code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
a = { "km/h": 1.0, "m/s": 3.6, "mph": 1.6_0_9_3_4_4, "knot": 1.8_5_2, } a = { "km/h": 1.0, "m/s": 0.2_7_7_7_7_7_7_7_8, "mph": 0.6_2_1_3_7_1_1_9_2, "knot": 0.5_3_9_9_5_6_8_0_3, } def UpperCamelCase_( __magic_name__ : float , __magic_name__ : str , __magic_name__ : str ): """simple docstring""" if unit_to not in speed_chart or unit_from not in speed_chart_inverse: _lowerCAmelCase :Tuple = ( f"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" f"""Valid values are: {", ".join(__magic_name__ )}""" ) raise ValueError(__magic_name__ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
687
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Tuple = ShapEImgaImgPipeline lowerCamelCase : Optional[Any] = ['image'] lowerCamelCase : Union[str, Any] = ['image'] lowerCamelCase : Dict = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowerCamelCase : Tuple = False @property def SCREAMING_SNAKE_CASE__ ( self: Any ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self: Any ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self: Tuple ): return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return 8 @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): torch.manual_seed(0 ) _lowerCAmelCase :List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _lowerCAmelCase :List[str] = CLIPVisionModel(_UpperCAmelCase ) return model @property def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Dict = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , ) return image_processor @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): torch.manual_seed(0 ) _lowerCAmelCase :Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _lowerCAmelCase :List[Any] = PriorTransformer(**_UpperCAmelCase ) return model @property def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): torch.manual_seed(0 ) _lowerCAmelCase :int = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase :Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Any = self.dummy_prior _lowerCAmelCase :Dict = self.dummy_image_encoder _lowerCAmelCase :Union[str, Any] = self.dummy_image_processor _lowerCAmelCase :str = self.dummy_renderer _lowerCAmelCase :Any = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) _lowerCAmelCase :List[Any] = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict=0 ): _lowerCAmelCase :Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith('mps' ): _lowerCAmelCase :int = torch.manual_seed(_UpperCAmelCase ) else: _lowerCAmelCase :Tuple = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Optional[int] = 'cpu' _lowerCAmelCase :List[str] = self.get_dummy_components() _lowerCAmelCase :Optional[Any] = self.pipeline_class(**_UpperCAmelCase ) _lowerCAmelCase :Dict = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) _lowerCAmelCase :str = output.images[0] _lowerCAmelCase :Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase :Any = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Optional[Any] = torch_device == 'cpu' _lowerCAmelCase :Optional[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :int = self.get_dummy_components() _lowerCAmelCase :Dict = self.pipeline_class(**_UpperCAmelCase ) _lowerCAmelCase :Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _lowerCAmelCase :Tuple = 1 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :str = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase :List[str] = batch_size * [inputs[key]] _lowerCAmelCase :Union[str, Any] = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) _lowerCAmelCase :Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) _lowerCAmelCase :Tuple = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) _lowerCAmelCase :Union[str, Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _lowerCAmelCase :str = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase :Tuple = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
687
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'encoder-decoder' lowerCamelCase : Optional[Any] = True def __init__( self: str , **_UpperCAmelCase: int ): super().__init__(**_UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' ) _lowerCAmelCase :Dict = encoder_config.pop('model_type' ) _lowerCAmelCase :str = kwargs.pop('decoder' ) _lowerCAmelCase :str = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCAmelCase :Dict = True _lowerCAmelCase :List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :Optional[int] = self.encoder.to_dict() _lowerCAmelCase :Union[str, Any] = self.decoder.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output
687
1
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :List[str] = hf_hub_url(repo_id=__magic_name__ , path=__magic_name__ , revision=__magic_name__ ) assert url == f"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(__magic_name__ )}"""
687
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
1
def UpperCamelCase_( __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Any = word.split() def justify(__magic_name__ : list , __magic_name__ : int , __magic_name__ : int ) -> str: _lowerCAmelCase :Optional[Any] = max_width - width _lowerCAmelCase :Optional[int] = len(__magic_name__ ) if len(__magic_name__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _lowerCAmelCase :str = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _lowerCAmelCase :List[str] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _lowerCAmelCase :int = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__magic_name__ ): num_spaces_between_words_list[i] += 1 _lowerCAmelCase :List[str] = [] for i in range(__magic_name__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__magic_name__ ) _lowerCAmelCase :List[str] = [] _lowerCAmelCase :list[str] = [] _lowerCAmelCase :int = 0 for word in words: if width + len(__magic_name__ ) + len(__magic_name__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__magic_name__ ) width += len(__magic_name__ ) else: # justify the line and add it to result answer.append(justify(__magic_name__ , __magic_name__ , __magic_name__ ) ) # reset new line and new width _lowerCAmelCase , _lowerCAmelCase :Dict = [word], len(__magic_name__ ) _lowerCAmelCase :Dict = max_width - width - len(__magic_name__ ) answer.append(' '.join(__magic_name__ ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
687
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[int] = 10 def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :str = [1, 2, 3, 4] _lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[int] = '' _lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = ['It was the best of times.'] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[str] = 101 _lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
687
1
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata a = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class UpperCAmelCase_ (tr.AbstractTransform ): """simple docstring""" def __init__( self: Tuple , _UpperCAmelCase: str = " " ): _lowerCAmelCase :Optional[Any] = sentence_delimiter def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: str ): return list(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Tuple = [] for sent_idx, sentence in enumerate(_UpperCAmelCase ): chars.extend(self.process_string(_UpperCAmelCase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(_UpperCAmelCase ) - 1: chars.append(self.sentence_delimiter ) return chars a = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: a = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) a = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ a = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ a = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict , _UpperCAmelCase: Tuple=False ): if concatenate_texts: return jiwer.compute_measures( _UpperCAmelCase , _UpperCAmelCase , truth_transform=_UpperCAmelCase , hypothesis_transform=_UpperCAmelCase , )["wer"] _lowerCAmelCase :str = 0 _lowerCAmelCase :Dict = 0 for prediction, reference in zip(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Any = jiwer.compute_measures( _UpperCAmelCase , _UpperCAmelCase , truth_transform=_UpperCAmelCase , hypothesis_transform=_UpperCAmelCase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
687
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
687
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a = datasets.utils.logging.get_logger(__name__) a = ["""names""", """prefix"""] a = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a = ["""encoding_errors""", """on_bad_lines"""] a = ["""date_format"""] @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : str = "," lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[Union[int, List[int], str]] = "infer" lowerCamelCase : Optional[List[str]] = None lowerCamelCase : Optional[List[str]] = None lowerCamelCase : Optional[Union[int, str, List[int], List[str]]] = None lowerCamelCase : Optional[Union[List[int], List[str]]] = None lowerCamelCase : Optional[str] = None lowerCamelCase : bool = True lowerCamelCase : Optional[Literal["c", "python", "pyarrow"]] = None lowerCamelCase : Dict[Union[int, str], Callable[[Any], Any]] = None lowerCamelCase : Optional[list] = None lowerCamelCase : Optional[list] = None lowerCamelCase : bool = False lowerCamelCase : Optional[Union[int, List[int]]] = None lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[Union[str, List[str]]] = None lowerCamelCase : bool = True lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = True lowerCamelCase : Optional[str] = None lowerCamelCase : str = "." lowerCamelCase : Optional[str] = None lowerCamelCase : str = '"' lowerCamelCase : int = 0 lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[str] = None lowerCamelCase : bool = True lowerCamelCase : bool = True lowerCamelCase : int = 0 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : Optional[str] = None lowerCamelCase : int = 1_00_00 lowerCamelCase : Optional[datasets.Features] = None lowerCamelCase : Optional[str] = "strict" lowerCamelCase : Literal["error", "warn", "skip"] = "error" lowerCamelCase : Optional[str] = None def SCREAMING_SNAKE_CASE__ ( self: Dict ): if self.delimiter is not None: _lowerCAmelCase :str = self.delimiter if self.column_names is not None: _lowerCAmelCase :str = self.column_names @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Tuple = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _UpperCAmelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Optional[int] = CsvConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Any ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :str = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :int = [files] _lowerCAmelCase :Any = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :str = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] _lowerCAmelCase :int = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: pa.Table ): if self.config.features is not None: _lowerCAmelCase :Optional[int] = self.config.features.arrow_schema if all(not require_storage_cast(_UpperCAmelCase ) for feature in self.config.features.values() ): # cheaper cast _lowerCAmelCase :Dict = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_UpperCAmelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _lowerCAmelCase :Any = table_cast(_UpperCAmelCase , _UpperCAmelCase ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: List[Any] ): _lowerCAmelCase :Optional[int] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _lowerCAmelCase :str = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_UpperCAmelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): _lowerCAmelCase :Optional[int] = pd.read_csv(_UpperCAmelCase , iterator=_UpperCAmelCase , dtype=_UpperCAmelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(_UpperCAmelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_UpperCAmelCase ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(_UpperCAmelCase )}: {e}""" ) raise
687
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
1
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] = MgpstrTokenizer lowerCamelCase : Union[str, Any] = False lowerCamelCase : Optional[Any] = {} lowerCamelCase : List[str] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): super().setUp() # fmt: off _lowerCAmelCase :Union[str, Any] = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _lowerCAmelCase :Optional[int] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) _lowerCAmelCase :str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) def SCREAMING_SNAKE_CASE__ ( self: int , **_UpperCAmelCase: Optional[int] ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: str ): _lowerCAmelCase :List[Any] = 'tester' _lowerCAmelCase :Dict = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :str = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _lowerCAmelCase :Union[str, Any] = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) _lowerCAmelCase :List[str] = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) _lowerCAmelCase :Union[str, Any] = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _lowerCAmelCase , _lowerCAmelCase :List[Any] = self.get_input_output_texts(_UpperCAmelCase ) _lowerCAmelCase :List[str] = tokenizer.tokenize(_UpperCAmelCase ) _lowerCAmelCase :int = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) _lowerCAmelCase :Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ) , 0 ) _lowerCAmelCase :List[Any] = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(text_a.replace(' ' , '' ) , _UpperCAmelCase ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def SCREAMING_SNAKE_CASE__ ( self: Any ): pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def SCREAMING_SNAKE_CASE__ ( self: int ): pass
687
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger() @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : nn.Module lowerCamelCase : List[nn.Module] = field(default_factory=snake_case__ ) lowerCamelCase : list = field(default_factory=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tensor , _UpperCAmelCase: Tensor ): _lowerCAmelCase :Optional[int] = len(list(m.modules() ) ) == 1 or isinstance(_UpperCAmelCase , nn.Convad ) or isinstance(_UpperCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(_UpperCAmelCase ) def __call__( self: Optional[int] , _UpperCAmelCase: Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_UpperCAmelCase ) [x.remove() for x in self.handles] return self @property def SCREAMING_SNAKE_CASE__ ( self: Any ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : nn.Module lowerCamelCase : nn.Module lowerCamelCase : int = 1 lowerCamelCase : List = field(default_factory=snake_case__ ) lowerCamelCase : List = field(default_factory=snake_case__ ) lowerCamelCase : bool = True def __call__( self: str , _UpperCAmelCase: Tensor ): _lowerCAmelCase :Union[str, Any] = Tracker(self.dest )(_UpperCAmelCase ).parametrized _lowerCAmelCase :Dict = Tracker(self.src )(_UpperCAmelCase ).parametrized _lowerCAmelCase :str = list(filter(lambda _UpperCAmelCase : type(_UpperCAmelCase ) not in self.src_skip , _UpperCAmelCase ) ) _lowerCAmelCase :Any = list(filter(lambda _UpperCAmelCase : type(_UpperCAmelCase ) not in self.dest_skip , _UpperCAmelCase ) ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ) and self.raise_if_mismatch: raise Exception( f"""Numbers of operations are different. Source module has {len(_UpperCAmelCase )} operations while""" f""" destination module has {len(_UpperCAmelCase )}.""" ) for dest_m, src_m in zip(_UpperCAmelCase , _UpperCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) class UpperCAmelCase_ (nn.Module ): """simple docstring""" def __init__( self: Optional[int] , _UpperCAmelCase: nn.Module ): super().__init__() _lowerCAmelCase :List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f"""Unexpected layer name {k}""" _lowerCAmelCase :int = len(_UpperCAmelCase ) + 1 feature_blocks.append((f"""res{block_index}""", v) ) _lowerCAmelCase :Tuple = nn.ModuleDict(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: Tensor ): return get_trunk_forward_outputs( _UpperCAmelCase , out_feat_keys=_UpperCAmelCase , feature_blocks=self._feature_blocks , ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: str ): _lowerCAmelCase :Any = x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self: Any , _UpperCAmelCase: str ): # default to timm! if x not in self: _lowerCAmelCase :List[str] = self.convert_name_to_timm(_UpperCAmelCase ) _lowerCAmelCase :Dict = partial(lambda: (timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ).eval(), None) ) else: _lowerCAmelCase :Any = super().__getitem__(_UpperCAmelCase ) return val class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __getitem__( self: Optional[Any] , _UpperCAmelCase: str ): if "seer" in x and "in1k" not in x: _lowerCAmelCase :Dict = RegNetModel else: _lowerCAmelCase :Optional[Any] = RegNetForImageClassification return val def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : List[Tuple[str, str]] ): """simple docstring""" for from_key, to_key in keys: _lowerCAmelCase :str = from_state_dict[from_key].clone() print(f"""Copied key={from_key} to={to_key}""" ) return to_state_dict def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Callable[[], nn.Module] , __magic_name__ : Callable[[], nn.Module] , __magic_name__ : RegNetConfig , __magic_name__ : Path , __magic_name__ : bool = True , ): """simple docstring""" print(f"""Converting {name}...""" ) with torch.no_grad(): _lowerCAmelCase , _lowerCAmelCase :List[Any] = from_model_func() _lowerCAmelCase :Tuple = our_model_func(__magic_name__ ).eval() _lowerCAmelCase :Dict = ModuleTransfer(src=__magic_name__ , dest=__magic_name__ , raise_if_mismatch=__magic_name__ ) _lowerCAmelCase :List[Any] = torch.randn((1, 3, 224, 224) ) module_transfer(__magic_name__ ) if from_state_dict is not None: _lowerCAmelCase :str = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: _lowerCAmelCase :int = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] _lowerCAmelCase :Optional[Any] = manually_copy_vissl_head(__magic_name__ , our_model.state_dict() , __magic_name__ ) our_model.load_state_dict(__magic_name__ ) _lowerCAmelCase :Tuple = our_model(__magic_name__ , output_hidden_states=__magic_name__ ) _lowerCAmelCase :Any = ( our_outputs.logits if isinstance(__magic_name__ , __magic_name__ ) else our_outputs.last_hidden_state ) _lowerCAmelCase :List[Any] = from_model(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = from_output[-1] if type(__magic_name__ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: _lowerCAmelCase :Optional[Any] = our_outputs.hidden_states[-1] assert torch.allclose(__magic_name__ , __magic_name__ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=__magic_name__ , ) _lowerCAmelCase :Optional[int] = 224 if 'seer' not in name else 384 # we can use the convnext one _lowerCAmelCase :Union[str, Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=__magic_name__ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=__magic_name__ , ) print(f"""Pushed {name}""" ) def UpperCamelCase_( __magic_name__ : Path , __magic_name__ : str = None , __magic_name__ : bool = True ): """simple docstring""" _lowerCAmelCase :int = 'imagenet-1k-id2label.json' _lowerCAmelCase :Tuple = 1000 _lowerCAmelCase :List[str] = (1, num_labels) _lowerCAmelCase :Any = 'huggingface/label-files' _lowerCAmelCase :Dict = num_labels _lowerCAmelCase :Dict = json.load(open(cached_download(hf_hub_url(__magic_name__ , __magic_name__ , repo_type='dataset' ) ) , 'r' ) ) _lowerCAmelCase :List[Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} _lowerCAmelCase :str = idalabel _lowerCAmelCase :Tuple = {v: k for k, v in idalabel.items()} _lowerCAmelCase :int = partial(__magic_name__ , num_labels=__magic_name__ , idalabel=__magic_name__ , labelaid=__magic_name__ ) _lowerCAmelCase :Dict = { 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), } _lowerCAmelCase :Tuple = NameToOurModelFuncMap() _lowerCAmelCase :Dict = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__magic_name__ : str , __magic_name__ : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: _lowerCAmelCase :Optional[int] = torch.hub.load_state_dict_from_url(__magic_name__ , model_dir=str(__magic_name__ ) , map_location='cpu' ) _lowerCAmelCase :Any = model_func() # check if we have a head, if yes add it _lowerCAmelCase :Tuple = files['classy_state_dict']['base_model']['model'] _lowerCAmelCase :Dict = model_state_dict['trunk'] model.load_state_dict(__magic_name__ ) return model.eval(), model_state_dict["heads"] # pretrained _lowerCAmelCase :List[Any] = partial( __magic_name__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCAmelCase :Tuple = partial( __magic_name__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCAmelCase :List[Any] = partial( __magic_name__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _lowerCAmelCase :Optional[int] = partial( __magic_name__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned _lowerCAmelCase :int = partial( __magic_name__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCAmelCase :Dict = partial( __magic_name__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCAmelCase :List[Any] = partial( __magic_name__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _lowerCAmelCase :str = partial( __magic_name__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( __magic_name__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __magic_name__ , __magic_name__ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __magic_name__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __magic_name__ , __magic_name__ , __magic_name__ , ) return config, expected_shape if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) a = parser.parse_args() a = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
687
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Union[str, Any] = 'timm_backbone' def __init__( self: Tuple , _UpperCAmelCase: str=None , _UpperCAmelCase: Optional[Any]=3 , _UpperCAmelCase: List[str]=True , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: str=None , **_UpperCAmelCase: List[str] , ): super().__init__(**_UpperCAmelCase ) _lowerCAmelCase :List[Any] = backbone _lowerCAmelCase :Dict = num_channels _lowerCAmelCase :Union[str, Any] = features_only _lowerCAmelCase :str = use_pretrained_backbone _lowerCAmelCase :int = True _lowerCAmelCase :Tuple = out_indices if out_indices is not None else (-1,)
687
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ): """simple docstring""" _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] _lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] _lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""] _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""] _lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :int = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' ) _lowerCAmelCase :List[Any] = {} _lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight'] _lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias'] _lowerCAmelCase :Dict = checkpoint['time_embed.2.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias'] _lowerCAmelCase :List[Any] = unet_config['down_block_types'] _lowerCAmelCase :Any = unet_config['layers_per_block'] _lowerCAmelCase :List[Any] = unet_config['attention_head_dim'] _lowerCAmelCase :Tuple = unet_config['block_out_channels'] _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Optional[int] = channels_list[0] for i, layer_type in enumerate(__magic_name__ ): _lowerCAmelCase :Tuple = channels_list[i] _lowerCAmelCase :Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}""" _lowerCAmelCase :str = f"""input_blocks.{current_layer}.1""" _lowerCAmelCase :Optional[Any] = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0""" _lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 _lowerCAmelCase :Dict = current_channels # hardcoded the mid-block for now _lowerCAmelCase :int = 'mid_block.resnets.0' _lowerCAmelCase :Optional[Any] = 'middle_block.0' _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = 'mid_block.attentions.0' _lowerCAmelCase :Optional[int] = 'middle_block.1' _lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1' _lowerCAmelCase :Optional[int] = 'middle_block.2' _lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :str = unet_config['up_block_types'] for i, layer_type in enumerate(__magic_name__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1""" _lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}""" _lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1""" _lowerCAmelCase :int = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = checkpoint['out.0.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias'] _lowerCAmelCase :List[Any] = checkpoint['out.2.weight'] _lowerCAmelCase :Dict = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
687
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: _lowerCAmelCase :Tuple = 1024 _lowerCAmelCase :Dict = 4096 _lowerCAmelCase :List[Any] = 24 _lowerCAmelCase :Optional[Any] = 16 _lowerCAmelCase :Tuple = [5, 11, 17, 23] _lowerCAmelCase :Optional[int] = [256, 512, 1024, 1024] _lowerCAmelCase :Any = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: _lowerCAmelCase :Optional[int] = 768 _lowerCAmelCase :Tuple = [1, 1, 1, 0.5] _lowerCAmelCase :Union[str, Any] = [256, 512, 768, 768] _lowerCAmelCase :Any = 150 _lowerCAmelCase :Optional[int] = 16 _lowerCAmelCase :Union[str, Any] = (1, 384, 384) _lowerCAmelCase :Optional[Any] = False _lowerCAmelCase :int = 'project' if "ade" in checkpoint_url: _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = 768 _lowerCAmelCase :Tuple = [1, 1, 1, 0.5] _lowerCAmelCase :str = 150 _lowerCAmelCase :int = 16 _lowerCAmelCase :str = 'huggingface/label-files' _lowerCAmelCase :List[Any] = 'ade20k-id2label.json' _lowerCAmelCase :List[str] = json.load(open(cached_download(hf_hub_url(__magic_name__ , __magic_name__ , repo_type='dataset' ) ) , 'r' ) ) _lowerCAmelCase :Dict = {int(__magic_name__ ): v for k, v in idalabel.items()} _lowerCAmelCase :Optional[Any] = idalabel _lowerCAmelCase :str = {v: k for k, v in idalabel.items()} _lowerCAmelCase :Tuple = [1, 150, 480, 480] return config, expected_shape def UpperCamelCase_( __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase_( __magic_name__ : Union[str, Any] ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _lowerCAmelCase :Optional[int] = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: _lowerCAmelCase :List[Any] = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: _lowerCAmelCase :int = name.replace('patch_embed' , '' ) if "pos_embed" in name: _lowerCAmelCase :Dict = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: _lowerCAmelCase :int = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: _lowerCAmelCase :Union[str, Any] = name.replace('proj' , 'projection' ) if "blocks" in name: _lowerCAmelCase :Tuple = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: _lowerCAmelCase :Any = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCAmelCase :Dict = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: _lowerCAmelCase :Dict = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: _lowerCAmelCase :Dict = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: _lowerCAmelCase :Union[str, Any] = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: _lowerCAmelCase :str = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: _lowerCAmelCase :str = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: _lowerCAmelCase :Union[str, Any] = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: _lowerCAmelCase :Tuple = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: _lowerCAmelCase :Any = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: _lowerCAmelCase :Tuple = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _lowerCAmelCase :str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: _lowerCAmelCase :Dict = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: _lowerCAmelCase :Optional[int] = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: _lowerCAmelCase :Any = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: _lowerCAmelCase :Any = name.replace('conv1' , 'convolution1' ) if "conv2" in name: _lowerCAmelCase :str = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _lowerCAmelCase :List[Any] = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: _lowerCAmelCase :List[Any] = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: _lowerCAmelCase :Dict = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: _lowerCAmelCase :int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _lowerCAmelCase :List[str] = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: _lowerCAmelCase :Optional[int] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: _lowerCAmelCase :List[str] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: _lowerCAmelCase :int = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: _lowerCAmelCase :Tuple = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: _lowerCAmelCase :Any = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: _lowerCAmelCase :Union[str, Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: _lowerCAmelCase :int = name.replace('pretrained' , 'dpt' ) if "bn" in name: _lowerCAmelCase :List[str] = name.replace('bn' , 'batch_norm' ) if "head" in name: _lowerCAmelCase :Union[str, Any] = name.replace('head' , 'head.head' ) if "encoder.norm" in name: _lowerCAmelCase :int = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: _lowerCAmelCase :Tuple = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: _lowerCAmelCase :List[Any] = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: _lowerCAmelCase :Optional[Any] = name.replace('..' , '.' ) if "stem.conv" in name: _lowerCAmelCase :Any = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: _lowerCAmelCase :int = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: _lowerCAmelCase :List[Any] = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: _lowerCAmelCase :Tuple = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: _lowerCAmelCase :Optional[int] = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: _lowerCAmelCase :Union[str, Any] = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: _lowerCAmelCase :List[Any] = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def UpperCamelCase_( __magic_name__ : int , __magic_name__ : List[Any] ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase :Union[str, Any] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) _lowerCAmelCase :List[str] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase :Optional[int] = in_proj_weight[: config.hidden_size, :] _lowerCAmelCase :List[Any] = in_proj_bias[: config.hidden_size] _lowerCAmelCase :Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase :Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase :int = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase :Optional[Any] = in_proj_bias[-config.hidden_size :] def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :int = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase :Any = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int] ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :str = get_dpt_config(__magic_name__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _lowerCAmelCase :int = torch.load(__magic_name__ , map_location='cpu' ) # remove certain keys remove_ignore_keys_(__magic_name__ ) # rename keys for key in state_dict.copy().keys(): _lowerCAmelCase :List[Any] = state_dict.pop(__magic_name__ ) _lowerCAmelCase :int = val # read in qkv matrices read_in_q_k_v(__magic_name__ , __magic_name__ ) # load HuggingFace model _lowerCAmelCase :List[str] = DPTForSemanticSegmentation(__magic_name__ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() # Check outputs on an image _lowerCAmelCase :List[str] = 480 if 'ade' in checkpoint_url else 384 _lowerCAmelCase :int = DPTImageProcessor(size=__magic_name__ ) _lowerCAmelCase :Tuple = prepare_img() _lowerCAmelCase :List[str] = image_processor(__magic_name__ , return_tensors='pt' ) # forward pass _lowerCAmelCase :Union[str, Any] = model(**__magic_name__ ).logits if 'ade' in checkpoint_url else model(**__magic_name__ ).predicted_depth if show_prediction: _lowerCAmelCase :Tuple = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=__magic_name__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) parser.add_argument( """--show_prediction""", action="""store_true""", ) a = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
687
import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) _lowerCAmelCase :Tuple = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ): _lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
687
1
import glob import os import random from string import ascii_lowercase, digits import cva a = """""" a = """""" a = """""" a = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ ) print('Processing...' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase :Optional[Any] = random_chars(32 ) _lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" ) _lowerCAmelCase :str = [] for anno in new_annos[index]: _lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__magic_name__ ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = [] _lowerCAmelCase :Union[str, Any] = [] for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ): _lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__magic_name__ ) as in_file: _lowerCAmelCase :Union[str, Any] = in_file.readlines() _lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" ) _lowerCAmelCase :Tuple = [] for obj_list in obj_lists: _lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :Any = [] _lowerCAmelCase :Optional[Any] = [] for idx in range(len(__magic_name__ ) ): _lowerCAmelCase :Optional[int] = [] _lowerCAmelCase :Optional[Any] = img_list[idx] path_list.append(__magic_name__ ) _lowerCAmelCase :List[str] = anno_list[idx] _lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ ) if flip_type == 1: _lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_( __magic_name__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase :str = ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
687
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
1
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake a = numpy.array([0, 0]) a = numpy.array([0.5, 0.8_6_6_0_2_5_4]) a = numpy.array([1, 0]) a = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( __magic_name__ : list[numpy.ndarray] , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :str = initial_vectors for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = iteration_step(__magic_name__ ) return vectors def UpperCamelCase_( __magic_name__ : list[numpy.ndarray] ): """simple docstring""" _lowerCAmelCase :List[str] = [] for i, start_vector in enumerate(vectors[:-1] ): _lowerCAmelCase :Optional[Any] = vectors[i + 1] new_vectors.append(__magic_name__ ) _lowerCAmelCase :List[str] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( __magic_name__ : numpy.ndarray , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :Optional[int] = numpy.radians(__magic_name__ ) _lowerCAmelCase , _lowerCAmelCase :Dict = numpy.cos(__magic_name__ ), numpy.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__magic_name__ , __magic_name__ ) def UpperCamelCase_( __magic_name__ : list[numpy.ndarray] ): """simple docstring""" _lowerCAmelCase :Dict = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _lowerCAmelCase , _lowerCAmelCase :str = zip(*__magic_name__ ) plt.plot(__magic_name__ , __magic_name__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() a = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
687
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[str] = 'ylacombe/bark-small' _lowerCAmelCase :int = tempfile.mkdtemp() _lowerCAmelCase :List[str] = 'en_speaker_1' _lowerCAmelCase :Union[str, Any] = 'This is a test string' _lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json' _lowerCAmelCase :str = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[Any] = self.get_tokenizer() _lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase :Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase :List[Any] = 35 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :Dict = 8 _lowerCAmelCase :Dict = { 'semantic_prompt': np.ones(_UpperCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Tuple = self.get_tokenizer() _lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = processor(text=self.input_string ) _lowerCAmelCase :List[str] = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
687
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any]=False ): """simple docstring""" _lowerCAmelCase :List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase :Any = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Tuple=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase :Dict = '' else: _lowerCAmelCase :Optional[int] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase :List[str] = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) _lowerCAmelCase :int = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase :Optional[int] = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase :List[str] = in_proj_bias[: config.hidden_size] _lowerCAmelCase :List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase :Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase :str = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase :Optional[int] = in_proj_bias[-config.hidden_size :] def UpperCamelCase_( __magic_name__ : List[Any] ): """simple docstring""" _lowerCAmelCase :List[str] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase_( __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Dict ): """simple docstring""" _lowerCAmelCase :List[str] = dct.pop(__magic_name__ ) _lowerCAmelCase :Optional[int] = val def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :str = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase :int = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def UpperCamelCase_( __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any]=True ): """simple docstring""" _lowerCAmelCase :Any = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCAmelCase :int = 8 # set labels if required if not base_model: _lowerCAmelCase :List[str] = 1000 _lowerCAmelCase :Union[str, Any] = 'huggingface/label-files' _lowerCAmelCase :List[str] = 'imagenet-1k-id2label.json' _lowerCAmelCase :Union[str, Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase :List[Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} _lowerCAmelCase :List[Any] = idalabel _lowerCAmelCase :Tuple = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCAmelCase :Union[str, Any] = 384 _lowerCAmelCase :Dict = 1536 _lowerCAmelCase :Optional[Any] = 12 _lowerCAmelCase :str = 6 # load original model from torch hub _lowerCAmelCase :int = torch.hub.load('facebookresearch/dino:main' , __magic_name__ ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase :Optional[int] = original_model.state_dict() if base_model: remove_classification_head_(__magic_name__ ) _lowerCAmelCase :Optional[int] = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , __magic_name__ ) # load HuggingFace model if base_model: _lowerCAmelCase :Optional[Any] = ViTModel(__magic_name__ , add_pooling_layer=__magic_name__ ).eval() else: _lowerCAmelCase :Union[str, Any] = ViTForImageClassification(__magic_name__ ).eval() model.load_state_dict(__magic_name__ ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCAmelCase :Any = ViTImageProcessor() _lowerCAmelCase :int = image_processor(images=prepare_img() , return_tensors='pt' ) _lowerCAmelCase :List[Any] = encoding['pixel_values'] _lowerCAmelCase :List[str] = model(__magic_name__ ) if base_model: _lowerCAmelCase :Dict = original_model(__magic_name__ ) assert torch.allclose(__magic_name__ , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: _lowerCAmelCase :str = original_model(__magic_name__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(__magic_name__ , outputs.logits , atol=1e-3 ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) a = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
687
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = 'bert' def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :Dict = num_hidden_layers _lowerCAmelCase :Optional[Any] = num_attention_heads _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = intermediate_size _lowerCAmelCase :Tuple = hidden_dropout_prob _lowerCAmelCase :Tuple = attention_probs_dropout_prob _lowerCAmelCase :List[Any] = max_position_embeddings _lowerCAmelCase :Dict = type_vocab_size _lowerCAmelCase :Any = initializer_range _lowerCAmelCase :int = layer_norm_eps _lowerCAmelCase :List[Any] = position_embedding_type _lowerCAmelCase :int = use_cache _lowerCAmelCase :Union[str, Any] = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): if self.task == "multiple-choice": _lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
687
1
from typing import Any def UpperCamelCase_( __magic_name__ : list ): """simple docstring""" if not input_list: return [] _lowerCAmelCase :str = [input_list.count(__magic_name__ ) for value in input_list] _lowerCAmelCase :List[Any] = max(__magic_name__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(__magic_name__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
687
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = SMALL_MODEL_IDENTIFIER _lowerCAmelCase :str = 'pt' _lowerCAmelCase :Optional[Any] = 'tf' def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: List[Any] ): _lowerCAmelCase :List[str] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Tuple ): _lowerCAmelCase :int = TFAutoModel.from_pretrained(self.test_model , from_pt=_UpperCAmelCase ) model_tf.save_pretrained(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Union[str, Any] = 'mock_framework' # Framework provided - return whatever the user provides _lowerCAmelCase :Tuple = FeaturesManager.determine_framework(self.test_model , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase ) _lowerCAmelCase :Any = FeaturesManager.determine_framework(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = FeaturesManager.determine_framework(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase :str = FeaturesManager.determine_framework(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = MagicMock(return_value=_UpperCAmelCase ) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase ): _lowerCAmelCase :str = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_UpperCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase :Any = MagicMock(return_value=_UpperCAmelCase ) with patch('transformers.onnx.features.is_torch_available' , _UpperCAmelCase ): _lowerCAmelCase :Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_UpperCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase :Dict = MagicMock(return_value=_UpperCAmelCase ) _lowerCAmelCase :List[str] = MagicMock(return_value=_UpperCAmelCase ) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase ), patch( 'transformers.onnx.features.is_torch_available' , _UpperCAmelCase ): _lowerCAmelCase :int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_UpperCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase :Tuple = MagicMock(return_value=_UpperCAmelCase ) _lowerCAmelCase :Dict = MagicMock(return_value=_UpperCAmelCase ) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase ), patch( 'transformers.onnx.features.is_torch_available' , _UpperCAmelCase ): with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = FeaturesManager.determine_framework(self.test_model )
687
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
1
a = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ a = [{"""type""": """code""", """content""": INSTALL_CONTENT}] a = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
687
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
1
import os from math import logaa def UpperCamelCase_( __magic_name__ : str = "base_exp.txt" ): """simple docstring""" _lowerCAmelCase :float = 0 _lowerCAmelCase :int = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) ): _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = list(map(__magic_name__ , line.split(',' ) ) ) if x * logaa(__magic_name__ ) > largest: _lowerCAmelCase :int = x * logaa(__magic_name__ ) _lowerCAmelCase :Optional[Any] = i + 1 return result if __name__ == "__main__": print(solution())
687
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[str] = GPTaTokenizer lowerCamelCase : Dict = GPTaTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : Optional[int] = {'add_prefix_space': True} lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: Tuple ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase :int = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] _lowerCAmelCase :int = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) _lowerCAmelCase :List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowerCAmelCase :Optional[int] = {'unk_token': '<unk>'} _lowerCAmelCase :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase :Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self: Any , **_UpperCAmelCase: Tuple ): kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , **_UpperCAmelCase: str ): kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Tuple ): _lowerCAmelCase :Any = 'lower newer' _lowerCAmelCase :str = 'lower newer' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Optional[int] = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase :Optional[Any] = 'lower newer' _lowerCAmelCase :Union[str, Any] = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowerCAmelCase :Dict = tokenizer.tokenize(_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = tokens + [tokenizer.unk_token] _lowerCAmelCase :List[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): if not self.test_rust_tokenizer: return _lowerCAmelCase :int = self.get_tokenizer() _lowerCAmelCase :List[Any] = self.get_rust_tokenizer(add_prefix_space=_UpperCAmelCase ) _lowerCAmelCase :Any = 'lower newer' # Testing tokenization _lowerCAmelCase :Dict = tokenizer.tokenize(_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids without special tokens _lowerCAmelCase :Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) _lowerCAmelCase :int = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids with special tokens _lowerCAmelCase :List[Any] = self.get_rust_tokenizer(add_prefix_space=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = tokenizer.encode(_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) _lowerCAmelCase :Tuple = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing the unknown token _lowerCAmelCase :Optional[int] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase :Optional[int] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , *_UpperCAmelCase: Tuple , **_UpperCAmelCase: List[str] ): # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: int=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCAmelCase :Optional[int] = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) # Simple input _lowerCAmelCase :Any = 'This is a simple input' _lowerCAmelCase :Union[str, Any] = ['This is a simple input 1', 'This is a simple input 2'] _lowerCAmelCase :Union[str, Any] = ('This is a simple input', 'This is a pair') _lowerCAmelCase :Optional[int] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Simple input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Simple input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Pair input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input _lowerCAmelCase :List[str] = 'This is a simple input' _lowerCAmelCase :str = ['This is a simple input looooooooong', 'This is a simple input'] _lowerCAmelCase :Tuple = ('This is a simple input', 'This is a pair') _lowerCAmelCase :Any = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] _lowerCAmelCase :Dict = tokenizer.pad_token_id _lowerCAmelCase :List[Any] = tokenizer(_UpperCAmelCase , padding='max_length' , max_length=30 , return_tensors='np' ) _lowerCAmelCase :Union[str, Any] = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncate=_UpperCAmelCase , return_tensors='np' ) _lowerCAmelCase :str = tokenizer(*_UpperCAmelCase , padding='max_length' , max_length=60 , return_tensors='np' ) _lowerCAmelCase :Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncate=_UpperCAmelCase , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = '$$$' _lowerCAmelCase :Union[str, Any] = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=_UpperCAmelCase , add_bos_token=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = 'This is a simple input' _lowerCAmelCase :Optional[Any] = ['This is a simple input 1', 'This is a simple input 2'] _lowerCAmelCase :Dict = tokenizer.bos_token_id _lowerCAmelCase :Optional[int] = tokenizer(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = tokenizer(_UpperCAmelCase ) self.assertEqual(out_s.input_ids[0] , _UpperCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase :Optional[Any] = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase :int = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , _UpperCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: Any ): # TODO: change to self.get_tokenizers() when the fast version is implemented _lowerCAmelCase :Tuple = [self.get_tokenizer(do_lower_case=_UpperCAmelCase , add_bos_token=_UpperCAmelCase )] for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _lowerCAmelCase :Dict = 'Encode this.' _lowerCAmelCase :Optional[int] = 'This one too please.' _lowerCAmelCase :Union[str, Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) encoded_sequence += tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _lowerCAmelCase :Dict = tokenizer.encode_plus( _UpperCAmelCase , _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , ) _lowerCAmelCase :List[Any] = encoded_sequence_dict['input_ids'] _lowerCAmelCase :List[str] = encoded_sequence_dict['special_tokens_mask'] self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) _lowerCAmelCase :str = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(_UpperCAmelCase ) ] _lowerCAmelCase :Union[str, Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_tokenizers class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 _lowerCAmelCase :Optional[int] = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = 'A photo of a cat' _lowerCAmelCase :Tuple = tokenizer.encode( _UpperCAmelCase , ) self.assertEqual(_UpperCAmelCase , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('test_opt' ) _lowerCAmelCase :Any = AutoTokenizer.from_pretrained('./test_opt' ) _lowerCAmelCase :Optional[int] = tokenizer.encode( _UpperCAmelCase , ) self.assertEqual(_UpperCAmelCase , [2, 250, 1345, 9, 10, 4758] ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[Any] = AutoTokenizer.from_pretrained('facebook/opt-350m' , use_slow=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = 'A photo of a cat' _lowerCAmelCase :int = tokenizer.encode( _UpperCAmelCase , ) # Same as above self.assertEqual(_UpperCAmelCase , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[str] = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = 'bos' _lowerCAmelCase :int = tokenizer.get_vocab()['bos'] _lowerCAmelCase :int = 'A photo of a cat' _lowerCAmelCase :List[Any] = tokenizer.encode( _UpperCAmelCase , ) # We changed the bos token self.assertEqual(_UpperCAmelCase , [3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('./tok' ) _lowerCAmelCase :Dict = AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) _lowerCAmelCase :List[str] = tokenizer.encode( _UpperCAmelCase , ) self.assertEqual(_UpperCAmelCase , [3_1957, 250, 1345, 9, 10, 4758] )
687
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ): _lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20} _lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase :str = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :Optional[Any] = num_channels _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :int = min_resolution _lowerCAmelCase :List[str] = max_resolution _lowerCAmelCase :List[str] = do_resize _lowerCAmelCase :Optional[int] = size _lowerCAmelCase :str = do_center_crop _lowerCAmelCase :int = crop_size _lowerCAmelCase :Optional[int] = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: int ): # Initialize image_processing _lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # Initialize image_processing _lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any ): # Initialize image_processing _lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
687
1
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[str] = RoCBertTokenizer lowerCamelCase : Any = None lowerCamelCase : int = False lowerCamelCase : Dict = True lowerCamelCase : Tuple = filter_non_english def SCREAMING_SNAKE_CASE__ ( self: str ): super().setUp() _lowerCAmelCase :List[str] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] _lowerCAmelCase :List[str] = {} _lowerCAmelCase :List[str] = {} for i, value in enumerate(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = i _lowerCAmelCase :Tuple = i _lowerCAmelCase :int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase :str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) _lowerCAmelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(_UpperCAmelCase , _UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(_UpperCAmelCase , _UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :int = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _lowerCAmelCase :Optional[int] = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(_UpperCAmelCase , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(_UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(_UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Dict = RoCBertBasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = RoCBertBasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :List[Any] = RoCBertBasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Dict = RoCBertBasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = RoCBertBasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = RoCBertBasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[int] = RoCBertBasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Tuple = RoCBertBasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _lowerCAmelCase :str = {} for i, token in enumerate(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = i _lowerCAmelCase :Any = RoCBertWordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def SCREAMING_SNAKE_CASE__ ( self: int ): self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :int = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_UpperCAmelCase ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: _lowerCAmelCase :Union[str, Any] = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(_UpperCAmelCase ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCAmelCase :Optional[int] = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :str = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _lowerCAmelCase :Dict = tokenizer_r.encode_plus( _UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , ) _lowerCAmelCase :Optional[int] = tokenizer_r.do_lower_case if hasattr(_UpperCAmelCase , 'do_lower_case' ) else False _lowerCAmelCase :Any = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[Any] = ['的', '人', '有'] _lowerCAmelCase :Optional[int] = ''.join(_UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCAmelCase :Dict = True _lowerCAmelCase :Optional[Any] = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = tokenizer_p.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _lowerCAmelCase :str = tokenizer_r.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = tokenizer_r.convert_ids_to_tokens(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = tokenizer_p.convert_ids_to_tokens(_UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = False _lowerCAmelCase :Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = tokenizer_r.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = tokenizer_p.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _lowerCAmelCase :Dict = tokenizer_r.convert_ids_to_tokens(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = tokenizer_p.convert_ids_to_tokens(_UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". _lowerCAmelCase :Optional[Any] = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(_UpperCAmelCase ) ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _lowerCAmelCase :Optional[Any] = tokenizer.encode('你好' , add_special_tokens=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = tokenizer.encode('你是谁' , add_special_tokens=_UpperCAmelCase ) _lowerCAmelCase :Tuple = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :int = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _lowerCAmelCase :int = '你好,你是谁' _lowerCAmelCase :Union[str, Any] = tokenizer.tokenize(_UpperCAmelCase ) _lowerCAmelCase :Any = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = tokenizer.convert_tokens_to_shape_ids(_UpperCAmelCase ) _lowerCAmelCase :Dict = tokenizer.convert_tokens_to_pronunciation_ids(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = tokenizer.prepare_for_model( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _lowerCAmelCase :str = tokenizer.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
687
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Any = PandasConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :Any = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Any = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
687
1
def UpperCamelCase_( __magic_name__ : Dict , __magic_name__ : Optional[Any] ): """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(__magic_name__ ): for j in range(__magic_name__ ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def UpperCamelCase_( __magic_name__ : Dict , __magic_name__ : Tuple ): """simple docstring""" _lowerCAmelCase :Dict = [[float('inf' ) for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): for j in range(__magic_name__ ): _lowerCAmelCase :List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__magic_name__ ): # looping through rows of graph array for i in range(__magic_name__ ): # looping through columns of graph array for j in range(__magic_name__ ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _lowerCAmelCase :List[Any] = dist[i][k] + dist[k][j] _print_dist(__magic_name__ , __magic_name__ ) return dist, v if __name__ == "__main__": a = int(input("""Enter number of vertices: """)) a = int(input("""Enter number of edges: """)) a = [[float("""inf""") for i in range(v)] for j in range(v)] for i in range(v): a = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("""\nEdge """, i + 1) a = int(input("""Enter source:""")) a = int(input("""Enter destination:""")) a = float(input("""Enter weight:""")) a = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
687
import glob import os import random from string import ascii_lowercase, digits import cva a = """""" a = """""" a = """""" a = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ ) print('Processing...' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase :Optional[Any] = random_chars(32 ) _lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" ) _lowerCAmelCase :str = [] for anno in new_annos[index]: _lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__magic_name__ ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = [] _lowerCAmelCase :Union[str, Any] = [] for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ): _lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__magic_name__ ) as in_file: _lowerCAmelCase :Union[str, Any] = in_file.readlines() _lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" ) _lowerCAmelCase :Tuple = [] for obj_list in obj_lists: _lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :Any = [] _lowerCAmelCase :Optional[Any] = [] for idx in range(len(__magic_name__ ) ): _lowerCAmelCase :Optional[int] = [] _lowerCAmelCase :Optional[Any] = img_list[idx] path_list.append(__magic_name__ ) _lowerCAmelCase :List[str] = anno_list[idx] _lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ ) if flip_type == 1: _lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_( __magic_name__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase :str = ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
687
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Tuple = (DDPMScheduler,) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , **_UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :str = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_UpperCAmelCase ) return config def SCREAMING_SNAKE_CASE__ ( self: Dict ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): self.check_over_configs(thresholding=_UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): for t in [0, 500, 999]: self.check_over_forward(time_step=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Dict = self.scheduler_classes[0] _lowerCAmelCase :str = self.get_scheduler_config() _lowerCAmelCase :Dict = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[str] = self.scheduler_classes[0] _lowerCAmelCase :Dict = self.get_scheduler_config() _lowerCAmelCase :Tuple = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase :List[Any] = len(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = self.dummy_model() _lowerCAmelCase :int = self.dummy_sample_deter _lowerCAmelCase :Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase :List[str] = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase :int = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase :str = pred_prev_sample _lowerCAmelCase :int = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase :Dict = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.scheduler_classes[0] _lowerCAmelCase :int = self.get_scheduler_config(prediction_type='v_prediction' ) _lowerCAmelCase :str = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase :List[str] = len(_UpperCAmelCase ) _lowerCAmelCase :str = self.dummy_model() _lowerCAmelCase :Union[str, Any] = self.dummy_sample_deter _lowerCAmelCase :List[str] = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase :List[str] = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase :Optional[Any] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase :str = pred_prev_sample _lowerCAmelCase :Optional[Any] = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase :Any = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase :Union[str, Any] = self.get_scheduler_config() _lowerCAmelCase :Union[str, Any] = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_UpperCAmelCase ) _lowerCAmelCase :str = scheduler.timesteps for i, timestep in enumerate(_UpperCAmelCase ): if i == len(_UpperCAmelCase ) - 1: _lowerCAmelCase :List[str] = -1 else: _lowerCAmelCase :Optional[int] = timesteps[i + 1] _lowerCAmelCase :Dict = scheduler.previous_timestep(_UpperCAmelCase ) _lowerCAmelCase :List[str] = prev_t.item() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.scheduler_classes[0] _lowerCAmelCase :Optional[int] = self.get_scheduler_config() _lowerCAmelCase :List[str] = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase :List[str] = [100, 87, 50, 51, 0] with self.assertRaises(_UpperCAmelCase , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :List[str] = self.scheduler_classes[0] _lowerCAmelCase :Optional[Any] = self.get_scheduler_config() _lowerCAmelCase :Optional[Any] = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase :int = [100, 87, 50, 1, 0] _lowerCAmelCase :str = len(_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :List[str] = self.scheduler_classes[0] _lowerCAmelCase :Optional[int] = self.get_scheduler_config() _lowerCAmelCase :int = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase :str = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCAmelCase , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_UpperCAmelCase )
687
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ ) _lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ ) return torch.mm(__magic_name__ , normalized_text_embeds.t() ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = CLIPConfig lowerCamelCase : Any = ['CLIPEncoderLayer'] def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ): super().__init__(_UpperCAmelCase ) _lowerCAmelCase :Any = CLIPVisionModel(config.vision_config ) _lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) _lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase :str = [] _lowerCAmelCase :List[Any] = image_embeds.shape[0] for i in range(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx] _lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowerCAmelCase :Any = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx] _lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) _lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ): _lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) _lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :Any = 0.0 _lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase :List[str] = special_care * 0.0_1 _lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
1
def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Any ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = [0 for i in range(r + 1 )] # nc0 = 1 _lowerCAmelCase :Optional[Any] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _lowerCAmelCase :Dict = min(__magic_name__ , __magic_name__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
687
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
1
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'encoder-decoder' lowerCamelCase : Optional[Any] = True def __init__( self: str , **_UpperCAmelCase: int ): super().__init__(**_UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' ) _lowerCAmelCase :Dict = encoder_config.pop('model_type' ) _lowerCAmelCase :str = kwargs.pop('decoder' ) _lowerCAmelCase :str = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCAmelCase :Dict = True _lowerCAmelCase :List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :Optional[int] = self.encoder.to_dict() _lowerCAmelCase :Union[str, Any] = self.decoder.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output
687
1
import itertools import string from collections.abc import Generator, Iterable def UpperCamelCase_( __magic_name__ : Iterable[str] , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = iter(__magic_name__ ) while True: _lowerCAmelCase :List[Any] = tuple(itertools.islice(__magic_name__ , __magic_name__ ) ) if not chunk: return yield chunk def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[Any] = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) _lowerCAmelCase :Union[str, Any] = '' if len(__magic_name__ ) < 2: return dirty for i in range(len(__magic_name__ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__magic_name__ ) & 1: clean += "X" return clean def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :List[Any] = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _lowerCAmelCase :List[str] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__magic_name__ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__magic_name__ ) return table def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Tuple = generate_table(__magic_name__ ) _lowerCAmelCase :List[str] = prepare_input(__magic_name__ ) _lowerCAmelCase :List[Any] = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__magic_name__ , 2 ): _lowerCAmelCase , _lowerCAmelCase :int = divmod(table.index(__magic_name__ ) , 5 ) _lowerCAmelCase , _lowerCAmelCase :List[str] = divmod(table.index(__magic_name__ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :List[Any] = generate_table(__magic_name__ ) _lowerCAmelCase :str = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__magic_name__ , 2 ): _lowerCAmelCase , _lowerCAmelCase :List[str] = divmod(table.index(__magic_name__ ) , 5 ) _lowerCAmelCase , _lowerCAmelCase :List[str] = divmod(table.index(__magic_name__ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
687
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = 'bert' def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :Dict = num_hidden_layers _lowerCAmelCase :Optional[Any] = num_attention_heads _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = intermediate_size _lowerCAmelCase :Tuple = hidden_dropout_prob _lowerCAmelCase :Tuple = attention_probs_dropout_prob _lowerCAmelCase :List[Any] = max_position_embeddings _lowerCAmelCase :Dict = type_vocab_size _lowerCAmelCase :Any = initializer_range _lowerCAmelCase :int = layer_norm_eps _lowerCAmelCase :List[Any] = position_embedding_type _lowerCAmelCase :int = use_cache _lowerCAmelCase :Union[str, Any] = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): if self.task == "multiple-choice": _lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
687
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = 'vivit' def __init__( self: List[Any] , _UpperCAmelCase: Optional[int]=224 , _UpperCAmelCase: int=32 , _UpperCAmelCase: List[Any]=[2, 16, 16] , _UpperCAmelCase: Dict=3 , _UpperCAmelCase: Optional[int]=768 , _UpperCAmelCase: Any=12 , _UpperCAmelCase: Any=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu_fast" , _UpperCAmelCase: List[Any]=0.0 , _UpperCAmelCase: Optional[Any]=0.0 , _UpperCAmelCase: int=0.0_2 , _UpperCAmelCase: Optional[Any]=1e-0_6 , _UpperCAmelCase: Tuple=True , **_UpperCAmelCase: List[Any] , ): _lowerCAmelCase :List[Any] = hidden_size _lowerCAmelCase :Optional[Any] = num_hidden_layers _lowerCAmelCase :Union[str, Any] = num_attention_heads _lowerCAmelCase :str = intermediate_size _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = hidden_dropout_prob _lowerCAmelCase :Tuple = attention_probs_dropout_prob _lowerCAmelCase :Tuple = initializer_range _lowerCAmelCase :List[Any] = layer_norm_eps _lowerCAmelCase :List[Any] = image_size _lowerCAmelCase :str = num_frames _lowerCAmelCase :Union[str, Any] = tubelet_size _lowerCAmelCase :int = num_channels _lowerCAmelCase :Dict = qkv_bias super().__init__(**_UpperCAmelCase )
687
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[int] = 10 def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :str = [1, 2, 3, 4] _lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[int] = '' _lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = ['It was the best of times.'] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[str] = 101 _lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
687
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : str = VideoToVideoSDPipeline lowerCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'} lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'} lowerCamelCase : int = PipelineTesterMixin.required_optional_params - {'latents'} lowerCamelCase : Any = False # No `output_type`. lowerCamelCase : str = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): torch.manual_seed(0 ) _lowerCAmelCase :str = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) _lowerCAmelCase :Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) _lowerCAmelCase :int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _lowerCAmelCase :Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) _lowerCAmelCase :int = CLIPTextModel(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase :str = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: List[Any]=0 ): # 3 frames _lowerCAmelCase :int = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith('mps' ): _lowerCAmelCase :List[str] = torch.manual_seed(_UpperCAmelCase ) else: _lowerCAmelCase :Tuple = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) _lowerCAmelCase :List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase :Optional[Any] = self.get_dummy_components() _lowerCAmelCase :Union[str, Any] = VideoToVideoSDPipeline(**_UpperCAmelCase ) _lowerCAmelCase :int = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _lowerCAmelCase :Any = self.get_dummy_inputs(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = 'np' _lowerCAmelCase :Optional[int] = sd_pipe(**_UpperCAmelCase ).frames _lowerCAmelCase :str = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) _lowerCAmelCase :int = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_UpperCAmelCase , expected_max_diff=5e-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def SCREAMING_SNAKE_CASE__ ( self: Any ): pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: Any ): return super().test_progress_bar() @slow @skip_mps class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Optional[Any] = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames _lowerCAmelCase :List[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase :Tuple = torch.randn((1, 10, 3, 1024, 576) , generator=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = video.to('cuda' ) _lowerCAmelCase :List[Any] = 'Spiderman is surfing' _lowerCAmelCase :Any = pipe(_UpperCAmelCase , video=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=3 , output_type='pt' ).frames _lowerCAmelCase :Dict = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
687
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
687
1
import os def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :str = os.path.join(os.path.dirname(__magic_name__ ) , 'num.txt' ) with open(__magic_name__ ) as file_hand: return str(sum(int(__magic_name__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
687
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
1
def UpperCamelCase_( __magic_name__ : int | float | str ): """simple docstring""" try: _lowerCAmelCase :List[str] = float(__magic_name__ ) except ValueError: raise ValueError('Please enter a valid number' ) _lowerCAmelCase :str = decimal - int(__magic_name__ ) if fractional_part == 0: return int(__magic_name__ ), 1 else: _lowerCAmelCase :List[str] = len(str(__magic_name__ ).split('.' )[1] ) _lowerCAmelCase :List[str] = int(decimal * (10**number_of_frac_digits) ) _lowerCAmelCase :List[str] = 10**number_of_frac_digits _lowerCAmelCase , _lowerCAmelCase :List[str] = denominator, numerator while True: _lowerCAmelCase :int = dividend % divisor if remainder == 0: break _lowerCAmelCase , _lowerCAmelCase :int = divisor, remainder _lowerCAmelCase , _lowerCAmelCase :Any = numerator / divisor, denominator / divisor return int(__magic_name__ ), int(__magic_name__ ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(8_9.0) = }''') print(F'''{decimal_to_fraction('67') = }''') print(F'''{decimal_to_fraction('45.0') = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction('6.25') = }''') print(F'''{decimal_to_fraction('78td') = }''')
687
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): raise TypeError('only integers accepted as input' ) else: _lowerCAmelCase :str = str(abs(__magic_name__ ) ) _lowerCAmelCase :Optional[int] = [list(__magic_name__ ) for char in range(len(__magic_name__ ) )] for index in range(len(__magic_name__ ) ): num_transpositions[index].pop(__magic_name__ ) return max( int(''.join(list(__magic_name__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
687
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
1
def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :List[str] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _lowerCAmelCase :Any = '' _lowerCAmelCase :Dict = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__magic_name__ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = 0, 0 # length[i] shows the length of palindromic substring with center i _lowerCAmelCase :Tuple = [1 for i in range(len(__magic_name__ ) )] # for each character in new_string find corresponding palindromic string _lowerCAmelCase :Any = 0 for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__magic_name__ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowerCAmelCase :int = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowerCAmelCase :str = j - k + 1 # noqa: E741 _lowerCAmelCase :Optional[int] = j + k - 1 # update max_length and start position if max_length < length[j]: _lowerCAmelCase :List[Any] = length[j] _lowerCAmelCase :Optional[Any] = j # create that string _lowerCAmelCase :Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
687
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ): """simple docstring""" _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] _lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] _lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""] _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""] _lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :int = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' ) _lowerCAmelCase :List[Any] = {} _lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight'] _lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias'] _lowerCAmelCase :Dict = checkpoint['time_embed.2.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias'] _lowerCAmelCase :List[Any] = unet_config['down_block_types'] _lowerCAmelCase :Any = unet_config['layers_per_block'] _lowerCAmelCase :List[Any] = unet_config['attention_head_dim'] _lowerCAmelCase :Tuple = unet_config['block_out_channels'] _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Optional[int] = channels_list[0] for i, layer_type in enumerate(__magic_name__ ): _lowerCAmelCase :Tuple = channels_list[i] _lowerCAmelCase :Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}""" _lowerCAmelCase :str = f"""input_blocks.{current_layer}.1""" _lowerCAmelCase :Optional[Any] = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0""" _lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 _lowerCAmelCase :Dict = current_channels # hardcoded the mid-block for now _lowerCAmelCase :int = 'mid_block.resnets.0' _lowerCAmelCase :Optional[Any] = 'middle_block.0' _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = 'mid_block.attentions.0' _lowerCAmelCase :Optional[int] = 'middle_block.1' _lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1' _lowerCAmelCase :Optional[int] = 'middle_block.2' _lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :str = unet_config['up_block_types'] for i, layer_type in enumerate(__magic_name__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1""" _lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}""" _lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1""" _lowerCAmelCase :int = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = checkpoint['out.0.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias'] _lowerCAmelCase :List[Any] = checkpoint['out.2.weight'] _lowerCAmelCase :Dict = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
687
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) a = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) _lowerCAmelCase :Tuple = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ): _lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
687
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :List[str] = torch.load(__magic_name__ , map_location='cpu' ) _lowerCAmelCase :Optional[Any] = chkpt['model'] # We have the base model one level deeper than the original XLM repository _lowerCAmelCase :Dict = {} for k, v in state_dict.items(): if "pred_layer" in k: _lowerCAmelCase :Any = v else: _lowerCAmelCase :Dict = v _lowerCAmelCase :Optional[int] = chkpt['params'] _lowerCAmelCase :str = {n: v for n, v in config.items() if not isinstance(__magic_name__ , (torch.FloatTensor, numpy.ndarray) )} _lowerCAmelCase :Dict = chkpt['dico_word2id'] _lowerCAmelCase :Any = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model _lowerCAmelCase :List[str] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME _lowerCAmelCase :Tuple = pytorch_dump_folder_path + '/' + CONFIG_NAME _lowerCAmelCase :Optional[Any] = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(__magic_name__ , __magic_name__ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__magic_name__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__magic_name__ , indent=2 ) + '\n' ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(__magic_name__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__magic_name__ , indent=2 ) + '\n' ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
687
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
1
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Tuple = BlenderbotConfig lowerCamelCase : List[str] = {} lowerCamelCase : List[str] = 'gelu' def __init__( self: int , _UpperCAmelCase: Dict , _UpperCAmelCase: List[str]=13 , _UpperCAmelCase: Union[str, Any]=7 , _UpperCAmelCase: int=True , _UpperCAmelCase: Tuple=False , _UpperCAmelCase: int=99 , _UpperCAmelCase: List[Any]=32 , _UpperCAmelCase: str=2 , _UpperCAmelCase: Union[str, Any]=4 , _UpperCAmelCase: List[str]=37 , _UpperCAmelCase: Optional[Any]=0.1 , _UpperCAmelCase: Any=0.1 , _UpperCAmelCase: str=20 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: int=1 , _UpperCAmelCase: int=0 , ): _lowerCAmelCase :Optional[Any] = parent _lowerCAmelCase :int = batch_size _lowerCAmelCase :Any = seq_length _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :Union[str, Any] = use_labels _lowerCAmelCase :Any = vocab_size _lowerCAmelCase :Union[str, Any] = hidden_size _lowerCAmelCase :Union[str, Any] = num_hidden_layers _lowerCAmelCase :Union[str, Any] = num_attention_heads _lowerCAmelCase :Dict = intermediate_size _lowerCAmelCase :int = hidden_dropout_prob _lowerCAmelCase :Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase :Optional[int] = max_position_embeddings _lowerCAmelCase :Optional[int] = eos_token_id _lowerCAmelCase :List[Any] = pad_token_id _lowerCAmelCase :List[str] = bos_token_id def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Dict = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCAmelCase :Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCAmelCase :List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCAmelCase :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase :Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowerCAmelCase :Optional[Any] = prepare_blenderbot_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Any ): _lowerCAmelCase :Optional[int] = TFBlenderbotModel(config=_UpperCAmelCase ).get_decoder() _lowerCAmelCase :str = inputs_dict['input_ids'] _lowerCAmelCase :Tuple = input_ids[:1, :] _lowerCAmelCase :Dict = inputs_dict['attention_mask'][:1, :] _lowerCAmelCase :List[Any] = inputs_dict['head_mask'] _lowerCAmelCase :Dict = 1 # first forward pass _lowerCAmelCase :List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase :str = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase :Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCAmelCase :Optional[int] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCAmelCase :Optional[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCAmelCase :Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] _lowerCAmelCase :Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCAmelCase :str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCAmelCase :Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] _lowerCAmelCase :int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-3 ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any]=None , __magic_name__ : Dict=None , __magic_name__ : List[str]=None , __magic_name__ : int=None , __magic_name__ : Dict=None , ): """simple docstring""" if attention_mask is None: _lowerCAmelCase :Dict = tf.cast(tf.math.not_equal(__magic_name__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCAmelCase :str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCAmelCase :Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCAmelCase :List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowerCAmelCase :Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowerCamelCase : Optional[Any] = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowerCamelCase : str = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase : Union[str, Any] = True lowerCamelCase : Any = False lowerCamelCase : Any = False def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Tuple = TFBlenderbotModelTester(self ) _lowerCAmelCase :Union[str, Any] = ConfigTester(self , config_class=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_tokenizers @require_tf class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ['My friends are cool but they eat too many carbs.'] lowerCamelCase : Tuple = 'facebook/blenderbot-400M-distill' @cached_property def SCREAMING_SNAKE_CASE__ ( self: List[str] ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Dict = self.tokenizer(self.src_text , return_tensors='tf' ) _lowerCAmelCase :int = self.model.generate( model_inputs.input_ids , ) _lowerCAmelCase :List[str] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_UpperCAmelCase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
687
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[str] = 'ylacombe/bark-small' _lowerCAmelCase :int = tempfile.mkdtemp() _lowerCAmelCase :List[str] = 'en_speaker_1' _lowerCAmelCase :Union[str, Any] = 'This is a test string' _lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json' _lowerCAmelCase :str = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[Any] = self.get_tokenizer() _lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase :Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase :List[Any] = 35 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :Dict = 8 _lowerCAmelCase :Dict = { 'semantic_prompt': np.ones(_UpperCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Tuple = self.get_tokenizer() _lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = processor(text=self.input_string ) _lowerCAmelCase :List[str] = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
687
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging a = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _UpperCAmelCase: StableDiffusionSafetyChecker , _UpperCAmelCase: CLIPImageProcessor , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): self.enable_attention_slicing(_UpperCAmelCase ) @torch.no_grad() def __call__( self: Optional[Any] , _UpperCAmelCase: Union[str, List[str]] , _UpperCAmelCase: int = 512 , _UpperCAmelCase: int = 512 , _UpperCAmelCase: int = 50 , _UpperCAmelCase: float = 7.5 , _UpperCAmelCase: Optional[Union[str, List[str]]] = None , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[torch.FloatTensor] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _UpperCAmelCase: int = 1 , _UpperCAmelCase: Optional[torch.FloatTensor] = None , **_UpperCAmelCase: List[str] , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = 1 elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Tuple = len(_UpperCAmelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_UpperCAmelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_UpperCAmelCase )}.""" ) # get prompt text embeddings _lowerCAmelCase :List[Any] = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) _lowerCAmelCase :Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowerCAmelCase :int = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _lowerCAmelCase :Optional[Any] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: _lowerCAmelCase :Dict = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Optional[int] = text_embeddings.shape _lowerCAmelCase :Tuple = text_embeddings.repeat(1 , _UpperCAmelCase , 1 ) _lowerCAmelCase :Dict = text_embeddings.view(bs_embed * num_images_per_prompt , _UpperCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :str = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :List[str] if negative_prompt is None: _lowerCAmelCase :Dict = [''] elif type(_UpperCAmelCase ) is not type(_UpperCAmelCase ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(_UpperCAmelCase )} !=""" f""" {type(_UpperCAmelCase )}.""" ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Tuple = [negative_prompt] elif batch_size != len(_UpperCAmelCase ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(_UpperCAmelCase )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: _lowerCAmelCase :List[str] = negative_prompt _lowerCAmelCase :Optional[int] = text_input_ids.shape[-1] _lowerCAmelCase :List[Any] = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase :int = uncond_embeddings.shape[1] _lowerCAmelCase :Any = uncond_embeddings.repeat(_UpperCAmelCase , _UpperCAmelCase , 1 ) _lowerCAmelCase :int = uncond_embeddings.view(batch_size * num_images_per_prompt , _UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :Any = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) _lowerCAmelCase :Union[str, Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _lowerCAmelCase :List[Any] = torch.randn( _UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to(self.device ) _lowerCAmelCase :str = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :Optional[Any] = torch.randn( _UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) _lowerCAmelCase :List[str] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :Optional[Any] = latents_reference.to(self.device ) _lowerCAmelCase :Union[str, Any] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images _lowerCAmelCase :List[str] = (latents_shape[3] - latents_shape_reference[3]) // 2 _lowerCAmelCase :Dict = (latents_shape[2] - latents_shape_reference[2]) // 2 _lowerCAmelCase :List[Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx _lowerCAmelCase :List[Any] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy _lowerCAmelCase :str = 0 if dx < 0 else dx _lowerCAmelCase :Optional[Any] = 0 if dy < 0 else dy _lowerCAmelCase :Any = max(-dx , 0 ) _lowerCAmelCase :Any = max(-dy , 0 ) # import pdb # pdb.set_trace() _lowerCAmelCase :Tuple = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _lowerCAmelCase :str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Optional[int] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Optional[Any] = {} if accepts_eta: _lowerCAmelCase :Dict = eta for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :List[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :Optional[int] = noise_pred.chunk(2 ) _lowerCAmelCase :Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :List[str] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Union[str, Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: _lowerCAmelCase :Dict = self.feature_extractor(self.numpy_to_pil(_UpperCAmelCase ) , return_tensors='pt' ).to( self.device ) _lowerCAmelCase , _lowerCAmelCase :Any = self.safety_checker( images=_UpperCAmelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: _lowerCAmelCase :Tuple = None if output_type == "pil": _lowerCAmelCase :int = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = 'bert' def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :Dict = num_hidden_layers _lowerCAmelCase :Optional[Any] = num_attention_heads _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = intermediate_size _lowerCAmelCase :Tuple = hidden_dropout_prob _lowerCAmelCase :Tuple = attention_probs_dropout_prob _lowerCAmelCase :List[Any] = max_position_embeddings _lowerCAmelCase :Dict = type_vocab_size _lowerCAmelCase :Any = initializer_range _lowerCAmelCase :int = layer_norm_eps _lowerCAmelCase :List[Any] = position_embedding_type _lowerCAmelCase :int = use_cache _lowerCAmelCase :Union[str, Any] = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): if self.task == "multiple-choice": _lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
687
1
import gc import threading import time import psutil import torch class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[str] ): _lowerCAmelCase :Union[str, Any] = psutil.Process() _lowerCAmelCase :int = False def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Any = -1 while True: _lowerCAmelCase :List[str] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Optional[Any] = True _lowerCAmelCase :Tuple = threading.Thread(target=self.peak_monitor ) _lowerCAmelCase :Tuple = True self.thread.start() def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[Any] = False self.thread.join() return self.cpu_memory_peak a = PeakCPUMemory() def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Dict = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _lowerCAmelCase :int = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _lowerCAmelCase :Tuple = torch.cuda.memory_allocated(__magic_name__ ) torch.cuda.reset_peak_memory_stats() return measures def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :List[str] = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem _lowerCAmelCase :Union[str, Any] = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 _lowerCAmelCase :Any = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _lowerCAmelCase :str = (torch.cuda.memory_allocated(__magic_name__ ) - start_measures[str(__magic_name__ )]) / 2**20 _lowerCAmelCase :int = (torch.cuda.max_memory_allocated(__magic_name__ ) - start_measures[str(__magic_name__ )]) / 2**20 return measures def UpperCamelCase_( __magic_name__ : Any , __magic_name__ : Dict ): """simple docstring""" print(f"""{description}:""" ) print(f"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(f"""- GPU {i} allocated: {measures[str(__magic_name__ )]:.2f}MiB""" ) _lowerCAmelCase :Optional[Any] = measures[f"""{i}-peak"""] print(f"""- GPU {i} peak: {peak:.2f}MiB""" ) print(f"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(f"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
687
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
1
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : List[str]=None , __magic_name__ : int=None ): """simple docstring""" if "." in tensor_name: _lowerCAmelCase :Optional[Any] = tensor_name.split('.' ) for split in splits[:-1]: _lowerCAmelCase :Tuple = getattr(__magic_name__ , __magic_name__ ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) _lowerCAmelCase :Optional[Any] = new_module _lowerCAmelCase :Optional[int] = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) _lowerCAmelCase :str = tensor_name in module._buffers _lowerCAmelCase :Any = getattr(__magic_name__ , __magic_name__ ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) _lowerCAmelCase :int = False _lowerCAmelCase :List[Any] = False if is_buffer or not is_bitsandbytes_available(): _lowerCAmelCase :Optional[Any] = False _lowerCAmelCase :Optional[int] = False else: _lowerCAmelCase :int = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) _lowerCAmelCase :Union[str, Any] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: _lowerCAmelCase :List[Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: _lowerCAmelCase :Optional[Any] = old_value.to(__magic_name__ ) elif isinstance(__magic_name__ , torch.Tensor ): _lowerCAmelCase :Any = value.to('cpu' ) if value.dtype == torch.inta: _lowerCAmelCase :str = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: _lowerCAmelCase :List[Any] = torch.tensor(__magic_name__ , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __magic_name__ ) and fpaa_statistics is None: _lowerCAmelCase :Dict = new_value.T _lowerCAmelCase :Dict = old_value.__dict__ if is_abit: _lowerCAmelCase :List[str] = bnb.nn.IntaParams(__magic_name__ , requires_grad=__magic_name__ , **__magic_name__ ).to(__magic_name__ ) elif is_abit: _lowerCAmelCase :Any = bnb.nn.Paramsabit(__magic_name__ , requires_grad=__magic_name__ , **__magic_name__ ).to(__magic_name__ ) _lowerCAmelCase :List[Any] = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(__magic_name__ ) ) else: if value is None: _lowerCAmelCase :str = old_value.to(__magic_name__ ) elif isinstance(__magic_name__ , torch.Tensor ): _lowerCAmelCase :Dict = value.to(__magic_name__ ) else: _lowerCAmelCase :Any = torch.tensor(__magic_name__ , device=__magic_name__ ) if is_buffer: _lowerCAmelCase :List[Any] = new_value else: _lowerCAmelCase :Any = nn.Parameter(__magic_name__ , requires_grad=old_value.requires_grad ) _lowerCAmelCase :List[Any] = new_value def UpperCamelCase_( __magic_name__ : Dict , __magic_name__ : Optional[int]=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : Optional[Any]=None , __magic_name__ : int=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: _lowerCAmelCase :Optional[Any] = [] current_key_name.append(__magic_name__ ) if (isinstance(__magic_name__ , nn.Linear ) or isinstance(__magic_name__ , __magic_name__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(__magic_name__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__magic_name__ , __magic_name__ ): _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = module.weight.shape else: _lowerCAmelCase :str = module.in_features _lowerCAmelCase :Dict = module.out_features if quantization_config.quantization_method() == "llm_int8": _lowerCAmelCase :Dict = bnb.nn.LinearabitLt( __magic_name__ , __magic_name__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) _lowerCAmelCase :Optional[Any] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: _lowerCAmelCase :Tuple = bnb.nn.Linearabit( __magic_name__ , __magic_name__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) _lowerCAmelCase :Tuple = True # Store the module class in case we need to transpose the weight later _lowerCAmelCase :Any = type(__magic_name__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__magic_name__ ) if len(list(module.children() ) ) > 0: _lowerCAmelCase , _lowerCAmelCase :str = _replace_with_bnb_linear( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_been_replaced=__magic_name__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any]=None , __magic_name__ : Tuple=None , __magic_name__ : Union[str, Any]=None ): """simple docstring""" _lowerCAmelCase :Any = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert _lowerCAmelCase , _lowerCAmelCase :Optional[int] = _replace_with_bnb_linear( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCamelCase_( *__magic_name__ : int , **__magic_name__ : Any ): """simple docstring""" warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , __magic_name__ , ) return replace_with_bnb_linear(*__magic_name__ , **__magic_name__ ) def UpperCamelCase_( *__magic_name__ : int , **__magic_name__ : Optional[Any] ): """simple docstring""" warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , __magic_name__ , ) return set_module_quantized_tensor_to_device(*__magic_name__ , **__magic_name__ ) def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Dict = deepcopy(__magic_name__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() _lowerCAmelCase :Tuple = find_tied_parameters(__magic_name__ ) # For compatibility with Accelerate < 0.18 if isinstance(__magic_name__ , __magic_name__ ): _lowerCAmelCase :str = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _lowerCAmelCase :Any = sum(__magic_name__ , [] ) _lowerCAmelCase :Optional[int] = len(__magic_name__ ) > 0 # Check if it is a base model _lowerCAmelCase :int = not hasattr(__magic_name__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _lowerCAmelCase :List[str] = list(model.named_children() ) _lowerCAmelCase :Union[str, Any] = [list_modules[-1][0]] # add last module together with tied weights _lowerCAmelCase :Union[str, Any] = set(__magic_name__ ) - set(__magic_name__ ) _lowerCAmelCase :Dict = list(set(__magic_name__ ) ) + list(__magic_name__ ) # remove ".weight" from the keys _lowerCAmelCase :Dict = ['.weight', '.bias'] _lowerCAmelCase :int = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _lowerCAmelCase :List[str] = name.replace(__magic_name__ , '' ) filtered_module_names.append(__magic_name__ ) return filtered_module_names
687
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
1
def UpperCamelCase_( __magic_name__ : list ): """simple docstring""" if len(__magic_name__ ) <= 1: return [tuple(__magic_name__ )] _lowerCAmelCase :Optional[int] = [] def generate(__magic_name__ : int , __magic_name__ : list ): _lowerCAmelCase :Optional[int] = [0] * n res.append(tuple(__magic_name__ ) ) _lowerCAmelCase :int = 0 while i < n: if c[i] < i: if i % 2 == 0: _lowerCAmelCase , _lowerCAmelCase :str = arr[i], arr[0] else: _lowerCAmelCase , _lowerCAmelCase :Dict = arr[i], arr[c[i]] res.append(tuple(__magic_name__ ) ) c[i] += 1 _lowerCAmelCase :Optional[Any] = 0 else: _lowerCAmelCase :Dict = 0 i += 1 generate(len(__magic_name__ ) , __magic_name__ ) return res if __name__ == "__main__": a = input("""Enter numbers separated by a comma:\n""").strip() a = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
687
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
1
from typing import Any class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any ): _lowerCAmelCase :List[Any] = data _lowerCAmelCase :str = None class UpperCAmelCase_ : """simple docstring""" def __init__( self: Tuple ): _lowerCAmelCase :Any = None def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :str = self.head while temp is not None: print(temp.data , end=' ' ) _lowerCAmelCase :Tuple = temp.next print() def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: Any ): _lowerCAmelCase :Optional[int] = Node(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = self.head _lowerCAmelCase :Optional[int] = new_node def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Tuple , _UpperCAmelCase: List[str] ): if node_data_a == node_data_a: return else: _lowerCAmelCase :Tuple = self.head while node_a is not None and node_a.data != node_data_a: _lowerCAmelCase :Tuple = node_a.next _lowerCAmelCase :Any = self.head while node_a is not None and node_a.data != node_data_a: _lowerCAmelCase :List[str] = node_a.next if node_a is None or node_a is None: return _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = node_a.data, node_a.data if __name__ == "__main__": a = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
687
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
import operator as op def UpperCamelCase_( __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = [] _lowerCAmelCase :Dict = lambda __magic_name__ , __magic_name__ : int(x / y ) # noqa: E731 integer division operation _lowerCAmelCase :Dict = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__magic_name__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__magic_name__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__magic_name__ ) , sep=' | ' ) else: _lowerCAmelCase :Union[str, Any] = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__magic_name__ ) , sep=' | ' ) _lowerCAmelCase :int = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__magic_name__ ) , sep=' | ' ) stack.append( str(opr[x](int(__magic_name__ ) , int(__magic_name__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__magic_name__ ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": a = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
687
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ): _lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20} _lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase :str = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :Optional[Any] = num_channels _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :int = min_resolution _lowerCAmelCase :List[str] = max_resolution _lowerCAmelCase :List[str] = do_resize _lowerCAmelCase :Optional[int] = size _lowerCAmelCase :str = do_center_crop _lowerCAmelCase :int = crop_size _lowerCAmelCase :Optional[int] = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: int ): # Initialize image_processing _lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # Initialize image_processing _lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any ): # Initialize image_processing _lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
687
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml a = NewType("""DataClass""", Any) a = NewType("""DataClassType""", Any) def UpperCamelCase_( __magic_name__ : List[Any] ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def UpperCamelCase_( __magic_name__ : list ): """simple docstring""" _lowerCAmelCase :Tuple = {str(__magic_name__ ): choice for choice in choices} return lambda __magic_name__ : str_to_choice.get(__magic_name__ , __magic_name__ ) def UpperCamelCase_( *, __magic_name__ : Union[str, List[str]] = None , __magic_name__ : str = None , __magic_name__ : Any = dataclasses.MISSING , __magic_name__ : Callable[[], Any] = dataclasses.MISSING , __magic_name__ : dict = None , **__magic_name__ : Optional[int] , ): """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _lowerCAmelCase :Dict = {} if aliases is not None: _lowerCAmelCase :Union[str, Any] = aliases if help is not None: _lowerCAmelCase :List[str] = help return dataclasses.field(metadata=__magic_name__ , default=__magic_name__ , default_factory=__magic_name__ , **__magic_name__ ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Iterable[DataClassType] def __init__( self: Dict , _UpperCAmelCase: Union[DataClassType, Iterable[DataClassType]] , **_UpperCAmelCase: List[str] ): # To make the default appear when using --help if "formatter_class" not in kwargs: _lowerCAmelCase :List[Any] = ArgumentDefaultsHelpFormatter super().__init__(**_UpperCAmelCase ) if dataclasses.is_dataclass(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = [dataclass_types] _lowerCAmelCase :Optional[Any] = list(_UpperCAmelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_UpperCAmelCase ) @staticmethod def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase: ArgumentParser , _UpperCAmelCase: dataclasses.Field ): _lowerCAmelCase :int = f"""--{field.name}""" _lowerCAmelCase :Dict = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _UpperCAmelCase ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) _lowerCAmelCase :str = kwargs.pop('aliases' , [] ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Tuple = [aliases] _lowerCAmelCase :Dict = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(_UpperCAmelCase , 'UnionType' ) and isinstance(_UpperCAmelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_UpperCAmelCase ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' f""" Problem encountered in field '{field.name}'.""" ) if type(_UpperCAmelCase ) not in field.type.__args__: # filter `str` in Union _lowerCAmelCase :Dict = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _lowerCAmelCase :Union[str, Any] = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _lowerCAmelCase :List[str] = ( field.type.__args__[0] if isinstance(_UpperCAmelCase , field.type.__args__[1] ) else field.type.__args__[1] ) _lowerCAmelCase :Any = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _lowerCAmelCase :Tuple = {} if origin_type is Literal or (isinstance(field.type , _UpperCAmelCase ) and issubclass(field.type , _UpperCAmelCase )): if origin_type is Literal: _lowerCAmelCase :Tuple = field.type.__args__ else: _lowerCAmelCase :str = [x.value for x in field.type] _lowerCAmelCase :Dict = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: _lowerCAmelCase :List[Any] = field.default else: _lowerCAmelCase :Tuple = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _lowerCAmelCase :Optional[Any] = copy(_UpperCAmelCase ) # Hack because type=bool in argparse does not behave as we want. _lowerCAmelCase :Optional[Any] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _lowerCAmelCase :List[str] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _lowerCAmelCase :Optional[int] = default # This tells argparse we accept 0 or 1 value after --field_name _lowerCAmelCase :Any = '?' # This is the value that will get picked if we do --field_name (without value) _lowerCAmelCase :Any = True elif isclass(_UpperCAmelCase ) and issubclass(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Tuple = field.type.__args__[0] _lowerCAmelCase :int = '+' if field.default_factory is not dataclasses.MISSING: _lowerCAmelCase :int = field.default_factory() elif field.default is dataclasses.MISSING: _lowerCAmelCase :int = True else: _lowerCAmelCase :str = field.type if field.default is not dataclasses.MISSING: _lowerCAmelCase :Any = field.default elif field.default_factory is not dataclasses.MISSING: _lowerCAmelCase :Dict = field.default_factory() else: _lowerCAmelCase :Dict = True parser.add_argument(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _lowerCAmelCase :Union[str, Any] = False parser.add_argument(f"""--no_{field.name}""" , action='store_false' , dest=field.name , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: DataClassType ): if hasattr(_UpperCAmelCase , '_argument_group_name' ): _lowerCAmelCase :Any = self.add_argument_group(dtype._argument_group_name ) else: _lowerCAmelCase :Tuple = self try: _lowerCAmelCase :Dict[str, type] = get_type_hints(_UpperCAmelCase ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_UpperCAmelCase ): _lowerCAmelCase :List[Any] = '.'.join(map(_UpperCAmelCase , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(_UpperCAmelCase ): if not field.init: continue _lowerCAmelCase :List[Any] = type_hints[field.name] self._parse_dataclass_field(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Optional[int]=None , _UpperCAmelCase: Optional[int]=False , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: Dict=None , _UpperCAmelCase: int=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): _lowerCAmelCase :Any = [] if args_filename: args_files.append(Path(_UpperCAmelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _lowerCAmelCase :Tuple = ArgumentParser() args_file_parser.add_argument(_UpperCAmelCase , type=_UpperCAmelCase , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) _lowerCAmelCase , _lowerCAmelCase :List[Any] = args_file_parser.parse_known_args(args=_UpperCAmelCase ) _lowerCAmelCase :Any = vars(_UpperCAmelCase ).get(args_file_flag.lstrip('-' ) , _UpperCAmelCase ) if cmd_args_file_paths: args_files.extend([Path(_UpperCAmelCase ) for p in cmd_args_file_paths] ) _lowerCAmelCase :List[Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _lowerCAmelCase :int = file_args + args if args is not None else file_args + sys.argv[1:] _lowerCAmelCase , _lowerCAmelCase :Dict = self.parse_known_args(args=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = [] for dtype in self.dataclass_types: _lowerCAmelCase :List[str] = {f.name for f in dataclasses.fields(_UpperCAmelCase ) if f.init} _lowerCAmelCase :Tuple = {k: v for k, v in vars(_UpperCAmelCase ).items() if k in keys} for k in keys: delattr(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :str = dtype(**_UpperCAmelCase ) outputs.append(_UpperCAmelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_UpperCAmelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Dict[str, Any] , _UpperCAmelCase: bool = False ): _lowerCAmelCase :Tuple = set(args.keys() ) _lowerCAmelCase :Union[str, Any] = [] for dtype in self.dataclass_types: _lowerCAmelCase :str = {f.name for f in dataclasses.fields(_UpperCAmelCase ) if f.init} _lowerCAmelCase :Any = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) _lowerCAmelCase :List[Any] = dtype(**_UpperCAmelCase ) outputs.append(_UpperCAmelCase ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(_UpperCAmelCase )}""" ) return tuple(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: str , _UpperCAmelCase: bool = False ): with open(Path(_UpperCAmelCase ) , encoding='utf-8' ) as open_json_file: _lowerCAmelCase :Any = json.loads(open_json_file.read() ) _lowerCAmelCase :List[str] = self.parse_dict(_UpperCAmelCase , allow_extra_keys=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: str , _UpperCAmelCase: bool = False ): _lowerCAmelCase :List[Any] = self.parse_dict(yaml.safe_load(Path(_UpperCAmelCase ).read_text() ) , allow_extra_keys=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
687
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Any = PandasConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :Any = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Any = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
687
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : List[Any] = LEDConfig lowerCamelCase : Tuple = {} lowerCamelCase : int = 'gelu' def __init__( self: List[str] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Any=13 , _UpperCAmelCase: str=7 , _UpperCAmelCase: List[str]=True , _UpperCAmelCase: List[str]=False , _UpperCAmelCase: int=99 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: Tuple=2 , _UpperCAmelCase: int=4 , _UpperCAmelCase: Dict=37 , _UpperCAmelCase: Optional[int]=0.1 , _UpperCAmelCase: int=0.1 , _UpperCAmelCase: int=20 , _UpperCAmelCase: Union[str, Any]=2 , _UpperCAmelCase: str=1 , _UpperCAmelCase: str=0 , _UpperCAmelCase: Dict=4 , ): _lowerCAmelCase :int = parent _lowerCAmelCase :int = batch_size _lowerCAmelCase :int = seq_length _lowerCAmelCase :Any = is_training _lowerCAmelCase :Tuple = use_labels _lowerCAmelCase :Optional[Any] = vocab_size _lowerCAmelCase :Optional[int] = hidden_size _lowerCAmelCase :Any = num_hidden_layers _lowerCAmelCase :List[Any] = num_attention_heads _lowerCAmelCase :str = intermediate_size _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :List[Any] = attention_probs_dropout_prob _lowerCAmelCase :Any = max_position_embeddings _lowerCAmelCase :Union[str, Any] = eos_token_id _lowerCAmelCase :List[Any] = pad_token_id _lowerCAmelCase :int = bos_token_id _lowerCAmelCase :List[Any] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _lowerCAmelCase :int = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _lowerCAmelCase :List[Any] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCAmelCase :Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCAmelCase :Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCAmelCase :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase :Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _lowerCAmelCase :Optional[int] = prepare_led_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = tf.concat( [tf.zeros_like(_UpperCAmelCase )[:, :-1], tf.ones_like(_UpperCAmelCase )[:, -1:]] , axis=-1 , ) _lowerCAmelCase :Any = global_attention_mask return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Tuple = TFLEDModel(config=_UpperCAmelCase ).get_decoder() _lowerCAmelCase :Any = inputs_dict['input_ids'] _lowerCAmelCase :List[str] = input_ids[:1, :] _lowerCAmelCase :Optional[Any] = inputs_dict['attention_mask'][:1, :] _lowerCAmelCase :Dict = 1 # first forward pass _lowerCAmelCase :Optional[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase :int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase :List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase :Dict = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCAmelCase :Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCAmelCase :List[str] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCAmelCase :Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] _lowerCAmelCase :List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCAmelCase :Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCAmelCase :Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCAmelCase :str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-3 ) def UpperCamelCase_( __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any]=None , __magic_name__ : int=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=None , ): """simple docstring""" if attention_mask is None: _lowerCAmelCase :Tuple = tf.cast(tf.math.not_equal(__magic_name__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCAmelCase :List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCAmelCase :Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCAmelCase :int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : str = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowerCamelCase : Optional[Any] = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowerCamelCase : List[str] = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase : int = True lowerCamelCase : Tuple = False lowerCamelCase : Optional[Any] = False lowerCamelCase : Any = False def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[Any] = TFLEDModelTester(self ) _lowerCAmelCase :List[str] = ConfigTester(self , config_class=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[Any] = tf.zeros_like(inputs_dict['attention_mask'] ) _lowerCAmelCase :Union[str, Any] = 2 _lowerCAmelCase :Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = self.model_tester.seq_length _lowerCAmelCase :List[Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_UpperCAmelCase: Dict ): _lowerCAmelCase :str = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_UpperCAmelCase: Dict ): _lowerCAmelCase :Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions] _lowerCAmelCase :Union[str, Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _lowerCAmelCase :int = True _lowerCAmelCase :Tuple = False _lowerCAmelCase :Union[str, Any] = False _lowerCAmelCase :int = model_class(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :Tuple = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: _lowerCAmelCase :str = model_class(_UpperCAmelCase ) _lowerCAmelCase :str = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _lowerCAmelCase :Tuple = True _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine _lowerCAmelCase :str = True _lowerCAmelCase :Tuple = True _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): pass def SCREAMING_SNAKE_CASE__ ( self: List[str] ): # TODO: Head-masking not yet implement pass def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" return tf.constant(__magic_name__ , dtype=tf.intaa ) a = 1E-4 @slow @require_tf class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _lowerCAmelCase :Optional[Any] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _lowerCAmelCase :Optional[int] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _lowerCAmelCase :Any = prepare_led_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = model(**_UpperCAmelCase )[0] _lowerCAmelCase :int = (1, 1024, 768) self.assertEqual(output.shape , _UpperCAmelCase ) # change to expected output here _lowerCAmelCase :Dict = tf.convert_to_tensor( [[2.3_0_5_0, 2.8_2_7_9, 0.6_5_3_1], [-1.8_4_5_7, -0.1_4_5_5, -3.5_6_6_1], [-1.0_1_8_6, 0.4_5_8_6, -2.2_0_4_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _lowerCAmelCase :List[Any] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _lowerCAmelCase :Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _lowerCAmelCase :Tuple = prepare_led_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Tuple = model(**_UpperCAmelCase )[0] _lowerCAmelCase :Dict = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , _UpperCAmelCase ) # change to expected output here _lowerCAmelCase :List[str] = tf.convert_to_tensor( [[3_3.6_5_0_7, 6.4_5_7_2, 1_6.8_0_8_9], [5.8_7_3_9, -2.4_2_3_8, 1_1.2_9_0_2], [-3.2_1_3_9, -4.3_1_4_9, 4.2_7_8_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-3 , rtol=1e-3 )
687
import glob import os import random from string import ascii_lowercase, digits import cva a = """""" a = """""" a = """""" a = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ ) print('Processing...' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase :Optional[Any] = random_chars(32 ) _lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" ) _lowerCAmelCase :str = [] for anno in new_annos[index]: _lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__magic_name__ ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = [] _lowerCAmelCase :Union[str, Any] = [] for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ): _lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__magic_name__ ) as in_file: _lowerCAmelCase :Union[str, Any] = in_file.readlines() _lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" ) _lowerCAmelCase :Tuple = [] for obj_list in obj_lists: _lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :Any = [] _lowerCAmelCase :Optional[Any] = [] for idx in range(len(__magic_name__ ) ): _lowerCAmelCase :Optional[int] = [] _lowerCAmelCase :Optional[Any] = img_list[idx] path_list.append(__magic_name__ ) _lowerCAmelCase :List[str] = anno_list[idx] _lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ ) if flip_type == 1: _lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_( __magic_name__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase :str = ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
687
1
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Tuple , *_UpperCAmelCase: Optional[int] , **_UpperCAmelCase: Optional[int] ): warnings.warn( 'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use OwlViTImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
687
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ ) _lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ ) return torch.mm(__magic_name__ , normalized_text_embeds.t() ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = CLIPConfig lowerCamelCase : Any = ['CLIPEncoderLayer'] def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ): super().__init__(_UpperCAmelCase ) _lowerCAmelCase :Any = CLIPVisionModel(config.vision_config ) _lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) _lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase :str = [] _lowerCAmelCase :List[Any] = image_embeds.shape[0] for i in range(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx] _lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowerCAmelCase :Any = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx] _lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) _lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ): _lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) _lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :Any = 0.0 _lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase :List[str] = special_care * 0.0_1 _lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
1
def UpperCamelCase_( __magic_name__ : int , __magic_name__ : int ): """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) _lowerCAmelCase :int = str(bin(__magic_name__ ) ) binary_number += "0" * shift_amount return binary_number def UpperCamelCase_( __magic_name__ : int , __magic_name__ : int ): """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) _lowerCAmelCase :Union[str, Any] = str(bin(__magic_name__ ) )[2:] if shift_amount >= len(__magic_name__ ): return "0b0" _lowerCAmelCase :str = binary_number[: len(__magic_name__ ) - shift_amount] return "0b" + shifted_binary_number def UpperCamelCase_( __magic_name__ : int , __magic_name__ : int ): """simple docstring""" if number >= 0: # Get binary representation of positive number _lowerCAmelCase :str = '0' + str(bin(__magic_name__ ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number _lowerCAmelCase :Dict = len(bin(__magic_name__ )[3:] ) # Find 2's complement of number _lowerCAmelCase :Union[str, Any] = bin(abs(__magic_name__ ) - (1 << binary_number_length) )[3:] _lowerCAmelCase :List[Any] = ( '1' + '0' * (binary_number_length - len(__magic_name__ )) + binary_number ) if shift_amount >= len(__magic_name__ ): return "0b" + binary_number[0] * len(__magic_name__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__magic_name__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
687
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
1
def UpperCamelCase_( __magic_name__ : list ): """simple docstring""" if len(__magic_name__ ) <= 1: return [tuple(__magic_name__ )] _lowerCAmelCase :List[str] = [] def generate(__magic_name__ : int , __magic_name__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , __magic_name__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even _lowerCAmelCase , _lowerCAmelCase :List[str] = arr[k - 1], arr[i] else: # k is odd _lowerCAmelCase , _lowerCAmelCase :Dict = arr[k - 1], arr[0] generate(k - 1 , __magic_name__ ) generate(len(__magic_name__ ) , __magic_name__ ) return res if __name__ == "__main__": a = input("""Enter numbers separated by a comma:\n""").strip() a = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
687
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'encoder-decoder' lowerCamelCase : Optional[Any] = True def __init__( self: str , **_UpperCAmelCase: int ): super().__init__(**_UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' ) _lowerCAmelCase :Dict = encoder_config.pop('model_type' ) _lowerCAmelCase :str = kwargs.pop('decoder' ) _lowerCAmelCase :str = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCAmelCase :Dict = True _lowerCAmelCase :List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :Optional[int] = self.encoder.to_dict() _lowerCAmelCase :Union[str, Any] = self.decoder.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output
687
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: List[str] , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :List[str] = data def __iter__( self: Optional[int] ): for element in self.data: yield element def UpperCamelCase_( __magic_name__ : Optional[int]=True ): """simple docstring""" _lowerCAmelCase :int = Accelerator(even_batches=__magic_name__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def UpperCamelCase_( __magic_name__ : Accelerator , __magic_name__ : int , __magic_name__ : int , __magic_name__ : bool = False ): """simple docstring""" if iterable: _lowerCAmelCase :str = DummyIterableDataset(torch.as_tensor(range(__magic_name__ ) ) ) else: _lowerCAmelCase :List[str] = TensorDataset(torch.as_tensor(range(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = DataLoader(__magic_name__ , batch_size=__magic_name__ ) _lowerCAmelCase :Union[str, Any] = accelerator.prepare(__magic_name__ ) return dl def UpperCamelCase_( __magic_name__ : Accelerator , __magic_name__ : int , __magic_name__ : int , __magic_name__ : List[int] , __magic_name__ : List[int] , ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = create_dataloader(accelerator=__magic_name__ , dataset_size=__magic_name__ , batch_size=__magic_name__ ) _lowerCAmelCase :Dict = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Optional[Any] = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __magic_name__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __magic_name__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :List[Any] = create_accelerator(even_batches=__magic_name__ ) verify_dataloader_batch_sizes( __magic_name__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __magic_name__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Optional[Any] = create_accelerator(even_batches=__magic_name__ ) _lowerCAmelCase :Any = torch.nn.Linear(1 , 1 ) _lowerCAmelCase :Any = accelerator.prepare(__magic_name__ ) _lowerCAmelCase :List[Any] = create_dataloader(__magic_name__ , dataset_size=3 , batch_size=1 ) _lowerCAmelCase :List[Any] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__magic_name__ ): _lowerCAmelCase :Union[str, Any] = ddp_model(batch[0].float() ) _lowerCAmelCase :str = output.sum() loss.backward() batch_idxs.append(__magic_name__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" with warnings.catch_warnings(record=__magic_name__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __magic_name__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Optional[Any] = True _lowerCAmelCase :Dict = False _lowerCAmelCase :Optional[int] = create_accelerator(even_batches=__magic_name__ ) _lowerCAmelCase :int = torch.nn.Linear(1 , 1 ) _lowerCAmelCase :Optional[Any] = accelerator.prepare(__magic_name__ ) _lowerCAmelCase :Optional[int] = create_dataloader(__magic_name__ , dataset_size=3 , batch_size=1 ) _lowerCAmelCase :Optional[Any] = create_dataloader(__magic_name__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__magic_name__ ): _lowerCAmelCase :Optional[int] = train_dl.batch_sampler.even_batches _lowerCAmelCase :Optional[Any] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = True _lowerCAmelCase :Tuple = False _lowerCAmelCase :Any = create_accelerator(even_batches=__magic_name__ ) _lowerCAmelCase :Union[str, Any] = torch.nn.Linear(1 , 1 ) _lowerCAmelCase :str = accelerator.prepare(__magic_name__ ) create_dataloader(__magic_name__ , dataset_size=3 , batch_size=1 , iterable=__magic_name__ ) _lowerCAmelCase :Optional[Any] = create_dataloader(__magic_name__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('ignore' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__magic_name__ ): _lowerCAmelCase :List[str] = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :str = create_accelerator() _lowerCAmelCase :Dict = torch.nn.Linear(1 , 1 ) _lowerCAmelCase :int = accelerator.prepare(__magic_name__ ) create_dataloader(__magic_name__ , dataset_size=3 , batch_size=1 , iterable=__magic_name__ ) with warnings.catch_warnings(record=__magic_name__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__magic_name__ ): pass assert issubclass(w[-1].category , __magic_name__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :List[Any] = create_accelerator() accelerator.print('Test that even_batches variable ensures uniform batches across processes' ) test_default_ensures_even_batch_sizes() accelerator.print('Run tests with even_batches disabled' ) test_can_disable_even_batches() accelerator.print('Test joining uneven inputs' ) test_can_join_uneven_inputs() accelerator.print('Test overriding even_batches when joining uneven inputs' ) test_join_can_override_even_batches() accelerator.print('Test overriding even_batches for mixed dataloader types' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('Test overriding even_batches raises a warning for iterable dataloaders' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('Test join with non DDP distributed raises warning' ) _lowerCAmelCase :Any = accelerator.state.distributed_type _lowerCAmelCase :Union[str, Any] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__magic_name__ ) _lowerCAmelCase :List[Any] = original_state if __name__ == "__main__": main()
687
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
1
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
1
def UpperCamelCase_( __magic_name__ : int = 4000000 ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = [0, 1] _lowerCAmelCase :List[str] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 _lowerCAmelCase :Union[str, Any] = 0 for j in range(len(__magic_name__ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'''{solution() = }''')
687
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[int] = 10 def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :str = [1, 2, 3, 4] _lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[int] = '' _lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = ['It was the best of times.'] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[str] = 101 _lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
687
1
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py a = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. a = direct_transformers_import(PATH_TO_TRANSFORMERS) a = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` a = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") a = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def UpperCamelCase_( __magic_name__ : List[str] ): """simple docstring""" _lowerCAmelCase :Optional[int] = None # source code of `config_class` _lowerCAmelCase :List[str] = inspect.getsource(__magic_name__ ) _lowerCAmelCase :Any = _re_checkpoint.findall(__magic_name__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): _lowerCAmelCase :List[str] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _lowerCAmelCase :Dict = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: _lowerCAmelCase :Optional[Any] = ckpt_name break return checkpoint def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _lowerCAmelCase :Optional[int] = get_checkpoint_from_config_class(__magic_name__ ) _lowerCAmelCase :Any = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__magic_name__ ) if len(__magic_name__ ) > 0: _lowerCAmelCase :int = '\n'.join(sorted(__magic_name__ ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
687
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
687
1
from collections import deque def UpperCamelCase_( __magic_name__ : List[Any] ): """simple docstring""" _lowerCAmelCase :Dict = len(__magic_name__ ) _lowerCAmelCase :int = deque() _lowerCAmelCase :List[Any] = [False for _ in range(__magic_name__ )] _lowerCAmelCase :str = [-1 for _ in range(__magic_name__ )] _lowerCAmelCase :List[str] = index_of[:] def strong_connect(__magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : int ): _lowerCAmelCase :int = index # the number when this node is seen _lowerCAmelCase :Dict = index # lowest rank node reachable from here index += 1 stack.append(__magic_name__ ) _lowerCAmelCase :Dict = True for w in g[v]: if index_of[w] == -1: _lowerCAmelCase :Union[str, Any] = strong_connect(__magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: _lowerCAmelCase :Optional[Any] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: _lowerCAmelCase :Union[str, Any] = [] _lowerCAmelCase :Optional[int] = stack.pop() _lowerCAmelCase :Dict = False component.append(__magic_name__ ) while w != v: _lowerCAmelCase :Union[str, Any] = stack.pop() _lowerCAmelCase :str = False component.append(__magic_name__ ) components.append(__magic_name__ ) return index _lowerCAmelCase :Union[str, Any] = [] for v in range(__magic_name__ ): if index_of[v] == -1: strong_connect(__magic_name__ , 0 , __magic_name__ ) return components def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Any ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = [[] for _ in range(__magic_name__ )] for u, v in edges: g[u].append(__magic_name__ ) return g if __name__ == "__main__": # Test a = 7 a = [0, 0, 1, 2, 3, 3, 4, 4, 6] a = [1, 3, 2, 0, 1, 4, 5, 6, 5] a = [(u, v) for u, v in zip(source, target)] a = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
687
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
1
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Any = ComputeEnvironment.AMAZON_SAGEMAKER lowerCamelCase : Tuple = True lowerCamelCase : List[Any] = 'ml.p3.2xlarge' lowerCamelCase : Any = 'accelerate_sagemaker_execution_role' lowerCamelCase : Union[str, Any] = 'hf-sm' lowerCamelCase : List[Any] = 'us-east-1' lowerCamelCase : str = 1 lowerCamelCase : int = 'accelerate-sagemaker-1' lowerCamelCase : Optional[Any] = '1.6' lowerCamelCase : Union[str, Any] = '4.4' lowerCamelCase : str = 'train.py' lowerCamelCase : Any = [ '--model_name_or_path', 'bert', '--do_train', 'False', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] lowerCamelCase : Tuple = [ '--model_name_or_path', 'bert', '--do_train', '--do_test', 'False', '--do_predict', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): # If no defaults are changed, `to_kwargs` returns an empty dict. _lowerCAmelCase :Optional[Any] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['model_name_or_path'] , _UpperCAmelCase ) assert isinstance(converted_args['do_train'] , _UpperCAmelCase ) assert isinstance(converted_args['epochs'] , _UpperCAmelCase ) assert isinstance(converted_args['learning_rate'] , _UpperCAmelCase ) assert isinstance(converted_args['max_steps'] , _UpperCAmelCase ) with pytest.raises(_UpperCAmelCase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
687
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
a = """Alexander Joslin""" import operator as op from .stack import Stack def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Tuple = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _lowerCAmelCase :Stack[int] = Stack() _lowerCAmelCase :Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__magic_name__ ) ) elif i in operators: # RULE 2 operator_stack.push(__magic_name__ ) elif i == ")": # RULE 4 _lowerCAmelCase :Tuple = operator_stack.peek() operator_stack.pop() _lowerCAmelCase :Optional[int] = operand_stack.peek() operand_stack.pop() _lowerCAmelCase :Any = operand_stack.peek() operand_stack.pop() _lowerCAmelCase :Any = operators[opr](__magic_name__ , __magic_name__ ) operand_stack.push(__magic_name__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
687
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
1
import requests from bsa import BeautifulSoup def UpperCamelCase_( __magic_name__ : str = "AAPL" ): """simple docstring""" _lowerCAmelCase :int = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" _lowerCAmelCase :List[str] = BeautifulSoup(requests.get(__magic_name__ ).text , 'html.parser' ) _lowerCAmelCase :Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
687
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ): """simple docstring""" _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] _lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] _lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""] _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""] _lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :int = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' ) _lowerCAmelCase :List[Any] = {} _lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight'] _lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias'] _lowerCAmelCase :Dict = checkpoint['time_embed.2.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias'] _lowerCAmelCase :List[Any] = unet_config['down_block_types'] _lowerCAmelCase :Any = unet_config['layers_per_block'] _lowerCAmelCase :List[Any] = unet_config['attention_head_dim'] _lowerCAmelCase :Tuple = unet_config['block_out_channels'] _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Optional[int] = channels_list[0] for i, layer_type in enumerate(__magic_name__ ): _lowerCAmelCase :Tuple = channels_list[i] _lowerCAmelCase :Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}""" _lowerCAmelCase :str = f"""input_blocks.{current_layer}.1""" _lowerCAmelCase :Optional[Any] = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0""" _lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 _lowerCAmelCase :Dict = current_channels # hardcoded the mid-block for now _lowerCAmelCase :int = 'mid_block.resnets.0' _lowerCAmelCase :Optional[Any] = 'middle_block.0' _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = 'mid_block.attentions.0' _lowerCAmelCase :Optional[int] = 'middle_block.1' _lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1' _lowerCAmelCase :Optional[int] = 'middle_block.2' _lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :str = unet_config['up_block_types'] for i, layer_type in enumerate(__magic_name__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1""" _lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}""" _lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1""" _lowerCAmelCase :int = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = checkpoint['out.0.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias'] _lowerCAmelCase :List[Any] = checkpoint['out.2.weight'] _lowerCAmelCase :Dict = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
687
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Optional[Any] = (DEISMultistepScheduler,) lowerCamelCase : int = (('num_inference_steps', 25),) def SCREAMING_SNAKE_CASE__ ( self: List[str] , **_UpperCAmelCase: Dict ): _lowerCAmelCase :int = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, } config.update(**_UpperCAmelCase ) return config def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[Any]=0 , **_UpperCAmelCase: Tuple ): _lowerCAmelCase :Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase :Optional[int] = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.dummy_sample _lowerCAmelCase :List[str] = 0.1 * sample _lowerCAmelCase :int = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase :List[str] = self.get_scheduler_config(**_UpperCAmelCase ) _lowerCAmelCase :List[str] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _lowerCAmelCase :List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _lowerCAmelCase :Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase :List[str] = sample, sample for t in range(_UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase :str = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase :Union[str, Any] = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self: Any ): pass def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int=0 , **_UpperCAmelCase: List[Any] ): _lowerCAmelCase :List[str] = dict(self.forward_default_kwargs ) _lowerCAmelCase :int = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = self.dummy_sample _lowerCAmelCase :Optional[Any] = 0.1 * sample _lowerCAmelCase :Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase :Any = self.get_scheduler_config() _lowerCAmelCase :Union[str, Any] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase :Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _lowerCAmelCase :str = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase :Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase :Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase :Any = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Optional[int]=None , **_UpperCAmelCase: Any ): if scheduler is None: _lowerCAmelCase :List[str] = self.scheduler_classes[0] _lowerCAmelCase :Optional[int] = self.get_scheduler_config(**_UpperCAmelCase ) _lowerCAmelCase :Any = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase :List[Any] = self.get_scheduler_config(**_UpperCAmelCase ) _lowerCAmelCase :Dict = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase :Tuple = 10 _lowerCAmelCase :List[Any] = self.dummy_model() _lowerCAmelCase :int = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase :str = model(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Any = dict(self.forward_default_kwargs ) _lowerCAmelCase :Union[str, Any] = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase :int = self.get_scheduler_config() _lowerCAmelCase :List[str] = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = self.dummy_sample _lowerCAmelCase :Union[str, Any] = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase , 'set_timesteps' ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , 'set_timesteps' ): _lowerCAmelCase :Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase :Optional[int] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase :List[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase :Tuple = scheduler.timesteps[5] _lowerCAmelCase :Union[str, Any] = scheduler.timesteps[6] _lowerCAmelCase :List[str] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase :Optional[int] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self: int ): # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCAmelCase :Dict = DEISMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase :Dict = self.full_loop(scheduler=_UpperCAmelCase ) _lowerCAmelCase :Tuple = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 _lowerCAmelCase :Optional[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase :str = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase :List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase :Dict = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase :str = self.full_loop(scheduler=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self: Dict ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.check_over_configs(thresholding=_UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , algorithm_type='deis' , solver_order=_UpperCAmelCase , solver_type=_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_UpperCAmelCase , solver_type=_UpperCAmelCase , prediction_type=_UpperCAmelCase , algorithm_type=_UpperCAmelCase , ) _lowerCAmelCase :Any = self.full_loop( solver_order=_UpperCAmelCase , solver_type=_UpperCAmelCase , prediction_type=_UpperCAmelCase , algorithm_type=_UpperCAmelCase , ) assert not torch.isnan(_UpperCAmelCase ).any(), "Samples have nan numbers" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.check_over_configs(lower_order_final=_UpperCAmelCase ) self.check_over_configs(lower_order_final=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_UpperCAmelCase , time_step=0 ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :Tuple = self.full_loop() _lowerCAmelCase :str = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase :Optional[int] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0_9_1 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Optional[int] = self.scheduler_classes[0] _lowerCAmelCase :List[Any] = self.get_scheduler_config(thresholding=_UpperCAmelCase , dynamic_thresholding_ratio=0 ) _lowerCAmelCase :Any = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase :List[str] = 10 _lowerCAmelCase :Any = self.dummy_model() _lowerCAmelCase :Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
687
import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) _lowerCAmelCase :Tuple = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ): _lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
687
1
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort a = logging.get_logger(__name__) a = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: Union[str, Any]=None , **_UpperCAmelCase: List[str] ): logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) _lowerCAmelCase :str = model _lowerCAmelCase :Union[str, Any] = kwargs.get('model_save_dir' , _UpperCAmelCase ) _lowerCAmelCase :List[Any] = kwargs.get('latest_model_name' , _UpperCAmelCase ) def __call__( self: Optional[Any] , **_UpperCAmelCase: Dict ): _lowerCAmelCase :Tuple = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCAmelCase , _UpperCAmelCase ) @staticmethod def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase: Union[str, Path] , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Tuple=None ): if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) _lowerCAmelCase :Dict = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: Union[str, Path] , _UpperCAmelCase: Optional[str] = None , **_UpperCAmelCase: Any ): _lowerCAmelCase :Optional[int] = file_name if file_name is not None else ONNX_WEIGHTS_NAME _lowerCAmelCase :Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) _lowerCAmelCase :str = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _lowerCAmelCase :Optional[Any] = self.model_save_dir.joinpath(_UpperCAmelCase ) if src_path.exists(): _lowerCAmelCase :Any = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Union[str, os.PathLike] , **_UpperCAmelCase: Optional[Any] , ): if os.path.isfile(_UpperCAmelCase ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # saving model weights/files self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: Union[str, Path] , _UpperCAmelCase: Optional[Union[bool, str, None]] = None , _UpperCAmelCase: Optional[Union[str, None]] = None , _UpperCAmelCase: bool = False , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional["ort.SessionOptions"] = None , **_UpperCAmelCase: List[str] , ): _lowerCAmelCase :List[Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCAmelCase ): _lowerCAmelCase :int = OnnxRuntimeModel.load_model( os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) _lowerCAmelCase :str = Path(_UpperCAmelCase ) # load model from hub else: # download model _lowerCAmelCase :Union[str, Any] = hf_hub_download( repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , ) _lowerCAmelCase :List[str] = Path(_UpperCAmelCase ).parent _lowerCAmelCase :Union[str, Any] = Path(_UpperCAmelCase ).name _lowerCAmelCase :Any = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) return cls(model=_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Union[str, Any] , _UpperCAmelCase: Union[str, Path] , _UpperCAmelCase: bool = True , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , **_UpperCAmelCase: Any , ): _lowerCAmelCase :List[str] = None if len(str(_UpperCAmelCase ).split('@' ) ) == 2: _lowerCAmelCase , _lowerCAmelCase :Any = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
687
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
1
from ...processing_utils import ProcessorMixin class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Tuple = ['image_processor', 'feature_extractor'] lowerCamelCase : str = 'TvltImageProcessor' lowerCamelCase : Any = 'TvltFeatureExtractor' def __init__( self: Optional[int] , _UpperCAmelCase: Dict , _UpperCAmelCase: Tuple ): super().__init__(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) _lowerCAmelCase :str = image_processor _lowerCAmelCase :Union[str, Any] = feature_extractor def __call__( self: Dict , _UpperCAmelCase: List[Any]=None , _UpperCAmelCase: Dict=None , _UpperCAmelCase: Optional[int]=None , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: List[Any]=False , _UpperCAmelCase: Union[str, Any]=False , *_UpperCAmelCase: Optional[Any] , **_UpperCAmelCase: Dict , ): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.' ) _lowerCAmelCase :str = None if images is not None: _lowerCAmelCase :List[str] = self.image_processor(_UpperCAmelCase , mask_pixel=_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) if images_mixed is not None: _lowerCAmelCase :Union[str, Any] = self.image_processor(_UpperCAmelCase , is_mixed=_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) if audio is not None: _lowerCAmelCase :List[str] = self.feature_extractor( _UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , mask_audio=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = {} if audio is not None: output_dict.update(_UpperCAmelCase ) if images is not None: output_dict.update(_UpperCAmelCase ) if images_mixed_dict is not None: output_dict.update(_UpperCAmelCase ) return output_dict @property def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = self.image_processor.model_input_names _lowerCAmelCase :Tuple = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
687
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[str] = 'ylacombe/bark-small' _lowerCAmelCase :int = tempfile.mkdtemp() _lowerCAmelCase :List[str] = 'en_speaker_1' _lowerCAmelCase :Union[str, Any] = 'This is a test string' _lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json' _lowerCAmelCase :str = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[Any] = self.get_tokenizer() _lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase :Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase :List[Any] = 35 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :Dict = 8 _lowerCAmelCase :Dict = { 'semantic_prompt': np.ones(_UpperCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Tuple = self.get_tokenizer() _lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = processor(text=self.input_string ) _lowerCAmelCase :List[str] = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
687
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: a = None a = logging.get_logger(__name__) a = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} a = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), }, """tokenizer_file""": { """google/bigbird-roberta-base""": ( """https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json""" ), """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json""" ), }, } a = { """google/bigbird-roberta-base""": 4_096, """google/bigbird-roberta-large""": 4_096, """google/bigbird-base-trivia-itc""": 4_096, } a = """▁""" class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Any = VOCAB_FILES_NAMES lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[str] = BigBirdTokenizer lowerCamelCase : Tuple = ['input_ids', 'attention_mask'] lowerCamelCase : List[int] = [] def __init__( self: int , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=None , _UpperCAmelCase: Dict="<unk>" , _UpperCAmelCase: Any="<s>" , _UpperCAmelCase: Optional[Any]="</s>" , _UpperCAmelCase: List[Any]="<pad>" , _UpperCAmelCase: Union[str, Any]="[SEP]" , _UpperCAmelCase: str="[MASK]" , _UpperCAmelCase: Optional[int]="[CLS]" , **_UpperCAmelCase: Union[str, Any] , ): _lowerCAmelCase :int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token _lowerCAmelCase :Union[str, Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token _lowerCAmelCase :List[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token _lowerCAmelCase :str = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token _lowerCAmelCase :int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token _lowerCAmelCase :int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase :Optional[int] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) _lowerCAmelCase :str = vocab_file _lowerCAmelCase :int = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[int] , _UpperCAmelCase: Optional[List[int]] = None ): _lowerCAmelCase :Union[str, Any] = [self.sep_token_id] _lowerCAmelCase :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: List[int] , _UpperCAmelCase: Optional[List[int]] = None , _UpperCAmelCase: bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: List[int] , _UpperCAmelCase: Optional[List[int]] = None ): _lowerCAmelCase :Union[str, Any] = [self.sep_token_id] _lowerCAmelCase :List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: str , _UpperCAmelCase: Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase :Optional[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
687
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = 'bert' def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :Dict = num_hidden_layers _lowerCAmelCase :Optional[Any] = num_attention_heads _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = intermediate_size _lowerCAmelCase :Tuple = hidden_dropout_prob _lowerCAmelCase :Tuple = attention_probs_dropout_prob _lowerCAmelCase :List[Any] = max_position_embeddings _lowerCAmelCase :Dict = type_vocab_size _lowerCAmelCase :Any = initializer_range _lowerCAmelCase :int = layer_norm_eps _lowerCAmelCase :List[Any] = position_embedding_type _lowerCAmelCase :int = use_cache _lowerCAmelCase :Union[str, Any] = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): if self.task == "multiple-choice": _lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
687
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCamelCase_( __magic_name__ : List[Any] ): """simple docstring""" _lowerCAmelCase :int = filter(lambda __magic_name__ : p.requires_grad , model.parameters() ) _lowerCAmelCase :List[str] = sum([np.prod(p.size() ) for p in model_parameters] ) return params a = logging.getLogger(__name__) def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Dict ): """simple docstring""" if metric == "rouge2": _lowerCAmelCase :List[Any] = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _lowerCAmelCase :Optional[int] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _lowerCAmelCase :Union[str, Any] = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _lowerCAmelCase :Optional[Any] = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ' function.' ) _lowerCAmelCase :int = ModelCheckpoint( dirpath=__magic_name__ , filename=__magic_name__ , monitor=f"""val_{metric}""" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def UpperCamelCase_( __magic_name__ : Dict , __magic_name__ : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f"""val_{metric}""" , mode='min' if 'loss' in metric else 'max' , patience=__magic_name__ , verbose=__magic_name__ , ) class UpperCAmelCase_ (pl.Callback ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Dict , _UpperCAmelCase: str ): _lowerCAmelCase :Any = {f"""lr_group_{i}""": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_UpperCAmelCase ) @rank_zero_only def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: pl.Trainer , _UpperCAmelCase: pl.LightningModule , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=True ): logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _lowerCAmelCase :str = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _lowerCAmelCase :List[str] = Path(pl_module.hparams.output_dir ) if type_path == "test": _lowerCAmelCase :int = od / 'test_results.txt' _lowerCAmelCase :int = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _lowerCAmelCase :Optional[int] = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" _lowerCAmelCase :str = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_UpperCAmelCase ) generations_file.parent.mkdir(exist_ok=_UpperCAmelCase ) with open(_UpperCAmelCase , 'a+' ) as writer: for key in sorted(_UpperCAmelCase ): if key in ["log", "progress_bar", "preds"]: continue _lowerCAmelCase :List[Any] = metrics[key] if isinstance(_UpperCAmelCase , torch.Tensor ): _lowerCAmelCase :int = val.item() _lowerCAmelCase :Union[str, Any] = f"""{key}: {val:.6f}\n""" writer.write(_UpperCAmelCase ) if not save_generations: return if "preds" in metrics: _lowerCAmelCase :Optional[int] = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_UpperCAmelCase ) @rank_zero_only def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any ): try: _lowerCAmelCase :Optional[Any] = pl_module.model.model.num_parameters() except AttributeError: _lowerCAmelCase :Tuple = pl_module.model.num_parameters() _lowerCAmelCase :Dict = count_trainable_parameters(_UpperCAmelCase ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6} ) @rank_zero_only def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: pl.Trainer , _UpperCAmelCase: pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_UpperCAmelCase , _UpperCAmelCase , 'test' ) @rank_zero_only def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pl.Trainer , _UpperCAmelCase: Dict ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
687
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
1
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
1
from PIL import Image def UpperCamelCase_( __magic_name__ : Image , __magic_name__ : float ): """simple docstring""" def brightness(__magic_name__ : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(__magic_name__ ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 a = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
687
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
1
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : List[Any] ): """simple docstring""" _lowerCAmelCase :int = checkpoint _lowerCAmelCase :Union[str, Any] = {} _lowerCAmelCase :Optional[Any] = vae_state_dict['encoder.conv_in.weight'] _lowerCAmelCase :str = vae_state_dict['encoder.conv_in.bias'] _lowerCAmelCase :Any = vae_state_dict['encoder.conv_out.weight'] _lowerCAmelCase :Optional[Any] = vae_state_dict['encoder.conv_out.bias'] _lowerCAmelCase :int = vae_state_dict['encoder.norm_out.weight'] _lowerCAmelCase :int = vae_state_dict['encoder.norm_out.bias'] _lowerCAmelCase :str = vae_state_dict['decoder.conv_in.weight'] _lowerCAmelCase :Union[str, Any] = vae_state_dict['decoder.conv_in.bias'] _lowerCAmelCase :int = vae_state_dict['decoder.conv_out.weight'] _lowerCAmelCase :Optional[Any] = vae_state_dict['decoder.conv_out.bias'] _lowerCAmelCase :Union[str, Any] = vae_state_dict['decoder.norm_out.weight'] _lowerCAmelCase :Tuple = vae_state_dict['decoder.norm_out.bias'] _lowerCAmelCase :Optional[int] = vae_state_dict['quant_conv.weight'] _lowerCAmelCase :Dict = vae_state_dict['quant_conv.bias'] _lowerCAmelCase :List[Any] = vae_state_dict['post_quant_conv.weight'] _lowerCAmelCase :Any = vae_state_dict['post_quant_conv.bias'] # Retrieves the keys for the encoder down blocks only _lowerCAmelCase :List[Any] = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) _lowerCAmelCase :List[str] = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(__magic_name__ ) } # Retrieves the keys for the decoder up blocks only _lowerCAmelCase :Optional[Any] = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) _lowerCAmelCase :int = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(__magic_name__ ) } for i in range(__magic_name__ ): _lowerCAmelCase :str = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: _lowerCAmelCase :str = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) _lowerCAmelCase :Optional[int] = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) _lowerCAmelCase :str = renew_vae_resnet_paths(__magic_name__ ) _lowerCAmelCase :Any = {'old': f"""down.{i}.block""", 'new': f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(__magic_name__ , __magic_name__ , __magic_name__ , additional_replacements=[meta_path] , config=__magic_name__ ) _lowerCAmelCase :Union[str, Any] = [key for key in vae_state_dict if 'encoder.mid.block' in key] _lowerCAmelCase :List[Any] = 2 for i in range(1 , num_mid_res_blocks + 1 ): _lowerCAmelCase :List[str] = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] _lowerCAmelCase :List[str] = renew_vae_resnet_paths(__magic_name__ ) _lowerCAmelCase :Optional[int] = {'old': f"""mid.block_{i}""", 'new': f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__magic_name__ , __magic_name__ , __magic_name__ , additional_replacements=[meta_path] , config=__magic_name__ ) _lowerCAmelCase :Dict = [key for key in vae_state_dict if 'encoder.mid.attn' in key] _lowerCAmelCase :List[Any] = renew_vae_attention_paths(__magic_name__ ) _lowerCAmelCase :List[Any] = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(__magic_name__ , __magic_name__ , __magic_name__ , additional_replacements=[meta_path] , config=__magic_name__ ) conv_attn_to_linear(__magic_name__ ) for i in range(__magic_name__ ): _lowerCAmelCase :str = num_up_blocks - 1 - i _lowerCAmelCase :Optional[int] = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: _lowerCAmelCase :Any = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] _lowerCAmelCase :Any = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] _lowerCAmelCase :List[Any] = renew_vae_resnet_paths(__magic_name__ ) _lowerCAmelCase :Optional[Any] = {'old': f"""up.{block_id}.block""", 'new': f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(__magic_name__ , __magic_name__ , __magic_name__ , additional_replacements=[meta_path] , config=__magic_name__ ) _lowerCAmelCase :Optional[int] = [key for key in vae_state_dict if 'decoder.mid.block' in key] _lowerCAmelCase :Dict = 2 for i in range(1 , num_mid_res_blocks + 1 ): _lowerCAmelCase :int = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] _lowerCAmelCase :List[str] = renew_vae_resnet_paths(__magic_name__ ) _lowerCAmelCase :Optional[Any] = {'old': f"""mid.block_{i}""", 'new': f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__magic_name__ , __magic_name__ , __magic_name__ , additional_replacements=[meta_path] , config=__magic_name__ ) _lowerCAmelCase :str = [key for key in vae_state_dict if 'decoder.mid.attn' in key] _lowerCAmelCase :List[Any] = renew_vae_attention_paths(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(__magic_name__ , __magic_name__ , __magic_name__ , additional_replacements=[meta_path] , config=__magic_name__ ) conv_attn_to_linear(__magic_name__ ) return new_checkpoint def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , ): """simple docstring""" _lowerCAmelCase :Optional[int] = requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) _lowerCAmelCase :Dict = io.BytesIO(r.content ) _lowerCAmelCase :Tuple = OmegaConf.load(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = 512 _lowerCAmelCase :Tuple = 'cuda' if torch.cuda.is_available() else 'cpu' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open _lowerCAmelCase :Optional[Any] = {} with safe_open(__magic_name__ , framework='pt' , device='cpu' ) as f: for key in f.keys(): _lowerCAmelCase :Optional[Any] = f.get_tensor(__magic_name__ ) else: _lowerCAmelCase :Any = torch.load(__magic_name__ , map_location=__magic_name__ )['state_dict'] # Convert the VAE model. _lowerCAmelCase :Optional[int] = create_vae_diffusers_config(__magic_name__ , image_size=__magic_name__ ) _lowerCAmelCase :List[Any] = custom_convert_ldm_vae_checkpoint(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[Any] = AutoencoderKL(**__magic_name__ ) vae.load_state_dict(__magic_name__ ) vae.save_pretrained(__magic_name__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") a = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
687
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :int = 10 _lowerCAmelCase :List[str] = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) _lowerCAmelCase :Dict = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__magic_name__ ) ), } , features=__magic_name__ , ) return dataset @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Dict ): """simple docstring""" _lowerCAmelCase :Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__magic_name__ ) return filename # FILE_CONTENT + files a = """\ Text data. Second line of data.""" @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Optional[int] ): """simple docstring""" _lowerCAmelCase :Dict = tmp_path_factory.mktemp('data' ) / 'file.txt' _lowerCAmelCase :List[Any] = FILE_CONTENT with open(__magic_name__ , 'w' ) as f: f.write(__magic_name__ ) return filename @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Any ): """simple docstring""" import bza _lowerCAmelCase :Dict = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' _lowerCAmelCase :List[str] = bytes(__magic_name__ , 'utf-8' ) with bza.open(__magic_name__ , 'wb' ) as f: f.write(__magic_name__ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" import gzip _lowerCAmelCase :List[Any] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) _lowerCAmelCase :Dict = bytes(__magic_name__ , 'utf-8' ) with gzip.open(__magic_name__ , 'wb' ) as f: f.write(__magic_name__ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : List[str] ): """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame _lowerCAmelCase :Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' _lowerCAmelCase :List[Any] = bytes(__magic_name__ , 'utf-8' ) with lza.frame.open(__magic_name__ , 'wb' ) as f: f.write(__magic_name__ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : List[Any] , __magic_name__ : List[Any] ): """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr _lowerCAmelCase :Any = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__magic_name__ , 'w' ) as archive: archive.write(__magic_name__ , arcname=os.path.basename(__magic_name__ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Tuple ): """simple docstring""" import tarfile _lowerCAmelCase :Any = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__magic_name__ , 'w' ) as f: f.add(__magic_name__ , arcname=os.path.basename(__magic_name__ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Tuple ): """simple docstring""" import lzma _lowerCAmelCase :Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' _lowerCAmelCase :Any = bytes(__magic_name__ , 'utf-8' ) with lzma.open(__magic_name__ , 'wb' ) as f: f.write(__magic_name__ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Any , __magic_name__ : Union[str, Any] ): """simple docstring""" import zipfile _lowerCAmelCase :Dict = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__magic_name__ , 'w' ) as f: f.write(__magic_name__ , arcname=os.path.basename(__magic_name__ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _lowerCAmelCase :List[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' _lowerCAmelCase :Any = bytes(__magic_name__ , 'utf-8' ) with zstd.open(__magic_name__ , 'wb' ) as f: f.write(__magic_name__ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Tuple ): """simple docstring""" _lowerCAmelCase :Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.xml' _lowerCAmelCase :Union[str, Any] = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__magic_name__ , 'w' ) as f: f.write(__magic_name__ ) return filename a = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] a = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] a = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } a = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] a = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope='session' ) def UpperCamelCase_( ): """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Optional[int] ): """simple docstring""" _lowerCAmelCase :Optional[int] = datasets.Dataset.from_dict(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__magic_name__ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__magic_name__ ) ) as con: _lowerCAmelCase :Union[str, Any] = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" _lowerCAmelCase :Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__magic_name__ , 'w' , newline='' ) as f: _lowerCAmelCase :Dict = csv.DictWriter(__magic_name__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__magic_name__ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : List[str] ): """simple docstring""" _lowerCAmelCase :int = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__magic_name__ , 'w' , newline='' ) as f: _lowerCAmelCase :Optional[int] = csv.DictWriter(__magic_name__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__magic_name__ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Optional[int] ): """simple docstring""" import bza _lowerCAmelCase :Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__magic_name__ , 'rb' ) as f: _lowerCAmelCase :Dict = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__magic_name__ , 'wb' ) as f: f.write(__magic_name__ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Any , __magic_name__ : Dict ): """simple docstring""" _lowerCAmelCase :Dict = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__magic_name__ , 'w' ) as f: f.write(__magic_name__ , arcname=os.path.basename(__magic_name__ ) ) f.write(__magic_name__ , arcname=os.path.basename(__magic_name__ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :str = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__magic_name__ , 'w' ) as f: f.write(__magic_name__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__magic_name__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Any ): """simple docstring""" _lowerCAmelCase :Dict = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__magic_name__ , 'w' ) as f: f.write(__magic_name__ , arcname=os.path.join('main_dir' , os.path.basename(__magic_name__ ) ) ) f.write(__magic_name__ , arcname=os.path.join('main_dir' , os.path.basename(__magic_name__ ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : List[str] ): """simple docstring""" _lowerCAmelCase :Any = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) _lowerCAmelCase :Optional[Any] = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__magic_name__ , 'wb' ) as f: _lowerCAmelCase :str = pq.ParquetWriter(__magic_name__ , schema=__magic_name__ ) _lowerCAmelCase :Any = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__magic_name__ ) )] for k in DATA[0]} , schema=__magic_name__ ) writer.write_table(__magic_name__ ) writer.close() return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _lowerCAmelCase :Union[str, Any] = {'data': DATA} with open(__magic_name__ , 'w' ) as f: json.dump(__magic_name__ , __magic_name__ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :List[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _lowerCAmelCase :int = {'data': DATA_DICT_OF_LISTS} with open(__magic_name__ , 'w' ) as f: json.dump(__magic_name__ , __magic_name__ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :str = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__magic_name__ , 'w' ) as f: for item in DATA: f.write(json.dumps(__magic_name__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : List[Any] ): """simple docstring""" _lowerCAmelCase :Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__magic_name__ , 'w' ) as f: for item in DATA: f.write(json.dumps(__magic_name__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__magic_name__ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__magic_name__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Tuple ): """simple docstring""" _lowerCAmelCase :Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__magic_name__ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__magic_name__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Dict , __magic_name__ : List[Any] ): """simple docstring""" import gzip _lowerCAmelCase :Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__magic_name__ , 'rb' ) as orig_file: with gzip.open(__magic_name__ , 'wb' ) as zipped_file: zipped_file.writelines(__magic_name__ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : List[str] , __magic_name__ : Any ): """simple docstring""" import gzip _lowerCAmelCase :Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__magic_name__ , 'rb' ) as orig_file: with gzip.open(__magic_name__ , 'wb' ) as zipped_file: zipped_file.writelines(__magic_name__ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : Tuple ): """simple docstring""" _lowerCAmelCase :Tuple = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__magic_name__ , 'w' ) as f: f.write(__magic_name__ , arcname=os.path.basename(__magic_name__ ) ) f.write(__magic_name__ , arcname=os.path.basename(__magic_name__ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :str = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__magic_name__ , 'w' ) as f: f.write(__magic_name__ , arcname=os.path.join('nested' , os.path.basename(__magic_name__ ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Tuple ): """simple docstring""" _lowerCAmelCase :Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__magic_name__ , 'w' ) as f: f.write(__magic_name__ , arcname=os.path.join('main_dir' , os.path.basename(__magic_name__ ) ) ) f.write(__magic_name__ , arcname=os.path.join('main_dir' , os.path.basename(__magic_name__ ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Any ): """simple docstring""" _lowerCAmelCase :Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__magic_name__ , 'w' ) as f: f.add(__magic_name__ , arcname=os.path.basename(__magic_name__ ) ) f.add(__magic_name__ , arcname=os.path.basename(__magic_name__ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Dict ): """simple docstring""" _lowerCAmelCase :int = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__magic_name__ , 'w' ) as f: f.add(__magic_name__ , arcname=os.path.join('nested' , os.path.basename(__magic_name__ ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :List[str] = ['0', '1', '2', '3'] _lowerCAmelCase :str = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__magic_name__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Tuple = ['0', '1', '2', '3'] _lowerCAmelCase :Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__magic_name__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : List[Any] ): """simple docstring""" _lowerCAmelCase :str = ['0', '1', '2', '3'] _lowerCAmelCase :Tuple = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__magic_name__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Dict ): """simple docstring""" _lowerCAmelCase :List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__magic_name__ , 'w' ) as f: f.write(__magic_name__ , arcname=os.path.basename(__magic_name__ ) ) f.write(__magic_name__ , arcname=os.path.basename(__magic_name__ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__magic_name__ , 'w' ) as f: f.write(__magic_name__ , arcname=os.path.join('main_dir' , os.path.basename(__magic_name__ ) ) ) f.write(__magic_name__ , arcname=os.path.join('main_dir' , os.path.basename(__magic_name__ ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : int , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__magic_name__ , 'w' ) as f: f.write(__magic_name__ , arcname=os.path.basename('unsupported.ext' ) ) f.write(__magic_name__ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : List[Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) _lowerCAmelCase :List[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__magic_name__ , 'w' , encoding='utf-8' ) as f: f.write(__magic_name__ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( ): """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def UpperCamelCase_( ): """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : List[Any] , __magic_name__ : Tuple ): """simple docstring""" _lowerCAmelCase :Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__magic_name__ , 'w' ) as f: f.write(__magic_name__ , arcname=os.path.basename(__magic_name__ ) ) f.write(__magic_name__ , arcname=os.path.basename(__magic_name__ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
687
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ): _lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20} _lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase :str = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :Optional[Any] = num_channels _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :int = min_resolution _lowerCAmelCase :List[str] = max_resolution _lowerCAmelCase :List[str] = do_resize _lowerCAmelCase :Optional[int] = size _lowerCAmelCase :str = do_center_crop _lowerCAmelCase :int = crop_size _lowerCAmelCase :Optional[int] = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: int ): # Initialize image_processing _lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # Initialize image_processing _lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any ): # Initialize image_processing _lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
687
1
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: List[str] , *_UpperCAmelCase: List[Any] , **_UpperCAmelCase: List[str] ): warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
687
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Any = PandasConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :Any = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Any = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
687
1
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int ): # clean up the VRAM after each test super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _lowerCAmelCase :int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _lowerCAmelCase :List[str] = 'xvjiarui/stable-diffusion-2-inpainting' _lowerCAmelCase , _lowerCAmelCase :Tuple = FlaxStableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase , safety_checker=_UpperCAmelCase ) _lowerCAmelCase :List[str] = 'Face of a yellow cat, high resolution, sitting on a park bench' _lowerCAmelCase :Any = jax.random.PRNGKey(0 ) _lowerCAmelCase :Any = 50 _lowerCAmelCase :Optional[int] = jax.device_count() _lowerCAmelCase :List[Any] = num_samples * [prompt] _lowerCAmelCase :Dict = num_samples * [init_image] _lowerCAmelCase :Dict = num_samples * [mask_image] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :List[Any] = pipeline.prepare_inputs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # shard inputs and rng _lowerCAmelCase :Any = replicate(_UpperCAmelCase ) _lowerCAmelCase :Tuple = jax.random.split(_UpperCAmelCase , jax.device_count() ) _lowerCAmelCase :Union[str, Any] = shard(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = shard(_UpperCAmelCase ) _lowerCAmelCase :List[str] = shard(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = pipeline( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase ) _lowerCAmelCase :Dict = output.images.reshape(_UpperCAmelCase , 512 , 512 , 3 ) _lowerCAmelCase :Optional[Any] = images[0, 253:256, 253:256, -1] _lowerCAmelCase :str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCAmelCase :Optional[int] = jnp.array( [0.3_6_1_1_3_0_7, 0.3_7_6_4_9_7_3_6, 0.3_7_5_7_4_0_8, 0.3_8_2_1_3_9_5_3, 0.3_9_2_9_5_1_6_7, 0.3_8_4_1_6_3_1, 0.4_1_5_5_4_9_7_8, 0.4_1_3_7_4_7_5, 0.4_2_1_7_0_8_4] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
687
import glob import os import random from string import ascii_lowercase, digits import cva a = """""" a = """""" a = """""" a = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ ) print('Processing...' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase :Optional[Any] = random_chars(32 ) _lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" ) _lowerCAmelCase :str = [] for anno in new_annos[index]: _lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__magic_name__ ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = [] _lowerCAmelCase :Union[str, Any] = [] for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ): _lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__magic_name__ ) as in_file: _lowerCAmelCase :Union[str, Any] = in_file.readlines() _lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" ) _lowerCAmelCase :Tuple = [] for obj_list in obj_lists: _lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :Any = [] _lowerCAmelCase :Optional[Any] = [] for idx in range(len(__magic_name__ ) ): _lowerCAmelCase :Optional[int] = [] _lowerCAmelCase :Optional[Any] = img_list[idx] path_list.append(__magic_name__ ) _lowerCAmelCase :List[str] = anno_list[idx] _lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ ) if flip_type == 1: _lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_( __magic_name__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase :str = ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
687
1
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
687
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ ) _lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ ) return torch.mm(__magic_name__ , normalized_text_embeds.t() ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = CLIPConfig lowerCamelCase : Any = ['CLIPEncoderLayer'] def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ): super().__init__(_UpperCAmelCase ) _lowerCAmelCase :Any = CLIPVisionModel(config.vision_config ) _lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) _lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase :str = [] _lowerCAmelCase :List[Any] = image_embeds.shape[0] for i in range(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx] _lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowerCAmelCase :Any = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx] _lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) _lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ): _lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) _lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :Any = 0.0 _lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase :List[str] = special_care * 0.0_1 _lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
1
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
1
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE__ ( self: int ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _lowerCAmelCase :List[Any] = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = TFAutoModel.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoModel.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _lowerCAmelCase :List[str] = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[Any] = TFAutoModelForPreTraining.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = AutoModelForPreTraining.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self: Tuple ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :Dict = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Tuple = TFAutoModelForCausalLM.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = TFAutoModelForCausalLM.from_pretrained( _UpperCAmelCase , output_loading_info=_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase :List[str] = AutoModelForCausalLM.from_pretrained( _UpperCAmelCase , output_loading_info=_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self: Tuple ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :Union[str, Any] = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :str = AutoModelWithLMHead.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :Union[str, Any] = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = TFAutoModelForMaskedLM.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase :int = TFAutoModelForMaskedLM.from_pretrained( _UpperCAmelCase , output_loading_info=_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = AutoModelForMaskedLM.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = AutoModelForMaskedLM.from_pretrained( _UpperCAmelCase , output_loading_info=_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[str] = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase :Any = TFAutoModelForSeqaSeqLM.from_pretrained( _UpperCAmelCase , output_loading_info=_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained( _UpperCAmelCase , output_loading_info=_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self: Dict ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _lowerCAmelCase :Dict = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = TFAutoModelForSequenceClassification.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = AutoModelForSequenceClassification.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _lowerCAmelCase :Optional[int] = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[Any] = TFAutoModelForQuestionAnswering.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = AutoModelForQuestionAnswering.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[int] = TFAutoModelWithLMHead.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=_UpperCAmelCase ) , 1_4410 ) _lowerCAmelCase :Union[str, Any] = AutoModelWithLMHead.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=_UpperCAmelCase ) , 1_4410 ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[str] = TFAutoModelWithLMHead.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=_UpperCAmelCase ) , 1_4410 ) _lowerCAmelCase :Tuple = AutoModelWithLMHead.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=_UpperCAmelCase ) , 1_4410 )
687
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'encoder-decoder' lowerCamelCase : Optional[Any] = True def __init__( self: str , **_UpperCAmelCase: int ): super().__init__(**_UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' ) _lowerCAmelCase :Dict = encoder_config.pop('model_type' ) _lowerCAmelCase :str = kwargs.pop('decoder' ) _lowerCAmelCase :str = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCAmelCase :Dict = True _lowerCAmelCase :List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :Optional[int] = self.encoder.to_dict() _lowerCAmelCase :Union[str, Any] = self.decoder.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output
687
1
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() a = [ """word_embeddings_layernorm.weight""", """word_embeddings_layernorm.bias""", """input_layernorm.weight""", """input_layernorm.bias""", """post_attention_layernorm.weight""", """post_attention_layernorm.bias""", """self_attention.dense.bias""", """mlp.dense_4h_to_h.bias""", """ln_f.weight""", """ln_f.bias""", ] a = [ """mlp.dense_4h_to_h.weight""", """self_attention.dense.weight""", ] def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict ): """simple docstring""" _lowerCAmelCase :Any = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks _lowerCAmelCase :Dict = int(re.match(r'.*layer_(\d*).*' , __magic_name__ )[1] ) layer_number -= 3 return f"""h.{layer_number}.""" + key def UpperCamelCase_( __magic_name__ : Any ): """simple docstring""" if dtype == torch.bool: return 1 / 8 _lowerCAmelCase :int = re.search(r'[^\d](\d+)$' , str(__magic_name__ ) ) if bit_search is None: raise ValueError(f"""`dtype` is not a valid dtype: {dtype}.""" ) _lowerCAmelCase :List[str] = int(bit_search.groups()[0] ) return bit_size // 8 def UpperCamelCase_( __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Dict ): """simple docstring""" if bloom_config_file == "": _lowerCAmelCase :List[Any] = BloomConfig() else: _lowerCAmelCase :Dict = BloomConfig.from_json_file(__magic_name__ ) if shard_model: _lowerCAmelCase :str = os.listdir(__magic_name__ ) _lowerCAmelCase :int = sorted(filter(lambda __magic_name__ : s.startswith('layer' ) and "model_00" in s , __magic_name__ ) ) _lowerCAmelCase :Any = {'weight_map': {}, 'metadata': {}} _lowerCAmelCase :int = 0 _lowerCAmelCase :str = None _lowerCAmelCase :List[Any] = BloomConfig() for j, file in enumerate(__magic_name__ ): print('Processing file: {}'.format(__magic_name__ ) ) _lowerCAmelCase :List[Any] = None for i in range(__magic_name__ ): # load all TP files _lowerCAmelCase :Optional[int] = file.replace('model_00' , f"""model_0{i}""" ) _lowerCAmelCase :Tuple = torch.load(os.path.join(__magic_name__ , __magic_name__ ) , map_location='cpu' ) # Rename keys in the transformers names _lowerCAmelCase :Optional[Any] = list(temp.keys() ) for key in keys: _lowerCAmelCase :Tuple = temp.pop(__magic_name__ ) if tensors is None: _lowerCAmelCase :Tuple = temp else: for key in tensors.keys(): if any(key.endswith(__magic_name__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _lowerCAmelCase :List[str] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _lowerCAmelCase :Tuple = torch.cat([tensors[key], temp[key]] , dim=__magic_name__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__magic_name__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _lowerCAmelCase :str = tensors[key] / pretraining_tp torch.save( __magic_name__ , os.path.join( __magic_name__ , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(__magic_name__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): _lowerCAmelCase :Dict = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: _lowerCAmelCase :Tuple = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(__magic_name__ ) ).zfill(5 ) ) _lowerCAmelCase :int = BloomConfig() _lowerCAmelCase :Optional[int] = pytorch_dump_folder_path + '/' + CONFIG_NAME _lowerCAmelCase :List[Any] = total_size with open(__magic_name__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(__magic_name__ , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase :int = json.dumps(__magic_name__ , indent=2 , sort_keys=__magic_name__ ) + '\n' f.write(__magic_name__ ) else: _lowerCAmelCase :Tuple = BloomModel(__magic_name__ ) _lowerCAmelCase :Optional[int] = os.listdir(__magic_name__ ) _lowerCAmelCase :List[Any] = sorted(filter(lambda __magic_name__ : s.startswith('layer' ) and "model_00" in s , __magic_name__ ) ) _lowerCAmelCase :Any = None for i, file in enumerate(__magic_name__ ): _lowerCAmelCase :Union[str, Any] = None for i in range(__magic_name__ ): # load all TP files _lowerCAmelCase :str = file.replace('model_00' , f"""model_0{i}""" ) _lowerCAmelCase :Tuple = torch.load(os.path.join(__magic_name__ , __magic_name__ ) , map_location='cpu' ) # Rename keys in the transformers names _lowerCAmelCase :List[Any] = list(temp.keys() ) for key in keys: _lowerCAmelCase :List[Any] = temp.pop(__magic_name__ ) if tensors is None: _lowerCAmelCase :List[Any] = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(__magic_name__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _lowerCAmelCase :List[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _lowerCAmelCase :Tuple = torch.cat([tensors[key], temp[key]] , dim=__magic_name__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__magic_name__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _lowerCAmelCase :Any = tensors[key] / pretraining_tp _lowerCAmelCase :Optional[Any] = model.load_state_dict(__magic_name__ , strict=__magic_name__ ) assert not other_keys.unexpected_keys, f"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: _lowerCAmelCase :Union[str, Any] = set(other_keys.missing_keys ) else: _lowerCAmelCase :int = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) _lowerCAmelCase :List[str] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME _lowerCAmelCase :List[str] = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: _lowerCAmelCase :Optional[Any] = model.to(config.torch_dtype ) torch.save(model.state_dict() , __magic_name__ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__magic_name__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bloom_checkpoint_path""", default=None, type=str, required=True, help="""Path to the Megatron-LM checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--bloom_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--shard_model""", action="""store_true""", help="""An optional setting to shard the output model \nThis enables sharding the converted checkpoint""", ) parser.add_argument( """--pretraining_tp""", default=4, type=int, help="""Pretraining TP rank that has been used when training the model in Megatron-LM \n""", ) a = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
687
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
1
from typing import Union import fire import torch from tqdm import tqdm def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str = "cpu" , __magic_name__ : Union[str, None] = None ): """simple docstring""" _lowerCAmelCase :Tuple = torch.load(__magic_name__ , map_location=__magic_name__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(__magic_name__ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) _lowerCAmelCase :int = v.half() if save_path is None: # overwrite src_path _lowerCAmelCase :Dict = src_path torch.save(__magic_name__ , __magic_name__ ) if __name__ == "__main__": fire.Fire(convert)
687
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a = logging.get_logger(__name__) a = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class UpperCAmelCase_ (snake_case__ , snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'resnet' lowerCamelCase : int = ['basic', 'bottleneck'] def __init__( self: int , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: Optional[Any]=64 , _UpperCAmelCase: Optional[int]=[256, 512, 1024, 2048] , _UpperCAmelCase: Union[str, Any]=[3, 4, 6, 3] , _UpperCAmelCase: Optional[int]="bottleneck" , _UpperCAmelCase: str="relu" , _UpperCAmelCase: Dict=False , _UpperCAmelCase: List[str]=None , _UpperCAmelCase: str=None , **_UpperCAmelCase: Optional[Any] , ): super().__init__(**_UpperCAmelCase ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) _lowerCAmelCase :Tuple = num_channels _lowerCAmelCase :Union[str, Any] = embedding_size _lowerCAmelCase :Any = hidden_sizes _lowerCAmelCase :List[str] = depths _lowerCAmelCase :Dict = layer_type _lowerCAmelCase :int = hidden_act _lowerCAmelCase :Optional[Any] = downsample_in_first_stage _lowerCAmelCase :List[str] = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(_UpperCAmelCase ) + 1 )] _lowerCAmelCase , _lowerCAmelCase :Any = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return 1e-3
687
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[int] = 10 def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :str = [1, 2, 3, 4] _lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[int] = '' _lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = ['It was the best of times.'] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[str] = 101 _lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
687
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a = logging.get_logger(__name__) a = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Optional[Any] = 't5' lowerCamelCase : Any = ['past_key_values'] lowerCamelCase : List[Any] = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self: Any , _UpperCAmelCase: int=3_2128 , _UpperCAmelCase: str=512 , _UpperCAmelCase: List[str]=64 , _UpperCAmelCase: Optional[int]=2048 , _UpperCAmelCase: List[Any]=6 , _UpperCAmelCase: Any=None , _UpperCAmelCase: Dict=8 , _UpperCAmelCase: Any=32 , _UpperCAmelCase: List[str]=128 , _UpperCAmelCase: Tuple=0.1 , _UpperCAmelCase: Optional[Any]=1e-6 , _UpperCAmelCase: int=1.0 , _UpperCAmelCase: str="relu" , _UpperCAmelCase: int=True , _UpperCAmelCase: List[Any]=True , _UpperCAmelCase: int=0 , _UpperCAmelCase: Union[str, Any]=1 , **_UpperCAmelCase: Any , ): _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Union[str, Any] = d_model _lowerCAmelCase :Union[str, Any] = d_kv _lowerCAmelCase :Union[str, Any] = d_ff _lowerCAmelCase :Tuple = num_layers _lowerCAmelCase :Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _lowerCAmelCase :List[str] = num_heads _lowerCAmelCase :Optional[int] = relative_attention_num_buckets _lowerCAmelCase :Any = relative_attention_max_distance _lowerCAmelCase :List[Any] = dropout_rate _lowerCAmelCase :str = layer_norm_epsilon _lowerCAmelCase :Dict = initializer_factor _lowerCAmelCase :Any = feed_forward_proj _lowerCAmelCase :Optional[Any] = use_cache _lowerCAmelCase :Tuple = self.feed_forward_proj.split('-' ) _lowerCAmelCase :List[str] = act_info[-1] _lowerCAmelCase :Union[str, Any] = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _lowerCAmelCase :Tuple = 'gelu_new' super().__init__( pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase , ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[Any] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: _lowerCAmelCase :List[str] = 'past_encoder_sequence + sequence' _lowerCAmelCase :Dict = {0: 'batch'} _lowerCAmelCase :Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _lowerCAmelCase :str = {0: 'batch', 1: 'decoder_sequence'} _lowerCAmelCase :Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property def SCREAMING_SNAKE_CASE__ ( self: List[str] ): return 13
687
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
687
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[str] = 'ylacombe/bark-small' _lowerCAmelCase :int = tempfile.mkdtemp() _lowerCAmelCase :List[str] = 'en_speaker_1' _lowerCAmelCase :Union[str, Any] = 'This is a test string' _lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json' _lowerCAmelCase :str = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[Any] = self.get_tokenizer() _lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase :Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase :List[Any] = 35 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :Dict = 8 _lowerCAmelCase :Dict = { 'semantic_prompt': np.ones(_UpperCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Tuple = self.get_tokenizer() _lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = processor(text=self.input_string ) _lowerCAmelCase :List[str] = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
687
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu a = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: a = json.load(f) @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Tuple ): return FSMTTokenizer.from_pretrained(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :int = FSMTForConditionalGeneration.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict , _UpperCAmelCase: Dict ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality _lowerCAmelCase :Tuple = f"""facebook/wmt19-{pair}""" _lowerCAmelCase :int = self.get_tokenizer(_UpperCAmelCase ) _lowerCAmelCase :str = self.get_model(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = bleu_data[pair]['src'] _lowerCAmelCase :Optional[Any] = bleu_data[pair]['tgt'] _lowerCAmelCase :Union[str, Any] = tokenizer(_UpperCAmelCase , return_tensors='pt' , truncation=_UpperCAmelCase , padding='longest' ).to(_UpperCAmelCase ) _lowerCAmelCase :Any = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _lowerCAmelCase :Any = tokenizer.batch_decode( _UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = calculate_bleu(_UpperCAmelCase , _UpperCAmelCase ) print(_UpperCAmelCase ) self.assertGreaterEqual(scores['bleu'] , _UpperCAmelCase )
687
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
from __future__ import annotations from collections import namedtuple def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :Any = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
687
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) a = parser.parse_args() a = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a = CLIPImageProcessor() a = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") a = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
687
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ): """simple docstring""" _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] _lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] _lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""] _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""] _lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :int = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' ) _lowerCAmelCase :List[Any] = {} _lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight'] _lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias'] _lowerCAmelCase :Dict = checkpoint['time_embed.2.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias'] _lowerCAmelCase :List[Any] = unet_config['down_block_types'] _lowerCAmelCase :Any = unet_config['layers_per_block'] _lowerCAmelCase :List[Any] = unet_config['attention_head_dim'] _lowerCAmelCase :Tuple = unet_config['block_out_channels'] _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Optional[int] = channels_list[0] for i, layer_type in enumerate(__magic_name__ ): _lowerCAmelCase :Tuple = channels_list[i] _lowerCAmelCase :Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}""" _lowerCAmelCase :str = f"""input_blocks.{current_layer}.1""" _lowerCAmelCase :Optional[Any] = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0""" _lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 _lowerCAmelCase :Dict = current_channels # hardcoded the mid-block for now _lowerCAmelCase :int = 'mid_block.resnets.0' _lowerCAmelCase :Optional[Any] = 'middle_block.0' _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = 'mid_block.attentions.0' _lowerCAmelCase :Optional[int] = 'middle_block.1' _lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1' _lowerCAmelCase :Optional[int] = 'middle_block.2' _lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :str = unet_config['up_block_types'] for i, layer_type in enumerate(__magic_name__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1""" _lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}""" _lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1""" _lowerCAmelCase :int = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = checkpoint['out.0.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias'] _lowerCAmelCase :List[Any] = checkpoint['out.2.weight'] _lowerCAmelCase :Dict = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
687
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ a = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ a = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: List[List[List[str]]] , _UpperCAmelCase: List[List[str]] , _UpperCAmelCase: int = 1 , _UpperCAmelCase: int = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_UpperCAmelCase , hypotheses=_UpperCAmelCase , min_len=_UpperCAmelCase , max_len=_UpperCAmelCase ) }
687
import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) _lowerCAmelCase :Tuple = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ): _lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
687
1
def UpperCamelCase_( __magic_name__ : int , __magic_name__ : int ): """simple docstring""" return 1 if input_a == input_a else 0 def UpperCamelCase_( ): """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
687
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
1
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = XLMTokenizer lowerCamelCase : Dict = False def SCREAMING_SNAKE_CASE__ ( self: str ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase :int = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _lowerCAmelCase :int = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) _lowerCAmelCase :Optional[int] = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] _lowerCAmelCase :Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: int ): _lowerCAmelCase :Any = 'lower newer' _lowerCAmelCase :Dict = 'lower newer' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[Any] = XLMTokenizer(self.vocab_file , self.merges_file ) _lowerCAmelCase :Tuple = 'lower' _lowerCAmelCase :List[Any] = ['low', 'er</w>'] _lowerCAmelCase :Union[str, Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :str = tokens + ['<unk>'] _lowerCAmelCase :Dict = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :Optional[int] = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) _lowerCAmelCase :List[Any] = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
687
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :List[str] = 'ylacombe/bark-small' _lowerCAmelCase :int = tempfile.mkdtemp() _lowerCAmelCase :List[str] = 'en_speaker_1' _lowerCAmelCase :Union[str, Any] = 'This is a test string' _lowerCAmelCase :List[Any] = 'speaker_embeddings_path.json' _lowerCAmelCase :str = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self: str , **_UpperCAmelCase: Optional[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[Any] = self.get_tokenizer() _lowerCAmelCase :List[str] = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCAmelCase :Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase :Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCAmelCase :List[Any] = 35 _lowerCAmelCase :Optional[int] = 2 _lowerCAmelCase :Dict = 8 _lowerCAmelCase :Dict = { 'semantic_prompt': np.ones(_UpperCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCAmelCase :int = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Dict = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCAmelCase :Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Tuple = self.get_tokenizer() _lowerCAmelCase :Union[str, Any] = BarkProcessor(tokenizer=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = processor(text=self.input_string ) _lowerCAmelCase :List[str] = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
687
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a = { """configuration_rag""": ["""RagConfig"""], """retrieval_rag""": ["""RagRetriever"""], """tokenization_rag""": ["""RagTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """RagModel""", """RagPreTrainedModel""", """RagSequenceForGeneration""", """RagTokenForGeneration""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """TFRagModel""", """TFRagPreTrainedModel""", """TFRagSequenceForGeneration""", """TFRagTokenForGeneration""", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : int = 'bert' def __init__( self: Optional[Any] , _UpperCAmelCase: Tuple=3_0522 , _UpperCAmelCase: int=768 , _UpperCAmelCase: Union[str, Any]=12 , _UpperCAmelCase: Dict=12 , _UpperCAmelCase: List[Any]=3072 , _UpperCAmelCase: List[Any]="gelu" , _UpperCAmelCase: Union[str, Any]=0.1 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Optional[int]=0.0_2 , _UpperCAmelCase: Any=1e-1_2 , _UpperCAmelCase: Optional[Any]=0 , _UpperCAmelCase: Union[str, Any]="absolute" , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[int] , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :Dict = num_hidden_layers _lowerCAmelCase :Optional[Any] = num_attention_heads _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = intermediate_size _lowerCAmelCase :Tuple = hidden_dropout_prob _lowerCAmelCase :Tuple = attention_probs_dropout_prob _lowerCAmelCase :List[Any] = max_position_embeddings _lowerCAmelCase :Dict = type_vocab_size _lowerCAmelCase :Any = initializer_range _lowerCAmelCase :int = layer_norm_eps _lowerCAmelCase :List[Any] = position_embedding_type _lowerCAmelCase :int = use_cache _lowerCAmelCase :Union[str, Any] = classifier_dropout class UpperCAmelCase_ (snake_case__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): if self.task == "multiple-choice": _lowerCAmelCase :List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase :Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
687
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Union[tf.Tensor, np.ndarray] ): """simple docstring""" if isinstance(__magic_name__ , np.ndarray ): return list(tensor.shape ) _lowerCAmelCase :Dict = tf.shape(__magic_name__ ) if tensor.shape == tf.TensorShape(__magic_name__ ): return dynamic _lowerCAmelCase :Optional[int] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__magic_name__ )] def UpperCamelCase_( __magic_name__ : tf.Tensor , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[str] = None ): """simple docstring""" return tf.nn.softmax(logits=logits + 1e-9 , axis=__magic_name__ , name=__magic_name__ ) def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any]=1e-5 , __magic_name__ : Tuple=-1 ): """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__magic_name__ , __magic_name__ ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized _lowerCAmelCase , _lowerCAmelCase :Any = tf.nn.moments(__magic_name__ , axes=[axis] , keepdims=__magic_name__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _lowerCAmelCase :Optional[Any] = [1] * inputs.shape.rank _lowerCAmelCase :Union[str, Any] = shape_list(__magic_name__ )[axis] _lowerCAmelCase :Dict = tf.reshape(__magic_name__ , __magic_name__ ) _lowerCAmelCase :str = tf.reshape(__magic_name__ , __magic_name__ ) # Compute layer normalization using the batch_normalization # function. _lowerCAmelCase :str = tf.nn.batch_normalization( __magic_name__ , __magic_name__ , __magic_name__ , offset=__magic_name__ , scale=__magic_name__ , variance_epsilon=__magic_name__ , ) return outputs def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Tuple=0 , __magic_name__ : Dict=-1 ): """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _lowerCAmelCase :Dict = tf.shape(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _lowerCAmelCase :Union[str, Any] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(__magic_name__ , __magic_name__ ) def UpperCamelCase_( __magic_name__ : tf.Tensor ): """simple docstring""" if not isinstance(__magic_name__ , tf.Tensor ): _lowerCAmelCase :Union[str, Any] = tf.convert_to_tensor(__magic_name__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _lowerCAmelCase :Dict = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _lowerCAmelCase :Dict = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _lowerCAmelCase :str = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def UpperCamelCase_( __magic_name__ : tf.Tensor , __magic_name__ : int , __magic_name__ : str = "input_ids" ): """simple docstring""" tf.debugging.assert_less( __magic_name__ , tf.cast(__magic_name__ , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(__magic_name__ )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ): """simple docstring""" _lowerCAmelCase :Optional[int] = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _lowerCAmelCase :Optional[Any] = [x for x in data if len(__magic_name__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) _lowerCAmelCase :Tuple = np.asarray(__magic_name__ ) _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Any = np.array_split(__magic_name__ , __magic_name__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _lowerCAmelCase :Union[str, Any] = np.array_split(__magic_name__ , __magic_name__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__magic_name__ ): _lowerCAmelCase :int = chunk_data else: _lowerCAmelCase :Tuple = data def UpperCamelCase_( __magic_name__ : int , __magic_name__ : List[str] ): """simple docstring""" if name in group.attrs: _lowerCAmelCase :Dict = [n.decode('utf8' ) if hasattr(__magic_name__ , 'decode' ) else n for n in group.attrs[name]] else: _lowerCAmelCase :List[Any] = [] _lowerCAmelCase :Tuple = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(__magic_name__ , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" def _expand_single_ad_tensor(__magic_name__ : str ): if isinstance(__magic_name__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__magic_name__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , __magic_name__ )
687
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
1
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets a = datasets.logging.get_logger(__name__) a = """\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } """ a = """\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project's README at https://github.com/google-research/bleurt#readme for more information. """ a = """ BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: 'scores': List of scores. Examples: >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> bleurt = datasets.load_metric(\"bleurt\") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results[\"scores\"]]) [1.03, 1.04] """ a = { """bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""", """bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""", """bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""", """bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""", """bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""", """bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""", """BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""", """BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""", """BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""", """BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/google-research/bleurt' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/bleurt'] , reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Dict ): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( 'Using default BLEURT-Base checkpoint for sequence maximum length 128. ' 'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').' ) _lowerCAmelCase :str = 'bleurt-base-128' if self.config_name.lower() in CHECKPOINT_URLS: _lowerCAmelCase :int = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: _lowerCAmelCase :Dict = self.config_name.upper() else: raise KeyError( f"""{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}""" ) # download the model checkpoint specified by self.config_name and set up the scorer _lowerCAmelCase :Optional[Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) _lowerCAmelCase :str = score.BleurtScorer(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.scorer.score(references=_UpperCAmelCase , candidates=_UpperCAmelCase ) return {"scores": scores}
687
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[int] = list(__magic_name__ ) _lowerCAmelCase :Dict = list(__magic_name__ ) _lowerCAmelCase :Any = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count += 1 _lowerCAmelCase :Union[str, Any] = '_' if count > 1: return False else: return "".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :int = [] while True: _lowerCAmelCase :str = ['$'] * len(__magic_name__ ) _lowerCAmelCase :Optional[int] = [] for i in range(len(__magic_name__ ) ): for j in range(i + 1 , len(__magic_name__ ) ): _lowerCAmelCase :int = compare_string(binary[i] , binary[j] ) if k is False: _lowerCAmelCase :str = '*' _lowerCAmelCase :Union[str, Any] = '*' temp.append('X' ) for i in range(len(__magic_name__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__magic_name__ ) == 0: return pi _lowerCAmelCase :Any = list(set(__magic_name__ ) ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Sequence[float] ): """simple docstring""" _lowerCAmelCase :str = [] for minterm in minterms: _lowerCAmelCase :Any = '' for _ in range(__magic_name__ ): _lowerCAmelCase :Tuple = str(minterm % 2 ) + string minterm //= 2 temp.append(__magic_name__ ) return temp def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = list(__magic_name__ ) _lowerCAmelCase :List[Any] = list(__magic_name__ ) _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_( __magic_name__ : list[list[int]] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :List[str] = [0] * len(__magic_name__ ) for i in range(len(chart[0] ) ): _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Optional[Any] = -1 for j in range(len(__magic_name__ ) ): if chart[j][i] == 1: count += 1 _lowerCAmelCase :List[Any] = j if count == 1: _lowerCAmelCase :Dict = 1 for i in range(len(__magic_name__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__magic_name__ ) ): _lowerCAmelCase :Dict = 0 temp.append(prime_implicants[i] ) while True: _lowerCAmelCase :Dict = 0 _lowerCAmelCase :Any = -1 _lowerCAmelCase :Optional[Any] = 0 for i in range(len(__magic_name__ ) ): _lowerCAmelCase :str = chart[i].count(1 ) if count_n > max_n: _lowerCAmelCase :Optional[Any] = count_n _lowerCAmelCase :Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__magic_name__ ) ): _lowerCAmelCase :str = 0 def UpperCamelCase_( __magic_name__ : list[str] , __magic_name__ : list[str] ): """simple docstring""" _lowerCAmelCase :str = [[0 for x in range(len(__magic_name__ ) )] for x in range(len(__magic_name__ ) )] for i in range(len(__magic_name__ ) ): _lowerCAmelCase :Tuple = prime_implicants[i].count('_' ) for j in range(len(__magic_name__ ) ): if is_for_table(prime_implicants[i] , binary[j] , __magic_name__ ): _lowerCAmelCase :str = 1 return chart def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Tuple = int(input('Enter the no. of variables\n' ) ) _lowerCAmelCase :Tuple = [ float(__magic_name__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _lowerCAmelCase :List[str] = decimal_to_binary(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Any = check(__magic_name__ ) print('Prime Implicants are:' ) print(__magic_name__ ) _lowerCAmelCase :List[Any] = prime_implicant_chart(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = selection(__magic_name__ , __magic_name__ ) print('Essential Prime Implicants are:' ) print(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ a = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ a = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[int]=4 , _UpperCAmelCase: Optional[int]=False ): _lowerCAmelCase :Any = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) :Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
687
1
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : """simple docstring""" def __init__( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: str=13 , _UpperCAmelCase: List[str]=7 , _UpperCAmelCase: List[Any]=True , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Dict=True , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: List[str]=True , _UpperCAmelCase: Any=False , _UpperCAmelCase: str=False , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: List[Any]=99 , _UpperCAmelCase: Optional[int]=0 , _UpperCAmelCase: Optional[int]=32 , _UpperCAmelCase: int=5 , _UpperCAmelCase: int=4 , _UpperCAmelCase: Dict=0.1 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: List[Any]=512 , _UpperCAmelCase: str=2 , _UpperCAmelCase: Dict=0.0_2 , _UpperCAmelCase: Dict=2 , _UpperCAmelCase: Tuple=4 , _UpperCAmelCase: Any="last" , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Optional[int]=None , _UpperCAmelCase: int=0 , ): _lowerCAmelCase :Union[str, Any] = parent _lowerCAmelCase :str = batch_size _lowerCAmelCase :Tuple = seq_length _lowerCAmelCase :Tuple = is_training _lowerCAmelCase :Union[str, Any] = use_input_lengths _lowerCAmelCase :Tuple = use_token_type_ids _lowerCAmelCase :Tuple = use_labels _lowerCAmelCase :Any = gelu_activation _lowerCAmelCase :Dict = sinusoidal_embeddings _lowerCAmelCase :Any = causal _lowerCAmelCase :Optional[int] = asm _lowerCAmelCase :List[str] = n_langs _lowerCAmelCase :str = vocab_size _lowerCAmelCase :Optional[Any] = n_special _lowerCAmelCase :Tuple = hidden_size _lowerCAmelCase :Tuple = num_hidden_layers _lowerCAmelCase :int = num_attention_heads _lowerCAmelCase :str = hidden_dropout_prob _lowerCAmelCase :int = attention_probs_dropout_prob _lowerCAmelCase :str = max_position_embeddings _lowerCAmelCase :Optional[Any] = type_sequence_label_size _lowerCAmelCase :Optional[Any] = initializer_range _lowerCAmelCase :List[str] = num_labels _lowerCAmelCase :Tuple = num_choices _lowerCAmelCase :Any = summary_type _lowerCAmelCase :List[str] = use_proj _lowerCAmelCase :str = scope _lowerCAmelCase :Dict = bos_token_id def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase :Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase :str = None if self.use_input_lengths: _lowerCAmelCase :Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _lowerCAmelCase :str = None if self.use_token_type_ids: _lowerCAmelCase :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _lowerCAmelCase :Union[str, Any] = None _lowerCAmelCase :Optional[Any] = None _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , 2 ).float() _lowerCAmelCase :Tuple = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase :List[str] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: str , _UpperCAmelCase: Any , _UpperCAmelCase: Any , _UpperCAmelCase: int , ): _lowerCAmelCase :Tuple = XLMModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = model(_UpperCAmelCase , langs=_UpperCAmelCase ) _lowerCAmelCase :Tuple = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] , _UpperCAmelCase: int , _UpperCAmelCase: List[str] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Any , _UpperCAmelCase: Any , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Dict , ): _lowerCAmelCase :List[Any] = XLMWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Union[str, Any] , ): _lowerCAmelCase :Tuple = XLMForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Dict = model(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) _lowerCAmelCase :Dict = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: int , ): _lowerCAmelCase :Tuple = XLMForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) _lowerCAmelCase :Tuple = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) _lowerCAmelCase :Optional[Any] = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((_lowerCAmelCase) , ) :List[str] = result_with_labels.to_tuple() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((_lowerCAmelCase) , ) :Optional[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: str , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: List[str] , _UpperCAmelCase: Dict , _UpperCAmelCase: List[str] , _UpperCAmelCase: str , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[int] , ): _lowerCAmelCase :Dict = XLMForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Dict = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: str , _UpperCAmelCase: Any , _UpperCAmelCase: Any , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Dict , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = self.num_labels _lowerCAmelCase :str = XLMForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: str , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int , ): _lowerCAmelCase :Optional[Any] = self.num_choices _lowerCAmelCase :Union[str, Any] = XLMForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase :Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase :List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase :Optional[int] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :int = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) :List[str] = config_and_inputs _lowerCAmelCase :Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : str = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase : List[Any] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowerCamelCase : int = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Dict , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Optional[int] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Any , _UpperCAmelCase: str=False ): _lowerCAmelCase :Any = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _lowerCAmelCase :str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) _lowerCAmelCase :Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :Optional[int] = XLMModelTester(self ) _lowerCAmelCase :Optional[Any] = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: Any , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: str=False , _UpperCAmelCase: Any=1 ): self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual( [isinstance(_UpperCAmelCase , _UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(_UpperCAmelCase ) ) self.assertEqual(len(_UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_UpperCAmelCase ): # adds PAD dummy token _lowerCAmelCase :Tuple = min_length + idx + 1 _lowerCAmelCase :Optional[int] = min_length + idx + 1 _lowerCAmelCase :Tuple = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: str , _UpperCAmelCase: str , _UpperCAmelCase: List[Any]=False , _UpperCAmelCase: List[str]=1 ): self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual( [isinstance(_UpperCAmelCase , _UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(_UpperCAmelCase ) , ) self.assertEqual(len(_UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_UpperCAmelCase ): # adds PAD dummy token _lowerCAmelCase :List[str] = min_length + idx + 1 _lowerCAmelCase :Union[str, Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_UpperCAmelCase ) , ) pass @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :int = XLMModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = torch.tensor([[14, 447]] , dtype=torch.long , device=_UpperCAmelCase ) # the president _lowerCAmelCase :List[str] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _lowerCAmelCase :Any = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _UpperCAmelCase )
687
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants a = Mapping[str, np.ndarray] a = Mapping[str, Any] # Is a nested dict. a = 0.0_1 @dataclasses.dataclass(frozen=snake_case__ ) class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCamelCase : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCamelCase : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCamelCase : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCamelCase : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCamelCase : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCamelCase : Optional[str] = None # Templates used to generate this protein (prediction-only) lowerCamelCase : Optional[Sequence[str]] = None # Chain corresponding to each parent lowerCamelCase : Optional[Sequence[int]] = None def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :str = r'(\[[A-Z]+\]\n)' _lowerCAmelCase :List[str] = [tag.strip() for tag in re.split(__magic_name__ , __magic_name__ ) if len(__magic_name__ ) > 0] _lowerCAmelCase :Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) _lowerCAmelCase :List[str] = ["N", "CA", "C"] _lowerCAmelCase :Optional[Any] = None _lowerCAmelCase :str = None _lowerCAmelCase :Optional[int] = None for g in groups: if "[PRIMARY]" == g[0]: _lowerCAmelCase :Union[str, Any] = g[1][0].strip() for i in range(len(__magic_name__ ) ): if seq[i] not in residue_constants.restypes: _lowerCAmelCase :Optional[int] = 'X' # FIXME: strings are immutable _lowerCAmelCase :List[str] = np.array( [residue_constants.restype_order.get(__magic_name__ , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: _lowerCAmelCase :List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__magic_name__ , g[1][axis].split() ) ) ) _lowerCAmelCase :str = np.array(__magic_name__ ) _lowerCAmelCase :str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__magic_name__ ): _lowerCAmelCase :List[str] = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: _lowerCAmelCase :List[str] = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) _lowerCAmelCase :Tuple = np.zeros( ( len(__magic_name__ ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__magic_name__ ): _lowerCAmelCase :List[Any] = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__magic_name__ , atom_mask=__magic_name__ , aatype=__magic_name__ , residue_index=np.arange(len(__magic_name__ ) ) , b_factors=__magic_name__ , ) def UpperCamelCase_( __magic_name__ : Protein , __magic_name__ : int = 0 ): """simple docstring""" _lowerCAmelCase :List[str] = [] _lowerCAmelCase :List[Any] = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) _lowerCAmelCase :Union[str, Any] = prot.parents _lowerCAmelCase :Dict = prot.parents_chain_index if parents is not None and parents_chain_index is not None: _lowerCAmelCase :int = [p for i, p in zip(__magic_name__ , __magic_name__ ) if i == chain_id] if parents is None or len(__magic_name__ ) == 0: _lowerCAmelCase :int = ['N/A'] pdb_headers.append(f"""PARENT {" ".join(__magic_name__ )}""" ) return pdb_headers def UpperCamelCase_( __magic_name__ : Protein , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :List[str] = [] _lowerCAmelCase :Any = pdb_str.split('\n' ) _lowerCAmelCase :int = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) _lowerCAmelCase :List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: _lowerCAmelCase :Optional[Any] = [] if prot.parents_chain_index is not None: _lowerCAmelCase :Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__magic_name__ ) , [] ) parent_dict[str(__magic_name__ )].append(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = max([int(__magic_name__ ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): _lowerCAmelCase :Dict = parent_dict.get(str(__magic_name__ ) , ['N/A'] ) parents_per_chain.append(__magic_name__ ) else: parents_per_chain.append(list(prot.parents ) ) else: _lowerCAmelCase :str = [['N/A']] def make_parent_line(__magic_name__ : Sequence[str] ) -> str: return f"""PARENT {" ".join(__magic_name__ )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) _lowerCAmelCase :List[str] = 0 for i, l in enumerate(__magic_name__ ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__magic_name__ ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__magic_name__ ): _lowerCAmelCase :int = parents_per_chain[chain_counter] else: _lowerCAmelCase :Tuple = ['N/A'] out_pdb_lines.append(make_parent_line(__magic_name__ ) ) return "\n".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : Protein ): """simple docstring""" _lowerCAmelCase :Optional[int] = residue_constants.restypes + ['X'] def res_atoa(__magic_name__ : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) _lowerCAmelCase :int = residue_constants.atom_types _lowerCAmelCase :List[str] = [] _lowerCAmelCase :Dict = prot.atom_mask _lowerCAmelCase :str = prot.aatype _lowerCAmelCase :Dict = prot.atom_positions _lowerCAmelCase :Tuple = prot.residue_index.astype(np.intaa ) _lowerCAmelCase :str = prot.b_factors _lowerCAmelCase :Dict = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) _lowerCAmelCase :Dict = get_pdb_headers(__magic_name__ ) if len(__magic_name__ ) > 0: pdb_lines.extend(__magic_name__ ) _lowerCAmelCase :Optional[Any] = aatype.shape[0] _lowerCAmelCase :Any = 1 _lowerCAmelCase :List[str] = 0 _lowerCAmelCase :Optional[Any] = string.ascii_uppercase _lowerCAmelCase :List[str] = None # Add all atom sites. for i in range(__magic_name__ ): _lowerCAmelCase :Optional[int] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__magic_name__ , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue _lowerCAmelCase :Optional[Any] = 'ATOM' _lowerCAmelCase :Tuple = atom_name if len(__magic_name__ ) == 4 else f""" {atom_name}""" _lowerCAmelCase :Union[str, Any] = '' _lowerCAmelCase :Tuple = '' _lowerCAmelCase :Optional[Any] = 1.00 _lowerCAmelCase :Dict = atom_name[0] # Protein supports only C, N, O, S, this works. _lowerCAmelCase :Dict = '' _lowerCAmelCase :Union[str, Any] = 'A' if chain_index is not None: _lowerCAmelCase :List[str] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! _lowerCAmelCase :Optional[int] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__magic_name__ ) atom_index += 1 _lowerCAmelCase :List[Any] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: _lowerCAmelCase :str = True _lowerCAmelCase :Dict = chain_index[i + 1] if should_terminate: # Close the chain. _lowerCAmelCase :List[str] = 'TER' _lowerCAmelCase :Tuple = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__magic_name__ ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__magic_name__ , __magic_name__ ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(__magic_name__ ) def UpperCamelCase_( __magic_name__ : Protein ): """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase_( __magic_name__ : FeatureDict , __magic_name__ : ModelOutput , __magic_name__ : Optional[np.ndarray] = None , __magic_name__ : Optional[np.ndarray] = None , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[Sequence[str]] = None , __magic_name__ : Optional[Sequence[int]] = None , ): """simple docstring""" return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=__magic_name__ , remark=__magic_name__ , parents=__magic_name__ , parents_chain_index=__magic_name__ , )
687
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self: str , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int]=7 , _UpperCAmelCase: Union[str, Any]=3 , _UpperCAmelCase: int=18 , _UpperCAmelCase: List[Any]=30 , _UpperCAmelCase: List[Any]=400 , _UpperCAmelCase: Optional[Any]=True , _UpperCAmelCase: Any=None , _UpperCAmelCase: Any=True , _UpperCAmelCase: int=None , _UpperCAmelCase: Union[str, Any]=True , ): _lowerCAmelCase :Tuple = size if size is not None else {'shortest_edge': 20} _lowerCAmelCase :str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase :str = parent _lowerCAmelCase :List[Any] = batch_size _lowerCAmelCase :Optional[Any] = num_channels _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :int = min_resolution _lowerCAmelCase :List[str] = max_resolution _lowerCAmelCase :List[str] = do_resize _lowerCAmelCase :Optional[int] = size _lowerCAmelCase :str = do_center_crop _lowerCAmelCase :int = crop_size _lowerCAmelCase :Optional[int] = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self: int ): # Initialize image_processing _lowerCAmelCase :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :str = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): # Initialize image_processing _lowerCAmelCase :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :List[str] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self: Any ): # Initialize image_processing _lowerCAmelCase :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase :List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase :int = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
687
1
def UpperCamelCase_( __magic_name__ : int = 3 , __magic_name__ : int = 7 , __magic_name__ : int = 1000000 ): """simple docstring""" _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :Tuple = 1 for current_denominator in range(1 , limit + 1 ): _lowerCAmelCase :str = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _lowerCAmelCase :Tuple = current_numerator _lowerCAmelCase :Dict = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
687
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ (datasets.BuilderConfig ): """simple docstring""" lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase : Any = PandasConfig def SCREAMING_SNAKE_CASE__ ( self: int ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase :Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _lowerCAmelCase :Any = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :List[Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _lowerCAmelCase :Any = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase :Union[str, Any] = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase :str = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__ ( self: List[str] , _UpperCAmelCase: Dict ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _lowerCAmelCase :Optional[Any] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
687
1
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ): """simple docstring""" _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] _lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] _lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""] _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""] _lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :int = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' ) _lowerCAmelCase :List[Any] = {} _lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight'] _lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias'] _lowerCAmelCase :Dict = checkpoint['time_embed.2.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias'] _lowerCAmelCase :List[Any] = unet_config['down_block_types'] _lowerCAmelCase :Any = unet_config['layers_per_block'] _lowerCAmelCase :List[Any] = unet_config['attention_head_dim'] _lowerCAmelCase :Tuple = unet_config['block_out_channels'] _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Optional[int] = channels_list[0] for i, layer_type in enumerate(__magic_name__ ): _lowerCAmelCase :Tuple = channels_list[i] _lowerCAmelCase :Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}""" _lowerCAmelCase :str = f"""input_blocks.{current_layer}.1""" _lowerCAmelCase :Optional[Any] = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0""" _lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 _lowerCAmelCase :Dict = current_channels # hardcoded the mid-block for now _lowerCAmelCase :int = 'mid_block.resnets.0' _lowerCAmelCase :Optional[Any] = 'middle_block.0' _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = 'mid_block.attentions.0' _lowerCAmelCase :Optional[int] = 'middle_block.1' _lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1' _lowerCAmelCase :Optional[int] = 'middle_block.2' _lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :str = unet_config['up_block_types'] for i, layer_type in enumerate(__magic_name__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1""" _lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}""" _lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1""" _lowerCAmelCase :int = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = checkpoint['out.0.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias'] _lowerCAmelCase :List[Any] = checkpoint['out.2.weight'] _lowerCAmelCase :Dict = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
687
import glob import os import random from string import ascii_lowercase, digits import cva a = """""" a = """""" a = """""" a = 1 # (0 is vertical, 1 is horizontal) def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = get_dataset(__magic_name__ , __magic_name__ ) print('Processing...' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase :Optional[Any] = random_chars(32 ) _lowerCAmelCase :str = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase :Tuple = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__magic_name__ )} with {file_name}""" ) _lowerCAmelCase :str = [] for anno in new_annos[index]: _lowerCAmelCase :List[str] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__magic_name__ ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = [] _lowerCAmelCase :Union[str, Any] = [] for label_file in glob.glob(os.path.join(__magic_name__ , '*.txt' ) ): _lowerCAmelCase :Optional[int] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__magic_name__ ) as in_file: _lowerCAmelCase :Union[str, Any] = in_file.readlines() _lowerCAmelCase :List[Any] = os.path.join(__magic_name__ , f"""{label_name}.jpg""" ) _lowerCAmelCase :Tuple = [] for obj_list in obj_lists: _lowerCAmelCase :Union[str, Any] = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def UpperCamelCase_( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): """simple docstring""" _lowerCAmelCase :str = [] _lowerCAmelCase :Any = [] _lowerCAmelCase :Optional[Any] = [] for idx in range(len(__magic_name__ ) ): _lowerCAmelCase :Optional[int] = [] _lowerCAmelCase :Optional[Any] = img_list[idx] path_list.append(__magic_name__ ) _lowerCAmelCase :List[str] = anno_list[idx] _lowerCAmelCase :Optional[Any] = cva.imread(__magic_name__ ) if flip_type == 1: _lowerCAmelCase :List[Any] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase :List[str] = cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: _lowerCAmelCase :List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def UpperCamelCase_( __magic_name__ : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase :str = ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
687
1
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Optional[int] = 'linear' lowerCamelCase : Any = 'cosine' lowerCamelCase : int = 'cosine_with_restarts' lowerCamelCase : List[str] = 'polynomial' lowerCamelCase : int = 'constant' lowerCamelCase : Union[str, Any] = 'constant_with_warmup' lowerCamelCase : Optional[Any] = 'piecewise_constant' def UpperCamelCase_( __magic_name__ : Optimizer , __magic_name__ : int = -1 ): """simple docstring""" return LambdaLR(__magic_name__ , lambda __magic_name__ : 1 , last_epoch=__magic_name__ ) def UpperCamelCase_( __magic_name__ : Optimizer , __magic_name__ : int , __magic_name__ : int = -1 ): """simple docstring""" def lr_lambda(__magic_name__ : int ): if current_step < num_warmup_steps: return float(__magic_name__ ) / float(max(1.0 , __magic_name__ ) ) return 1.0 return LambdaLR(__magic_name__ , __magic_name__ , last_epoch=__magic_name__ ) def UpperCamelCase_( __magic_name__ : Optimizer , __magic_name__ : str , __magic_name__ : int = -1 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = {} _lowerCAmelCase :Tuple = step_rules.split(',' ) for rule_str in rule_list[:-1]: _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = rule_str.split(':' ) _lowerCAmelCase :List[Any] = int(__magic_name__ ) _lowerCAmelCase :int = float(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = value _lowerCAmelCase :Optional[int] = float(rule_list[-1] ) def create_rules_function(__magic_name__ : Any , __magic_name__ : Optional[Any] ): def rule_func(__magic_name__ : int ) -> float: _lowerCAmelCase :Tuple = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__magic_name__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _lowerCAmelCase :Tuple = create_rules_function(__magic_name__ , __magic_name__ ) return LambdaLR(__magic_name__ , __magic_name__ , last_epoch=__magic_name__ ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : Dict=-1 ): """simple docstring""" def lr_lambda(__magic_name__ : int ): if current_step < num_warmup_steps: return float(__magic_name__ ) / float(max(1 , __magic_name__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__magic_name__ , __magic_name__ , __magic_name__ ) def UpperCamelCase_( __magic_name__ : Optimizer , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float = 0.5 , __magic_name__ : int = -1 ): """simple docstring""" def lr_lambda(__magic_name__ : Any ): if current_step < num_warmup_steps: return float(__magic_name__ ) / float(max(1 , __magic_name__ ) ) _lowerCAmelCase :Union[str, Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__magic_name__ ) * 2.0 * progress )) ) return LambdaLR(__magic_name__ , __magic_name__ , __magic_name__ ) def UpperCamelCase_( __magic_name__ : Optimizer , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , __magic_name__ : int = -1 ): """simple docstring""" def lr_lambda(__magic_name__ : str ): if current_step < num_warmup_steps: return float(__magic_name__ ) / float(max(1 , __magic_name__ ) ) _lowerCAmelCase :Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__magic_name__ ) * progress) % 1.0) )) ) return LambdaLR(__magic_name__ , __magic_name__ , __magic_name__ ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : List[Any]=1e-7 , __magic_name__ : Optional[Any]=1.0 , __magic_name__ : Optional[int]=-1 ): """simple docstring""" _lowerCAmelCase :Tuple = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(__magic_name__ : int ): if current_step < num_warmup_steps: return float(__magic_name__ ) / float(max(1 , __magic_name__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _lowerCAmelCase :str = lr_init - lr_end _lowerCAmelCase :str = num_training_steps - num_warmup_steps _lowerCAmelCase :Optional[int] = 1 - (current_step - num_warmup_steps) / decay_steps _lowerCAmelCase :Union[str, Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__magic_name__ , __magic_name__ , __magic_name__ ) a = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def UpperCamelCase_( __magic_name__ : Union[str, SchedulerType] , __magic_name__ : Optimizer , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[int] = None , __magic_name__ : int = 1 , __magic_name__ : float = 1.0 , __magic_name__ : int = -1 , ): """simple docstring""" _lowerCAmelCase :Optional[int] = SchedulerType(__magic_name__ ) _lowerCAmelCase :int = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__magic_name__ , last_epoch=__magic_name__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__magic_name__ , step_rules=__magic_name__ , last_epoch=__magic_name__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__magic_name__ , num_warmup_steps=__magic_name__ , last_epoch=__magic_name__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __magic_name__ , num_warmup_steps=__magic_name__ , num_training_steps=__magic_name__ , num_cycles=__magic_name__ , last_epoch=__magic_name__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __magic_name__ , num_warmup_steps=__magic_name__ , num_training_steps=__magic_name__ , power=__magic_name__ , last_epoch=__magic_name__ , ) return schedule_func( __magic_name__ , num_warmup_steps=__magic_name__ , num_training_steps=__magic_name__ , last_epoch=__magic_name__ )
687
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Optional[Any] = nn.functional.normalize(__magic_name__ ) _lowerCAmelCase :List[str] = nn.functional.normalize(__magic_name__ ) return torch.mm(__magic_name__ , normalized_text_embeds.t() ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : str = CLIPConfig lowerCamelCase : Any = ['CLIPEncoderLayer'] def __init__( self: Optional[int] , _UpperCAmelCase: CLIPConfig ): super().__init__(_UpperCAmelCase ) _lowerCAmelCase :Any = CLIPVisionModel(config.vision_config ) _lowerCAmelCase :Optional[int] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase ) _lowerCAmelCase :int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Any = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :str = nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :str = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase :Optional[int] = cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy() _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy() _lowerCAmelCase :str = [] _lowerCAmelCase :List[Any] = image_embeds.shape[0] for i in range(_UpperCAmelCase ): _lowerCAmelCase :Optional[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowerCAmelCase :List[Any] = special_cos_dist[i][concept_idx] _lowerCAmelCase :Dict = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase :List[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) _lowerCAmelCase :Any = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowerCAmelCase :Union[str, Any] = cos_dist[i][concept_idx] _lowerCAmelCase :str = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase :str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCAmelCase ) result.append(_UpperCAmelCase ) _lowerCAmelCase :Any = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: torch.FloatTensor , _UpperCAmelCase: torch.FloatTensor ): _lowerCAmelCase :Optional[int] = self.vision_model(_UpperCAmelCase )[1] # pooled_output _lowerCAmelCase :Union[str, Any] = self.visual_projection(_UpperCAmelCase ) _lowerCAmelCase :Dict = cosine_distance(_UpperCAmelCase , self.special_care_embeds ) _lowerCAmelCase :List[str] = cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase :Any = 0.0 _lowerCAmelCase :Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase :Tuple = torch.any(special_scores > 0 , dim=1 ) _lowerCAmelCase :List[str] = special_care * 0.0_1 _lowerCAmelCase :Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowerCAmelCase :Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase :List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a = 6_3_7_8_1_3_7.0 a = 6_3_5_6_7_5_2.3_1_4_2_4_5 a = 6_378_137 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" _lowerCAmelCase :List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _lowerCAmelCase :Union[str, Any] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) _lowerCAmelCase :List[str] = atan((1 - flattening) * tan(radians(__magic_name__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _lowerCAmelCase :int = haversine_distance(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _lowerCAmelCase :str = (b_lata + b_lata) / 2 _lowerCAmelCase :Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _lowerCAmelCase :str = (sin(__magic_name__ ) ** 2) * (cos(__magic_name__ ) ** 2) _lowerCAmelCase :Optional[int] = cos(sigma / 2 ) ** 2 _lowerCAmelCase :List[Any] = (sigma - sin(__magic_name__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _lowerCAmelCase :Dict = (cos(__magic_name__ ) ** 2) * (sin(__magic_name__ ) ** 2) _lowerCAmelCase :str = sin(sigma / 2 ) ** 2 _lowerCAmelCase :Union[str, Any] = (sigma + sin(__magic_name__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
1
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore a = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" a = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("""\n""".join(upper_files) + """\n""") a = [file for file in filepaths if """ """ in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("""\n""".join(space_files) + """\n""") a = [file for file in filepaths if """-""" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("""\n""".join(hyphen_files) + """\n""") a = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("""\n""".join(nodir_files) + """\n""") a = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
687
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'encoder-decoder' lowerCamelCase : Optional[Any] = True def __init__( self: str , **_UpperCAmelCase: int ): super().__init__(**_UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _lowerCAmelCase :Optional[Any] = kwargs.pop('encoder' ) _lowerCAmelCase :Dict = encoder_config.pop('model_type' ) _lowerCAmelCase :str = kwargs.pop('decoder' ) _lowerCAmelCase :str = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase :str = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Tuple = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase :Any = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Tuple , _UpperCAmelCase: PretrainedConfig , _UpperCAmelCase: PretrainedConfig , **_UpperCAmelCase: str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCAmelCase :Dict = True _lowerCAmelCase :List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase :Optional[int] = self.encoder.to_dict() _lowerCAmelCase :Union[str, Any] = self.decoder.to_dict() _lowerCAmelCase :List[str] = self.__class__.model_type return output
687
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 a = get_tests_dir("""fixtures""") a = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") a = get_tests_dir("""fixtures/dummy-config.json""") class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :int = 0 def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :List[Any] = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Dict = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase :Union[str, Any] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _lowerCAmelCase :Tuple = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase ).to_dict() config_dict.pop('feature_extractor_type' ) _lowerCAmelCase :List[str] = WavaVecaFeatureExtractor(**_UpperCAmelCase ) # save in new folder model_config.save_pretrained(_UpperCAmelCase ) config.save_pretrained(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase ) # make sure private variable is not incorrectly saved _lowerCAmelCase :Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Union[str, Any] = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): with self.assertRaisesRegex( _UpperCAmelCase , 'bert-base is not a local folder and is not a valid model identifier' ): _lowerCAmelCase :int = AutoFeatureExtractor.from_pretrained('bert-base' ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): with self.assertRaisesRegex( _UpperCAmelCase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): _lowerCAmelCase :int = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase , revision='aaaaaa' ) def SCREAMING_SNAKE_CASE__ ( self: Dict ): with self.assertRaisesRegex( _UpperCAmelCase , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): _lowerCAmelCase :Union[str, Any] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase :Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase :List[str] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_UpperCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase , trust_remote_code=_UpperCAmelCase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def SCREAMING_SNAKE_CASE__ ( self: str ): try: AutoConfig.register('custom' , _UpperCAmelCase ) AutoFeatureExtractor.register(_UpperCAmelCase , _UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase ): AutoFeatureExtractor.register(_UpperCAmelCase , _UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCAmelCase :Tuple = CustomFeatureExtractor.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_UpperCAmelCase ) _lowerCAmelCase :Any = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self: str ): class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : List[Any] = True try: AutoConfig.register('custom' , _UpperCAmelCase ) AutoFeatureExtractor.register(_UpperCAmelCase , _UpperCAmelCase ) # If remote code is not set, the default is to use local _lowerCAmelCase :Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. _lowerCAmelCase :List[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_UpperCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub _lowerCAmelCase :Optional[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_UpperCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(_UpperCAmelCase , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
687
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
1
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: Callable , _UpperCAmelCase: Optional[Features] = None , _UpperCAmelCase: str = None , _UpperCAmelCase: bool = False , _UpperCAmelCase: bool = False , _UpperCAmelCase: Optional[dict] = None , _UpperCAmelCase: Optional[int] = None , **_UpperCAmelCase: Any , ): super().__init__( features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) _lowerCAmelCase :Dict = Generator( cache_dir=_UpperCAmelCase , features=_UpperCAmelCase , generator=_UpperCAmelCase , gen_kwargs=_UpperCAmelCase , **_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self: int ): # Build iterable dataset if self.streaming: _lowerCAmelCase :Optional[int] = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Union[str, Any] = None _lowerCAmelCase :Optional[Any] = None _lowerCAmelCase :Optional[int] = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) _lowerCAmelCase :int = self.builder.as_dataset( split='train' , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
687
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a = HfApi() a = {} # fmt: off a = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) a = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) a = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) a = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) a = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) a = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) a = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) a = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) a = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) a = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) a = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) a = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) a = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) a = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) a = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on a = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): a = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: a = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
687
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") a = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) lowerCamelCase : Optional[str] = field(default=snake_case__ , metadata={'help': 'A folder containing the training data.'} ) lowerCamelCase : Optional[str] = field(default=snake_case__ , metadata={'help': 'A folder containing the validation data.'} ) lowerCamelCase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) lowerCamelCase : int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) lowerCamelCase : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = {} if self.train_dir is not None: _lowerCAmelCase :Tuple = self.train_dir if self.validation_dir is not None: _lowerCAmelCase :List[str] = self.validation_dir _lowerCAmelCase :List[Any] = data_files if data_files else None @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = field( default=snake_case__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(snake_case__ )} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase : str = field(default=snake_case__ , metadata={'help': 'Name or path of preprocessor config.'} ) lowerCamelCase : bool = field( default=snake_case__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'Stride to use for the encoder.'} , ) class UpperCAmelCase_ : """simple docstring""" def __init__( self: str , _UpperCAmelCase: Optional[int]=192 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: Dict=4 , _UpperCAmelCase: int=0.6 ): _lowerCAmelCase :Tuple = input_size _lowerCAmelCase :Union[str, Any] = mask_patch_size _lowerCAmelCase :Optional[Any] = model_patch_size _lowerCAmelCase :str = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('Input size must be divisible by mask patch size' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('Mask patch size must be divisible by model patch size' ) _lowerCAmelCase :Any = self.input_size // self.mask_patch_size _lowerCAmelCase :Optional[int] = self.mask_patch_size // self.model_patch_size _lowerCAmelCase :List[str] = self.rand_size**2 _lowerCAmelCase :Optional[Any] = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self: str ): _lowerCAmelCase :Tuple = np.random.permutation(self.token_count )[: self.mask_count] _lowerCAmelCase :List[Any] = np.zeros(self.token_count , dtype=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = 1 _lowerCAmelCase :Optional[int] = mask.reshape((self.rand_size, self.rand_size) ) _lowerCAmelCase :List[str] = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Any = torch.stack([example['pixel_values'] for example in examples] ) _lowerCAmelCase :Dict = torch.stack([example['mask'] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mim' , __magic_name__ , __magic_name__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCAmelCase :List[str] = training_args.get_process_log_level() logger.setLevel(__magic_name__ ) transformers.utils.logging.set_verbosity(__magic_name__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _lowerCAmelCase :int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase :int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _lowerCAmelCase :int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _lowerCAmelCase :Optional[Any] = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __magic_name__ ) and data_args.train_val_split > 0.0: _lowerCAmelCase :Dict = ds['train'].train_test_split(data_args.train_val_split ) _lowerCAmelCase :Dict = split['train'] _lowerCAmelCase :Optional[Any] = split['test'] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase :str = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: _lowerCAmelCase :Tuple = AutoConfig.from_pretrained(model_args.config_name_or_path , **__magic_name__ ) elif model_args.model_name_or_path: _lowerCAmelCase :int = AutoConfig.from_pretrained(model_args.model_name_or_path , **__magic_name__ ) else: _lowerCAmelCase :Optional[int] = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(__magic_name__ , 'decoder_type' ): _lowerCAmelCase :Tuple = 'simmim' # adapt config _lowerCAmelCase :Union[str, Any] = model_args.image_size if model_args.image_size is not None else config.image_size _lowerCAmelCase :Tuple = model_args.patch_size if model_args.patch_size is not None else config.patch_size _lowerCAmelCase :str = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { 'image_size': model_args.image_size, 'patch_size': model_args.patch_size, 'encoder_stride': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: _lowerCAmelCase :Optional[Any] = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **__magic_name__ ) elif model_args.model_name_or_path: _lowerCAmelCase :str = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **__magic_name__ ) else: _lowerCAmelCase :Union[str, Any] = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } _lowerCAmelCase :int = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: _lowerCAmelCase :str = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _lowerCAmelCase :Any = AutoModelForMaskedImageModeling.from_config(__magic_name__ ) if training_args.do_train: _lowerCAmelCase :Optional[Any] = ds['train'].column_names else: _lowerCAmelCase :str = ds['validation'].column_names if data_args.image_column_name is not None: _lowerCAmelCase :int = data_args.image_column_name elif "image" in column_names: _lowerCAmelCase :Union[str, Any] = 'image' elif "img" in column_names: _lowerCAmelCase :Optional[Any] = 'img' else: _lowerCAmelCase :Dict = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py _lowerCAmelCase :str = Compose( [ Lambda(lambda __magic_name__ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator _lowerCAmelCase :List[str] = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(__magic_name__ : List[str] ): _lowerCAmelCase :Optional[Any] = [transforms(__magic_name__ ) for image in examples[image_column_name]] _lowerCAmelCase :Dict = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _lowerCAmelCase :Dict = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__magic_name__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _lowerCAmelCase :Optional[Any] = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__magic_name__ ) # Initialize our trainer _lowerCAmelCase :Any = Trainer( model=__magic_name__ , args=__magic_name__ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=__magic_name__ , data_collator=__magic_name__ , ) # Training if training_args.do_train: _lowerCAmelCase :Any = None if training_args.resume_from_checkpoint is not None: _lowerCAmelCase :List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCAmelCase :List[Any] = last_checkpoint _lowerCAmelCase :Optional[Any] = trainer.train(resume_from_checkpoint=__magic_name__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCAmelCase :Optional[int] = trainer.evaluate() trainer.log_metrics('eval' , __magic_name__ ) trainer.save_metrics('eval' , __magic_name__ ) # Write model card and (optionally) push to hub _lowerCAmelCase :List[str] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'masked-image-modeling', 'dataset': data_args.dataset_name, 'tags': ['masked-image-modeling'], } if training_args.push_to_hub: trainer.push_to_hub(**__magic_name__ ) else: trainer.create_model_card(**__magic_name__ ) if __name__ == "__main__": main()
687
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[int] = 10 def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :str = [1, 2, 3, 4] _lowerCAmelCase :Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase :List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :List[str] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Optional[int] = '' _lowerCAmelCase , _lowerCAmelCase :str = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[Any] = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _lowerCAmelCase , _lowerCAmelCase :Optional[int] = process_story(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = ['It was the best of times.'] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Union[str, Any] = torch.tensor([1, 2, 3, 4] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :List[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _lowerCAmelCase :Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _lowerCAmelCase :List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :List[str] = 101 _lowerCAmelCase :Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _lowerCAmelCase :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _lowerCAmelCase :List[str] = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
687
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" random.seed(__magic_name__ ) np.random.seed(__magic_name__ ) torch.manual_seed(__magic_name__ ) torch.cuda.manual_seed_all(__magic_name__ ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase_ : """simple docstring""" def __init__( self: Tuple , _UpperCAmelCase: Iterable[torch.nn.Parameter] , _UpperCAmelCase: float = 0.9_9_9_9 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: int = 0 , _UpperCAmelCase: bool = False , _UpperCAmelCase: Union[float, int] = 1.0 , _UpperCAmelCase: Union[float, int] = 2 / 3 , _UpperCAmelCase: Optional[Any] = None , _UpperCAmelCase: Dict[str, Any] = None , **_UpperCAmelCase: Optional[int] , ): if isinstance(_UpperCAmelCase , torch.nn.Module ): _lowerCAmelCase :Optional[Any] = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase , ) _lowerCAmelCase :Union[str, Any] = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCAmelCase :Optional[Any] = True if kwargs.get('max_value' , _UpperCAmelCase ) is not None: _lowerCAmelCase :Optional[Any] = 'The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) _lowerCAmelCase :Dict = kwargs['max_value'] if kwargs.get('min_value' , _UpperCAmelCase ) is not None: _lowerCAmelCase :Union[str, Any] = 'The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = kwargs['min_value'] _lowerCAmelCase :Optional[int] = list(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = [p.clone().detach() for p in parameters] if kwargs.get('device' , _UpperCAmelCase ) is not None: _lowerCAmelCase :int = 'The `device` argument is deprecated. Please use `to` instead.' deprecate('device' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) self.to(device=kwargs['device'] ) _lowerCAmelCase :Tuple = None _lowerCAmelCase :List[str] = decay _lowerCAmelCase :Optional[int] = min_decay _lowerCAmelCase :Tuple = update_after_step _lowerCAmelCase :List[Any] = use_ema_warmup _lowerCAmelCase :Optional[int] = inv_gamma _lowerCAmelCase :Union[str, Any] = power _lowerCAmelCase :Any = 0 _lowerCAmelCase :List[str] = None # set in `step()` _lowerCAmelCase :Any = model_cls _lowerCAmelCase :Union[str, Any] = model_config @classmethod def SCREAMING_SNAKE_CASE__ ( cls: int , _UpperCAmelCase: Any , _UpperCAmelCase: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Optional[Any] = model_cls.load_config(_UpperCAmelCase , return_unused_kwargs=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = model_cls.from_pretrained(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = cls(model.parameters() , model_cls=_UpperCAmelCase , model_config=model.config ) ema_model.load_state_dict(_UpperCAmelCase ) return ema_model def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Optional[Any] ): if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' ) if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' ) _lowerCAmelCase :Optional[int] = self.model_cls.from_config(self.model_config ) _lowerCAmelCase :Tuple = self.state_dict() state_dict.pop('shadow_params' , _UpperCAmelCase ) model.register_to_config(**_UpperCAmelCase ) self.copy_to(model.parameters() ) model.save_pretrained(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: int ): _lowerCAmelCase :List[str] = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCAmelCase :Union[str, Any] = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCAmelCase :Optional[int] = (1 + step) / (10 + step) _lowerCAmelCase :List[Any] = min(_UpperCAmelCase , self.decay ) # make sure decay is not smaller than min_decay _lowerCAmelCase :List[Any] = max(_UpperCAmelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Iterable[torch.nn.Parameter] ): if isinstance(_UpperCAmelCase , torch.nn.Module ): _lowerCAmelCase :str = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase , ) _lowerCAmelCase :Optional[int] = parameters.parameters() _lowerCAmelCase :Tuple = list(_UpperCAmelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCAmelCase :Any = self.get_decay(self.optimization_step ) _lowerCAmelCase :List[str] = decay _lowerCAmelCase :Any = 1 - decay _lowerCAmelCase :int = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _UpperCAmelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCAmelCase :Dict = deepspeed.zero.GatheredParameters(_UpperCAmelCase , modifier_rank=_UpperCAmelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Iterable[torch.nn.Parameter] ): _lowerCAmelCase :Tuple = list(_UpperCAmelCase ) for s_param, param in zip(self.shadow_params , _UpperCAmelCase ): param.data.copy_(s_param.to(param.device ).data ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: int=None , _UpperCAmelCase: Any=None ): _lowerCAmelCase :Optional[Any] = [ p.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if p.is_floating_point() else p.to(device=_UpperCAmelCase ) for p in self.shadow_params ] def SCREAMING_SNAKE_CASE__ ( self: Tuple ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: Iterable[torch.nn.Parameter] ): _lowerCAmelCase :Union[str, Any] = [param.detach().cpu().clone() for param in parameters] def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' ) for c_param, param in zip(self.temp_stored_params , _UpperCAmelCase ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCAmelCase :Union[str, Any] = None def SCREAMING_SNAKE_CASE__ ( self: str , _UpperCAmelCase: dict ): _lowerCAmelCase :Optional[int] = copy.deepcopy(_UpperCAmelCase ) _lowerCAmelCase :str = state_dict.get('decay' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1' ) _lowerCAmelCase :Tuple = state_dict.get('min_decay' , self.min_decay ) if not isinstance(self.min_decay , _UpperCAmelCase ): raise ValueError('Invalid min_decay' ) _lowerCAmelCase :List[str] = state_dict.get('optimization_step' , self.optimization_step ) if not isinstance(self.optimization_step , _UpperCAmelCase ): raise ValueError('Invalid optimization_step' ) _lowerCAmelCase :int = state_dict.get('update_after_step' , self.update_after_step ) if not isinstance(self.update_after_step , _UpperCAmelCase ): raise ValueError('Invalid update_after_step' ) _lowerCAmelCase :Tuple = state_dict.get('use_ema_warmup' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , _UpperCAmelCase ): raise ValueError('Invalid use_ema_warmup' ) _lowerCAmelCase :int = state_dict.get('inv_gamma' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('Invalid inv_gamma' ) _lowerCAmelCase :str = state_dict.get('power' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('Invalid power' ) _lowerCAmelCase :Any = state_dict.get('shadow_params' , _UpperCAmelCase ) if shadow_params is not None: _lowerCAmelCase :List[Any] = shadow_params if not isinstance(self.shadow_params , _UpperCAmelCase ): raise ValueError('shadow_params must be a list' ) if not all(isinstance(_UpperCAmelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError('shadow_params must all be Tensors' )
687
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a = int(input("""Enter number: """).strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
687
1
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml a = logging.get_logger(__name__) def UpperCamelCase_( __magic_name__ : bool , __magic_name__ : bool ): """simple docstring""" def run_func(__magic_name__ : int ): @wraps(__magic_name__ ) def run_in_eager_mode(*__magic_name__ : str , **__magic_name__ : List[str] ): return func(*__magic_name__ , **__magic_name__ ) @wraps(__magic_name__ ) @tf.function(experimental_compile=__magic_name__ ) def run_in_graph_mode(*__magic_name__ : Optional[Any] , **__magic_name__ : Optional[Any] ): return func(*__magic_name__ , **__magic_name__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def UpperCamelCase_( __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = random.Random() _lowerCAmelCase :Any = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__magic_name__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : TensorFlowBenchmarkArguments lowerCamelCase : PretrainedConfig lowerCamelCase : str = "TensorFlow" @property def SCREAMING_SNAKE_CASE__ ( self: str ): return tf.__version__ def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: str , _UpperCAmelCase: int , _UpperCAmelCase: int ): # initialize GPU on separate process _lowerCAmelCase :Optional[int] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _lowerCAmelCase :Optional[int] = self._prepare_inference_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self._measure_speed(_inference ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: str , _UpperCAmelCase: int , _UpperCAmelCase: int ): _lowerCAmelCase :int = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _lowerCAmelCase :List[Any] = self._prepare_train_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self._measure_speed(_train ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] , _UpperCAmelCase: str , _UpperCAmelCase: int , _UpperCAmelCase: int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _UpperCAmelCase ) _lowerCAmelCase :Optional[int] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _lowerCAmelCase :Union[str, Any] = self._prepare_inference_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self._measure_memory(_inference ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: str , _UpperCAmelCase: int , _UpperCAmelCase: int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _UpperCAmelCase ) _lowerCAmelCase :List[str] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _lowerCAmelCase :Optional[Any] = self._prepare_train_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self._measure_memory(_train ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: str , _UpperCAmelCase: int , _UpperCAmelCase: int ): _lowerCAmelCase :List[str] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) _lowerCAmelCase :Optional[int] = ( hasattr(_UpperCAmelCase , 'architectures' ) and isinstance(config.architectures , _UpperCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase :str = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase :int = __import__('transformers' , fromlist=[model_class] ) _lowerCAmelCase :List[Any] = getattr(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = model_cls(_UpperCAmelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: _lowerCAmelCase :str = TF_MODEL_MAPPING[config.__class__](_UpperCAmelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase :str = config.vocab_size if hasattr(_UpperCAmelCase , 'vocab_size' ) else config.encoder.vocab_size _lowerCAmelCase :str = random_input_ids(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , training=_UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(_UpperCAmelCase , training=_UpperCAmelCase ) _lowerCAmelCase :Dict = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: str , _UpperCAmelCase: int , _UpperCAmelCase: int ): _lowerCAmelCase :Dict = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) _lowerCAmelCase :Union[str, Any] = ( hasattr(_UpperCAmelCase , 'architectures' ) and isinstance(config.architectures , _UpperCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase :List[str] = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase :Union[str, Any] = __import__('transformers' , fromlist=[model_class] ) _lowerCAmelCase :int = getattr(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = model_cls(_UpperCAmelCase ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: _lowerCAmelCase :Dict = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_UpperCAmelCase ) # encoder-decoder has vocab size saved differently _lowerCAmelCase :List[str] = config.vocab_size if hasattr(_UpperCAmelCase , 'vocab_size' ) else config.encoder.vocab_size _lowerCAmelCase :Tuple = random_input_ids(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCAmelCase :int = model(_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase )[0] _lowerCAmelCase :int = tf.gradients(_UpperCAmelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCAmelCase :str = model(_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase )[0] _lowerCAmelCase :List[Any] = tf.gradients(_UpperCAmelCase , model.trainable_variables ) return gradients _lowerCAmelCase :Dict = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Any ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(_UpperCAmelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCAmelCase :Union[str, Any] = timeit.repeat( _UpperCAmelCase , repeat=self.args.repeat , number=10 , ) return min(_UpperCAmelCase ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: Callable[[], None] ): logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) _lowerCAmelCase :List[str] = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) _lowerCAmelCase :Dict = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() _lowerCAmelCase :List[str] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCAmelCase :Dict = nvml.nvmlDeviceGetMemoryInfo(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = meminfo.used _lowerCAmelCase :Any = Memory(_UpperCAmelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) _lowerCAmelCase :Dict = None else: _lowerCAmelCase :str = measure_peak_memory_cpu(_UpperCAmelCase ) _lowerCAmelCase :List[str] = Memory(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCAmelCase :Tuple = stop_memory_tracing(_UpperCAmelCase ) if memory is None: _lowerCAmelCase :Optional[int] = summary.total else: _lowerCAmelCase :Any = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
687
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
1
def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: _lowerCAmelCase :List[str] = f"""The input value of [n={number}] has to be > 0""" raise ValueError(__magic_name__ ) else: _lowerCAmelCase :Dict = sylvester(number - 1 ) _lowerCAmelCase :Any = num - 1 _lowerCAmelCase :Any = num return lower * upper + 1 if __name__ == "__main__": print(F'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
687
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a = logging.get_logger(__name__) a = { """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class UpperCAmelCase_ (snake_case__ , snake_case__ ): """simple docstring""" lowerCamelCase : Union[str, Any] = 'bit' lowerCamelCase : int = ['preactivation', 'bottleneck'] lowerCamelCase : Tuple = ['SAME', 'VALID'] def __init__( self: str , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: List[str]=64 , _UpperCAmelCase: List[str]=[256, 512, 1024, 2048] , _UpperCAmelCase: Optional[Any]=[3, 4, 6, 3] , _UpperCAmelCase: List[Any]="preactivation" , _UpperCAmelCase: Optional[Any]="relu" , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: List[str]=32 , _UpperCAmelCase: List[str]=0.0 , _UpperCAmelCase: Optional[int]=False , _UpperCAmelCase: Optional[int]=32 , _UpperCAmelCase: Any=1 , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Any=None , **_UpperCAmelCase: Union[str, Any] , ): super().__init__(**_UpperCAmelCase ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCAmelCase :List[str] = global_padding.upper() else: raise ValueError(f"""Padding strategy {global_padding} not supported""" ) _lowerCAmelCase :Tuple = num_channels _lowerCAmelCase :int = embedding_size _lowerCAmelCase :int = hidden_sizes _lowerCAmelCase :Optional[int] = depths _lowerCAmelCase :Union[str, Any] = layer_type _lowerCAmelCase :Any = hidden_act _lowerCAmelCase :List[str] = global_padding _lowerCAmelCase :Optional[int] = num_groups _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :int = embedding_dynamic_padding _lowerCAmelCase :Any = output_stride _lowerCAmelCase :Any = width_factor _lowerCAmelCase :Optional[Any] = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(_UpperCAmelCase ) + 1 )] _lowerCAmelCase , _lowerCAmelCase :Any = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
687
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
1
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function a = 1.0_5457_1817E-34 # unit of ℏ : J * s a = 3E8 # unit of c : m * s^-1 def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: _lowerCAmelCase :List[str] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCAmelCase :Optional[int] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCAmelCase :Optional[int] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
687
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a = { """num_train_timesteps""": 40, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } a = { """num_train_timesteps""": 151, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any]=False ): """simple docstring""" _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] _lowerCAmelCase :Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] _lowerCAmelCase :str = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] _lowerCAmelCase :Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCAmelCase :List[Any] = checkpoint[f"""{old_prefix}.skip_connection.weight"""] _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str]=None ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Tuple = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :Any = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCAmelCase :int = checkpoint[f"""{old_prefix}.norm.weight"""] _lowerCAmelCase :Dict = checkpoint[f"""{old_prefix}.norm.bias"""] _lowerCAmelCase :Dict = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :str = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :List[Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCAmelCase :int = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCAmelCase :Optional[Any] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ , map_location='cpu' ) _lowerCAmelCase :List[Any] = {} _lowerCAmelCase :List[str] = checkpoint['time_embed.0.weight'] _lowerCAmelCase :Tuple = checkpoint['time_embed.0.bias'] _lowerCAmelCase :Dict = checkpoint['time_embed.2.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _lowerCAmelCase :Union[str, Any] = checkpoint['label_emb.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.weight'] _lowerCAmelCase :str = checkpoint['input_blocks.0.0.bias'] _lowerCAmelCase :List[Any] = unet_config['down_block_types'] _lowerCAmelCase :Any = unet_config['layers_per_block'] _lowerCAmelCase :List[Any] = unet_config['attention_head_dim'] _lowerCAmelCase :Tuple = unet_config['block_out_channels'] _lowerCAmelCase :List[str] = 1 _lowerCAmelCase :Optional[int] = channels_list[0] for i, layer_type in enumerate(__magic_name__ ): _lowerCAmelCase :Tuple = channels_list[i] _lowerCAmelCase :Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :int = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[Any] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :int = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :List[Any] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__magic_name__ ): _lowerCAmelCase :List[str] = f"""down_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Optional[int] = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :List[str] = True if j == 0 and downsample_block_has_skip else False _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :Optional[int] = f"""down_blocks.{i}.attentions.{j}""" _lowerCAmelCase :str = f"""input_blocks.{current_layer}.1""" _lowerCAmelCase :Optional[Any] = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Union[str, Any] = f"""down_blocks.{i}.downsamplers.0""" _lowerCAmelCase :Tuple = f"""input_blocks.{current_layer}.0""" _lowerCAmelCase :Optional[int] = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 _lowerCAmelCase :Dict = current_channels # hardcoded the mid-block for now _lowerCAmelCase :int = 'mid_block.resnets.0' _lowerCAmelCase :Optional[Any] = 'middle_block.0' _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Optional[int] = 'mid_block.attentions.0' _lowerCAmelCase :Optional[int] = 'middle_block.1' _lowerCAmelCase :List[Any] = convert_attention(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = 'mid_block.resnets.1' _lowerCAmelCase :Optional[int] = 'middle_block.2' _lowerCAmelCase :int = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :Tuple = 0 _lowerCAmelCase :str = unet_config['up_block_types'] for i, layer_type in enumerate(__magic_name__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Optional[Any] = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :Any = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Any = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :Dict = f"""output_blocks.{current_layer-1}.1""" _lowerCAmelCase :Tuple = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCAmelCase :Tuple = f"""up_blocks.{i}.resnets.{j}""" _lowerCAmelCase :List[str] = f"""output_blocks.{current_layer}.0""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , has_skip=__magic_name__ ) _lowerCAmelCase :str = f"""up_blocks.{i}.attentions.{j}""" _lowerCAmelCase :List[Any] = f"""output_blocks.{current_layer}.1""" _lowerCAmelCase :int = convert_attention( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) current_layer += 1 if i != len(__magic_name__ ) - 1: _lowerCAmelCase :Optional[int] = f"""up_blocks.{i}.upsamplers.0""" _lowerCAmelCase :int = f"""output_blocks.{current_layer-1}.2""" _lowerCAmelCase :str = convert_resnet(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _lowerCAmelCase :str = checkpoint['out.0.weight'] _lowerCAmelCase :Union[str, Any] = checkpoint['out.0.bias'] _lowerCAmelCase :List[Any] = checkpoint['out.2.weight'] _lowerCAmelCase :Dict = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
687
1
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging a = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _lowerCAmelCase :str = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: _lowerCAmelCase :str = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) _lowerCAmelCase , _lowerCAmelCase :Dict = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) _lowerCAmelCase :Any = ['key_proj', 'value_proj', 'query_proj'] _lowerCAmelCase :Optional[Any] = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: _lowerCAmelCase :str = key.split('.' ) if attributes[0] == "lm_head": _lowerCAmelCase :Optional[Any] = prophet _lowerCAmelCase :Dict = prophet_old else: _lowerCAmelCase :Tuple = prophet.prophetnet _lowerCAmelCase :int = prophet_old.model _lowerCAmelCase :Dict = False for attribute in attributes: if attribute in mapping: _lowerCAmelCase :Tuple = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: _lowerCAmelCase :Tuple = attribute elif hasattr(__magic_name__ , __magic_name__ ): _lowerCAmelCase :Dict = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _lowerCAmelCase :str = old_model.weight logger.info(f"""{attribute} is initialized.""" ) _lowerCAmelCase :Optional[int] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _lowerCAmelCase :str = old_model.bias logger.info(f"""{attribute} is initialized""" ) _lowerCAmelCase :int = True break elif attribute in special_keys and hasattr(__magic_name__ , 'in_proj_weight' ): _lowerCAmelCase :Optional[Any] = old_model.in_proj_weight.shape[0] // 3 _lowerCAmelCase :Optional[Any] = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _lowerCAmelCase :Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _lowerCAmelCase :str = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _lowerCAmelCase :List[str] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _lowerCAmelCase :List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _lowerCAmelCase :str = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _lowerCAmelCase :List[str] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _lowerCAmelCase :Optional[Any] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _lowerCAmelCase :Optional[int] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _lowerCAmelCase :List[str] = True break if attribute.isdigit(): _lowerCAmelCase :int = model[int(__magic_name__ )] _lowerCAmelCase :Union[str, Any] = old_model[int(__magic_name__ )] else: _lowerCAmelCase :Dict = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": _lowerCAmelCase :str = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) _lowerCAmelCase :str = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
687
import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) _lowerCAmelCase :Tuple = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=None ): _lowerCAmelCase :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase :Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase :Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase :List[str] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[str] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase :Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
687
1
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right a = 50_003 a = 50_002 @require_sentencepiece @require_tokenizers class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : str = PLBartTokenizer lowerCamelCase : List[str] = None lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase :List[str] = PLBartTokenizer(_UpperCAmelCase , language_codes='base' , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = PLBartTokenizer(_UpperCAmelCase , language_codes='base' , keep_accents=_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase :Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCAmelCase :List[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase :List[Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) _lowerCAmelCase :int = tokenizer.vocab_size _lowerCAmelCase :int = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )] self.assertListEqual(_UpperCAmelCase , ['__java__', '__python__', '__en_XX__', '<mask>'] ) _lowerCAmelCase :Any = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' _lowerCAmelCase :Optional[int] = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :List[Any] = PLBartTokenizer(_UpperCAmelCase , language_codes='multi' , keep_accents=_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase :List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCAmelCase :Tuple = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase :List[str] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) _lowerCAmelCase :int = tokenizer.vocab_size _lowerCAmelCase :Optional[int] = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )] self.assertListEqual( _UpperCAmelCase , ['__java__', '__python__', '__en_XX__', '__javascript__', '__php__', '__ruby__', '__go__'] ) _lowerCAmelCase :List[Any] = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' _lowerCAmelCase :Dict = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = 'uclanlp/plbart-python-en_XX' lowerCamelCase : int = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] lowerCamelCase : Optional[int] = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] lowerCamelCase : Dict = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def SCREAMING_SNAKE_CASE__ ( cls: Union[str, Any] ): _lowerCAmelCase :PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='base' , src_lang='python' , tgt_lang='en_XX' ) _lowerCAmelCase :str = 1 return cls def SCREAMING_SNAKE_CASE__ ( self: int ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__java__'] , 5_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__python__'] , 5_0002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__en_XX__'] , 5_0003 ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) _lowerCAmelCase :Union[str, Any] = [EN_CODE, 9037, 3_3442, 57, 752, 153, 14, 56, 18, 9, 2] _lowerCAmelCase :int = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) _lowerCAmelCase :int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Dict = ['def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])' * 20] self.assertIsInstance(src_text[0] , _UpperCAmelCase ) _lowerCAmelCase :List[str] = 10 _lowerCAmelCase :List[str] = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', '__java__'] ) , [5_0004, 5_0001] ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :List[Any] = tempfile.mkdtemp() _lowerCAmelCase :Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) _lowerCAmelCase :int = PLBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :List[str] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCAmelCase :Optional[Any] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) _lowerCAmelCase :Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :str = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors='pt' ) _lowerCAmelCase :str = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors='pt' ) _lowerCAmelCase :List[str] = targets['input_ids'] _lowerCAmelCase :str = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :Optional[Any] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='java' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX 'input_ids': [[150, 242, 2, 5_0003]], 'attention_mask': [[1, 1, 1, 1]], # java 'forced_bos_token_id': 5_0001, } , )
687
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase : Optional[str] = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase : Optional[float] = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCamelCase : Optional[int] = field( default=1_00_00 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase : Optional[float] = field(default=2e-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase : Optional[str] = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCamelCase : Optional[int] = field( default=7_50 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase : Optional[int] = field( default=16 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase : Optional[int] = field(default=5_00_00 , metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCamelCase : Optional[int] = field( default=10_24 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCamelCase : Optional[str] = field( default=snake_case__ , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase : Optional[int] = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase : Optional[int] = field(default=10_24 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase : Optional[float] = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase : Optional[int] = field(default=2_56 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase : Optional[int] = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase : Optional[float] = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase : Optional[int] = field(default=10 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase : Optional[int] = field( default=2_00 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase : Optional[int] = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase : Optional[str] = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase : Optional[int] = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[int] = field( default=snake_case__ , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase : Optional[int] = field( default=10_00_00 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[float] = field( default=10_00 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1_00 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase : Optional[float] = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCamelCase : Optional[bool] = field( default=snake_case__ , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase : Optional[float] = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase : Optional[str] = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase : Optional[int] = field(default=20_00_00 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase : Optional[int] = field( default=3_27_68 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase : Optional[str] = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase : Optional[int] = field(default=snake_case__ , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Optional[str] = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase : Optional[str] = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase : Optional[str] = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCamelCase : Optional[bool] = field(default=snake_case__ , metadata={'help': 'Push saved tokenizer to the hub.'} )
687
1