code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import hashlib # hashlib is only used inside the Test class import struct class __magic_name__ : def __init__( self , snake_case) -> Dict: '''simple docstring''' _UpperCAmelCase : Dict =data _UpperCAmelCase : Tuple =[0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def lowerCAmelCase ( snake_case , snake_case) -> Optional[Any]: '''simple docstring''' return ((n << b) | (n >> (3_2 - b))) & 0Xf_f_f_f_f_f_f_f def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict =b'\x80' + b'\x00' * (6_3 - (len(self.data) + 8) % 6_4) _UpperCAmelCase : Union[str, Any] =self.data + padding + struct.pack('>Q' , 8 * len(self.data)) return padded_data def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' return [ self.padded_data[i : i + 6_4] for i in range(0 , len(self.padded_data) , 6_4) ] def lowerCAmelCase ( self , snake_case) -> Dict: '''simple docstring''' _UpperCAmelCase : Dict =list(struct.unpack('>16L' , _UpperCAmelCase)) + [0] * 6_4 for i in range(1_6 , 8_0): _UpperCAmelCase : Optional[int] =self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 1_4] ^ w[i - 1_6]) , 1) return w def lowerCAmelCase ( self) -> Any: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =self.padding() _UpperCAmelCase : Optional[Any] =self.split_blocks() for block in self.blocks: _UpperCAmelCase : List[str] =self.expand_block(_UpperCAmelCase) _UpperCAmelCase : Tuple =self.h for i in range(0 , 8_0): if 0 <= i < 2_0: _UpperCAmelCase : Dict =(b & c) | ((~b) & d) _UpperCAmelCase : str =0X5_a_8_2_7_9_9_9 elif 2_0 <= i < 4_0: _UpperCAmelCase : Dict =b ^ c ^ d _UpperCAmelCase : int =0X6_e_d_9_e_b_a_1 elif 4_0 <= i < 6_0: _UpperCAmelCase : Optional[Any] =(b & c) | (b & d) | (c & d) _UpperCAmelCase : Union[str, Any] =0X8_f_1_b_b_c_d_c elif 6_0 <= i < 8_0: _UpperCAmelCase : Dict =b ^ c ^ d _UpperCAmelCase : Tuple =0Xc_a_6_2_c_1_d_6 _UpperCAmelCase : List[str] =( self.rotate(_UpperCAmelCase , 5) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(_UpperCAmelCase , 3_0), c, d, ) _UpperCAmelCase : List[Any] =( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h) def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : Optional[int] =b'Test String' assert SHAaHash(__lowerCamelCase ).final_hash() == hashlib.shaa(__lowerCamelCase ).hexdigest() # noqa: S324 def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : Dict =argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) _UpperCAmelCase : List[str] =parser.parse_args() _UpperCAmelCase : Union[str, Any] =args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _UpperCAmelCase : Any =f.read() else: _UpperCAmelCase : int =bytes(__lowerCamelCase , 'utf-8' ) print(SHAaHash(__lowerCamelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
446
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
0
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ : str =numpy.array([0, 0]) lowerCAmelCase__ : Dict =numpy.array([0.5, 0.8_6_6_0_2_5_4]) lowerCAmelCase__ : Tuple =numpy.array([1, 0]) lowerCAmelCase__ : Dict =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : str = initial_vectors for _ in range(A__ ): SCREAMING_SNAKE_CASE_ : Tuple = iteration_step(A__ ) return vectors def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : List[str] = [] for i, start_vector in enumerate(vectors[:-1] ): SCREAMING_SNAKE_CASE_ : Optional[Any] = vectors[i + 1] new_vectors.append(A__ ) SCREAMING_SNAKE_CASE_ : List[str] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3, 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = numpy.radians(A__ ) SCREAMING_SNAKE_CASE_ : Dict = numpy.cos(A__ ), numpy.sin(A__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(A__, A__ ) def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Dict = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() SCREAMING_SNAKE_CASE_ : str = zip(*A__ ) plt.plot(A__, A__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ : List[Any] =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
101
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
0
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _a : str = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: _a : List[Any] = json.load(f) @require_torch class _lowercase ( unittest.TestCase ): def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: return FSMTTokenizer.from_pretrained(_UpperCAmelCase ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[str]: __snake_case = FSMTForConditionalGeneration.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict ) -> int: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality __snake_case = f'facebook/wmt19-{pair}' __snake_case = self.get_tokenizer(_UpperCAmelCase ) __snake_case = self.get_model(_UpperCAmelCase ) __snake_case = bleu_data[pair]['src'] __snake_case = bleu_data[pair]['tgt'] __snake_case = tokenizer(_UpperCAmelCase , return_tensors='pt' , truncation=_UpperCAmelCase , padding='longest' ).to(_UpperCAmelCase ) __snake_case = model.generate( input_ids=batch.input_ids , num_beams=8 , ) __snake_case = tokenizer.batch_decode( _UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) __snake_case = calculate_bleu(_UpperCAmelCase , _UpperCAmelCase ) print(_UpperCAmelCase ) self.assertGreaterEqual(scores['bleu'] , _UpperCAmelCase )
56
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class A_ ( snake_case__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : List[str] = 'levit' def __init__( self , _A=224 , _A=3 , _A=3 , _A=2 , _A=1 , _A=16 , _A=[128, 256, 384] , _A=[4, 8, 12] , _A=[4, 4, 4] , _A=[16, 16, 16] , _A=0 , _A=[2, 2, 2] , _A=[2, 2, 2] , _A=0.02 , **_A , ) -> str: """simple docstring""" super().__init__(**_UpperCAmelCase) _UpperCAmelCase : Optional[int] = image_size _UpperCAmelCase : List[str] = num_channels _UpperCAmelCase : Optional[Any] = kernel_size _UpperCAmelCase : Union[str, Any] = stride _UpperCAmelCase : List[Any] = padding _UpperCAmelCase : Dict = hidden_sizes _UpperCAmelCase : Optional[int] = num_attention_heads _UpperCAmelCase : Tuple = depths _UpperCAmelCase : str = key_dim _UpperCAmelCase : List[Any] = drop_path_rate _UpperCAmelCase : Tuple = patch_size _UpperCAmelCase : Optional[int] = attention_ratio _UpperCAmelCase : List[Any] = mlp_ratio _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Tuple = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class A_ ( snake_case__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[int] = version.parse("1.11" ) @property def snake_case__ ( self) -> int: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def snake_case__ ( self) -> Dict: """simple docstring""" return 1e-4
485
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowercase__ ( snake_case__ ): '''simple docstring''' _UpperCAmelCase = 42 class lowercase__ ( snake_case__, snake_case__ ): '''simple docstring''' @register_to_config def __init__( self , snake_case = 65536 , snake_case = None , snake_case = 2 , snake_case = 2 , snake_case = 0 , snake_case = "fourier" , snake_case = True , snake_case = False , snake_case = 0.0 , snake_case = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , snake_case = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , snake_case = "UNetMidBlock1D" , snake_case = None , snake_case = (32, 32, 64) , snake_case = None , snake_case = 8 , snake_case = 1 , snake_case = False , ) -> Any: super().__init__() _UpperCAmelCase = sample_size # time if time_embedding_type == "fourier": _UpperCAmelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase ) _UpperCAmelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _UpperCAmelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase ) _UpperCAmelCase = block_out_channels[0] if use_timestep_embedding: _UpperCAmelCase = block_out_channels[0] * 4 _UpperCAmelCase = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) _UpperCAmelCase = nn.ModuleList([] ) _UpperCAmelCase = None _UpperCAmelCase = nn.ModuleList([] ) _UpperCAmelCase = None # down _UpperCAmelCase = in_channels for i, down_block_type in enumerate(_UpperCAmelCase ): _UpperCAmelCase = output_channel _UpperCAmelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _UpperCAmelCase = i == len(_UpperCAmelCase ) - 1 _UpperCAmelCase = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase ) # mid _UpperCAmelCase = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up _UpperCAmelCase = list(reversed(_UpperCAmelCase ) ) _UpperCAmelCase = reversed_block_out_channels[0] if out_block_type is None: _UpperCAmelCase = out_channels else: _UpperCAmelCase = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase ): _UpperCAmelCase = output_channel _UpperCAmelCase = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase ) - 1 else final_upsample_channels ) _UpperCAmelCase = i == len(_UpperCAmelCase ) - 1 _UpperCAmelCase = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase ) _UpperCAmelCase = output_channel # out _UpperCAmelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _UpperCAmelCase = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case = True , ) -> Union[str, Any]: _UpperCAmelCase = timestep if not torch.is_tensor(_UpperCAmelCase ): _UpperCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(_UpperCAmelCase ) and len(timesteps.shape ) == 0: _UpperCAmelCase = timesteps[None].to(sample.device ) _UpperCAmelCase = self.time_proj(_UpperCAmelCase ) if self.config.use_timestep_embedding: _UpperCAmelCase = self.time_mlp(_UpperCAmelCase ) else: _UpperCAmelCase = timestep_embed[..., None] _UpperCAmelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _UpperCAmelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _UpperCAmelCase = () for downsample_block in self.down_blocks: _UpperCAmelCase = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _UpperCAmelCase = self.mid_block(_UpperCAmelCase , _UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _UpperCAmelCase = down_block_res_samples[-1:] _UpperCAmelCase = down_block_res_samples[:-1] _UpperCAmelCase = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase ) # 5. post-process if self.out_block: _UpperCAmelCase = self.out_block(_UpperCAmelCase , _UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase )
573
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ): _lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20} _lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase :str = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :Optional[Any] = num_channels _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :int = min_resolution _lowerCAmelCase :List[str] = max_resolution _lowerCAmelCase :List[str] = do_resize _lowerCAmelCase :Optional[int] = size _lowerCAmelCase :str = do_center_crop _lowerCAmelCase :int = crop_size _lowerCAmelCase :Optional[int] = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: int ): # Initialize image_processing _lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # Initialize image_processing _lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any ): # Initialize image_processing _lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
687
0
def __lowerCAmelCase ( A_ : list ) -> List[Any]: __UpperCAmelCase = False while is_sorted is False: # Until all the indices are traversed keep looping __UpperCAmelCase = True for i in range(0 , len(A_ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __UpperCAmelCase = False for i in range(1 , len(A_ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order __UpperCAmelCase = False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") a_ = [int(x) for x in input().split()] # inputing elements of the list in one line a_ = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
221
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Any = PandasConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :Any = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Any = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
import glob import os import random from string import ascii_lowercase, digits import cva a = """""" a = """""" a = """""" a = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ ) print('Processing...' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase :Optional[Any] = random_chars(32 ) _lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" ) _lowerCAmelCase :str = [] for anno in new_annos[index]: _lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__magic_name__ ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = [] _lowerCAmelCase :Union[str, Any] = [] for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ): _lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__magic_name__ ) as in_file: _lowerCAmelCase :Union[str, Any] = in_file.readlines() _lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" ) _lowerCAmelCase :Tuple = [] for obj_list in obj_lists: _lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :Any = [] _lowerCAmelCase :Optional[Any] = [] for idx in range(len(__magic_name__ ) ): _lowerCAmelCase :Optional[int] = [] _lowerCAmelCase :Optional[Any] = img_list[idx] path_list.append(__magic_name__ ) _lowerCAmelCase :List[str] = anno_list[idx] _lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ ) if flip_type == 1: _lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_( __magic_name__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase :str = ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
687
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Union[str, Any] = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
429
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ ) _lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ ) return torch.mm(__magic_name__ , normalized_text_embeds.t() ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = CLIPConfig lowerCamelCase : Any = ['CLIPEncoderLayer'] def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ): super().__init__(_UpperCAmelCase ) _lowerCAmelCase :Any = CLIPVisionModel(config.vision_config ) _lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) _lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase :str = [] _lowerCAmelCase :List[Any] = image_embeds.shape[0] for i in range(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx] _lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowerCAmelCase :Any = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx] _lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) _lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ): _lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) _lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :Any = 0.0 _lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase :List[str] = special_care * 0.0_1 _lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[jnp.ndarray] = None __UpperCAmelCase : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def snake_case ( cls : List[str] ): return cls() @dataclass class lowerCAmelCase__ ( snake_case__ ): """simple docstring""" __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : KarrasVeSchedulerState class lowerCAmelCase__ ( snake_case__ , snake_case__ ): """simple docstring""" @property def snake_case ( self : Union[str, Any] ): return True @register_to_config def __init__( self : int , lowercase__ : float = 0.0_2 , lowercase__ : float = 1_0_0 , lowercase__ : float = 1.0_0_7 , lowercase__ : float = 8_0 , lowercase__ : float = 0.0_5 , lowercase__ : float = 5_0 , ): pass def snake_case ( self : Union[str, Any] ): return KarrasVeSchedulerState.create() def snake_case ( self : Optional[int] , lowercase__ : KarrasVeSchedulerState , lowercase__ : int , lowercase__ : Tuple = () ): __lowercase : Tuple = jnp.arange(0 , _UpperCAmelCase )[::-1].copy() __lowercase : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=_UpperCAmelCase , schedule=jnp.array(_UpperCAmelCase , dtype=jnp.floataa ) , timesteps=_UpperCAmelCase , ) def snake_case ( self : Tuple , lowercase__ : KarrasVeSchedulerState , lowercase__ : jnp.ndarray , lowercase__ : float , lowercase__ : random.KeyArray , ): if self.config.s_min <= sigma <= self.config.s_max: __lowercase : Optional[int] = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: __lowercase : List[Any] = 0 # sample eps ~ N(0, S_noise^2 * I) __lowercase : str = random.split(_UpperCAmelCase , num=1 ) __lowercase : Optional[int] = self.config.s_noise * random.normal(key=_UpperCAmelCase , shape=sample.shape ) __lowercase : Tuple = sigma + gamma * sigma __lowercase : Optional[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def snake_case ( self : Optional[Any] , lowercase__ : KarrasVeSchedulerState , lowercase__ : jnp.ndarray , lowercase__ : float , lowercase__ : float , lowercase__ : jnp.ndarray , lowercase__ : bool = True , ): __lowercase : List[Any] = sample_hat + sigma_hat * model_output __lowercase : Union[str, Any] = (sample_hat - pred_original_sample) / sigma_hat __lowercase : int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_UpperCAmelCase , derivative=_UpperCAmelCase , state=_UpperCAmelCase ) def snake_case ( self : Tuple , lowercase__ : KarrasVeSchedulerState , lowercase__ : jnp.ndarray , lowercase__ : float , lowercase__ : float , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray , lowercase__ : bool = True , ): __lowercase : Union[str, Any] = sample_prev + sigma_prev * model_output __lowercase : str = (sample_prev - pred_original_sample) / sigma_prev __lowercase : int = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_UpperCAmelCase , derivative=_UpperCAmelCase , state=_UpperCAmelCase ) def snake_case ( self : Optional[int] , lowercase__ : KarrasVeSchedulerState , lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : Any ): raise NotImplementedError()
575
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase_ = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''SpeechEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''FlaxSpeechEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
338
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'encoder-decoder' lowerCamelCase : Optional[Any] = True def __init__( self: str , **_UpperCAmelCase: int ): super().__init__(**_UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' ) _lowerCAmelCase :Dict = encoder_config.pop('model_type' ) _lowerCAmelCase :str = kwargs.pop('decoder' ) _lowerCAmelCase :str = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCAmelCase :Dict = True _lowerCAmelCase :List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :Optional[int] = self.encoder.to_dict() _lowerCAmelCase :Union[str, Any] = self.decoder.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output
687
0
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase = logging.getLogger() __UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __a ( snake_case__ ): def A ( self : Dict , UpperCAmelCase : Optional[int] ): os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) lowerCAmelCase_ : int = {'source': 'What is love ?', 'target': 'life'} lowerCAmelCase_ : str = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase_ : Optional[int] = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(_UpperCAmelCase , F'{split}.{field}' ) , """w""" ) as f: f.write(_UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : str = "pytorch" ): lowerCAmelCase_ : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : int = os.path.join(_UpperCAmelCase , """output""" ) lowerCAmelCase_ : Tuple = os.path.join(_UpperCAmelCase , """data""" ) self._create_dummy_data(data_dir=_UpperCAmelCase ) lowerCAmelCase_ : Dict = F'\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n '.split() if gpus > 0: testargs.append(F'--gpus={gpus}' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) lowerCAmelCase_ : str = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_UpperCAmelCase , env=self.get_env() ) lowerCAmelCase_ : Optional[int] = os.path.join(_UpperCAmelCase , """metrics.json""" ) with open(_UpperCAmelCase ) as f: lowerCAmelCase_ : List[str] = json.load(_UpperCAmelCase ) return result @require_torch_gpu def A ( self : Tuple ): lowerCAmelCase_ : Tuple = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def A ( self : Tuple ): lowerCAmelCase_ : Optional[int] = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def A ( self : List[Any] ): lowerCAmelCase_ : str = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def A ( self : List[Any] ): lowerCAmelCase_ : Dict = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
600
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
0
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase =logging.get_logger(__name__) lowercase ={ 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } lowercase ={ 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } lowercase ={ 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def lowerCamelCase__ ( __lowerCamelCase : Dict ): '''simple docstring''' _UpperCAmelCase : Tuple =set() _UpperCAmelCase : str =word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase : Optional[Any] =char _UpperCAmelCase : Any =set(__lowerCamelCase ) return pairs class __magic_name__ ( snake_case__ ): UpperCAmelCase =VOCAB_FILES_NAMES UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , snake_case , snake_case , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , **snake_case , ) -> Any: '''simple docstring''' super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) _UpperCAmelCase : Union[str, Any] =vocab_file _UpperCAmelCase : List[Any] =merges_file _UpperCAmelCase : Union[str, Any] ={} _UpperCAmelCase : Optional[int] =0 _UpperCAmelCase : List[str] =1 _UpperCAmelCase : Optional[int] =2 _UpperCAmelCase : str =3 self.add_from_file(_UpperCAmelCase) _UpperCAmelCase : str ={v: k for k, v in self.encoder.items()} with open(_UpperCAmelCase , encoding='utf-8') as merges_handle: _UpperCAmelCase : Tuple =merges_handle.read().split('\n')[:-1] _UpperCAmelCase : int =[tuple(merge.split()[:-1]) for merge in merges] _UpperCAmelCase : Optional[int] =dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase)))) _UpperCAmelCase : Union[str, Any] ={} def lowerCAmelCase ( self , snake_case , snake_case = None) -> List[str]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : int =[self.cls_token_id] _UpperCAmelCase : str =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self , snake_case , snake_case = None , snake_case = False) -> Dict: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase)) + [1] return [1] + ([0] * len(_UpperCAmelCase)) + [1, 1] + ([0] * len(_UpperCAmelCase)) + [1] def lowerCAmelCase ( self , snake_case , snake_case = None) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict =[self.sep_token_id] _UpperCAmelCase : Union[str, Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return len(self.encoder) def lowerCAmelCase ( self) -> Any: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder) def lowerCAmelCase ( self , snake_case) -> Union[str, Any]: '''simple docstring''' if token in self.cache: return self.cache[token] _UpperCAmelCase : Dict =tuple(_UpperCAmelCase) _UpperCAmelCase : List[Any] =tuple(list(word[:-1]) + [word[-1] + '</w>']) _UpperCAmelCase : Optional[int] =get_pairs(_UpperCAmelCase) if not pairs: return token while True: _UpperCAmelCase : List[str] =min(_UpperCAmelCase , key=lambda snake_case: self.bpe_ranks.get(_UpperCAmelCase , float('inf'))) if bigram not in self.bpe_ranks: break _UpperCAmelCase : int =bigram _UpperCAmelCase : Union[str, Any] =[] _UpperCAmelCase : List[str] =0 while i < len(_UpperCAmelCase): try: _UpperCAmelCase : int =word.index(_UpperCAmelCase , _UpperCAmelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _UpperCAmelCase : Optional[int] =j if word[i] == first and i < len(_UpperCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _UpperCAmelCase : Union[str, Any] =tuple(_UpperCAmelCase) _UpperCAmelCase : Tuple =new_word if len(_UpperCAmelCase) == 1: break else: _UpperCAmelCase : List[str] =get_pairs(_UpperCAmelCase) _UpperCAmelCase : Tuple ='@@ '.join(_UpperCAmelCase) _UpperCAmelCase : Dict =word[:-4] _UpperCAmelCase : List[str] =word return word def lowerCAmelCase ( self , snake_case) -> int: '''simple docstring''' _UpperCAmelCase : List[Any] =[] _UpperCAmelCase : Optional[int] =re.findall(r'\S+\n?' , _UpperCAmelCase) for token in words: split_tokens.extend(list(self.bpe(_UpperCAmelCase).split(' '))) return split_tokens def lowerCAmelCase ( self , snake_case) -> Tuple: '''simple docstring''' return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token)) def lowerCAmelCase ( self , snake_case) -> List[str]: '''simple docstring''' return self.decoder.get(_UpperCAmelCase , self.unk_token) def lowerCAmelCase ( self , snake_case) -> Tuple: '''simple docstring''' _UpperCAmelCase : Any =' '.join(_UpperCAmelCase).replace('@@ ' , '').strip() return out_string def lowerCAmelCase ( self , snake_case , snake_case = None) -> Union[str, Any]: '''simple docstring''' if not os.path.isdir(_UpperCAmelCase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase : int =os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase : Union[str, Any] =os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) if os.path.abspath(self.merges_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.merges_file , _UpperCAmelCase) return out_vocab_file, out_merge_file def lowerCAmelCase ( self , snake_case) -> Optional[Any]: '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase): try: with open(_UpperCAmelCase , 'r' , encoding='utf-8') as fd: self.add_from_file(_UpperCAmelCase) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset") return _UpperCAmelCase : str =f.readlines() for lineTmp in lines: _UpperCAmelCase : str =lineTmp.strip() _UpperCAmelCase : Tuple =line.rfind(' ') if idx == -1: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt>\'') _UpperCAmelCase : Optional[int] =line[:idx] _UpperCAmelCase : Dict =len(self.encoder)
446
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
0
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class __lowercase (snake_case__ ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): """simple docstring""" super().__init__( features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ : Dict = Generator( cache_dir=_UpperCAmelCase , features=_UpperCAmelCase , generator=_UpperCAmelCase , gen_kwargs=_UpperCAmelCase , **_UpperCAmelCase , ) def UpperCamelCase__ ( self ): """simple docstring""" if self.streaming: SCREAMING_SNAKE_CASE_ : Optional[int] = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Union[str, Any] = None SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE_ : int = self.builder.as_dataset( split='train' , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
101
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[int] = 10 def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :str = [1, 2, 3, 4] _lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[int] = '' _lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = ['It was the best of times.'] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[str] = 101 _lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
687
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _lowercase : def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]: return None class _lowercase : def a ( self : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[Any]: return None class _lowercase ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def a ( self : int ) -> List[str]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_UpperCAmelCase , 'tf' , 12 , **_UpperCAmelCase ) @require_torch @slow def a ( self : str ) -> Optional[int]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_UpperCAmelCase , 'pt' , 12 , **_UpperCAmelCase ) @require_torch @slow def a ( self : Dict ) -> Optional[Any]: from transformers import BertModel __snake_case = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(_UpperCAmelCase ) ) vocab_file.flush() __snake_case = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __snake_case = BertModel(BertConfig(vocab_size=len(_UpperCAmelCase ) ) ) model.save_pretrained(_UpperCAmelCase ) self._test_export(_UpperCAmelCase , 'pt' , 12 , _UpperCAmelCase ) @require_tf @slow def a ( self : Union[str, Any] ) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __snake_case = self._test_export(_UpperCAmelCase , 'tf' , 12 , **_UpperCAmelCase ) __snake_case = quantize(Path(_UpperCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_UpperCAmelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def a ( self : List[str] ) -> Any: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __snake_case = self._test_export(_UpperCAmelCase , 'pt' , 12 , **_UpperCAmelCase ) __snake_case = quantize(_UpperCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_UpperCAmelCase ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int=None , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> str: try: # Compute path with TemporaryDirectory() as tempdir: __snake_case = Path(_UpperCAmelCase ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) return path except Exception as e: self.fail(_UpperCAmelCase ) @require_torch @require_tokenizers @slow def a ( self : List[Any] ) -> List[Any]: from transformers import BertModel __snake_case = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) __snake_case = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(_UpperCAmelCase , _UpperCAmelCase , 'pt' ) @require_tf @require_tokenizers @slow def a ( self : Dict ) -> Tuple: from transformers import TFBertModel __snake_case = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) __snake_case = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(_UpperCAmelCase , _UpperCAmelCase , 'tf' ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str ) -> Tuple: __snake_case = FeatureExtractionPipeline(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] __snake_case = infer_shapes(_UpperCAmelCase , _UpperCAmelCase ) # Assert all variables are present self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , _UpperCAmelCase ) self.assertSequenceEqual(variable_names[3:] , _UpperCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def a ( self : Tuple ) -> str: __snake_case = ['input_ids', 'attention_mask', 'token_type_ids'] __snake_case = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} __snake_case = ensure_valid_input(FuncContiguousArgs() , _UpperCAmelCase , _UpperCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(_UpperCAmelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(_UpperCAmelCase ) , set(_UpperCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(_UpperCAmelCase , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __snake_case = ensure_valid_input(FuncNonContiguousArgs() , _UpperCAmelCase , _UpperCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(_UpperCAmelCase ) , 1 ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def a ( self : Optional[int] ) -> Optional[Any]: __snake_case = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
56
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
687
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
485
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
0
"""simple docstring""" from typing import Any def UpperCAmelCase ( A : list ): '''simple docstring''' if not input_list: return [] _UpperCAmelCase = [input_list.count(A ) for value in input_list] _UpperCAmelCase = max(A ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(A ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
573
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
0
from typing import Any class UpperCAmelCase__ : """simple docstring""" def __init__( self: int , __lowerCAmelCase: Any ) -> Dict: '''simple docstring''' __UpperCAmelCase = data __UpperCAmelCase = None class UpperCAmelCase__ : """simple docstring""" def __init__( self: Tuple ) -> Any: '''simple docstring''' __UpperCAmelCase = None def _UpperCAmelCase ( self: Tuple ) -> str: '''simple docstring''' __UpperCAmelCase = self.head while temp is not None: print(temp.data , end=" " ) __UpperCAmelCase = temp.next print() def _UpperCAmelCase ( self: Any , __lowerCAmelCase: Any ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = Node(_UpperCAmelCase ) __UpperCAmelCase = self.head __UpperCAmelCase = new_node def _UpperCAmelCase ( self: Dict , __lowerCAmelCase: Tuple , __lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' if node_data_a == node_data_a: return else: __UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: __UpperCAmelCase = node_a.next __UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: __UpperCAmelCase = node_a.next if node_a is None or node_a is None: return __UpperCAmelCase = node_a.data, node_a.data if __name__ == "__main__": a_ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
221
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
0
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants SCREAMING_SNAKE_CASE = Mapping[str, np.ndarray] SCREAMING_SNAKE_CASE = Mapping[str, Any] # Is a nested dict. SCREAMING_SNAKE_CASE = 0.01 @dataclasses.dataclass(frozen=snake_case__ ) class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. UpperCamelCase_ = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. UpperCamelCase_ = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. UpperCamelCase_ = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. UpperCamelCase_ = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions UpperCamelCase_ = None # Optional remark about the protein. Included as a comment in output PDB # files UpperCamelCase_ = None # Templates used to generate this protein (prediction-only) UpperCamelCase_ = None # Chain corresponding to each parent UpperCamelCase_ = None def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : str =r'(\[[A-Z]+\]\n)' lowercase : List[str] =[tag.strip() for tag in re.split(__A , __A ) if len(__A ) > 0] lowercase : Iterator[Tuple[str, List[str]]] =zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowercase : List[str] =["N", "CA", "C"] lowercase : Optional[Any] =None lowercase : str =None lowercase : Optional[int] =None for g in groups: if "[PRIMARY]" == g[0]: lowercase : Union[str, Any] =g[1][0].strip() for i in range(len(__A ) ): if seq[i] not in residue_constants.restypes: lowercase : Optional[int] ='X' # FIXME: strings are immutable lowercase : List[str] =np.array( [residue_constants.restype_order.get(__A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase : List[List[float]] =[] for axis in range(3 ): tertiary.append(list(map(__A , g[1][axis].split() ) ) ) lowercase : str =np.array(__A ) lowercase : str =np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__A ): lowercase : List[str] =np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase : List[str] =np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowercase : Tuple =np.zeros( ( len(__A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__A ): lowercase : List[Any] =1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__A , atom_mask=__A , aatype=__A , residue_index=np.arange(len(__A ) ) , b_factors=__A , ) def lowercase_ ( __A : Protein , __A : int = 0 ) -> Union[str, Any]: """simple docstring""" lowercase : List[str] =[] lowercase : List[Any] =prot.remark if remark is not None: pdb_headers.append(F'REMARK {remark}' ) lowercase : Union[str, Any] =prot.parents lowercase : Dict =prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase : int =[p for i, p in zip(__A , __A ) if i == chain_id] if parents is None or len(__A ) == 0: lowercase : int =['N/A'] pdb_headers.append(F'PARENT {" ".join(__A )}' ) return pdb_headers def lowercase_ ( __A : Protein , __A : str ) -> Optional[int]: """simple docstring""" lowercase : List[str] =[] lowercase : Any =pdb_str.split('''\n''' ) lowercase : int =prot.remark if remark is not None: out_pdb_lines.append(F'REMARK {remark}' ) lowercase : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: lowercase : Optional[Any] =[] if prot.parents_chain_index is not None: lowercase : Dict[str, List[str]] ={} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__A ) , [] ) parent_dict[str(__A )].append(__A ) lowercase : Union[str, Any] =max([int(__A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase : Dict =parent_dict.get(str(__A ) , ['''N/A'''] ) parents_per_chain.append(__A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase : str =[['N/A']] def make_parent_line(__A : Sequence[str] ) -> str: return F'PARENT {" ".join(__A )}' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase : List[str] =0 for i, l in enumerate(__A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__A ): lowercase : int =parents_per_chain[chain_counter] else: lowercase : Tuple =['N/A'] out_pdb_lines.append(make_parent_line(__A ) ) return "\n".join(__A ) def lowercase_ ( __A : Protein ) -> List[Any]: """simple docstring""" lowercase : Optional[int] =residue_constants.restypes + ['X'] def res_atoa(__A : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowercase : int =residue_constants.atom_types lowercase : List[str] =[] lowercase : Dict =prot.atom_mask lowercase : str =prot.aatype lowercase : Dict =prot.atom_positions lowercase : Tuple =prot.residue_index.astype(np.intaa ) lowercase : str =prot.b_factors lowercase : Dict =prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowercase : Dict =get_pdb_headers(__A ) if len(__A ) > 0: pdb_lines.extend(__A ) lowercase : Optional[Any] =aatype.shape[0] lowercase : Any =1 lowercase : List[str] =0 lowercase : Optional[Any] =string.ascii_uppercase lowercase : List[str] =None # Add all atom sites. for i in range(__A ): lowercase : Optional[int] =res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase : Optional[Any] ='ATOM' lowercase : Tuple =atom_name if len(__A ) == 4 else F' {atom_name}' lowercase : Union[str, Any] ='' lowercase : Tuple ='' lowercase : Optional[Any] =1.00 lowercase : Dict =atom_name[0] # Protein supports only C, N, O, S, this works. lowercase : Dict ='' lowercase : Union[str, Any] ='A' if chain_index is not None: lowercase : List[str] =chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase : Optional[int] =( F'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}' F'{res_name_a:>3} {chain_tag:>1}' F'{residue_index[i]:>4}{insertion_code:>1} ' F'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}' F'{occupancy:>6.2f}{b_factor:>6.2f} ' F'{element:>2}{charge:>2}' ) pdb_lines.append(__A ) atom_index += 1 lowercase : List[Any] =i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase : str =True lowercase : Dict =chain_index[i + 1] if should_terminate: # Close the chain. lowercase : List[str] ='TER' lowercase : Tuple =( F'{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}' ) pdb_lines.append(__A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__A , __A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(__A ) def lowercase_ ( __A : Protein ) -> int: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def lowercase_ ( __A : FeatureDict , __A : ModelOutput , __A : Optional[np.ndarray] = None , __A : Optional[np.ndarray] = None , __A : Optional[str] = None , __A : Optional[Sequence[str]] = None , __A : Optional[Sequence[int]] = None , ) -> Dict: """simple docstring""" return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=__A , remark=__A , parents=__A , parents_chain_index=__A , )
94
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ): """simple docstring""" _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] _lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] _lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""] _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""] _lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :int = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' ) _lowerCAmelCase :List[Any] = {} _lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight'] _lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias'] _lowerCAmelCase :Dict = checkpoint['time_embed.2.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias'] _lowerCAmelCase :List[Any] = unet_config['down_block_types'] _lowerCAmelCase :Any = unet_config['layers_per_block'] _lowerCAmelCase :List[Any] = unet_config['attention_head_dim'] _lowerCAmelCase :Tuple = unet_config['block_out_channels'] _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Optional[int] = channels_list[0] for i, layer_type in enumerate(__magic_name__ ): _lowerCAmelCase :Tuple = channels_list[i] _lowerCAmelCase :Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}""" _lowerCAmelCase :str = f"""input_blocks.{current_layer}.1""" _lowerCAmelCase :Optional[Any] = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0""" _lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 _lowerCAmelCase :Dict = current_channels # hardcoded the mid-block for now _lowerCAmelCase :int = 'mid_block.resnets.0' _lowerCAmelCase :Optional[Any] = 'middle_block.0' _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = 'mid_block.attentions.0' _lowerCAmelCase :Optional[int] = 'middle_block.1' _lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1' _lowerCAmelCase :Optional[int] = 'middle_block.2' _lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :str = unet_config['up_block_types'] for i, layer_type in enumerate(__magic_name__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1""" _lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}""" _lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1""" _lowerCAmelCase :int = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = checkpoint['out.0.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias'] _lowerCAmelCase :List[Any] = checkpoint['out.2.weight'] _lowerCAmelCase :Dict = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
687
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed _lowerCamelCase : Optional[Any] = logging.getLogger(__name__) def _UpperCAmelCase (UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Optional[int]=3 , UpperCamelCase_ : Optional[int]=16 , UpperCamelCase_ : int = 10 , UpperCamelCase_ : int = 2 ): '''simple docstring''' def get_dataset(UpperCamelCase_ : List[Any] ): _lowerCAmelCase : Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(UpperCamelCase_ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) _lowerCAmelCase : int = get_dataset(UpperCamelCase_ ) _lowerCAmelCase : Optional[Any] = get_dataset(UpperCamelCase_ ) _lowerCAmelCase : str = DataLoader(UpperCamelCase_ , shuffle=UpperCamelCase_ , batch_size=UpperCamelCase_ , num_workers=4 ) _lowerCAmelCase : Optional[int] = DataLoader(UpperCamelCase_ , shuffle=UpperCamelCase_ , batch_size=UpperCamelCase_ , num_workers=4 ) return (train_dataloader, valid_dataloader) def _UpperCAmelCase (UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any]=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [] for epoch in range(UpperCamelCase_ ): # Train quickly model.train() for batch in dataloader: _lowerCAmelCase : Union[str, Any] = batch _lowerCAmelCase : Tuple = model(UpperCamelCase_ ) _lowerCAmelCase : Union[str, Any] = torch.nn.functional.mse_loss(UpperCamelCase_ , UpperCamelCase_ ) accelerator.backward(UpperCamelCase_ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __snake_case (nn.Module ): def __init__( self : Any ) -> List[Any]: '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = nn.Parameter(torch.randn(1 ) ) _lowerCAmelCase : str = nn.Parameter(torch.randn(1 ) ) def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' return x * self.a + self.b class __snake_case (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCAmelCase : Optional[int] = DummyModel() _lowerCAmelCase : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCAmelCase : int = dummy_dataloaders() _lowerCAmelCase : List[Any] = ProjectConfiguration(total_limit=1 , project_dir=_UpperCAmelCase , automatic_checkpoint_naming=_UpperCAmelCase ) # Train baseline _lowerCAmelCase : str = Accelerator(project_config=_UpperCAmelCase ) _lowerCAmelCase : Dict = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCAmelCase : Optional[Any] = DummyModel() _lowerCAmelCase : int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCAmelCase : List[str] = dummy_dataloaders() # Train baseline _lowerCAmelCase : Dict = Accelerator() _lowerCAmelCase : Union[str, Any] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save initial _lowerCAmelCase : Optional[Any] = os.path.join(_UpperCAmelCase , """initial""" ) accelerator.save_state(_UpperCAmelCase ) (_lowerCAmelCase) : Dict = model.a.item(), model.b.item() _lowerCAmelCase : Optional[Any] = optimizer.state_dict() _lowerCAmelCase : Union[str, Any] = train(3 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) (_lowerCAmelCase) : Optional[Any] = model.a.item(), model.b.item() _lowerCAmelCase : Optional[int] = optimizer.state_dict() # Train partially set_seed(42 ) _lowerCAmelCase : Optional[int] = DummyModel() _lowerCAmelCase : Tuple = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCAmelCase : List[str] = dummy_dataloaders() _lowerCAmelCase : str = Accelerator() _lowerCAmelCase : int = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) accelerator.load_state(_UpperCAmelCase ) (_lowerCAmelCase) : Any = model.a.item(), model.b.item() _lowerCAmelCase : Optional[int] = optimizer.state_dict() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Tuple = train(2 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save everything _lowerCAmelCase : str = os.path.join(_UpperCAmelCase , """checkpoint""" ) accelerator.save_state(_UpperCAmelCase ) # Load everything back in and make sure all states work accelerator.load_state(_UpperCAmelCase ) test_rands += train(1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) (_lowerCAmelCase) : Any = model.a.item(), model.b.item() _lowerCAmelCase : str = optimizer.state_dict() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCAmelCase : Dict = DummyModel() _lowerCAmelCase : Dict = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCAmelCase : Optional[Any] = dummy_dataloaders() _lowerCAmelCase : Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=_UpperCAmelCase ) # Train baseline _lowerCAmelCase : Optional[int] = Accelerator(project_dir=_UpperCAmelCase , project_config=_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save initial accelerator.save_state() (_lowerCAmelCase) : Any = model.a.item(), model.b.item() _lowerCAmelCase : Any = optimizer.state_dict() _lowerCAmelCase : str = train(3 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) (_lowerCAmelCase) : Optional[int] = model.a.item(), model.b.item() _lowerCAmelCase : Any = optimizer.state_dict() # Train partially set_seed(42 ) _lowerCAmelCase : List[Any] = DummyModel() _lowerCAmelCase : Dict = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCAmelCase : List[str] = dummy_dataloaders() _lowerCAmelCase : Tuple = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = Accelerator(project_dir=_UpperCAmelCase , project_config=_UpperCAmelCase ) _lowerCAmelCase : Tuple = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) accelerator.load_state(os.path.join(_UpperCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) (_lowerCAmelCase) : Optional[int] = model.a.item(), model.b.item() _lowerCAmelCase : str = optimizer.state_dict() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Any = train(2 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCAmelCase , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) (_lowerCAmelCase) : List[str] = model.a.item(), model.b.item() _lowerCAmelCase : str = optimizer.state_dict() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Optional[int] = torch.tensor([1, 2, 3] ) _lowerCAmelCase : Any = torch.tensor([2, 3, 4] ) _lowerCAmelCase : int = DummyModel() _lowerCAmelCase : int = torch.optim.Adam(net.parameters() ) _lowerCAmelCase : Optional[Any] = Accelerator() with self.assertRaises(_UpperCAmelCase ) as ve: accelerator.register_for_checkpointing(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCAmelCase : List[str] = DummyModel() _lowerCAmelCase : Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowerCAmelCase : Any = torch.optim.lr_scheduler.StepLR(_UpperCAmelCase , step_size=1 , gamma=0.99 ) _lowerCAmelCase : List[str] = dummy_dataloaders() _lowerCAmelCase : str = ProjectConfiguration(automatic_checkpoint_naming=_UpperCAmelCase ) # Train baseline _lowerCAmelCase : Union[str, Any] = Accelerator(project_dir=_UpperCAmelCase , project_config=_UpperCAmelCase ) _lowerCAmelCase : List[str] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save initial accelerator.save_state() _lowerCAmelCase : List[str] = scheduler.state_dict() train(3 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(_UpperCAmelCase , scheduler.state_dict() ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCAmelCase : Optional[int] = DummyModel() _lowerCAmelCase : int = ProjectConfiguration(automatic_checkpoint_naming=_UpperCAmelCase , total_limit=2 ) # Train baseline _lowerCAmelCase : Optional[Any] = Accelerator(project_dir=_UpperCAmelCase , project_config=_UpperCAmelCase ) _lowerCAmelCase : Optional[int] = accelerator.prepare(_UpperCAmelCase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_UpperCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Tuple = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": _lowerCamelCase : Dict = "/tmp/accelerate/state_checkpointing" _lowerCamelCase : Union[str, Any] = DummyModel() _lowerCamelCase : int = torch.optim.Adam(params=model.parameters(), lr=1e-3) _lowerCamelCase : List[str] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) _lowerCamelCase , _lowerCamelCase : Optional[int] = dummy_dataloaders() _lowerCamelCase : Optional[Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline _lowerCamelCase : int = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) _lowerCamelCase , _lowerCamelCase : List[str] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: _lowerCamelCase : List[Any] = group["params"][0].device break assert param_device.type == accelerator.device.type _lowerCamelCase : Tuple = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: _lowerCamelCase : Optional[int] = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: _lowerCamelCase : str = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
429
import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) _lowerCAmelCase :Tuple = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ): _lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
687
0
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __A : List[str] = logging.get_logger(__name__) __A : Optional[int] = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , lowercase__ : Union[str, Any]=None , **lowercase__ : List[str] ): logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) __lowercase : str = model __lowercase : Union[str, Any] = kwargs.get("model_save_dir" , _UpperCAmelCase ) __lowercase : List[Any] = kwargs.get("latest_model_name" , _UpperCAmelCase ) def __call__( self : Optional[Any] , **lowercase__ : Dict ): __lowercase : Tuple = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCAmelCase , _UpperCAmelCase ) @staticmethod def snake_case ( lowercase__ : Union[str, Path] , lowercase__ : Tuple=None , lowercase__ : Tuple=None ): if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) __lowercase : Dict = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase ) def snake_case ( self : Any , lowercase__ : Union[str, Path] , lowercase__ : Optional[str] = None , **lowercase__ : Any ): __lowercase : Optional[int] = file_name if file_name is not None else ONNX_WEIGHTS_NAME __lowercase : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) __lowercase : str = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __lowercase : Optional[Any] = self.model_save_dir.joinpath(_UpperCAmelCase ) if src_path.exists(): __lowercase : Any = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass def snake_case ( self : List[Any] , lowercase__ : Union[str, os.PathLike] , **lowercase__ : Optional[Any] , ): if os.path.isfile(_UpperCAmelCase ): logger.error(f'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # saving model weights/files self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def snake_case ( cls : Tuple , lowercase__ : Union[str, Path] , lowercase__ : Optional[Union[bool, str, None]] = None , lowercase__ : Optional[Union[str, None]] = None , lowercase__ : bool = False , lowercase__ : Optional[str] = None , lowercase__ : Optional[str] = None , lowercase__ : Optional[str] = None , lowercase__ : Optional["ort.SessionOptions"] = None , **lowercase__ : List[str] , ): __lowercase : List[Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCAmelCase ): __lowercase : int = OnnxRuntimeModel.load_model( os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) __lowercase : str = Path(_UpperCAmelCase ) # load model from hub else: # download model __lowercase : Union[str, Any] = hf_hub_download( repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , ) __lowercase : List[str] = Path(_UpperCAmelCase ).parent __lowercase : Union[str, Any] = Path(_UpperCAmelCase ).name __lowercase : Any = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) return cls(model=_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def snake_case ( cls : Union[str, Any] , lowercase__ : Union[str, Path] , lowercase__ : bool = True , lowercase__ : Optional[str] = None , lowercase__ : Optional[str] = None , **lowercase__ : Any , ): __lowercase : List[str] = None if len(str(_UpperCAmelCase ).split("@" ) ) == 2: __lowercase : Any = model_id.split("@" ) return cls._from_pretrained( model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
575
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
0
'''simple docstring''' def __a ( lowerCAmelCase__ : int = 600851475143 ): try: a__ : int = int(lowerCAmelCase__ ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) a__ : Union[str, Any] = 2 a__ : int = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 a__ : Optional[int] = i while n % i == 0: a__ : int = n // i i += 1 return int(lowerCAmelCase__ ) if __name__ == "__main__": print(f'{solution() = }')
688
'''simple docstring''' def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): a__ : List[str] = len(lowerCAmelCase__ ) a__ : int = [[0] * n for i in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): a__ : Dict = y_points[i] for i in range(2 , lowerCAmelCase__ ): for j in range(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Any = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
688
1
'''simple docstring''' import math import sys import cva import numpy as np def __a ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ): # For applying gaussian function for each element in matrix. a__ : str = math.sqrt(lowerCAmelCase__ ) a__ : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __a ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ): a__ : List[Any] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : float ): # Creates a gaussian kernel of given dimension. a__ : Optional[int] = np.zeros((kernel_size, kernel_size) ) for i in range(0 , lowerCAmelCase__ ): for j in range(0 , lowerCAmelCase__ ): a__ : str = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : int , ): a__ : Tuple = np.zeros(img.shape ) a__ : Any = get_gauss_kernel(lowerCAmelCase__ , lowerCAmelCase__ ) a__ , a__ : Optional[Any] = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): a__ : Union[str, Any] = get_slice(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Dict = img_s - img_s[kernel_size // 2, kernel_size // 2] a__ : Union[str, Any] = vec_gaussian(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : str = np.multiply(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Any = np.multiply(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : str = np.sum(lowerCAmelCase__ ) / np.sum(lowerCAmelCase__ ) a__ : Optional[int] = val return imga def __a ( lowerCAmelCase__ : list ): a__ : List[str] = args[1] if args[1:] else '''../image_data/lena.jpg''' a__ : Dict = float(args[2] ) if args[2:] else 1.0 a__ : Optional[int] = float(args[3] ) if args[3:] else 1.0 if args[4:]: a__ : Optional[Any] = int(args[4] ) a__ : Any = kernel_size + abs(kernel_size % 2 - 1 ) else: a__ : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parse_args(sys.argv) __SCREAMING_SNAKE_CASE = cva.imread(filename, 0) cva.imshow('input image', img) __SCREAMING_SNAKE_CASE = img / 2_5_5 __SCREAMING_SNAKE_CASE = out.astype('float32') __SCREAMING_SNAKE_CASE = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) __SCREAMING_SNAKE_CASE = out * 2_5_5 __SCREAMING_SNAKE_CASE = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
688
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "swin2sr" __UpperCamelCase = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , A__ : int=6_4 , A__ : List[Any]=1 , A__ : List[Any]=3 , A__ : Any=1_8_0 , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Dict=8 , A__ : Any=2.0 , A__ : Optional[int]=True , A__ : Union[str, Any]=0.0 , A__ : Union[str, Any]=0.0 , A__ : List[str]=0.1 , A__ : Any="gelu" , A__ : Tuple=False , A__ : Optional[int]=0.02 , A__ : List[Any]=1E-5 , A__ : Any=2 , A__ : Union[str, Any]=1.0 , A__ : Dict="1conv" , A__ : Optional[Any]="pixelshuffle" , **A__ : Optional[Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(**A__ ) a__ : List[str] = image_size a__ : Optional[Any] = patch_size a__ : Dict = num_channels a__ : Optional[int] = embed_dim a__ : int = depths a__ : Optional[int] = len(A__ ) a__ : Dict = num_heads a__ : List[Any] = window_size a__ : Optional[int] = mlp_ratio a__ : Optional[int] = qkv_bias a__ : Union[str, Any] = hidden_dropout_prob a__ : Dict = attention_probs_dropout_prob a__ : Union[str, Any] = drop_path_rate a__ : int = hidden_act a__ : int = use_absolute_embeddings a__ : Dict = layer_norm_eps a__ : List[str] = initializer_range a__ : List[Any] = upscale a__ : List[Any] = img_range a__ : Optional[int] = resi_connection a__ : int = upsampler
688
1
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = AlbertTokenizer __UpperCamelCase = AlbertTokenizerFast __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True def __lowerCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing a__ : Any = AlbertTokenizer(A__ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : List[Any] , A__ : Dict ) -> Optional[int]: '''simple docstring''' a__ : Any = '''this is a test''' a__ : Union[str, Any] = '''this is a test''' return input_text, output_text def __lowerCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' a__ : Any = '''<pad>''' a__ : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A__ ) , A__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A__ ) , A__ ) def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' a__ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(A__ ) , 3_0_0_0_0 ) def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def __lowerCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' if not self.test_rust_tokenizer: return a__ : Dict = self.get_tokenizer() a__ : Optional[int] = self.get_rust_tokenizer() a__ : Tuple = '''I was born in 92000, and this is falsé.''' a__ : List[str] = tokenizer.tokenize(A__ ) a__ : Union[str, Any] = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) a__ : List[Any] = tokenizer.encode(A__ , add_special_tokens=A__ ) a__ : int = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) a__ : Any = self.get_rust_tokenizer() a__ : str = tokenizer.encode(A__ ) a__ : int = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) def __lowerCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' a__ : Any = AlbertTokenizer(A__ , keep_accents=A__ ) a__ : Tuple = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A__ , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [4_8, 2_5, 2_1, 1_2_8_9] ) a__ : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A__ , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) a__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(A__ ) self.assertListEqual(A__ , [3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] ) a__ : Optional[Any] = tokenizer.convert_ids_to_tokens(A__ ) self.assertListEqual( A__ , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def __lowerCAmelCase ( self : Optional[Any] ) -> Any: '''simple docstring''' a__ : Any = AlbertTokenizer(A__ ) a__ : int = tokenizer.encode('''sequence builders''' ) a__ : Any = tokenizer.encode('''multi-sequence build''' ) a__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(A__ ) a__ : Tuple = tokenizer.build_inputs_with_special_tokens(A__ , A__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def __lowerCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' a__ : Union[str, Any] = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A__ , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
688
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' a__ : int = 0 def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' a__ : Optional[int] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : List[Any] = Path(A__ ) / '''preprocessor_config.json''' a__ : List[Any] = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Any = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : int = Path(A__ ) / '''preprocessor_config.json''' a__ : Optional[Any] = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Tuple = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type a__ : int = Path(A__ ) / '''preprocessor_config.json''' a__ : Optional[int] = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally a__ : List[Any] = AutoImageProcessor.from_pretrained(A__ ).to_dict() config_dict.pop('''image_processor_type''' ) a__ : Union[str, Any] = CLIPImageProcessor(**A__ ) # save in new folder model_config.save_pretrained(A__ ) config.save_pretrained(A__ ) a__ : Union[str, Any] = AutoImageProcessor.from_pretrained(A__ ) # make sure private variable is not incorrectly saved a__ : Optional[Any] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) a__ : Any = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( A__ , '''clip-base is not a local folder and is not a valid model identifier''' ): a__ : str = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowerCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' with self.assertRaisesRegex( A__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): a__ : Tuple = AutoImageProcessor.from_pretrained(A__ , revision='''aaaaaa''' ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( A__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): a__ : Union[str, Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' with self.assertRaises(A__ ): a__ : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(A__ ): a__ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) a__ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) a__ : str = AutoImageProcessor.from_pretrained(A__ , trust_remote_code=A__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A__ ): AutoImageProcessor.register(A__ , A__ ) with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json''' a__ : List[str] = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Tuple = CustomImageProcessor.from_pretrained(A__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) a__ : Tuple = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = True try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # If remote code is not set, the default is to use local a__ : Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. a__ : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub a__ : Optional[int] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(A__ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
688
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = MBartConfig __UpperCamelCase = {} __UpperCamelCase = "gelu" def __init__( self : int , A__ : Any , A__ : Optional[int]=1_3 , A__ : Optional[int]=7 , A__ : Any=True , A__ : Dict=False , A__ : Dict=9_9 , A__ : List[Any]=3_2 , A__ : str=2 , A__ : str=4 , A__ : Union[str, Any]=3_7 , A__ : Union[str, Any]=0.1 , A__ : Tuple=0.1 , A__ : Dict=2_0 , A__ : Optional[int]=2 , A__ : Optional[Any]=1 , A__ : Optional[int]=0 , ) -> Dict: '''simple docstring''' a__ : Dict = parent a__ : Any = batch_size a__ : Any = seq_length a__ : Any = is_training a__ : Optional[int] = use_labels a__ : Dict = vocab_size a__ : Optional[int] = hidden_size a__ : Any = num_hidden_layers a__ : Optional[int] = num_attention_heads a__ : List[Any] = intermediate_size a__ : Optional[Any] = hidden_dropout_prob a__ : List[Any] = attention_probs_dropout_prob a__ : Union[str, Any] = max_position_embeddings a__ : Any = eos_token_id a__ : str = pad_token_id a__ : List[str] = bos_token_id def __lowerCAmelCase ( self : Tuple ) -> str: '''simple docstring''' a__ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a__ : Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a__ : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) a__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) a__ : str = prepare_mbart_inputs_dict(A__ , A__ , A__ ) return config, inputs_dict def __lowerCAmelCase ( self : Tuple , A__ : str , A__ : Optional[Any] ) -> List[Any]: '''simple docstring''' a__ : str = TFMBartModel(config=A__ ).get_decoder() a__ : Dict = inputs_dict['''input_ids'''] a__ : List[str] = input_ids[:1, :] a__ : Dict = inputs_dict['''attention_mask'''][:1, :] a__ : Any = inputs_dict['''head_mask'''] a__ : List[str] = 1 # first forward pass a__ : Optional[Any] = model(A__ , attention_mask=A__ , head_mask=A__ , use_cache=A__ ) a__ , a__ : str = outputs.to_tuple() a__ : Optional[int] = past_key_values[1] def __a ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : List[str]=None , ): if attention_mask is None: a__ : Optional[Any] = tf.cast(tf.math.not_equal(lowerCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: a__ : Any = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: a__ : Optional[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a__ : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: a__ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False def __lowerCAmelCase ( self : List[str] , A__ : Optional[int] , A__ : Union[str, Any] , A__ : Dict , A__ : Union[str, Any] , A__ : Any ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __lowerCAmelCase ( self : str ) -> int: '''simple docstring''' a__ : Union[str, Any] = TFMBartModelTester(self ) a__ : List[Any] = ConfigTester(self , config_class=A__ ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Dict ) -> List[Any]: '''simple docstring''' a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A__ ) @require_sentencepiece @require_tokenizers @require_tf class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCamelCase = [ " UN Chief Says There Is No Military Solution in Syria", ] __UpperCamelCase = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] __UpperCamelCase = "facebook/mbart-large-en-ro" @cached_property def __lowerCAmelCase ( self : int ) -> List[Any]: '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __lowerCAmelCase ( self : Dict ) -> str: '''simple docstring''' a__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __lowerCAmelCase ( self : List[str] , **A__ : Any ) -> Tuple: '''simple docstring''' a__ : Dict = self.translate_src_text(**A__ ) self.assertListEqual(self.expected_text , A__ ) def __lowerCAmelCase ( self : int , **A__ : str ) -> Optional[int]: '''simple docstring''' a__ : Optional[int] = self.tokenizer(self.src_text , **A__ , return_tensors='''tf''' ) a__ : List[Any] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) a__ : List[str] = self.tokenizer.batch_decode(A__ , skip_special_tokens=A__ ) return generated_words @slow def __lowerCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' self._assert_generated_batch_equal_expected()
688
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __SCREAMING_SNAKE_CASE = get_logger(__name__) class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = "dummy_data" __UpperCamelCase = "datasets" __UpperCamelCase = False def __init__( self : Any , A__ : str , A__ : str , A__ : Union[Version, str] , A__ : Optional[str] = None , A__ : bool = False , A__ : bool = True , A__ : Optional[List[Callable]] = None , ) -> int: '''simple docstring''' a__ : Tuple = 0 a__ : Any = dataset_name a__ : int = cache_dir a__ : str = use_local_dummy_data a__ : List[str] = config # download_callbacks take a single url as input a__ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root a__ : str = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general a__ : Optional[Any] = str(A__ ) # to be downloaded a__ : Tuple = None a__ : Tuple = None @property def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' if self._dummy_file is None: a__ : Dict = self.download_dummy_data() return self._dummy_file @property def __lowerCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' a__ : int = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) a__ : str = cached_path( A__ , cache_dir=self.cache_dir , extract_compressed_file=A__ , force_extract=A__ ) return os.path.join(A__ , self.dummy_file_name ) @property def __lowerCAmelCase ( self : int ) -> Optional[int]: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' if self._bucket_url is None: a__ : int = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int] , *A__ : int ) -> Union[str, Any]: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested a__ : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned a__ : Union[str, Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(A__ , A__ ): return self.create_dummy_data_dict(A__ , A__ ) elif isinstance(A__ , (list, tuple) ): return self.create_dummy_data_list(A__ , A__ ) else: return self.create_dummy_data_single(A__ , A__ ) def __lowerCAmelCase ( self : List[str] , A__ : Any , *A__ : int ) -> Any: '''simple docstring''' return self.download_and_extract(A__ ) def __lowerCAmelCase ( self : Any , A__ : Optional[int] , A__ : Optional[Any] ) -> int: '''simple docstring''' return self.download_and_extract(A__ ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : int , *A__ : List[Any] , **A__ : str ) -> Optional[Any]: '''simple docstring''' return path def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' return {} def __lowerCAmelCase ( self : int , A__ : Union[str, Any] , A__ : List[str] ) -> Any: '''simple docstring''' a__ : int = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(A__ , A__ ): for single_url in single_urls: download_callback(A__ ) else: a__ : Dict = single_urls download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(A__ , A__ ): a__ : Optional[int] = [os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) for x in single_urls] else: a__ : Optional[Any] = single_urls a__ : Tuple = os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) a__ : List[str] = value # make sure that values are unique if all(isinstance(A__ , A__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique a__ : Optional[int] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __lowerCAmelCase ( self : Dict , A__ : str , A__ : Optional[int] ) -> Optional[int]: '''simple docstring''' a__ : str = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one a__ : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , A__ ) ) for url in data_url ) a__ : Optional[Any] = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): a__ : Dict = [data_url[0]] * len(A__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a__ : Optional[int] = os.path.join(A__ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(A__ ) return dummy_data_list def __lowerCAmelCase ( self : Dict , A__ : Dict , A__ : str ) -> Optional[int]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a__ : Union[str, Any] = os.path.join(A__ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(A__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' pass def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: '''simple docstring''' pass def __lowerCAmelCase ( self : Any , A__ : Tuple ) -> Any: '''simple docstring''' def _iter_archive_members(A__ : str ): # this preserves the order of the members inside the ZIP archive a__ : Dict = Path(self.dummy_file ).parent a__ : Tuple = path.relative_to(A__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: a__ : Optional[Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(A__ ) a__ : str = Path(A__ ) a__ : Optional[Any] = _iter_archive_members(A__ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(A__ ).as_posix(), file_path.open('''rb''' ) def __lowerCAmelCase ( self : Tuple , A__ : Tuple ) -> Tuple: '''simple docstring''' if not isinstance(A__ , A__ ): a__ : int = [paths] for path in paths: if os.path.isfile(A__ ): if os.path.basename(A__ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(A__ ): if os.path.basename(A__ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(A__ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(A__ , A__ )
688
1
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : """simple docstring""" def __init__( self : Tuple , A__ : Any , A__ : str=3 , A__ : Union[str, Any]=3_2 , A__ : Dict=3 , A__ : List[str]=1_0 , A__ : Union[str, Any]=[1_0, 2_0, 3_0, 4_0] , A__ : Any=[1, 1, 2, 1] , A__ : List[str]=True , A__ : Tuple=True , A__ : Optional[Any]="relu" , A__ : str=3 , A__ : Tuple=None , ) -> Dict: '''simple docstring''' a__ : List[Any] = parent a__ : Any = batch_size a__ : int = image_size a__ : str = num_channels a__ : Tuple = embeddings_size a__ : Optional[Any] = hidden_sizes a__ : int = depths a__ : int = is_training a__ : List[str] = use_labels a__ : Optional[Any] = hidden_act a__ : Optional[int] = num_labels a__ : Optional[Any] = scope a__ : Optional[Any] = len(A__ ) def __lowerCAmelCase ( self : Optional[int] ) -> Any: '''simple docstring''' a__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : int = None if self.use_labels: a__ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) a__ : List[Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int] , A__ : List[str] , A__ : List[Any] ) -> List[str]: '''simple docstring''' a__ : Dict = RegNetModel(config=A__ ) model.to(A__ ) model.eval() a__ : List[Any] = model(A__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __lowerCAmelCase ( self : Any , A__ : Optional[Any] , A__ : Any , A__ : Union[str, Any] ) -> str: '''simple docstring''' a__ : Optional[int] = self.num_labels a__ : Any = RegNetForImageClassification(A__ ) model.to(A__ ) model.eval() a__ : Optional[Any] = model(A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' a__ : Union[str, Any] = self.prepare_config_and_inputs() a__ , a__ , a__ : List[str] = config_and_inputs a__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def __lowerCAmelCase ( self : Tuple ) -> int: '''simple docstring''' a__ : List[Any] = RegNetModelTester(self ) a__ : Optional[int] = ConfigTester(self , config_class=A__ , has_text_modality=A__ ) def __lowerCAmelCase ( self : int ) -> Any: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self : Any ) -> int: '''simple docstring''' pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' pass def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' a__ , a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[Any] = model_class(A__ ) a__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : List[str] = [*signature.parameters.keys()] a__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A__ ) def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def __lowerCAmelCase ( self : int ) -> List[Any]: '''simple docstring''' a__ , a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Any = model_class(config=A__ ) for name, module in model.named_modules(): if isinstance(A__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: '''simple docstring''' def check_hidden_states_output(A__ : List[str] , A__ : Optional[Any] , A__ : Any ): a__ : List[Any] = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): a__ : List[str] = model(**self._prepare_for_class(A__ , A__ ) ) a__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a__ : Dict = self.model_tester.num_stages self.assertEqual(len(A__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) a__ , a__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() a__ : Dict = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: a__ : Dict = layer_type a__ : Any = True check_hidden_states_output(A__ , A__ , A__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : Dict = True check_hidden_states_output(A__ , A__ , A__ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: '''simple docstring''' a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A__ ) @slow def __lowerCAmelCase ( self : int ) -> List[str]: '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : List[Any] = RegNetModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) def __a ( ): a__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A__ ) a__ : str = self.default_image_processor a__ : str = prepare_img() a__ : int = image_processor(images=A__ , return_tensors='''pt''' ).to(A__ ) # forward pass with torch.no_grad(): a__ : Optional[Any] = model(**A__ ) # verify the logits a__ : Union[str, Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , A__ ) a__ : List[str] = torch.tensor([-0.4_180, -1.5_051, -3.4_836] ).to(A__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A__ , atol=1E-4 ) )
688
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = LxmertTokenizer __UpperCamelCase = LxmertTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def __lowerCAmelCase ( self : str ) -> str: '''simple docstring''' super().setUp() a__ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self : int , A__ : int ) -> int: '''simple docstring''' a__ : List[Any] = '''UNwant\u00E9d,running''' a__ : Optional[int] = '''unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self : int ) -> Dict: '''simple docstring''' a__ : Optional[int] = self.tokenizer_class(self.vocab_file ) a__ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [7, 4, 5, 1_0, 8, 9] ) def __lowerCAmelCase ( self : Any ) -> Dict: '''simple docstring''' if not self.test_rust_tokenizer: return a__ : Union[str, Any] = self.get_tokenizer() a__ : Union[str, Any] = self.get_rust_tokenizer() a__ : str = '''I was born in 92000, and this is falsé.''' a__ : Tuple = tokenizer.tokenize(A__ ) a__ : Tuple = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) a__ : Optional[int] = tokenizer.encode(A__ , add_special_tokens=A__ ) a__ : Optional[Any] = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) a__ : List[str] = self.get_rust_tokenizer() a__ : str = tokenizer.encode(A__ ) a__ : int = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ )
688
1
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __SCREAMING_SNAKE_CASE = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 1_3_1_0_7_2, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, } def __a ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict ): return torch.atana(lowerCAmelCase__ , lowerCAmelCase__ ) / math.pi * 2 def __a ( lowerCAmelCase__ : Union[str, Any] ): a__ : List[Any] = torch.sin(t * math.pi / 2 ) ** 2 a__ : str = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowerCAmelCase__ , lowerCAmelCase__ ) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" pass class lowerCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , A__ : Union[str, Any] ) -> str: '''simple docstring''' super().__init__() a__ : Tuple = DiffusionAttnUnetaD(A__ , n_attn_layers=4 ) a__ : List[str] = deepcopy(self.diffusion ) a__ : Union[str, Any] = torch.quasirandom.SobolEngine(1 , scramble=A__ ) def __a ( lowerCAmelCase__ : Optional[Any] ): a__ : Dict = MODELS_MAP[model_name]['''url'''] os.system(F'wget {url} ./' ) return F'./{model_name}.ckpt' __SCREAMING_SNAKE_CASE = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } __SCREAMING_SNAKE_CASE = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } __SCREAMING_SNAKE_CASE = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } __SCREAMING_SNAKE_CASE = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } __SCREAMING_SNAKE_CASE = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } __SCREAMING_SNAKE_CASE = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def __a ( lowerCAmelCase__ : List[Any] ): if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __a ( lowerCAmelCase__ : str ): for key, value in ATTN_MAP.items(): if name.startswith(lowerCAmelCase__ ) and not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return name.replace(lowerCAmelCase__ , lowerCAmelCase__ ) elif name.startswith(lowerCAmelCase__ ): return [name.replace(lowerCAmelCase__ , lowerCAmelCase__ ) for v in value] raise ValueError(F'Attn error with {name}' ) def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str=13 ): a__ : Tuple = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) a__ : int = 0 if string.startswith('''net.3.''' ): depth += 1 a__ : Optional[int] = string[6:] elif string.startswith('''net.''' ): a__ : Dict = string[4:] while string.startswith('''main.7.''' ): depth += 1 a__ : Optional[int] = string[7:] if string.startswith('''main.''' ): a__ : Any = string[5:] # mid block if string[:2].isdigit(): a__ : List[str] = string[:2] a__ : int = string[2:] else: a__ : str = string[0] a__ : str = string[1:] if depth == max_depth: a__ : Any = MID_NUM_TO_LAYER[layer_num] a__ : Tuple = '''mid_block''' elif depth > 0 and int(lowerCAmelCase__ ) < 7: a__ : Optional[int] = DOWN_NUM_TO_LAYER[layer_num] a__ : int = F'down_blocks.{depth}' elif depth > 0 and int(lowerCAmelCase__ ) > 7: a__ : Any = UP_NUM_TO_LAYER[layer_num] a__ : Any = F'up_blocks.{max_depth - depth - 1}' elif depth == 0: a__ : Dict = DEPTH_0_TO_LAYER[layer_num] a__ : int = F'up_blocks.{max_depth - 1}' if int(lowerCAmelCase__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'Naming error with {input_string} and string_left: {string_left}.' ) a__ : str = string_left[1:] if "resnets" in new_layer: a__ : Optional[int] = convert_resconv_naming(lowerCAmelCase__ ) elif "attentions" in new_layer: a__ : Union[str, Any] = convert_attn_naming(lowerCAmelCase__ ) a__ : int = new_string_left if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Any = prefix + '''.''' + new_layer + '''.''' + string_left else: a__ : Union[str, Any] = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __a ( lowerCAmelCase__ : Union[str, Any] ): a__ : Optional[int] = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue a__ : Tuple = rename(lowerCAmelCase__ ) # check if we need to transform from Conv => Linear for attention if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : List[str] = transform_conv_attns(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: a__ : Union[str, Any] = v return new_state_dict def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict ): if len(lowerCAmelCase__ ) == 1: if len(v.shape ) == 3: # weight a__ : int = v[:, :, 0] else: # bias a__ : Optional[int] = v else: # qkv matrices a__ : Optional[Any] = v.shape[0] a__ : List[str] = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: a__ : List[Any] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: a__ : str = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __a ( lowerCAmelCase__ : Tuple ): a__ : List[Any] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) a__ : List[str] = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'Make sure to provide one of the official model names {MODELS_MAP.keys()}' a__ : int = download(lowerCAmelCase__ ) a__ : Optional[int] = MODELS_MAP[model_name]['''sample_rate'''] a__ : Tuple = MODELS_MAP[model_name]['''sample_size'''] a__ : Union[str, Any] = Object() a__ : List[Any] = sample_size a__ : Dict = sample_rate a__ : Union[str, Any] = 0 a__ : List[Any] = UNetaDModel(sample_size=lowerCAmelCase__ , sample_rate=lowerCAmelCase__ ) a__ : Union[str, Any] = diffusers_model.state_dict() a__ : Union[str, Any] = DiffusionUncond(lowerCAmelCase__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=lowerCAmelCase__ )['''state_dict'''] ) a__ : List[Any] = orig_model.diffusion_ema.eval() a__ : Union[str, Any] = orig_model.state_dict() a__ : int = rename_orig_weights(lowerCAmelCase__ ) a__ : Optional[Any] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) a__ : Any = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowerCAmelCase__ ) == 0, F'Problem with {renamed_minus_diffusers}' assert all(k.endswith('''kernel''' ) for k in list(lowerCAmelCase__ ) ), F'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": a__ : Tuple = value.squeeze() a__ : Any = value diffusers_model.load_state_dict(lowerCAmelCase__ ) a__ : Union[str, Any] = 100 a__ : Union[str, Any] = 33 a__ : str = IPNDMScheduler(num_train_timesteps=lowerCAmelCase__ ) a__ : Tuple = torch.manual_seed(lowerCAmelCase__ ) a__ : int = torch.randn([1, 2, config.sample_size] , generator=lowerCAmelCase__ ).to(lowerCAmelCase__ ) a__ : List[Any] = torch.linspace(1 , 0 , steps + 1 , device=lowerCAmelCase__ )[:-1] a__ : int = get_crash_schedule(lowerCAmelCase__ ) a__ : Optional[Any] = DanceDiffusionPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) a__ : Optional[int] = torch.manual_seed(33 ) a__ : Dict = pipe(num_inference_steps=lowerCAmelCase__ , generator=lowerCAmelCase__ ).audios a__ : str = sampling.iplms_sample(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {} ) a__ : List[Any] = generated.clamp(-1 , 1 ) a__ : Union[str, Any] = (generated - audio).abs().sum() a__ : str = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , lowerCAmelCase__ ) print('''Diff max''' , lowerCAmelCase__ ) assert diff_max < 1E-3, F'Diff max: {diff_max} is too much :-/' print(F'Conversion for {model_name} successful!' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') __SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
688
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file a__ : Dict = TapasConfig.from_json_file(lowerCAmelCase__ ) # set absolute/relative position embeddings parameter a__ : List[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": a__ : Optional[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "WTQ": # run_task_main.py hparams a__ : List[str] = 4 a__ : Optional[int] = True # hparam_utils.py hparams a__ : List[Any] = 0.664694 a__ : List[Any] = 0.207951 a__ : Union[str, Any] = 0.121194 a__ : Optional[Any] = True a__ : Optional[int] = True a__ : List[str] = False a__ : Union[str, Any] = 0.0352513 a__ : Any = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams a__ : Tuple = 4 a__ : Dict = False # hparam_utils.py hparams a__ : str = 36.4519 a__ : str = 0.903421 a__ : Optional[Any] = 222.088 a__ : Dict = True a__ : Dict = True a__ : Dict = True a__ : str = 0.763141 a__ : List[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "TABFACT": a__ : List[str] = TapasForSequenceClassification(config=lowerCAmelCase__ ) elif task == "MLM": a__ : Tuple = TapasForMaskedLM(config=lowerCAmelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": a__ : List[str] = TapasModel(config=lowerCAmelCase__ ) else: raise ValueError(F'Task {task} not supported.' ) print(F'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model (weights and configuration) print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowerCAmelCase__ ) # Save tokenizer files print(F'Save tokenizer files to {pytorch_dump_path}' ) a__ : Optional[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 ) tokenizer.save_pretrained(lowerCAmelCase__ ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
1
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __SCREAMING_SNAKE_CASE = tuple[int, int] class lowerCAmelCase__ : """simple docstring""" def __init__( self : str , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int , A__ : Node | None , ) -> None: '''simple docstring''' a__ : Optional[int] = pos_x a__ : str = pos_y a__ : Optional[int] = (pos_y, pos_x) a__ : List[str] = goal_x a__ : Any = goal_y a__ : Any = g_cost a__ : Optional[int] = parent a__ : Union[str, Any] = self.calculate_heuristic() a__ : List[Any] = self.g_cost + self.h_cost def __lowerCAmelCase ( self : Union[str, Any] ) -> float: '''simple docstring''' a__ : List[str] = self.pos_x - self.goal_x a__ : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A__ ) + abs(A__ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : List[Any] , A__ : Node ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , A__ : TPosition , A__ : TPosition ) -> Optional[Any]: '''simple docstring''' a__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A__ ) a__ : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , A__ ) a__ : Dict = [self.start] a__ : list[Node] = [] a__ : str = False def __lowerCAmelCase ( self : List[str] ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() a__ : Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A__ ) self.closed_nodes.append(A__ ) a__ : List[Any] = self.get_successors(A__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A__ ) else: # retrieve the best current path a__ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A__ ) else: self.open_nodes.append(A__ ) return [self.start.pos] def __lowerCAmelCase ( self : Optional[Any] , A__ : Node ) -> list[Node]: '''simple docstring''' a__ : Optional[int] = [] for action in delta: a__ : List[Any] = parent.pos_x + action[1] a__ : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A__ , A__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A__ , ) ) return successors def __lowerCAmelCase ( self : List[Any] , A__ : Node | None ) -> list[TPosition]: '''simple docstring''' a__ : Union[str, Any] = node a__ : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) a__ : Any = current_node.parent path.reverse() return path class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , A__ : TPosition , A__ : TPosition ) -> None: '''simple docstring''' a__ : str = AStar(A__ , A__ ) a__ : Optional[int] = AStar(A__ , A__ ) a__ : List[str] = False def __lowerCAmelCase ( self : Tuple ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() a__ : int = self.fwd_astar.open_nodes.pop(0 ) a__ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A__ , A__ ) self.fwd_astar.closed_nodes.append(A__ ) self.bwd_astar.closed_nodes.append(A__ ) a__ : Tuple = current_bwd_node a__ : Optional[int] = current_fwd_node a__ : Optional[int] = { self.fwd_astar: self.fwd_astar.get_successors(A__ ), self.bwd_astar: self.bwd_astar.get_successors(A__ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A__ ) else: # retrieve the best current path a__ : Optional[Any] = astar.open_nodes.pop( astar.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A__ ) else: astar.open_nodes.append(A__ ) return [self.fwd_astar.start.pos] def __lowerCAmelCase ( self : List[str] , A__ : Node , A__ : Node ) -> list[TPosition]: '''simple docstring''' a__ : str = self.fwd_astar.retrace_path(A__ ) a__ : List[str] = self.bwd_astar.retrace_path(A__ ) bwd_path.pop() bwd_path.reverse() a__ : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __SCREAMING_SNAKE_CASE = (0, 0) __SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __SCREAMING_SNAKE_CASE = time.time() __SCREAMING_SNAKE_CASE = AStar(init, goal) __SCREAMING_SNAKE_CASE = a_star.search() __SCREAMING_SNAKE_CASE = time.time() - start_time print(f'AStar execution time = {end_time:f} seconds') __SCREAMING_SNAKE_CASE = time.time() __SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) __SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
688
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } __SCREAMING_SNAKE_CASE = { 'google/fnet-base': 5_1_2, 'google/fnet-large': 5_1_2, } __SCREAMING_SNAKE_CASE = '▁' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "token_type_ids"] __UpperCamelCase = FNetTokenizer def __init__( self : Any , A__ : Any=None , A__ : int=None , A__ : List[str]=False , A__ : int=True , A__ : str=True , A__ : List[Any]="<unk>" , A__ : Dict="[SEP]" , A__ : List[str]="<pad>" , A__ : Union[str, Any]="[CLS]" , A__ : Dict="[MASK]" , **A__ : Tuple , ) -> List[str]: '''simple docstring''' a__ : Optional[int] = ( AddedToken(A__ , lstrip=A__ , rstrip=A__ , normalized=A__ ) if isinstance(A__ , A__ ) else mask_token ) super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , **A__ , ) a__ : Optional[Any] = do_lower_case a__ : Dict = remove_space a__ : List[Any] = keep_accents a__ : Optional[Any] = vocab_file a__ : Any = False if not self.vocab_file else True def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Optional[int] = [self.sep_token_id] a__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self : List[Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Dict = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Tuple , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ : Union[str, Any] = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ): copyfile(self.vocab_file , A__ ) return (out_vocab_file,)
688
1
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 3 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" pass def __a ( lowerCAmelCase__ : List[str] ): for shard in shards: for i in range(lowerCAmelCase__ ): yield {"i": i, "shard": shard} def __a ( ): a__ : str = int(os.environ['''RANK'''] ) a__ : int = int(os.environ['''WORLD_SIZE'''] ) a__ : str = ArgumentParser() parser.add_argument('''--streaming''' , type=lowerCAmelCase__ ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase__ ) parser.add_argument('''--num_workers''' , type=lowerCAmelCase__ , default=0 ) a__ : int = parser.parse_args() a__ : List[str] = args.streaming a__ : Dict = args.num_workers a__ : Dict = {'''shards''': [F'shard_{shard_idx}' for shard_idx in range(lowerCAmelCase__ )]} a__ : Tuple = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ ) if not streaming: a__ : str = Dataset.from_list(list(lowerCAmelCase__ ) ) a__ : Optional[int] = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ ) a__ : Dict = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ ) a__ : str = NUM_SHARDS * NUM_ITEMS_PER_SHARD a__ : Dict = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) a__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
688
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } __SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': 5_1_2, 'distilbert-base-uncased-distilled-squad': 5_1_2, 'distilbert-base-cased': 5_1_2, 'distilbert-base-cased-distilled-squad': 5_1_2, 'distilbert-base-german-cased': 5_1_2, 'distilbert-base-multilingual-cased': 5_1_2, } __SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = ["input_ids", "attention_mask"] __UpperCamelCase = DistilBertTokenizer def __init__( self : str , A__ : Optional[Any]=None , A__ : Any=None , A__ : Tuple=True , A__ : List[Any]="[UNK]" , A__ : List[str]="[SEP]" , A__ : Tuple="[PAD]" , A__ : Optional[int]="[CLS]" , A__ : Union[str, Any]="[MASK]" , A__ : List[str]=True , A__ : Any=None , **A__ : int , ) -> str: '''simple docstring''' super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , ) a__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , A__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , A__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A__ ) != tokenize_chinese_chars ): a__ : int = getattr(A__ , normalizer_state.pop('''type''' ) ) a__ : List[Any] = do_lower_case a__ : str = strip_accents a__ : List[str] = tokenize_chinese_chars a__ : Dict = normalizer_class(**A__ ) a__ : List[Any] = do_lower_case def __lowerCAmelCase ( self : Tuple , A__ : List[str] , A__ : Dict=None ) -> List[str]: '''simple docstring''' a__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : List[str] = [self.sep_token_id] a__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : str , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' a__ : int = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
688
1
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __SCREAMING_SNAKE_CASE = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') __SCREAMING_SNAKE_CASE = subprocess.check_output(f'git diff --name-only {fork_point_sha}'.split()).decode('utf-8').split() __SCREAMING_SNAKE_CASE = '|'.join(sys.argv[1:]) __SCREAMING_SNAKE_CASE = re.compile(Rf'^({joined_dirs}).*?\.py$') __SCREAMING_SNAKE_CASE = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
688
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __SCREAMING_SNAKE_CASE = tuple[int, int] class lowerCAmelCase__ : """simple docstring""" def __init__( self : str , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int , A__ : Node | None , ) -> None: '''simple docstring''' a__ : Optional[int] = pos_x a__ : str = pos_y a__ : Optional[int] = (pos_y, pos_x) a__ : List[str] = goal_x a__ : Any = goal_y a__ : Any = g_cost a__ : Optional[int] = parent a__ : Union[str, Any] = self.calculate_heuristic() a__ : List[Any] = self.g_cost + self.h_cost def __lowerCAmelCase ( self : Union[str, Any] ) -> float: '''simple docstring''' a__ : List[str] = self.pos_x - self.goal_x a__ : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A__ ) + abs(A__ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : List[Any] , A__ : Node ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , A__ : TPosition , A__ : TPosition ) -> Optional[Any]: '''simple docstring''' a__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A__ ) a__ : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , A__ ) a__ : Dict = [self.start] a__ : list[Node] = [] a__ : str = False def __lowerCAmelCase ( self : List[str] ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() a__ : Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A__ ) self.closed_nodes.append(A__ ) a__ : List[Any] = self.get_successors(A__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A__ ) else: # retrieve the best current path a__ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A__ ) else: self.open_nodes.append(A__ ) return [self.start.pos] def __lowerCAmelCase ( self : Optional[Any] , A__ : Node ) -> list[Node]: '''simple docstring''' a__ : Optional[int] = [] for action in delta: a__ : List[Any] = parent.pos_x + action[1] a__ : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A__ , A__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A__ , ) ) return successors def __lowerCAmelCase ( self : List[Any] , A__ : Node | None ) -> list[TPosition]: '''simple docstring''' a__ : Union[str, Any] = node a__ : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) a__ : Any = current_node.parent path.reverse() return path class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , A__ : TPosition , A__ : TPosition ) -> None: '''simple docstring''' a__ : str = AStar(A__ , A__ ) a__ : Optional[int] = AStar(A__ , A__ ) a__ : List[str] = False def __lowerCAmelCase ( self : Tuple ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() a__ : int = self.fwd_astar.open_nodes.pop(0 ) a__ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A__ , A__ ) self.fwd_astar.closed_nodes.append(A__ ) self.bwd_astar.closed_nodes.append(A__ ) a__ : Tuple = current_bwd_node a__ : Optional[int] = current_fwd_node a__ : Optional[int] = { self.fwd_astar: self.fwd_astar.get_successors(A__ ), self.bwd_astar: self.bwd_astar.get_successors(A__ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A__ ) else: # retrieve the best current path a__ : Optional[Any] = astar.open_nodes.pop( astar.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A__ ) else: astar.open_nodes.append(A__ ) return [self.fwd_astar.start.pos] def __lowerCAmelCase ( self : List[str] , A__ : Node , A__ : Node ) -> list[TPosition]: '''simple docstring''' a__ : str = self.fwd_astar.retrace_path(A__ ) a__ : List[str] = self.bwd_astar.retrace_path(A__ ) bwd_path.pop() bwd_path.reverse() a__ : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __SCREAMING_SNAKE_CASE = (0, 0) __SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __SCREAMING_SNAKE_CASE = time.time() __SCREAMING_SNAKE_CASE = AStar(init, goal) __SCREAMING_SNAKE_CASE = a_star.search() __SCREAMING_SNAKE_CASE = time.time() - start_time print(f'AStar execution time = {end_time:f} seconds') __SCREAMING_SNAKE_CASE = time.time() __SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) __SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
688
1
'''simple docstring''' import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = R'\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" @add_start_docstrings(A__ ) def __call__( self : Optional[int] , A__ : torch.LongTensor , A__ : torch.FloatTensor , **A__ : Optional[int] ) -> bool: '''simple docstring''' raise NotImplementedError('''StoppingCriteria needs to be subclassed''' ) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[int] , A__ : int , A__ : Optional[int] = None ) -> str: '''simple docstring''' a__ : str = max_length a__ : List[Any] = max_position_embeddings @add_start_docstrings(A__ ) def __call__( self : Dict , A__ : torch.LongTensor , A__ : torch.FloatTensor , **A__ : List[str] ) -> bool: '''simple docstring''' a__ : Tuple = input_ids.shape[-1] a__ : int = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' F'maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ' '''exceptions, performance degradation, or nothing at all.''' ) return is_done class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , A__ : int , A__ : int ) -> str: '''simple docstring''' warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' F'Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ' '''with `max_length = start_length + max_new_tokens` instead.''' , A__ , ) a__ : int = start_length a__ : Optional[Any] = max_new_tokens a__ : int = start_length + max_new_tokens @add_start_docstrings(A__ ) def __call__( self : Dict , A__ : torch.LongTensor , A__ : torch.FloatTensor , **A__ : Dict ) -> bool: '''simple docstring''' return input_ids.shape[-1] >= self.max_length class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , A__ : float , A__ : Optional[float] = None ) -> List[str]: '''simple docstring''' a__ : List[str] = max_time a__ : Union[str, Any] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(A__ ) def __call__( self : List[str] , A__ : torch.LongTensor , A__ : torch.FloatTensor , **A__ : Optional[int] ) -> bool: '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" @add_start_docstrings(A__ ) def __call__( self : Dict , A__ : torch.LongTensor , A__ : torch.FloatTensor , **A__ : Optional[Any] ) -> bool: '''simple docstring''' return any(criteria(A__ , A__ ) for criteria in self ) @property def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' for stopping_criterium in self: if isinstance(A__ , A__ ): return stopping_criterium.max_length elif isinstance(A__ , A__ ): return stopping_criterium.max_length return None def __a ( lowerCAmelCase__ : StoppingCriteriaList , lowerCAmelCase__ : int ): a__ : List[Any] = stopping_criteria.max_length a__ : Union[str, Any] = deepcopy(lowerCAmelCase__ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , lowerCAmelCase__ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=lowerCAmelCase__ ) ) return new_stopping_criteria
688
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ): # Construct model if gpta_config_file == "": a__ : Union[str, Any] = GPTaConfig() else: a__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase__ ) a__ : Optional[int] = GPTaModel(lowerCAmelCase__ ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model a__ : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME a__ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
688
1
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=8 ): a__ : List[str] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 a__ : Tuple = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , A__ : MultilingualCLIP , A__ : XLMRobertaTokenizer , A__ : UNetaDConditionModel , A__ : Union[DDIMScheduler, DDPMScheduler] , A__ : VQModel , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules( text_encoder=A__ , tokenizer=A__ , unet=A__ , scheduler=A__ , movq=A__ , ) a__ : str = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self : int , A__ : Dict , A__ : Dict , A__ : List[Any] , A__ : int , A__ : Union[str, Any] , A__ : Tuple ) -> Tuple: '''simple docstring''' if latents is None: a__ : List[Any] = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) a__ : int = latents.to(A__ ) a__ : Any = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self : Optional[int] , A__ : List[Any] , A__ : List[str] , A__ : str , A__ : Optional[Any] , A__ : int=None , ) -> List[str]: '''simple docstring''' a__ : Dict = len(A__ ) if isinstance(A__ , A__ ) else 1 # get prompt text embeddings a__ : str = self.tokenizer( A__ , padding='''max_length''' , truncation=A__ , max_length=7_7 , return_attention_mask=A__ , add_special_tokens=A__ , return_tensors='''pt''' , ) a__ : str = text_inputs.input_ids a__ : int = self.tokenizer(A__ , padding='''longest''' , return_tensors='''pt''' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(A__ , A__ ): a__ : List[str] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) a__ : Optional[Any] = text_input_ids.to(A__ ) a__ : Dict = text_inputs.attention_mask.to(A__ ) a__ , a__ : Tuple = self.text_encoder( input_ids=A__ , attention_mask=A__ ) a__ : Optional[int] = prompt_embeds.repeat_interleave(A__ , dim=0 ) a__ : str = text_encoder_hidden_states.repeat_interleave(A__ , dim=0 ) a__ : List[str] = text_mask.repeat_interleave(A__ , dim=0 ) if do_classifier_free_guidance: a__ : List[str] if negative_prompt is None: a__ : Optional[int] = [''''''] * batch_size elif type(A__ ) is not type(A__ ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(A__ )} !=' F' {type(A__ )}.' ) elif isinstance(A__ , A__ ): a__ : str = [negative_prompt] elif batch_size != len(A__ ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(A__ )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ''' the batch size of `prompt`.''' ) else: a__ : Optional[int] = negative_prompt a__ : int = self.tokenizer( A__ , padding='''max_length''' , max_length=7_7 , truncation=A__ , return_attention_mask=A__ , add_special_tokens=A__ , return_tensors='''pt''' , ) a__ : Dict = uncond_input.input_ids.to(A__ ) a__ : List[Any] = uncond_input.attention_mask.to(A__ ) a__ , a__ : Optional[int] = self.text_encoder( input_ids=A__ , attention_mask=A__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method a__ : Optional[Any] = negative_prompt_embeds.shape[1] a__ : Union[str, Any] = negative_prompt_embeds.repeat(1 , A__ ) a__ : Dict = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A__ ) a__ : Optional[int] = uncond_text_encoder_hidden_states.shape[1] a__ : List[str] = uncond_text_encoder_hidden_states.repeat(1 , A__ , 1 ) a__ : int = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , A__ , -1 ) a__ : List[Any] = uncond_text_mask.repeat_interleave(A__ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes a__ : str = torch.cat([negative_prompt_embeds, prompt_embeds] ) a__ : str = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) a__ : Union[str, Any] = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __lowerCAmelCase ( self : Tuple , A__ : Tuple=0 ) -> Optional[int]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) a__ : Optional[Any] = torch.device(F'cuda:{gpu_id}' ) a__ : Optional[Any] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A__ , A__ ) def __lowerCAmelCase ( self : Dict , A__ : Optional[Any]=0 ) -> Any: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) a__ : Tuple = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=A__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a__ : str = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: a__ , a__ : Optional[int] = cpu_offload_with_hook(A__ , A__ , prev_module_hook=A__ ) if self.safety_checker is not None: a__ , a__ : List[str] = cpu_offload_with_hook(self.safety_checker , A__ , prev_module_hook=A__ ) # We'll offload the last model manually. a__ : str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self : int ) -> Any: '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(A__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A__ ) def __call__( self : Dict , A__ : Union[str, List[str]] , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : Optional[Union[str, List[str]]] = None , A__ : int = 5_1_2 , A__ : int = 5_1_2 , A__ : int = 1_0_0 , A__ : float = 4.0 , A__ : int = 1 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[torch.FloatTensor] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> Union[str, Any]: '''simple docstring''' if isinstance(A__ , A__ ): a__ : Union[str, Any] = 1 elif isinstance(A__ , A__ ): a__ : List[str] = len(A__ ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(A__ )}' ) a__ : List[str] = self._execution_device a__ : int = batch_size * num_images_per_prompt a__ : List[Any] = guidance_scale > 1.0 a__ , a__ , a__ : str = self._encode_prompt( A__ , A__ , A__ , A__ , A__ ) if isinstance(A__ , A__ ): a__ : List[Any] = torch.cat(A__ , dim=0 ) if isinstance(A__ , A__ ): a__ : List[str] = torch.cat(A__ , dim=0 ) if do_classifier_free_guidance: a__ : Any = image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Dict = negative_image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=A__ ) self.scheduler.set_timesteps(A__ , device=A__ ) a__ : Optional[Any] = self.scheduler.timesteps a__ : List[Any] = self.unet.config.in_channels a__ , a__ : Union[str, Any] = get_new_h_w(A__ , A__ , self.movq_scale_factor ) # create initial latent a__ : Any = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , A__ , A__ , A__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A__ ) ): # expand the latents if we are doing classifier free guidance a__ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a__ : Any = {'''text_embeds''': prompt_embeds, '''image_embeds''': image_embeds} a__ : Dict = self.unet( sample=A__ , timestep=A__ , encoder_hidden_states=A__ , added_cond_kwargs=A__ , return_dict=A__ , )[0] if do_classifier_free_guidance: a__ , a__ : Any = noise_pred.split(latents.shape[1] , dim=1 ) a__ , a__ : List[str] = noise_pred.chunk(2 ) a__ , a__ : Tuple = variance_pred.chunk(2 ) a__ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a__ : int = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a__ , a__ : str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a__ : int = self.scheduler.step( A__ , A__ , A__ , generator=A__ , ).prev_sample # post-processing a__ : Dict = self.movq.decode(A__ , force_not_quantize=A__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: a__ : Optional[Any] = image * 0.5 + 0.5 a__ : str = image.clamp(0 , 1 ) a__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a__ : List[str] = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } __SCREAMING_SNAKE_CASE = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } __SCREAMING_SNAKE_CASE = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: __SCREAMING_SNAKE_CASE = reader.read() __SCREAMING_SNAKE_CASE = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): __SCREAMING_SNAKE_CASE = UNetaDModel(**config) else: __SCREAMING_SNAKE_CASE = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel __SCREAMING_SNAKE_CASE = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __SCREAMING_SNAKE_CASE = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __SCREAMING_SNAKE_CASE = config[key] del config[key] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['down_block_types']] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: __SCREAMING_SNAKE_CASE = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) __SCREAMING_SNAKE_CASE = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue __SCREAMING_SNAKE_CASE = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: __SCREAMING_SNAKE_CASE = param_value __SCREAMING_SNAKE_CASE = True if not has_changed: __SCREAMING_SNAKE_CASE = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
688
1
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCAmelCase__ : """simple docstring""" @property def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' return self.get_dummy_input() @property def __lowerCAmelCase ( self : Tuple ) -> Any: '''simple docstring''' if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(F'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def __lowerCAmelCase ( self : Dict , A__ : Tuple=True , A__ : List[Any]=False , A__ : List[str]=False , A__ : List[Any]=False , ) -> str: '''simple docstring''' a__ : List[Any] = 4 a__ : Dict = 3_2 a__ : int = (3_2, 3_2) a__ : Union[str, Any] = torch.manual_seed(0 ) a__ : Union[str, Any] = torch.device(A__ ) a__ : Optional[int] = (batch_size, num_channels) + sizes a__ : Optional[Any] = randn_tensor(A__ , generator=A__ , device=A__ ) a__ : int = {'''hidden_states''': hidden_states} if include_temb: a__ : List[Any] = 1_2_8 a__ : List[str] = randn_tensor((batch_size, temb_channels) , generator=A__ , device=A__ ) if include_res_hidden_states_tuple: a__ : str = torch.manual_seed(1 ) a__ : int = (randn_tensor(A__ , generator=A__ , device=A__ ),) if include_encoder_hidden_states: a__ : List[Any] = floats_tensor((batch_size, 3_2, 3_2) ).to(A__ ) if include_skip_sample: a__ : Optional[Any] = randn_tensor(((batch_size, 3) + sizes) , generator=A__ , device=A__ ) return dummy_input def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' a__ : List[str] = { '''in_channels''': 3_2, '''out_channels''': 3_2, '''temb_channels''': 1_2_8, } if self.block_type == "up": a__ : int = 3_2 if self.block_type == "mid": init_dict.pop('''out_channels''' ) a__ : Tuple = self.dummy_input return init_dict, inputs_dict def __lowerCAmelCase ( self : Dict , A__ : Any ) -> str: '''simple docstring''' a__ , a__ : List[Any] = self.prepare_init_args_and_inputs_for_common() a__ : Union[str, Any] = self.block_class(**A__ ) unet_block.to(A__ ) unet_block.eval() with torch.no_grad(): a__ : Tuple = unet_block(**A__ ) if isinstance(A__ , A__ ): a__ : Dict = output[0] self.assertEqual(output.shape , self.output_shape ) a__ : Optional[int] = output[0, -1, -3:, -3:] a__ : List[str] = torch.tensor(A__ ).to(A__ ) assert torch_all_close(output_slice.flatten() , A__ , atol=5E-3 ) @unittest.skipIf(torch_device == '''mps''' , '''Training is not supported in mps''' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' a__ , a__ : Dict = self.prepare_init_args_and_inputs_for_common() a__ : Optional[int] = self.block_class(**A__ ) model.to(A__ ) model.train() a__ : Dict = model(**A__ ) if isinstance(A__ , A__ ): a__ : Tuple = output[0] a__ : Dict = torch.device(A__ ) a__ : Union[str, Any] = randn_tensor(output.shape , device=A__ ) a__ : str = torch.nn.functional.mse_loss(A__ , A__ ) loss.backward()
688
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = (KDPMaDiscreteScheduler,) __UpperCamelCase = 10 def __lowerCAmelCase ( self : Optional[Any] , **A__ : Optional[int] ) -> int: '''simple docstring''' a__ : Optional[int] = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**A__ ) return config def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=A__ ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=A__ , beta_end=A__ ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A__ ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A__ ) def __lowerCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' a__ : Any = self.scheduler_classes[0] a__ : str = self.get_scheduler_config(prediction_type='''v_prediction''' ) a__ : Dict = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : Tuple = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Dict = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : Optional[Any] = scheduler.scale_model_input(A__ , A__ ) a__ : Union[str, Any] = model(A__ , A__ ) a__ : List[str] = scheduler.step(A__ , A__ , A__ ) a__ : Optional[Any] = output.prev_sample a__ : Tuple = torch.sum(torch.abs(A__ ) ) a__ : Optional[int] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' if torch_device == "mps": return a__ : List[Any] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : Tuple = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : List[Any] = self.dummy_model() a__ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Any = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : str = scheduler.scale_model_input(A__ , A__ ) a__ : List[str] = model(A__ , A__ ) a__ : str = scheduler.step(A__ , A__ , A__ ) a__ : List[Any] = output.prev_sample a__ : Dict = torch.sum(torch.abs(A__ ) ) a__ : Optional[Any] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> int: '''simple docstring''' if torch_device == "mps": return a__ : Optional[int] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : List[Any] = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps , device=A__ ) a__ : Union[str, Any] = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter.to(A__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: a__ : Optional[int] = scheduler.scale_model_input(A__ , A__ ) a__ : List[Any] = model(A__ , A__ ) a__ : Any = scheduler.step(A__ , A__ , A__ ) a__ : List[str] = output.prev_sample a__ : Any = torch.sum(torch.abs(A__ ) ) a__ : Union[str, Any] = torch.mean(torch.abs(A__ ) ) if str(A__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
688
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = 42 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : List[str] , A__ : PriorTransformer , A__ : CLIPVisionModel , A__ : CLIPImageProcessor , A__ : HeunDiscreteScheduler , A__ : ShapERenderer , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( prior=A__ , image_encoder=A__ , image_processor=A__ , scheduler=A__ , renderer=A__ , ) def __lowerCAmelCase ( self : str , A__ : Tuple , A__ : Tuple , A__ : Any , A__ : Dict , A__ : List[str] , A__ : List[str] ) -> Tuple: '''simple docstring''' if latents is None: a__ : List[str] = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) a__ : Union[str, Any] = latents.to(A__ ) a__ : Tuple = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self : Any , A__ : Dict=0 ) -> Any: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) a__ : Optional[int] = torch.device(F'cuda:{gpu_id}' ) a__ : int = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A__ , A__ ) @property def __lowerCAmelCase ( self : int ) -> Optional[int]: '''simple docstring''' if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(A__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __lowerCAmelCase ( self : List[Any] , A__ : List[Any] , A__ : Union[str, Any] , A__ : Optional[Any] , A__ : str , ) -> Optional[int]: '''simple docstring''' if isinstance(A__ , A__ ) and isinstance(image[0] , torch.Tensor ): a__ : List[Any] = torch.cat(A__ , axis=0 ) if image[0].ndim == 4 else torch.stack(A__ , axis=0 ) if not isinstance(A__ , torch.Tensor ): a__ : Optional[int] = self.image_processor(A__ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) a__ : Optional[int] = image.to(dtype=self.image_encoder.dtype , device=A__ ) a__ : str = self.image_encoder(A__ )['''last_hidden_state'''] a__ : int = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 a__ : List[str] = image_embeds.repeat_interleave(A__ , dim=0 ) if do_classifier_free_guidance: a__ : Union[str, Any] = torch.zeros_like(A__ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes a__ : Any = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(A__ ) def __call__( self : Optional[int] , A__ : Union[PIL.Image.Image, List[PIL.Image.Image]] , A__ : int = 1 , A__ : int = 2_5 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[torch.FloatTensor] = None , A__ : float = 4.0 , A__ : int = 6_4 , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> Union[str, Any]: '''simple docstring''' if isinstance(A__ , PIL.Image.Image ): a__ : int = 1 elif isinstance(A__ , torch.Tensor ): a__ : Any = image.shape[0] elif isinstance(A__ , A__ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): a__ : Dict = len(A__ ) else: raise ValueError( F'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(A__ )}' ) a__ : Dict = self._execution_device a__ : List[str] = batch_size * num_images_per_prompt a__ : Optional[int] = guidance_scale > 1.0 a__ : int = self._encode_image(A__ , A__ , A__ , A__ ) # prior self.scheduler.set_timesteps(A__ , device=A__ ) a__ : Optional[int] = self.scheduler.timesteps a__ : Tuple = self.prior.config.num_embeddings a__ : str = self.prior.config.embedding_dim a__ : Tuple = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , A__ , A__ , A__ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim a__ : List[Any] = latents.reshape(latents.shape[0] , A__ , A__ ) for i, t in enumerate(self.progress_bar(A__ ) ): # expand the latents if we are doing classifier free guidance a__ : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a__ : Optional[int] = self.scheduler.scale_model_input(A__ , A__ ) a__ : int = self.prior( A__ , timestep=A__ , proj_embedding=A__ , ).predicted_image_embedding # remove the variance a__ , a__ : List[str] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: a__ , a__ : Optional[int] = noise_pred.chunk(2 ) a__ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) a__ : Optional[Any] = self.scheduler.step( A__ , timestep=A__ , sample=A__ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=A__ ) a__ : Any = [] for i, latent in enumerate(A__ ): print() a__ : int = self.renderer.decode( latent[None, :] , A__ , size=A__ , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(A__ ) a__ : Optional[int] = torch.stack(A__ ) if output_type not in ["np", "pil"]: raise ValueError(F'Only the output types `pil` and `np` are supported not output_type={output_type}' ) a__ : Optional[Any] = images.cpu().numpy() if output_type == "pil": a__ : Tuple = [self.numpy_to_pil(A__ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=A__ )
688
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' a__ : str = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None a__ , a__ : List[Any] = get_aligned_output_features_output_indices(A__ , A__ , A__ ) self.assertEqual(A__ , ['''c'''] ) self.assertEqual(A__ , [2] ) # Out indices set to match out features a__ , a__ : Optional[int] = get_aligned_output_features_output_indices(['''a''', '''c'''] , A__ , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [0, 2] ) # Out features set to match out indices a__ , a__ : int = get_aligned_output_features_output_indices(A__ , [0, 2] , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [0, 2] ) # Out features selected from negative indices a__ , a__ : List[str] = get_aligned_output_features_output_indices(A__ , [-3, -1] , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [-3, -1] ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , A__ ) # Out features must be a list with self.assertRaises(A__ ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(A__ ): verify_out_features_out_indices(A__ , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(A__ ): verify_out_features_out_indices(A__ , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(A__ ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' a__ : Optional[Any] = BackboneMixin() a__ : int = ['''a''', '''b''', '''c'''] a__ : List[Any] = ['''a''', '''c'''] a__ : Tuple = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly a__ : Dict = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) a__ : int = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
688
1
'''simple docstring''' def __a ( lowerCAmelCase__ : bytes ): return "".join([hex(lowerCAmelCase__ )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase__ )] ) def __a ( lowerCAmelCase__ : str ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase__ ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase__ ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
688
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __a ( lowerCAmelCase__ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ): a__ : Dict = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue a__ : Any = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) a__ : int = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) a__ : Optional[Any] = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) a__ : Dict = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) a__ : List[str] = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) a__ : List[Any] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) a__ : str = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) a__ : List[Any] = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) a__ : List[Any] = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) a__ : str = key.replace('''image_encoder.module''' , '''flava.image_model''' ) a__ : Dict = key.replace('''text_encoder.module''' , '''flava.text_model''' ) a__ : List[Any] = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) a__ : List[str] = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) a__ : List[str] = key.replace('''text_projection''' , '''flava.text_projection''' ) a__ : Any = key.replace('''image_projection''' , '''flava.image_projection''' ) a__ : Any = value.float() for key, value in codebook_state_dict.items(): a__ : List[str] = value return upgrade @torch.no_grad() def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict=None ): if config_path is not None: a__ : Tuple = FlavaConfig.from_pretrained(lowerCAmelCase__ ) else: a__ : Optional[int] = FlavaConfig() a__ : List[Any] = FlavaForPreTraining(lowerCAmelCase__ ).eval() a__ : Optional[int] = convert_dalle_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , save_checkpoint=lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): a__ : List[str] = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) else: a__ : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' ) a__ : List[Any] = upgrade_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) a__ : Any = hf_model.state_dict() a__ : Optional[Any] = count_parameters(lowerCAmelCase__ ) a__ : int = count_parameters(lowerCAmelCase__ ) + count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) hf_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __SCREAMING_SNAKE_CASE = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
688
1
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : List[Any] ) -> Any: '''simple docstring''' a__ : Tuple = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0] a__ : Tuple = [2, 4, 6, 8, 1_0, 1_2] a__ : Tuple = 1_0_0 self.assertEqual(kp.calc_profit(A__ , A__ , A__ ) , 2_1_0 ) def __lowerCAmelCase ( self : str ) -> str: '''simple docstring''' self.assertRaisesRegex(A__ , '''max_weight must greater than zero.''' ) def __lowerCAmelCase ( self : Tuple ) -> List[Any]: '''simple docstring''' self.assertRaisesRegex(A__ , '''Weight can not be negative.''' ) def __lowerCAmelCase ( self : List[str] ) -> int: '''simple docstring''' self.assertRaisesRegex(A__ , '''Profit can not be negative.''' ) def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' self.assertRaisesRegex(A__ , '''max_weight must greater than zero.''' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' self.assertRaisesRegex( A__ , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
688
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 3 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" pass def __a ( lowerCAmelCase__ : List[str] ): for shard in shards: for i in range(lowerCAmelCase__ ): yield {"i": i, "shard": shard} def __a ( ): a__ : str = int(os.environ['''RANK'''] ) a__ : int = int(os.environ['''WORLD_SIZE'''] ) a__ : str = ArgumentParser() parser.add_argument('''--streaming''' , type=lowerCAmelCase__ ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase__ ) parser.add_argument('''--num_workers''' , type=lowerCAmelCase__ , default=0 ) a__ : int = parser.parse_args() a__ : List[str] = args.streaming a__ : Dict = args.num_workers a__ : Dict = {'''shards''': [F'shard_{shard_idx}' for shard_idx in range(lowerCAmelCase__ )]} a__ : Tuple = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ ) if not streaming: a__ : str = Dataset.from_list(list(lowerCAmelCase__ ) ) a__ : Optional[int] = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ ) a__ : Dict = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ ) a__ : str = NUM_SHARDS * NUM_ITEMS_PER_SHARD a__ : Dict = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) a__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
688
1
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = ["image_processor", "tokenizer"] __UpperCamelCase = "BlipImageProcessor" __UpperCamelCase = "AutoTokenizer" def __init__( self : Dict , A__ : Tuple , A__ : str ) -> str: '''simple docstring''' a__ : Tuple = False super().__init__(A__ , A__ ) a__ : str = self.image_processor def __call__( self : Optional[int] , A__ : ImageInput = None , A__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , A__ : bool = True , A__ : Union[bool, str, PaddingStrategy] = False , A__ : Union[bool, str, TruncationStrategy] = None , A__ : Optional[int] = None , A__ : int = 0 , A__ : Optional[int] = None , A__ : Optional[bool] = None , A__ : bool = False , A__ : bool = False , A__ : bool = False , A__ : bool = False , A__ : bool = False , A__ : bool = True , A__ : Optional[Union[str, TensorType]] = None , **A__ : List[Any] , ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: a__ : List[Any] = self.tokenizer a__ : List[Any] = self.tokenizer( text=A__ , add_special_tokens=A__ , padding=A__ , truncation=A__ , max_length=A__ , stride=A__ , pad_to_multiple_of=A__ , return_attention_mask=A__ , return_overflowing_tokens=A__ , return_special_tokens_mask=A__ , return_offsets_mapping=A__ , return_token_type_ids=A__ , return_length=A__ , verbose=A__ , return_tensors=A__ , **A__ , ) return text_encoding # add pixel_values a__ : Union[str, Any] = self.image_processor(A__ , return_tensors=A__ ) if text is not None: a__ : Optional[Any] = self.tokenizer( text=A__ , add_special_tokens=A__ , padding=A__ , truncation=A__ , max_length=A__ , stride=A__ , pad_to_multiple_of=A__ , return_attention_mask=A__ , return_overflowing_tokens=A__ , return_special_tokens_mask=A__ , return_offsets_mapping=A__ , return_token_type_ids=A__ , return_length=A__ , verbose=A__ , return_tensors=A__ , **A__ , ) else: a__ : Optional[int] = None if text_encoding is not None: encoding_image_processor.update(A__ ) return encoding_image_processor def __lowerCAmelCase ( self : int , *A__ : Optional[Any] , **A__ : Union[str, Any] ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*A__ , **A__ ) def __lowerCAmelCase ( self : List[str] , *A__ : List[Any] , **A__ : Union[str, Any] ) -> Any: '''simple docstring''' return self.tokenizer.decode(*A__ , **A__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __lowerCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' a__ : Dict = self.tokenizer.model_input_names a__ : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
688
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __SCREAMING_SNAKE_CASE = open # noqa: we just need to have a builtin inside this module to test it properly
688
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'sentencepiece.model'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } __SCREAMING_SNAKE_CASE = { 'google/rembert': 2_5_6, } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , A__ : Any , A__ : List[str]=False , A__ : List[Any]=True , A__ : Optional[Any]=True , A__ : List[str]="[CLS]" , A__ : Optional[Any]="[SEP]" , A__ : Dict="[UNK]" , A__ : int="[SEP]" , A__ : Optional[Any]="[PAD]" , A__ : Union[str, Any]="[CLS]" , A__ : Dict="[MASK]" , **A__ : Optional[int] , ) -> Tuple: '''simple docstring''' super().__init__( do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , bos_token=A__ , eos_token=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , **A__ , ) a__ : Any = do_lower_case a__ : int = remove_space a__ : Union[str, Any] = keep_accents a__ : Union[str, Any] = vocab_file a__ : str = spm.SentencePieceProcessor() self.sp_model.Load(A__ ) @property def __lowerCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' return len(self.sp_model ) def __lowerCAmelCase ( self : int ) -> List[Any]: '''simple docstring''' a__ : Optional[Any] = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ) -> Tuple: '''simple docstring''' a__ : List[str] = self.__dict__.copy() a__ : Optional[int] = None return state def __setstate__( self : Union[str, Any] , A__ : Tuple ) -> List[str]: '''simple docstring''' a__ : int = d a__ : Any = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : int , A__ : Optional[int] , A__ : str=False ) -> int: '''simple docstring''' a__ : Optional[int] = self.sp_model.EncodeAsPieces(A__ ) return pieces def __lowerCAmelCase ( self : Any , A__ : Optional[int] ) -> List[str]: '''simple docstring''' return self.sp_model.PieceToId(A__ ) def __lowerCAmelCase ( self : int , A__ : Tuple ) -> Tuple: '''simple docstring''' return self.sp_model.IdToPiece(A__ ) def __lowerCAmelCase ( self : str , A__ : List[Any] ) -> Optional[Any]: '''simple docstring''' a__ : int = self.sp_model.decode_pieces(A__ ) return out_string def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : int = [self.sep_token_id] a__ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self : List[Any] , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A__ )) + [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1] def __lowerCAmelCase ( self : Optional[Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Tuple = [self.sep_token_id] a__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : List[Any] , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A__ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(A__ ) ) return a__ : Optional[Any] = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ): copyfile(self.vocab_file , A__ ) return (out_vocab_file,)
688
'''simple docstring''' import enum import shutil import sys __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = shutil.get_terminal_size() __SCREAMING_SNAKE_CASE = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class lowerCAmelCase__ ( enum.Enum ): """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = 1 def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict="" ): sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int="" ): forceWrite(F'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def __a ( ): forceWrite('''\r''' ) def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : str ): forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def __a ( ): forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def __a ( ): reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
688
1
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). " , lowerCAmelCase_ , ) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = RobertaConfig __UpperCamelCase = "roberta" def __init__( self : str , A__ : List[str] ) -> Tuple: '''simple docstring''' super().__init__(A__ ) a__ : Union[str, Any] = RobertaEmbeddings(A__ ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " , lowerCAmelCase_ , ) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = RobertaConfig __UpperCamelCase = "roberta" def __init__( self : Optional[Any] , A__ : str ) -> int: '''simple docstring''' super().__init__(A__ ) a__ : List[str] = config.num_labels a__ : Tuple = config.num_hidden_layers a__ : Optional[Any] = DeeRobertaModel(A__ ) a__ : str = nn.Dropout(config.hidden_dropout_prob ) a__ : int = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(A__ ) def __lowerCAmelCase ( self : Optional[Any] , A__ : str=None , A__ : Dict=None , A__ : Tuple=None , A__ : Optional[Any]=None , A__ : Optional[Any]=None , A__ : Optional[Any]=None , A__ : List[str]=None , A__ : List[str]=-1 , A__ : Any=False , ) -> List[Any]: '''simple docstring''' a__ : Any = self.num_layers try: a__ : List[Any] = self.roberta( A__ , attention_mask=A__ , token_type_ids=A__ , position_ids=A__ , head_mask=A__ , inputs_embeds=A__ , ) a__ : Tuple = outputs[1] a__ : Union[str, Any] = self.dropout(A__ ) a__ : List[str] = self.classifier(A__ ) a__ : Optional[int] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: a__ : str = e.message a__ : Optional[Any] = e.exit_layer a__ : str = outputs[0] if not self.training: a__ : Tuple = entropy(A__ ) a__ : List[str] = [] a__ : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression a__ : int = MSELoss() a__ : Optional[int] = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: a__ : str = CrossEntropyLoss() a__ : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits a__ : List[str] = [] for highway_exit in outputs[-1]: a__ : Optional[int] = highway_exit[0] if not self.training: highway_logits_all.append(A__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression a__ : Dict = MSELoss() a__ : Optional[int] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: a__ : List[Any] = CrossEntropyLoss() a__ : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(A__ ) if train_highway: a__ : Optional[int] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: a__ : Any = (loss,) + outputs if not self.training: a__ : Tuple = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: a__ : Optional[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
688
'''simple docstring''' import inspect import unittest class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps a__ : Optional[int] = inspect.getmembers(A__ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": a__ : int = '''k-diffusion''' elif backend == "invisible_watermark": a__ : int = '''invisible-watermark''' assert backend in deps, F'{backend} is not in the deps table!'
688
1
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer a__ : Any = flax_key_tuple[:-1] + ('''weight''',) a__ : List[Any] = torch.permute(lowerCAmelCase__ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCAmelCase__ ): # linear layer a__ : List[str] = flax_key_tuple[:-1] + ('''weight''',) a__ : List[Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: a__ : Union[str, Any] = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ): if "metadata" in layer: a__ : Optional[int] = layer.split('''metadata''' ) a__ : Tuple = ''''''.join(split_layer[0] )[:-1] a__ : List[Any] = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: a__ : Optional[Any] = layer.split('''kvstore''' ) a__ : List[str] = ''''''.join(split_layer[0] )[:-1] a__ : Dict = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: a__ : Any = layer.split('''/''' ) a__ : str = '''/'''.join(split_layer[:-1] ) a__ : Tuple = (split_layer[-1],) if "kvstore/path" in layer: a__ : List[Any] = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: a__ : Optional[Any] = '''file''' else: a__ : List[Any] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] ): a__ : int = rename_keys(lowerCAmelCase__ ) a__ : Dict = {} for k, v in current_block.items(): a__ : str = v a__ : Union[str, Any] = new_current_block torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str = WEIGHTS_NAME ): a__ : str = convert_file_size_to_int(lowerCAmelCase__ ) a__ : Optional[Any] = [] a__ : int = {} a__ : Any = 0 a__ : List[str] = 0 os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: a__ : Tuple = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] a__ : List[str] = flatten_dict(lowerCAmelCase__ , sep='''/''' ) a__ : List[Any] = {} for layer in checkpoint_info.keys(): a__ , a__ , a__ : Dict = get_key_and_tensorstore_dict( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if curr_real_layer_name in all_layers: a__ : Union[str, Any] = content else: a__ : Union[str, Any] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file a__ : Dict = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() a__ : str = torch.tensor(lowerCAmelCase__ ) a__ : int = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts a__ , a__ : Dict = rename_base_flax_keys(tuple(key.split('''/''' ) ) , lowerCAmelCase__ ) a__ : Any = '''/'''.join(lowerCAmelCase__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: a__ : List[str] = os.path.join( lowerCAmelCase__ , weights_name.replace('''.bin''' , F'-{len(lowerCAmelCase__ )+1:05d}-of-???.bin' ) ) rename_and_save_block(lowerCAmelCase__ , lowerCAmelCase__ ) sharded_state_dicts.append(current_block.keys() ) del current_block a__ : Any = {} a__ : List[Any] = 0 a__ : Dict = raw_weights.to(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block a__ : int = os.path.join(lowerCAmelCase__ , weights_name.replace('''.bin''' , F'-{len(lowerCAmelCase__ )+1:05d}-of-???.bin' ) ) rename_and_save_block(lowerCAmelCase__ , lowerCAmelCase__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowerCAmelCase__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index a__ : List[Any] = {} a__ : Union[str, Any] = {} for idx, shard in enumerate(lowerCAmelCase__ ): a__ : Any = weights_name.replace( '''.bin''' , F'-{idx+1:05d}-of-{len(lowerCAmelCase__ ):05d}.bin' ) # len(sharded_state_dicts):05d} a__ : List[Any] = os.path.join(lowerCAmelCase__ , weights_name.replace('''.bin''' , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) a__ : Tuple = shard for key in shard: a__ : List[Any] = shard_file # Add the metadata a__ : Dict = {'''total_size''': total_size} a__ : str = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , '''w''' , encoding='''utf-8''' ) as f: a__ : int = json.dumps(lowerCAmelCase__ , indent=2 , sort_keys=lowerCAmelCase__ ) + '''\n''' f.write(lowerCAmelCase__ ) return metadata, index if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) __SCREAMING_SNAKE_CASE = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __a ( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer a__ : Tuple = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) a__ : List[str] = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) a__ : Dict = TaTokenizer.from_pretrained('''t5-small''' ) a__ : Optional[Any] = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' a__ : Union[str, Any] = tokenizer(lowerCAmelCase__ , return_tensors='''pt''' ).input_ids a__ : Dict = model.generate(lowerCAmelCase__ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
688
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __a ( lowerCAmelCase__ : Dict ): a__ , a__ : int = image.size a__ , a__ : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a__ : Tuple = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) a__ : List[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0 a__ : Any = image[None].transpose(0 , 3 , 1 , 2 ) a__ : Dict = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , A__ : VQModel , A__ : UNetaDModel , A__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> str: '''simple docstring''' super().__init__() self.register_modules(vqvae=A__ , unet=A__ , scheduler=A__ ) @torch.no_grad() def __call__( self : List[str] , A__ : Union[torch.Tensor, PIL.Image.Image] = None , A__ : Optional[int] = 1 , A__ : Optional[int] = 1_0_0 , A__ : Optional[float] = 0.0 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(A__ , PIL.Image.Image ): a__ : List[Any] = 1 elif isinstance(A__ , torch.Tensor ): a__ : List[str] = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A__ )}' ) if isinstance(A__ , PIL.Image.Image ): a__ : Union[str, Any] = preprocess(A__ ) a__ , a__ : Dict = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image a__ : Optional[int] = (batch_size, self.unet.config.in_channels // 2, height, width) a__ : Optional[int] = next(self.unet.parameters() ).dtype a__ : List[str] = randn_tensor(A__ , generator=A__ , device=self.device , dtype=A__ ) a__ : Any = image.to(device=self.device , dtype=A__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(A__ , device=self.device ) a__ : int = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler a__ : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a__ : Union[str, Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a__ : str = {} if accepts_eta: a__ : Dict = eta for t in self.progress_bar(A__ ): # concat latents and low resolution image in the channel dimension. a__ : str = torch.cat([latents, image] , dim=1 ) a__ : Optional[Any] = self.scheduler.scale_model_input(A__ , A__ ) # predict the noise residual a__ : Union[str, Any] = self.unet(A__ , A__ ).sample # compute the previous noisy sample x_t -> x_t-1 a__ : Union[str, Any] = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample # decode the image latents with the VQVAE a__ : List[Any] = self.vqvae.decode(A__ ).sample a__ : List[Any] = torch.clamp(A__ , -1.0 , 1.0 ) a__ : Optional[Any] = image / 2 + 0.5 a__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a__ : Union[str, Any] = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'sentencepiece.bpe.model'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __SCREAMING_SNAKE_CASE = { 'moussaKam/mbarthez': 1_0_2_4, 'moussaKam/barthez': 1_0_2_4, 'moussaKam/barthez-orangesum-title': 1_0_2_4, } __SCREAMING_SNAKE_CASE = '▁' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , A__ : Optional[int] , A__ : Dict="<s>" , A__ : Any="</s>" , A__ : Dict="</s>" , A__ : Any="<s>" , A__ : Any="<unk>" , A__ : Optional[Any]="<pad>" , A__ : int="<mask>" , A__ : Optional[Dict[str, Any]] = None , **A__ : List[Any] , ) -> None: '''simple docstring''' a__ : Optional[Any] = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else mask_token a__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A__ , eos_token=A__ , unk_token=A__ , sep_token=A__ , cls_token=A__ , pad_token=A__ , mask_token=A__ , sp_model_kwargs=self.sp_model_kwargs , **A__ , ) a__ : Union[str, Any] = vocab_file a__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A__ ) ) a__ : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a__ : List[Any] = len(self.sp_model ) - 1 a__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __lowerCAmelCase ( self : List[str] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a__ : Tuple = [self.cls_token_id] a__ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self : List[str] , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) if token_ids_a is None: return [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1, 1] + ([0] * len(A__ )) + [1] def __lowerCAmelCase ( self : List[Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : List[Any] = [self.sep_token_id] a__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' return len(self.sp_model ) def __lowerCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' a__ : Optional[int] = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self : Optional[int] , A__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(A__ , out_type=A__ ) def __lowerCAmelCase ( self : int , A__ : Optional[int] ) -> str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a__ : int = self.sp_model.PieceToId(A__ ) return spm_id if spm_id else self.unk_token_id def __lowerCAmelCase ( self : List[str] , A__ : Optional[int] ) -> Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(A__ ) def __lowerCAmelCase ( self : int , A__ : Any ) -> Any: '''simple docstring''' a__ : Optional[int] = [] a__ : Any = '''''' a__ : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A__ ) + token a__ : List[Any] = True a__ : Any = [] else: current_sub_tokens.append(A__ ) a__ : List[Any] = False out_string += self.sp_model.decode(A__ ) return out_string.strip() def __getstate__( self : List[str] ) -> Tuple: '''simple docstring''' a__ : Dict = self.__dict__.copy() a__ : str = None return state def __setstate__( self : List[Any] , A__ : Any ) -> Optional[Any]: '''simple docstring''' a__ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a__ : List[Any] = {} a__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ : List[str] = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , '''wb''' ) as fi: a__ : str = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,)
688
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=8 ): a__ : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a__ : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Dict , A__ : UNetaDConditionModel , A__ : DDPMScheduler , A__ : VQModel , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( unet=A__ , scheduler=A__ , movq=A__ , ) a__ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self : Optional[Any] , A__ : List[Any] , A__ : List[str] , A__ : Optional[Any] , A__ : Dict , A__ : Dict , A__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if latents is None: a__ : List[str] = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) a__ : int = latents.to(A__ ) a__ : Tuple = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self : Union[str, Any] , A__ : int=0 ) -> str: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) a__ : Union[str, Any] = torch.device(F'cuda:{gpu_id}' ) a__ : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A__ , A__ ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple=0 ) -> Dict: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) a__ : int = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=A__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a__ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: a__ , a__ : List[str] = cpu_offload_with_hook(A__ , A__ , prev_module_hook=A__ ) # We'll offload the last model manually. a__ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(A__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A__ ) def __call__( self : Any , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : torch.FloatTensor , A__ : int = 5_1_2 , A__ : int = 5_1_2 , A__ : int = 1_0_0 , A__ : float = 4.0 , A__ : int = 1 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[torch.FloatTensor] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> str: '''simple docstring''' a__ : Optional[Any] = self._execution_device a__ : List[str] = guidance_scale > 1.0 if isinstance(A__ , A__ ): a__ : int = torch.cat(A__ , dim=0 ) if isinstance(A__ , A__ ): a__ : Optional[int] = torch.cat(A__ , dim=0 ) if isinstance(A__ , A__ ): a__ : int = torch.cat(A__ , dim=0 ) a__ : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: a__ : Tuple = image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Optional[int] = negative_image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Optional[int] = hint.repeat_interleave(A__ , dim=0 ) a__ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A__ ) a__ : Tuple = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A__ ) self.scheduler.set_timesteps(A__ , device=A__ ) a__ : int = self.scheduler.timesteps a__ : str = self.movq.config.latent_channels a__ , a__ : Optional[int] = downscale_height_and_width(A__ , A__ , self.movq_scale_factor ) # create initial latent a__ : List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A__ , A__ , A__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A__ ) ): # expand the latents if we are doing classifier free guidance a__ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a__ : List[str] = {'''image_embeds''': image_embeds, '''hint''': hint} a__ : Union[str, Any] = self.unet( sample=A__ , timestep=A__ , encoder_hidden_states=A__ , added_cond_kwargs=A__ , return_dict=A__ , )[0] if do_classifier_free_guidance: a__ , a__ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) a__ , a__ : Dict = noise_pred.chunk(2 ) a__ , a__ : Optional[Any] = variance_pred.chunk(2 ) a__ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a__ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a__ , a__ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a__ : Union[str, Any] = self.scheduler.step( A__ , A__ , A__ , generator=A__ , )[0] # post-processing a__ : Tuple = self.movq.decode(A__ , force_not_quantize=A__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: a__ : Union[str, Any] = image * 0.5 + 0.5 a__ : str = image.clamp(0 , 1 ) a__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a__ : int = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
1
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = logging.get_logger() @dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = field(default_factory=lowerCAmelCase_ ) __UpperCamelCase = field(default_factory=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict , A__ : List[Any] , A__ : Tensor , A__ : Tensor ) -> str: '''simple docstring''' a__ : str = len(list(m.modules() ) ) == 1 or isinstance(A__ , nn.Convad ) or isinstance(A__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A__ ) def __call__( self : List[str] , A__ : Tensor ) -> Dict: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A__ ) [x.remove() for x in self.handles] return self @property def __lowerCAmelCase ( self : int ) -> Any: '''simple docstring''' return list(filter(lambda A__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 1 __UpperCamelCase = field(default_factory=lowerCAmelCase_ ) __UpperCamelCase = field(default_factory=lowerCAmelCase_ ) __UpperCamelCase = True def __call__( self : List[Any] , A__ : Tensor ) -> Union[str, Any]: '''simple docstring''' a__ : Tuple = Tracker(self.dest )(A__ ).parametrized a__ : Optional[int] = Tracker(self.src )(A__ ).parametrized a__ : int = list(filter(lambda A__ : type(A__ ) not in self.src_skip , A__ ) ) a__ : Optional[int] = list(filter(lambda A__ : type(A__ ) not in self.dest_skip , A__ ) ) if len(A__ ) != len(A__ ) and self.raise_if_mismatch: raise Exception( F'Numbers of operations are different. Source module has {len(A__ )} operations while' F' destination module has {len(A__ )}.' ) for dest_m, src_m in zip(A__ , A__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) class lowerCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , A__ : nn.Module ) -> List[str]: '''simple docstring''' super().__init__() a__ : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), F'Unexpected layer name {k}' a__ : str = len(A__ ) + 1 feature_blocks.append((F'res{block_index}', v) ) a__ : Tuple = nn.ModuleDict(A__ ) def __lowerCAmelCase ( self : Tuple , A__ : Tensor ) -> Dict: '''simple docstring''' return get_trunk_forward_outputs( A__ , out_feat_keys=A__ , feature_blocks=self._feature_blocks , ) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __lowerCAmelCase ( self : Optional[Any] , A__ : str ) -> str: '''simple docstring''' a__ : str = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : int , A__ : str ) -> Callable[[], Tuple[nn.Module, Dict]]: '''simple docstring''' if x not in self: a__ : Union[str, Any] = self.convert_name_to_timm(A__ ) a__ : Tuple = partial(lambda: (timm.create_model(A__ , pretrained=A__ ).eval(), None) ) else: a__ : Optional[Any] = super().__getitem__(A__ ) return val class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __getitem__( self : Any , A__ : str ) -> Callable[[], nn.Module]: '''simple docstring''' if "seer" in x and "in1k" not in x: a__ : Dict = RegNetModel else: a__ : Tuple = RegNetForImageClassification return val def __a ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Tuple[str, str]] ): for from_key, to_key in keys: a__ : Optional[int] = from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def __a ( lowerCAmelCase__ : str , lowerCAmelCase__ : Callable[[], nn.Module] , lowerCAmelCase__ : Callable[[], nn.Module] , lowerCAmelCase__ : RegNetConfig , lowerCAmelCase__ : Path , lowerCAmelCase__ : bool = True , ): print(F'Converting {name}...' ) with torch.no_grad(): a__ , a__ : Dict = from_model_func() a__ : List[str] = our_model_func(lowerCAmelCase__ ).eval() a__ : Dict = ModuleTransfer(src=lowerCAmelCase__ , dest=lowerCAmelCase__ , raise_if_mismatch=lowerCAmelCase__ ) a__ : List[Any] = torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase__ ) if from_state_dict is not None: a__ : Optional[int] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: a__ : Dict = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] a__ : List[str] = manually_copy_vissl_head(lowerCAmelCase__ , our_model.state_dict() , lowerCAmelCase__ ) our_model.load_state_dict(lowerCAmelCase__ ) a__ : Any = our_model(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) a__ : List[Any] = ( our_outputs.logits if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else our_outputs.last_hidden_state ) a__ : str = from_model(lowerCAmelCase__ ) a__ : Union[str, Any] = from_output[-1] if type(lowerCAmelCase__ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: a__ : Dict = our_outputs.hidden_states[-1] assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=lowerCAmelCase__ , ) a__ : Union[str, Any] = 224 if '''seer''' not in name else 384 # we can use the convnext one a__ : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=lowerCAmelCase__ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=lowerCAmelCase__ , ) print(F'Pushed {name}' ) def __a ( lowerCAmelCase__ : Path , lowerCAmelCase__ : str = None , lowerCAmelCase__ : bool = True ): a__ : Dict = '''imagenet-1k-id2label.json''' a__ : Dict = 1000 a__ : Any = (1, num_labels) a__ : Tuple = '''huggingface/label-files''' a__ : Dict = num_labels a__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) ) , '''r''' ) ) a__ : Tuple = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} a__ : Optional[int] = idalabel a__ : int = {v: k for k, v in idalabel.items()} a__ : List[Any] = partial(lowerCAmelCase__ , num_labels=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ ) a__ : Dict = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), } a__ : Optional[Any] = NameToOurModelFuncMap() a__ : Optional[int] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase__ : str , lowerCAmelCase__ : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: a__ : Union[str, Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , model_dir=str(lowerCAmelCase__ ) , map_location='''cpu''' ) a__ : Tuple = model_func() # check if we have a head, if yes add it a__ : List[Any] = files['''classy_state_dict''']['''base_model''']['''model'''] a__ : List[str] = model_state_dict['''trunk'''] model.load_state_dict(lowerCAmelCase__ ) return model.eval(), model_state_dict["heads"] # pretrained a__ : Union[str, Any] = partial( lowerCAmelCase__ , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a__ : Optional[int] = partial( lowerCAmelCase__ , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a__ : Tuple = partial( lowerCAmelCase__ , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) a__ : Dict = partial( lowerCAmelCase__ , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned a__ : List[Any] = partial( lowerCAmelCase__ , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a__ : str = partial( lowerCAmelCase__ , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) a__ : Union[str, Any] = partial( lowerCAmelCase__ , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) a__ : Tuple = partial( lowerCAmelCase__ , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( lowerCAmelCase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , lowerCAmelCase__ , lowerCAmelCase__ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCAmelCase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) return config, expected_shape if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
688
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } __SCREAMING_SNAKE_CASE = { 'facebook/esm2_t6_8M_UR50D': 1_0_2_4, 'facebook/esm2_t12_35M_UR50D': 1_0_2_4, } def __a ( lowerCAmelCase__ : Union[str, Any] ): with open(lowerCAmelCase__ , '''r''' ) as f: a__ : Optional[int] = f.read().splitlines() return [l.strip() for l in lines] class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self : List[str] , A__ : int , A__ : Union[str, Any]="<unk>" , A__ : Tuple="<cls>" , A__ : List[Any]="<pad>" , A__ : Optional[int]="<mask>" , A__ : List[Any]="<eos>" , **A__ : Optional[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(**A__ ) a__ : Union[str, Any] = load_vocab_file(A__ ) a__ : int = dict(enumerate(self.all_tokens ) ) a__ : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} a__ : List[Any] = unk_token a__ : Any = cls_token a__ : Any = pad_token a__ : Any = mask_token a__ : Any = eos_token a__ : int = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __lowerCAmelCase ( self : Any , A__ : int ) -> str: '''simple docstring''' return self._id_to_token.get(A__ , self.unk_token ) def __lowerCAmelCase ( self : Optional[Any] , A__ : str ) -> int: '''simple docstring''' return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple , **A__ : str ) -> List[Any]: '''simple docstring''' return text.split() def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int]=False ) -> Tuple: '''simple docstring''' return len(self._id_to_token ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def __lowerCAmelCase ( self : Any , A__ : str ) -> int: '''simple docstring''' return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) ) def __lowerCAmelCase ( self : List[Any] , A__ : int ) -> str: '''simple docstring''' return self._id_to_token.get(A__ , self.unk_token ) def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Tuple = [self.cls_token_id] a__ : Union[str, Any] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __lowerCAmelCase ( self : Tuple , A__ : List , A__ : Optional[List] = None , A__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] a__ : Any = [1] + ([0] * len(A__ )) + [1] if token_ids_a is not None: mask += [0] * len(A__ ) + [1] return mask def __lowerCAmelCase ( self : Any , A__ : Dict , A__ : Dict ) -> List[Any]: '''simple docstring''' a__ : Union[str, Any] = os.path.join(A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __lowerCAmelCase ( self : Any ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=A__ ) def __lowerCAmelCase ( self : List[str] , A__ : Union[List[str], List[AddedToken]] , A__ : bool = False ) -> int: '''simple docstring''' return super()._add_tokens(A__ , special_tokens=A__ )
688
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , A__ : Optional[Any] , A__ : Optional[int]=7 , A__ : str=3 , A__ : Tuple=1_8 , A__ : Union[str, Any]=3_0 , A__ : List[str]=4_0_0 , A__ : str=True , A__ : List[Any]=None , A__ : Optional[int]=True , ) -> int: '''simple docstring''' a__ : Dict = size if size is not None else {'''height''': 1_8, '''width''': 1_8} a__ : Dict = parent a__ : List[Any] = batch_size a__ : Optional[int] = num_channels a__ : Optional[int] = image_size a__ : Optional[int] = min_resolution a__ : Any = max_resolution a__ : int = do_resize a__ : Tuple = size a__ : Union[str, Any] = apply_ocr def __lowerCAmelCase ( self : Dict ) -> List[Any]: '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __lowerCAmelCase ( self : int ) -> Any: '''simple docstring''' a__ : List[Any] = LayoutLMvaImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Dict ) -> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : Tuple ) -> Tuple: '''simple docstring''' a__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , '''do_resize''' ) ) self.assertTrue(hasattr(A__ , '''size''' ) ) self.assertTrue(hasattr(A__ , '''apply_ocr''' ) ) def __lowerCAmelCase ( self : str ) -> Any: '''simple docstring''' a__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8} ) a__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2} ) def __lowerCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' pass def __lowerCAmelCase ( self : str ) -> Any: '''simple docstring''' a__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ ) for image in image_inputs: self.assertIsInstance(A__ , Image.Image ) # Test not batched input a__ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , A__ ) self.assertIsInstance(encoding.boxes , A__ ) # Test batched a__ : Any = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __lowerCAmelCase ( self : Any ) -> str: '''simple docstring''' a__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , numpify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , np.ndarray ) # Test not batched input a__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a__ : Optional[Any] = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' a__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , torchify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , torch.Tensor ) # Test not batched input a__ : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a__ : Optional[Any] = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __lowerCAmelCase ( self : Tuple ) -> List[Any]: '''simple docstring''' a__ : Any = LayoutLMvaImageProcessor() from datasets import load_dataset a__ : int = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) a__ : str = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) a__ : Any = image_processing(A__ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 a__ : str = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 a__ : List[str] = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A__ ) self.assertListEqual(encoding.boxes , A__ ) # with apply_OCR = False a__ : Dict = LayoutLMvaImageProcessor(apply_ocr=A__ ) a__ : List[Any] = image_processing(A__ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
688
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class lowerCAmelCase__ : """simple docstring""" def __init__( self : str ) -> Dict: '''simple docstring''' a__ : List[str] = False def __lowerCAmelCase ( self : Tuple , A__ : Optional[int] , A__ : Optional[Any] , A__ : List[str] , A__ : Tuple ) -> Optional[int]: '''simple docstring''' if not self.initialized: a__ : Optional[Any] = RagRetriever( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) a__ : Union[str, Any] = True def __lowerCAmelCase ( self : Tuple ) -> Tuple: '''simple docstring''' self.retriever.index.init_index() def __lowerCAmelCase ( self : List[Any] , A__ : List[Any] , A__ : Optional[int] ) -> List[Any]: '''simple docstring''' a__ , a__ : Optional[Any] = self.retriever._main_retrieve(A__ , A__ ) return doc_ids, retrieved_doc_embeds class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : str , A__ : Optional[int] , A__ : List[Any] , A__ : List[Any] , A__ : str , A__ : Any=None ) -> Optional[Any]: '''simple docstring''' if index is not None and index.is_initialized() and len(A__ ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) a__ : List[str] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A__ , A__ , A__ , A__ ) for worker in self.retrieval_workers ] ) def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCAmelCase ( self : Optional[int] , A__ : Optional[int] , A__ : int ) -> Dict: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. a__ : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] a__ , a__ : Tuple = ray.get(random_worker.retrieve.remote(A__ , A__ ) ) else: a__ , a__ : int = self._main_retrieve(A__ , A__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A__ ) @classmethod def __lowerCAmelCase ( cls : int , A__ : Optional[Any] , A__ : Any=None , **A__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return super(A__ , cls ).get_tokenizers(A__ , A__ , **A__ ) @classmethod def __lowerCAmelCase ( cls : int , A__ : Optional[int] , A__ : Union[str, Any] , A__ : Union[str, Any]=None , **A__ : Dict ) -> List[Any]: '''simple docstring''' a__ : Dict = kwargs.pop('''config''' , A__ ) or RagConfig.from_pretrained(A__ , **A__ ) a__ : Dict = RagTokenizer.from_pretrained(A__ , config=A__ ) a__ : str = rag_tokenizer.question_encoder a__ : List[str] = rag_tokenizer.generator if indexed_dataset is not None: a__ : List[Any] = '''custom''' a__ : List[Any] = CustomHFIndex(config.retrieval_vector_size , A__ ) else: a__ : Optional[Any] = cls._build_index(A__ ) return cls( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , retrieval_workers=A__ , index=A__ , )
688
1
'''simple docstring''' from maths.prime_factors import prime_factors def __a ( lowerCAmelCase__ : int ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : List[str] = F'Input value of [number={number}] must be an integer' raise TypeError(lowerCAmelCase__ ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(lowerCAmelCase__ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
688
'''simple docstring''' def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): a__ : List[str] = len(lowerCAmelCase__ ) a__ : int = [[0] * n for i in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): a__ : Dict = y_points[i] for i in range(2 , lowerCAmelCase__ ): for j in range(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Any = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
688
1
'''simple docstring''' from __future__ import annotations from random import random class lowerCAmelCase__ : """simple docstring""" def __init__( self : Dict , A__ : int | None = None ) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] = value a__ : Optional[Any] = random() a__ : Node | None = None a__ : Node | None = None def __repr__( self : Dict ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return F'\'{self.value}: {self.prior:.5}\'' else: return pformat( {F'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 ) def __str__( self : Dict ) -> str: '''simple docstring''' a__ : List[Any] = str(self.value ) + ''' ''' a__ : Dict = str(self.left or '''''' ) a__ : Tuple = str(self.right or '''''' ) return value + left + right def __a ( lowerCAmelCase__ : Node | None , lowerCAmelCase__ : int ): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: a__ , a__ : Union[str, Any] = split(root.left , lowerCAmelCase__ ) return left, root else: a__ , a__ : Tuple = split(root.right , lowerCAmelCase__ ) return root, right def __a ( lowerCAmelCase__ : Node | None , lowerCAmelCase__ : Node | None ): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: a__ : List[str] = merge(left.right , lowerCAmelCase__ ) return left else: a__ : int = merge(lowerCAmelCase__ , right.left ) return right def __a ( lowerCAmelCase__ : Node | None , lowerCAmelCase__ : int ): a__ : Union[str, Any] = Node(lowerCAmelCase__ ) a__ , a__ : Optional[int] = split(lowerCAmelCase__ , lowerCAmelCase__ ) return merge(merge(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) def __a ( lowerCAmelCase__ : Node | None , lowerCAmelCase__ : int ): a__ , a__ : Dict = split(lowerCAmelCase__ , value - 1 ) a__ , a__ : Any = split(lowerCAmelCase__ , lowerCAmelCase__ ) return merge(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( lowerCAmelCase__ : Node | None ): if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def __a ( lowerCAmelCase__ : Node | None , lowerCAmelCase__ : str ): for arg in args.split(): if arg[0] == "+": a__ : Union[str, Any] = insert(lowerCAmelCase__ , int(arg[1:] ) ) elif arg[0] == "-": a__ : Tuple = erase(lowerCAmelCase__ , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def __a ( ): a__ : Union[str, Any] = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) a__ : Any = input() while args != "q": a__ : List[str] = interact_treap(lowerCAmelCase__ , lowerCAmelCase__ ) print(lowerCAmelCase__ ) a__ : Any = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
688
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "swin2sr" __UpperCamelCase = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , A__ : int=6_4 , A__ : List[Any]=1 , A__ : List[Any]=3 , A__ : Any=1_8_0 , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Dict=8 , A__ : Any=2.0 , A__ : Optional[int]=True , A__ : Union[str, Any]=0.0 , A__ : Union[str, Any]=0.0 , A__ : List[str]=0.1 , A__ : Any="gelu" , A__ : Tuple=False , A__ : Optional[int]=0.02 , A__ : List[Any]=1E-5 , A__ : Any=2 , A__ : Union[str, Any]=1.0 , A__ : Dict="1conv" , A__ : Optional[Any]="pixelshuffle" , **A__ : Optional[Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(**A__ ) a__ : List[str] = image_size a__ : Optional[Any] = patch_size a__ : Dict = num_channels a__ : Optional[int] = embed_dim a__ : int = depths a__ : Optional[int] = len(A__ ) a__ : Dict = num_heads a__ : List[Any] = window_size a__ : Optional[int] = mlp_ratio a__ : Optional[int] = qkv_bias a__ : Union[str, Any] = hidden_dropout_prob a__ : Dict = attention_probs_dropout_prob a__ : Union[str, Any] = drop_path_rate a__ : int = hidden_act a__ : int = use_absolute_embeddings a__ : Dict = layer_norm_eps a__ : List[str] = initializer_range a__ : List[Any] = upscale a__ : List[Any] = img_range a__ : Optional[int] = resi_connection a__ : int = upsampler
688
1
'''simple docstring''' def __a ( lowerCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ): a__ : int = set() # Replace all the whitespace in our sentence a__ : Any = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(lowerCAmelCase__ ) == 26 def __a ( lowerCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ): a__ : Union[str, Any] = [False] * 26 for char in input_str: if char.islower(): a__ : Tuple = True elif char.isupper(): a__ : str = True return all(lowerCAmelCase__ ) def __a ( lowerCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def __a ( ): from timeit import timeit a__ : List[Any] = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=lowerCAmelCase__ ) ) print(timeit('''is_pangram_faster()''' , setup=lowerCAmelCase__ ) ) print(timeit('''is_pangram_fastest()''' , setup=lowerCAmelCase__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
688
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' a__ : int = 0 def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' a__ : Optional[int] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : List[Any] = Path(A__ ) / '''preprocessor_config.json''' a__ : List[Any] = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Any = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : int = Path(A__ ) / '''preprocessor_config.json''' a__ : Optional[Any] = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Tuple = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type a__ : int = Path(A__ ) / '''preprocessor_config.json''' a__ : Optional[int] = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally a__ : List[Any] = AutoImageProcessor.from_pretrained(A__ ).to_dict() config_dict.pop('''image_processor_type''' ) a__ : Union[str, Any] = CLIPImageProcessor(**A__ ) # save in new folder model_config.save_pretrained(A__ ) config.save_pretrained(A__ ) a__ : Union[str, Any] = AutoImageProcessor.from_pretrained(A__ ) # make sure private variable is not incorrectly saved a__ : Optional[Any] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) a__ : Any = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( A__ , '''clip-base is not a local folder and is not a valid model identifier''' ): a__ : str = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowerCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' with self.assertRaisesRegex( A__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): a__ : Tuple = AutoImageProcessor.from_pretrained(A__ , revision='''aaaaaa''' ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( A__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): a__ : Union[str, Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' with self.assertRaises(A__ ): a__ : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(A__ ): a__ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) a__ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) a__ : str = AutoImageProcessor.from_pretrained(A__ , trust_remote_code=A__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A__ ): AutoImageProcessor.register(A__ , A__ ) with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json''' a__ : List[str] = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Tuple = CustomImageProcessor.from_pretrained(A__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) a__ : Tuple = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = True try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # If remote code is not set, the default is to use local a__ : Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. a__ : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub a__ : Optional[int] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(A__ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
688
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black __SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __SCREAMING_SNAKE_CASE = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' a__ : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) a__ : Optional[Any] = self.diffusers_dir shutil.copy( os.path.join(A__ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def __lowerCAmelCase ( self : List[Any] ) -> Any: '''simple docstring''' a__ : Optional[Any] = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def __lowerCAmelCase ( self : Dict , A__ : List[str] , A__ : Dict , A__ : List[str] , A__ : List[Any]=None ) -> Any: '''simple docstring''' a__ : Dict = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: a__ : Dict = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result a__ : Optional[int] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) a__ : Any = black.format_str(A__ , mode=A__ ) a__ : Union[str, Any] = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(A__ , '''w''' , newline='''\n''' ) as f: f.write(A__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A__ ) with open(A__ , '''r''' ) as f: self.assertTrue(f.read() , A__ ) def __lowerCAmelCase ( self : Dict ) -> str: '''simple docstring''' a__ : int = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(A__ , A__ ) def __lowerCAmelCase ( self : int ) -> Dict: '''simple docstring''' self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , A__ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , A__ ) , ) # Copy consistency with a really long name a__ : Tuple = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}' , F'{long_class_name}SchedulerOutput' , re.sub('''Bert''' , A__ , A__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , A__ , overwrite_result=re.sub('''DDPM''' , '''Test''' , A__ ) , )
688
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __SCREAMING_SNAKE_CASE = get_logger(__name__) class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = "dummy_data" __UpperCamelCase = "datasets" __UpperCamelCase = False def __init__( self : Any , A__ : str , A__ : str , A__ : Union[Version, str] , A__ : Optional[str] = None , A__ : bool = False , A__ : bool = True , A__ : Optional[List[Callable]] = None , ) -> int: '''simple docstring''' a__ : Tuple = 0 a__ : Any = dataset_name a__ : int = cache_dir a__ : str = use_local_dummy_data a__ : List[str] = config # download_callbacks take a single url as input a__ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root a__ : str = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general a__ : Optional[Any] = str(A__ ) # to be downloaded a__ : Tuple = None a__ : Tuple = None @property def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' if self._dummy_file is None: a__ : Dict = self.download_dummy_data() return self._dummy_file @property def __lowerCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' a__ : int = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) a__ : str = cached_path( A__ , cache_dir=self.cache_dir , extract_compressed_file=A__ , force_extract=A__ ) return os.path.join(A__ , self.dummy_file_name ) @property def __lowerCAmelCase ( self : int ) -> Optional[int]: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' if self._bucket_url is None: a__ : int = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int] , *A__ : int ) -> Union[str, Any]: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested a__ : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned a__ : Union[str, Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(A__ , A__ ): return self.create_dummy_data_dict(A__ , A__ ) elif isinstance(A__ , (list, tuple) ): return self.create_dummy_data_list(A__ , A__ ) else: return self.create_dummy_data_single(A__ , A__ ) def __lowerCAmelCase ( self : List[str] , A__ : Any , *A__ : int ) -> Any: '''simple docstring''' return self.download_and_extract(A__ ) def __lowerCAmelCase ( self : Any , A__ : Optional[int] , A__ : Optional[Any] ) -> int: '''simple docstring''' return self.download_and_extract(A__ ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : int , *A__ : List[Any] , **A__ : str ) -> Optional[Any]: '''simple docstring''' return path def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' return {} def __lowerCAmelCase ( self : int , A__ : Union[str, Any] , A__ : List[str] ) -> Any: '''simple docstring''' a__ : int = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(A__ , A__ ): for single_url in single_urls: download_callback(A__ ) else: a__ : Dict = single_urls download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(A__ , A__ ): a__ : Optional[int] = [os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) for x in single_urls] else: a__ : Optional[Any] = single_urls a__ : Tuple = os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) a__ : List[str] = value # make sure that values are unique if all(isinstance(A__ , A__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique a__ : Optional[int] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __lowerCAmelCase ( self : Dict , A__ : str , A__ : Optional[int] ) -> Optional[int]: '''simple docstring''' a__ : str = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one a__ : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , A__ ) ) for url in data_url ) a__ : Optional[Any] = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): a__ : Dict = [data_url[0]] * len(A__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a__ : Optional[int] = os.path.join(A__ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(A__ ) return dummy_data_list def __lowerCAmelCase ( self : Dict , A__ : Dict , A__ : str ) -> Optional[int]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a__ : Union[str, Any] = os.path.join(A__ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(A__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' pass def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: '''simple docstring''' pass def __lowerCAmelCase ( self : Any , A__ : Tuple ) -> Any: '''simple docstring''' def _iter_archive_members(A__ : str ): # this preserves the order of the members inside the ZIP archive a__ : Dict = Path(self.dummy_file ).parent a__ : Tuple = path.relative_to(A__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: a__ : Optional[Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(A__ ) a__ : str = Path(A__ ) a__ : Optional[Any] = _iter_archive_members(A__ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(A__ ).as_posix(), file_path.open('''rb''' ) def __lowerCAmelCase ( self : Tuple , A__ : Tuple ) -> Tuple: '''simple docstring''' if not isinstance(A__ , A__ ): a__ : int = [paths] for path in paths: if os.path.isfile(A__ ): if os.path.basename(A__ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(A__ ): if os.path.basename(A__ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(A__ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(A__ , A__ )
688
1
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowerCAmelCase__ ( unittest.TestCase , lowerCAmelCase_ ): """simple docstring""" def __lowerCAmelCase ( self : Dict ) -> Any: '''simple docstring''' a__ : int = load_tool('''text-to-speech''' ) self.tool.setup() def __lowerCAmelCase ( self : Tuple ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) a__ : List[str] = self.tool('''hey''' ) a__ : Tuple = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) a__ : Any = self.tool('''hey''' ) a__ : Optional[Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
688
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = LxmertTokenizer __UpperCamelCase = LxmertTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def __lowerCAmelCase ( self : str ) -> str: '''simple docstring''' super().setUp() a__ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self : int , A__ : int ) -> int: '''simple docstring''' a__ : List[Any] = '''UNwant\u00E9d,running''' a__ : Optional[int] = '''unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self : int ) -> Dict: '''simple docstring''' a__ : Optional[int] = self.tokenizer_class(self.vocab_file ) a__ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [7, 4, 5, 1_0, 8, 9] ) def __lowerCAmelCase ( self : Any ) -> Dict: '''simple docstring''' if not self.test_rust_tokenizer: return a__ : Union[str, Any] = self.get_tokenizer() a__ : Union[str, Any] = self.get_rust_tokenizer() a__ : str = '''I was born in 92000, and this is falsé.''' a__ : Tuple = tokenizer.tokenize(A__ ) a__ : Tuple = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) a__ : Optional[int] = tokenizer.encode(A__ , add_special_tokens=A__ ) a__ : Optional[Any] = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) a__ : List[str] = self.get_rust_tokenizer() a__ : str = tokenizer.encode(A__ ) a__ : int = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ )
688
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Dict ) -> Any: '''simple docstring''' a__ : Dict = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() a__ : List[Any] = dict(zip(A__ , range(len(A__ ) ) ) ) a__ : List[Any] = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } a__ : Dict = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_6_0_0_0, '''return_attention_mask''': False, '''do_normalize''': True, } a__ : Dict = tempfile.mkdtemp() a__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a__ : Optional[Any] = os.path.join(self.tmpdirname , A__ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A__ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A__ ) + '''\n''' ) # load decoder from hub a__ : List[str] = '''hf-internal-testing/ngram-beam-search-decoder''' def __lowerCAmelCase ( self : Optional[int] , **A__ : Any ) -> List[Any]: '''simple docstring''' a__ : List[str] = self.add_kwargs_tokens_map.copy() kwargs.update(A__ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A__ ) def __lowerCAmelCase ( self : str , **A__ : Tuple ) -> int: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A__ ) def __lowerCAmelCase ( self : Any , **A__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A__ ) def __lowerCAmelCase ( self : Any ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' a__ : Optional[Any] = self.get_tokenizer() a__ : Dict = self.get_feature_extractor() a__ : Optional[Any] = self.get_decoder() a__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=A__ , feature_extractor=A__ , decoder=A__ ) processor.save_pretrained(self.tmpdirname ) a__ : Any = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A__ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A__ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A__ ) def __lowerCAmelCase ( self : Tuple ) -> str: '''simple docstring''' a__ : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match a__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A__ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A__ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __lowerCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' a__ : Optional[int] = self.get_feature_extractor() a__ : Any = self.get_tokenizer() a__ : Tuple = self.get_decoder() a__ : List[Any] = WavaVecaProcessorWithLM(tokenizer=A__ , feature_extractor=A__ , decoder=A__ ) a__ : List[str] = floats_list((3, 1_0_0_0) ) a__ : List[str] = feature_extractor(A__ , return_tensors='''np''' ) a__ : Dict = processor(A__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[Any] = self.get_feature_extractor() a__ : List[Any] = self.get_tokenizer() a__ : Any = self.get_decoder() a__ : int = WavaVecaProcessorWithLM(tokenizer=A__ , feature_extractor=A__ , decoder=A__ ) a__ : Optional[Any] = '''This is a test string''' a__ : Optional[int] = processor(text=A__ ) a__ : Optional[int] = tokenizer(A__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self : List[Any] , A__ : int=(2, 1_0, 1_6) , A__ : Union[str, Any]=7_7 ) -> int: '''simple docstring''' np.random.seed(A__ ) return np.random.rand(*A__ ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' a__ : Optional[int] = self.get_feature_extractor() a__ : int = self.get_tokenizer() a__ : Optional[int] = self.get_decoder() a__ : List[Any] = WavaVecaProcessorWithLM(tokenizer=A__ , feature_extractor=A__ , decoder=A__ ) a__ : List[str] = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) a__ : List[Any] = processor.decode(A__ ) a__ : Union[str, Any] = decoder.decode_beams(A__ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def __lowerCAmelCase ( self : Optional[int] , A__ : str ) -> Any: '''simple docstring''' a__ : str = self.get_feature_extractor() a__ : List[Any] = self.get_tokenizer() a__ : List[str] = self.get_decoder() a__ : Any = WavaVecaProcessorWithLM(tokenizer=A__ , feature_extractor=A__ , decoder=A__ ) a__ : str = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: a__ : str = processor.batch_decode(A__ ) else: with get_context(A__ ).Pool() as pool: a__ : Optional[Any] = processor.batch_decode(A__ , A__ ) a__ : Dict = list(A__ ) with get_context('''fork''' ).Pool() as p: a__ : Any = decoder.decode_beams_batch(A__ , A__ ) a__ , a__ , a__ : Union[str, Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A__ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A__ , decoded_processor.logit_score ) self.assertListEqual(A__ , decoded_processor.lm_score ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' a__ : Dict = self.get_feature_extractor() a__ : List[str] = self.get_tokenizer() a__ : Tuple = self.get_decoder() a__ : Any = WavaVecaProcessorWithLM(tokenizer=A__ , feature_extractor=A__ , decoder=A__ ) a__ : Optional[Any] = self._get_dummy_logits() a__ : Dict = 1_5 a__ : Optional[Any] = -20.0 a__ : Tuple = -4.0 a__ : str = processor.batch_decode( A__ , beam_width=A__ , beam_prune_logp=A__ , token_min_logp=A__ , ) a__ : List[Any] = decoded_processor_out.text a__ : int = list(A__ ) with get_context('''fork''' ).Pool() as pool: a__ : Tuple = decoder.decode_beams_batch( A__ , A__ , beam_width=A__ , beam_prune_logp=A__ , token_min_logp=A__ , ) a__ : List[Any] = [d[0][0] for d in decoded_decoder_out] a__ : str = [d[0][2] for d in decoded_decoder_out] a__ : str = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A__ , A__ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A__ ) self.assertTrue(np.array_equal(A__ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A__ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A__ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , A__ , atol=1E-3 ) ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' a__ : List[Any] = self.get_feature_extractor() a__ : List[Any] = self.get_tokenizer() a__ : str = self.get_decoder() a__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=A__ , feature_extractor=A__ , decoder=A__ ) a__ : List[str] = self._get_dummy_logits() a__ : Tuple = 2.0 a__ : Optional[Any] = 5.0 a__ : Optional[int] = -20.0 a__ : Tuple = True a__ : int = processor.batch_decode( A__ , alpha=A__ , beta=A__ , unk_score_offset=A__ , lm_score_boundary=A__ , ) a__ : Any = decoded_processor_out.text a__ : Dict = list(A__ ) decoder.reset_params( alpha=A__ , beta=A__ , unk_score_offset=A__ , lm_score_boundary=A__ , ) with get_context('''fork''' ).Pool() as pool: a__ : Optional[int] = decoder.decode_beams_batch( A__ , A__ , ) a__ : str = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A__ , A__ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A__ ) a__ : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A__ ) def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: '''simple docstring''' a__ : str = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) a__ : str = processor.decoder.model_container[processor.decoder._model_key] a__ : int = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() a__ : Tuple = os.listdir(A__ ) a__ : List[str] = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A__ , A__ ) def __lowerCAmelCase ( self : Any ) -> int: '''simple docstring''' a__ : List[Any] = snapshot_download('''hf-internal-testing/processor_with_lm''' ) a__ : List[Any] = WavaVecaProcessorWithLM.from_pretrained(A__ ) a__ : List[Any] = processor.decoder.model_container[processor.decoder._model_key] a__ : Optional[int] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() a__ : List[Any] = os.listdir(A__ ) a__ : int = os.listdir(A__ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A__ , A__ ) def __lowerCAmelCase ( self : Any ) -> Tuple: '''simple docstring''' a__ : str = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) a__ : Tuple = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) a__ : Optional[int] = floats_list((3, 1_0_0_0) ) a__ : Any = processor_wavaveca(A__ , return_tensors='''np''' ) a__ : List[Any] = processor_auto(A__ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) a__ : int = self._get_dummy_logits() a__ : Optional[int] = processor_wavaveca.batch_decode(A__ ) a__ : List[Any] = processor_auto.batch_decode(A__ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __lowerCAmelCase ( self : List[str] ) -> Any: '''simple docstring''' a__ : Tuple = self.get_feature_extractor() a__ : Optional[int] = self.get_tokenizer() a__ : List[str] = self.get_decoder() a__ : Any = WavaVecaProcessorWithLM(tokenizer=A__ , feature_extractor=A__ , decoder=A__ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def __lowerCAmelCase ( A__ : List[str] , A__ : List[str] ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = [d[key] for d in offsets] return retrieved_list def __lowerCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' a__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) a__ : List[str] = self._get_dummy_logits()[0] a__ : Optional[Any] = processor.decode(A__ , output_word_offsets=A__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A__ , A__ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def __lowerCAmelCase ( self : Optional[int] ) -> Any: '''simple docstring''' a__ : Any = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) a__ : Optional[Any] = self._get_dummy_logits() a__ : str = processor.batch_decode(A__ , output_word_offsets=A__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A__ , A__ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A__ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __lowerCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' import torch a__ : Optional[int] = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A__ ) a__ : Dict = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) a__ : str = iter(A__ ) a__ : Any = next(A__ ) a__ : Dict = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) a__ : Optional[Any] = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train a__ : Optional[Any] = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): a__ : Optional[Any] = model(A__ ).logits.cpu().numpy() a__ : Tuple = processor.decode(logits[0] , output_word_offsets=A__ ) a__ : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate a__ : Optional[int] = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] a__ : Optional[Any] = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A__ , '''word''' ) ) , A__ ) self.assertEqual(''' '''.join(self.get_from_offsets(A__ , '''word''' ) ) , output.text ) # output times a__ : List[Any] = torch.tensor(self.get_from_offsets(A__ , '''start_time''' ) ) a__ : Optional[Any] = torch.tensor(self.get_from_offsets(A__ , '''end_time''' ) ) # fmt: off a__ : List[str] = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) a__ : Union[str, Any] = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A__ , A__ , atol=0.01 ) ) self.assertTrue(torch.allclose(A__ , A__ , atol=0.01 ) )
688
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file a__ : Dict = TapasConfig.from_json_file(lowerCAmelCase__ ) # set absolute/relative position embeddings parameter a__ : List[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": a__ : Optional[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "WTQ": # run_task_main.py hparams a__ : List[str] = 4 a__ : Optional[int] = True # hparam_utils.py hparams a__ : List[Any] = 0.664694 a__ : List[Any] = 0.207951 a__ : Union[str, Any] = 0.121194 a__ : Optional[Any] = True a__ : Optional[int] = True a__ : List[str] = False a__ : Union[str, Any] = 0.0352513 a__ : Any = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams a__ : Tuple = 4 a__ : Dict = False # hparam_utils.py hparams a__ : str = 36.4519 a__ : str = 0.903421 a__ : Optional[Any] = 222.088 a__ : Dict = True a__ : Dict = True a__ : Dict = True a__ : str = 0.763141 a__ : List[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "TABFACT": a__ : List[str] = TapasForSequenceClassification(config=lowerCAmelCase__ ) elif task == "MLM": a__ : Tuple = TapasForMaskedLM(config=lowerCAmelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": a__ : List[str] = TapasModel(config=lowerCAmelCase__ ) else: raise ValueError(F'Task {task} not supported.' ) print(F'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model (weights and configuration) print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowerCAmelCase__ ) # Save tokenizer files print(F'Save tokenizer files to {pytorch_dump_path}' ) a__ : Optional[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 ) tokenizer.save_pretrained(lowerCAmelCase__ ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
1
'''simple docstring''' import colorsys from PIL import Image # type: ignore def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : int ): a__ : int = x a__ : List[str] = y for step in range(lowerCAmelCase__ ): # noqa: B007 a__ : Any = a * a - b * b + x a__ : Dict = 2 * a * b + y a__ : Optional[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __a ( lowerCAmelCase__ : float ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def __a ( lowerCAmelCase__ : float ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def __a ( lowerCAmelCase__ : int = 800 , lowerCAmelCase__ : int = 600 , lowerCAmelCase__ : float = -0.6 , lowerCAmelCase__ : float = 0 , lowerCAmelCase__ : float = 3.2 , lowerCAmelCase__ : int = 50 , lowerCAmelCase__ : bool = True , ): a__ : List[str] = Image.new('''RGB''' , (image_width, image_height) ) a__ : Tuple = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates a__ : Optional[Any] = figure_width / image_width * image_height a__ : Any = figure_center_x + (image_x / image_width - 0.5) * figure_width a__ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height a__ : Dict = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: a__ : Any = get_color_coded_rgb(lowerCAmelCase__ ) else: a__ : List[str] = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __SCREAMING_SNAKE_CASE = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
688
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } __SCREAMING_SNAKE_CASE = { 'google/fnet-base': 5_1_2, 'google/fnet-large': 5_1_2, } __SCREAMING_SNAKE_CASE = '▁' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "token_type_ids"] __UpperCamelCase = FNetTokenizer def __init__( self : Any , A__ : Any=None , A__ : int=None , A__ : List[str]=False , A__ : int=True , A__ : str=True , A__ : List[Any]="<unk>" , A__ : Dict="[SEP]" , A__ : List[str]="<pad>" , A__ : Union[str, Any]="[CLS]" , A__ : Dict="[MASK]" , **A__ : Tuple , ) -> List[str]: '''simple docstring''' a__ : Optional[int] = ( AddedToken(A__ , lstrip=A__ , rstrip=A__ , normalized=A__ ) if isinstance(A__ , A__ ) else mask_token ) super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , **A__ , ) a__ : Optional[Any] = do_lower_case a__ : Dict = remove_space a__ : List[Any] = keep_accents a__ : Optional[Any] = vocab_file a__ : Any = False if not self.vocab_file else True def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Optional[int] = [self.sep_token_id] a__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self : List[Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Dict = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Tuple , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ : Union[str, Any] = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ): copyfile(self.vocab_file , A__ ) return (out_vocab_file,)
688
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # TODO Update this __SCREAMING_SNAKE_CASE = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "esm" def __init__( self : Any , A__ : Optional[int]=None , A__ : str=None , A__ : List[str]=None , A__ : Union[str, Any]=7_6_8 , A__ : List[Any]=1_2 , A__ : Dict=1_2 , A__ : Any=3_0_7_2 , A__ : Union[str, Any]=0.1 , A__ : Optional[Any]=0.1 , A__ : Tuple=1_0_2_6 , A__ : Union[str, Any]=0.02 , A__ : Any=1E-12 , A__ : Union[str, Any]="absolute" , A__ : Any=True , A__ : Any=None , A__ : Any=False , A__ : List[str]=False , A__ : str=None , A__ : Optional[Any]=None , **A__ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=A__ , mask_token_id=A__ , **A__ ) a__ : Tuple = vocab_size a__ : List[Any] = hidden_size a__ : Optional[int] = num_hidden_layers a__ : Tuple = num_attention_heads a__ : List[str] = intermediate_size a__ : int = hidden_dropout_prob a__ : Optional[int] = attention_probs_dropout_prob a__ : Dict = max_position_embeddings a__ : Union[str, Any] = initializer_range a__ : Optional[Any] = layer_norm_eps a__ : List[Any] = position_embedding_type a__ : Tuple = use_cache a__ : Tuple = emb_layer_norm_before a__ : List[str] = token_dropout a__ : List[Any] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) a__ : Dict = EsmFoldConfig() elif isinstance(A__ , A__ ): a__ : Optional[int] = EsmFoldConfig(**A__ ) a__ : List[Any] = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) a__ : Optional[int] = get_default_vocab_list() else: a__ : Tuple = vocab_list else: a__ : Any = None a__ : List[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , A__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __lowerCAmelCase ( self : Any ) -> Optional[Any]: '''simple docstring''' a__ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , A__ ): a__ : List[str] = self.esmfold_config.to_dict() return output @dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = None __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 0 __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = 128 __UpperCamelCase = None def __lowerCAmelCase ( self : Tuple ) -> Any: '''simple docstring''' if self.trunk is None: a__ : Optional[Any] = TrunkConfig() elif isinstance(self.trunk , A__ ): a__ : Tuple = TrunkConfig(**self.trunk ) def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' a__ : int = asdict(self ) a__ : Tuple = self.trunk.to_dict() return output @dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = 48 __UpperCamelCase = 1024 __UpperCamelCase = 128 __UpperCamelCase = 32 __UpperCamelCase = 32 __UpperCamelCase = 32 __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = False __UpperCamelCase = 4 __UpperCamelCase = 128 __UpperCamelCase = None def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if self.structure_module is None: a__ : List[Any] = StructureModuleConfig() elif isinstance(self.structure_module , A__ ): a__ : Dict = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) a__ : List[Any] = self.sequence_state_dim // self.sequence_head_width a__ : Optional[Any] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(F'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' a__ : int = asdict(self ) a__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = 384 __UpperCamelCase = 128 __UpperCamelCase = 16 __UpperCamelCase = 128 __UpperCamelCase = 12 __UpperCamelCase = 4 __UpperCamelCase = 8 __UpperCamelCase = 0.1 __UpperCamelCase = 8 __UpperCamelCase = 1 __UpperCamelCase = 2 __UpperCamelCase = 7 __UpperCamelCase = 10 __UpperCamelCase = 1e-8 __UpperCamelCase = 1e5 def __lowerCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' return asdict(self ) def __a ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
688
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } __SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': 5_1_2, 'distilbert-base-uncased-distilled-squad': 5_1_2, 'distilbert-base-cased': 5_1_2, 'distilbert-base-cased-distilled-squad': 5_1_2, 'distilbert-base-german-cased': 5_1_2, 'distilbert-base-multilingual-cased': 5_1_2, } __SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = ["input_ids", "attention_mask"] __UpperCamelCase = DistilBertTokenizer def __init__( self : str , A__ : Optional[Any]=None , A__ : Any=None , A__ : Tuple=True , A__ : List[Any]="[UNK]" , A__ : List[str]="[SEP]" , A__ : Tuple="[PAD]" , A__ : Optional[int]="[CLS]" , A__ : Union[str, Any]="[MASK]" , A__ : List[str]=True , A__ : Any=None , **A__ : int , ) -> str: '''simple docstring''' super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , ) a__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , A__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , A__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A__ ) != tokenize_chinese_chars ): a__ : int = getattr(A__ , normalizer_state.pop('''type''' ) ) a__ : List[Any] = do_lower_case a__ : str = strip_accents a__ : List[str] = tokenize_chinese_chars a__ : Dict = normalizer_class(**A__ ) a__ : List[Any] = do_lower_case def __lowerCAmelCase ( self : Tuple , A__ : List[str] , A__ : Dict=None ) -> List[str]: '''simple docstring''' a__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : List[str] = [self.sep_token_id] a__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : str , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' a__ : int = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
688
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = None __UpperCamelCase = BloomTokenizerFast __UpperCamelCase = BloomTokenizerFast __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = "tokenizer_file" __UpperCamelCase = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def __lowerCAmelCase ( self : Any ) -> List[Any]: '''simple docstring''' super().setUp() a__ : List[Any] = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : str , **A__ : List[str] ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **A__ ) def __lowerCAmelCase ( self : str ) -> str: '''simple docstring''' a__ : List[Any] = self.get_rust_tokenizer() a__ : Tuple = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] a__ : int = [[2_1_7_5, 2_3_7_1_4, 7_3_1_7_3, 1_4_4_2_5_2, 2], [7_7, 1_3_2_6_1_9, 3_4_7_8, 3_6_8, 1_0_9_5_8_6, 3_5_4_3_3, 2]] a__ : List[Any] = tokenizer.batch_encode_plus(A__ )['''input_ids'''] self.assertListEqual(A__ , A__ ) a__ : Optional[int] = tokenizer.batch_decode(A__ ) self.assertListEqual(A__ , A__ ) def __lowerCAmelCase ( self : Any , A__ : str=6 ) -> Dict: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): a__ : List[str] = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input a__ : str = '''This is a simple input''' a__ : Union[str, Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] a__ : List[Any] = ('''This is a simple input''', '''This is a pair''') a__ : Optional[int] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(A__ , max_length=A__ ) tokenizer_r.encode_plus(A__ , max_length=A__ ) tokenizer_r.batch_encode_plus(A__ , max_length=A__ ) tokenizer_r.encode(A__ , max_length=A__ ) tokenizer_r.batch_encode_plus(A__ , max_length=A__ ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) a__ : Dict = None # Hotfixing padding = None self.assertRaises(A__ , tokenizer_r.encode , A__ , max_length=A__ , padding='''max_length''' ) # Simple input self.assertRaises(A__ , tokenizer_r.encode_plus , A__ , max_length=A__ , padding='''max_length''' ) # Simple input self.assertRaises( A__ , tokenizer_r.batch_encode_plus , A__ , max_length=A__ , padding='''max_length''' , ) # Pair input self.assertRaises(A__ , tokenizer_r.encode , A__ , max_length=A__ , padding='''max_length''' ) # Pair input self.assertRaises(A__ , tokenizer_r.encode_plus , A__ , max_length=A__ , padding='''max_length''' ) # Pair input self.assertRaises( A__ , tokenizer_r.batch_encode_plus , A__ , max_length=A__ , padding='''max_length''' , ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' a__ : str = self.get_rust_tokenizer() a__ : str = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=A__ ) a__ : Tuple = next(iter(A__ ) )['''premise'''] # pick up one data a__ : List[Any] = list(sample_data.values() ) a__ : Tuple = list(map(tokenizer.encode , A__ ) ) a__ : Optional[int] = [tokenizer.decode(A__ , clean_up_tokenization_spaces=A__ ) for x in output_tokens] self.assertListEqual(A__ , A__ ) def __lowerCAmelCase ( self : Tuple ) -> Any: '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
688
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __SCREAMING_SNAKE_CASE = tuple[int, int] class lowerCAmelCase__ : """simple docstring""" def __init__( self : str , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int , A__ : Node | None , ) -> None: '''simple docstring''' a__ : Optional[int] = pos_x a__ : str = pos_y a__ : Optional[int] = (pos_y, pos_x) a__ : List[str] = goal_x a__ : Any = goal_y a__ : Any = g_cost a__ : Optional[int] = parent a__ : Union[str, Any] = self.calculate_heuristic() a__ : List[Any] = self.g_cost + self.h_cost def __lowerCAmelCase ( self : Union[str, Any] ) -> float: '''simple docstring''' a__ : List[str] = self.pos_x - self.goal_x a__ : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A__ ) + abs(A__ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : List[Any] , A__ : Node ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , A__ : TPosition , A__ : TPosition ) -> Optional[Any]: '''simple docstring''' a__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A__ ) a__ : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , A__ ) a__ : Dict = [self.start] a__ : list[Node] = [] a__ : str = False def __lowerCAmelCase ( self : List[str] ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() a__ : Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A__ ) self.closed_nodes.append(A__ ) a__ : List[Any] = self.get_successors(A__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A__ ) else: # retrieve the best current path a__ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A__ ) else: self.open_nodes.append(A__ ) return [self.start.pos] def __lowerCAmelCase ( self : Optional[Any] , A__ : Node ) -> list[Node]: '''simple docstring''' a__ : Optional[int] = [] for action in delta: a__ : List[Any] = parent.pos_x + action[1] a__ : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A__ , A__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A__ , ) ) return successors def __lowerCAmelCase ( self : List[Any] , A__ : Node | None ) -> list[TPosition]: '''simple docstring''' a__ : Union[str, Any] = node a__ : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) a__ : Any = current_node.parent path.reverse() return path class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , A__ : TPosition , A__ : TPosition ) -> None: '''simple docstring''' a__ : str = AStar(A__ , A__ ) a__ : Optional[int] = AStar(A__ , A__ ) a__ : List[str] = False def __lowerCAmelCase ( self : Tuple ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() a__ : int = self.fwd_astar.open_nodes.pop(0 ) a__ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A__ , A__ ) self.fwd_astar.closed_nodes.append(A__ ) self.bwd_astar.closed_nodes.append(A__ ) a__ : Tuple = current_bwd_node a__ : Optional[int] = current_fwd_node a__ : Optional[int] = { self.fwd_astar: self.fwd_astar.get_successors(A__ ), self.bwd_astar: self.bwd_astar.get_successors(A__ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A__ ) else: # retrieve the best current path a__ : Optional[Any] = astar.open_nodes.pop( astar.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A__ ) else: astar.open_nodes.append(A__ ) return [self.fwd_astar.start.pos] def __lowerCAmelCase ( self : List[str] , A__ : Node , A__ : Node ) -> list[TPosition]: '''simple docstring''' a__ : str = self.fwd_astar.retrace_path(A__ ) a__ : List[str] = self.bwd_astar.retrace_path(A__ ) bwd_path.pop() bwd_path.reverse() a__ : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __SCREAMING_SNAKE_CASE = (0, 0) __SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __SCREAMING_SNAKE_CASE = time.time() __SCREAMING_SNAKE_CASE = AStar(init, goal) __SCREAMING_SNAKE_CASE = a_star.search() __SCREAMING_SNAKE_CASE = time.time() - start_time print(f'AStar execution time = {end_time:f} seconds') __SCREAMING_SNAKE_CASE = time.time() __SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) __SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
688
1
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = ["image_processor", "tokenizer"] __UpperCamelCase = "BridgeTowerImageProcessor" __UpperCamelCase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : List[str] , A__ : int , A__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' super().__init__(A__ , A__ ) def __call__( self : Tuple , A__ : Optional[Any] , A__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , A__ : bool = True , A__ : Union[bool, str, PaddingStrategy] = False , A__ : Union[bool, str, TruncationStrategy] = None , A__ : Optional[int] = None , A__ : int = 0 , A__ : Optional[int] = None , A__ : Optional[bool] = None , A__ : Optional[bool] = None , A__ : bool = False , A__ : bool = False , A__ : bool = False , A__ : bool = False , A__ : bool = True , A__ : Optional[Union[str, TensorType]] = None , **A__ : List[str] , ) -> BatchEncoding: '''simple docstring''' a__ : str = self.tokenizer( text=A__ , add_special_tokens=A__ , padding=A__ , truncation=A__ , max_length=A__ , stride=A__ , pad_to_multiple_of=A__ , return_token_type_ids=A__ , return_attention_mask=A__ , return_overflowing_tokens=A__ , return_special_tokens_mask=A__ , return_offsets_mapping=A__ , return_length=A__ , verbose=A__ , return_tensors=A__ , **A__ , ) # add pixel_values + pixel_mask a__ : Union[str, Any] = self.image_processor( A__ , return_tensors=A__ , do_normalize=A__ , do_center_crop=A__ , **A__ ) encoding.update(A__ ) return encoding def __lowerCAmelCase ( self : int , *A__ : Optional[int] , **A__ : List[str] ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*A__ , **A__ ) def __lowerCAmelCase ( self : Union[str, Any] , *A__ : Optional[int] , **A__ : Dict ) -> Any: '''simple docstring''' return self.tokenizer.decode(*A__ , **A__ ) @property def __lowerCAmelCase ( self : Tuple ) -> int: '''simple docstring''' a__ : List[Any] = self.tokenizer.model_input_names a__ : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
688
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ): # Construct model if gpta_config_file == "": a__ : Union[str, Any] = GPTaConfig() else: a__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase__ ) a__ : Optional[int] = GPTaModel(lowerCAmelCase__ ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model a__ : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME a__ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
688
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __SCREAMING_SNAKE_CASE = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : int ): a__ : List[str] = state_dict.pop(lowerCAmelCase__ ) a__ : Dict = val def __a ( lowerCAmelCase__ : Optional[Any] ): a__ : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: a__ : Optional[Any] = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) a__ : Tuple = value else: a__ : Tuple = value return new_state_dict def __a ( lowerCAmelCase__ : Optional[Any] ): a__ : List[str] = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a__ : Union[str, Any] = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) a__ : Tuple = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a__ : List[Any] = in_proj_weight[:256, :] a__ : Dict = in_proj_bias[:256] a__ : Union[str, Any] = in_proj_weight[256:512, :] a__ : Any = in_proj_bias[256:512] a__ : int = in_proj_weight[-256:, :] a__ : Union[str, Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a__ : List[str] = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) a__ : Any = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a__ : str = in_proj_weight[:256, :] a__ : str = in_proj_bias[:256] a__ : Dict = in_proj_weight[256:512, :] a__ : Optional[int] = in_proj_bias[256:512] a__ : Optional[int] = in_proj_weight[-256:, :] a__ : Union[str, Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention a__ : List[Any] = state_dict.pop( F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) a__ : List[Any] = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a__ : Optional[Any] = in_proj_weight_cross_attn[:256, :] a__ : Dict = in_proj_bias_cross_attn[:256] a__ : Tuple = in_proj_weight_cross_attn[256:512, :] a__ : str = in_proj_bias_cross_attn[256:512] a__ : Union[str, Any] = in_proj_weight_cross_attn[-256:, :] a__ : Dict = in_proj_bias_cross_attn[-256:] def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ): a__ , a__ : Dict = image.size a__ : List[Any] = max(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : List[Any] = 800 if '''detection''' in checkpoint_url else 1000 a__ : List[str] = target_max_size / current_max_size a__ : str = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __a ( lowerCAmelCase__ : str ): a__ : Union[str, Any] = F.to_tensor(lowerCAmelCase__ ) a__ : Tuple = F.normalize(lowerCAmelCase__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __a ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ): logger.info('''Converting model...''' ) # load original state dict a__ : Tuple = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) a__ : int = rename_backbone_keys(lowerCAmelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCAmelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a__ : Optional[int] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): a__ : Tuple = state_dict.pop(lowerCAmelCase__ ) a__ : str = val # create HuggingFace model and load state dict a__ : Union[str, Any] = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: a__ : int = 15 a__ : str = 2 a__ : Union[str, Any] = {0: '''table''', 1: '''table rotated'''} a__ : List[Any] = idalabel a__ : Union[str, Any] = {v: k for k, v in idalabel.items()} else: a__ : List[str] = 125 a__ : List[str] = 6 a__ : List[Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } a__ : Any = idalabel a__ : Dict = {v: k for k, v in idalabel.items()} a__ : List[Any] = DetrImageProcessor( format='''coco_detection''' , max_size=800 if '''detection''' in checkpoint_url else 1000 ) a__ : Dict = TableTransformerForObjectDetection(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # verify our conversion a__ : Optional[int] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' a__ : Optional[int] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowerCAmelCase__ ) a__ : List[Any] = Image.open(lowerCAmelCase__ ).convert('''RGB''' ) a__ : int = normalize(resize(lowerCAmelCase__ , lowerCAmelCase__ ) ).unsqueeze(0 ) a__ : List[Any] = model(lowerCAmelCase__ ) if "detection" in checkpoint_url: a__ : List[str] = (1, 15, 3) a__ : Dict = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) a__ : int = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: a__ : Optional[Any] = (1, 125, 7) a__ : List[Any] = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) a__ : int = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) a__ : Any = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowerCAmelCase__ ) image_processor.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
688
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } __SCREAMING_SNAKE_CASE = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } __SCREAMING_SNAKE_CASE = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: __SCREAMING_SNAKE_CASE = reader.read() __SCREAMING_SNAKE_CASE = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): __SCREAMING_SNAKE_CASE = UNetaDModel(**config) else: __SCREAMING_SNAKE_CASE = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel __SCREAMING_SNAKE_CASE = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __SCREAMING_SNAKE_CASE = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __SCREAMING_SNAKE_CASE = config[key] del config[key] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['down_block_types']] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: __SCREAMING_SNAKE_CASE = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) __SCREAMING_SNAKE_CASE = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue __SCREAMING_SNAKE_CASE = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: __SCREAMING_SNAKE_CASE = param_value __SCREAMING_SNAKE_CASE = True if not has_changed: __SCREAMING_SNAKE_CASE = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
688
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __SCREAMING_SNAKE_CASE = random.Random() def __a ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=1.0 , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Dict=None ): if rng is None: a__ : Tuple = global_rng a__ : Optional[int] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : str , A__ : Dict , A__ : List[Any]=7 , A__ : List[str]=4_0_0 , A__ : int=2_0_0_0 , A__ : str=1 , A__ : Optional[int]=0.0 , A__ : Optional[int]=1_6_0_0_0 , A__ : Dict=True , A__ : List[str]=True , ) -> Optional[int]: '''simple docstring''' a__ : Optional[int] = parent a__ : Optional[int] = batch_size a__ : List[Any] = min_seq_length a__ : Optional[Any] = max_seq_length a__ : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a__ : Any = feature_size a__ : List[Any] = padding_value a__ : List[Any] = sampling_rate a__ : str = return_attention_mask a__ : int = do_normalize def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __lowerCAmelCase ( self : Dict , A__ : Tuple=False , A__ : Optional[Any]=False ) -> Optional[int]: '''simple docstring''' def _flatten(A__ : Optional[int] ): return list(itertools.chain(*A__ ) ) if equal_length: a__ : Optional[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size a__ : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a__ : Optional[Any] = [np.asarray(A__ ) for x in speech_inputs] return speech_inputs class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = WavaVecaFeatureExtractor def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' a__ : List[str] = WavaVecaFeatureExtractionTester(self ) def __lowerCAmelCase ( self : Optional[Any] , A__ : Any ) -> int: '''simple docstring''' self.assertTrue(np.all(np.mean(A__ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A__ , axis=0 ) - 1 ) < 1E-3 ) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: '''simple docstring''' a__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a__ : List[str] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__ : Dict = [np.asarray(A__ ) for speech_input in speech_inputs] # Test not batched input a__ : List[str] = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values a__ : Optional[Any] = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(A__ , A__ , atol=1E-3 ) ) # Test batched a__ : Optional[int] = feat_extract(A__ , return_tensors='''np''' ).input_values a__ : Optional[int] = feat_extract(A__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(A__ , A__ ): self.assertTrue(np.allclose(A__ , A__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a__ : List[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] a__ : Tuple = np.asarray(A__ ) a__ : Optional[int] = feat_extract(A__ , return_tensors='''np''' ).input_values a__ : Optional[int] = feat_extract(A__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(A__ , A__ ): self.assertTrue(np.allclose(A__ , A__ , atol=1E-3 ) ) def __lowerCAmelCase ( self : str ) -> Tuple: '''simple docstring''' a__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ : Dict = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__ : Dict = ['''longest''', '''max_length''', '''do_not_pad'''] a__ : Any = [None, 1_6_0_0, None] for max_length, padding in zip(A__ , A__ ): a__ : Optional[Any] = feat_extract(A__ , padding=A__ , max_length=A__ , return_tensors='''np''' ) a__ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __lowerCAmelCase ( self : Tuple ) -> str: '''simple docstring''' a__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ : List[Any] = range(8_0_0 , 1_4_0_0 , 2_0_0 ) a__ : Any = [floats_list((1, x) )[0] for x in lengths] a__ : Tuple = ['''longest''', '''max_length''', '''do_not_pad'''] a__ : List[str] = [None, 1_6_0_0, None] for max_length, padding in zip(A__ , A__ ): a__ : Dict = feat_extract(A__ , max_length=A__ , padding=A__ ) a__ : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __lowerCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' a__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__ : Dict = feat_extract( A__ , truncation=A__ , max_length=1_0_0_0 , padding='''max_length''' , return_tensors='''np''' ) a__ : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __lowerCAmelCase ( self : int ) -> List[str]: '''simple docstring''' a__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ : Tuple = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__ : Optional[int] = feat_extract( A__ , truncation=A__ , max_length=1_0_0_0 , padding='''longest''' , return_tensors='''np''' ) a__ : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) a__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__ : str = feat_extract( A__ , truncation=A__ , max_length=2_0_0_0 , padding='''longest''' , return_tensors='''np''' ) a__ : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) @require_torch def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' import torch a__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ : Optional[int] = np.random.rand(1_0_0 ).astype(np.floataa ) a__ : List[str] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a__ : Optional[Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) a__ : Tuple = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def __lowerCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: a__ : str = WavaVecaConfig.from_pretrained(A__ ) a__ : str = WavaVecaFeatureExtractor.from_pretrained(A__ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
688
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = (KDPMaDiscreteScheduler,) __UpperCamelCase = 10 def __lowerCAmelCase ( self : Optional[Any] , **A__ : Optional[int] ) -> int: '''simple docstring''' a__ : Optional[int] = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**A__ ) return config def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=A__ ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=A__ , beta_end=A__ ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A__ ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A__ ) def __lowerCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' a__ : Any = self.scheduler_classes[0] a__ : str = self.get_scheduler_config(prediction_type='''v_prediction''' ) a__ : Dict = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : Tuple = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Dict = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : Optional[Any] = scheduler.scale_model_input(A__ , A__ ) a__ : Union[str, Any] = model(A__ , A__ ) a__ : List[str] = scheduler.step(A__ , A__ , A__ ) a__ : Optional[Any] = output.prev_sample a__ : Tuple = torch.sum(torch.abs(A__ ) ) a__ : Optional[int] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' if torch_device == "mps": return a__ : List[Any] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : Tuple = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : List[Any] = self.dummy_model() a__ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Any = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : str = scheduler.scale_model_input(A__ , A__ ) a__ : List[str] = model(A__ , A__ ) a__ : str = scheduler.step(A__ , A__ , A__ ) a__ : List[Any] = output.prev_sample a__ : Dict = torch.sum(torch.abs(A__ ) ) a__ : Optional[Any] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> int: '''simple docstring''' if torch_device == "mps": return a__ : Optional[int] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : List[Any] = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps , device=A__ ) a__ : Union[str, Any] = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter.to(A__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: a__ : Optional[int] = scheduler.scale_model_input(A__ , A__ ) a__ : List[Any] = model(A__ , A__ ) a__ : Any = scheduler.step(A__ , A__ , A__ ) a__ : List[str] = output.prev_sample a__ : Any = torch.sum(torch.abs(A__ ) ) a__ : Union[str, Any] = torch.mean(torch.abs(A__ ) ) if str(A__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
688
1
'''simple docstring''' import math def __a ( lowerCAmelCase__ : int ): assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False a__ : List[Any] = range(3 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple=1 , **lowerCAmelCase__ : str ): a__ : int = factor * value a__ : int = value while not is_prime(lowerCAmelCase__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowerCAmelCase__ ) return value
688
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' a__ : str = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None a__ , a__ : List[Any] = get_aligned_output_features_output_indices(A__ , A__ , A__ ) self.assertEqual(A__ , ['''c'''] ) self.assertEqual(A__ , [2] ) # Out indices set to match out features a__ , a__ : Optional[int] = get_aligned_output_features_output_indices(['''a''', '''c'''] , A__ , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [0, 2] ) # Out features set to match out indices a__ , a__ : int = get_aligned_output_features_output_indices(A__ , [0, 2] , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [0, 2] ) # Out features selected from negative indices a__ , a__ : List[str] = get_aligned_output_features_output_indices(A__ , [-3, -1] , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [-3, -1] ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , A__ ) # Out features must be a list with self.assertRaises(A__ ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(A__ ): verify_out_features_out_indices(A__ , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(A__ ): verify_out_features_out_indices(A__ , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(A__ ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' a__ : Optional[Any] = BackboneMixin() a__ : int = ['''a''', '''b''', '''c'''] a__ : List[Any] = ['''a''', '''c'''] a__ : Tuple = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly a__ : Dict = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) a__ : int = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
688
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __a ( lowerCAmelCase__ : Dict ): a__ , a__ : int = image.size a__ , a__ : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a__ : Tuple = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) a__ : List[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0 a__ : Any = image[None].transpose(0 , 3 , 1 , 2 ) a__ : Dict = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , A__ : VQModel , A__ : UNetaDModel , A__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> str: '''simple docstring''' super().__init__() self.register_modules(vqvae=A__ , unet=A__ , scheduler=A__ ) @torch.no_grad() def __call__( self : List[str] , A__ : Union[torch.Tensor, PIL.Image.Image] = None , A__ : Optional[int] = 1 , A__ : Optional[int] = 1_0_0 , A__ : Optional[float] = 0.0 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(A__ , PIL.Image.Image ): a__ : List[Any] = 1 elif isinstance(A__ , torch.Tensor ): a__ : List[str] = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A__ )}' ) if isinstance(A__ , PIL.Image.Image ): a__ : Union[str, Any] = preprocess(A__ ) a__ , a__ : Dict = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image a__ : Optional[int] = (batch_size, self.unet.config.in_channels // 2, height, width) a__ : Optional[int] = next(self.unet.parameters() ).dtype a__ : List[str] = randn_tensor(A__ , generator=A__ , device=self.device , dtype=A__ ) a__ : Any = image.to(device=self.device , dtype=A__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(A__ , device=self.device ) a__ : int = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler a__ : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a__ : Union[str, Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a__ : str = {} if accepts_eta: a__ : Dict = eta for t in self.progress_bar(A__ ): # concat latents and low resolution image in the channel dimension. a__ : str = torch.cat([latents, image] , dim=1 ) a__ : Optional[Any] = self.scheduler.scale_model_input(A__ , A__ ) # predict the noise residual a__ : Union[str, Any] = self.unet(A__ , A__ ).sample # compute the previous noisy sample x_t -> x_t-1 a__ : Union[str, Any] = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample # decode the image latents with the VQVAE a__ : List[Any] = self.vqvae.decode(A__ ).sample a__ : List[Any] = torch.clamp(A__ , -1.0 , 1.0 ) a__ : Optional[Any] = image / 2 + 0.5 a__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a__ : Union[str, Any] = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __a ( lowerCAmelCase__ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ): a__ : Dict = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue a__ : Any = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) a__ : int = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) a__ : Optional[Any] = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) a__ : Dict = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) a__ : List[str] = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) a__ : List[Any] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) a__ : str = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) a__ : List[Any] = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) a__ : List[Any] = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) a__ : str = key.replace('''image_encoder.module''' , '''flava.image_model''' ) a__ : Dict = key.replace('''text_encoder.module''' , '''flava.text_model''' ) a__ : List[Any] = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) a__ : List[str] = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) a__ : List[str] = key.replace('''text_projection''' , '''flava.text_projection''' ) a__ : Any = key.replace('''image_projection''' , '''flava.image_projection''' ) a__ : Any = value.float() for key, value in codebook_state_dict.items(): a__ : List[str] = value return upgrade @torch.no_grad() def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict=None ): if config_path is not None: a__ : Tuple = FlavaConfig.from_pretrained(lowerCAmelCase__ ) else: a__ : Optional[int] = FlavaConfig() a__ : List[Any] = FlavaForPreTraining(lowerCAmelCase__ ).eval() a__ : Optional[int] = convert_dalle_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , save_checkpoint=lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): a__ : List[str] = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) else: a__ : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' ) a__ : List[Any] = upgrade_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) a__ : Any = hf_model.state_dict() a__ : Optional[Any] = count_parameters(lowerCAmelCase__ ) a__ : int = count_parameters(lowerCAmelCase__ ) + count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) hf_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __SCREAMING_SNAKE_CASE = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
688
1
'''simple docstring''' import unittest from knapsack import knapsack as k class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Tuple ) -> int: '''simple docstring''' a__ : Optional[Any] = 0 a__ : List[Any] = [0] a__ : Any = [0] a__ : List[str] = len(A__ ) self.assertEqual(k.knapsack(A__ , A__ , A__ , A__ ) , 0 ) a__ : Dict = [6_0] a__ : Union[str, Any] = [1_0] a__ : Optional[int] = len(A__ ) self.assertEqual(k.knapsack(A__ , A__ , A__ , A__ ) , 0 ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' a__ : Dict = 3 a__ : Tuple = [1, 2, 3] a__ : List[str] = [3, 2, 1] a__ : Dict = len(A__ ) self.assertEqual(k.knapsack(A__ , A__ , A__ , A__ ) , 5 ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' a__ : int = 5_0 a__ : List[str] = [6_0, 1_0_0, 1_2_0] a__ : Union[str, Any] = [1_0, 2_0, 3_0] a__ : int = len(A__ ) self.assertEqual(k.knapsack(A__ , A__ , A__ , A__ ) , 2_2_0 ) if __name__ == "__main__": unittest.main()
688
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 3 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" pass def __a ( lowerCAmelCase__ : List[str] ): for shard in shards: for i in range(lowerCAmelCase__ ): yield {"i": i, "shard": shard} def __a ( ): a__ : str = int(os.environ['''RANK'''] ) a__ : int = int(os.environ['''WORLD_SIZE'''] ) a__ : str = ArgumentParser() parser.add_argument('''--streaming''' , type=lowerCAmelCase__ ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase__ ) parser.add_argument('''--num_workers''' , type=lowerCAmelCase__ , default=0 ) a__ : int = parser.parse_args() a__ : List[str] = args.streaming a__ : Dict = args.num_workers a__ : Dict = {'''shards''': [F'shard_{shard_idx}' for shard_idx in range(lowerCAmelCase__ )]} a__ : Tuple = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ ) if not streaming: a__ : str = Dataset.from_list(list(lowerCAmelCase__ ) ) a__ : Optional[int] = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ ) a__ : Dict = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ ) a__ : str = NUM_SHARDS * NUM_ITEMS_PER_SHARD a__ : Dict = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) a__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
688
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" @staticmethod @abstractmethod def __lowerCAmelCase ( A__ : ArgumentParser ) -> List[str]: '''simple docstring''' raise NotImplementedError() @abstractmethod def __lowerCAmelCase ( self : str ) -> List[str]: '''simple docstring''' raise NotImplementedError()
688
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __SCREAMING_SNAKE_CASE = open # noqa: we just need to have a builtin inside this module to test it properly
688
1
'''simple docstring''' def __a ( lowerCAmelCase__ : int | float | str ): try: a__ : Dict = float(lowerCAmelCase__ ) except ValueError: raise ValueError('''Please enter a valid number''' ) a__ : Optional[int] = decimal - int(lowerCAmelCase__ ) if fractional_part == 0: return int(lowerCAmelCase__ ), 1 else: a__ : str = len(str(lowerCAmelCase__ ).split('''.''' )[1] ) a__ : Dict = int(decimal * (10**number_of_frac_digits) ) a__ : Optional[Any] = 10**number_of_frac_digits a__ , a__ : Optional[Any] = denominator, numerator while True: a__ : Dict = dividend % divisor if remainder == 0: break a__ , a__ : Tuple = divisor, remainder a__ , a__ : List[str] = numerator / divisor, denominator / divisor return int(lowerCAmelCase__ ), int(lowerCAmelCase__ ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
688
'''simple docstring''' import enum import shutil import sys __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = shutil.get_terminal_size() __SCREAMING_SNAKE_CASE = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class lowerCAmelCase__ ( enum.Enum ): """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = 1 def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict="" ): sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int="" ): forceWrite(F'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def __a ( ): forceWrite('''\r''' ) def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : str ): forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def __a ( ): forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def __a ( ): reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
688
1
'''simple docstring''' import inspect import unittest class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps a__ : Optional[int] = inspect.getmembers(A__ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": a__ : int = '''k-diffusion''' elif backend == "invisible_watermark": a__ : int = '''invisible-watermark''' assert backend in deps, F'{backend} is not in the deps table!'
688
'''simple docstring''' import inspect import unittest class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps a__ : Optional[int] = inspect.getmembers(A__ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": a__ : int = '''k-diffusion''' elif backend == "invisible_watermark": a__ : int = '''invisible-watermark''' assert backend in deps, F'{backend} is not in the deps table!'
688
1
'''simple docstring''' import numpy as np from transformers import Pipeline def __a ( lowerCAmelCase__ : Optional[int] ): a__ : Any = np.max(lowerCAmelCase__ , axis=-1 , keepdims=lowerCAmelCase__ ) a__ : Dict = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowerCAmelCase__ ) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __lowerCAmelCase ( self : Optional[Any] , **A__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' a__ : Dict = {} if "second_text" in kwargs: a__ : str = kwargs['''second_text'''] return preprocess_kwargs, {}, {} def __lowerCAmelCase ( self : Any , A__ : int , A__ : int=None ) -> str: '''simple docstring''' return self.tokenizer(A__ , text_pair=A__ , return_tensors=self.framework ) def __lowerCAmelCase ( self : Dict , A__ : str ) -> Any: '''simple docstring''' return self.model(**A__ ) def __lowerCAmelCase ( self : int , A__ : Any ) -> Union[str, Any]: '''simple docstring''' a__ : Any = model_outputs.logits[0].numpy() a__ : List[Any] = softmax(A__ ) a__ : Dict = np.argmax(A__ ) a__ : Any = self.model.config.idalabel[best_class] a__ : str = probabilities[best_class].item() a__ : Any = logits.tolist() return {"label": label, "score": score, "logits": logits}
688
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __a ( lowerCAmelCase__ : Dict ): a__ , a__ : int = image.size a__ , a__ : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a__ : Tuple = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) a__ : List[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0 a__ : Any = image[None].transpose(0 , 3 , 1 , 2 ) a__ : Dict = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , A__ : VQModel , A__ : UNetaDModel , A__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> str: '''simple docstring''' super().__init__() self.register_modules(vqvae=A__ , unet=A__ , scheduler=A__ ) @torch.no_grad() def __call__( self : List[str] , A__ : Union[torch.Tensor, PIL.Image.Image] = None , A__ : Optional[int] = 1 , A__ : Optional[int] = 1_0_0 , A__ : Optional[float] = 0.0 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(A__ , PIL.Image.Image ): a__ : List[Any] = 1 elif isinstance(A__ , torch.Tensor ): a__ : List[str] = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A__ )}' ) if isinstance(A__ , PIL.Image.Image ): a__ : Union[str, Any] = preprocess(A__ ) a__ , a__ : Dict = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image a__ : Optional[int] = (batch_size, self.unet.config.in_channels // 2, height, width) a__ : Optional[int] = next(self.unet.parameters() ).dtype a__ : List[str] = randn_tensor(A__ , generator=A__ , device=self.device , dtype=A__ ) a__ : Any = image.to(device=self.device , dtype=A__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(A__ , device=self.device ) a__ : int = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler a__ : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a__ : Union[str, Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a__ : str = {} if accepts_eta: a__ : Dict = eta for t in self.progress_bar(A__ ): # concat latents and low resolution image in the channel dimension. a__ : str = torch.cat([latents, image] , dim=1 ) a__ : Optional[Any] = self.scheduler.scale_model_input(A__ , A__ ) # predict the noise residual a__ : Union[str, Any] = self.unet(A__ , A__ ).sample # compute the previous noisy sample x_t -> x_t-1 a__ : Union[str, Any] = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample # decode the image latents with the VQVAE a__ : List[Any] = self.vqvae.decode(A__ ).sample a__ : List[Any] = torch.clamp(A__ , -1.0 , 1.0 ) a__ : Optional[Any] = image / 2 + 0.5 a__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a__ : Union[str, Any] = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
1
'''simple docstring''' def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ): a__ : List[str] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: a__ : Any = 1 - (matter_density + radiation_density + dark_energy) a__ : int = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) a__ : Optional[Any] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation __SCREAMING_SNAKE_CASE = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
688
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=8 ): a__ : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a__ : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Dict , A__ : UNetaDConditionModel , A__ : DDPMScheduler , A__ : VQModel , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( unet=A__ , scheduler=A__ , movq=A__ , ) a__ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self : Optional[Any] , A__ : List[Any] , A__ : List[str] , A__ : Optional[Any] , A__ : Dict , A__ : Dict , A__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if latents is None: a__ : List[str] = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) a__ : int = latents.to(A__ ) a__ : Tuple = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self : Union[str, Any] , A__ : int=0 ) -> str: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) a__ : Union[str, Any] = torch.device(F'cuda:{gpu_id}' ) a__ : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A__ , A__ ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple=0 ) -> Dict: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) a__ : int = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=A__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a__ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: a__ , a__ : List[str] = cpu_offload_with_hook(A__ , A__ , prev_module_hook=A__ ) # We'll offload the last model manually. a__ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(A__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A__ ) def __call__( self : Any , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : torch.FloatTensor , A__ : int = 5_1_2 , A__ : int = 5_1_2 , A__ : int = 1_0_0 , A__ : float = 4.0 , A__ : int = 1 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[torch.FloatTensor] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> str: '''simple docstring''' a__ : Optional[Any] = self._execution_device a__ : List[str] = guidance_scale > 1.0 if isinstance(A__ , A__ ): a__ : int = torch.cat(A__ , dim=0 ) if isinstance(A__ , A__ ): a__ : Optional[int] = torch.cat(A__ , dim=0 ) if isinstance(A__ , A__ ): a__ : int = torch.cat(A__ , dim=0 ) a__ : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: a__ : Tuple = image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Optional[int] = negative_image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Optional[int] = hint.repeat_interleave(A__ , dim=0 ) a__ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A__ ) a__ : Tuple = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A__ ) self.scheduler.set_timesteps(A__ , device=A__ ) a__ : int = self.scheduler.timesteps a__ : str = self.movq.config.latent_channels a__ , a__ : Optional[int] = downscale_height_and_width(A__ , A__ , self.movq_scale_factor ) # create initial latent a__ : List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A__ , A__ , A__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A__ ) ): # expand the latents if we are doing classifier free guidance a__ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a__ : List[str] = {'''image_embeds''': image_embeds, '''hint''': hint} a__ : Union[str, Any] = self.unet( sample=A__ , timestep=A__ , encoder_hidden_states=A__ , added_cond_kwargs=A__ , return_dict=A__ , )[0] if do_classifier_free_guidance: a__ , a__ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) a__ , a__ : Dict = noise_pred.chunk(2 ) a__ , a__ : Optional[Any] = variance_pred.chunk(2 ) a__ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a__ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a__ , a__ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a__ : Union[str, Any] = self.scheduler.step( A__ , A__ , A__ , generator=A__ , )[0] # post-processing a__ : Tuple = self.movq.decode(A__ , force_not_quantize=A__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: a__ : Union[str, Any] = image * 0.5 + 0.5 a__ : str = image.clamp(0 , 1 ) a__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a__ : int = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
1
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def __a ( lowerCAmelCase__ : Callable[[int | float], int | float] , lowerCAmelCase__ : int | float , lowerCAmelCase__ : int | float , lowerCAmelCase__ : int = 100 , ): a__ : Tuple = x_start a__ : str = fnc(lowerCAmelCase__ ) a__ : Tuple = 0.0 for _ in range(lowerCAmelCase__ ): # Approximates curve as a sequence of linear lines and sums their length a__ : str = (x_end - x_start) / steps + xa a__ : Tuple = fnc(lowerCAmelCase__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step a__ : Union[str, Any] = xa a__ : List[str] = fxa return length if __name__ == "__main__": def __a ( lowerCAmelCase__ : List[str] ): return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') __SCREAMING_SNAKE_CASE = 1_0 while i <= 1_0_0_0_0_0: print(f'With {i} steps: {line_length(f, -1_0, 1_0, i)}') i *= 1_0
688
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } __SCREAMING_SNAKE_CASE = { 'facebook/esm2_t6_8M_UR50D': 1_0_2_4, 'facebook/esm2_t12_35M_UR50D': 1_0_2_4, } def __a ( lowerCAmelCase__ : Union[str, Any] ): with open(lowerCAmelCase__ , '''r''' ) as f: a__ : Optional[int] = f.read().splitlines() return [l.strip() for l in lines] class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self : List[str] , A__ : int , A__ : Union[str, Any]="<unk>" , A__ : Tuple="<cls>" , A__ : List[Any]="<pad>" , A__ : Optional[int]="<mask>" , A__ : List[Any]="<eos>" , **A__ : Optional[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(**A__ ) a__ : Union[str, Any] = load_vocab_file(A__ ) a__ : int = dict(enumerate(self.all_tokens ) ) a__ : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} a__ : List[Any] = unk_token a__ : Any = cls_token a__ : Any = pad_token a__ : Any = mask_token a__ : Any = eos_token a__ : int = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __lowerCAmelCase ( self : Any , A__ : int ) -> str: '''simple docstring''' return self._id_to_token.get(A__ , self.unk_token ) def __lowerCAmelCase ( self : Optional[Any] , A__ : str ) -> int: '''simple docstring''' return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple , **A__ : str ) -> List[Any]: '''simple docstring''' return text.split() def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int]=False ) -> Tuple: '''simple docstring''' return len(self._id_to_token ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def __lowerCAmelCase ( self : Any , A__ : str ) -> int: '''simple docstring''' return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) ) def __lowerCAmelCase ( self : List[Any] , A__ : int ) -> str: '''simple docstring''' return self._id_to_token.get(A__ , self.unk_token ) def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Tuple = [self.cls_token_id] a__ : Union[str, Any] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __lowerCAmelCase ( self : Tuple , A__ : List , A__ : Optional[List] = None , A__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] a__ : Any = [1] + ([0] * len(A__ )) + [1] if token_ids_a is not None: mask += [0] * len(A__ ) + [1] return mask def __lowerCAmelCase ( self : Any , A__ : Dict , A__ : Dict ) -> List[Any]: '''simple docstring''' a__ : Union[str, Any] = os.path.join(A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __lowerCAmelCase ( self : Any ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=A__ ) def __lowerCAmelCase ( self : List[str] , A__ : Union[List[str], List[AddedToken]] , A__ : bool = False ) -> int: '''simple docstring''' return super()._add_tokens(A__ , special_tokens=A__ )
688
1
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple ): a__ : Tuple = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] a__ : Dict = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } a__ : Dict = F'{src_lang}-{tgt_lang}' a__ : int = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) a__ : Any = os.path.join(lowerCAmelCase__ , '''README.md''' ) print(F'Generating {path}' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(lowerCAmelCase__ ) # make sure we are under the root of the project __SCREAMING_SNAKE_CASE = Path(__file__).resolve().parent.parent.parent __SCREAMING_SNAKE_CASE = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = model_name.split('-') __SCREAMING_SNAKE_CASE = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
688
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class lowerCAmelCase__ : """simple docstring""" def __init__( self : str ) -> Dict: '''simple docstring''' a__ : List[str] = False def __lowerCAmelCase ( self : Tuple , A__ : Optional[int] , A__ : Optional[Any] , A__ : List[str] , A__ : Tuple ) -> Optional[int]: '''simple docstring''' if not self.initialized: a__ : Optional[Any] = RagRetriever( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) a__ : Union[str, Any] = True def __lowerCAmelCase ( self : Tuple ) -> Tuple: '''simple docstring''' self.retriever.index.init_index() def __lowerCAmelCase ( self : List[Any] , A__ : List[Any] , A__ : Optional[int] ) -> List[Any]: '''simple docstring''' a__ , a__ : Optional[Any] = self.retriever._main_retrieve(A__ , A__ ) return doc_ids, retrieved_doc_embeds class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : str , A__ : Optional[int] , A__ : List[Any] , A__ : List[Any] , A__ : str , A__ : Any=None ) -> Optional[Any]: '''simple docstring''' if index is not None and index.is_initialized() and len(A__ ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) a__ : List[str] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A__ , A__ , A__ , A__ ) for worker in self.retrieval_workers ] ) def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCAmelCase ( self : Optional[int] , A__ : Optional[int] , A__ : int ) -> Dict: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. a__ : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] a__ , a__ : Tuple = ray.get(random_worker.retrieve.remote(A__ , A__ ) ) else: a__ , a__ : int = self._main_retrieve(A__ , A__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A__ ) @classmethod def __lowerCAmelCase ( cls : int , A__ : Optional[Any] , A__ : Any=None , **A__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return super(A__ , cls ).get_tokenizers(A__ , A__ , **A__ ) @classmethod def __lowerCAmelCase ( cls : int , A__ : Optional[int] , A__ : Union[str, Any] , A__ : Union[str, Any]=None , **A__ : Dict ) -> List[Any]: '''simple docstring''' a__ : Dict = kwargs.pop('''config''' , A__ ) or RagConfig.from_pretrained(A__ , **A__ ) a__ : Dict = RagTokenizer.from_pretrained(A__ , config=A__ ) a__ : str = rag_tokenizer.question_encoder a__ : List[str] = rag_tokenizer.generator if indexed_dataset is not None: a__ : List[Any] = '''custom''' a__ : List[Any] = CustomHFIndex(config.retrieval_vector_size , A__ ) else: a__ : Optional[Any] = cls._build_index(A__ ) return cls( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , retrieval_workers=A__ , index=A__ , )
688
1
'''simple docstring''' def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : int ): if digit_amount > 0: return round(number - int(lowerCAmelCase__ ) , lowerCAmelCase__ ) return number - int(lowerCAmelCase__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
688
'''simple docstring''' def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): a__ : List[str] = len(lowerCAmelCase__ ) a__ : int = [[0] * n for i in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): a__ : Dict = y_points[i] for i in range(2 , lowerCAmelCase__ ): for j in range(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Any = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
688
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # TODO: upload to AWS __SCREAMING_SNAKE_CASE = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "retribert" def __init__( self : List[str] , A__ : Dict=3_0_5_2_2 , A__ : Any=7_6_8 , A__ : Union[str, Any]=8 , A__ : Dict=1_2 , A__ : Union[str, Any]=3_0_7_2 , A__ : str="gelu" , A__ : List[Any]=0.1 , A__ : Union[str, Any]=0.1 , A__ : Tuple=5_1_2 , A__ : Tuple=2 , A__ : Optional[Any]=0.02 , A__ : int=1E-12 , A__ : Dict=True , A__ : List[str]=1_2_8 , A__ : Tuple=0 , **A__ : Union[str, Any] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=A__ , **A__ ) a__ : Optional[int] = vocab_size a__ : Tuple = hidden_size a__ : List[str] = num_hidden_layers a__ : Tuple = num_attention_heads a__ : Dict = hidden_act a__ : str = intermediate_size a__ : Optional[Any] = hidden_dropout_prob a__ : Union[str, Any] = attention_probs_dropout_prob a__ : Tuple = max_position_embeddings a__ : Dict = type_vocab_size a__ : Tuple = initializer_range a__ : str = layer_norm_eps a__ : Any = share_encoders a__ : str = projection_dim
688
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "swin2sr" __UpperCamelCase = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , A__ : int=6_4 , A__ : List[Any]=1 , A__ : List[Any]=3 , A__ : Any=1_8_0 , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Dict=8 , A__ : Any=2.0 , A__ : Optional[int]=True , A__ : Union[str, Any]=0.0 , A__ : Union[str, Any]=0.0 , A__ : List[str]=0.1 , A__ : Any="gelu" , A__ : Tuple=False , A__ : Optional[int]=0.02 , A__ : List[Any]=1E-5 , A__ : Any=2 , A__ : Union[str, Any]=1.0 , A__ : Dict="1conv" , A__ : Optional[Any]="pixelshuffle" , **A__ : Optional[Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(**A__ ) a__ : List[str] = image_size a__ : Optional[Any] = patch_size a__ : Dict = num_channels a__ : Optional[int] = embed_dim a__ : int = depths a__ : Optional[int] = len(A__ ) a__ : Dict = num_heads a__ : List[Any] = window_size a__ : Optional[int] = mlp_ratio a__ : Optional[int] = qkv_bias a__ : Union[str, Any] = hidden_dropout_prob a__ : Dict = attention_probs_dropout_prob a__ : Union[str, Any] = drop_path_rate a__ : int = hidden_act a__ : int = use_absolute_embeddings a__ : Dict = layer_norm_eps a__ : List[str] = initializer_range a__ : List[Any] = upscale a__ : List[Any] = img_range a__ : Optional[int] = resi_connection a__ : int = upsampler
688
1
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCAmelCase__ : """simple docstring""" def __init__( self : int , A__ : Optional[Any] , A__ : Optional[int]=1_3 , A__ : int=7 , A__ : int=6 , A__ : List[Any]=1_7 , A__ : Tuple=2_3 , A__ : int=1_1 , A__ : Union[str, Any]=True , ) -> Tuple: '''simple docstring''' a__ : List[str] = parent a__ : Dict = batch_size a__ : List[Any] = seq_length a__ : Any = act_dim a__ : Dict = state_dim a__ : Any = hidden_size a__ : List[Any] = max_length a__ : Optional[Any] = is_training def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' a__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) a__ : Any = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) a__ : Tuple = floats_tensor((self.batch_size, self.seq_length, 1) ) a__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) ) a__ : Optional[Any] = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) a__ : List[str] = random_attention_mask((self.batch_size, self.seq_length) ) a__ : Any = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple , A__ : Optional[int] , A__ : Tuple , A__ : List[str] , A__ : str , A__ : List[str] , A__ : Any , ) -> str: '''simple docstring''' a__ : Dict = DecisionTransformerModel(config=A__ ) model.to(A__ ) model.eval() a__ : List[str] = model(A__ , A__ , A__ , A__ , A__ , A__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' a__ : Any = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : List[Any] = config_and_inputs a__ : Tuple = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (DecisionTransformerModel,) if is_torch_available() else () __UpperCamelCase = () __UpperCamelCase = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __UpperCamelCase = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' a__ : Tuple = DecisionTransformerModelTester(self ) a__ : List[str] = ConfigTester(self , config_class=A__ , hidden_size=3_7 ) def __lowerCAmelCase ( self : int ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) @slow def __lowerCAmelCase ( self : str ) -> int: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Tuple = DecisionTransformerModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) def __lowerCAmelCase ( self : Tuple ) -> int: '''simple docstring''' a__ , a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[Any] = model_class(A__ ) a__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Tuple = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(A__ )] , A__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' a__ : Any = 2 # number of steps of autoregressive prediction we will perform a__ : List[Any] = 1_0 # defined by the RL environment, may be normalized a__ : Any = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) a__ : Dict = model.to(A__ ) a__ : Tuple = model.config torch.manual_seed(0 ) a__ : Union[str, Any] = torch.randn(1 , 1 , config.state_dim ).to(device=A__ , dtype=torch.floataa ) # env.reset() a__ : Dict = torch.tensor( [[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=A__ ) a__ : Tuple = torch.tensor(A__ , device=A__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) a__ : Dict = state a__ : List[str] = torch.zeros(1 , 0 , config.act_dim , device=A__ , dtype=torch.floataa ) a__ : str = torch.zeros(1 , 0 , device=A__ , dtype=torch.floataa ) a__ : List[Any] = torch.tensor(0 , device=A__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(A__ ): a__ : List[str] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=A__ )] , dim=1 ) a__ : Optional[int] = torch.cat([rewards, torch.zeros(1 , 1 , device=A__ )] , dim=1 ) a__ : int = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): a__ , a__ , a__ : Optional[Any] = model( states=A__ , actions=A__ , rewards=A__ , returns_to_go=A__ , timesteps=A__ , attention_mask=A__ , return_dict=A__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) a__ , a__ , a__ , a__ : int = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=A__ , dtype=torch.floataa ), 1.0, False, {}, ) a__ : int = action_pred[0, -1] a__ : Optional[Any] = torch.cat([states, state] , dim=1 ) a__ : Optional[Any] = returns_to_go[0, -1] - reward a__ : Optional[int] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) a__ : Union[str, Any] = torch.cat( [timesteps, torch.ones((1, 1) , device=A__ , dtype=torch.long ) * (step + 1)] , dim=1 )
688
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' a__ : int = 0 def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' a__ : Optional[int] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : List[Any] = Path(A__ ) / '''preprocessor_config.json''' a__ : List[Any] = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Any = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : int = Path(A__ ) / '''preprocessor_config.json''' a__ : Optional[Any] = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Tuple = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type a__ : int = Path(A__ ) / '''preprocessor_config.json''' a__ : Optional[int] = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally a__ : List[Any] = AutoImageProcessor.from_pretrained(A__ ).to_dict() config_dict.pop('''image_processor_type''' ) a__ : Union[str, Any] = CLIPImageProcessor(**A__ ) # save in new folder model_config.save_pretrained(A__ ) config.save_pretrained(A__ ) a__ : Union[str, Any] = AutoImageProcessor.from_pretrained(A__ ) # make sure private variable is not incorrectly saved a__ : Optional[Any] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) a__ : Any = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( A__ , '''clip-base is not a local folder and is not a valid model identifier''' ): a__ : str = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowerCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' with self.assertRaisesRegex( A__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): a__ : Tuple = AutoImageProcessor.from_pretrained(A__ , revision='''aaaaaa''' ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( A__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): a__ : Union[str, Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' with self.assertRaises(A__ ): a__ : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(A__ ): a__ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) a__ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) a__ : str = AutoImageProcessor.from_pretrained(A__ , trust_remote_code=A__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A__ ): AutoImageProcessor.register(A__ , A__ ) with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json''' a__ : List[str] = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Tuple = CustomImageProcessor.from_pretrained(A__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) a__ : Tuple = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = True try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # If remote code is not set, the default is to use local a__ : Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. a__ : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub a__ : Optional[int] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(A__ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
688
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __a ( lowerCAmelCase__ : Optional[int]=None ): if subparsers is not None: a__ : Any = subparsers.add_parser('''test''' ) else: a__ : Optional[int] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=lowerCAmelCase__ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase__ ) return parser def __a ( lowerCAmelCase__ : Union[str, Any] ): a__ : int = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: a__ : int = script_name else: a__ : Optional[Any] = F'--config_file={args.config_file} {script_name}' a__ : List[str] = ['''accelerate-launch'''] + test_args.split() a__ : Dict = execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __a ( ): a__ : Tuple = test_command_parser() a__ : Optional[Any] = parser.parse_args() test_command(lowerCAmelCase__ ) if __name__ == "__main__": main()
688
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __SCREAMING_SNAKE_CASE = get_logger(__name__) class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = "dummy_data" __UpperCamelCase = "datasets" __UpperCamelCase = False def __init__( self : Any , A__ : str , A__ : str , A__ : Union[Version, str] , A__ : Optional[str] = None , A__ : bool = False , A__ : bool = True , A__ : Optional[List[Callable]] = None , ) -> int: '''simple docstring''' a__ : Tuple = 0 a__ : Any = dataset_name a__ : int = cache_dir a__ : str = use_local_dummy_data a__ : List[str] = config # download_callbacks take a single url as input a__ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root a__ : str = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general a__ : Optional[Any] = str(A__ ) # to be downloaded a__ : Tuple = None a__ : Tuple = None @property def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' if self._dummy_file is None: a__ : Dict = self.download_dummy_data() return self._dummy_file @property def __lowerCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' a__ : int = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) a__ : str = cached_path( A__ , cache_dir=self.cache_dir , extract_compressed_file=A__ , force_extract=A__ ) return os.path.join(A__ , self.dummy_file_name ) @property def __lowerCAmelCase ( self : int ) -> Optional[int]: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' if self._bucket_url is None: a__ : int = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int] , *A__ : int ) -> Union[str, Any]: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested a__ : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned a__ : Union[str, Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(A__ , A__ ): return self.create_dummy_data_dict(A__ , A__ ) elif isinstance(A__ , (list, tuple) ): return self.create_dummy_data_list(A__ , A__ ) else: return self.create_dummy_data_single(A__ , A__ ) def __lowerCAmelCase ( self : List[str] , A__ : Any , *A__ : int ) -> Any: '''simple docstring''' return self.download_and_extract(A__ ) def __lowerCAmelCase ( self : Any , A__ : Optional[int] , A__ : Optional[Any] ) -> int: '''simple docstring''' return self.download_and_extract(A__ ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : int , *A__ : List[Any] , **A__ : str ) -> Optional[Any]: '''simple docstring''' return path def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' return {} def __lowerCAmelCase ( self : int , A__ : Union[str, Any] , A__ : List[str] ) -> Any: '''simple docstring''' a__ : int = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(A__ , A__ ): for single_url in single_urls: download_callback(A__ ) else: a__ : Dict = single_urls download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(A__ , A__ ): a__ : Optional[int] = [os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) for x in single_urls] else: a__ : Optional[Any] = single_urls a__ : Tuple = os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) a__ : List[str] = value # make sure that values are unique if all(isinstance(A__ , A__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique a__ : Optional[int] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __lowerCAmelCase ( self : Dict , A__ : str , A__ : Optional[int] ) -> Optional[int]: '''simple docstring''' a__ : str = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one a__ : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , A__ ) ) for url in data_url ) a__ : Optional[Any] = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): a__ : Dict = [data_url[0]] * len(A__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a__ : Optional[int] = os.path.join(A__ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(A__ ) return dummy_data_list def __lowerCAmelCase ( self : Dict , A__ : Dict , A__ : str ) -> Optional[int]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a__ : Union[str, Any] = os.path.join(A__ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(A__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' pass def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: '''simple docstring''' pass def __lowerCAmelCase ( self : Any , A__ : Tuple ) -> Any: '''simple docstring''' def _iter_archive_members(A__ : str ): # this preserves the order of the members inside the ZIP archive a__ : Dict = Path(self.dummy_file ).parent a__ : Tuple = path.relative_to(A__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: a__ : Optional[Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(A__ ) a__ : str = Path(A__ ) a__ : Optional[Any] = _iter_archive_members(A__ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(A__ ).as_posix(), file_path.open('''rb''' ) def __lowerCAmelCase ( self : Tuple , A__ : Tuple ) -> Tuple: '''simple docstring''' if not isinstance(A__ , A__ ): a__ : int = [paths] for path in paths: if os.path.isfile(A__ ): if os.path.basename(A__ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(A__ ): if os.path.basename(A__ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(A__ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(A__ , A__ )
688
1
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = LayoutLMTokenizer __UpperCamelCase = LayoutLMTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def __lowerCAmelCase ( self : Any ) -> Any: '''simple docstring''' super().setUp() a__ : Optional[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self : Union[str, Any] , **A__ : Any ) -> Tuple: '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A__ ) def __lowerCAmelCase ( self : int , A__ : int ) -> str: '''simple docstring''' a__ : List[str] = '''UNwant\u00E9d,running''' a__ : str = '''unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' a__ : Tuple = self.tokenizer_class(self.vocab_file ) a__ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [7, 4, 5, 1_0, 8, 9] ) def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' pass
688
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = LxmertTokenizer __UpperCamelCase = LxmertTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def __lowerCAmelCase ( self : str ) -> str: '''simple docstring''' super().setUp() a__ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self : int , A__ : int ) -> int: '''simple docstring''' a__ : List[Any] = '''UNwant\u00E9d,running''' a__ : Optional[int] = '''unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self : int ) -> Dict: '''simple docstring''' a__ : Optional[int] = self.tokenizer_class(self.vocab_file ) a__ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [7, 4, 5, 1_0, 8, 9] ) def __lowerCAmelCase ( self : Any ) -> Dict: '''simple docstring''' if not self.test_rust_tokenizer: return a__ : Union[str, Any] = self.get_tokenizer() a__ : Union[str, Any] = self.get_rust_tokenizer() a__ : str = '''I was born in 92000, and this is falsé.''' a__ : Tuple = tokenizer.tokenize(A__ ) a__ : Tuple = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) a__ : Optional[int] = tokenizer.encode(A__ , add_special_tokens=A__ ) a__ : Optional[Any] = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) a__ : List[str] = self.get_rust_tokenizer() a__ : str = tokenizer.encode(A__ ) a__ : int = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ )
688
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : str ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' a__ : Optional[int] = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) a__ : str = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) sd_pipe.set_scheduler('''sample_euler''' ) a__ : List[str] = '''A painting of a squirrel eating a burger''' a__ : Optional[Any] = torch.manual_seed(0 ) a__ : List[str] = sd_pipe([prompt] , generator=A__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='''np''' ) a__ : Optional[int] = output.images a__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__ : List[str] = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' a__ : List[str] = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) a__ : Tuple = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) sd_pipe.set_scheduler('''sample_euler''' ) a__ : List[Any] = '''A painting of a squirrel eating a burger''' a__ : Dict = torch.manual_seed(0 ) a__ : Tuple = sd_pipe([prompt] , generator=A__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='''np''' ) a__ : Tuple = output.images a__ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__ : List[Any] = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def __lowerCAmelCase ( self : Optional[int] ) -> Dict: '''simple docstring''' a__ : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) a__ : int = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) a__ : Optional[Any] = '''A painting of a squirrel eating a burger''' a__ : Union[str, Any] = torch.manual_seed(0 ) a__ : Optional[Any] = sd_pipe( [prompt] , generator=A__ , guidance_scale=7.5 , num_inference_steps=1_5 , output_type='''np''' , use_karras_sigmas=A__ , ) a__ : Tuple = output.images a__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__ : Optional[Any] = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
688
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file a__ : Dict = TapasConfig.from_json_file(lowerCAmelCase__ ) # set absolute/relative position embeddings parameter a__ : List[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": a__ : Optional[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "WTQ": # run_task_main.py hparams a__ : List[str] = 4 a__ : Optional[int] = True # hparam_utils.py hparams a__ : List[Any] = 0.664694 a__ : List[Any] = 0.207951 a__ : Union[str, Any] = 0.121194 a__ : Optional[Any] = True a__ : Optional[int] = True a__ : List[str] = False a__ : Union[str, Any] = 0.0352513 a__ : Any = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams a__ : Tuple = 4 a__ : Dict = False # hparam_utils.py hparams a__ : str = 36.4519 a__ : str = 0.903421 a__ : Optional[Any] = 222.088 a__ : Dict = True a__ : Dict = True a__ : Dict = True a__ : str = 0.763141 a__ : List[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "TABFACT": a__ : List[str] = TapasForSequenceClassification(config=lowerCAmelCase__ ) elif task == "MLM": a__ : Tuple = TapasForMaskedLM(config=lowerCAmelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": a__ : List[str] = TapasModel(config=lowerCAmelCase__ ) else: raise ValueError(F'Task {task} not supported.' ) print(F'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model (weights and configuration) print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowerCAmelCase__ ) # Save tokenizer files print(F'Save tokenizer files to {pytorch_dump_path}' ) a__ : Optional[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 ) tokenizer.save_pretrained(lowerCAmelCase__ ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def __a ( lowerCAmelCase__ : str , lowerCAmelCase__ : str=False ): a__ : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'module.blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'module.blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'module.blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'module.blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'module.blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a__ : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any=False ): for i in range(config.num_hidden_layers ): if base_model: a__ : List[str] = '''''' else: a__ : Any = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__ : Dict = state_dict.pop(F'module.blocks.{i}.attn.qkv.weight' ) a__ : List[Any] = state_dict.pop(F'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a__ : List[str] = in_proj_weight[ : config.hidden_size, : ] a__ : Union[str, Any] = in_proj_bias[: config.hidden_size] a__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__ : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] a__ : List[Any] = in_proj_bias[-config.hidden_size :] def __a ( lowerCAmelCase__ : str ): a__ : List[str] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( lowerCAmelCase__ : List[Any] ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. a__ : Dict = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ): a__ : Dict = dct.pop(lowerCAmelCase__ ) a__ : Tuple = val def __a ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : int ): a__ : Union[str, Any] = ViTMSNConfig() a__ : Dict = 1000 a__ : Dict = '''datasets/huggingface/label-files''' a__ : Tuple = '''imagenet-1k-id2label.json''' a__ : int = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ ) , '''r''' ) ) a__ : Optional[Any] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} a__ : List[str] = idalabel a__ : str = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: a__ : List[str] = 384 a__ : Tuple = 1536 a__ : Dict = 6 elif "l16" in checkpoint_url: a__ : List[str] = 1024 a__ : Optional[Any] = 4096 a__ : Optional[Any] = 24 a__ : List[Any] = 16 a__ : Any = 0.1 elif "b4" in checkpoint_url: a__ : Tuple = 4 elif "l7" in checkpoint_url: a__ : Optional[Any] = 7 a__ : Tuple = 1024 a__ : Tuple = 4096 a__ : Any = 24 a__ : Optional[Any] = 16 a__ : Tuple = 0.1 a__ : Dict = ViTMSNModel(lowerCAmelCase__ ) a__ : Optional[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' )['''target_encoder'''] a__ : List[str] = ViTImageProcessor(size=config.image_size ) remove_projection_head(lowerCAmelCase__ ) a__ : Any = create_rename_keys(lowerCAmelCase__ , base_model=lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ , base_model=lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() a__ : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a__ : int = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) a__ : int = ViTImageProcessor( size=config.image_size , image_mean=lowerCAmelCase__ , image_std=lowerCAmelCase__ ) a__ : int = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) a__ : List[Any] = model(**lowerCAmelCase__ ) a__ : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: a__ : str = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: a__ : str = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: a__ : Tuple = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: a__ : Optional[Any] = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: a__ : Optional[int] = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
688
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } __SCREAMING_SNAKE_CASE = { 'google/fnet-base': 5_1_2, 'google/fnet-large': 5_1_2, } __SCREAMING_SNAKE_CASE = '▁' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "token_type_ids"] __UpperCamelCase = FNetTokenizer def __init__( self : Any , A__ : Any=None , A__ : int=None , A__ : List[str]=False , A__ : int=True , A__ : str=True , A__ : List[Any]="<unk>" , A__ : Dict="[SEP]" , A__ : List[str]="<pad>" , A__ : Union[str, Any]="[CLS]" , A__ : Dict="[MASK]" , **A__ : Tuple , ) -> List[str]: '''simple docstring''' a__ : Optional[int] = ( AddedToken(A__ , lstrip=A__ , rstrip=A__ , normalized=A__ ) if isinstance(A__ , A__ ) else mask_token ) super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , **A__ , ) a__ : Optional[Any] = do_lower_case a__ : Dict = remove_space a__ : List[Any] = keep_accents a__ : Optional[Any] = vocab_file a__ : Any = False if not self.vocab_file else True def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Optional[int] = [self.sep_token_id] a__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self : List[Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Dict = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Tuple , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ : Union[str, Any] = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ): copyfile(self.vocab_file , A__ ) return (out_vocab_file,)
688
1
'''simple docstring''' from __future__ import annotations import math def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : int ): a__ : List[str] = u for i in range(1 , lowerCAmelCase__ ): a__ : str = temp * (u - i) return temp def __a ( ): a__ : Any = int(input('''enter the numbers of values: ''' ) ) a__ : list[list[float]] = [] for _ in range(lowerCAmelCase__ ): y.append([] ) for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): y[i].append(lowerCAmelCase__ ) a__ : Union[str, Any] = 0 print('''enter the values of parameters in a list: ''' ) a__ : Any = list(map(lowerCAmelCase__ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(lowerCAmelCase__ ): a__ : Dict = float(input() ) a__ : Optional[Any] = int(input('''enter the value to interpolate: ''' ) ) a__ : Optional[Any] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , lowerCAmelCase__ ): for j in range(n - i ): a__ : Union[str, Any] = y[j + 1][i - 1] - y[j][i - 1] a__ : Optional[Any] = y[0][0] for i in range(1 , lowerCAmelCase__ ): summ += (ucal(lowerCAmelCase__ , lowerCAmelCase__ ) * y[0][i]) / math.factorial(lowerCAmelCase__ ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
688
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } __SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': 5_1_2, 'distilbert-base-uncased-distilled-squad': 5_1_2, 'distilbert-base-cased': 5_1_2, 'distilbert-base-cased-distilled-squad': 5_1_2, 'distilbert-base-german-cased': 5_1_2, 'distilbert-base-multilingual-cased': 5_1_2, } __SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = ["input_ids", "attention_mask"] __UpperCamelCase = DistilBertTokenizer def __init__( self : str , A__ : Optional[Any]=None , A__ : Any=None , A__ : Tuple=True , A__ : List[Any]="[UNK]" , A__ : List[str]="[SEP]" , A__ : Tuple="[PAD]" , A__ : Optional[int]="[CLS]" , A__ : Union[str, Any]="[MASK]" , A__ : List[str]=True , A__ : Any=None , **A__ : int , ) -> str: '''simple docstring''' super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , ) a__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , A__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , A__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A__ ) != tokenize_chinese_chars ): a__ : int = getattr(A__ , normalizer_state.pop('''type''' ) ) a__ : List[Any] = do_lower_case a__ : str = strip_accents a__ : List[str] = tokenize_chinese_chars a__ : Dict = normalizer_class(**A__ ) a__ : List[Any] = do_lower_case def __lowerCAmelCase ( self : Tuple , A__ : List[str] , A__ : Dict=None ) -> List[str]: '''simple docstring''' a__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : List[str] = [self.sep_token_id] a__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : str , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' a__ : int = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
688
1
'''simple docstring''' from __future__ import annotations def __a ( lowerCAmelCase__ : str , lowerCAmelCase__ : list[str] | None = None , lowerCAmelCase__ : dict[str, float] | None = None , lowerCAmelCase__ : bool = False , ): a__ : Any = cipher_alphabet or [chr(lowerCAmelCase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) a__ : Tuple = { '''a''': 0.08497, '''b''': 0.01492, '''c''': 0.02202, '''d''': 0.04253, '''e''': 0.11162, '''f''': 0.02228, '''g''': 0.02015, '''h''': 0.06094, '''i''': 0.07546, '''j''': 0.00153, '''k''': 0.01292, '''l''': 0.04025, '''m''': 0.02406, '''n''': 0.06749, '''o''': 0.07507, '''p''': 0.01929, '''q''': 0.00095, '''r''': 0.07587, '''s''': 0.06327, '''t''': 0.09356, '''u''': 0.02758, '''v''': 0.00978, '''w''': 0.02560, '''x''': 0.00150, '''y''': 0.01994, '''z''': 0.00077, } else: # Custom frequencies dictionary a__ : Dict = frequencies_dict if not case_sensitive: a__ : Optional[Any] = ciphertext.lower() # Chi squared statistic values a__ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowerCAmelCase__ ) ): a__ : Optional[int] = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet a__ : Any = (alphabet_letters.index(letter.lower() ) - shift) % len( lowerCAmelCase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter a__ : Union[str, Any] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: a__ : int = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message a__ : Tuple = decrypted_with_shift.lower().count(lowerCAmelCase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies a__ : List[str] = frequencies[letter] * occurrences # Complete the chi squared statistic formula a__ : Any = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message a__ : List[Any] = decrypted_with_shift.count(lowerCAmelCase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies a__ : Optional[Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula a__ : Optional[Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary a__ : Optional[Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowerCAmelCase__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] a__ : int = min( lowerCAmelCase__ , key=lowerCAmelCase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( a__ ) , ( a__ ) , ) : Any = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
688
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __SCREAMING_SNAKE_CASE = tuple[int, int] class lowerCAmelCase__ : """simple docstring""" def __init__( self : str , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int , A__ : Node | None , ) -> None: '''simple docstring''' a__ : Optional[int] = pos_x a__ : str = pos_y a__ : Optional[int] = (pos_y, pos_x) a__ : List[str] = goal_x a__ : Any = goal_y a__ : Any = g_cost a__ : Optional[int] = parent a__ : Union[str, Any] = self.calculate_heuristic() a__ : List[Any] = self.g_cost + self.h_cost def __lowerCAmelCase ( self : Union[str, Any] ) -> float: '''simple docstring''' a__ : List[str] = self.pos_x - self.goal_x a__ : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A__ ) + abs(A__ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : List[Any] , A__ : Node ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , A__ : TPosition , A__ : TPosition ) -> Optional[Any]: '''simple docstring''' a__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A__ ) a__ : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , A__ ) a__ : Dict = [self.start] a__ : list[Node] = [] a__ : str = False def __lowerCAmelCase ( self : List[str] ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() a__ : Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A__ ) self.closed_nodes.append(A__ ) a__ : List[Any] = self.get_successors(A__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A__ ) else: # retrieve the best current path a__ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A__ ) else: self.open_nodes.append(A__ ) return [self.start.pos] def __lowerCAmelCase ( self : Optional[Any] , A__ : Node ) -> list[Node]: '''simple docstring''' a__ : Optional[int] = [] for action in delta: a__ : List[Any] = parent.pos_x + action[1] a__ : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A__ , A__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A__ , ) ) return successors def __lowerCAmelCase ( self : List[Any] , A__ : Node | None ) -> list[TPosition]: '''simple docstring''' a__ : Union[str, Any] = node a__ : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) a__ : Any = current_node.parent path.reverse() return path class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , A__ : TPosition , A__ : TPosition ) -> None: '''simple docstring''' a__ : str = AStar(A__ , A__ ) a__ : Optional[int] = AStar(A__ , A__ ) a__ : List[str] = False def __lowerCAmelCase ( self : Tuple ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() a__ : int = self.fwd_astar.open_nodes.pop(0 ) a__ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A__ , A__ ) self.fwd_astar.closed_nodes.append(A__ ) self.bwd_astar.closed_nodes.append(A__ ) a__ : Tuple = current_bwd_node a__ : Optional[int] = current_fwd_node a__ : Optional[int] = { self.fwd_astar: self.fwd_astar.get_successors(A__ ), self.bwd_astar: self.bwd_astar.get_successors(A__ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A__ ) else: # retrieve the best current path a__ : Optional[Any] = astar.open_nodes.pop( astar.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A__ ) else: astar.open_nodes.append(A__ ) return [self.fwd_astar.start.pos] def __lowerCAmelCase ( self : List[str] , A__ : Node , A__ : Node ) -> list[TPosition]: '''simple docstring''' a__ : str = self.fwd_astar.retrace_path(A__ ) a__ : List[str] = self.bwd_astar.retrace_path(A__ ) bwd_path.pop() bwd_path.reverse() a__ : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __SCREAMING_SNAKE_CASE = (0, 0) __SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __SCREAMING_SNAKE_CASE = time.time() __SCREAMING_SNAKE_CASE = AStar(init, goal) __SCREAMING_SNAKE_CASE = a_star.search() __SCREAMING_SNAKE_CASE = time.time() - start_time print(f'AStar execution time = {end_time:f} seconds') __SCREAMING_SNAKE_CASE = time.time() __SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) __SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
688
1
'''simple docstring''' from __future__ import annotations def __a ( lowerCAmelCase__ : dict , lowerCAmelCase__ : str ): a__ , a__ : int = set(lowerCAmelCase__ ), [start] while stack: a__ : List[str] = stack.pop() explored.add(lowerCAmelCase__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowerCAmelCase__ ) return explored __SCREAMING_SNAKE_CASE = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
688
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ): # Construct model if gpta_config_file == "": a__ : Union[str, Any] = GPTaConfig() else: a__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase__ ) a__ : Optional[int] = GPTaModel(lowerCAmelCase__ ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model a__ : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME a__ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
688
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = '▁' __SCREAMING_SNAKE_CASE = {'vocab_file': 'sentencepiece.bpe.model'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } __SCREAMING_SNAKE_CASE = { 'facebook/mbart-large-en-ro': 1_0_2_4, 'facebook/mbart-large-cc25': 1_0_2_4, } # fmt: off __SCREAMING_SNAKE_CASE = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = ["input_ids", "attention_mask"] __UpperCamelCase = [] __UpperCamelCase = [] def __init__( self : Any , A__ : List[str] , A__ : Dict="<s>" , A__ : Optional[int]="</s>" , A__ : int="</s>" , A__ : Any="<s>" , A__ : Any="<unk>" , A__ : Dict="<pad>" , A__ : Optional[int]="<mask>" , A__ : int=None , A__ : str=None , A__ : List[str]=None , A__ : Optional[Dict[str, Any]] = None , A__ : Any=None , **A__ : Dict , ) -> List[str]: '''simple docstring''' a__ : Optional[int] = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else mask_token a__ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A__ , eos_token=A__ , unk_token=A__ , sep_token=A__ , cls_token=A__ , pad_token=A__ , mask_token=A__ , tokenizer_file=A__ , src_lang=A__ , tgt_lang=A__ , additional_special_tokens=A__ , sp_model_kwargs=self.sp_model_kwargs , **A__ , ) a__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A__ ) ) a__ : Any = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token a__ : List[str] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a__ : Union[str, Any] = 1 a__ : int = len(self.sp_model ) a__ : List[str] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A__ ) } a__ : List[str] = {v: k for k, v in self.lang_code_to_id.items()} a__ : str = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) a__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} a__ : Optional[int] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) a__ : List[Any] = src_lang if src_lang is not None else '''en_XX''' a__ : Optional[Any] = self.lang_code_to_id[self._src_lang] a__ : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ) -> Tuple: '''simple docstring''' a__ : Optional[int] = self.__dict__.copy() a__ : Any = None a__ : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Any , A__ : Optional[Any] ) -> Any: '''simple docstring''' a__ : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a__ : Any = {} a__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __lowerCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __lowerCAmelCase ( self : List[str] ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def __lowerCAmelCase ( self : Tuple , A__ : str ) -> None: '''simple docstring''' a__ : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) a__ : str = [1] * len(self.prefix_tokens ) a__ : Optional[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A__ )) + suffix_ones return prefix_ones + ([0] * len(A__ )) + ([0] * len(A__ )) + suffix_ones def __lowerCAmelCase ( self : Tuple , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self : Tuple , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Optional[Any] = [self.sep_token_id] a__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self : Optional[Any] , A__ : Tuple , A__ : str , A__ : Optional[str] , A__ : Optional[str] , **A__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) a__ : Dict = src_lang a__ : Optional[int] = self(A__ , add_special_tokens=A__ , return_tensors=A__ , **A__ ) a__ : Optional[Any] = self.convert_tokens_to_ids(A__ ) a__ : Optional[int] = tgt_lang_id return inputs def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' a__ : Optional[Any] = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self : Any , A__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(A__ , out_type=A__ ) def __lowerCAmelCase ( self : List[Any] , A__ : List[str] ) -> Tuple: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a__ : Optional[Any] = self.sp_model.PieceToId(A__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self : Optional[int] , A__ : Tuple ) -> List[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self : Optional[Any] , A__ : List[str] ) -> Dict: '''simple docstring''' a__ : str = ''''''.join(A__ ).replace(A__ , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : List[Any] , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ : int = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , '''wb''' ) as fi: a__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,) def __lowerCAmelCase ( self : Optional[Any] , A__ : List[str] , A__ : str = "en_XX" , A__ : Optional[List[str]] = None , A__ : str = "ro_RO" , **A__ : Optional[Any] , ) -> BatchEncoding: '''simple docstring''' a__ : List[str] = src_lang a__ : List[str] = tgt_lang return super().prepare_seqaseq_batch(A__ , A__ , **A__ ) def __lowerCAmelCase ( self : str ) -> List[str]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self : Any ) -> List[Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self : str , A__ : Tuple ) -> None: '''simple docstring''' a__ : int = self.lang_code_to_id[src_lang] a__ : int = [] a__ : Any = [self.eos_token_id, self.cur_lang_code] def __lowerCAmelCase ( self : Optional[int] , A__ : str ) -> None: '''simple docstring''' a__ : str = self.lang_code_to_id[lang] a__ : Optional[Any] = [] a__ : Optional[Any] = [self.eos_token_id, self.cur_lang_code]
688
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } __SCREAMING_SNAKE_CASE = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } __SCREAMING_SNAKE_CASE = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: __SCREAMING_SNAKE_CASE = reader.read() __SCREAMING_SNAKE_CASE = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): __SCREAMING_SNAKE_CASE = UNetaDModel(**config) else: __SCREAMING_SNAKE_CASE = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel __SCREAMING_SNAKE_CASE = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __SCREAMING_SNAKE_CASE = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __SCREAMING_SNAKE_CASE = config[key] del config[key] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['down_block_types']] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: __SCREAMING_SNAKE_CASE = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) __SCREAMING_SNAKE_CASE = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue __SCREAMING_SNAKE_CASE = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: __SCREAMING_SNAKE_CASE = param_value __SCREAMING_SNAKE_CASE = True if not has_changed: __SCREAMING_SNAKE_CASE = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
688
1
'''simple docstring''' from itertools import permutations def __a ( lowerCAmelCase__ : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False a__ : Dict = [7, 11, 13, 17] for i, test in enumerate(lowerCAmelCase__ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __a ( lowerCAmelCase__ : int = 10 ): return sum( int(''''''.join(map(lowerCAmelCase__ , lowerCAmelCase__ ) ) ) for num in permutations(range(lowerCAmelCase__ ) ) if is_substring_divisible(lowerCAmelCase__ ) ) if __name__ == "__main__": print(f'{solution() = }')
688
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = (KDPMaDiscreteScheduler,) __UpperCamelCase = 10 def __lowerCAmelCase ( self : Optional[Any] , **A__ : Optional[int] ) -> int: '''simple docstring''' a__ : Optional[int] = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**A__ ) return config def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=A__ ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=A__ , beta_end=A__ ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A__ ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A__ ) def __lowerCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' a__ : Any = self.scheduler_classes[0] a__ : str = self.get_scheduler_config(prediction_type='''v_prediction''' ) a__ : Dict = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : Tuple = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Dict = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : Optional[Any] = scheduler.scale_model_input(A__ , A__ ) a__ : Union[str, Any] = model(A__ , A__ ) a__ : List[str] = scheduler.step(A__ , A__ , A__ ) a__ : Optional[Any] = output.prev_sample a__ : Tuple = torch.sum(torch.abs(A__ ) ) a__ : Optional[int] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' if torch_device == "mps": return a__ : List[Any] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : Tuple = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : List[Any] = self.dummy_model() a__ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Any = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : str = scheduler.scale_model_input(A__ , A__ ) a__ : List[str] = model(A__ , A__ ) a__ : str = scheduler.step(A__ , A__ , A__ ) a__ : List[Any] = output.prev_sample a__ : Dict = torch.sum(torch.abs(A__ ) ) a__ : Optional[Any] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> int: '''simple docstring''' if torch_device == "mps": return a__ : Optional[int] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : List[Any] = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps , device=A__ ) a__ : Union[str, Any] = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter.to(A__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: a__ : Optional[int] = scheduler.scale_model_input(A__ , A__ ) a__ : List[Any] = model(A__ , A__ ) a__ : Any = scheduler.step(A__ , A__ , A__ ) a__ : List[str] = output.prev_sample a__ : Any = torch.sum(torch.abs(A__ ) ) a__ : Union[str, Any] = torch.mean(torch.abs(A__ ) ) if str(A__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
688
1
'''simple docstring''' from math import pi, sqrt, tan def __a ( lowerCAmelCase__ : float ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __a ( lowerCAmelCase__ : float ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def __a ( lowerCAmelCase__ : float ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) a__ : List[str] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(lowerCAmelCase__ , 2 ) * torus_radius * tube_radius def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def __a ( lowerCAmelCase__ : float ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) a__ : int = (sidea + sidea + sidea) / 2 a__ : Union[str, Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def __a ( lowerCAmelCase__ : float ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : float ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f'Rectangle: {area_rectangle(1_0, 2_0) = }') print(f'Square: {area_square(1_0) = }') print(f'Triangle: {area_triangle(1_0, 1_0) = }') print(f'Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }') print(f'Parallelogram: {area_parallelogram(1_0, 2_0) = }') print(f'Rhombus: {area_rhombus(1_0, 2_0) = }') print(f'Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }') print(f'Circle: {area_circle(2_0) = }') print(f'Ellipse: {area_ellipse(1_0, 2_0) = }') print('\nSurface Areas of various geometric shapes: \n') print(f'Cube: {surface_area_cube(2_0) = }') print(f'Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }') print(f'Sphere: {surface_area_sphere(2_0) = }') print(f'Hemisphere: {surface_area_hemisphere(2_0) = }') print(f'Cone: {surface_area_cone(1_0, 2_0) = }') print(f'Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }') print(f'Cylinder: {surface_area_cylinder(1_0, 2_0) = }') print(f'Torus: {surface_area_torus(2_0, 1_0) = }') print(f'Equilateral Triangle: {area_reg_polygon(3, 1_0) = }') print(f'Square: {area_reg_polygon(4, 1_0) = }') print(f'Reqular Pentagon: {area_reg_polygon(5, 1_0) = }')
688
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' a__ : str = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None a__ , a__ : List[Any] = get_aligned_output_features_output_indices(A__ , A__ , A__ ) self.assertEqual(A__ , ['''c'''] ) self.assertEqual(A__ , [2] ) # Out indices set to match out features a__ , a__ : Optional[int] = get_aligned_output_features_output_indices(['''a''', '''c'''] , A__ , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [0, 2] ) # Out features set to match out indices a__ , a__ : int = get_aligned_output_features_output_indices(A__ , [0, 2] , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [0, 2] ) # Out features selected from negative indices a__ , a__ : List[str] = get_aligned_output_features_output_indices(A__ , [-3, -1] , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [-3, -1] ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , A__ ) # Out features must be a list with self.assertRaises(A__ ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(A__ ): verify_out_features_out_indices(A__ , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(A__ ): verify_out_features_out_indices(A__ , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(A__ ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' a__ : Optional[Any] = BackboneMixin() a__ : int = ['''a''', '''b''', '''c'''] a__ : List[Any] = ['''a''', '''c'''] a__ : Tuple = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly a__ : Dict = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) a__ : int = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
688
1
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def __a ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] ): assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ): a__ : Any = tmp_path / '''cache''' a__ : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a__ : Optional[Any] = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_sql_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __a ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : str ): a__ : Union[str, Any] = tmp_path / '''cache''' a__ : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} a__ : Optional[Any] = features.copy() if features else default_expected_features a__ : Tuple = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) a__ : Dict = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_sql_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( lowerCAmelCase__ : List[str] ): with contextlib.closing(sqlitea.connect(lowerCAmelCase__ ) ) as con: a__ : Tuple = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] ): a__ : Any = tmp_path / '''cache''' a__ : int = os.path.join(lowerCAmelCase__ , '''tmp.sql''' ) a__ : int = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=lowerCAmelCase__ ).read() SqlDatasetWriter(lowerCAmelCase__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() a__ : List[Any] = iter_sql_file(lowerCAmelCase__ ) a__ : Tuple = iter_sql_file(lowerCAmelCase__ ) for rowa, rowa in zip(lowerCAmelCase__ , lowerCAmelCase__ ): assert rowa == rowa @require_sqlalchemy def __a ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple ): a__ : Tuple = tmp_path / '''cache''' a__ : Dict = os.path.join(lowerCAmelCase__ , '''tmp.sql''' ) a__ : Tuple = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=lowerCAmelCase__ ).read() SqlDatasetWriter(lowerCAmelCase__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() a__ : Dict = iter_sql_file(lowerCAmelCase__ ) a__ : int = iter_sql_file(lowerCAmelCase__ ) for rowa, rowa in zip(lowerCAmelCase__ , lowerCAmelCase__ ): assert rowa == rowa @require_sqlalchemy def __a ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict ): a__ : str = tmp_path / '''cache''' a__ : Tuple = os.path.join(lowerCAmelCase__ , '''tmp.sql''' ) a__ : List[str] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=lowerCAmelCase__ ).read() with pytest.raises(lowerCAmelCase__ ): SqlDatasetWriter(lowerCAmelCase__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
688
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __a ( lowerCAmelCase__ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ): a__ : Dict = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue a__ : Any = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) a__ : int = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) a__ : Optional[Any] = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) a__ : Dict = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) a__ : List[str] = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) a__ : List[Any] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) a__ : str = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) a__ : List[Any] = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) a__ : List[Any] = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) a__ : str = key.replace('''image_encoder.module''' , '''flava.image_model''' ) a__ : Dict = key.replace('''text_encoder.module''' , '''flava.text_model''' ) a__ : List[Any] = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) a__ : List[str] = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) a__ : List[str] = key.replace('''text_projection''' , '''flava.text_projection''' ) a__ : Any = key.replace('''image_projection''' , '''flava.image_projection''' ) a__ : Any = value.float() for key, value in codebook_state_dict.items(): a__ : List[str] = value return upgrade @torch.no_grad() def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict=None ): if config_path is not None: a__ : Tuple = FlavaConfig.from_pretrained(lowerCAmelCase__ ) else: a__ : Optional[int] = FlavaConfig() a__ : List[Any] = FlavaForPreTraining(lowerCAmelCase__ ).eval() a__ : Optional[int] = convert_dalle_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , save_checkpoint=lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): a__ : List[str] = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) else: a__ : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' ) a__ : List[Any] = upgrade_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) a__ : Any = hf_model.state_dict() a__ : Optional[Any] = count_parameters(lowerCAmelCase__ ) a__ : int = count_parameters(lowerCAmelCase__ ) + count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) hf_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __SCREAMING_SNAKE_CASE = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
688
1
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __SCREAMING_SNAKE_CASE = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase__ : """simple docstring""" def __init__( self : Dict , A__ : Union[str, Any] , A__ : str=1_6 , A__ : List[str]=1_3 , A__ : int=7 , A__ : Optional[int]=1_4 , A__ : int=1_0 , A__ : Any=1_9 , A__ : str=5 , A__ : Any=4 , A__ : List[Any]=True , A__ : Optional[int]=1_6 , A__ : Tuple=2 , A__ : Tuple=4 , A__ : Dict=4 , A__ : int="gelu" , A__ : Optional[Any]=0.1 , A__ : Dict=0.1 , A__ : List[str]=[1, 2, 3, 4, 5] , A__ : Dict=2_5 , A__ : Union[str, Any]=5 , ) -> Tuple: '''simple docstring''' a__ : str = d_model a__ : List[Any] = parent a__ : Tuple = batch_size a__ : Dict = prediction_length a__ : Optional[Any] = context_length a__ : List[Any] = cardinality a__ : str = num_time_features a__ : Optional[Any] = lags_sequence a__ : Optional[int] = embedding_dimension a__ : List[str] = is_training a__ : Dict = hidden_size a__ : str = num_hidden_layers a__ : Optional[Any] = num_attention_heads a__ : Optional[Any] = intermediate_size a__ : Optional[int] = hidden_act a__ : int = hidden_dropout_prob a__ : Any = attention_probs_dropout_prob a__ : List[str] = context_length a__ : Any = prediction_length + label_length a__ : Any = label_length a__ : List[Any] = moving_average a__ : List[Any] = autocorrelation_factor def __lowerCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __lowerCAmelCase ( self : List[str] , A__ : Any ) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] = config.context_length + max(config.lags_sequence ) a__ : List[str] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) a__ : Dict = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) a__ : int = floats_tensor([self.batch_size, _past_length] ) a__ : Optional[int] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs a__ : Union[str, Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) a__ : Union[str, Any] = floats_tensor([self.batch_size, config.prediction_length] ) a__ : Union[str, Any] = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' a__ : Optional[int] = self.get_config() a__ : List[str] = self.prepare_autoformer_inputs_dict(A__ ) return config, inputs_dict def __lowerCAmelCase ( self : int ) -> Any: '''simple docstring''' a__ , a__ : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def __lowerCAmelCase ( self : List[Any] , A__ : List[Any] , A__ : str ) -> Union[str, Any]: '''simple docstring''' a__ : List[Any] = AutoformerModel(config=A__ ).to(A__ ).eval() a__ : List[str] = model(**A__ ) a__ : Union[str, Any] = outputs.encoder_last_hidden_state a__ : Dict = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: a__ : List[Any] = model.get_encoder() encoder.save_pretrained(A__ ) a__ : Tuple = AutoformerEncoder.from_pretrained(A__ ).to(A__ ) a__ , a__ , a__ , a__ , a__ : Dict = model.create_network_inputs(**A__ ) a__ , a__ : int = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) a__ : Dict = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) a__ : Optional[int] = encoder(inputs_embeds=A__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) a__ : int = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) a__ : str = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) a__ : List[str] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) a__ : List[Any] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: a__ : List[str] = model.get_decoder() decoder.save_pretrained(A__ ) a__ : Union[str, Any] = AutoformerDecoder.from_pretrained(A__ ).to(A__ ) a__ : Tuple = decoder( trend=A__ , inputs_embeds=A__ , encoder_hidden_states=A__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __UpperCamelCase = (AutoformerForPrediction,) if is_torch_available() else () __UpperCamelCase = {"feature-extraction": AutoformerModel} if is_torch_available() else {} __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def __lowerCAmelCase ( self : Optional[Any] ) -> Any: '''simple docstring''' a__ : Optional[int] = AutoformerModelTester(self ) a__ : Optional[int] = ConfigTester(self , config_class=A__ , has_text_modality=A__ ) def __lowerCAmelCase ( self : int ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' a__ , a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: a__ : Dict = model_class(A__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A__ ) a__ , a__ : Dict = model_class.from_pretrained(A__ , output_loading_info=A__ ) self.assertEqual(info['''missing_keys'''] , [] ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' a__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A__ ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' pass def __lowerCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' a__ : Tuple = inspect.signature(getattr(A__ , '''forward''' ) ) # The main input is the name of the argument after `self` a__ : str = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A__ ) def __lowerCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' a__ , a__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : int = model_class(A__ ) a__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Dict = [*signature.parameters.keys()] a__ : Optional[Any] = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A__ )] , A__ ) def __lowerCAmelCase ( self : Tuple ) -> Any: '''simple docstring''' a__ , a__ : int = self.model_tester.prepare_config_and_inputs_for_common() a__ : List[str] = True a__ : List[Any] = getattr(self.model_tester , '''seq_length''' , A__ ) a__ : Any = getattr(self.model_tester , '''decoder_seq_length''' , A__ ) a__ : str = getattr(self.model_tester , '''encoder_seq_length''' , A__ ) a__ : Any = getattr(self.model_tester , '''d_model''' , A__ ) a__ : Union[str, Any] = getattr(self.model_tester , '''num_attention_heads''' , A__ ) a__ : Tuple = d_model // num_attention_heads for model_class in self.all_model_classes: a__ : int = True a__ : str = False a__ : Any = True a__ : Dict = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): a__ : Dict = model(**self._prepare_for_class(A__ , A__ ) ) a__ : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a__ : int = True a__ : int = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): a__ : int = model(**self._prepare_for_class(A__ , A__ ) ) a__ : str = outputs.encoder_attentions self.assertEqual(len(A__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) a__ : Tuple = len(A__ ) a__ : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A__ , A__ ) # decoder attentions a__ : List[str] = outputs.decoder_attentions self.assertIsInstance(A__ , (list, tuple) ) self.assertEqual(len(A__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions a__ : Tuple = outputs.cross_attentions self.assertIsInstance(A__ , (list, tuple) ) self.assertEqual(len(A__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine a__ : Dict = True a__ : int = True a__ : int = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): a__ : Optional[int] = model(**self._prepare_for_class(A__ , A__ ) ) self.assertEqual(out_len + 2 , len(A__ ) ) a__ : Tuple = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __lowerCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def __a ( lowerCAmelCase__ : Dict="train-batch.pt" ): a__ : str = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=lowerCAmelCase__ , repo_type='''dataset''' ) a__ : int = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ ) return batch @require_torch @slow class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' a__ : Tuple = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A__ ) a__ : Union[str, Any] = prepare_batch() with torch.no_grad(): a__ : Tuple = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] a__ : Union[str, Any] = torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A__ ) a__ : Union[str, Any] = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=A__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , A__ , atol=A__ ) ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: '''simple docstring''' a__ : Any = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A__ ) a__ : str = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): a__ : Any = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state a__ : List[Any] = torch.Size((6_4, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A__ ) a__ : List[Any] = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=A__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , A__ , atol=A__ ) ) def __lowerCAmelCase ( self : Tuple ) -> Any: '''simple docstring''' a__ : Optional[int] = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A__ ) a__ : Union[str, Any] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): a__ : Optional[int] = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) a__ : Dict = torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A__ ) a__ : Optional[Any] = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=A__ ) a__ : List[str] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A__ , rtol=1E-1 ) )
688
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 3 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" pass def __a ( lowerCAmelCase__ : List[str] ): for shard in shards: for i in range(lowerCAmelCase__ ): yield {"i": i, "shard": shard} def __a ( ): a__ : str = int(os.environ['''RANK'''] ) a__ : int = int(os.environ['''WORLD_SIZE'''] ) a__ : str = ArgumentParser() parser.add_argument('''--streaming''' , type=lowerCAmelCase__ ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase__ ) parser.add_argument('''--num_workers''' , type=lowerCAmelCase__ , default=0 ) a__ : int = parser.parse_args() a__ : List[str] = args.streaming a__ : Dict = args.num_workers a__ : Dict = {'''shards''': [F'shard_{shard_idx}' for shard_idx in range(lowerCAmelCase__ )]} a__ : Tuple = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ ) if not streaming: a__ : str = Dataset.from_list(list(lowerCAmelCase__ ) ) a__ : Optional[int] = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ ) a__ : Dict = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ ) a__ : str = NUM_SHARDS * NUM_ITEMS_PER_SHARD a__ : Dict = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) a__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
688
1
'''simple docstring''' from collections.abc import Callable def __a ( lowerCAmelCase__ : Callable[[float], float] , lowerCAmelCase__ : float , lowerCAmelCase__ : float ): a__ : float = a a__ : float = b if function(lowerCAmelCase__ ) == 0: # one of the a or b is a root for the function return a elif function(lowerCAmelCase__ ) == 0: return b elif ( function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: a__ : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowerCAmelCase__ ) == 0: return mid elif function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) < 0: a__ : str = mid else: a__ : Optional[int] = mid a__ : List[str] = start + (end - start) / 2.0 return mid def __a ( lowerCAmelCase__ : float ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
688
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __SCREAMING_SNAKE_CASE = open # noqa: we just need to have a builtin inside this module to test it properly
688
1
'''simple docstring''' __SCREAMING_SNAKE_CASE = [0, 2, 4, 6, 8] __SCREAMING_SNAKE_CASE = [1, 3, 5, 7, 9] def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 a__ : Union[str, Any] = 0 for digit in range(10 ): a__ : List[Any] = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , lowerCAmelCase__ , lowerCAmelCase__ ) return result a__ : int = 0 for digita in range(10 ): a__ : List[str] = digita if (remainder + digita) % 2 == 0: a__ : Tuple = ODD_DIGITS else: a__ : Union[str, Any] = EVEN_DIGITS for digita in other_parity_digits: a__ : Tuple = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , lowerCAmelCase__ , lowerCAmelCase__ , ) return result def __a ( lowerCAmelCase__ : int = 9 ): a__ : Dict = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(lowerCAmelCase__ , 0 , [0] * length , lowerCAmelCase__ ) return result if __name__ == "__main__": print(f'{solution() = }')
688
'''simple docstring''' import enum import shutil import sys __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = shutil.get_terminal_size() __SCREAMING_SNAKE_CASE = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class lowerCAmelCase__ ( enum.Enum ): """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = 1 def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict="" ): sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int="" ): forceWrite(F'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def __a ( ): forceWrite('''\r''' ) def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : str ): forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def __a ( ): forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def __a ( ): reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
688
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "umt5" __UpperCamelCase = ["past_key_values"] def __init__( self : List[Any] , A__ : Any=2_5_0_1_1_2 , A__ : Union[str, Any]=5_1_2 , A__ : Dict=6_4 , A__ : List[Any]=1_0_2_4 , A__ : Dict=8 , A__ : str=None , A__ : str=6 , A__ : Any=3_2 , A__ : Tuple=1_2_8 , A__ : Any=0.1 , A__ : List[str]=1E-6 , A__ : int=1.0 , A__ : List[str]="gated-gelu" , A__ : Union[str, Any]=True , A__ : List[str]=True , A__ : Optional[int]="T5Tokenizer" , A__ : Tuple=True , A__ : int=0 , A__ : Union[str, Any]=1 , A__ : Union[str, Any]=0 , **A__ : List[str] , ) -> Dict: '''simple docstring''' super().__init__( is_encoder_decoder=A__ , tokenizer_class=A__ , tie_word_embeddings=A__ , pad_token_id=A__ , eos_token_id=A__ , decoder_start_token_id=A__ , **A__ , ) a__ : List[Any] = vocab_size a__ : List[Any] = d_model a__ : Any = d_kv a__ : str = d_ff a__ : List[str] = num_layers a__ : str = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry a__ : Optional[Any] = num_heads a__ : Any = relative_attention_num_buckets a__ : List[Any] = relative_attention_max_distance a__ : Optional[Any] = dropout_rate a__ : str = layer_norm_epsilon a__ : Any = initializer_factor a__ : Optional[Any] = feed_forward_proj a__ : Optional[int] = use_cache a__ : str = self.feed_forward_proj.split('''-''' ) a__ : List[Any] = act_info[-1] a__ : Union[str, Any] = act_info[0] == '''gated''' if len(A__ ) > 1 and act_info[0] != "gated" or len(A__ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) if feed_forward_proj == "gated-gelu": a__ : Any = '''gelu_new''' @property def __lowerCAmelCase ( self : Dict ) -> str: '''simple docstring''' return self.d_model @property def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' return self.num_heads @property def __lowerCAmelCase ( self : Tuple ) -> str: '''simple docstring''' return self.num_layers class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' a__ : Union[str, Any] = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: a__ : Union[str, Any] = '''past_encoder_sequence + sequence''' a__ : Optional[Any] = {0: '''batch'''} a__ : List[str] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: a__ : str = {0: '''batch''', 1: '''decoder_sequence'''} a__ : List[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(A__ , direction='''inputs''' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __lowerCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' return 1_3 @property def __lowerCAmelCase ( self : Union[str, Any] ) -> float: '''simple docstring''' return 5E-4
688
'''simple docstring''' import inspect import unittest class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps a__ : Optional[int] = inspect.getmembers(A__ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": a__ : int = '''k-diffusion''' elif backend == "invisible_watermark": a__ : int = '''invisible-watermark''' assert backend in deps, F'{backend} is not in the deps table!'
688
1
'''simple docstring''' from __future__ import annotations def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
688
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __a ( lowerCAmelCase__ : Dict ): a__ , a__ : int = image.size a__ , a__ : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a__ : Tuple = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) a__ : List[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0 a__ : Any = image[None].transpose(0 , 3 , 1 , 2 ) a__ : Dict = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , A__ : VQModel , A__ : UNetaDModel , A__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> str: '''simple docstring''' super().__init__() self.register_modules(vqvae=A__ , unet=A__ , scheduler=A__ ) @torch.no_grad() def __call__( self : List[str] , A__ : Union[torch.Tensor, PIL.Image.Image] = None , A__ : Optional[int] = 1 , A__ : Optional[int] = 1_0_0 , A__ : Optional[float] = 0.0 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(A__ , PIL.Image.Image ): a__ : List[Any] = 1 elif isinstance(A__ , torch.Tensor ): a__ : List[str] = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A__ )}' ) if isinstance(A__ , PIL.Image.Image ): a__ : Union[str, Any] = preprocess(A__ ) a__ , a__ : Dict = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image a__ : Optional[int] = (batch_size, self.unet.config.in_channels // 2, height, width) a__ : Optional[int] = next(self.unet.parameters() ).dtype a__ : List[str] = randn_tensor(A__ , generator=A__ , device=self.device , dtype=A__ ) a__ : Any = image.to(device=self.device , dtype=A__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(A__ , device=self.device ) a__ : int = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler a__ : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a__ : Union[str, Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a__ : str = {} if accepts_eta: a__ : Dict = eta for t in self.progress_bar(A__ ): # concat latents and low resolution image in the channel dimension. a__ : str = torch.cat([latents, image] , dim=1 ) a__ : Optional[Any] = self.scheduler.scale_model_input(A__ , A__ ) # predict the noise residual a__ : Union[str, Any] = self.unet(A__ , A__ ).sample # compute the previous noisy sample x_t -> x_t-1 a__ : Union[str, Any] = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample # decode the image latents with the VQVAE a__ : List[Any] = self.vqvae.decode(A__ ).sample a__ : List[Any] = torch.clamp(A__ , -1.0 , 1.0 ) a__ : Optional[Any] = image / 2 + 0.5 a__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a__ : Union[str, Any] = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
1
'''simple docstring''' def __a ( lowerCAmelCase__ : str ): a__ : Tuple = 0 # if input_string is "aba" than new_input_string become "a|b|a" a__ : str = '''''' a__ : int = '''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(lowerCAmelCase__ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring a__ , a__ : int = 0, 0 # length[i] shows the length of palindromic substring with center i a__ : Any = [1 for i in range(len(lowerCAmelCase__ ) )] # for each character in new_string find corresponding palindromic string a__ : Union[str, Any] = 0 for j in range(len(lowerCAmelCase__ ) ): a__ : List[str] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(lowerCAmelCase__ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 a__ : Optional[int] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: a__ : Optional[int] = j - k + 1 # noqa: E741 a__ : Any = j + k - 1 # update max_length and start position if max_length < length[j]: a__ : int = length[j] a__ : Optional[int] = j # create that string a__ : Optional[int] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
688
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=8 ): a__ : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a__ : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Dict , A__ : UNetaDConditionModel , A__ : DDPMScheduler , A__ : VQModel , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( unet=A__ , scheduler=A__ , movq=A__ , ) a__ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self : Optional[Any] , A__ : List[Any] , A__ : List[str] , A__ : Optional[Any] , A__ : Dict , A__ : Dict , A__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if latents is None: a__ : List[str] = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) a__ : int = latents.to(A__ ) a__ : Tuple = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self : Union[str, Any] , A__ : int=0 ) -> str: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) a__ : Union[str, Any] = torch.device(F'cuda:{gpu_id}' ) a__ : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A__ , A__ ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple=0 ) -> Dict: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) a__ : int = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=A__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a__ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: a__ , a__ : List[str] = cpu_offload_with_hook(A__ , A__ , prev_module_hook=A__ ) # We'll offload the last model manually. a__ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(A__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A__ ) def __call__( self : Any , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : torch.FloatTensor , A__ : int = 5_1_2 , A__ : int = 5_1_2 , A__ : int = 1_0_0 , A__ : float = 4.0 , A__ : int = 1 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[torch.FloatTensor] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> str: '''simple docstring''' a__ : Optional[Any] = self._execution_device a__ : List[str] = guidance_scale > 1.0 if isinstance(A__ , A__ ): a__ : int = torch.cat(A__ , dim=0 ) if isinstance(A__ , A__ ): a__ : Optional[int] = torch.cat(A__ , dim=0 ) if isinstance(A__ , A__ ): a__ : int = torch.cat(A__ , dim=0 ) a__ : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: a__ : Tuple = image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Optional[int] = negative_image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Optional[int] = hint.repeat_interleave(A__ , dim=0 ) a__ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A__ ) a__ : Tuple = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A__ ) self.scheduler.set_timesteps(A__ , device=A__ ) a__ : int = self.scheduler.timesteps a__ : str = self.movq.config.latent_channels a__ , a__ : Optional[int] = downscale_height_and_width(A__ , A__ , self.movq_scale_factor ) # create initial latent a__ : List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A__ , A__ , A__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A__ ) ): # expand the latents if we are doing classifier free guidance a__ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a__ : List[str] = {'''image_embeds''': image_embeds, '''hint''': hint} a__ : Union[str, Any] = self.unet( sample=A__ , timestep=A__ , encoder_hidden_states=A__ , added_cond_kwargs=A__ , return_dict=A__ , )[0] if do_classifier_free_guidance: a__ , a__ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) a__ , a__ : Dict = noise_pred.chunk(2 ) a__ , a__ : Optional[Any] = variance_pred.chunk(2 ) a__ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a__ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a__ , a__ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a__ : Union[str, Any] = self.scheduler.step( A__ , A__ , A__ , generator=A__ , )[0] # post-processing a__ : Tuple = self.movq.decode(A__ , force_not_quantize=A__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: a__ : Union[str, Any] = image * 0.5 + 0.5 a__ : str = image.clamp(0 , 1 ) a__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a__ : int = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
688
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } __SCREAMING_SNAKE_CASE = { 'facebook/esm2_t6_8M_UR50D': 1_0_2_4, 'facebook/esm2_t12_35M_UR50D': 1_0_2_4, } def __a ( lowerCAmelCase__ : Union[str, Any] ): with open(lowerCAmelCase__ , '''r''' ) as f: a__ : Optional[int] = f.read().splitlines() return [l.strip() for l in lines] class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self : List[str] , A__ : int , A__ : Union[str, Any]="<unk>" , A__ : Tuple="<cls>" , A__ : List[Any]="<pad>" , A__ : Optional[int]="<mask>" , A__ : List[Any]="<eos>" , **A__ : Optional[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(**A__ ) a__ : Union[str, Any] = load_vocab_file(A__ ) a__ : int = dict(enumerate(self.all_tokens ) ) a__ : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} a__ : List[Any] = unk_token a__ : Any = cls_token a__ : Any = pad_token a__ : Any = mask_token a__ : Any = eos_token a__ : int = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __lowerCAmelCase ( self : Any , A__ : int ) -> str: '''simple docstring''' return self._id_to_token.get(A__ , self.unk_token ) def __lowerCAmelCase ( self : Optional[Any] , A__ : str ) -> int: '''simple docstring''' return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Tuple , **A__ : str ) -> List[Any]: '''simple docstring''' return text.split() def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int]=False ) -> Tuple: '''simple docstring''' return len(self._id_to_token ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def __lowerCAmelCase ( self : Any , A__ : str ) -> int: '''simple docstring''' return self._token_to_id.get(A__ , self._token_to_id.get(self.unk_token ) ) def __lowerCAmelCase ( self : List[Any] , A__ : int ) -> str: '''simple docstring''' return self._id_to_token.get(A__ , self.unk_token ) def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Tuple = [self.cls_token_id] a__ : Union[str, Any] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __lowerCAmelCase ( self : Tuple , A__ : List , A__ : Optional[List] = None , A__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] a__ : Any = [1] + ([0] * len(A__ )) + [1] if token_ids_a is not None: mask += [0] * len(A__ ) + [1] return mask def __lowerCAmelCase ( self : Any , A__ : Dict , A__ : Dict ) -> List[Any]: '''simple docstring''' a__ : Union[str, Any] = os.path.join(A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __lowerCAmelCase ( self : Any ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=A__ ) def __lowerCAmelCase ( self : List[str] , A__ : Union[List[str], List[AddedToken]] , A__ : bool = False ) -> int: '''simple docstring''' return super()._add_tokens(A__ , special_tokens=A__ )
688
1
'''simple docstring''' def __a ( lowerCAmelCase__ : str ): a__ : Optional[int] = [int(lowerCAmelCase__ ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(lowerCAmelCase__ ) == 4 and all(0 <= int(lowerCAmelCase__ ) <= 254 for octet in octets ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = input().strip() __SCREAMING_SNAKE_CASE = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(f'{ip} is a {valid_or_invalid} IP v4 address.')
688
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class lowerCAmelCase__ : """simple docstring""" def __init__( self : str ) -> Dict: '''simple docstring''' a__ : List[str] = False def __lowerCAmelCase ( self : Tuple , A__ : Optional[int] , A__ : Optional[Any] , A__ : List[str] , A__ : Tuple ) -> Optional[int]: '''simple docstring''' if not self.initialized: a__ : Optional[Any] = RagRetriever( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) a__ : Union[str, Any] = True def __lowerCAmelCase ( self : Tuple ) -> Tuple: '''simple docstring''' self.retriever.index.init_index() def __lowerCAmelCase ( self : List[Any] , A__ : List[Any] , A__ : Optional[int] ) -> List[Any]: '''simple docstring''' a__ , a__ : Optional[Any] = self.retriever._main_retrieve(A__ , A__ ) return doc_ids, retrieved_doc_embeds class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : str , A__ : Optional[int] , A__ : List[Any] , A__ : List[Any] , A__ : str , A__ : Any=None ) -> Optional[Any]: '''simple docstring''' if index is not None and index.is_initialized() and len(A__ ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) a__ : List[str] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A__ , A__ , A__ , A__ ) for worker in self.retrieval_workers ] ) def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCAmelCase ( self : Optional[int] , A__ : Optional[int] , A__ : int ) -> Dict: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. a__ : List[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] a__ , a__ : Tuple = ray.get(random_worker.retrieve.remote(A__ , A__ ) ) else: a__ , a__ : int = self._main_retrieve(A__ , A__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A__ ) @classmethod def __lowerCAmelCase ( cls : int , A__ : Optional[Any] , A__ : Any=None , **A__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return super(A__ , cls ).get_tokenizers(A__ , A__ , **A__ ) @classmethod def __lowerCAmelCase ( cls : int , A__ : Optional[int] , A__ : Union[str, Any] , A__ : Union[str, Any]=None , **A__ : Dict ) -> List[Any]: '''simple docstring''' a__ : Dict = kwargs.pop('''config''' , A__ ) or RagConfig.from_pretrained(A__ , **A__ ) a__ : Dict = RagTokenizer.from_pretrained(A__ , config=A__ ) a__ : str = rag_tokenizer.question_encoder a__ : List[str] = rag_tokenizer.generator if indexed_dataset is not None: a__ : List[Any] = '''custom''' a__ : List[Any] = CustomHFIndex(config.retrieval_vector_size , A__ ) else: a__ : Optional[Any] = cls._build_index(A__ ) return cls( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , retrieval_workers=A__ , index=A__ , )
688
1
'''simple docstring''' def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): a__ : List[str] = len(lowerCAmelCase__ ) a__ : int = [[0] * n for i in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): a__ : Dict = y_points[i] for i in range(2 , lowerCAmelCase__ ): for j in range(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Any = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
688
'''simple docstring''' def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): a__ : List[str] = len(lowerCAmelCase__ ) a__ : int = [[0] * n for i in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): a__ : Dict = y_points[i] for i in range(2 , lowerCAmelCase__ ): for j in range(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Any = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
688
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = ["pixel_values"] def __init__( self : Dict , A__ : bool = True , A__ : Dict[str, int] = None , A__ : PILImageResampling = PILImageResampling.BICUBIC , A__ : bool = True , A__ : Union[int, float] = 1 / 2_5_5 , A__ : bool = True , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[float, List[float]]] = None , A__ : bool = True , **A__ : Union[str, Any] , ) -> None: '''simple docstring''' super().__init__(**A__ ) a__ : Union[str, Any] = size if size is not None else {'''height''': 3_8_4, '''width''': 3_8_4} a__ : Dict = get_size_dict(A__ , default_to_square=A__ ) a__ : Tuple = do_resize a__ : int = size a__ : Dict = resample a__ : Optional[Any] = do_rescale a__ : Any = rescale_factor a__ : int = do_normalize a__ : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN a__ : str = image_std if image_std is not None else OPENAI_CLIP_STD a__ : List[str] = do_convert_rgb def __lowerCAmelCase ( self : int , A__ : np.ndarray , A__ : Dict[str, int] , A__ : PILImageResampling = PILImageResampling.BICUBIC , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : List[Any] , ) -> np.ndarray: '''simple docstring''' a__ : Tuple = get_size_dict(A__ , default_to_square=A__ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) a__ : Dict = (size['''height'''], size['''width''']) return resize(A__ , size=A__ , resample=A__ , data_format=A__ , **A__ ) def __lowerCAmelCase ( self : Tuple , A__ : np.ndarray , A__ : Union[int, float] , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : Any , ) -> Any: '''simple docstring''' return rescale(A__ , scale=A__ , data_format=A__ , **A__ ) def __lowerCAmelCase ( self : Optional[Any] , A__ : np.ndarray , A__ : Union[float, List[float]] , A__ : Union[float, List[float]] , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(A__ , mean=A__ , std=A__ , data_format=A__ , **A__ ) def __lowerCAmelCase ( self : List[Any] , A__ : ImageInput , A__ : Optional[bool] = None , A__ : Optional[Dict[str, int]] = None , A__ : PILImageResampling = None , A__ : Optional[bool] = None , A__ : Optional[float] = None , A__ : Optional[bool] = None , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[str, TensorType]] = None , A__ : bool = None , A__ : ChannelDimension = ChannelDimension.FIRST , **A__ : int , ) -> PIL.Image.Image: '''simple docstring''' a__ : Any = do_resize if do_resize is not None else self.do_resize a__ : Dict = resample if resample is not None else self.resample a__ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale a__ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor a__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize a__ : List[Any] = image_mean if image_mean is not None else self.image_mean a__ : Tuple = image_std if image_std is not None else self.image_std a__ : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a__ : Union[str, Any] = size if size is not None else self.size a__ : Dict = get_size_dict(A__ , default_to_square=A__ ) a__ : Tuple = make_list_of_images(A__ ) if not valid_images(A__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: a__ : Union[str, Any] = [convert_to_rgb(A__ ) for image in images] # All transformations expect numpy arrays. a__ : List[Any] = [to_numpy_array(A__ ) for image in images] if do_resize: a__ : Any = [self.resize(image=A__ , size=A__ , resample=A__ ) for image in images] if do_rescale: a__ : Any = [self.rescale(image=A__ , scale=A__ ) for image in images] if do_normalize: a__ : Union[str, Any] = [self.normalize(image=A__ , mean=A__ , std=A__ ) for image in images] a__ : Dict = [to_channel_dimension_format(A__ , A__ ) for image in images] a__ : Tuple = BatchFeature(data={'''pixel_values''': images} , tensor_type=A__ ) return encoded_outputs
688
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "swin2sr" __UpperCamelCase = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , A__ : int=6_4 , A__ : List[Any]=1 , A__ : List[Any]=3 , A__ : Any=1_8_0 , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Optional[int]=[6, 6, 6, 6, 6, 6] , A__ : Dict=8 , A__ : Any=2.0 , A__ : Optional[int]=True , A__ : Union[str, Any]=0.0 , A__ : Union[str, Any]=0.0 , A__ : List[str]=0.1 , A__ : Any="gelu" , A__ : Tuple=False , A__ : Optional[int]=0.02 , A__ : List[Any]=1E-5 , A__ : Any=2 , A__ : Union[str, Any]=1.0 , A__ : Dict="1conv" , A__ : Optional[Any]="pixelshuffle" , **A__ : Optional[Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(**A__ ) a__ : List[str] = image_size a__ : Optional[Any] = patch_size a__ : Dict = num_channels a__ : Optional[int] = embed_dim a__ : int = depths a__ : Optional[int] = len(A__ ) a__ : Dict = num_heads a__ : List[Any] = window_size a__ : Optional[int] = mlp_ratio a__ : Optional[int] = qkv_bias a__ : Union[str, Any] = hidden_dropout_prob a__ : Dict = attention_probs_dropout_prob a__ : Union[str, Any] = drop_path_rate a__ : int = hidden_act a__ : int = use_absolute_embeddings a__ : Dict = layer_norm_eps a__ : List[str] = initializer_range a__ : List[Any] = upscale a__ : List[Any] = img_range a__ : Optional[int] = resi_connection a__ : int = upsampler
688
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __a ( lowerCAmelCase__ : Dict ): a__ : List[Any] = DPTConfig() if "large" in checkpoint_url: a__ : Union[str, Any] = 1024 a__ : Any = 4096 a__ : Optional[int] = 24 a__ : int = 16 a__ : List[str] = [5, 11, 17, 23] a__ : Union[str, Any] = [256, 512, 1024, 1024] a__ : Tuple = (1, 384, 384) if "ade" in checkpoint_url: a__ : Tuple = True a__ : Union[str, Any] = 150 a__ : Union[str, Any] = '''huggingface/label-files''' a__ : Optional[int] = '''ade20k-id2label.json''' a__ : Optional[int] = json.load(open(cached_download(hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) ) , '''r''' ) ) a__ : List[Any] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} a__ : int = idalabel a__ : Optional[int] = {v: k for k, v in idalabel.items()} a__ : Dict = [1, 150, 480, 480] return config, expected_shape def __a ( lowerCAmelCase__ : Union[str, Any] ): a__ : Tuple = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( lowerCAmelCase__ : Union[str, Any] ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): a__ : str = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: a__ : List[Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: a__ : Optional[int] = name.replace('''patch_embed''' , '''patch_embeddings''' ) if "pos_embed" in name: a__ : str = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: a__ : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: a__ : int = name.replace('''proj''' , '''projection''' ) if "blocks" in name: a__ : Optional[Any] = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: a__ : List[Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: a__ : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name: a__ : Optional[int] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: a__ : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: a__ : List[str] = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: a__ : Optional[int] = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: a__ : Dict = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: a__ : Optional[Any] = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: a__ : Tuple = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: a__ : Tuple = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: a__ : Tuple = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 a__ : Dict = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: a__ : Optional[int] = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: a__ : Tuple = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: a__ : str = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: a__ : Union[str, Any] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: a__ : Any = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: a__ : str = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: a__ : str = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: a__ : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: a__ : str = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: a__ : Optional[int] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: a__ : str = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: a__ : Optional[Any] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: a__ : Union[str, Any] = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: a__ : Union[str, Any] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: a__ : Dict = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: a__ : str = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: a__ : Tuple = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: a__ : List[str] = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: a__ : List[str] = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: a__ : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: a__ : List[Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) return name def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__ : List[str] = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' ) a__ : Tuple = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a__ : Optional[int] = in_proj_weight[: config.hidden_size, :] a__ : Optional[int] = in_proj_bias[: config.hidden_size] a__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__ : Dict = in_proj_weight[ -config.hidden_size :, : ] a__ : Optional[Any] = in_proj_bias[-config.hidden_size :] def __a ( ): a__ : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a__ : List[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): a__ , a__ : int = get_dpt_config(lowerCAmelCase__ ) # load original state_dict from URL a__ : str = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(lowerCAmelCase__ ) # rename keys for key in state_dict.copy().keys(): a__ : Dict = state_dict.pop(lowerCAmelCase__ ) a__ : Union[str, Any] = val # read in qkv matrices read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # load HuggingFace model a__ : List[Any] = DPTForSemanticSegmentation(lowerCAmelCase__ ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # Check outputs on an image a__ : List[Any] = 480 if '''ade''' in checkpoint_url else 384 a__ : Optional[int] = DPTImageProcessor(size=lowerCAmelCase__ ) a__ : Optional[int] = prepare_img() a__ : int = image_processor(lowerCAmelCase__ , return_tensors='''pt''' ) # forward pass a__ : List[Any] = model(**lowerCAmelCase__ ).logits if '''ade''' in checkpoint_url else model(**lowerCAmelCase__ ).predicted_depth # Assert logits a__ : Dict = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: a__ : List[Any] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(lowerCAmelCase__ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCAmelCase__ ) ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=lowerCAmelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=lowerCAmelCase__ , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
688
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' a__ : int = 0 def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' a__ : Optional[int] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : List[Any] = Path(A__ ) / '''preprocessor_config.json''' a__ : List[Any] = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Any = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : int = Path(A__ ) / '''preprocessor_config.json''' a__ : Optional[Any] = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Tuple = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type a__ : int = Path(A__ ) / '''preprocessor_config.json''' a__ : Optional[int] = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally a__ : List[Any] = AutoImageProcessor.from_pretrained(A__ ).to_dict() config_dict.pop('''image_processor_type''' ) a__ : Union[str, Any] = CLIPImageProcessor(**A__ ) # save in new folder model_config.save_pretrained(A__ ) config.save_pretrained(A__ ) a__ : Union[str, Any] = AutoImageProcessor.from_pretrained(A__ ) # make sure private variable is not incorrectly saved a__ : Optional[Any] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) a__ : Any = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( A__ , '''clip-base is not a local folder and is not a valid model identifier''' ): a__ : str = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowerCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' with self.assertRaisesRegex( A__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): a__ : Tuple = AutoImageProcessor.from_pretrained(A__ , revision='''aaaaaa''' ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( A__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): a__ : Union[str, Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' with self.assertRaises(A__ ): a__ : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(A__ ): a__ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) a__ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) a__ : str = AutoImageProcessor.from_pretrained(A__ , trust_remote_code=A__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A__ ): AutoImageProcessor.register(A__ , A__ ) with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json''' a__ : List[str] = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Tuple = CustomImageProcessor.from_pretrained(A__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) a__ : Tuple = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = True try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # If remote code is not set, the default is to use local a__ : Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. a__ : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub a__ : Optional[int] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(A__ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
688
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
688
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __SCREAMING_SNAKE_CASE = get_logger(__name__) class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = "dummy_data" __UpperCamelCase = "datasets" __UpperCamelCase = False def __init__( self : Any , A__ : str , A__ : str , A__ : Union[Version, str] , A__ : Optional[str] = None , A__ : bool = False , A__ : bool = True , A__ : Optional[List[Callable]] = None , ) -> int: '''simple docstring''' a__ : Tuple = 0 a__ : Any = dataset_name a__ : int = cache_dir a__ : str = use_local_dummy_data a__ : List[str] = config # download_callbacks take a single url as input a__ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root a__ : str = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general a__ : Optional[Any] = str(A__ ) # to be downloaded a__ : Tuple = None a__ : Tuple = None @property def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' if self._dummy_file is None: a__ : Dict = self.download_dummy_data() return self._dummy_file @property def __lowerCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' a__ : int = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) a__ : str = cached_path( A__ , cache_dir=self.cache_dir , extract_compressed_file=A__ , force_extract=A__ ) return os.path.join(A__ , self.dummy_file_name ) @property def __lowerCAmelCase ( self : int ) -> Optional[int]: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' if self._bucket_url is None: a__ : int = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int] , *A__ : int ) -> Union[str, Any]: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested a__ : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned a__ : Union[str, Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(A__ , A__ ): return self.create_dummy_data_dict(A__ , A__ ) elif isinstance(A__ , (list, tuple) ): return self.create_dummy_data_list(A__ , A__ ) else: return self.create_dummy_data_single(A__ , A__ ) def __lowerCAmelCase ( self : List[str] , A__ : Any , *A__ : int ) -> Any: '''simple docstring''' return self.download_and_extract(A__ ) def __lowerCAmelCase ( self : Any , A__ : Optional[int] , A__ : Optional[Any] ) -> int: '''simple docstring''' return self.download_and_extract(A__ ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : int , *A__ : List[Any] , **A__ : str ) -> Optional[Any]: '''simple docstring''' return path def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' return {} def __lowerCAmelCase ( self : int , A__ : Union[str, Any] , A__ : List[str] ) -> Any: '''simple docstring''' a__ : int = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(A__ , A__ ): for single_url in single_urls: download_callback(A__ ) else: a__ : Dict = single_urls download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(A__ , A__ ): a__ : Optional[int] = [os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) for x in single_urls] else: a__ : Optional[Any] = single_urls a__ : Tuple = os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) a__ : List[str] = value # make sure that values are unique if all(isinstance(A__ , A__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique a__ : Optional[int] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __lowerCAmelCase ( self : Dict , A__ : str , A__ : Optional[int] ) -> Optional[int]: '''simple docstring''' a__ : str = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one a__ : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , A__ ) ) for url in data_url ) a__ : Optional[Any] = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): a__ : Dict = [data_url[0]] * len(A__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a__ : Optional[int] = os.path.join(A__ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(A__ ) return dummy_data_list def __lowerCAmelCase ( self : Dict , A__ : Dict , A__ : str ) -> Optional[int]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a__ : Union[str, Any] = os.path.join(A__ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(A__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' pass def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: '''simple docstring''' pass def __lowerCAmelCase ( self : Any , A__ : Tuple ) -> Any: '''simple docstring''' def _iter_archive_members(A__ : str ): # this preserves the order of the members inside the ZIP archive a__ : Dict = Path(self.dummy_file ).parent a__ : Tuple = path.relative_to(A__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: a__ : Optional[Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(A__ ) a__ : str = Path(A__ ) a__ : Optional[Any] = _iter_archive_members(A__ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(A__ ).as_posix(), file_path.open('''rb''' ) def __lowerCAmelCase ( self : Tuple , A__ : Tuple ) -> Tuple: '''simple docstring''' if not isinstance(A__ , A__ ): a__ : int = [paths] for path in paths: if os.path.isfile(A__ ): if os.path.basename(A__ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(A__ ): if os.path.basename(A__ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(A__ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(A__ , A__ )
688
1
'''simple docstring''' import unittest import numpy as np def __a ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray | None = None , ): a__ : Union[str, Any] = np.shape(lowerCAmelCase__ ) a__ : Tuple = np.shape(lowerCAmelCase__ ) a__ : List[Any] = np.shape(lowerCAmelCase__ ) if shape_a[0] != shape_b[0]: a__ : List[Any] = ( '''Expected the same number of rows for A and B. ''' F'Instead found A of size {shape_a} and B of size {shape_b}' ) raise ValueError(lowerCAmelCase__ ) if shape_b[1] != shape_c[1]: a__ : Optional[int] = ( '''Expected the same number of columns for B and C. ''' F'Instead found B of size {shape_b} and C of size {shape_c}' ) raise ValueError(lowerCAmelCase__ ) a__ : List[Any] = pseudo_inv if a_inv is None: try: a__ : int = np.linalg.inv(lowerCAmelCase__ ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Any ) -> None: '''simple docstring''' a__ : int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) a__ : Union[str, Any] = np.array([[0, 3], [3, 0], [2, 3]] ) a__ : List[str] = np.array([[2, 1], [6, 3]] ) a__ : int = schur_complement(A__ , A__ , A__ ) a__ : List[str] = np.block([[a, b], [b.T, c]] ) a__ : Tuple = np.linalg.det(A__ ) a__ : Dict = np.linalg.det(A__ ) a__ : List[str] = np.linalg.det(A__ ) self.assertAlmostEqual(A__ , det_a * det_s ) def __lowerCAmelCase ( self : Union[str, Any] ) -> None: '''simple docstring''' a__ : List[str] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) a__ : int = np.array([[0, 3], [3, 0], [2, 3]] ) a__ : Tuple = np.array([[2, 1], [6, 3]] ) with self.assertRaises(A__ ): schur_complement(A__ , A__ , A__ ) def __lowerCAmelCase ( self : Tuple ) -> None: '''simple docstring''' a__ : Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) a__ : List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) a__ : Any = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(A__ ): schur_complement(A__ , A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
688
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = LxmertTokenizer __UpperCamelCase = LxmertTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def __lowerCAmelCase ( self : str ) -> str: '''simple docstring''' super().setUp() a__ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self : int , A__ : int ) -> int: '''simple docstring''' a__ : List[Any] = '''UNwant\u00E9d,running''' a__ : Optional[int] = '''unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self : int ) -> Dict: '''simple docstring''' a__ : Optional[int] = self.tokenizer_class(self.vocab_file ) a__ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [7, 4, 5, 1_0, 8, 9] ) def __lowerCAmelCase ( self : Any ) -> Dict: '''simple docstring''' if not self.test_rust_tokenizer: return a__ : Union[str, Any] = self.get_tokenizer() a__ : Union[str, Any] = self.get_rust_tokenizer() a__ : str = '''I was born in 92000, and this is falsé.''' a__ : Tuple = tokenizer.tokenize(A__ ) a__ : Tuple = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) a__ : Optional[int] = tokenizer.encode(A__ , add_special_tokens=A__ ) a__ : Optional[Any] = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) a__ : List[str] = self.get_rust_tokenizer() a__ : str = tokenizer.encode(A__ ) a__ : int = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ )
688
1
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) __SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(6_4, 6_4), batch_size=3_2, class_mode='binary' ) __SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(6_4, 6_4), batch_size=3_2, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions __SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(6_4, 6_4) ) __SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) __SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) __SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __SCREAMING_SNAKE_CASE = 'Normal' if result[0][0] == 1: __SCREAMING_SNAKE_CASE = 'Abnormality detected'
688
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file a__ : Dict = TapasConfig.from_json_file(lowerCAmelCase__ ) # set absolute/relative position embeddings parameter a__ : List[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": a__ : Optional[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "WTQ": # run_task_main.py hparams a__ : List[str] = 4 a__ : Optional[int] = True # hparam_utils.py hparams a__ : List[Any] = 0.664694 a__ : List[Any] = 0.207951 a__ : Union[str, Any] = 0.121194 a__ : Optional[Any] = True a__ : Optional[int] = True a__ : List[str] = False a__ : Union[str, Any] = 0.0352513 a__ : Any = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams a__ : Tuple = 4 a__ : Dict = False # hparam_utils.py hparams a__ : str = 36.4519 a__ : str = 0.903421 a__ : Optional[Any] = 222.088 a__ : Dict = True a__ : Dict = True a__ : Dict = True a__ : str = 0.763141 a__ : List[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "TABFACT": a__ : List[str] = TapasForSequenceClassification(config=lowerCAmelCase__ ) elif task == "MLM": a__ : Tuple = TapasForMaskedLM(config=lowerCAmelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": a__ : List[str] = TapasModel(config=lowerCAmelCase__ ) else: raise ValueError(F'Task {task} not supported.' ) print(F'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model (weights and configuration) print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowerCAmelCase__ ) # Save tokenizer files print(F'Save tokenizer files to {pytorch_dump_path}' ) a__ : Optional[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 ) tokenizer.save_pretrained(lowerCAmelCase__ ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
1
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
688
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } __SCREAMING_SNAKE_CASE = { 'google/fnet-base': 5_1_2, 'google/fnet-large': 5_1_2, } __SCREAMING_SNAKE_CASE = '▁' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "token_type_ids"] __UpperCamelCase = FNetTokenizer def __init__( self : Any , A__ : Any=None , A__ : int=None , A__ : List[str]=False , A__ : int=True , A__ : str=True , A__ : List[Any]="<unk>" , A__ : Dict="[SEP]" , A__ : List[str]="<pad>" , A__ : Union[str, Any]="[CLS]" , A__ : Dict="[MASK]" , **A__ : Tuple , ) -> List[str]: '''simple docstring''' a__ : Optional[int] = ( AddedToken(A__ , lstrip=A__ , rstrip=A__ , normalized=A__ ) if isinstance(A__ , A__ ) else mask_token ) super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , **A__ , ) a__ : Optional[Any] = do_lower_case a__ : Dict = remove_space a__ : List[Any] = keep_accents a__ : Optional[Any] = vocab_file a__ : Any = False if not self.vocab_file else True def __lowerCAmelCase ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Optional[int] = [self.sep_token_id] a__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self : List[Any] , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Dict = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Tuple , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ : Union[str, Any] = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ): copyfile(self.vocab_file , A__ ) return (out_vocab_file,)
688
1
'''simple docstring''' from statistics import mean, stdev def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : int = 3 ): a__ : List[Any] = min(lowerCAmelCase__ ) a__ : Optional[int] = max(lowerCAmelCase__ ) # normalize data return [round((x - x_min) / (x_max - x_min) , lowerCAmelCase__ ) for x in data] def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : int = 3 ): a__ : str = mean(lowerCAmelCase__ ) a__ : str = stdev(lowerCAmelCase__ ) # standardize data return [round((x - mu) / (sigma) , lowerCAmelCase__ ) for x in data]
688
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } __SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': 5_1_2, 'distilbert-base-uncased-distilled-squad': 5_1_2, 'distilbert-base-cased': 5_1_2, 'distilbert-base-cased-distilled-squad': 5_1_2, 'distilbert-base-german-cased': 5_1_2, 'distilbert-base-multilingual-cased': 5_1_2, } __SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = ["input_ids", "attention_mask"] __UpperCamelCase = DistilBertTokenizer def __init__( self : str , A__ : Optional[Any]=None , A__ : Any=None , A__ : Tuple=True , A__ : List[Any]="[UNK]" , A__ : List[str]="[SEP]" , A__ : Tuple="[PAD]" , A__ : Optional[int]="[CLS]" , A__ : Union[str, Any]="[MASK]" , A__ : List[str]=True , A__ : Any=None , **A__ : int , ) -> str: '''simple docstring''' super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , ) a__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , A__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , A__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A__ ) != tokenize_chinese_chars ): a__ : int = getattr(A__ , normalizer_state.pop('''type''' ) ) a__ : List[Any] = do_lower_case a__ : str = strip_accents a__ : List[str] = tokenize_chinese_chars a__ : Dict = normalizer_class(**A__ ) a__ : List[Any] = do_lower_case def __lowerCAmelCase ( self : Tuple , A__ : List[str] , A__ : Dict=None ) -> List[str]: '''simple docstring''' a__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : List[str] = [self.sep_token_id] a__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : str , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' a__ : int = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
688
1
'''simple docstring''' def __a ( lowerCAmelCase__ : int ): if num < 0: return False a__ : int = num a__ : int = 0 while num > 0: a__ : List[str] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
688
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __SCREAMING_SNAKE_CASE = tuple[int, int] class lowerCAmelCase__ : """simple docstring""" def __init__( self : str , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int , A__ : Node | None , ) -> None: '''simple docstring''' a__ : Optional[int] = pos_x a__ : str = pos_y a__ : Optional[int] = (pos_y, pos_x) a__ : List[str] = goal_x a__ : Any = goal_y a__ : Any = g_cost a__ : Optional[int] = parent a__ : Union[str, Any] = self.calculate_heuristic() a__ : List[Any] = self.g_cost + self.h_cost def __lowerCAmelCase ( self : Union[str, Any] ) -> float: '''simple docstring''' a__ : List[str] = self.pos_x - self.goal_x a__ : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A__ ) + abs(A__ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : List[Any] , A__ : Node ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , A__ : TPosition , A__ : TPosition ) -> Optional[Any]: '''simple docstring''' a__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A__ ) a__ : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , A__ ) a__ : Dict = [self.start] a__ : list[Node] = [] a__ : str = False def __lowerCAmelCase ( self : List[str] ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() a__ : Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A__ ) self.closed_nodes.append(A__ ) a__ : List[Any] = self.get_successors(A__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A__ ) else: # retrieve the best current path a__ : Optional[int] = self.open_nodes.pop(self.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A__ ) else: self.open_nodes.append(A__ ) return [self.start.pos] def __lowerCAmelCase ( self : Optional[Any] , A__ : Node ) -> list[Node]: '''simple docstring''' a__ : Optional[int] = [] for action in delta: a__ : List[Any] = parent.pos_x + action[1] a__ : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A__ , A__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A__ , ) ) return successors def __lowerCAmelCase ( self : List[Any] , A__ : Node | None ) -> list[TPosition]: '''simple docstring''' a__ : Union[str, Any] = node a__ : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) a__ : Any = current_node.parent path.reverse() return path class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , A__ : TPosition , A__ : TPosition ) -> None: '''simple docstring''' a__ : str = AStar(A__ , A__ ) a__ : Optional[int] = AStar(A__ , A__ ) a__ : List[str] = False def __lowerCAmelCase ( self : Tuple ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() a__ : int = self.fwd_astar.open_nodes.pop(0 ) a__ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A__ , A__ ) self.fwd_astar.closed_nodes.append(A__ ) self.bwd_astar.closed_nodes.append(A__ ) a__ : Tuple = current_bwd_node a__ : Optional[int] = current_fwd_node a__ : Optional[int] = { self.fwd_astar: self.fwd_astar.get_successors(A__ ), self.bwd_astar: self.bwd_astar.get_successors(A__ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A__ ) else: # retrieve the best current path a__ : Optional[Any] = astar.open_nodes.pop( astar.open_nodes.index(A__ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A__ ) else: astar.open_nodes.append(A__ ) return [self.fwd_astar.start.pos] def __lowerCAmelCase ( self : List[str] , A__ : Node , A__ : Node ) -> list[TPosition]: '''simple docstring''' a__ : str = self.fwd_astar.retrace_path(A__ ) a__ : List[str] = self.bwd_astar.retrace_path(A__ ) bwd_path.pop() bwd_path.reverse() a__ : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __SCREAMING_SNAKE_CASE = (0, 0) __SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __SCREAMING_SNAKE_CASE = time.time() __SCREAMING_SNAKE_CASE = AStar(init, goal) __SCREAMING_SNAKE_CASE = a_star.search() __SCREAMING_SNAKE_CASE = time.time() - start_time print(f'AStar execution time = {end_time:f} seconds') __SCREAMING_SNAKE_CASE = time.time() __SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) __SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
688
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' a__ : Any = tempfile.mkdtemp() # fmt: off a__ : str = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on a__ : Optional[Any] = dict(zip(A__ , range(len(A__ ) ) ) ) a__ : str = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] a__ : Optional[Any] = {'''unk_token''': '''<unk>'''} a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A__ ) ) a__ : Tuple = { '''do_resize''': True, '''size''': 2_0, '''do_center_crop''': True, '''crop_size''': 1_8, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], } a__ : Optional[int] = os.path.join(self.tmpdirname , A__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A__ , A__ ) def __lowerCAmelCase ( self : Any , **A__ : Union[str, Any] ) -> Dict: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **A__ ) def __lowerCAmelCase ( self : Union[str, Any] , **A__ : str ) -> List[str]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **A__ ) def __lowerCAmelCase ( self : Tuple , **A__ : Tuple ) -> List[Any]: '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **A__ ) def __lowerCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' a__ : Tuple = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] a__ : Union[str, Any] = [Image.fromarray(np.moveaxis(A__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Union[str, Any] ) -> int: '''simple docstring''' a__ : Optional[Any] = self.get_tokenizer() a__ : List[str] = self.get_rust_tokenizer() a__ : str = self.get_image_processor() a__ : Optional[int] = OwlViTProcessor(tokenizer=A__ , image_processor=A__ ) processor_slow.save_pretrained(self.tmpdirname ) a__ : Any = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=A__ ) a__ : List[str] = OwlViTProcessor(tokenizer=A__ , image_processor=A__ ) processor_fast.save_pretrained(self.tmpdirname ) a__ : List[str] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A__ ) self.assertIsInstance(processor_fast.tokenizer , A__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A__ ) self.assertIsInstance(processor_fast.image_processor , A__ ) def __lowerCAmelCase ( self : Optional[int] ) -> Dict: '''simple docstring''' a__ : Optional[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a__ : Union[str, Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a__ : List[str] = self.get_image_processor(do_normalize=A__ ) a__ : List[Any] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A__ ) def __lowerCAmelCase ( self : Tuple ) -> Any: '''simple docstring''' a__ : Dict = self.get_image_processor() a__ : int = self.get_tokenizer() a__ : Union[str, Any] = OwlViTProcessor(tokenizer=A__ , image_processor=A__ ) a__ : Optional[Any] = self.prepare_image_inputs() a__ : Optional[int] = image_processor(A__ , return_tensors='''np''' ) a__ : Optional[int] = processor(images=A__ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self : Any ) -> Optional[Any]: '''simple docstring''' a__ : str = self.get_image_processor() a__ : Union[str, Any] = self.get_tokenizer() a__ : Optional[Any] = OwlViTProcessor(tokenizer=A__ , image_processor=A__ ) a__ : Tuple = '''lower newer''' a__ : Optional[Any] = processor(text=A__ , return_tensors='''np''' ) a__ : Union[str, Any] = tokenizer(A__ , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def __lowerCAmelCase ( self : Any ) -> Dict: '''simple docstring''' a__ : Tuple = self.get_image_processor() a__ : str = self.get_tokenizer() a__ : Union[str, Any] = OwlViTProcessor(tokenizer=A__ , image_processor=A__ ) a__ : Tuple = '''lower newer''' a__ : str = self.prepare_image_inputs() a__ : Any = processor(text=A__ , images=A__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A__ ): processor() def __lowerCAmelCase ( self : int ) -> Tuple: '''simple docstring''' a__ : Optional[Any] = '''google/owlvit-base-patch32''' a__ : List[Any] = OwlViTProcessor.from_pretrained(A__ ) a__ : List[str] = ['''cat''', '''nasa badge'''] a__ : Tuple = processor(text=A__ ) a__ : Dict = 1_6 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(A__ ): processor() def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' a__ : Optional[Any] = '''google/owlvit-base-patch32''' a__ : List[Any] = OwlViTProcessor.from_pretrained(A__ ) a__ : str = [['''cat''', '''nasa badge'''], ['''person''']] a__ : Tuple = processor(text=A__ ) a__ : Any = 1_6 a__ : Tuple = len(A__ ) a__ : str = max([len(A__ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(A__ ): processor() def __lowerCAmelCase ( self : List[str] ) -> str: '''simple docstring''' a__ : str = '''google/owlvit-base-patch32''' a__ : List[str] = OwlViTProcessor.from_pretrained(A__ ) a__ : str = ['''cat''', '''nasa badge'''] a__ : Any = processor(text=A__ ) a__ : Any = 1_6 a__ : List[str] = inputs['''input_ids'''] a__ : List[str] = [ [4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' a__ : List[str] = self.get_image_processor() a__ : Tuple = self.get_tokenizer() a__ : Any = OwlViTProcessor(tokenizer=A__ , image_processor=A__ ) a__ : Tuple = self.prepare_image_inputs() a__ : Optional[int] = self.prepare_image_inputs() a__ : int = processor(images=A__ , query_images=A__ ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A__ ): processor() def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' a__ : Optional[int] = self.get_image_processor() a__ : Any = self.get_tokenizer() a__ : int = OwlViTProcessor(tokenizer=A__ , image_processor=A__ ) a__ : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ : str = processor.batch_decode(A__ ) a__ : Union[str, Any] = tokenizer.batch_decode(A__ ) self.assertListEqual(A__ , A__ )
688
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ): # Construct model if gpta_config_file == "": a__ : Union[str, Any] = GPTaConfig() else: a__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase__ ) a__ : Optional[int] = GPTaModel(lowerCAmelCase__ ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model a__ : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME a__ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
688
1
'''simple docstring''' import numpy as np __SCREAMING_SNAKE_CASE = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class lowerCAmelCase__ : """simple docstring""" def __init__( self : Dict ) -> None: '''simple docstring''' a__ : int = np.array(A__ ) def __lowerCAmelCase ( self : int , A__ : str ) -> np.ndarray: '''simple docstring''' a__ , a__ : Optional[Any] = np.where(letter == self.SQUARE ) a__ : List[str] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __lowerCAmelCase ( self : int , A__ : int , A__ : int ) -> str: '''simple docstring''' a__ : int = self.SQUARE[indexa - 1, indexa - 1] return letter def __lowerCAmelCase ( self : str , A__ : str ) -> str: '''simple docstring''' a__ : Optional[Any] = message.lower() a__ : Tuple = message.replace(''' ''' , '''''' ) a__ : Optional[int] = message.replace('''j''' , '''i''' ) a__ : Any = np.empty((2, len(A__ )) ) for letter_index in range(len(A__ ) ): a__ : Any = self.letter_to_numbers(message[letter_index] ) a__ : Any = numbers[0] a__ : int = numbers[1] a__ : Union[str, Any] = first_step.reshape(2 * len(A__ ) ) a__ : str = '''''' for numbers_index in range(len(A__ ) ): a__ : Tuple = int(second_step[numbers_index * 2] ) a__ : Tuple = int(second_step[(numbers_index * 2) + 1] ) a__ : Union[str, Any] = self.numbers_to_letter(A__ , A__ ) a__ : Union[str, Any] = encoded_message + letter return encoded_message def __lowerCAmelCase ( self : Dict , A__ : str ) -> str: '''simple docstring''' a__ : Tuple = message.lower() message.replace(''' ''' , '''''' ) a__ : int = np.empty(2 * len(A__ ) ) for letter_index in range(len(A__ ) ): a__ : Optional[int] = self.letter_to_numbers(message[letter_index] ) a__ : Tuple = numbers[0] a__ : List[Any] = numbers[1] a__ : Optional[Any] = first_step.reshape((2, len(A__ )) ) a__ : Any = '''''' for numbers_index in range(len(A__ ) ): a__ : Union[str, Any] = int(second_step[0, numbers_index] ) a__ : Union[str, Any] = int(second_step[1, numbers_index] ) a__ : Dict = self.numbers_to_letter(A__ , A__ ) a__ : List[str] = decoded_message + letter return decoded_message
688
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } __SCREAMING_SNAKE_CASE = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } __SCREAMING_SNAKE_CASE = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: __SCREAMING_SNAKE_CASE = reader.read() __SCREAMING_SNAKE_CASE = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): __SCREAMING_SNAKE_CASE = UNetaDModel(**config) else: __SCREAMING_SNAKE_CASE = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel __SCREAMING_SNAKE_CASE = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __SCREAMING_SNAKE_CASE = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __SCREAMING_SNAKE_CASE = config[key] del config[key] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['down_block_types']] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: __SCREAMING_SNAKE_CASE = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) __SCREAMING_SNAKE_CASE = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue __SCREAMING_SNAKE_CASE = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: __SCREAMING_SNAKE_CASE = param_value __SCREAMING_SNAKE_CASE = True if not has_changed: __SCREAMING_SNAKE_CASE = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
688
1
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __SCREAMING_SNAKE_CASE = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __SCREAMING_SNAKE_CASE = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def __a ( lowerCAmelCase__ : List[str] ): a__ : Union[str, Any] = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=lowerCAmelCase__ )[0] @deprecated(lowerCAmelCase__ , '''Please use tf.data to implement this functionality.''' ) def __a ( lowerCAmelCase__ : Any ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=lowerCAmelCase__ ) as bytestream: a__ : Dict = _readaa(lowerCAmelCase__ ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) a__ : Any = _readaa(lowerCAmelCase__ ) a__ : Optional[int] = _readaa(lowerCAmelCase__ ) a__ : Tuple = _readaa(lowerCAmelCase__ ) a__ : Any = bytestream.read(rows * cols * num_images ) a__ : Union[str, Any] = numpy.frombuffer(lowerCAmelCase__ , dtype=numpy.uinta ) a__ : str = data.reshape(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , 1 ) return data @deprecated(lowerCAmelCase__ , '''Please use tf.one_hot on tensors.''' ) def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] ): a__ : Optional[Any] = labels_dense.shape[0] a__ : Tuple = numpy.arange(lowerCAmelCase__ ) * num_classes a__ : Tuple = numpy.zeros((num_labels, num_classes) ) a__ : List[Any] = 1 return labels_one_hot @deprecated(lowerCAmelCase__ , '''Please use tf.data to implement this functionality.''' ) def __a ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Tuple=10 ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=lowerCAmelCase__ ) as bytestream: a__ : Optional[int] = _readaa(lowerCAmelCase__ ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) a__ : Dict = _readaa(lowerCAmelCase__ ) a__ : List[str] = bytestream.read(lowerCAmelCase__ ) a__ : List[Any] = numpy.frombuffer(lowerCAmelCase__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(lowerCAmelCase__ , lowerCAmelCase__ ) return labels class lowerCAmelCase__ : """simple docstring""" @deprecated( A__ , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Optional[Any] , A__ : Union[str, Any] , A__ : Union[str, Any] , A__ : List[Any]=False , A__ : str=False , A__ : Dict=dtypes.floataa , A__ : Tuple=True , A__ : str=None , ) -> Optional[int]: '''simple docstring''' a__ , a__ : Optional[Any] = random_seed.get_seed(A__ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) a__ : Any = dtypes.as_dtype(A__ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: a__ : Tuple = 1_0_0_0_0 a__ : Any = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'images.shape: {images.shape} labels.shape: {labels.shape}' a__ : List[str] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 a__ : Optional[Any] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. a__ : Union[str, Any] = images.astype(numpy.floataa ) a__ : Optional[Any] = numpy.multiply(A__ , 1.0 / 255.0 ) a__ : Dict = images a__ : List[Any] = labels a__ : int = 0 a__ : Optional[Any] = 0 @property def __lowerCAmelCase ( self : int ) -> int: '''simple docstring''' return self._images @property def __lowerCAmelCase ( self : Dict ) -> Optional[int]: '''simple docstring''' return self._labels @property def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return self._num_examples @property def __lowerCAmelCase ( self : int ) -> List[str]: '''simple docstring''' return self._epochs_completed def __lowerCAmelCase ( self : List[Any] , A__ : int , A__ : Tuple=False , A__ : Optional[Any]=True ) -> Any: '''simple docstring''' if fake_data: a__ : str = [1] * 7_8_4 a__ : List[Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(A__ )], [fake_label for _ in range(A__ )], ) a__ : int = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: a__ : Dict = numpy.arange(self._num_examples ) numpy.random.shuffle(A__ ) a__ : Union[str, Any] = self.images[perma] a__ : str = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch a__ : Optional[Any] = self._num_examples - start a__ : List[Any] = self._images[start : self._num_examples] a__ : List[Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: a__ : Optional[Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(A__ ) a__ : Any = self.images[perm] a__ : int = self.labels[perm] # Start next epoch a__ : List[Any] = 0 a__ : int = batch_size - rest_num_examples a__ : List[str] = self._index_in_epoch a__ : Union[str, Any] = self._images[start:end] a__ : Union[str, Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size a__ : List[str] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(lowerCAmelCase__ , '''Please write your own downloading logic.''' ) def __a ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] ): if not gfile.Exists(lowerCAmelCase__ ): gfile.MakeDirs(lowerCAmelCase__ ) a__ : List[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) if not gfile.Exists(lowerCAmelCase__ ): urllib.request.urlretrieve(lowerCAmelCase__ , lowerCAmelCase__ ) # noqa: S310 with gfile.GFile(lowerCAmelCase__ ) as f: a__ : str = f.size() print('''Successfully downloaded''' , lowerCAmelCase__ , lowerCAmelCase__ , '''bytes.''' ) return filepath @deprecated( lowerCAmelCase__ , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Any=dtypes.floataa , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : str=5000 , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Optional[Any]=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=lowerCAmelCase__ , one_hot=lowerCAmelCase__ , dtype=lowerCAmelCase__ , seed=lowerCAmelCase__ ) a__ : Optional[Any] = fake() a__ : List[str] = fake() a__ : int = fake() return _Datasets(train=lowerCAmelCase__ , validation=lowerCAmelCase__ , test=lowerCAmelCase__ ) if not source_url: # empty string check a__ : Optional[Any] = DEFAULT_SOURCE_URL a__ : Optional[int] = '''train-images-idx3-ubyte.gz''' a__ : int = '''train-labels-idx1-ubyte.gz''' a__ : Dict = '''t10k-images-idx3-ubyte.gz''' a__ : Tuple = '''t10k-labels-idx1-ubyte.gz''' a__ : List[str] = _maybe_download( lowerCAmelCase__ , lowerCAmelCase__ , source_url + train_images_file ) with gfile.Open(lowerCAmelCase__ , '''rb''' ) as f: a__ : Dict = _extract_images(lowerCAmelCase__ ) a__ : Dict = _maybe_download( lowerCAmelCase__ , lowerCAmelCase__ , source_url + train_labels_file ) with gfile.Open(lowerCAmelCase__ , '''rb''' ) as f: a__ : Optional[Any] = _extract_labels(lowerCAmelCase__ , one_hot=lowerCAmelCase__ ) a__ : Any = _maybe_download( lowerCAmelCase__ , lowerCAmelCase__ , source_url + test_images_file ) with gfile.Open(lowerCAmelCase__ , '''rb''' ) as f: a__ : Dict = _extract_images(lowerCAmelCase__ ) a__ : Optional[int] = _maybe_download( lowerCAmelCase__ , lowerCAmelCase__ , source_url + test_labels_file ) with gfile.Open(lowerCAmelCase__ , '''rb''' ) as f: a__ : List[Any] = _extract_labels(lowerCAmelCase__ , one_hot=lowerCAmelCase__ ) if not 0 <= validation_size <= len(lowerCAmelCase__ ): a__ : Any = ( '''Validation size should be between 0 and ''' F'{len(lowerCAmelCase__ )}. Received: {validation_size}.' ) raise ValueError(lowerCAmelCase__ ) a__ : Any = train_images[:validation_size] a__ : List[Any] = train_labels[:validation_size] a__ : Dict = train_images[validation_size:] a__ : Optional[int] = train_labels[validation_size:] a__ : List[Any] = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} a__ : Any = _DataSet(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Tuple = _DataSet(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Optional[int] = _DataSet(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) return _Datasets(train=lowerCAmelCase__ , validation=lowerCAmelCase__ , test=lowerCAmelCase__ )
688
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = (KDPMaDiscreteScheduler,) __UpperCamelCase = 10 def __lowerCAmelCase ( self : Optional[Any] , **A__ : Optional[int] ) -> int: '''simple docstring''' a__ : Optional[int] = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**A__ ) return config def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=A__ ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=A__ , beta_end=A__ ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A__ ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A__ ) def __lowerCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' a__ : Any = self.scheduler_classes[0] a__ : str = self.get_scheduler_config(prediction_type='''v_prediction''' ) a__ : Dict = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : Tuple = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Dict = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : Optional[Any] = scheduler.scale_model_input(A__ , A__ ) a__ : Union[str, Any] = model(A__ , A__ ) a__ : List[str] = scheduler.step(A__ , A__ , A__ ) a__ : Optional[Any] = output.prev_sample a__ : Tuple = torch.sum(torch.abs(A__ ) ) a__ : Optional[int] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' if torch_device == "mps": return a__ : List[Any] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : Tuple = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : List[Any] = self.dummy_model() a__ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Any = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : str = scheduler.scale_model_input(A__ , A__ ) a__ : List[str] = model(A__ , A__ ) a__ : str = scheduler.step(A__ , A__ , A__ ) a__ : List[Any] = output.prev_sample a__ : Dict = torch.sum(torch.abs(A__ ) ) a__ : Optional[Any] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> int: '''simple docstring''' if torch_device == "mps": return a__ : Optional[int] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : List[Any] = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps , device=A__ ) a__ : Union[str, Any] = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter.to(A__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: a__ : Optional[int] = scheduler.scale_model_input(A__ , A__ ) a__ : List[Any] = model(A__ , A__ ) a__ : Any = scheduler.step(A__ , A__ , A__ ) a__ : List[str] = output.prev_sample a__ : Any = torch.sum(torch.abs(A__ ) ) a__ : Union[str, Any] = torch.mean(torch.abs(A__ ) ) if str(A__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
688
1
'''simple docstring''' def __a ( lowerCAmelCase__ : int ): a__ : str = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __a ( lowerCAmelCase__ : int = 100 ): a__ : List[Any] = 1 a__ : Optional[int] = 2 for i in range(2 , max_n + 1 ): a__ : int = pre_numerator a__ : Optional[Any] = 2 * i // 3 if i % 3 == 0 else 1 a__ : int = cur_numerator a__ : Optional[int] = e_cont * pre_numerator + temp return sum_digits(lowerCAmelCase__ ) if __name__ == "__main__": print(f'{solution() = }')
688
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' a__ : str = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None a__ , a__ : List[Any] = get_aligned_output_features_output_indices(A__ , A__ , A__ ) self.assertEqual(A__ , ['''c'''] ) self.assertEqual(A__ , [2] ) # Out indices set to match out features a__ , a__ : Optional[int] = get_aligned_output_features_output_indices(['''a''', '''c'''] , A__ , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [0, 2] ) # Out features set to match out indices a__ , a__ : int = get_aligned_output_features_output_indices(A__ , [0, 2] , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [0, 2] ) # Out features selected from negative indices a__ , a__ : List[str] = get_aligned_output_features_output_indices(A__ , [-3, -1] , A__ ) self.assertEqual(A__ , ['''a''', '''c'''] ) self.assertEqual(A__ , [-3, -1] ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , A__ ) # Out features must be a list with self.assertRaises(A__ ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(A__ ): verify_out_features_out_indices(A__ , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(A__ ): verify_out_features_out_indices(A__ , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(A__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(A__ ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' a__ : Optional[Any] = BackboneMixin() a__ : int = ['''a''', '''b''', '''c'''] a__ : List[Any] = ['''a''', '''c'''] a__ : Tuple = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly a__ : Dict = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) a__ : int = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
688
1
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } __SCREAMING_SNAKE_CASE = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } __SCREAMING_SNAKE_CASE = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: __SCREAMING_SNAKE_CASE = reader.read() __SCREAMING_SNAKE_CASE = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): __SCREAMING_SNAKE_CASE = UNetaDModel(**config) else: __SCREAMING_SNAKE_CASE = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel __SCREAMING_SNAKE_CASE = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __SCREAMING_SNAKE_CASE = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __SCREAMING_SNAKE_CASE = config[key] del config[key] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['down_block_types']] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: __SCREAMING_SNAKE_CASE = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) __SCREAMING_SNAKE_CASE = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue __SCREAMING_SNAKE_CASE = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: __SCREAMING_SNAKE_CASE = param_value __SCREAMING_SNAKE_CASE = True if not has_changed: __SCREAMING_SNAKE_CASE = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
688
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __a ( lowerCAmelCase__ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ): a__ : Dict = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue a__ : Any = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) a__ : int = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) a__ : Optional[Any] = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) a__ : Dict = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) a__ : List[str] = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) a__ : List[Any] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) a__ : str = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) a__ : List[Any] = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) a__ : List[Any] = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) a__ : str = key.replace('''image_encoder.module''' , '''flava.image_model''' ) a__ : Dict = key.replace('''text_encoder.module''' , '''flava.text_model''' ) a__ : List[Any] = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) a__ : List[str] = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) a__ : List[str] = key.replace('''text_projection''' , '''flava.text_projection''' ) a__ : Any = key.replace('''image_projection''' , '''flava.image_projection''' ) a__ : Any = value.float() for key, value in codebook_state_dict.items(): a__ : List[str] = value return upgrade @torch.no_grad() def __a ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict=None ): if config_path is not None: a__ : Tuple = FlavaConfig.from_pretrained(lowerCAmelCase__ ) else: a__ : Optional[int] = FlavaConfig() a__ : List[Any] = FlavaForPreTraining(lowerCAmelCase__ ).eval() a__ : Optional[int] = convert_dalle_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , save_checkpoint=lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): a__ : List[str] = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) else: a__ : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' ) a__ : List[Any] = upgrade_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) a__ : Any = hf_model.state_dict() a__ : Optional[Any] = count_parameters(lowerCAmelCase__ ) a__ : int = count_parameters(lowerCAmelCase__ ) + count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) hf_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __SCREAMING_SNAKE_CASE = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
688
1