): return Vector(self.__components ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: int ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: int , _UpperCAmelCase: float ): assert -len(self.__components ) <= pos < len(self.__components ) _lowerCAmelCase :int = value def SCREAMING_SNAKE_CASE__ ( self: Dict ): if len(self.__components ) == 0: raise Exception('Vector is empty' ) _lowerCAmelCase :Dict = [c**2 for c in self.__components] return math.sqrt(sum(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Vector , _UpperCAmelCase: bool = False ): _lowerCAmelCase :Dict = self * other _lowerCAmelCase :Optional[int] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) return Vector([0] * dimension ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : int ): """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and (isinstance(__magic_name__ , __magic_name__ )) _lowerCAmelCase :Dict = [0] * dimension _lowerCAmelCase :int = 1 return Vector(__magic_name__ ) def UpperCamelCase_( __magic_name__ : float , __magic_name__ : Vector , __magic_name__ : Vector ): """simple docstring""" assert ( isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) and (isinstance(__magic_name__ , (int, float) )) ) return x * scalar + y def UpperCamelCase_( __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ): """simple docstring""" random.seed(__magic_name__ ) _lowerCAmelCase :Any = [random.randint(__magic_name__ , __magic_name__ ) for _ in range(__magic_name__ )] return Vector(__magic_name__ ) class UpperCAmelCase_ : """simple docstring""" def __init__( self: Dict , _UpperCAmelCase: list[list[float]] , _UpperCAmelCase: int , _UpperCAmelCase: int ): _lowerCAmelCase :str = matrix _lowerCAmelCase :Dict = w _lowerCAmelCase :Tuple = h def __str__( self: Tuple ): _lowerCAmelCase :Optional[int] = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self: int , _UpperCAmelCase: Matrix ): if self.__width == other.width() and self.__height == other.height(): _lowerCAmelCase :Optional[Any] = [] for i in range(self.__height ): _lowerCAmelCase :List[str] = [ self.__matrix[i][j] + other.component(_UpperCAmelCase , _UpperCAmelCase ) for j in range(self.__width ) ] matrix.append(_UpperCAmelCase ) return Matrix(_UpperCAmelCase , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self: Any , _UpperCAmelCase: Matrix ): if self.__width == other.width() and self.__height == other.height(): _lowerCAmelCase :List[str] = [] for i in range(self.__height ): _lowerCAmelCase :Tuple = [ self.__matrix[i][j] - other.component(_UpperCAmelCase , _UpperCAmelCase ) for j in range(self.__width ) ] matrix.append(_UpperCAmelCase ) return Matrix(_UpperCAmelCase , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self: List[str] , _UpperCAmelCase: float ): ... @overload def __mul__( self: Any , _UpperCAmelCase: Vector ): ... def __mul__( self: Union[str, Any] , _UpperCAmelCase: float | Vector ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): # matrix-vector if len(_UpperCAmelCase ) == self.__width: _lowerCAmelCase :str = zero_vector(self.__height ) for i in range(self.__height ): _lowerCAmelCase :int = [ self.__matrix[i][j] * other.component(_UpperCAmelCase ) for j in range(self.__width ) ] ans.change_component(_UpperCAmelCase , sum(_UpperCAmelCase ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(_UpperCAmelCase , (int, float) ): # matrix-scalar _lowerCAmelCase :Dict = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(_UpperCAmelCase , self.__width , self.__height ) return None def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): return self.__height def SCREAMING_SNAKE_CASE__ ( self: Dict ): return self.__width def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: int , _UpperCAmelCase: float ): if 0 <= x < self.__height and 0 <= y < self.__width: _lowerCAmelCase :Optional[Any] = value else: raise Exception('change_component: indices out of bounds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) _lowerCAmelCase :int = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(_UpperCAmelCase ) ): _lowerCAmelCase :Optional[Any] = minor[i][:y] + minor[i][y + 1 :] return Matrix(_UpperCAmelCase , self.__width - 1 , self.__height - 1 ).determinant() def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: int , _UpperCAmelCase: int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(_UpperCAmelCase , _UpperCAmelCase ) else: raise Exception('Indices out of bounds' ) def SCREAMING_SNAKE_CASE__ ( self: Any ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _lowerCAmelCase :Optional[Any] = [ self.__matrix[0][y] * self.cofactor(0 , _UpperCAmelCase ) for y in range(self.__width ) ] return sum(_UpperCAmelCase ) def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :list[list[float]] = [[0] * n for _ in range(__magic_name__ )] return Matrix(__magic_name__ , __magic_name__ , __magic_name__ ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ): """simple docstring""" random.seed(__magic_name__ ) _lowerCAmelCase :list[list[float]] = [ [random.randint(__magic_name__ , __magic_name__ ) for _ in range(__magic_name__ )] for _ in range(__magic_name__ ) ] return Matrix(__magic_name__ , __magic_name__ , __magic_name__ )
687
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
687
1
import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) _lowerCAmelCase :Tuple = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ): _lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
687
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
1
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef a = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : List[str] ): """simple docstring""" warnings.warn(__magic_name__ , __magic_name__ ) requires_backends(__magic_name__ , 'sklearn' ) return (preds == labels).mean() def UpperCamelCase_( __magic_name__ : List[str] , __magic_name__ : Dict ): """simple docstring""" warnings.warn(__magic_name__ , __magic_name__ ) requires_backends(__magic_name__ , 'sklearn' ) _lowerCAmelCase :List[str] = simple_accuracy(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = fa_score(y_true=__magic_name__ , y_pred=__magic_name__ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Any ): """simple docstring""" warnings.warn(__magic_name__ , __magic_name__ ) requires_backends(__magic_name__ , 'sklearn' ) _lowerCAmelCase :Any = pearsonr(__magic_name__ , __magic_name__ )[0] _lowerCAmelCase :int = spearmanr(__magic_name__ , __magic_name__ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def UpperCamelCase_( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] ): """simple docstring""" warnings.warn(__magic_name__ , __magic_name__ ) requires_backends(__magic_name__ , 'sklearn' ) assert len(__magic_name__ ) == len(__magic_name__ ), f"""Predictions and labels have mismatched lengths {len(__magic_name__ )} and {len(__magic_name__ )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(__magic_name__ , __magic_name__ )} elif task_name == "sst-2": return {"acc": simple_accuracy(__magic_name__ , __magic_name__ )} elif task_name == "mrpc": return acc_and_fa(__magic_name__ , __magic_name__ ) elif task_name == "sts-b": return pearson_and_spearman(__magic_name__ , __magic_name__ ) elif task_name == "qqp": return acc_and_fa(__magic_name__ , __magic_name__ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__magic_name__ , __magic_name__ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__magic_name__ , __magic_name__ )} elif task_name == "qnli": return {"acc": simple_accuracy(__magic_name__ , __magic_name__ )} elif task_name == "rte": return {"acc": simple_accuracy(__magic_name__ , __magic_name__ )} elif task_name == "wnli": return {"acc": simple_accuracy(__magic_name__ , __magic_name__ )} elif task_name == "hans": return {"acc": simple_accuracy(__magic_name__ , __magic_name__ )} else: raise KeyError(__magic_name__ ) def UpperCamelCase_( __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : int ): """simple docstring""" warnings.warn(__magic_name__ , __magic_name__ ) requires_backends(__magic_name__ , 'sklearn' ) if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(__magic_name__ )} and {len(__magic_name__ )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(__magic_name__ , __magic_name__ )} else: raise KeyError(__magic_name__ )
687
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a = False class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[int] = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _lowerCAmelCase :Dict = 'A painting of a squirrel eating a burger ' _lowerCAmelCase :str = torch.manual_seed(0 ) _lowerCAmelCase :Optional[Any] = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCAmelCase ) _lowerCAmelCase :List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained(_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _lowerCAmelCase :List[str] = generator.manual_seed(0 ) _lowerCAmelCase :int = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Optional[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _lowerCAmelCase :Dict = 'A painting of a squirrel eating a burger ' _lowerCAmelCase :Any = torch.manual_seed(0 ) _lowerCAmelCase :Tuple = pipe( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images _lowerCAmelCase :str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase :List[str] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
687
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
1
from collections.abc import Generator from math import sin def UpperCamelCase_( __magic_name__ : bytes ): """simple docstring""" if len(__magic_name__ ) != 32: raise ValueError('Input must be of length 32' ) _lowerCAmelCase :Tuple = b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _lowerCAmelCase :Dict = format(__magic_name__ , '08x' )[-8:] _lowerCAmelCase :Any = b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCamelCase_( __magic_name__ : bytes ): """simple docstring""" _lowerCAmelCase :str = b'' for char in message: bit_string += format(__magic_name__ , '08b' ).encode('utf-8' ) _lowerCAmelCase :Union[str, Any] = format(len(__magic_name__ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__magic_name__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCamelCase_( __magic_name__ : bytes ): """simple docstring""" if len(__magic_name__ ) % 512 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(__magic_name__ ) , 512 ): _lowerCAmelCase :Optional[int] = bit_string[pos : pos + 512] _lowerCAmelCase :Tuple = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _lowerCAmelCase :Union[str, Any] = format(__magic_name__ , '032b' ) _lowerCAmelCase :Dict = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(__magic_name__ , 2 ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : int ): """simple docstring""" return (a + b) % 2**32 def UpperCamelCase_( __magic_name__ : int , __magic_name__ : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCamelCase_( __magic_name__ : bytes ): """simple docstring""" _lowerCAmelCase :Optional[Any] = preprocess(__magic_name__ ) _lowerCAmelCase :int = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _lowerCAmelCase :Tuple = 0X67452301 _lowerCAmelCase :List[Any] = 0Xefcdab89 _lowerCAmelCase :List[str] = 0X98badcfe _lowerCAmelCase :List[str] = 0X10325476 _lowerCAmelCase :List[Any] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__magic_name__ ): _lowerCAmelCase :Optional[int] = aa _lowerCAmelCase :Optional[int] = ba _lowerCAmelCase :Tuple = ca _lowerCAmelCase :Union[str, Any] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _lowerCAmelCase :Any = d ^ (b & (c ^ d)) _lowerCAmelCase :int = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _lowerCAmelCase :Optional[Any] = c ^ (d & (b ^ c)) _lowerCAmelCase :Dict = (5 * i + 1) % 16 elif i <= 47: _lowerCAmelCase :Optional[int] = b ^ c ^ d _lowerCAmelCase :List[str] = (3 * i + 5) % 16 else: _lowerCAmelCase :Any = c ^ (b | not_aa(__magic_name__ )) _lowerCAmelCase :Any = (7 * i) % 16 _lowerCAmelCase :Dict = (f + a + added_consts[i] + block_words[g]) % 2**32 _lowerCAmelCase :List[Any] = d _lowerCAmelCase :Tuple = c _lowerCAmelCase :Any = b _lowerCAmelCase :Union[str, Any] = sum_aa(__magic_name__ , left_rotate_aa(__magic_name__ , shift_amounts[i] ) ) # Add hashed chunk to running total _lowerCAmelCase :Optional[Any] = sum_aa(__magic_name__ , __magic_name__ ) _lowerCAmelCase :List[Any] = sum_aa(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = sum_aa(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = sum_aa(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
687
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ): """simple docstring""" _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] _lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] _lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""] _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""] _lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :int = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' ) _lowerCAmelCase :List[Any] = {} _lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight'] _lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias'] _lowerCAmelCase :Dict = checkpoint['time_embed.2.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias'] _lowerCAmelCase :List[Any] = unet_config['down_block_types'] _lowerCAmelCase :Any = unet_config['layers_per_block'] _lowerCAmelCase :List[Any] = unet_config['attention_head_dim'] _lowerCAmelCase :Tuple = unet_config['block_out_channels'] _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Optional[int] = channels_list[0] for i, layer_type in enumerate(__magic_name__ ): _lowerCAmelCase :Tuple = channels_list[i] _lowerCAmelCase :Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}""" _lowerCAmelCase :str = f"""input_blocks.{current_layer}.1""" _lowerCAmelCase :Optional[Any] = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0""" _lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 _lowerCAmelCase :Dict = current_channels # hardcoded the mid-block for now _lowerCAmelCase :int = 'mid_block.resnets.0' _lowerCAmelCase :Optional[Any] = 'middle_block.0' _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = 'mid_block.attentions.0' _lowerCAmelCase :Optional[int] = 'middle_block.1' _lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1' _lowerCAmelCase :Optional[int] = 'middle_block.2' _lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :str = unet_config['up_block_types'] for i, layer_type in enumerate(__magic_name__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1""" _lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}""" _lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1""" _lowerCAmelCase :int = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = checkpoint['out.0.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias'] _lowerCAmelCase :List[Any] = checkpoint['out.2.weight'] _lowerCAmelCase :Dict = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
687
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'encoder-decoder' lowerCamelCase : Optional[Any] = True def __init__( self: str , **_UpperCAmelCase: int ): super().__init__(**_UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' ) _lowerCAmelCase :Dict = encoder_config.pop('model_type' ) _lowerCAmelCase :str = kwargs.pop('decoder' ) _lowerCAmelCase :str = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCAmelCase :Dict = True _lowerCAmelCase :List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :Optional[int] = self.encoder.to_dict() _lowerCAmelCase :Union[str, Any] = self.decoder.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output
687
import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) _lowerCAmelCase :Tuple = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ): _lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
687
1
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput a = """scheduler_config.json""" class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : List[str] = 1 lowerCamelCase : Any = 2 lowerCamelCase : str = 3 lowerCamelCase : Tuple = 4 lowerCamelCase : Dict = 5 lowerCamelCase : str = 6 lowerCamelCase : Dict = 7 lowerCamelCase : str = 8 lowerCamelCase : Optional[Any] = 9 lowerCamelCase : Optional[int] = 10 lowerCamelCase : int = 11 lowerCamelCase : Union[str, Any] = 12 lowerCamelCase : str = 13 lowerCamelCase : Optional[Any] = 14 @dataclass class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : torch.FloatTensor class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Tuple = SCHEDULER_CONFIG_NAME lowerCamelCase : Dict = [] lowerCamelCase : Dict = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: List[Any] , _UpperCAmelCase: Dict[str, Any] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Tuple=False , **_UpperCAmelCase: int , ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = cls.load_config( pretrained_model_name_or_path=_UpperCAmelCase , subfolder=_UpperCAmelCase , return_unused_kwargs=_UpperCAmelCase , return_commit_hash=_UpperCAmelCase , **_UpperCAmelCase , ) return cls.from_config(_UpperCAmelCase , return_unused_kwargs=_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, os.PathLike] , _UpperCAmelCase: bool = False , **_UpperCAmelCase: Union[str, Any] ): self.save_config(save_directory=_UpperCAmelCase , push_to_hub=_UpperCAmelCase , **_UpperCAmelCase ) @property def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): return self._get_compatibles() @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Dict ): _lowerCAmelCase :List[str] = list(set([cls.__name__] + cls._compatibles ) ) _lowerCAmelCase :Any = importlib.import_module(__name__.split('.' )[0] ) _lowerCAmelCase :Any = [ getattr(_UpperCAmelCase , _UpperCAmelCase ) for c in compatible_classes_str if hasattr(_UpperCAmelCase , _UpperCAmelCase ) ] return compatible_classes
687
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
1
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def UpperCamelCase_( __magic_name__ : Dataset , __magic_name__ : Dict[str, str] ): """simple docstring""" _lowerCAmelCase :Dict = args.log_outputs _lowerCAmelCase :Optional[int] = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric _lowerCAmelCase :List[Any] = load_metric('wer' ) _lowerCAmelCase :str = load_metric('cer' ) # compute metrics _lowerCAmelCase :Optional[Any] = wer.compute(references=result['target'] , predictions=result['prediction'] ) _lowerCAmelCase :Union[str, Any] = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results _lowerCAmelCase :Optional[Any] = f"""WER: {wer_result}\nCER: {cer_result}""" print(__magic_name__ ) with open(f"""{dataset_id}_eval_results.txt""" , 'w' ) as f: f.write(__magic_name__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: _lowerCAmelCase :Union[str, Any] = f"""log_{dataset_id}_predictions.txt""" _lowerCAmelCase :Optional[Any] = f"""log_{dataset_id}_targets.txt""" with open(__magic_name__ , 'w' ) as p, open(__magic_name__ , 'w' ) as t: # mapping function to write output def write_to_file(__magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] ): p.write(f"""{i}""" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"""{i}""" + '\n' ) t.write(batch['target'] + '\n' ) result.map(__magic_name__ , with_indices=__magic_name__ ) def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Any = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training _lowerCAmelCase :str = re.sub(__magic_name__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! _lowerCAmelCase :Optional[Any] = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: _lowerCAmelCase :List[Any] = ' '.join(text.split(__magic_name__ ) ) return text def UpperCamelCase_( __magic_name__ : Any ): """simple docstring""" _lowerCAmelCase :int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=__magic_name__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor _lowerCAmelCase :List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) _lowerCAmelCase :Optional[Any] = feature_extractor.sampling_rate # resample audio _lowerCAmelCase :Union[str, Any] = dataset.cast_column('audio' , Audio(sampling_rate=__magic_name__ ) ) # load eval pipeline if args.device is None: _lowerCAmelCase :str = 0 if torch.cuda.is_available() else -1 _lowerCAmelCase :int = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__magic_name__ : Tuple ): _lowerCAmelCase :Tuple = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) _lowerCAmelCase :List[str] = prediction['text'] _lowerCAmelCase :Any = normalize_text(batch['sentence'] ) return batch # run inference on all examples _lowerCAmelCase :List[Any] = dataset.map(__magic_name__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(__magic_name__ , __magic_name__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) a = parser.parse_args() main(args)
687
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[str] = 'ylacombe/bark-small' _lowerCAmelCase :int = tempfile.mkdtemp() _lowerCAmelCase :List[str] = 'en_speaker_1' _lowerCAmelCase :Union[str, Any] = 'This is a test string' _lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json' _lowerCAmelCase :str = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[Any] = self.get_tokenizer() _lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase :Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase :List[Any] = 35 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :Dict = 8 _lowerCAmelCase :Dict = { 'semantic_prompt': np.ones(_UpperCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Tuple = self.get_tokenizer() _lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = processor(text=self.input_string ) _lowerCAmelCase :List[str] = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
687
1
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(__magic_name__ , __magic_name__ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" _lowerCAmelCase :Dict = False if num < 0: _lowerCAmelCase :Optional[Any] = True _lowerCAmelCase :Optional[Any] = -num _lowerCAmelCase :list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__magic_name__ ) for e in binary ) return "0b" + "".join(str(__magic_name__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
687
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = 'bert' def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :Dict = num_hidden_layers _lowerCAmelCase :Optional[Any] = num_attention_heads _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = intermediate_size _lowerCAmelCase :Tuple = hidden_dropout_prob _lowerCAmelCase :Tuple = attention_probs_dropout_prob _lowerCAmelCase :List[Any] = max_position_embeddings _lowerCAmelCase :Dict = type_vocab_size _lowerCAmelCase :Any = initializer_range _lowerCAmelCase :int = layer_norm_eps _lowerCAmelCase :List[Any] = position_embedding_type _lowerCAmelCase :int = use_cache _lowerCAmelCase :Union[str, Any] = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): if self.task == "multiple-choice": _lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
687
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a = logging.get_logger(__name__) a = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} a = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } a = { """gpt-neox-20b""": 2_048, } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[Any] = ['input_ids', 'attention_mask'] def __init__( self: str , _UpperCAmelCase: Optional[int]=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Dict="<|endoftext|>" , _UpperCAmelCase: Any="<|endoftext|>" , _UpperCAmelCase: str="<|endoftext|>" , _UpperCAmelCase: Tuple=False , **_UpperCAmelCase: Tuple , ): super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) _lowerCAmelCase :Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _UpperCAmelCase ) != add_prefix_space: _lowerCAmelCase :Optional[int] = getattr(_UpperCAmelCase , pre_tok_state.pop('type' ) ) _lowerCAmelCase :Optional[Any] = add_prefix_space _lowerCAmelCase :List[Any] = pre_tok_class(**_UpperCAmelCase ) _lowerCAmelCase :List[str] = add_prefix_space def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: str , _UpperCAmelCase: Optional[str] = None ): _lowerCAmelCase :Union[str, Any] = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: "Conversation" ): _lowerCAmelCase :List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) + [self.eos_token_id] ) if len(_UpperCAmelCase ) > self.model_max_length: _lowerCAmelCase :Dict = input_ids[-self.model_max_length :] return input_ids
687
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
1
import torch from torch import nn class UpperCAmelCase_ (nn.Module ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: List[str] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[int]=1 , _UpperCAmelCase: Dict=False ): super().__init__() _lowerCAmelCase :Dict = n_token _lowerCAmelCase :Tuple = d_embed _lowerCAmelCase :str = d_proj _lowerCAmelCase :int = cutoffs + [n_token] _lowerCAmelCase :List[str] = [0] + self.cutoffs _lowerCAmelCase :Any = div_val _lowerCAmelCase :List[str] = self.cutoffs[0] _lowerCAmelCase :int = len(self.cutoffs ) - 1 _lowerCAmelCase :int = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _lowerCAmelCase :Any = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _lowerCAmelCase :Any = nn.Parameter(torch.zeros(self.n_clusters ) ) _lowerCAmelCase :Optional[int] = nn.ModuleList() _lowerCAmelCase :Any = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_UpperCAmelCase , _UpperCAmelCase ) ) ) else: self.out_projs.append(_UpperCAmelCase ) self.out_layers.append(nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): _lowerCAmelCase , _lowerCAmelCase :Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _lowerCAmelCase :Union[str, Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_UpperCAmelCase , _UpperCAmelCase ) ) ) self.out_layers.append(nn.Linear(_UpperCAmelCase , r_idx - l_idx ) ) _lowerCAmelCase :Optional[int] = keep_order def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: Any , _UpperCAmelCase: str , _UpperCAmelCase: Dict , _UpperCAmelCase: Dict ): if proj is None: _lowerCAmelCase :int = nn.functional.linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _lowerCAmelCase :List[Any] = nn.functional.linear(_UpperCAmelCase , proj.t().contiguous() ) _lowerCAmelCase :List[Any] = nn.functional.linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Dict , _UpperCAmelCase: List[Any]=None , _UpperCAmelCase: List[str]=False ): if labels is not None: # Shift so that tokens < n predict n _lowerCAmelCase :Tuple = hidden[..., :-1, :].contiguous() _lowerCAmelCase :Tuple = labels[..., 1:].contiguous() _lowerCAmelCase :List[Any] = hidden.view(-1 , hidden.size(-1 ) ) _lowerCAmelCase :Dict = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: _lowerCAmelCase :int = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _lowerCAmelCase :str = self._compute_logit(_UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _lowerCAmelCase :Dict = labels != -100 _lowerCAmelCase :Dict = torch.zeros_like(_UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) _lowerCAmelCase :Any = ( -nn.functional.log_softmax(_UpperCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _lowerCAmelCase :Dict = nn.functional.log_softmax(_UpperCAmelCase , dim=-1 ) else: # construct weights and biases _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _lowerCAmelCase , _lowerCAmelCase :List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _lowerCAmelCase :int = self.out_layers[0].weight[l_idx:r_idx] _lowerCAmelCase :Any = self.out_layers[0].bias[l_idx:r_idx] else: _lowerCAmelCase :Optional[Any] = self.out_layers[i].weight _lowerCAmelCase :Union[str, Any] = self.out_layers[i].bias if i == 0: _lowerCAmelCase :Optional[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _lowerCAmelCase :Tuple = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_UpperCAmelCase ) biases.append(_UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :List[str] = weights[0], biases[0], self.out_projs[0] _lowerCAmelCase :List[Any] = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = nn.functional.log_softmax(_UpperCAmelCase , dim=1 ) if labels is None: _lowerCAmelCase :Union[str, Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _lowerCAmelCase :Dict = torch.zeros_like(_UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) _lowerCAmelCase :List[Any] = 0 _lowerCAmelCase :Dict = [0] + self.cutoffs for i in range(len(_UpperCAmelCase ) - 1 ): _lowerCAmelCase , _lowerCAmelCase :str = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _lowerCAmelCase :int = (labels >= l_idx) & (labels < r_idx) _lowerCAmelCase :int = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _lowerCAmelCase :int = labels.index_select(0 , _UpperCAmelCase ) - l_idx _lowerCAmelCase :Dict = head_logprob.index_select(0 , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = hidden.index_select(0 , _UpperCAmelCase ) else: _lowerCAmelCase :Tuple = hidden if i == 0: if labels is not None: _lowerCAmelCase :Any = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _lowerCAmelCase :List[Any] = head_logprob[:, : self.cutoffs[0]] else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = weights[i], biases[i], self.out_projs[i] _lowerCAmelCase :Union[str, Any] = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = nn.functional.log_softmax(_UpperCAmelCase , dim=1 ) _lowerCAmelCase :Dict = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _lowerCAmelCase :int = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _lowerCAmelCase :List[Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _lowerCAmelCase :Dict = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , _UpperCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: List[str] ): if self.n_clusters == 0: _lowerCAmelCase :Tuple = self._compute_logit(_UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(_UpperCAmelCase , dim=-1 ) else: # construct weights and biases _lowerCAmelCase , _lowerCAmelCase :List[str] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _lowerCAmelCase , _lowerCAmelCase :Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _lowerCAmelCase :Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _lowerCAmelCase :Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _lowerCAmelCase :List[str] = self.out_layers[i].weight _lowerCAmelCase :List[Any] = self.out_layers[i].bias if i == 0: _lowerCAmelCase :int = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _lowerCAmelCase :Tuple = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_UpperCAmelCase ) biases.append(_UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = weights[0], biases[0], self.out_projs[0] _lowerCAmelCase :int = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _lowerCAmelCase :Optional[int] = nn.functional.log_softmax(_UpperCAmelCase , dim=1 ) _lowerCAmelCase :int = [0] + self.cutoffs for i in range(len(_UpperCAmelCase ) - 1 ): _lowerCAmelCase , _lowerCAmelCase :Dict = cutoff_values[i], cutoff_values[i + 1] if i == 0: _lowerCAmelCase :List[Any] = head_logprob[:, : self.cutoffs[0]] else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = weights[i], biases[i], self.out_projs[i] _lowerCAmelCase :List[str] = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = nn.functional.log_softmax(_UpperCAmelCase , dim=1 ) _lowerCAmelCase :str = head_logprob[:, -i] + tail_logprob_i _lowerCAmelCase :List[str] = logprob_i return out
687
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
1
from __future__ import annotations import math def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__magic_name__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True a = [num for num in range(3, 100_001, 2) if not is_prime(num)] def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) _lowerCAmelCase :Optional[int] = [] for num in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = 0 while 2 * i * i <= odd_composites[num]: _lowerCAmelCase :Union[str, Any] = odd_composites[num] - 2 * i * i if is_prime(__magic_name__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__magic_name__ ) == n: return list_nums return [] def UpperCamelCase_( ): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
687
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCamelCase_( __magic_name__ : List[str] ): """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class UpperCAmelCase_ (nn.Module ): """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: nn.Module , _UpperCAmelCase: int ): super().__init__() _lowerCAmelCase :List[str] = module _lowerCAmelCase :int = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) _lowerCAmelCase :str = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: Optional[Any] , *_UpperCAmelCase: Dict , **_UpperCAmelCase: int ): return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" lowerCamelCase : Tuple = 'bigscience/bloom-1b7' # Constant values lowerCamelCase : Union[str, Any] = 2.109_6595_5269_2574 lowerCamelCase : List[Any] = 'Hello my name is' lowerCamelCase : Any = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) lowerCamelCase : Any = 10 def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): # Models and tokenizer _lowerCAmelCase :Union[str, Any] = AutoTokenizer.from_pretrained(self.model_name ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[str] ): super().setUp() # Models and tokenizer _lowerCAmelCase :Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) _lowerCAmelCase :Optional[int] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Tuple = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) ) _lowerCAmelCase :Union[str, Any] = config.to_dict() _lowerCAmelCase :Union[str, Any] = config.to_diff_dict() _lowerCAmelCase :List[str] = config.to_json_string() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): from bitsandbytes.nn import Paramsabit _lowerCAmelCase :int = self.model_fpaa.get_memory_footprint() _lowerCAmelCase :List[Any] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) _lowerCAmelCase :List[str] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def SCREAMING_SNAKE_CASE__ ( self: str ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Optional[Any] = self.tokenizer(self.input_text , return_tensors='pt' ) _lowerCAmelCase :int = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Dict = BitsAndBytesConfig() _lowerCAmelCase :Any = True _lowerCAmelCase :Optional[int] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' ) _lowerCAmelCase :Union[str, Any] = self.tokenizer(self.input_text , return_tensors='pt' ) _lowerCAmelCase :Tuple = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[str] = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything _lowerCAmelCase :List[Any] = self.tokenizer(self.input_text , return_tensors='pt' ) _lowerCAmelCase :int = self.model_fpaa.to(torch.floataa ) _lowerCAmelCase :Union[str, Any] = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error _lowerCAmelCase :Tuple = self.model_fpaa.to('cpu' ) # Check this does not throw an error _lowerCAmelCase :Union[str, Any] = self.model_fpaa.half() # Check this does not throw an error _lowerCAmelCase :List[str] = self.model_fpaa.float() def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Tuple = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Union[str, Any] ): _lowerCAmelCase :List[Any] = 't5-small' _lowerCAmelCase :Union[str, Any] = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense _lowerCAmelCase :str = AutoTokenizer.from_pretrained(cls.model_name ) _lowerCAmelCase :Dict = 'Translate in German: Hello, my dog is cute' def SCREAMING_SNAKE_CASE__ ( self: int ): gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): from transformers import TaForConditionalGeneration _lowerCAmelCase :Optional[int] = TaForConditionalGeneration._keep_in_fpaa_modules _lowerCAmelCase :Tuple = None # test with `t5-small` _lowerCAmelCase :Dict = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) _lowerCAmelCase :str = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) _lowerCAmelCase :Optional[Any] = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` _lowerCAmelCase :int = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) _lowerCAmelCase :Optional[int] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) _lowerCAmelCase :Union[str, Any] = model.generate(**_UpperCAmelCase ) _lowerCAmelCase :str = modules def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` _lowerCAmelCase :Dict = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) _lowerCAmelCase :Optional[Any] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) _lowerCAmelCase :List[str] = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` _lowerCAmelCase :str = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) _lowerCAmelCase :Optional[Any] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) _lowerCAmelCase :str = model.generate(**_UpperCAmelCase ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Any ): super().setUp() # model_name _lowerCAmelCase :Union[str, Any] = 'bigscience/bloom-560m' _lowerCAmelCase :List[Any] = 't5-small' # Different types of model _lowerCAmelCase :Union[str, Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Sequence classification model _lowerCAmelCase :Optional[int] = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # CausalLM model _lowerCAmelCase :Optional[int] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Seq2seq model _lowerCAmelCase :Dict = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self: int ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Tuple ): super().setUp() def SCREAMING_SNAKE_CASE__ ( self: Dict ): del self.pipe gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass _lowerCAmelCase :List[str] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): super().setUp() def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Dict = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model _lowerCAmelCase :Union[str, Any] = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch _lowerCAmelCase :str = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Tuple = 'facebook/opt-350m' super().setUp() def SCREAMING_SNAKE_CASE__ ( self: str ): if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters _lowerCAmelCase :Optional[int] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): _lowerCAmelCase :Dict = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability _lowerCAmelCase :List[Any] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): _lowerCAmelCase :Optional[Any] = LoRALayer(module.q_proj , rank=16 ) _lowerCAmelCase :Optional[int] = LoRALayer(module.k_proj , rank=16 ) _lowerCAmelCase :List[Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch _lowerCAmelCase :int = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): _lowerCAmelCase :Dict = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'gpt2-xl' lowerCamelCase : Optional[int] = 3.3191_8548_5415_2187
687
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : List[str] = 'time_series_transformer' lowerCamelCase : Optional[Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self: Optional[Any] , _UpperCAmelCase: Optional[int] = None , _UpperCAmelCase: Optional[int] = None , _UpperCAmelCase: str = "student_t" , _UpperCAmelCase: str = "nll" , _UpperCAmelCase: int = 1 , _UpperCAmelCase: List[int] = [1, 2, 3, 4, 5, 6, 7] , _UpperCAmelCase: Optional[Union[str, bool]] = "mean" , _UpperCAmelCase: int = 0 , _UpperCAmelCase: int = 0 , _UpperCAmelCase: int = 0 , _UpperCAmelCase: int = 0 , _UpperCAmelCase: Optional[List[int]] = None , _UpperCAmelCase: Optional[List[int]] = None , _UpperCAmelCase: int = 32 , _UpperCAmelCase: int = 32 , _UpperCAmelCase: int = 2 , _UpperCAmelCase: int = 2 , _UpperCAmelCase: int = 2 , _UpperCAmelCase: int = 2 , _UpperCAmelCase: bool = True , _UpperCAmelCase: str = "gelu" , _UpperCAmelCase: int = 64 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: int = 100 , _UpperCAmelCase: float = 0.0_2 , _UpperCAmelCase: str=True , **_UpperCAmelCase: Union[str, Any] , ): # time series specific configuration _lowerCAmelCase :int = prediction_length _lowerCAmelCase :str = context_length or prediction_length _lowerCAmelCase :Optional[int] = distribution_output _lowerCAmelCase :List[Any] = loss _lowerCAmelCase :Optional[Any] = input_size _lowerCAmelCase :Optional[Any] = num_time_features _lowerCAmelCase :List[Any] = lags_sequence _lowerCAmelCase :Union[str, Any] = scaling _lowerCAmelCase :Optional[Any] = num_dynamic_real_features _lowerCAmelCase :Tuple = num_static_real_features _lowerCAmelCase :Tuple = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_UpperCAmelCase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) _lowerCAmelCase :Optional[Any] = cardinality else: _lowerCAmelCase :Optional[int] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCAmelCase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) _lowerCAmelCase :Dict = embedding_dimension else: _lowerCAmelCase :Optional[Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _lowerCAmelCase :str = num_parallel_samples # Transformer architecture configuration _lowerCAmelCase :List[str] = input_size * len(_UpperCAmelCase ) + self._number_of_features _lowerCAmelCase :Union[str, Any] = d_model _lowerCAmelCase :List[str] = encoder_attention_heads _lowerCAmelCase :Any = decoder_attention_heads _lowerCAmelCase :Optional[Any] = encoder_ffn_dim _lowerCAmelCase :Optional[int] = decoder_ffn_dim _lowerCAmelCase :Union[str, Any] = encoder_layers _lowerCAmelCase :str = decoder_layers _lowerCAmelCase :List[Any] = dropout _lowerCAmelCase :List[str] = attention_dropout _lowerCAmelCase :str = activation_dropout _lowerCAmelCase :List[Any] = encoder_layerdrop _lowerCAmelCase :Any = decoder_layerdrop _lowerCAmelCase :List[str] = activation_function _lowerCAmelCase :int = init_std _lowerCAmelCase :List[Any] = use_cache super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def SCREAMING_SNAKE_CASE__ ( self: int ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
687
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ): _lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20} _lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase :str = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :Optional[Any] = num_channels _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :int = min_resolution _lowerCAmelCase :List[str] = max_resolution _lowerCAmelCase :List[str] = do_resize _lowerCAmelCase :Optional[int] = size _lowerCAmelCase :str = do_center_crop _lowerCAmelCase :int = crop_size _lowerCAmelCase :Optional[int] = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: int ): # Initialize image_processing _lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # Initialize image_processing _lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any ): # Initialize image_processing _lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
687
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Union[str, Any] = 'wavlm' def __init__( self: Union[str, Any] , _UpperCAmelCase: Optional[int]=32 , _UpperCAmelCase: Optional[int]=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Tuple=12 , _UpperCAmelCase: Union[str, Any]=3072 , _UpperCAmelCase: Union[str, Any]="gelu" , _UpperCAmelCase: List[Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: int=0.1 , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: List[str]="group" , _UpperCAmelCase: List[str]="gelu" , _UpperCAmelCase: Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase: Dict=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase: Dict=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase: List[Any]=False , _UpperCAmelCase: List[Any]=128 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Dict=320 , _UpperCAmelCase: int=800 , _UpperCAmelCase: List[Any]=False , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: int=0.0_5 , _UpperCAmelCase: List[str]=10 , _UpperCAmelCase: Optional[int]=2 , _UpperCAmelCase: Dict=0.0 , _UpperCAmelCase: List[str]=10 , _UpperCAmelCase: Dict=320 , _UpperCAmelCase: Any=2 , _UpperCAmelCase: List[str]=0.1 , _UpperCAmelCase: Any=100 , _UpperCAmelCase: Tuple=256 , _UpperCAmelCase: Tuple=256 , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Optional[Any]="mean" , _UpperCAmelCase: Dict=False , _UpperCAmelCase: int=False , _UpperCAmelCase: List[str]=256 , _UpperCAmelCase: int=(512, 512, 512, 512, 1500) , _UpperCAmelCase: List[Any]=(5, 3, 3, 1, 1) , _UpperCAmelCase: int=(1, 2, 3, 1, 1) , _UpperCAmelCase: Union[str, Any]=512 , _UpperCAmelCase: int=80 , _UpperCAmelCase: Optional[int]=0 , _UpperCAmelCase: Union[str, Any]=1 , _UpperCAmelCase: Union[str, Any]=2 , _UpperCAmelCase: List[Any]=False , _UpperCAmelCase: List[Any]=3 , _UpperCAmelCase: Optional[int]=2 , _UpperCAmelCase: str=3 , _UpperCAmelCase: int=None , **_UpperCAmelCase: List[str] , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) _lowerCAmelCase :int = hidden_size _lowerCAmelCase :List[str] = feat_extract_norm _lowerCAmelCase :Optional[int] = feat_extract_activation _lowerCAmelCase :Union[str, Any] = list(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = list(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = conv_bias _lowerCAmelCase :List[Any] = num_buckets _lowerCAmelCase :Tuple = max_bucket_distance _lowerCAmelCase :int = num_conv_pos_embeddings _lowerCAmelCase :Optional[Any] = num_conv_pos_embedding_groups _lowerCAmelCase :Tuple = len(self.conv_dim ) _lowerCAmelCase :str = num_hidden_layers _lowerCAmelCase :Union[str, Any] = intermediate_size _lowerCAmelCase :int = hidden_act _lowerCAmelCase :List[str] = num_attention_heads _lowerCAmelCase :int = hidden_dropout _lowerCAmelCase :Optional[Any] = attention_dropout _lowerCAmelCase :str = activation_dropout _lowerCAmelCase :Optional[int] = feat_proj_dropout _lowerCAmelCase :Dict = final_dropout _lowerCAmelCase :Union[str, Any] = layerdrop _lowerCAmelCase :Dict = layer_norm_eps _lowerCAmelCase :Optional[Any] = initializer_range _lowerCAmelCase :List[str] = num_ctc_classes _lowerCAmelCase :str = vocab_size _lowerCAmelCase :List[Any] = do_stable_layer_norm _lowerCAmelCase :List[str] = use_weighted_layer_sum _lowerCAmelCase :List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase :str = apply_spec_augment _lowerCAmelCase :Dict = mask_time_prob _lowerCAmelCase :Tuple = mask_time_length _lowerCAmelCase :Union[str, Any] = mask_time_min_masks _lowerCAmelCase :Dict = mask_feature_prob _lowerCAmelCase :Optional[int] = mask_feature_length # parameters for pretraining with codevector quantized representations _lowerCAmelCase :Dict = num_codevectors_per_group _lowerCAmelCase :Union[str, Any] = num_codevector_groups _lowerCAmelCase :List[str] = contrastive_logits_temperature _lowerCAmelCase :Union[str, Any] = num_negatives _lowerCAmelCase :Dict = codevector_dim _lowerCAmelCase :Any = proj_codevector_dim _lowerCAmelCase :Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase :Dict = ctc_loss_reduction _lowerCAmelCase :Any = ctc_zero_infinity # adapter _lowerCAmelCase :Optional[int] = add_adapter _lowerCAmelCase :Union[str, Any] = adapter_kernel_size _lowerCAmelCase :Tuple = adapter_stride _lowerCAmelCase :Any = num_adapter_layers _lowerCAmelCase :List[str] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase :str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase :Any = list(_UpperCAmelCase ) _lowerCAmelCase :Dict = list(_UpperCAmelCase ) _lowerCAmelCase :Dict = list(_UpperCAmelCase ) _lowerCAmelCase :str = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self: Any ): return functools.reduce(operator.mul , self.conv_stride , 1 )
687
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Any = PandasConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :Any = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Any = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
687
1
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() a = logging.get_logger(__name__) a = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } a = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : int ): """simple docstring""" for attribute in key.split('.' ): _lowerCAmelCase :Optional[Any] = getattr(__magic_name__ , __magic_name__ ) if weight_type is not None: _lowerCAmelCase :List[str] = getattr(__magic_name__ , __magic_name__ ).shape else: _lowerCAmelCase :List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCAmelCase :Union[str, Any] = value elif weight_type == "weight_g": _lowerCAmelCase :Union[str, Any] = value elif weight_type == "weight_v": _lowerCAmelCase :str = value elif weight_type == "bias": _lowerCAmelCase :str = value else: _lowerCAmelCase :Optional[Any] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : List[Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = [] _lowerCAmelCase :Tuple = fairseq_model.state_dict() _lowerCAmelCase :Tuple = hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase :Tuple = False if "conv_layers" in name: load_conv_layer( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , hf_model.config.feat_extract_norm == 'group' , ) _lowerCAmelCase :List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _lowerCAmelCase :Union[str, Any] = True if "*" in mapped_key: _lowerCAmelCase :List[str] = name.split(__magic_name__ )[0].split('.' )[-2] _lowerCAmelCase :Any = mapped_key.replace('*' , __magic_name__ ) if "weight_g" in name: _lowerCAmelCase :int = 'weight_g' elif "weight_v" in name: _lowerCAmelCase :Any = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: _lowerCAmelCase :str = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase :List[str] = 'weight' else: _lowerCAmelCase :str = None set_recursively(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) continue if not is_used: unused_weights.append(__magic_name__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Tuple ): """simple docstring""" _lowerCAmelCase :Tuple = full_name.split('conv_layers.' )[-1] _lowerCAmelCase :List[Any] = name.split('.' ) _lowerCAmelCase :Union[str, Any] = int(items[0] ) _lowerCAmelCase :str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCAmelCase :List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCAmelCase :Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowerCAmelCase :Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCAmelCase :int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__magic_name__ ) @torch.no_grad() def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=None ): """simple docstring""" _lowerCAmelCase :List[Any] = torch.load(__magic_name__ ) _lowerCAmelCase :str = WavLMConfigOrig(checkpoint['cfg'] ) _lowerCAmelCase :List[str] = WavLMOrig(__magic_name__ ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: _lowerCAmelCase :Union[str, Any] = WavLMConfig.from_pretrained(__magic_name__ ) else: _lowerCAmelCase :Tuple = WavLMConfig() _lowerCAmelCase :Optional[int] = WavLMModel(__magic_name__ ) recursively_load_weights(__magic_name__ , __magic_name__ ) hf_wavlm.save_pretrained(__magic_name__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") a = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
687
import glob import os import random from string import ascii_lowercase, digits import cva a = """""" a = """""" a = """""" a = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ ) print('Processing...' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase :Optional[Any] = random_chars(32 ) _lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" ) _lowerCAmelCase :str = [] for anno in new_annos[index]: _lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__magic_name__ ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = [] _lowerCAmelCase :Union[str, Any] = [] for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ): _lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__magic_name__ ) as in_file: _lowerCAmelCase :Union[str, Any] = in_file.readlines() _lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" ) _lowerCAmelCase :Tuple = [] for obj_list in obj_lists: _lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :Any = [] _lowerCAmelCase :Optional[Any] = [] for idx in range(len(__magic_name__ ) ): _lowerCAmelCase :Optional[int] = [] _lowerCAmelCase :Optional[Any] = img_list[idx] path_list.append(__magic_name__ ) _lowerCAmelCase :List[str] = anno_list[idx] _lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ ) if flip_type == 1: _lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_( __magic_name__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase :str = ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
687
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : torch.FloatTensor class UpperCAmelCase_ (snake_case__ , snake_case__ ): """simple docstring""" @register_to_config def __init__( self: int , _UpperCAmelCase: int = 6_5536 , _UpperCAmelCase: Optional[int] = None , _UpperCAmelCase: int = 2 , _UpperCAmelCase: int = 2 , _UpperCAmelCase: int = 0 , _UpperCAmelCase: str = "fourier" , _UpperCAmelCase: bool = True , _UpperCAmelCase: bool = False , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase: Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase: Tuple[str] = "UNetMidBlock1D" , _UpperCAmelCase: str = None , _UpperCAmelCase: Tuple[int] = (32, 32, 64) , _UpperCAmelCase: str = None , _UpperCAmelCase: int = 8 , _UpperCAmelCase: int = 1 , _UpperCAmelCase: bool = False , ): super().__init__() _lowerCAmelCase :List[Any] = sample_size # time if time_embedding_type == "fourier": _lowerCAmelCase :List[str] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase ) _lowerCAmelCase :Dict = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCAmelCase :Dict = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = block_out_channels[0] if use_timestep_embedding: _lowerCAmelCase :List[Any] = block_out_channels[0] * 4 _lowerCAmelCase :Tuple = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) _lowerCAmelCase :List[Any] = nn.ModuleList([] ) _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = nn.ModuleList([] ) _lowerCAmelCase :List[Any] = None # down _lowerCAmelCase :List[Any] = in_channels for i, down_block_type in enumerate(_UpperCAmelCase ): _lowerCAmelCase :Dict = output_channel _lowerCAmelCase :Tuple = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCAmelCase :Optional[Any] = i == len(_UpperCAmelCase ) - 1 _lowerCAmelCase :List[Any] = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase ) # mid _lowerCAmelCase :List[str] = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up _lowerCAmelCase :List[str] = list(reversed(_UpperCAmelCase ) ) _lowerCAmelCase :Union[str, Any] = reversed_block_out_channels[0] if out_block_type is None: _lowerCAmelCase :Optional[Any] = out_channels else: _lowerCAmelCase :Union[str, Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase ): _lowerCAmelCase :Dict = output_channel _lowerCAmelCase :str = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase ) - 1 else final_upsample_channels ) _lowerCAmelCase :List[str] = i == len(_UpperCAmelCase ) - 1 _lowerCAmelCase :Dict = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = output_channel # out _lowerCAmelCase :Any = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _lowerCAmelCase :Optional[int] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: Union[torch.Tensor, float, int] , _UpperCAmelCase: bool = True , ): _lowerCAmelCase :List[Any] = timestep if not torch.is_tensor(_UpperCAmelCase ): _lowerCAmelCase :int = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0: _lowerCAmelCase :Tuple = timesteps[None].to(sample.device ) _lowerCAmelCase :str = self.time_proj(_UpperCAmelCase ) if self.config.use_timestep_embedding: _lowerCAmelCase :List[str] = self.time_mlp(_UpperCAmelCase ) else: _lowerCAmelCase :str = timestep_embed[..., None] _lowerCAmelCase :Any = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCAmelCase :Optional[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCAmelCase :Optional[int] = () for downsample_block in self.down_blocks: _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCAmelCase :Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCAmelCase :Any = down_block_res_samples[-1:] _lowerCAmelCase :Any = down_block_res_samples[:-1] _lowerCAmelCase :str = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase ) # 5. post-process if self.out_block: _lowerCAmelCase :Any = self.out_block(_UpperCAmelCase , _UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase )
687
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ ) _lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ ) return torch.mm(__magic_name__ , normalized_text_embeds.t() ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = CLIPConfig lowerCamelCase : Any = ['CLIPEncoderLayer'] def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ): super().__init__(_UpperCAmelCase ) _lowerCAmelCase :Any = CLIPVisionModel(config.vision_config ) _lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) _lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase :str = [] _lowerCAmelCase :List[Any] = image_embeds.shape[0] for i in range(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx] _lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowerCAmelCase :Any = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx] _lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) _lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ): _lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) _lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :Any = 0.0 _lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase :List[str] = special_care * 0.0_1 _lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
1
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _lowerCAmelCase :Optional[Any] = Vector() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :int = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = Vector([1, 2, 3, 4] ) self.assertEqual(len(_UpperCAmelCase ) , 4 ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :str = Vector([1, 2] ) _lowerCAmelCase :Optional[Any] = Vector([1, 2, 3, 4, 5] ) _lowerCAmelCase :int = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _lowerCAmelCase :Union[str, Any] = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Any = Vector([1, 2, 3] ) _lowerCAmelCase :Optional[int] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :str = Vector([1, 2, 3] ) _lowerCAmelCase :List[str] = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Tuple = Vector([1, 2, 3] ) _lowerCAmelCase :Tuple = Vector([2, -1, 4] ) # for test of dot product _lowerCAmelCase :Dict = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Tuple = Vector([1, 2, 3] ) _lowerCAmelCase :int = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :str = Vector([1, 0, 0, 0, 0, 0] ) _lowerCAmelCase :Any = x.copy() self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Optional[int] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _lowerCAmelCase :Tuple = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _lowerCAmelCase :Any = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :int = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _lowerCAmelCase :Optional[int] = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _lowerCAmelCase :List[Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _lowerCAmelCase :List[str] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
687
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
1
import numpy as np from PIL import Image def UpperCamelCase_( __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Tuple = np.array(__magic_name__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) _lowerCAmelCase :List[str] = 0 _lowerCAmelCase :List[str] = 0 _lowerCAmelCase :int = 0 _lowerCAmelCase :List[str] = 0 # compute the shape of the output matrix _lowerCAmelCase :Optional[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape _lowerCAmelCase :Union[str, Any] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix _lowerCAmelCase :Union[str, Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _lowerCAmelCase :Any = 0 _lowerCAmelCase :str = 0 return updated_arr def UpperCamelCase_( __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :List[Any] = np.array(__magic_name__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :Union[str, Any] = 0 _lowerCAmelCase :str = 0 _lowerCAmelCase :Optional[int] = 0 # compute the shape of the output matrix _lowerCAmelCase :List[str] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape _lowerCAmelCase :str = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix _lowerCAmelCase :List[str] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _lowerCAmelCase :List[str] = 0 _lowerCAmelCase :Optional[int] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image a = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
687
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'encoder-decoder' lowerCamelCase : Optional[Any] = True def __init__( self: str , **_UpperCAmelCase: int ): super().__init__(**_UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' ) _lowerCAmelCase :Dict = encoder_config.pop('model_type' ) _lowerCAmelCase :str = kwargs.pop('decoder' ) _lowerCAmelCase :str = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCAmelCase :Dict = True _lowerCAmelCase :List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :Optional[int] = self.encoder.to_dict() _lowerCAmelCase :Union[str, Any] = self.decoder.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output
687
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
1
def UpperCamelCase_( __magic_name__ : int , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Any = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): _lowerCAmelCase :Optional[int] = n - k # Calculate C(n,k) for i in range(__magic_name__ ): result *= n - i result //= i + 1 return result def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return binomial_coefficient(2 * node_count , __magic_name__ ) // (node_count + 1) def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" if n < 0: raise ValueError('factorial() not defined for negative values' ) _lowerCAmelCase :str = 1 for i in range(1 , n + 1 ): result *= i return result def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return catalan_number(__magic_name__ ) * factorial(__magic_name__ ) if __name__ == "__main__": a = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
687
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = { """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[int] = 10 def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :str = [1, 2, 3, 4] _lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[int] = '' _lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = ['It was the best of times.'] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[str] = 101 _lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
687
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : List[Any] = 'conditional_detr' lowerCamelCase : Union[str, Any] = ['past_key_values'] lowerCamelCase : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self: int , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[int]=None , _UpperCAmelCase: Any=3 , _UpperCAmelCase: str=300 , _UpperCAmelCase: int=6 , _UpperCAmelCase: Dict=2048 , _UpperCAmelCase: List[Any]=8 , _UpperCAmelCase: List[Any]=6 , _UpperCAmelCase: int=2048 , _UpperCAmelCase: Optional[Any]=8 , _UpperCAmelCase: Tuple=0.0 , _UpperCAmelCase: Tuple=0.0 , _UpperCAmelCase: List[str]=True , _UpperCAmelCase: Optional[Any]="relu" , _UpperCAmelCase: List[str]=256 , _UpperCAmelCase: Tuple=0.1 , _UpperCAmelCase: Optional[int]=0.0 , _UpperCAmelCase: Tuple=0.0 , _UpperCAmelCase: int=0.0_2 , _UpperCAmelCase: Union[str, Any]=1.0 , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: str="sine" , _UpperCAmelCase: Dict="resnet50" , _UpperCAmelCase: List[str]=True , _UpperCAmelCase: Union[str, Any]=False , _UpperCAmelCase: str=2 , _UpperCAmelCase: Optional[int]=5 , _UpperCAmelCase: int=2 , _UpperCAmelCase: Optional[int]=1 , _UpperCAmelCase: str=1 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Dict=5 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Any=0.2_5 , **_UpperCAmelCase: Any , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _lowerCAmelCase :str = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = backbone_config.get('model_type' ) _lowerCAmelCase :Any = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase :Dict = config_class.from_dict(_UpperCAmelCase ) _lowerCAmelCase :Tuple = use_timm_backbone _lowerCAmelCase :Tuple = backbone_config _lowerCAmelCase :Any = num_channels _lowerCAmelCase :List[Any] = num_queries _lowerCAmelCase :List[Any] = d_model _lowerCAmelCase :Union[str, Any] = encoder_ffn_dim _lowerCAmelCase :Union[str, Any] = encoder_layers _lowerCAmelCase :str = encoder_attention_heads _lowerCAmelCase :str = decoder_ffn_dim _lowerCAmelCase :List[Any] = decoder_layers _lowerCAmelCase :List[str] = decoder_attention_heads _lowerCAmelCase :Dict = dropout _lowerCAmelCase :Dict = attention_dropout _lowerCAmelCase :Optional[Any] = activation_dropout _lowerCAmelCase :Any = activation_function _lowerCAmelCase :Union[str, Any] = init_std _lowerCAmelCase :Tuple = init_xavier_std _lowerCAmelCase :int = encoder_layerdrop _lowerCAmelCase :str = decoder_layerdrop _lowerCAmelCase :Tuple = encoder_layers _lowerCAmelCase :Tuple = auxiliary_loss _lowerCAmelCase :Tuple = position_embedding_type _lowerCAmelCase :int = backbone _lowerCAmelCase :Dict = use_pretrained_backbone _lowerCAmelCase :List[str] = dilation # Hungarian matcher _lowerCAmelCase :Any = class_cost _lowerCAmelCase :Tuple = bbox_cost _lowerCAmelCase :Optional[int] = giou_cost # Loss coefficients _lowerCAmelCase :Optional[int] = mask_loss_coefficient _lowerCAmelCase :List[str] = dice_loss_coefficient _lowerCAmelCase :int = cls_loss_coefficient _lowerCAmelCase :Dict = bbox_loss_coefficient _lowerCAmelCase :int = giou_loss_coefficient _lowerCAmelCase :List[Any] = focal_alpha super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self: Tuple ): return self.d_model def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _lowerCAmelCase :Optional[int] = self.backbone_config.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Optional[Any] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): return 1e-5 @property def SCREAMING_SNAKE_CASE__ ( self: Dict ): return 12
687
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
687
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Dict , _UpperCAmelCase: Any , _UpperCAmelCase: Dict=13 , _UpperCAmelCase: Tuple=7 , _UpperCAmelCase: List[str]=True , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: List[Any]=False , _UpperCAmelCase: str=False , _UpperCAmelCase: str=False , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: int=99 , _UpperCAmelCase: Tuple=0 , _UpperCAmelCase: str=32 , _UpperCAmelCase: Any=5 , _UpperCAmelCase: Tuple=4 , _UpperCAmelCase: Optional[int]=0.1 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Optional[Any]=512 , _UpperCAmelCase: Any=12 , _UpperCAmelCase: Union[str, Any]=2 , _UpperCAmelCase: Optional[Any]=0.0_2 , _UpperCAmelCase: Any=3 , _UpperCAmelCase: Tuple=4 , _UpperCAmelCase: List[str]="last" , _UpperCAmelCase: List[str]=None , _UpperCAmelCase: Optional[int]=None , ): _lowerCAmelCase :List[Any] = parent _lowerCAmelCase :Optional[Any] = batch_size _lowerCAmelCase :Union[str, Any] = seq_length _lowerCAmelCase :Tuple = is_training _lowerCAmelCase :str = use_input_lengths _lowerCAmelCase :Tuple = use_token_type_ids _lowerCAmelCase :Any = use_labels _lowerCAmelCase :Union[str, Any] = gelu_activation _lowerCAmelCase :Optional[Any] = sinusoidal_embeddings _lowerCAmelCase :List[str] = causal _lowerCAmelCase :Any = asm _lowerCAmelCase :Tuple = n_langs _lowerCAmelCase :int = vocab_size _lowerCAmelCase :List[Any] = n_special _lowerCAmelCase :str = hidden_size _lowerCAmelCase :List[str] = num_hidden_layers _lowerCAmelCase :Dict = num_attention_heads _lowerCAmelCase :Dict = hidden_dropout_prob _lowerCAmelCase :int = attention_probs_dropout_prob _lowerCAmelCase :Any = max_position_embeddings _lowerCAmelCase :Dict = type_vocab_size _lowerCAmelCase :Optional[int] = type_sequence_label_size _lowerCAmelCase :List[str] = initializer_range _lowerCAmelCase :Optional[int] = num_labels _lowerCAmelCase :Tuple = num_choices _lowerCAmelCase :List[Any] = summary_type _lowerCAmelCase :Tuple = use_proj _lowerCAmelCase :Union[str, Any] = scope def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase :Any = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase :Any = None if self.use_input_lengths: _lowerCAmelCase :Any = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _lowerCAmelCase :Optional[Any] = None if self.use_token_type_ids: _lowerCAmelCase :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :List[Any] = None _lowerCAmelCase :Union[str, Any] = None if self.use_labels: _lowerCAmelCase :Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase :Tuple = ids_tensor([self.batch_size] , 2 ).float() _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase :List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: List[str] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Union[str, Any] , ): _lowerCAmelCase :Optional[int] = FlaubertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) _lowerCAmelCase :str = model(_UpperCAmelCase , langs=_UpperCAmelCase ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: str , _UpperCAmelCase: List[Any] , _UpperCAmelCase: List[str] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: List[str] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Union[str, Any] , ): _lowerCAmelCase :Optional[int] = FlaubertWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: List[str] , _UpperCAmelCase: List[str] , ): _lowerCAmelCase :Dict = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Optional[int] = model(_UpperCAmelCase ) _lowerCAmelCase :int = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: List[str] , _UpperCAmelCase: str , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] , _UpperCAmelCase: Dict , _UpperCAmelCase: int , _UpperCAmelCase: str , _UpperCAmelCase: List[Any] , ): _lowerCAmelCase :List[str] = FlaubertForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = model(_UpperCAmelCase ) _lowerCAmelCase :List[str] = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) _lowerCAmelCase :Optional[Any] = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((_lowerCAmelCase) , ) :Optional[int] = result_with_labels.to_tuple() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((_lowerCAmelCase) , ) :List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: str , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Dict , ): _lowerCAmelCase :Any = FlaubertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Optional[int] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[str] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: List[str] , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :List[str] = self.num_labels _lowerCAmelCase :List[Any] = FlaubertForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Optional[Any] , ): _lowerCAmelCase :List[Any] = self.num_choices _lowerCAmelCase :int = FlaubertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase :Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase :Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase :List[str] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) :Any = config_and_inputs _lowerCAmelCase :Union[str, Any] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase : List[str] = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Dict , _UpperCAmelCase: Union[str, Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: List[Any]=False ): _lowerCAmelCase :Optional[int] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _lowerCAmelCase :int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) _lowerCAmelCase :int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Any = FlaubertModelTester(self ) _lowerCAmelCase :Union[str, Any] = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def SCREAMING_SNAKE_CASE__ ( self: int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self: str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :Tuple = FlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _lowerCAmelCase :int = True _lowerCAmelCase :List[str] = model_class(config=_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = torch.jit.trace( _UpperCAmelCase , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'traced_model.pt' ) ) _lowerCAmelCase :Optional[Any] = torch.jit.load(os.path.join(_UpperCAmelCase , 'traced_model.pt' ) , map_location=_UpperCAmelCase ) loaded(inputs_dict['input_ids'].to(_UpperCAmelCase ) , inputs_dict['attention_mask'].to(_UpperCAmelCase ) ) @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Dict = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' ) _lowerCAmelCase :Optional[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _lowerCAmelCase :Dict = model(_UpperCAmelCase )[0] _lowerCAmelCase :Optional[Any] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
687
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
1
import warnings warnings.warn( """memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: """ """`from accelerate import find_executable_batch_size` to avoid this warning.""", FutureWarning, )
687
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: int , _UpperCAmelCase: Dict , _UpperCAmelCase: List[str]=13 , _UpperCAmelCase: Union[str, Any]=7 , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Any=False , _UpperCAmelCase: List[str]=True , _UpperCAmelCase: Union[str, Any]=99 , _UpperCAmelCase: str=32 , _UpperCAmelCase: Dict=5 , _UpperCAmelCase: int=4 , _UpperCAmelCase: Union[str, Any]=64 , _UpperCAmelCase: Any="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Optional[int]=0.1 , _UpperCAmelCase: str=512 , _UpperCAmelCase: List[str]=16 , _UpperCAmelCase: Tuple=2 , _UpperCAmelCase: Optional[Any]=0.0_2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Any=4 , _UpperCAmelCase: Union[str, Any]=None , _UpperCAmelCase: Union[str, Any]=2 , _UpperCAmelCase: Tuple=2 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: List[Any]=4 , _UpperCAmelCase: str=1 , ): _lowerCAmelCase :Tuple = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :List[str] = seq_length _lowerCAmelCase :Optional[Any] = is_training _lowerCAmelCase :List[str] = use_input_mask _lowerCAmelCase :str = use_token_type_ids _lowerCAmelCase :Optional[Any] = use_labels _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :int = hidden_size _lowerCAmelCase :List[str] = num_hidden_layers _lowerCAmelCase :Optional[int] = num_attention_heads _lowerCAmelCase :str = intermediate_size _lowerCAmelCase :Union[str, Any] = hidden_act _lowerCAmelCase :Optional[Any] = hidden_dropout_prob _lowerCAmelCase :List[str] = attention_probs_dropout_prob _lowerCAmelCase :str = max_position_embeddings _lowerCAmelCase :Any = type_vocab_size _lowerCAmelCase :Optional[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :Any = num_labels _lowerCAmelCase :int = num_choices _lowerCAmelCase :Union[str, Any] = scope _lowerCAmelCase :Optional[Any] = q_groups _lowerCAmelCase :Any = k_groups _lowerCAmelCase :Union[str, Any] = v_groups _lowerCAmelCase :List[Any] = post_attention_groups _lowerCAmelCase :Tuple = intermediate_groups _lowerCAmelCase :Dict = output_groups def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase :Optional[int] = None if self.use_input_mask: _lowerCAmelCase :int = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase :Dict = None _lowerCAmelCase :List[str] = None _lowerCAmelCase :Any = None if self.use_labels: _lowerCAmelCase :Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase :Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase :Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self: List[str] ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Any , _UpperCAmelCase: Any ): _lowerCAmelCase :List[Any] = SqueezeBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple ): _lowerCAmelCase :str = SqueezeBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: Any , _UpperCAmelCase: int , _UpperCAmelCase: List[Any] , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: List[Any] ): _lowerCAmelCase :Any = SqueezeBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: str , _UpperCAmelCase: int , _UpperCAmelCase: List[Any] , _UpperCAmelCase: List[str] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: str ): _lowerCAmelCase :List[str] = self.num_labels _lowerCAmelCase :List[str] = SqueezeBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Optional[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Any , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Dict , _UpperCAmelCase: Dict ): _lowerCAmelCase :Any = self.num_labels _lowerCAmelCase :Dict = SqueezeBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: str , _UpperCAmelCase: int , _UpperCAmelCase: Any , _UpperCAmelCase: List[Any] , _UpperCAmelCase: int ): _lowerCAmelCase :Any = self.num_choices _lowerCAmelCase :Any = SqueezeBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase :Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase :Dict = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[Any] = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Union[str, Any] = config_and_inputs _lowerCAmelCase :Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase : Optional[Any] = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : Any = False lowerCamelCase : Union[str, Any] = True lowerCamelCase : Optional[int] = False def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Union[str, Any] = SqueezeBertModelTester(self ) _lowerCAmelCase :Any = ConfigTester(self , config_class=_UpperCAmelCase , dim=37 ) def SCREAMING_SNAKE_CASE__ ( self: int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[str] = SqueezeBertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[str] = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) _lowerCAmelCase :str = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase )[0] _lowerCAmelCase :Optional[Any] = torch.Size((1, 3) ) self.assertEqual(output.shape , _UpperCAmelCase ) _lowerCAmelCase :str = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-4 ) )
687
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = None lowerCamelCase : Optional[Any] = BloomTokenizerFast lowerCamelCase : int = BloomTokenizerFast lowerCamelCase : List[str] = True lowerCamelCase : Dict = False lowerCamelCase : str = 'tokenizer_file' lowerCamelCase : Optional[Any] = {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'} def SCREAMING_SNAKE_CASE__ ( self: List[str] ): super().setUp() _lowerCAmelCase :List[str] = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , **_UpperCAmelCase: Tuple ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Dict = self.get_rust_tokenizer() _lowerCAmelCase :Any = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] _lowerCAmelCase :Dict = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] _lowerCAmelCase :List[Any] = tokenizer.batch_encode_plus(_UpperCAmelCase )['input_ids'] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: str=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCAmelCase :str = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input _lowerCAmelCase :Dict = 'This is a simple input' _lowerCAmelCase :Dict = ['This is a simple input 1', 'This is a simple input 2'] _lowerCAmelCase :str = ('This is a simple input', 'This is a pair') _lowerCAmelCase :List[str] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) _lowerCAmelCase :Dict = None # Hotfixing padding = None self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Simple input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Simple input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Pair input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :List[Any] = self.get_rust_tokenizer() _lowerCAmelCase :Tuple = load_dataset('xnli' , 'all_languages' , split='test' , streaming=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = next(iter(_UpperCAmelCase ) )['premise'] # pick up one data _lowerCAmelCase :Union[str, Any] = list(sample_data.values() ) _lowerCAmelCase :Dict = list(map(tokenizer.encode , _UpperCAmelCase ) ) _lowerCAmelCase :Optional[int] = [tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) for x in output_tokens] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
687
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ): """simple docstring""" _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] _lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] _lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""] _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""] _lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :int = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' ) _lowerCAmelCase :List[Any] = {} _lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight'] _lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias'] _lowerCAmelCase :Dict = checkpoint['time_embed.2.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias'] _lowerCAmelCase :List[Any] = unet_config['down_block_types'] _lowerCAmelCase :Any = unet_config['layers_per_block'] _lowerCAmelCase :List[Any] = unet_config['attention_head_dim'] _lowerCAmelCase :Tuple = unet_config['block_out_channels'] _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Optional[int] = channels_list[0] for i, layer_type in enumerate(__magic_name__ ): _lowerCAmelCase :Tuple = channels_list[i] _lowerCAmelCase :Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}""" _lowerCAmelCase :str = f"""input_blocks.{current_layer}.1""" _lowerCAmelCase :Optional[Any] = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0""" _lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 _lowerCAmelCase :Dict = current_channels # hardcoded the mid-block for now _lowerCAmelCase :int = 'mid_block.resnets.0' _lowerCAmelCase :Optional[Any] = 'middle_block.0' _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = 'mid_block.attentions.0' _lowerCAmelCase :Optional[int] = 'middle_block.1' _lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1' _lowerCAmelCase :Optional[int] = 'middle_block.2' _lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :str = unet_config['up_block_types'] for i, layer_type in enumerate(__magic_name__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1""" _lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}""" _lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1""" _lowerCAmelCase :int = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = checkpoint['out.0.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias'] _lowerCAmelCase :List[Any] = checkpoint['out.2.weight'] _lowerCAmelCase :Dict = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
687
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[int] = 10 def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :str = [1, 2, 3, 4] _lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[int] = '' _lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = ['It was the best of times.'] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[str] = 101 _lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
687
import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) _lowerCAmelCase :Tuple = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ): _lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
687
1
import os import sys import unittest a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) a = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") a = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[Any] = get_test_to_tester_mapping(_UpperCAmelCase ) _lowerCAmelCase :List[str] = get_test_to_tester_mapping(_UpperCAmelCase ) _lowerCAmelCase :Any = {'BertModelTest': 'BertModelTester'} _lowerCAmelCase :str = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = get_model_to_test_mapping(_UpperCAmelCase ) _lowerCAmelCase :int = get_model_to_test_mapping(_UpperCAmelCase ) _lowerCAmelCase :int = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } _lowerCAmelCase :Any = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = get_model_to_tester_mapping(_UpperCAmelCase ) _lowerCAmelCase :int = get_model_to_tester_mapping(_UpperCAmelCase ) _lowerCAmelCase :int = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } _lowerCAmelCase :List[Any] = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase )
687
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
1
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = '' for word_or_phrase in separated: if not isinstance(__magic_name__ , __magic_name__ ): raise Exception('join() accepts only strings to be joined' ) joined += word_or_phrase + separator return joined.strip(__magic_name__ ) if __name__ == "__main__": from doctest import testmod testmod()
687
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[str] = 'ylacombe/bark-small' _lowerCAmelCase :int = tempfile.mkdtemp() _lowerCAmelCase :List[str] = 'en_speaker_1' _lowerCAmelCase :Union[str, Any] = 'This is a test string' _lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json' _lowerCAmelCase :str = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[Any] = self.get_tokenizer() _lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase :Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase :List[Any] = 35 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :Dict = 8 _lowerCAmelCase :Dict = { 'semantic_prompt': np.ones(_UpperCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Tuple = self.get_tokenizer() _lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = processor(text=self.input_string ) _lowerCAmelCase :List[str] = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
687
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def UpperCamelCase_( __magic_name__ : str = "laptop" ): """simple docstring""" _lowerCAmelCase :Any = f"""https://www.amazon.in/laptop/s?k={product}""" _lowerCAmelCase :int = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } _lowerCAmelCase :Dict = BeautifulSoup(requests.get(__magic_name__ , headers=__magic_name__ ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase :Union[str, Any] = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: _lowerCAmelCase :int = item.ha.text _lowerCAmelCase :Dict = 'https://www.amazon.in/' + item.ha.a['href'] _lowerCAmelCase :List[Any] = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: _lowerCAmelCase :Optional[int] = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: _lowerCAmelCase :List[str] = 'Not available' try: _lowerCAmelCase :Optional[int] = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: _lowerCAmelCase :Optional[int] = '' try: _lowerCAmelCase :Optional[int] = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: _lowerCAmelCase :List[str] = float('nan' ) except AttributeError: pass _lowerCAmelCase :Optional[Any] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase :Any = ' ' _lowerCAmelCase :Tuple = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": a = """headphones""" get_amazon_product_data(product).to_csv(F'''Amazon Product Data for {product}.csv''')
687
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = 'bert' def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :Dict = num_hidden_layers _lowerCAmelCase :Optional[Any] = num_attention_heads _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = intermediate_size _lowerCAmelCase :Tuple = hidden_dropout_prob _lowerCAmelCase :Tuple = attention_probs_dropout_prob _lowerCAmelCase :List[Any] = max_position_embeddings _lowerCAmelCase :Dict = type_vocab_size _lowerCAmelCase :Any = initializer_range _lowerCAmelCase :int = layer_norm_eps _lowerCAmelCase :List[Any] = position_embedding_type _lowerCAmelCase :int = use_cache _lowerCAmelCase :Union[str, Any] = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): if self.task == "multiple-choice": _lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
687
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
1
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Any = ['pixel_values'] def __init__( self: Optional[int] , _UpperCAmelCase: bool = True , _UpperCAmelCase: Union[int, float] = 1 / 255 , _UpperCAmelCase: bool = True , _UpperCAmelCase: int = 8 , **_UpperCAmelCase: List[Any] , ): super().__init__(**_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = do_rescale _lowerCAmelCase :Tuple = rescale_factor _lowerCAmelCase :int = do_pad _lowerCAmelCase :int = pad_size def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: np.ndarray , _UpperCAmelCase: float , _UpperCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase: List[str] ): return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: np.ndarray , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Union[str, ChannelDimension]] = None ): _lowerCAmelCase , _lowerCAmelCase :int = get_image_size(_UpperCAmelCase ) _lowerCAmelCase :Tuple = (old_height // size + 1) * size - old_height _lowerCAmelCase :List[Any] = (old_width // size + 1) * size - old_width return pad(_UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: ImageInput , _UpperCAmelCase: Optional[bool] = None , _UpperCAmelCase: Optional[float] = None , _UpperCAmelCase: Optional[bool] = None , _UpperCAmelCase: Optional[int] = None , _UpperCAmelCase: Optional[Union[str, TensorType]] = None , _UpperCAmelCase: Union[str, ChannelDimension] = ChannelDimension.FIRST , **_UpperCAmelCase: List[str] , ): _lowerCAmelCase :Dict = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase :Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase :List[str] = do_pad if do_pad is not None else self.do_pad _lowerCAmelCase :Dict = pad_size if pad_size is not None else self.pad_size _lowerCAmelCase :Dict = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCAmelCase :List[str] = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase :int = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_pad: _lowerCAmelCase :Tuple = [self.pad(_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] _lowerCAmelCase :List[str] = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] _lowerCAmelCase :int = {'pixel_values': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
687
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
1
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels a = object() # For specifying empty leaf dict `{}` a = object() def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Dict ): """simple docstring""" _lowerCAmelCase :Dict = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__magic_name__ ) - len(__magic_name__ ) + 1 ): _lowerCAmelCase :int = [x.match(__magic_name__ ) for x, y in zip(__magic_name__ , ks[i:] )] if matches and all(__magic_name__ ): return True return False def UpperCamelCase_( __magic_name__ : List[str] ): """simple docstring""" def replace(__magic_name__ : List[Any] , __magic_name__ : int ): for rule, replacement in rules: if _match(__magic_name__ , __magic_name__ ): return replacement return val return replace def UpperCamelCase_( ): """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __magic_name__ )), (("transformer", "wte", "embedding"), P('mp' , __magic_name__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__magic_name__ , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __magic_name__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__magic_name__ , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __magic_name__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCamelCase_( __magic_name__ : Tuple ): """simple docstring""" _lowerCAmelCase :str = _get_partition_rules() _lowerCAmelCase :Optional[Any] = _replacement_rules(__magic_name__ ) _lowerCAmelCase :List[Any] = {k: _unmatched for k in flatten_dict(__magic_name__ )} _lowerCAmelCase :Optional[int] = {k: replace(__magic_name__ , __magic_name__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__magic_name__ ) )
687
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
1
from collections.abc import Sequence from queue import Queue class UpperCAmelCase_ : """simple docstring""" def __init__( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int=None , _UpperCAmelCase: str=None ): _lowerCAmelCase :Dict = start _lowerCAmelCase :Union[str, Any] = end _lowerCAmelCase :Optional[int] = val _lowerCAmelCase :Optional[int] = (start + end) // 2 _lowerCAmelCase :List[str] = left _lowerCAmelCase :Optional[Any] = right def __repr__( self: List[Any] ): return f"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[str] , _UpperCAmelCase: Sequence , _UpperCAmelCase: List[Any] ): _lowerCAmelCase :Any = collection _lowerCAmelCase :Any = function if self.collection: _lowerCAmelCase :List[Any] = self._build_tree(0 , len(_UpperCAmelCase ) - 1 ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int] ): self._update_tree(self.root , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int ): return self._query_range(self.root , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): if start == end: return SegmentTreeNode(_UpperCAmelCase , _UpperCAmelCase , self.collection[start] ) _lowerCAmelCase :Optional[int] = (start + end) // 2 _lowerCAmelCase :Tuple = self._build_tree(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self._build_tree(mid + 1 , _UpperCAmelCase ) return SegmentTreeNode(_UpperCAmelCase , _UpperCAmelCase , self.fn(left.val , right.val ) , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int] ): if node.start == i and node.end == i: _lowerCAmelCase :str = val return if i <= node.mid: self._update_tree(node.left , _UpperCAmelCase , _UpperCAmelCase ) else: self._update_tree(node.right , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = self.fn(node.left.val , node.right.val ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: int ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , _UpperCAmelCase , _UpperCAmelCase ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , _UpperCAmelCase , node.mid ) , self._query_range(node.right , node.mid + 1 , _UpperCAmelCase ) , ) else: # range in right child tree return self._query_range(node.right , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): if self.root is not None: _lowerCAmelCase :List[Any] = Queue() queue.put(self.root ) while not queue.empty(): _lowerCAmelCase :List[str] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 50) a = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
687
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder a = datasets.utils.logging.get_logger(__name__) class UpperCAmelCase_ (folder_based_builder.FolderBasedBuilderConfig ): """simple docstring""" lowerCamelCase : bool = None lowerCamelCase : bool = None class UpperCAmelCase_ (folder_based_builder.FolderBasedBuilder ): """simple docstring""" lowerCamelCase : Union[str, Any] = datasets.Audio() lowerCamelCase : str = 'audio' lowerCamelCase : str = AudioFolderConfig lowerCamelCase : List[str] # definition at the bottom of the script lowerCamelCase : Tuple = AudioClassification(audio_column='audio' , label_column='label' ) a = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] a = AUDIO_EXTENSIONS
687
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ): _lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20} _lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase :str = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :Optional[Any] = num_channels _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :int = min_resolution _lowerCAmelCase :List[str] = max_resolution _lowerCAmelCase :List[str] = do_resize _lowerCAmelCase :Optional[int] = size _lowerCAmelCase :str = do_center_crop _lowerCAmelCase :int = crop_size _lowerCAmelCase :Optional[int] = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: int ): # Initialize image_processing _lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # Initialize image_processing _lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any ): # Initialize image_processing _lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
687
1
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :list[list[int]] = [[0 for _ in range(__magic_name__ )] for _ in range(m + 1 )] for i in range(m + 1 ): _lowerCAmelCase :str = 1 for n in range(m + 1 ): for k in range(1 , __magic_name__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: a = int(input("""Enter a number: """).strip()) print(partition(n)) except ValueError: print("""Please enter a number.""") else: try: a = int(sys.argv[1]) print(partition(n)) except ValueError: print("""Please pass a number.""")
687
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Any = PandasConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :Any = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Any = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
687
1
from collections import defaultdict class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[str] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :str = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 _lowerCAmelCase :Optional[Any] = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(_UpperCAmelCase ) ) ] _lowerCAmelCase :Union[str, Any] = defaultdict(_UpperCAmelCase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 _lowerCAmelCase :List[str] = (1 << len(_UpperCAmelCase )) - 1 def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: str , _UpperCAmelCase: Dict ): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement _lowerCAmelCase :Dict = self.count_ways_until(_UpperCAmelCase , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. _lowerCAmelCase :Optional[Any] = total_ways_util return self.dp[mask][task_no] def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Union[str, Any] ): # Store the list of persons for each task for i in range(len(_UpperCAmelCase ) ): for j in task_performed[i]: self.task[j].append(_UpperCAmelCase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": a = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. a = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
687
import glob import os import random from string import ascii_lowercase, digits import cva a = """""" a = """""" a = """""" a = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ ) print('Processing...' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase :Optional[Any] = random_chars(32 ) _lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" ) _lowerCAmelCase :str = [] for anno in new_annos[index]: _lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__magic_name__ ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = [] _lowerCAmelCase :Union[str, Any] = [] for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ): _lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__magic_name__ ) as in_file: _lowerCAmelCase :Union[str, Any] = in_file.readlines() _lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" ) _lowerCAmelCase :Tuple = [] for obj_list in obj_lists: _lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :Any = [] _lowerCAmelCase :Optional[Any] = [] for idx in range(len(__magic_name__ ) ): _lowerCAmelCase :Optional[int] = [] _lowerCAmelCase :Optional[Any] = img_list[idx] path_list.append(__magic_name__ ) _lowerCAmelCase :List[str] = anno_list[idx] _lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ ) if flip_type == 1: _lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_( __magic_name__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase :str = ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
687
1
def UpperCamelCase_( __magic_name__ : int = 100 ): """simple docstring""" _lowerCAmelCase :Optional[int] = n * (n + 1) * (2 * n + 1) / 6 _lowerCAmelCase :int = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'''{solution() = }''')
687
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ ) _lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ ) return torch.mm(__magic_name__ , normalized_text_embeds.t() ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = CLIPConfig lowerCamelCase : Any = ['CLIPEncoderLayer'] def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ): super().__init__(_UpperCAmelCase ) _lowerCAmelCase :Any = CLIPVisionModel(config.vision_config ) _lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) _lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase :str = [] _lowerCAmelCase :List[Any] = image_embeds.shape[0] for i in range(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx] _lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowerCAmelCase :Any = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx] _lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) _lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ): _lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) _lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :Any = 0.0 _lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase :List[str] = special_care * 0.0_1 _lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
1
def UpperCamelCase_( __magic_name__ : int = 10 , __magic_name__ : int = 22 ): """simple docstring""" _lowerCAmelCase :Tuple = range(1 , __magic_name__ ) _lowerCAmelCase :List[str] = range(1 , __magic_name__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F'''{solution(10, 22) = }''')
687
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
1
import doctest from collections import deque import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self: Union[str, Any] ): _lowerCAmelCase :List[Any] = [2, 1, 2, -1] _lowerCAmelCase :List[Any] = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[int] = len(self.first_signal ) _lowerCAmelCase :int = len(self.second_signal ) _lowerCAmelCase :Dict = max(_UpperCAmelCase , _UpperCAmelCase ) # create a zero matrix of max_length x max_length _lowerCAmelCase :Union[str, Any] = [[0] * max_length for i in range(_UpperCAmelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_UpperCAmelCase ): _lowerCAmelCase :Dict = deque(self.second_signal ) rotated_signal.rotate(_UpperCAmelCase ) for j, item in enumerate(_UpperCAmelCase ): matrix[i][j] += item # multiply the matrix with the first signal _lowerCAmelCase :List[Any] = np.matmul(np.transpose(_UpperCAmelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_UpperCAmelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
687
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'encoder-decoder' lowerCamelCase : Optional[Any] = True def __init__( self: str , **_UpperCAmelCase: int ): super().__init__(**_UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' ) _lowerCAmelCase :Dict = encoder_config.pop('model_type' ) _lowerCAmelCase :str = kwargs.pop('decoder' ) _lowerCAmelCase :str = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCAmelCase :Dict = True _lowerCAmelCase :List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :Optional[int] = self.encoder.to_dict() _lowerCAmelCase :Union[str, Any] = self.decoder.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output
687
1
from __future__ import annotations def UpperCamelCase_( __magic_name__ : list[int] , __magic_name__ : list[int] , __magic_name__ : list[int] , __magic_name__ : list[list[str]] , __magic_name__ : int , ): """simple docstring""" _lowerCAmelCase :str = len(__magic_name__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__magic_name__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __magic_name__ , __magic_name__ , ) def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :list[list[str]] = [] depth_first_search([] , [] , [] , __magic_name__ , __magic_name__ ) # Print all the boards for board in boards: for column in board: print(__magic_name__ ) print('' ) print(len(__magic_name__ ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
687
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
1
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(__magic_name__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
687
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Tuple = 'roberta' def __init__( self: List[str] , _UpperCAmelCase: List[Any]=5_0265 , _UpperCAmelCase: Union[str, Any]=768 , _UpperCAmelCase: Any=12 , _UpperCAmelCase: Any=12 , _UpperCAmelCase: Optional[int]=3072 , _UpperCAmelCase: Union[str, Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Tuple=0.1 , _UpperCAmelCase: List[str]=512 , _UpperCAmelCase: Any=2 , _UpperCAmelCase: List[str]=0.0_2 , _UpperCAmelCase: Tuple=1e-1_2 , _UpperCAmelCase: Union[str, Any]=1 , _UpperCAmelCase: Tuple=0 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: str="absolute" , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: str=None , **_UpperCAmelCase: int , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = vocab_size _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :int = num_hidden_layers _lowerCAmelCase :str = num_attention_heads _lowerCAmelCase :int = hidden_act _lowerCAmelCase :List[Any] = intermediate_size _lowerCAmelCase :Dict = hidden_dropout_prob _lowerCAmelCase :Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase :Optional[Any] = max_position_embeddings _lowerCAmelCase :Tuple = type_vocab_size _lowerCAmelCase :List[Any] = initializer_range _lowerCAmelCase :Any = layer_norm_eps _lowerCAmelCase :Tuple = position_embedding_type _lowerCAmelCase :Optional[int] = use_cache _lowerCAmelCase :Dict = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: Tuple ): if self.task == "multiple-choice": _lowerCAmelCase :Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase :List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
687
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[int] = 10 def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :str = [1, 2, 3, 4] _lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[int] = '' _lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = ['It was the best of times.'] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[str] = 101 _lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
687
1
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") a = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase : bool = field( default=snake_case__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase : bool = field( default=snake_case__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field(default=snake_case__ , metadata={'help': 'The input training data file (a text file).'} ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) lowerCamelCase : bool = field( default=snake_case__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase : bool = field( default=snake_case__ , metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) } , ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): if self.train_file is not None: _lowerCAmelCase :Dict = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _lowerCAmelCase :Dict = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : PreTrainedTokenizerBase lowerCamelCase : Union[bool, str, PaddingStrategy] = True lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None def __call__( self: Tuple , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :str = 'label' if 'label' in features[0].keys() else 'labels' _lowerCAmelCase :List[Any] = [feature.pop(_UpperCAmelCase ) for feature in features] _lowerCAmelCase :int = len(_UpperCAmelCase ) _lowerCAmelCase :str = len(features[0]['input_ids'] ) _lowerCAmelCase :Dict = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] _lowerCAmelCase :Optional[int] = list(chain(*_UpperCAmelCase ) ) _lowerCAmelCase :Tuple = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten _lowerCAmelCase :Tuple = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels _lowerCAmelCase :Optional[int] = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __magic_name__ , __magic_name__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCAmelCase :List[Any] = training_args.get_process_log_level() logger.setLevel(__magic_name__ ) datasets.utils.logging.set_verbosity(__magic_name__ ) transformers.utils.logging.set_verbosity(__magic_name__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _lowerCAmelCase :str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase :Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _lowerCAmelCase :Any = {} if data_args.train_file is not None: _lowerCAmelCase :Any = data_args.train_file if data_args.validation_file is not None: _lowerCAmelCase :str = data_args.validation_file _lowerCAmelCase :Optional[int] = data_args.train_file.split('.' )[-1] _lowerCAmelCase :Dict = load_dataset( __magic_name__ , data_files=__magic_name__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _lowerCAmelCase :int = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase :Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase :Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase :int = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _lowerCAmelCase :Union[str, Any] = [f"""ending{i}""" for i in range(4 )] _lowerCAmelCase :List[str] = 'sent1' _lowerCAmelCase :Optional[Any] = 'sent2' if data_args.max_seq_length is None: _lowerCAmelCase :List[str] = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) _lowerCAmelCase :Tuple = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _lowerCAmelCase :List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__magic_name__ : Optional[int] ): _lowerCAmelCase :Tuple = [[context] * 4 for context in examples[context_name]] _lowerCAmelCase :List[str] = examples[question_header_name] _lowerCAmelCase :str = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__magic_name__ ) ] # Flatten out _lowerCAmelCase :str = list(chain(*__magic_name__ ) ) _lowerCAmelCase :Optional[Any] = list(chain(*__magic_name__ ) ) # Tokenize _lowerCAmelCase :Dict = tokenizer( __magic_name__ , __magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__magic_name__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _lowerCAmelCase :Union[str, Any] = raw_datasets['train'] if data_args.max_train_samples is not None: _lowerCAmelCase :List[Any] = min(len(__magic_name__ ) , data_args.max_train_samples ) _lowerCAmelCase :Union[str, Any] = train_dataset.select(range(__magic_name__ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _lowerCAmelCase :Dict = train_dataset.map( __magic_name__ , batched=__magic_name__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _lowerCAmelCase :Tuple = raw_datasets['validation'] if data_args.max_eval_samples is not None: _lowerCAmelCase :Dict = min(len(__magic_name__ ) , data_args.max_eval_samples ) _lowerCAmelCase :List[Any] = eval_dataset.select(range(__magic_name__ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _lowerCAmelCase :Any = eval_dataset.map( __magic_name__ , batched=__magic_name__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _lowerCAmelCase :Optional[int] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__magic_name__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__magic_name__ : str ): _lowerCAmelCase , _lowerCAmelCase :List[str] = eval_predictions _lowerCAmelCase :Optional[int] = np.argmax(__magic_name__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _lowerCAmelCase :Any = Trainer( model=__magic_name__ , args=__magic_name__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__magic_name__ , data_collator=__magic_name__ , compute_metrics=__magic_name__ , ) # Training if training_args.do_train: _lowerCAmelCase :int = None if training_args.resume_from_checkpoint is not None: _lowerCAmelCase :int = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCAmelCase :List[Any] = last_checkpoint _lowerCAmelCase :Union[str, Any] = trainer.train(resume_from_checkpoint=__magic_name__ ) trainer.save_model() # Saves the tokenizer too for easy upload _lowerCAmelCase :Union[str, Any] = train_result.metrics _lowerCAmelCase :str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__magic_name__ ) ) _lowerCAmelCase :int = min(__magic_name__ , len(__magic_name__ ) ) trainer.log_metrics('train' , __magic_name__ ) trainer.save_metrics('train' , __magic_name__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowerCAmelCase :str = trainer.evaluate() _lowerCAmelCase :Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__magic_name__ ) _lowerCAmelCase :str = min(__magic_name__ , len(__magic_name__ ) ) trainer.log_metrics('eval' , __magic_name__ ) trainer.save_metrics('eval' , __magic_name__ ) _lowerCAmelCase :List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__magic_name__ ) else: trainer.create_model_card(**__magic_name__ ) def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" main() if __name__ == "__main__": main()
687
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
687
1
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: Union[str, Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: int=13 , _UpperCAmelCase: str=7 , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: int=True , _UpperCAmelCase: List[str]=True , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Union[str, Any]=99 , _UpperCAmelCase: List[str]=32 , _UpperCAmelCase: List[Any]=5 , _UpperCAmelCase: str=4 , _UpperCAmelCase: Optional[int]=37 , _UpperCAmelCase: Union[str, Any]="gelu" , _UpperCAmelCase: int=0.1 , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Any=512 , _UpperCAmelCase: Optional[Any]=16 , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: List[Any]=0.0_2 , _UpperCAmelCase: Optional[int]=4 , ): _lowerCAmelCase :Dict = parent _lowerCAmelCase :Union[str, Any] = batch_size _lowerCAmelCase :Tuple = seq_length _lowerCAmelCase :str = is_training _lowerCAmelCase :Dict = use_attention_mask _lowerCAmelCase :Union[str, Any] = use_token_type_ids _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :Union[str, Any] = vocab_size _lowerCAmelCase :Union[str, Any] = hidden_size _lowerCAmelCase :Optional[Any] = num_hidden_layers _lowerCAmelCase :List[str] = num_attention_heads _lowerCAmelCase :List[str] = intermediate_size _lowerCAmelCase :Dict = hidden_act _lowerCAmelCase :Optional[Any] = hidden_dropout_prob _lowerCAmelCase :Any = attention_probs_dropout_prob _lowerCAmelCase :str = max_position_embeddings _lowerCAmelCase :Tuple = type_vocab_size _lowerCAmelCase :Tuple = type_sequence_label_size _lowerCAmelCase :Dict = initializer_range _lowerCAmelCase :str = num_choices def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase :Tuple = None if self.use_attention_mask: _lowerCAmelCase :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase :Any = None if self.use_token_type_ids: _lowerCAmelCase :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase :Tuple = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Optional[Any] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = config_and_inputs _lowerCAmelCase :Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Tuple = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :int = FlaxAlbertModelTester(self ) @slow def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): for model_class_name in self.all_model_classes: _lowerCAmelCase :Tuple = model_class_name.from_pretrained('albert-base-v2' ) _lowerCAmelCase :Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Union[str, Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) _lowerCAmelCase :Optional[int] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowerCAmelCase :int = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCAmelCase :Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] _lowerCAmelCase :Union[str, Any] = (1, 11, 768) self.assertEqual(output.shape , _UpperCAmelCase ) _lowerCAmelCase :Tuple = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
687
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
1
from __future__ import annotations import pandas as pd def UpperCamelCase_( __magic_name__ : list[int] , __magic_name__ : list[int] , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Dict = [0] * no_of_processes _lowerCAmelCase :Optional[Any] = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__magic_name__ ): _lowerCAmelCase :Dict = burst_time[i] _lowerCAmelCase :List[Any] = 0 _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :Optional[int] = 999999999 _lowerCAmelCase :str = 0 _lowerCAmelCase :List[str] = False # Process until all processes are completed while complete != no_of_processes: for j in range(__magic_name__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: _lowerCAmelCase :List[Any] = remaining_time[j] _lowerCAmelCase :str = j _lowerCAmelCase :Dict = True if not check: increment_time += 1 continue remaining_time[short] -= 1 _lowerCAmelCase :Optional[int] = remaining_time[short] if minm == 0: _lowerCAmelCase :Optional[Any] = 999999999 if remaining_time[short] == 0: complete += 1 _lowerCAmelCase :List[Any] = False # Find finish time of current process _lowerCAmelCase :Dict = increment_time + 1 # Calculate waiting time _lowerCAmelCase :Optional[int] = finish_time - arrival_time[short] _lowerCAmelCase :int = finar - burst_time[short] if waiting_time[short] < 0: _lowerCAmelCase :Tuple = 0 # Increment time increment_time += 1 return waiting_time def UpperCamelCase_( __magic_name__ : list[int] , __magic_name__ : int , __magic_name__ : list[int] ): """simple docstring""" _lowerCAmelCase :List[str] = [0] * no_of_processes for i in range(__magic_name__ ): _lowerCAmelCase :Tuple = burst_time[i] + waiting_time[i] return turn_around_time def UpperCamelCase_( __magic_name__ : list[int] , __magic_name__ : list[int] , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :str = 0 _lowerCAmelCase :Tuple = 0 for i in range(__magic_name__ ): _lowerCAmelCase :Union[str, Any] = total_waiting_time + waiting_time[i] _lowerCAmelCase :Union[str, Any] = total_turn_around_time + turn_around_time[i] print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") a = int(input()) a = [0] * no_of_processes a = [0] * no_of_processes a = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) a , a = map(int, input().split()) a = calculate_waitingtime(arrival_time, burst_time, no_of_processes) a = burst_time a = no_of_processes a = waiting_time a = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) a = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
687
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def UpperCamelCase_( __magic_name__ : Union[str, Any] ): """simple docstring""" if hor == 128: _lowerCAmelCase :Optional[Any] = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') _lowerCAmelCase :int = (32, 128, 256) _lowerCAmelCase :Union[str, Any] = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: _lowerCAmelCase :Dict = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') _lowerCAmelCase :Dict = (32, 64, 128, 256) _lowerCAmelCase :int = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') _lowerCAmelCase :List[str] = torch.load(f"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) _lowerCAmelCase :List[Any] = model.state_dict() _lowerCAmelCase :List[Any] = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } _lowerCAmelCase :Optional[int] = UNetaDModel(**__magic_name__ ) print(f"""length of state dict: {len(state_dict.keys() )}""" ) print(f"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) _lowerCAmelCase :List[Any] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _lowerCAmelCase :Union[str, Any] = state_dict.pop(__magic_name__ ) hf_value_function.load_state_dict(__magic_name__ ) torch.save(hf_value_function.state_dict() , f"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(f"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , 'w' ) as f: json.dump(__magic_name__ , __magic_name__ ) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :List[Any] = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } _lowerCAmelCase :Any = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) _lowerCAmelCase :Optional[Any] = model _lowerCAmelCase :List[str] = UNetaDModel(**__magic_name__ ) print(f"""length of state dict: {len(state_dict.keys() )}""" ) print(f"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) _lowerCAmelCase :Optional[Any] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _lowerCAmelCase :Dict = state_dict.pop(__magic_name__ ) hf_value_function.load_state_dict(__magic_name__ ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__magic_name__ , __magic_name__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
687
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
1
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a = None a = logging.get_logger(__name__) a = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} a = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 a = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : List[str] = VOCAB_FILES_NAMES lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Union[str, Any] = ['input_ids', 'attention_mask'] lowerCamelCase : int = TaTokenizer lowerCamelCase : List[int] = [] def __init__( self: Optional[int] , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Any=None , _UpperCAmelCase: int="</s>" , _UpperCAmelCase: Tuple="<unk>" , _UpperCAmelCase: List[Any]="<pad>" , _UpperCAmelCase: Optional[Any]=100 , _UpperCAmelCase: Any=None , **_UpperCAmelCase: Dict , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _lowerCAmelCase :Tuple = [f"""<extra_id_{i}>""" for i in range(_UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens _lowerCAmelCase :Optional[Any] = len(set(filter(lambda _UpperCAmelCase : bool('extra_id_' in str(_UpperCAmelCase ) ) , _UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , extra_ids=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) _lowerCAmelCase :str = vocab_file _lowerCAmelCase :Optional[Any] = False if not self.vocab_file else True _lowerCAmelCase :Union[str, Any] = extra_ids @staticmethod def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase: List[Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: List[str] ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: _lowerCAmelCase :Tuple = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , _UpperCAmelCase , ) return max_model_length def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: str , _UpperCAmelCase: Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase :List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: List[int] , _UpperCAmelCase: Optional[List[int]] = None ): _lowerCAmelCase :List[str] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: _lowerCAmelCase :List[Any] = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[int] , _UpperCAmelCase: Optional[List[int]] = None ): _lowerCAmelCase :Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self: int ): return list( set(filter(lambda _UpperCAmelCase : bool(re.search(r'<extra_id_\d+>' , _UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): return [self.convert_tokens_to_ids(_UpperCAmelCase ) for token in self.get_sentinel_tokens()]
687
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ): """simple docstring""" _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] _lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] _lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""] _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""] _lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :int = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' ) _lowerCAmelCase :List[Any] = {} _lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight'] _lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias'] _lowerCAmelCase :Dict = checkpoint['time_embed.2.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias'] _lowerCAmelCase :List[Any] = unet_config['down_block_types'] _lowerCAmelCase :Any = unet_config['layers_per_block'] _lowerCAmelCase :List[Any] = unet_config['attention_head_dim'] _lowerCAmelCase :Tuple = unet_config['block_out_channels'] _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Optional[int] = channels_list[0] for i, layer_type in enumerate(__magic_name__ ): _lowerCAmelCase :Tuple = channels_list[i] _lowerCAmelCase :Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}""" _lowerCAmelCase :str = f"""input_blocks.{current_layer}.1""" _lowerCAmelCase :Optional[Any] = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0""" _lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 _lowerCAmelCase :Dict = current_channels # hardcoded the mid-block for now _lowerCAmelCase :int = 'mid_block.resnets.0' _lowerCAmelCase :Optional[Any] = 'middle_block.0' _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = 'mid_block.attentions.0' _lowerCAmelCase :Optional[int] = 'middle_block.1' _lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1' _lowerCAmelCase :Optional[int] = 'middle_block.2' _lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :str = unet_config['up_block_types'] for i, layer_type in enumerate(__magic_name__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1""" _lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}""" _lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1""" _lowerCAmelCase :int = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = checkpoint['out.0.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias'] _lowerCAmelCase :List[Any] = checkpoint['out.2.weight'] _lowerCAmelCase :Dict = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
687
1
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) a = logging.getLogger() a = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[int] ): os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) _lowerCAmelCase :int = {'source': 'What is love ?', 'target': 'life'} _lowerCAmelCase :str = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _lowerCAmelCase :Optional[int] = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(_UpperCAmelCase , f"""{split}.{field}""" ) , 'w' ) as f: f.write(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: str = "pytorch" ): _lowerCAmelCase :Dict = self.get_auto_remove_tmp_dir() _lowerCAmelCase :int = os.path.join(_UpperCAmelCase , 'output' ) _lowerCAmelCase :Tuple = os.path.join(_UpperCAmelCase , 'data' ) self._create_dummy_data(data_dir=_UpperCAmelCase ) _lowerCAmelCase :Dict = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) _lowerCAmelCase :str = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_UpperCAmelCase , env=self.get_env() ) _lowerCAmelCase :Optional[int] = os.path.join(_UpperCAmelCase , 'metrics.json' ) with open(_UpperCAmelCase ) as f: _lowerCAmelCase :List[str] = json.load(_UpperCAmelCase ) return result @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Optional[int] = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Dict = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
687
import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) _lowerCAmelCase :Tuple = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ): _lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
687
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : List[str] lowerCamelCase : Optional[str] = None # Automatically constructed lowerCamelCase : ClassVar[str] = "dict" lowerCamelCase : ClassVar[Any] = None lowerCamelCase : str = field(default='Translation' , init=snake_case__ , repr=snake_case__ ) def __call__( self: List[Any] ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE__ ( self: int ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[List] = None lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[str] = None # Automatically constructed lowerCamelCase : ClassVar[str] = "dict" lowerCamelCase : ClassVar[Any] = None lowerCamelCase : str = field(default='TranslationVariableLanguages' , init=snake_case__ , repr=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = sorted(set(self.languages ) ) if self.languages else None _lowerCAmelCase :Tuple = len(self.languages ) if self.languages else None def __call__( self: Tuple ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _lowerCAmelCase :List[str] = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE__ ( self: str ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
687
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
1
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[Union[str, Path]] = None lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : Optional[Dict] = None lowerCamelCase : Optional[str] = None lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = True lowerCamelCase : Optional[int] = None lowerCamelCase : int = 1 lowerCamelCase : Optional[Union[str, bool]] = None lowerCamelCase : bool = False lowerCamelCase : Optional[Dict] = None lowerCamelCase : Optional[str] = None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return self.__class__(**{k: copy.deepcopy(_UpperCAmelCase ) for k, v in self.__dict__.items()} )
687
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[str] = 'ylacombe/bark-small' _lowerCAmelCase :int = tempfile.mkdtemp() _lowerCAmelCase :List[str] = 'en_speaker_1' _lowerCAmelCase :Union[str, Any] = 'This is a test string' _lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json' _lowerCAmelCase :str = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[Any] = self.get_tokenizer() _lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase :Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase :List[Any] = 35 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :Dict = 8 _lowerCAmelCase :Dict = { 'semantic_prompt': np.ones(_UpperCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Tuple = self.get_tokenizer() _lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = processor(text=self.input_string ) _lowerCAmelCase :List[str] = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
687
1
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def UpperCamelCase_( ): """simple docstring""" print('Making key files...' ) make_key_files('rsa' , 1024 ) print('Key files generation successful.' ) def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" print('Generating prime p...' ) _lowerCAmelCase :Any = rabinMiller.generate_large_prime(__magic_name__ ) print('Generating prime q...' ) _lowerCAmelCase :Any = rabinMiller.generate_large_prime(__magic_name__ ) _lowerCAmelCase :List[Any] = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: _lowerCAmelCase :str = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(__magic_name__ , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) _lowerCAmelCase :List[str] = cryptoMath.find_mod_inverse(__magic_name__ , (p - 1) * (q - 1) ) _lowerCAmelCase :Optional[Any] = (n, e) _lowerCAmelCase :Tuple = (n, d) return (public_key, private_key) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : int ): """simple docstring""" if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() _lowerCAmelCase , _lowerCAmelCase :Optional[int] = generate_key(__magic_name__ ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , 'w' ) as out_file: out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , 'w' ) as out_file: out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
687
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = 'bert' def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :Dict = num_hidden_layers _lowerCAmelCase :Optional[Any] = num_attention_heads _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = intermediate_size _lowerCAmelCase :Tuple = hidden_dropout_prob _lowerCAmelCase :Tuple = attention_probs_dropout_prob _lowerCAmelCase :List[Any] = max_position_embeddings _lowerCAmelCase :Dict = type_vocab_size _lowerCAmelCase :Any = initializer_range _lowerCAmelCase :int = layer_norm_eps _lowerCAmelCase :List[Any] = position_embedding_type _lowerCAmelCase :int = use_cache _lowerCAmelCase :Union[str, Any] = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): if self.task == "multiple-choice": _lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
687
1
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
1
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) a = logging.getLogger(__name__) a = tf.data.AUTOTUNE def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = argparse.ArgumentParser(description='Train a masked language model on TPU.' ) parser.add_argument( '--pretrained_model_config' , type=__magic_name__ , default='roberta-base' , help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!' , ) parser.add_argument( '--tokenizer' , type=__magic_name__ , default='unigram-tokenizer-wikitext' , help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.' , ) parser.add_argument( '--per_replica_batch_size' , type=__magic_name__ , default=8 , help='Batch size per TPU core.' , ) parser.add_argument( '--no_tpu' , action='store_true' , help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.' , ) parser.add_argument( '--tpu_name' , type=__magic_name__ , help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.' , default='local' , ) parser.add_argument( '--tpu_zone' , type=__magic_name__ , help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.' , ) parser.add_argument( '--gcp_project' , type=__magic_name__ , help='Google cloud project name. Only used for non-Colab TPU nodes.' ) parser.add_argument( '--bfloat16' , action='store_true' , help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.' , ) parser.add_argument( '--train_dataset' , type=__magic_name__ , help='Path to training dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--shuffle_buffer_size' , type=__magic_name__ , default=2**18 , help='Size of the shuffle buffer (in samples)' , ) parser.add_argument( '--eval_dataset' , type=__magic_name__ , help='Path to evaluation dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--num_epochs' , type=__magic_name__ , default=1 , help='Number of epochs to train for.' , ) parser.add_argument( '--learning_rate' , type=__magic_name__ , default=1e-4 , help='Learning rate to use for training.' , ) parser.add_argument( '--weight_decay_rate' , type=__magic_name__ , default=1e-3 , help='Weight decay rate to use for training.' , ) parser.add_argument( '--max_length' , type=__magic_name__ , default=512 , help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py' , ) parser.add_argument( '--mlm_probability' , type=__magic_name__ , default=0.15 , help='Fraction of tokens to mask during training.' , ) parser.add_argument('--output_dir' , type=__magic_name__ , required=__magic_name__ , help='Path to save model checkpoints to.' ) parser.add_argument('--hub_model_id' , type=__magic_name__ , help='Model ID to upload to on the Hugging Face Hub.' ) _lowerCAmelCase :str = parser.parse_args() return args def UpperCamelCase_( __magic_name__ : Union[str, Any] ): """simple docstring""" try: if args.tpu_name: _lowerCAmelCase :List[Any] = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: _lowerCAmelCase :Any = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( 'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ' '--gcp_project. When running on a TPU VM, use --tpu_name local.' ) tf.config.experimental_connect_to_cluster(__magic_name__ ) tf.tpu.experimental.initialize_tpu_system(__magic_name__ ) return tpu def UpperCamelCase_( __magic_name__ : Tuple ): """simple docstring""" _lowerCAmelCase :List[str] = 0 for file in file_list: _lowerCAmelCase :Tuple = file.split('/' )[-1] _lowerCAmelCase :Any = re.search(r'-\d+-(\d+)\.tfrecord' , __magic_name__ ).group(1 ) _lowerCAmelCase :List[str] = int(__magic_name__ ) num_samples += sample_count return num_samples def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : int=None ): """simple docstring""" _lowerCAmelCase :str = count_samples(__magic_name__ ) _lowerCAmelCase :Any = tf.data.Dataset.from_tensor_slices(__magic_name__ ) if shuffle: _lowerCAmelCase :Union[str, Any] = dataset.shuffle(len(__magic_name__ ) ) _lowerCAmelCase :Union[str, Any] = tf.data.TFRecordDataset(__magic_name__ , num_parallel_reads=__magic_name__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here _lowerCAmelCase :Dict = dataset.apply(tf.data.experimental.assert_cardinality(__magic_name__ ) ) _lowerCAmelCase :Any = dataset.map(__magic_name__ , num_parallel_calls=__magic_name__ ) if shuffle: assert shuffle_buffer_size is not None _lowerCAmelCase :Dict = dataset.shuffle(args.shuffle_buffer_size ) _lowerCAmelCase :Optional[Any] = dataset.batch(__magic_name__ , drop_remainder=__magic_name__ ) _lowerCAmelCase :Optional[int] = dataset.map(__magic_name__ , num_parallel_calls=__magic_name__ ) _lowerCAmelCase :str = dataset.prefetch(__magic_name__ ) return dataset def UpperCamelCase_( __magic_name__ : Optional[Any] ): """simple docstring""" if not args.no_tpu: _lowerCAmelCase :str = initialize_tpu(__magic_name__ ) _lowerCAmelCase :Any = tf.distribute.TPUStrategy(__magic_name__ ) else: _lowerCAmelCase :Optional[int] = tf.distribute.OneDeviceStrategy(device='/gpu:0' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' ) _lowerCAmelCase :Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer ) _lowerCAmelCase :int = AutoConfig.from_pretrained(args.pretrained_model_config ) _lowerCAmelCase :Optional[Any] = tokenizer.vocab_size _lowerCAmelCase :Dict = tf.io.gfile.glob(os.path.join(args.train_dataset , '*.tfrecord' ) ) if not training_records: raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" ) _lowerCAmelCase :Union[str, Any] = tf.io.gfile.glob(os.path.join(args.eval_dataset , '*.tfrecord' ) ) if not eval_records: raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" ) _lowerCAmelCase :Any = count_samples(__magic_name__ ) _lowerCAmelCase :Optional[int] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) _lowerCAmelCase :Optional[Any] = steps_per_epoch * args.num_epochs with strategy.scope(): _lowerCAmelCase :Tuple = TFAutoModelForMaskedLM.from_config(__magic_name__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built _lowerCAmelCase , _lowerCAmelCase :Tuple = create_optimizer( num_train_steps=__magic_name__ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__magic_name__ , metrics=['accuracy'] ) def decode_fn(__magic_name__ : Tuple ): _lowerCAmelCase :List[Any] = { 'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), 'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(__magic_name__ , __magic_name__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. _lowerCAmelCase :Union[str, Any] = DataCollatorForLanguageModeling( tokenizer=__magic_name__ , mlm_probability=args.mlm_probability , mlm=__magic_name__ , return_tensors='tf' ) def mask_with_collator(__magic_name__ : List[str] ): # TF really needs an isin() function _lowerCAmelCase :int = ( ~tf.cast(batch['attention_mask'] , tf.bool ) | (batch['input_ids'] == tokenizer.cls_token_id) | (batch['input_ids'] == tokenizer.sep_token_id) ) _lowerCAmelCase , _lowerCAmelCase :Tuple = data_collator.tf_mask_tokens( batch['input_ids'] , vocab_size=len(__magic_name__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=__magic_name__ , ) return batch _lowerCAmelCase :Optional[Any] = args.per_replica_batch_size * strategy.num_replicas_in_sync _lowerCAmelCase :int = prepare_dataset( __magic_name__ , decode_fn=__magic_name__ , mask_fn=__magic_name__ , batch_size=__magic_name__ , shuffle=__magic_name__ , shuffle_buffer_size=args.shuffle_buffer_size , ) _lowerCAmelCase :int = prepare_dataset( __magic_name__ , decode_fn=__magic_name__ , mask_fn=__magic_name__ , batch_size=__magic_name__ , shuffle=__magic_name__ , ) _lowerCAmelCase :int = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=__magic_name__ ) ) model.fit( __magic_name__ , validation_data=__magic_name__ , epochs=args.num_epochs , callbacks=__magic_name__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": a = parse_args() main(args)
687
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
1
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy a = logging.getLogger(__name__) def UpperCamelCase_( __magic_name__ : torch.nn.Module , __magic_name__ : BnbQuantizationConfig , __magic_name__ : Union[str, os.PathLike] = None , __magic_name__ : Optional[Dict[str, Union[int, str, torch.device]]] = None , __magic_name__ : Optional[List[str]] = None , __magic_name__ : Optional[Dict[Union[int, str], Union[int, str]]] = None , __magic_name__ : Optional[Union[str, os.PathLike]] = None , __magic_name__ : bool = False , ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = bnb_quantization_config.load_in_abit _lowerCAmelCase :Union[str, Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) _lowerCAmelCase :List[Any] = [] # custom device map if isinstance(__magic_name__ , __magic_name__ ) and len(device_map.keys() ) > 1: _lowerCAmelCase :Optional[Any] = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: _lowerCAmelCase :str = get_keys_to_not_convert(__magic_name__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__magic_name__ ) _lowerCAmelCase :int = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: _lowerCAmelCase :List[str] = [] _lowerCAmelCase :Optional[Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__magic_name__ ) # compatibility with peft _lowerCAmelCase :Union[str, Any] = load_in_abit _lowerCAmelCase :int = load_in_abit _lowerCAmelCase :List[str] = get_parameter_device(__magic_name__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) _lowerCAmelCase :List[str] = replace_with_bnb_layers(__magic_name__ , __magic_name__ , modules_to_not_convert=__magic_name__ ) # convert param to the right dtype _lowerCAmelCase :Optional[Any] = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: _lowerCAmelCase :Dict = name.replace('.weight' , '' ).replace('.bias' , '' ) _lowerCAmelCase :Tuple = getattr(__magic_name__ , __magic_name__ , __magic_name__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__magic_name__ ): param.to(__magic_name__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): _lowerCAmelCase :Dict = replace_with_bnb_layers( __magic_name__ , __magic_name__ , modules_to_not_convert=__magic_name__ ) _lowerCAmelCase :Optional[Any] = get_quantized_model_device_map( __magic_name__ , __magic_name__ , __magic_name__ , max_memory=__magic_name__ , no_split_module_classes=__magic_name__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): _lowerCAmelCase :Any = True _lowerCAmelCase :Tuple = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( __magic_name__ , __magic_name__ , __magic_name__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=__magic_name__ , offload_state_dict=__magic_name__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__magic_name__ , device_map=__magic_name__ , offload_dir=__magic_name__ ) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None , __magic_name__ : List[Any]=None , __magic_name__ : List[str]=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): _lowerCAmelCase :Union[str, Any] = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(__magic_name__ , __magic_name__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) _lowerCAmelCase :Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) _lowerCAmelCase :List[str] = {} _lowerCAmelCase :List[str] = special_dtypes _lowerCAmelCase :Tuple = no_split_module_classes _lowerCAmelCase :Optional[Any] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": _lowerCAmelCase :Optional[int] = get_balanced_memory( __magic_name__ , low_zero=(device_map == 'balanced_low_0') , max_memory=__magic_name__ , **__magic_name__ , ) _lowerCAmelCase :Tuple = max_memory _lowerCAmelCase :str = infer_auto_device_map(__magic_name__ , **__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ): # check if don't have any quantized module on the cpu _lowerCAmelCase :Dict = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules _lowerCAmelCase :Tuple = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : str=None , __magic_name__ : int=None ): """simple docstring""" if modules_to_not_convert is None: _lowerCAmelCase :Dict = [] _lowerCAmelCase , _lowerCAmelCase :List[Any] = _replace_with_bnb_layers( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCamelCase_( __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Union[str, Any]=None , __magic_name__ : str=None , ): """simple docstring""" _lowerCAmelCase :Any = False for name, module in model.named_children(): if current_key_name is None: _lowerCAmelCase :Dict = [] current_key_name.append(__magic_name__ ) if isinstance(__magic_name__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` _lowerCAmelCase :Dict = '.'.join(__magic_name__ ) _lowerCAmelCase :Tuple = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: _lowerCAmelCase :Tuple = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: _lowerCAmelCase :Any = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__magic_name__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: _lowerCAmelCase :Tuple = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) _lowerCAmelCase :int = module.weight.data if module.bias is not None: _lowerCAmelCase :str = module.bias.data bnb_module.requires_grad_(__magic_name__ ) setattr(__magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :int = True if len(list(module.children() ) ) > 0: _lowerCAmelCase , _lowerCAmelCase :Any = _replace_with_bnb_layers( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" with init_empty_weights(): _lowerCAmelCase :str = deepcopy(__magic_name__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` _lowerCAmelCase :Optional[Any] = find_tied_parameters(__magic_name__ ) # For compatibility with Accelerate < 0.18 if isinstance(__magic_name__ , __magic_name__ ): _lowerCAmelCase :int = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _lowerCAmelCase :Union[str, Any] = sum(__magic_name__ , [] ) _lowerCAmelCase :Any = len(__magic_name__ ) > 0 # Check if it is a base model _lowerCAmelCase :List[Any] = False if hasattr(__magic_name__ , 'base_model_prefix' ): _lowerCAmelCase :str = not hasattr(__magic_name__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _lowerCAmelCase :Tuple = list(model.named_children() ) _lowerCAmelCase :Optional[int] = [list_modules[-1][0]] # add last module together with tied weights _lowerCAmelCase :Tuple = set(__magic_name__ ) - set(__magic_name__ ) _lowerCAmelCase :Any = list(set(__magic_name__ ) ) + list(__magic_name__ ) # remove ".weight" from the keys _lowerCAmelCase :Optional[int] = ['.weight', '.bias'] _lowerCAmelCase :Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _lowerCAmelCase :List[Any] = name.replace(__magic_name__ , '' ) filtered_module_names.append(__magic_name__ ) return filtered_module_names def UpperCamelCase_( __magic_name__ : Any ): """simple docstring""" for m in model.modules(): if isinstance(__magic_name__ , bnb.nn.Linearabit ): return True return False def UpperCamelCase_( __magic_name__ : nn.Module ): """simple docstring""" return next(parameter.parameters() ).device def UpperCamelCase_( __magic_name__ : Any , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ): """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(__magic_name__ , __magic_name__ , 0 , dtype=__magic_name__ , value=__magic_name__ ) _lowerCAmelCase :List[Any] = param_name _lowerCAmelCase :Dict = model if "." in tensor_name: _lowerCAmelCase :List[Any] = tensor_name.split('.' ) for split in splits[:-1]: _lowerCAmelCase :int = getattr(__magic_name__ , __magic_name__ ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) _lowerCAmelCase :Tuple = new_module _lowerCAmelCase :Optional[Any] = splits[-1] # offload weights _lowerCAmelCase :Union[str, Any] = False offload_weight(module._parameters[tensor_name] , __magic_name__ , __magic_name__ , index=__magic_name__ ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , __magic_name__ , index=__magic_name__ , ) else: offload_weight(__magic_name__ , __magic_name__ , __magic_name__ , index=__magic_name__ ) offload_weight(__magic_name__ , param_name.replace('weight' , 'SCB' ) , __magic_name__ , index=__magic_name__ ) set_module_tensor_to_device(__magic_name__ , __magic_name__ , 'meta' , dtype=__magic_name__ , value=torch.empty(*param.size() ) )
687
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
1
def UpperCamelCase_( __magic_name__ : list ): """simple docstring""" _lowerCAmelCase :int = False while is_sorted is False: # Until all the indices are traversed keep looping _lowerCAmelCase :Optional[Any] = True for i in range(0 , len(__magic_name__ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: _lowerCAmelCase , _lowerCAmelCase :List[str] = input_list[i + 1], input_list[i] # swapping if elements not in order _lowerCAmelCase :Optional[int] = False for i in range(1 , len(__magic_name__ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = input_list[i + 1], input_list[i] # swapping if elements not in order _lowerCAmelCase :Optional[int] = False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") a = [int(x) for x in input().split()] # inputing elements of the list in one line a = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
687
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[int] = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _lowerCAmelCase :Tuple = DetaConfig( backbone_config=__magic_name__ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=__magic_name__ , with_box_refine=__magic_name__ , two_stage=__magic_name__ , ) # set labels _lowerCAmelCase :int = 'huggingface/label-files' if "o365" in model_name: _lowerCAmelCase :Optional[int] = 366 _lowerCAmelCase :str = 'object365-id2label.json' else: _lowerCAmelCase :Dict = 91 _lowerCAmelCase :Dict = 'coco-detection-id2label.json' _lowerCAmelCase :Dict = num_labels _lowerCAmelCase :Any = json.load(open(cached_download(hf_hub_url(__magic_name__ , __magic_name__ , repo_type='dataset' ) ) , 'r' ) ) _lowerCAmelCase :Union[str, Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} _lowerCAmelCase :Any = idalabel _lowerCAmelCase :Dict = {v: k for k, v in idalabel.items()} return config def UpperCamelCase_( __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Optional[int] = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.reduction.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.bias""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", f"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", f"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", f"""model.encoder.layers.{i}.self_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", f"""model.encoder.layers.{i}.self_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", f"""model.encoder.layers.{i}.self_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", f"""model.encoder.layers.{i}.self_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.weight""", f"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""model.encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""model.encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""model.encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""model.encoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""model.encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""model.encoder.layers.{i}.final_layer_norm.bias""") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.weight""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""model.decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""model.decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.weight""", f"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.bias""", f"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""model.decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""model.decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""model.decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""model.decoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""model.decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""model.decoder.layers.{i}.final_layer_norm.bias""") ) # fmt: on return rename_keys def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : List[str] ): """simple docstring""" _lowerCAmelCase :List[str] = dct.pop(__magic_name__ ) _lowerCAmelCase :List[str] = val def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Any = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCAmelCase :Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCAmelCase :Optional[int] = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _lowerCAmelCase :Tuple = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase :List[str] = in_proj_weight[:dim, :] _lowerCAmelCase :Tuple = in_proj_bias[: dim] _lowerCAmelCase :Optional[int] = in_proj_weight[ dim : dim * 2, : ] _lowerCAmelCase :Optional[int] = in_proj_bias[ dim : dim * 2 ] _lowerCAmelCase :int = in_proj_weight[ -dim :, : ] _lowerCAmelCase :str = in_proj_bias[-dim :] # fmt: on def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _lowerCAmelCase :int = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCAmelCase :Dict = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase :int = in_proj_weight[:hidden_size, :] _lowerCAmelCase :Any = in_proj_bias[:hidden_size] _lowerCAmelCase :Tuple = in_proj_weight[ hidden_size : hidden_size * 2, : ] _lowerCAmelCase :str = in_proj_bias[hidden_size : hidden_size * 2] _lowerCAmelCase :Any = in_proj_weight[-hidden_size:, :] _lowerCAmelCase :List[str] = in_proj_bias[-hidden_size:] def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase :List[Any] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Any ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = get_deta_config(__magic_name__ ) # load original state dict if model_name == "deta-swin-large": _lowerCAmelCase :Union[str, Any] = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _lowerCAmelCase :str = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f"""Model name {model_name} not supported""" ) _lowerCAmelCase :int = torch.load(__magic_name__ , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__magic_name__ , param.shape ) # rename keys _lowerCAmelCase :List[Any] = create_rename_keys(__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_swin_q_k_v(__magic_name__ , config.backbone_config ) read_in_decoder_q_k_v(__magic_name__ , __magic_name__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _lowerCAmelCase :Dict = state_dict.pop(__magic_name__ ) _lowerCAmelCase :Tuple = val if "input_proj" in key: _lowerCAmelCase :List[str] = state_dict.pop(__magic_name__ ) _lowerCAmelCase :Optional[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _lowerCAmelCase :List[Any] = state_dict.pop(__magic_name__ ) _lowerCAmelCase :List[Any] = val # finally, create HuggingFace model and load state dict _lowerCAmelCase :Union[str, Any] = DetaForObjectDetection(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() _lowerCAmelCase :str = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__magic_name__ ) # load image processor _lowerCAmelCase :Dict = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _lowerCAmelCase :str = prepare_img() _lowerCAmelCase :List[Any] = processor(images=__magic_name__ , return_tensors='pt' ) _lowerCAmelCase :str = encoding['pixel_values'] _lowerCAmelCase :Tuple = model(pixel_values.to(__magic_name__ ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _lowerCAmelCase :Tuple = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) _lowerCAmelCase :List[str] = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": _lowerCAmelCase :Union[str, Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) _lowerCAmelCase :Union[str, Any] = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__magic_name__ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__magic_name__ ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f"""jozhang97/{model_name}""" ) processor.push_to_hub(f"""jozhang97/{model_name}""" ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument( """--model_name""", type=str, default="""deta-swin-large""", choices=["""deta-swin-large""", """deta-swin-large-o365"""], help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
687
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ): _lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20} _lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase :str = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :Optional[Any] = num_channels _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :int = min_resolution _lowerCAmelCase :List[str] = max_resolution _lowerCAmelCase :List[str] = do_resize _lowerCAmelCase :Optional[int] = size _lowerCAmelCase :str = do_center_crop _lowerCAmelCase :int = crop_size _lowerCAmelCase :Optional[int] = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: int ): # Initialize image_processing _lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # Initialize image_processing _lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any ): # Initialize image_processing _lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
687
1
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Any = PandasConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :Any = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Any = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
687
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : List[str] = 'naver-clova-ix/donut-base-finetuned-docvqa' lowerCamelCase : Optional[int] = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) lowerCamelCase : List[str] = 'document_qa' lowerCamelCase : Dict = AutoProcessor lowerCamelCase : str = VisionEncoderDecoderModel lowerCamelCase : List[str] = ['image', 'text'] lowerCamelCase : Optional[int] = ['text'] def __init__( self: int , *_UpperCAmelCase: Tuple , **_UpperCAmelCase: Any ): if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: "Image" , _UpperCAmelCase: str ): _lowerCAmelCase :int = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' _lowerCAmelCase :Optional[Any] = task_prompt.replace('{user_input}' , _UpperCAmelCase ) _lowerCAmelCase :Any = self.pre_processor.tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors='pt' ).input_ids _lowerCAmelCase :Tuple = self.pre_processor(_UpperCAmelCase , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] ): return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_UpperCAmelCase , ).sequences def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Any ): _lowerCAmelCase :Optional[int] = self.pre_processor.batch_decode(_UpperCAmelCase )[0] _lowerCAmelCase :List[str] = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) _lowerCAmelCase :Tuple = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) _lowerCAmelCase :str = re.sub(r'<.*?>' , '' , _UpperCAmelCase , count=1 ).strip() # remove first task start token _lowerCAmelCase :Tuple = self.pre_processor.tokenajson(_UpperCAmelCase ) return sequence["answer"]
687
import glob import os import random from string import ascii_lowercase, digits import cva a = """""" a = """""" a = """""" a = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ ) print('Processing...' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase :Optional[Any] = random_chars(32 ) _lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" ) _lowerCAmelCase :str = [] for anno in new_annos[index]: _lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__magic_name__ ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = [] _lowerCAmelCase :Union[str, Any] = [] for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ): _lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__magic_name__ ) as in_file: _lowerCAmelCase :Union[str, Any] = in_file.readlines() _lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" ) _lowerCAmelCase :Tuple = [] for obj_list in obj_lists: _lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :Any = [] _lowerCAmelCase :Optional[Any] = [] for idx in range(len(__magic_name__ ) ): _lowerCAmelCase :Optional[int] = [] _lowerCAmelCase :Optional[Any] = img_list[idx] path_list.append(__magic_name__ ) _lowerCAmelCase :List[str] = anno_list[idx] _lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ ) if flip_type == 1: _lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_( __magic_name__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase :str = ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
687
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : List[Any] = 'openai-gpt' lowerCamelCase : List[Any] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self: List[Any] , _UpperCAmelCase: Optional[Any]=4_0478 , _UpperCAmelCase: Any=512 , _UpperCAmelCase: Optional[int]=768 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: int="gelu" , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: List[Any]=0.1 , _UpperCAmelCase: Union[str, Any]=1e-5 , _UpperCAmelCase: Tuple=0.0_2 , _UpperCAmelCase: int="cls_index" , _UpperCAmelCase: str=True , _UpperCAmelCase: str=None , _UpperCAmelCase: str=True , _UpperCAmelCase: Dict=0.1 , **_UpperCAmelCase: Tuple , ): _lowerCAmelCase :List[str] = vocab_size _lowerCAmelCase :Dict = n_positions _lowerCAmelCase :List[Any] = n_embd _lowerCAmelCase :Tuple = n_layer _lowerCAmelCase :Optional[Any] = n_head _lowerCAmelCase :Optional[Any] = afn _lowerCAmelCase :List[Any] = resid_pdrop _lowerCAmelCase :List[Any] = embd_pdrop _lowerCAmelCase :Dict = attn_pdrop _lowerCAmelCase :Optional[int] = layer_norm_epsilon _lowerCAmelCase :Dict = initializer_range _lowerCAmelCase :int = summary_type _lowerCAmelCase :Dict = summary_use_proj _lowerCAmelCase :List[str] = summary_activation _lowerCAmelCase :Optional[int] = summary_first_dropout _lowerCAmelCase :List[str] = summary_proj_to_labels super().__init__(**_UpperCAmelCase )
687
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ ) _lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ ) return torch.mm(__magic_name__ , normalized_text_embeds.t() ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = CLIPConfig lowerCamelCase : Any = ['CLIPEncoderLayer'] def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ): super().__init__(_UpperCAmelCase ) _lowerCAmelCase :Any = CLIPVisionModel(config.vision_config ) _lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) _lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase :str = [] _lowerCAmelCase :List[Any] = image_embeds.shape[0] for i in range(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx] _lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowerCAmelCase :Any = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx] _lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) _lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ): _lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) _lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :Any = 0.0 _lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase :List[str] = special_care * 0.0_1 _lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
1