paperID
stringlengths
36
36
pwc_id
stringlengths
8
47
arxiv_id
stringlengths
6
16
nips_id
float64
url_abs
stringlengths
18
329
url_pdf
stringlengths
18
742
title
stringlengths
8
325
abstract
stringlengths
1
7.27k
authors
stringlengths
2
7.06k
published
stringlengths
10
10
conference
stringlengths
12
47
conference_url_abs
stringlengths
16
198
conference_url_pdf
stringlengths
27
199
proceeding
stringlengths
6
47
taskID
stringlengths
7
1.44k
areaID
stringclasses
688 values
embedding
stringlengths
9.26k
12.5k
umap_embedding
stringlengths
29
44
b7db5826-76aa-474b-bf2e-f8c47c947c7f
context-aware-neural-based-dialog-act
1902.11060
null
http://arxiv.org/abs/1902.11060v1
http://arxiv.org/pdf/1902.11060v1.pdf
Context-aware Neural-based Dialog Act Classification on Automatically Generated Transcriptions
This paper presents our latest investigations on dialog act (DA) classification on automatically generated transcriptions. We propose a novel approach that combines convolutional neural networks (CNNs) and conditional random fields (CRFs) for context modeling in DA classification. We explore the impact of transcriptions generated from different automatic speech recognition systems such as hybrid TDNN/HMM and End-to-End systems on the final performance. Experimental results on two benchmark datasets (MRDA and SwDA) show that the combination CNN and CRF improves consistently the accuracy. Furthermore, they show that although the word error rates are comparable, End-to-End ASR system seems to be more suitable for DA classification.
['Gisela Vallejo', 'Chia-Yu Li', 'Daniel Ortega', 'Pavel Denisov', 'Ngoc Thang Vu']
2019-02-28
null
null
null
null
['dialog-act-classification']
['natural-language-processing']
[-1.54568523e-01 1.52874380e-01 1.20534867e-01 -8.49294007e-01 -6.45488143e-01 -5.65861821e-01 1.05421984e+00 -1.17523121e-02 -7.14739084e-01 9.61169720e-01 6.90538168e-01 -4.10305589e-01 5.41728973e-01 -4.04939145e-01 1.97164699e-01 -4.94619548e-01 3.00720543e-01 8.39094341e-01 1.07439056e-01 -4.32756007e-01 8.96978453e-02 5.19992113e-01 -9.57002044e-01 4.96889740e-01 5.45358539e-01 8.47526193e-01 1.54977992e-01 1.01212585e+00 -3.97536069e-01 1.24944496e+00 -1.14179003e+00 -3.89366865e-01 -1.46462128e-01 -2.09619626e-01 -1.29533231e+00 6.59115687e-02 2.48243660e-01 -3.19762558e-01 -3.87656838e-01 5.10548055e-01 5.26266992e-01 4.77322340e-01 6.16541088e-01 -6.46396935e-01 -6.63528800e-01 7.77501583e-01 4.21334594e-01 2.48798862e-01 5.82149148e-01 3.37782413e-01 7.35274851e-01 -8.73510361e-01 6.64714754e-01 1.45506394e+00 4.11958158e-01 7.94716299e-01 -1.31102121e+00 -2.63224840e-01 -3.96723635e-02 -1.12155296e-01 -1.30980372e+00 -6.52495980e-01 5.14206290e-01 -2.52316564e-01 1.76735699e+00 4.99829277e-02 -6.26985207e-02 1.71810639e+00 2.48920336e-01 7.51279294e-01 1.17353892e+00 -8.03826392e-01 5.26840746e-01 1.13181829e-01 6.14931166e-01 4.78272825e-01 -6.99836075e-01 7.85842165e-02 -5.52422166e-01 -4.26952809e-01 4.59966689e-01 -4.06434864e-01 4.98147048e-02 5.62440515e-01 -1.07467699e+00 1.03074515e+00 -1.02909803e-02 7.17317283e-01 -3.90541703e-01 -2.92184293e-01 6.04329884e-01 3.61009151e-01 4.80956703e-01 2.57629246e-01 -6.85261071e-01 -4.85264093e-01 -8.01733911e-01 4.14957166e-01 1.19537115e+00 1.13959563e+00 3.49675685e-01 2.32525393e-01 -7.00446606e-01 1.26055396e+00 4.30603206e-01 3.10845107e-01 7.29603112e-01 -6.96029902e-01 6.43667221e-01 3.58152747e-01 2.09494308e-01 -4.04378921e-01 -4.73241508e-01 -1.86289832e-01 -7.15334594e-01 -8.44536871e-02 6.37620568e-01 -5.35248220e-01 -1.01297820e+00 1.50297654e+00 -2.74839967e-01 -3.46845806e-01 4.15007144e-01 7.35556364e-01 8.08278978e-01 8.09213638e-01 7.46056974e-01 -1.82924896e-01 1.23768079e+00 -1.02373731e+00 -1.34355891e+00 -1.34662405e-01 8.00806463e-01 -9.69812810e-01 1.01360071e+00 4.16151315e-01 -1.19524062e+00 -7.34038293e-01 -9.00548518e-01 -2.14879125e-01 -7.30145335e-01 5.95131636e-01 2.00092763e-01 8.83483112e-01 -1.27408481e+00 3.65121901e-01 -7.01160610e-01 -4.70370144e-01 -7.39603788e-02 4.18882072e-01 -1.42741188e-01 4.12395298e-01 -1.27270508e+00 1.30539608e+00 3.81915182e-01 1.21392138e-01 -9.85389829e-01 1.00877546e-01 -7.28560865e-01 1.79659858e-01 5.20999357e-02 -2.24179149e-01 2.00710630e+00 -7.49855697e-01 -2.26428080e+00 6.87043428e-01 -3.63275290e-01 -8.23170662e-01 2.15374872e-01 -3.14433604e-01 -6.35384679e-01 -1.95433706e-01 -4.63964283e-01 7.31235206e-01 3.12103868e-01 -9.70888197e-01 -4.84937489e-01 -2.60870308e-01 -1.53101042e-01 2.11807787e-02 3.86912073e-03 5.52956939e-01 3.03000957e-01 -5.35260975e-01 -2.49919415e-01 -9.65153813e-01 -4.17385936e-01 -9.08137679e-01 -4.79356408e-01 -7.88645208e-01 8.17778349e-01 -1.00133181e+00 1.28091049e+00 -1.88827360e+00 7.84587860e-02 -5.59354052e-02 -7.74881542e-02 7.52986372e-01 8.65730271e-02 7.72327602e-01 7.25320727e-02 1.95010882e-02 -2.33311996e-01 -9.75317597e-01 5.36055416e-02 5.74337482e-01 -3.70558143e-01 -1.96067039e-02 4.21004742e-01 6.96100950e-01 -5.20825148e-01 -2.63962835e-01 5.06933451e-01 3.90314162e-01 8.11754912e-02 8.09673786e-01 -4.82361615e-01 7.58122742e-01 -5.78401797e-02 3.52456868e-01 4.44832027e-01 2.34227777e-01 4.74903494e-01 3.78060490e-01 -2.22047195e-01 9.78092253e-01 -6.51898384e-01 1.81579447e+00 -9.55021203e-01 7.13591814e-01 -9.65984445e-03 -6.05543375e-01 1.38988745e+00 9.24645424e-01 -3.36157590e-01 -4.79971498e-01 3.10164422e-01 9.56965461e-02 -8.63319039e-02 -2.48604491e-01 9.14826751e-01 1.85169540e-02 -1.86489165e-01 1.39298037e-01 7.57543445e-01 1.91040009e-01 -1.29223809e-01 1.51111677e-01 9.28155541e-01 -5.00212312e-02 5.20523608e-01 -2.84360856e-01 8.84423435e-01 7.15927128e-03 3.81028861e-01 6.77977264e-01 -4.35008049e-01 6.34290993e-01 2.78954118e-01 -6.07064068e-01 -9.40524340e-01 -9.69588697e-01 1.19593687e-01 1.32573712e+00 -7.22908974e-01 -3.91032666e-01 -1.02628994e+00 -1.03368258e+00 -7.91207373e-01 1.14259028e+00 -1.59088060e-01 3.18861783e-01 -7.51292169e-01 -5.11571109e-01 1.08930886e+00 7.92942345e-01 6.62664831e-01 -1.50198317e+00 -1.57852590e-01 5.62078714e-01 -2.97178119e-01 -1.48795688e+00 -1.83117062e-01 4.91540730e-01 -8.33442330e-01 -3.36857617e-01 -5.67216635e-01 -8.94724846e-01 2.88852602e-02 -2.86378562e-01 1.37344468e+00 -8.79646391e-02 3.07230532e-01 2.94196516e-01 -6.20035827e-01 -1.28404811e-01 -1.12177730e+00 4.81826901e-01 -8.49841684e-02 -1.21386290e-01 7.69659162e-01 -4.64533389e-01 4.52060476e-02 2.94277221e-01 -7.69786000e-01 -3.45191002e-01 3.89294237e-01 7.29233980e-01 -1.65761814e-01 -5.90757608e-01 8.66665006e-01 -8.25855315e-01 1.08184278e+00 -2.26736695e-01 -4.92140740e-01 4.13564265e-01 -4.76120561e-01 1.83339268e-01 6.44876122e-01 -1.30362362e-01 -1.76599669e+00 5.52883565e-01 -8.18833888e-01 -8.23786482e-02 -1.29588866e+00 4.25078779e-01 -1.17623232e-01 5.86395800e-01 8.84073794e-01 2.42321044e-01 -1.75926596e-01 -8.21077108e-01 3.29542130e-01 1.39645362e+00 4.95803833e-01 -3.28902304e-01 3.39878947e-02 -1.07787065e-01 -6.75302327e-01 -1.05022168e+00 -5.07450938e-01 -5.30221760e-01 -1.07364845e+00 -9.18644592e-02 1.55584013e+00 -9.16271865e-01 -5.25464833e-01 7.02920914e-01 -1.70218635e+00 -5.60842156e-01 1.35716081e-01 4.00829315e-01 -5.37400723e-01 2.64121950e-01 -1.16967869e+00 -1.14938176e+00 -4.59333003e-01 -1.30376506e+00 9.00635064e-01 1.62939206e-01 -5.24287641e-01 -1.30253661e+00 3.27096850e-01 5.42849541e-01 6.10062778e-01 -3.31473023e-01 8.03336978e-01 -1.32834399e+00 -9.82032418e-02 -2.45552063e-02 1.72793299e-01 6.75006926e-01 4.30085063e-02 3.06783337e-02 -1.62720859e+00 1.13134608e-01 5.16305007e-02 -5.07092774e-01 6.32928371e-01 1.88642830e-01 5.75640857e-01 -3.98060799e-01 -4.74401712e-02 -5.98352075e-01 1.05210268e+00 7.30882943e-01 1.04901266e+00 -3.05274755e-01 3.98649573e-01 6.99793637e-01 5.51431060e-01 2.00829938e-01 2.85303712e-01 1.00291669e+00 2.88477689e-02 2.57479846e-01 -2.39871368e-01 -7.23622888e-02 7.20629692e-01 1.15143728e+00 1.35801613e-01 -7.48574317e-01 -1.27244389e+00 5.14624417e-01 -1.79245543e+00 -6.43376768e-01 -4.70158666e-01 2.02283478e+00 8.70070875e-01 1.17684141e-01 4.04577941e-01 -1.44158691e-01 8.26341927e-01 1.62311956e-01 4.66792881e-01 -1.06388283e+00 -1.08966306e-01 6.03550851e-01 2.13304147e-01 8.52892637e-01 -1.02151096e+00 1.37070346e+00 6.76984549e+00 8.75517488e-01 -9.40825760e-01 4.43275273e-01 7.64187932e-01 5.63742995e-01 4.78844970e-01 -7.17933774e-02 -1.15118408e+00 4.16644454e-01 1.90760732e+00 5.42007387e-01 1.82156563e-01 1.02207386e+00 2.98998296e-01 -2.60967404e-01 -9.45468187e-01 5.51549911e-01 -2.09443823e-01 -1.26375103e+00 -6.47758991e-02 -7.45099038e-02 4.19501364e-01 2.21637756e-01 -3.42667669e-01 6.44318640e-01 8.09170723e-01 -1.17146409e+00 4.73376900e-01 4.36819851e-01 3.49290162e-01 -7.35055149e-01 1.32736313e+00 4.32676464e-01 -8.35555553e-01 1.55731559e-01 -3.76160115e-01 -2.51732469e-01 2.40660936e-01 1.94958478e-01 -1.73567247e+00 4.81150419e-01 2.03971803e-01 2.66926080e-01 -6.78064287e-01 4.59517688e-01 -2.37163603e-01 1.07405615e+00 -1.40270051e-02 -3.53719980e-01 5.30497909e-01 -1.85978692e-02 3.97138059e-01 1.96220112e+00 -3.02262574e-01 9.47123542e-02 2.91994452e-01 7.34238744e-01 1.59304962e-01 1.49112092e-02 -5.48065543e-01 4.50248234e-02 3.85417938e-01 1.12092972e+00 -5.82576215e-01 -5.94438314e-01 -3.73280138e-01 7.63852477e-01 4.75285679e-01 2.06915751e-01 -4.37922299e-01 5.18512400e-03 4.92043138e-01 -4.79638100e-01 2.42186069e-01 -7.60457933e-01 -4.36592251e-01 -9.12683725e-01 -3.38526845e-01 -8.87938321e-01 3.11880559e-01 -6.54478073e-01 -1.55850887e+00 1.17638147e+00 1.78757999e-02 -9.72598314e-01 -7.12125242e-01 -6.80793285e-01 -7.37980068e-01 9.01295245e-01 -8.02885890e-01 -1.00275373e+00 -3.18279974e-02 5.26998580e-01 1.19393563e+00 -4.47828799e-01 1.45721233e+00 3.07627290e-01 -3.72622609e-01 4.47554410e-01 -9.38616395e-02 6.44164085e-01 5.65290093e-01 -1.50026989e+00 6.61782205e-01 4.98879135e-01 1.99472025e-01 4.87951696e-01 4.80106533e-01 -6.33245409e-01 -4.53399062e-01 -9.41253006e-01 1.44737577e+00 -6.52703643e-01 3.01665813e-01 -6.82808697e-01 -1.03987134e+00 7.80590594e-01 1.13585401e+00 -5.11943579e-01 6.47202432e-01 4.12796915e-01 -2.10331529e-01 4.59574491e-01 -1.18203998e+00 4.66815352e-01 6.47098005e-01 -7.77301610e-01 -8.75142097e-01 3.11983436e-01 7.40959167e-01 -3.20165008e-01 -9.61615324e-01 7.33093619e-02 1.55896246e-01 -9.41613674e-01 4.65267777e-01 -8.26005995e-01 2.92646319e-01 2.68070213e-02 -2.78351754e-01 -1.43321609e+00 3.82577442e-02 -5.44316173e-01 2.23034427e-01 1.51776600e+00 6.72358751e-01 -3.79309654e-01 3.98289651e-01 8.23986351e-01 -3.31878930e-01 -1.47505075e-01 -1.23032212e+00 -9.05780733e-01 3.30149829e-01 -4.86064732e-01 3.53849053e-01 1.03823161e+00 6.64029047e-02 9.86030936e-01 -5.51577747e-01 -1.08888932e-01 -2.70921528e-01 -4.90416497e-01 6.12866521e-01 -1.05797744e+00 -3.91511694e-02 -1.21665679e-01 -3.33819121e-01 -1.15569377e+00 3.11035722e-01 -6.16769433e-01 3.63274306e-01 -1.11600196e+00 -4.75165725e-01 -2.94740975e-01 2.64360346e-02 4.70043570e-01 1.47080392e-01 -3.91813457e-01 2.76847810e-01 -1.21064461e-03 -5.56625247e-01 7.31222272e-01 5.43002844e-01 3.88747640e-02 -5.83785474e-01 2.41046876e-01 2.64741898e-01 4.56606209e-01 1.18477309e+00 -6.03613377e-01 1.91494487e-02 -1.90093353e-01 -5.88720322e-01 6.52434766e-01 1.37578160e-01 -1.12126482e+00 2.45303199e-01 1.37236640e-01 9.61395875e-02 -8.30149472e-01 4.91608769e-01 -5.16609728e-01 -2.40103349e-01 9.09462273e-02 -1.05941880e+00 1.60471410e-01 8.82063881e-02 4.23855245e-01 -4.74072278e-01 -6.47169590e-01 7.17470825e-01 -3.39804381e-01 -2.03611121e-01 -4.43957746e-01 -1.37344646e+00 -2.87879258e-01 2.86002934e-01 3.76943797e-01 -3.80403936e-01 -8.50017905e-01 -1.26687860e+00 -2.37417802e-01 -1.33179516e-01 6.00377262e-01 2.78294444e-01 -9.80746865e-01 -6.67975247e-01 -1.23298079e-01 -1.02465644e-01 -2.39276603e-01 4.88653332e-02 6.42273068e-01 -3.77132654e-01 9.51808333e-01 -2.05983773e-01 -5.43307722e-01 -1.39690018e+00 1.22540601e-01 3.86568278e-01 -7.98837662e-01 9.55505675e-05 7.21118867e-01 -2.89811343e-01 -8.52540493e-01 5.39752901e-01 -5.25149465e-01 -4.77073342e-01 -1.36833295e-01 5.05705476e-01 3.62911046e-01 4.31157857e-01 -6.82417154e-01 -1.96465805e-01 -5.14267325e-01 -4.35732722e-01 -5.65310299e-01 1.10647607e+00 -1.48906112e-01 1.83437675e-01 4.52681541e-01 1.00491953e+00 5.29768690e-03 -9.64170575e-01 -3.28449279e-01 6.14226103e-01 -8.14926475e-02 1.50440391e-02 -1.19928396e+00 -7.11855233e-01 1.07388878e+00 7.91258693e-01 5.60534298e-01 7.26491272e-01 -1.79642245e-01 7.65955031e-01 8.58201265e-01 1.62270978e-01 -1.28673041e+00 -1.00943357e-01 1.19125009e+00 1.02213466e+00 -1.21910119e+00 -4.60322112e-01 -4.50462729e-01 -1.22473562e+00 1.48237526e+00 7.33713806e-01 -2.18270585e-01 6.92367673e-01 1.67045310e-01 4.96921718e-01 -1.36219934e-02 -9.06754792e-01 -2.84633130e-01 -1.35266244e-01 6.95321977e-01 7.20478058e-01 1.34381443e-01 -4.29669410e-01 6.95673525e-01 -2.18072951e-01 -6.41620606e-02 6.49536669e-01 1.05956268e+00 -2.45776743e-01 -1.43973410e+00 -1.85301185e-01 -1.38591707e-01 -5.63164592e-01 -1.70350894e-01 -1.08951628e+00 5.12519777e-01 -1.98010430e-01 1.54533899e+00 2.69459076e-02 -5.97180903e-01 9.47626084e-02 9.91252303e-01 -1.06721409e-01 -8.82582963e-01 -1.45572722e+00 -2.36513093e-02 9.01736617e-01 -1.33216128e-01 -6.08235598e-01 -6.11343503e-01 -1.22480083e+00 3.46876234e-02 -4.62187678e-01 1.30543306e-01 8.14882278e-01 1.34684575e+00 3.89266014e-01 2.38444567e-01 6.18537366e-01 -4.58880395e-01 -5.19798338e-01 -1.80794156e+00 -2.79843271e-01 -2.76958942e-02 1.38055637e-01 -3.57945681e-01 -1.03481598e-01 3.34421158e-01]
[12.810647964477539, 7.730242729187012]
4508e971-2302-48db-89e3-ae7ec17eae62
revisit-dictionary-learning-for-video
2110.04966
null
https://arxiv.org/abs/2110.04966v2
https://arxiv.org/pdf/2110.04966v2.pdf
Revisit Dictionary Learning for Video Compressive Sensing under the Plug-and-Play Framework
Aiming at high-dimensional (HD) data acquisition and analysis, snapshot compressive imaging (SCI) obtains the 2D compressed measurement of HD data with optical imaging systems and reconstructs HD data using compressive sensing algorithms. While the Plug-and-Play (PnP) framework offers an emerging solution to SCI reconstruction, its intrinsic denoising process is still a challenging problem. Unfortunately, existing denoisers in the PnP framework either suffer limited performance or require extensive training data. In this paper, we propose an efficient and effective shallow-learning-based algorithm for video SCI reconstruction. Revisiting dictionary learning methods, we empower the PnP framework with a new denoiser, the kernel singular value decomposition (KSVD). Benefited from the advent of KSVD, our algorithm retains a good trade-off among quality, speed, and training difficulty. On a variety of datasets, both quantitative and qualitative evaluations of our simulation results demonstrate the effectiveness of our proposed method. In comparison to a typical baseline using total variation, our method achieves around $2$ dB improvement in PSNR and 0.2 in SSIM. We expect that our proposed PnP-KSVD algorithm can serve as a new baseline for video SCI reconstruction.
['Yaping Zhao', 'Qing Yang']
2021-10-11
null
null
null
null
['video-compressive-sensing']
['computer-vision']
[ 3.56769860e-01 -5.33682227e-01 -1.14771418e-01 1.32823944e-01 -9.28178370e-01 -3.49416643e-01 9.27901939e-02 -4.47199225e-01 1.74321979e-02 4.71330285e-01 4.06700701e-01 -2.43274972e-01 -3.71953815e-01 -3.63790929e-01 -6.95773780e-01 -8.63675714e-01 -7.06914440e-02 -2.97964569e-02 1.69822928e-02 4.15924452e-02 3.31377126e-02 3.28525484e-01 -1.19424796e+00 3.06714792e-02 8.69398296e-01 1.32405663e+00 4.20851171e-01 4.12356287e-01 3.05295974e-01 1.03889740e+00 -4.11287919e-02 -2.47507721e-01 8.08333099e-01 -5.03045619e-01 -3.47903579e-01 4.13233399e-01 3.31285387e-01 -9.16209638e-01 -1.07749617e+00 1.07850599e+00 7.92981803e-01 -1.77872449e-01 2.73016214e-01 -9.03179765e-01 -6.90282881e-01 2.65643895e-01 -6.32081330e-01 1.90093458e-01 4.48911577e-01 2.58942217e-01 7.17666507e-01 -1.17677784e+00 6.05718434e-01 7.77050853e-01 8.41405272e-01 2.31840894e-01 -1.24508166e+00 -4.15629148e-01 -5.05652964e-01 4.96405423e-01 -1.49900723e+00 -8.31128836e-01 1.02361023e+00 -2.26576105e-01 5.09151340e-01 2.68339366e-01 7.80424297e-01 8.26361358e-01 1.78820536e-01 1.06601501e+00 1.23537683e+00 -4.28660095e-01 3.47200632e-01 -3.76641333e-01 -3.77631724e-01 4.01469797e-01 2.92745382e-01 2.55321562e-01 -8.05612028e-01 -1.29868373e-01 1.18923116e+00 2.19163001e-01 -7.36227930e-01 -6.27756655e-01 -1.27576780e+00 4.56658214e-01 2.60396898e-01 -4.24374491e-02 -6.21377409e-01 2.15058848e-01 1.76127315e-01 5.85957944e-01 4.34323624e-02 1.56764418e-01 1.71849862e-01 -1.54668167e-01 -1.43964851e+00 -1.92768574e-02 6.31030679e-01 9.85586286e-01 3.76825064e-01 4.90434110e-01 -1.25440344e-01 9.30620611e-01 2.55177647e-01 6.76106334e-01 3.26301068e-01 -1.54321694e+00 1.98786750e-01 -5.95730469e-02 1.79289371e-01 -1.22884631e+00 1.59694552e-01 -6.86475575e-01 -1.29490077e+00 4.51346785e-02 -1.40331700e-01 5.65056922e-03 -5.44203103e-01 1.27951801e+00 1.75970584e-01 5.75922608e-01 4.15294431e-02 1.17431855e+00 5.61693549e-01 6.61653340e-01 -6.40022874e-01 -8.15144002e-01 7.77490735e-01 -8.85224521e-01 -9.72852111e-01 -9.72604677e-02 -1.68117642e-01 -9.37868595e-01 6.80101931e-01 7.61714518e-01 -1.49898791e+00 -4.19116855e-01 -1.24873781e+00 -8.97057280e-02 8.09216619e-01 -1.66620705e-02 4.28192526e-01 4.23228204e-01 -1.25324738e+00 5.12871921e-01 -8.28036427e-01 -1.57365769e-01 4.04663533e-01 1.19320601e-01 -1.98479161e-01 -7.37960041e-01 -7.36522496e-01 3.80271435e-01 -2.61910975e-01 1.41683221e-01 -1.22255599e+00 -7.44862437e-01 -4.92989033e-01 -7.55288228e-02 3.63821864e-01 -9.43923891e-01 9.06618357e-01 -3.26307565e-01 -1.55369091e+00 6.00583553e-01 -1.76658973e-01 -5.24864793e-01 5.48953831e-01 -4.24545169e-01 -3.55871797e-01 6.99378967e-01 3.75678390e-02 1.68809980e-01 1.30017436e+00 -1.44403028e+00 -1.36274293e-01 -2.29823127e-01 -2.48437062e-01 6.10699989e-02 -4.64491397e-01 -2.72193134e-01 -8.40799928e-01 -8.85431111e-01 8.30831945e-01 -7.65497804e-01 -2.60343164e-01 4.49494660e-01 -2.37128332e-01 7.33205676e-01 8.83545339e-01 -9.07475948e-01 1.42218316e+00 -2.34110904e+00 3.69156688e-01 4.60347086e-02 5.90029597e-01 2.42907718e-01 3.18611320e-03 6.48584604e-01 1.27131745e-01 -5.66340566e-01 -3.20642531e-01 -4.63869512e-01 -1.99160293e-01 3.03438842e-01 -3.11961710e-01 7.56001711e-01 -3.87737840e-01 7.01274395e-01 -7.43867338e-01 -3.32905948e-01 3.01908970e-01 5.88926733e-01 -7.95944989e-01 4.02734667e-01 3.10558259e-01 6.56381965e-01 -2.92812228e-01 9.12408054e-01 8.59501898e-01 -4.92786229e-01 3.02838445e-01 -7.30495989e-01 -1.30031109e-02 -2.20619142e-01 -1.43269598e+00 2.05891252e+00 -2.68210173e-01 5.76952815e-01 6.04604661e-01 -1.21905971e+00 7.32701063e-01 3.85877132e-01 8.21184099e-01 -8.57439816e-01 -9.81524214e-02 4.37145442e-01 -4.09799188e-01 -7.32124686e-01 4.27368969e-01 -2.62946427e-01 4.08580810e-01 2.66857356e-01 7.63085298e-03 -1.24482043e-01 -1.85658470e-01 3.86434793e-01 1.37003541e+00 -6.31749183e-02 3.16172123e-01 -1.65880203e-01 2.17448533e-01 -2.80683815e-01 6.52827919e-01 7.31966615e-01 -3.29261839e-01 9.53412771e-01 1.19628757e-01 -1.56624898e-01 -1.22129154e+00 -1.20900965e+00 -2.88053781e-01 3.85880202e-01 3.26100826e-01 -3.15834820e-01 -4.13593531e-01 1.36647910e-01 -1.27791002e-01 2.26445541e-01 1.32250920e-01 1.64440591e-02 -4.90148991e-01 -6.09805286e-01 3.53268147e-01 2.12743089e-01 7.23107636e-01 -2.32687905e-01 -4.17657912e-01 2.69673765e-01 -3.55978876e-01 -1.45953178e+00 -4.32582796e-01 -1.31576285e-01 -1.11586261e+00 -8.31697404e-01 -8.29991519e-01 -8.77878129e-01 4.77314442e-01 1.02646196e+00 9.11330938e-01 7.10577238e-04 -8.80011246e-02 7.46226788e-01 -4.44957972e-01 2.02840403e-01 -1.90394893e-01 -5.98944485e-01 2.75793016e-01 2.23279640e-01 -1.70973241e-01 -1.24291170e+00 -1.17135715e+00 1.87027290e-01 -1.07520688e+00 4.52214144e-02 8.00187469e-01 9.91451979e-01 8.34814668e-01 1.19072743e-01 3.60332698e-01 -3.30670267e-01 4.95182157e-01 -4.91074890e-01 -4.68752414e-01 -4.44146581e-02 -8.78760397e-01 -2.27096125e-01 5.57018220e-01 -9.41291079e-02 -7.83528805e-01 5.15420409e-03 -1.69976309e-01 -1.09390604e+00 4.37653273e-01 7.51867712e-01 -8.87738839e-02 -5.09167075e-01 5.30730963e-01 7.84465671e-01 4.92757142e-01 -6.15473151e-01 1.37549013e-01 6.01710200e-01 8.50956142e-01 -4.27490175e-01 9.94331241e-01 7.91276276e-01 1.25377953e-01 -8.98168981e-01 -5.69459081e-01 -5.59018850e-01 -2.20747739e-01 -3.22780043e-01 3.18503320e-01 -1.45040882e+00 -6.34411573e-01 4.90478903e-01 -6.18663669e-01 -6.30931184e-02 -2.95278341e-01 6.14570260e-01 -5.80928385e-01 1.00471807e+00 -9.36608136e-01 -5.35121322e-01 -4.32005227e-01 -1.07945931e+00 9.40002561e-01 -3.15854669e-01 2.60202020e-01 -7.00912118e-01 -6.14787862e-02 6.15911782e-01 7.56134272e-01 8.80521759e-02 6.90872073e-01 2.45390400e-01 -9.62070525e-01 -3.08074385e-01 -2.04891518e-01 7.40553796e-01 3.72478217e-02 -5.56732059e-01 -6.76399708e-01 -8.55287194e-01 6.84114575e-01 -2.68511057e-01 8.00355613e-01 6.55188978e-01 1.16871762e+00 -4.01289612e-01 8.11074823e-02 1.10878158e+00 1.84307253e+00 -1.07390903e-01 9.28084314e-01 2.39832163e-01 6.36319458e-01 -5.95116690e-02 3.60330790e-01 8.85976672e-01 2.97891557e-01 7.24047363e-01 5.56703031e-01 7.87160099e-02 -4.77718443e-01 -2.26288587e-01 4.87521142e-01 1.41478992e+00 -8.69671106e-02 -7.68211782e-02 -6.34703696e-01 5.71888924e-01 -1.70985699e+00 -1.04639804e+00 -1.47046134e-01 2.29474926e+00 8.33752215e-01 -1.60103753e-01 -1.17503777e-01 4.99980062e-01 3.58424366e-01 4.61443841e-01 -7.08717227e-01 4.03985441e-01 -3.44770789e-01 1.00849576e-01 4.56555098e-01 3.70083421e-01 -7.18655169e-01 2.94566005e-01 6.46092749e+00 9.37201500e-01 -1.25485802e+00 3.02265882e-01 1.67646348e-01 -3.58019412e-01 -3.34566325e-01 -4.35597003e-02 -2.58714795e-01 5.19046724e-01 6.23172522e-01 -2.40379959e-01 8.86514187e-01 6.38218880e-01 4.12115008e-01 3.65659446e-02 -8.77985120e-01 1.59417391e+00 1.98592842e-01 -1.64332557e+00 1.32387474e-01 1.38566375e-01 8.43570173e-01 8.88029337e-02 2.47521117e-01 -7.31898993e-02 -1.44477159e-01 -7.71074176e-01 6.41965747e-01 4.01563793e-01 9.88390982e-01 -2.75228649e-01 5.17490625e-01 3.45280617e-01 -9.30013299e-01 -1.10204004e-01 -4.90455210e-01 -1.17943823e-01 4.94998574e-01 1.14841247e+00 -2.15750128e-01 7.84634531e-01 6.50694668e-01 1.02938163e+00 -8.89679864e-02 1.22199106e+00 4.25663739e-02 8.27593803e-01 -1.59154803e-01 7.23177552e-01 -4.17545661e-02 -4.56707835e-01 8.72238517e-01 8.30080748e-01 7.95948029e-01 4.56410438e-01 1.40812606e-01 5.12207031e-01 -1.35595098e-01 -2.48100340e-01 -6.14611745e-01 9.89502743e-02 4.96539205e-01 9.79575336e-01 -1.49927318e-01 -9.80034992e-02 -5.55702567e-01 1.18843687e+00 -2.29104251e-01 4.71701652e-01 -5.77479899e-01 1.95173293e-01 6.76255345e-01 3.00363332e-01 6.65594220e-01 -6.17894888e-01 -2.66809851e-01 -1.48596299e+00 3.25997829e-01 -1.26629758e+00 1.34718064e-02 -7.68109202e-01 -1.41944635e+00 3.18112761e-01 -3.76684785e-01 -1.87070274e+00 -4.61471789e-02 -3.31563026e-01 -2.33447343e-01 4.48523492e-01 -1.76979804e+00 -9.52668011e-01 -5.66637635e-01 8.38823378e-01 5.60732305e-01 -1.51373252e-01 5.52711248e-01 7.59457469e-01 -3.69006813e-01 4.24431235e-01 8.36823881e-01 -1.65998369e-01 5.90554237e-01 -6.52184367e-01 -1.05343945e-01 1.09939694e+00 -5.81702329e-02 5.51739812e-01 8.58203828e-01 -4.87885714e-01 -2.46930289e+00 -8.26398134e-01 1.73686385e-01 4.88782488e-02 5.55961967e-01 2.03324735e-01 -7.75915563e-01 5.86413562e-01 2.92910039e-01 3.40219706e-01 8.13305080e-01 -4.29452389e-01 -3.05797338e-01 -3.94400865e-01 -1.13796937e+00 3.89501780e-01 1.21888852e+00 -7.32695460e-01 -3.06282699e-01 3.29973400e-01 5.44477940e-01 -5.69069684e-01 -1.04996598e+00 4.13293034e-01 6.16185427e-01 -1.35037518e+00 1.37287402e+00 6.96218684e-02 8.26857090e-01 -4.33150232e-01 -7.59878039e-01 -1.10687459e+00 -5.04786313e-01 -9.61808980e-01 -5.74229002e-01 8.08184087e-01 -3.05440754e-01 -2.84406692e-01 6.88110232e-01 1.92495719e-01 -3.87175620e-01 -7.18024611e-01 -1.03724706e+00 -9.80376065e-01 -3.07812035e-01 -6.27813458e-01 1.39222443e-01 1.00521195e+00 -1.38062418e-01 8.87140334e-02 -1.02245259e+00 4.37708884e-01 1.35999489e+00 1.87381864e-01 6.37201250e-01 -6.86381817e-01 -8.20437431e-01 1.50722176e-01 -4.21812266e-01 -1.76907718e+00 -3.41642022e-01 -7.20984399e-01 -1.09909311e-01 -1.55796409e+00 3.64283085e-01 -2.98762858e-01 -2.80685812e-01 -1.80818155e-01 1.83907840e-02 5.06706119e-01 3.41570944e-01 8.38061094e-01 -6.02648199e-01 7.60639608e-01 1.40275466e+00 -9.43061858e-02 9.49420258e-02 -3.19714963e-01 -5.95724523e-01 3.79442871e-01 2.58896649e-01 -2.86155313e-01 -5.32218575e-01 -9.86447573e-01 1.47710711e-01 6.47301674e-01 4.81706232e-01 -1.26000249e+00 6.64328456e-01 -1.75574236e-02 2.38534898e-01 -3.52919012e-01 4.87306803e-01 -9.06146944e-01 5.22136867e-01 4.46742535e-01 1.70796409e-01 -2.73852944e-01 -8.72249603e-02 8.11972976e-01 -5.51024795e-01 3.08390800e-02 7.11935639e-01 -1.02739260e-01 -6.94773793e-01 4.38220590e-01 -1.14369221e-01 -1.00724041e-01 7.15551794e-01 -5.31434834e-01 -1.50980189e-01 -6.88226163e-01 -6.13766074e-01 6.55464008e-02 7.33701825e-01 -1.94881305e-01 1.08923244e+00 -1.40314841e+00 -8.02725911e-01 3.98696631e-01 -2.03658372e-01 -1.99389189e-01 5.16686022e-01 1.22397614e+00 -7.48283148e-01 1.39132485e-01 -1.81775391e-01 -6.90147638e-01 -8.87906909e-01 5.63231826e-01 -8.21823403e-02 -4.39394219e-03 -8.59435260e-01 8.35581958e-01 -1.36570215e-01 8.66586864e-02 1.79614469e-01 2.31612518e-01 3.59991848e-01 -1.75983742e-01 6.24396026e-01 5.12255192e-01 6.76584244e-02 -3.80292028e-01 -1.25898672e-02 5.35890937e-01 2.11457625e-01 6.42479444e-03 1.70249093e+00 -5.61299324e-01 -3.04137319e-01 9.29932222e-02 1.18095744e+00 2.79640734e-01 -1.47284687e+00 -4.52533096e-01 -5.15035033e-01 -1.00275505e+00 5.78484833e-01 -3.17064703e-01 -1.30320024e+00 5.54141581e-01 6.61504388e-01 1.35442615e-01 1.59255314e+00 -1.55327782e-01 1.37573361e+00 1.33870021e-01 7.58506298e-01 -7.12728143e-01 3.60603958e-01 1.28687277e-01 9.73056495e-01 -1.20510936e+00 4.08160090e-01 -4.96736586e-01 -4.47891682e-01 8.91528249e-01 -7.86854625e-02 -1.72108859e-01 6.12441123e-01 3.24448496e-01 2.42123175e-02 -2.10481703e-01 -6.04308903e-01 2.14304894e-01 -5.70645258e-02 4.79787886e-01 7.81599507e-02 -2.21937403e-01 -3.06450874e-01 2.24512219e-01 6.03092425e-02 4.49484557e-01 7.29192317e-01 1.11786664e+00 -4.42909032e-01 -8.88134241e-01 -4.89762694e-01 4.90080267e-01 -3.34238172e-01 -2.48527125e-01 3.78606915e-01 2.49853939e-01 -2.92981744e-01 9.04802799e-01 -2.87361950e-01 -4.85992819e-01 2.62608439e-01 -4.48164761e-01 5.94616652e-01 -2.31939331e-01 2.18574256e-02 3.93556118e-01 -1.83263734e-01 -8.26394498e-01 -6.06350660e-01 -7.17094660e-01 -8.78043711e-01 -6.65505052e-01 -1.41529739e-03 -9.77067575e-02 4.34010863e-01 6.29677951e-01 5.78072071e-01 2.42437676e-01 1.00353014e+00 -8.21067095e-01 -8.38065863e-01 -3.90858203e-01 -8.89983118e-01 3.07820916e-01 6.00537300e-01 -3.73950094e-01 -5.85282505e-01 3.02629501e-01]
[11.141098022460938, -2.132469892501831]
7ff58bf6-4693-4d7b-9ccd-8c0f5f425ee1
attribute-surrogates-learning-and-spectral
2203.09064
null
https://arxiv.org/abs/2203.09064v1
https://arxiv.org/pdf/2203.09064v1.pdf
Attribute Surrogates Learning and Spectral Tokens Pooling in Transformers for Few-shot Learning
This paper presents new hierarchically cascaded transformers that can improve data efficiency through attribute surrogates learning and spectral tokens pooling. Vision transformers have recently been thought of as a promising alternative to convolutional neural networks for visual recognition. But when there is no sufficient data, it gets stuck in overfitting and shows inferior performance. To improve data efficiency, we propose hierarchically cascaded transformers that exploit intrinsic image structures through spectral tokens pooling and optimize the learnable parameters through latent attribute surrogates. The intrinsic image structure is utilized to reduce the ambiguity between foreground content and background noise by spectral tokens pooling. And the attribute surrogate learning scheme is designed to benefit from the rich visual information in image-label pairs instead of simple visual concepts assigned by their labels. Our Hierarchically Cascaded Transformers, called HCTransformers, is built upon a self-supervised learning framework DINO and is tested on several popular few-shot learning benchmarks. In the inductive setting, HCTransformers surpass the DINO baseline by a large margin of 9.7% 5-way 1-shot accuracy and 9.17% 5-way 5-shot accuracy on miniImageNet, which demonstrates HCTransformers are efficient to extract discriminative features. Also, HCTransformers show clear advantages over SOTA few-shot classification methods in both 5-way 1-shot and 5-way 5-shot settings on four popular benchmark datasets, including miniImageNet, tieredImageNet, FC100, and CIFAR-FS. The trained weights and codes are available at https://github.com/StomachCold/HCTransformers.
['Wenqiang Zhang', 'Yizhou Yu', 'Weifeng Ge', 'Hong-Yu Zhou', 'Dongyang Zhao', 'Weihan Liang', 'Yangji He']
2022-03-17
null
http://openaccess.thecvf.com//content/CVPR2022/html/He_Attribute_Surrogates_Learning_and_Spectral_Tokens_Pooling_in_Transformers_for_CVPR_2022_paper.html
http://openaccess.thecvf.com//content/CVPR2022/papers/He_Attribute_Surrogates_Learning_and_Spectral_Tokens_Pooling_in_Transformers_for_CVPR_2022_paper.pdf
cvpr-2022-1
['few-shot-image-classification']
['computer-vision']
[ 5.69067299e-02 -1.38228610e-01 -4.13902521e-01 -4.94075805e-01 -7.83828259e-01 -2.72569567e-01 6.10225677e-01 -1.79331213e-01 -5.89141071e-01 3.92631292e-01 2.12293521e-01 8.89577263e-04 4.89143245e-02 -7.15725124e-01 -7.09921658e-01 -8.39946747e-01 9.44999680e-02 1.11772813e-01 3.87787372e-01 -7.16046840e-02 -1.15485333e-01 4.83306721e-02 -1.71265411e+00 6.44121468e-01 6.71542823e-01 1.53377569e+00 3.48521881e-02 5.25122106e-01 -1.49357766e-01 1.26614571e+00 -3.92735809e-01 -4.13569689e-01 2.90229619e-01 -2.15575084e-01 -6.73298419e-01 9.38508362e-02 6.66792333e-01 -3.56647521e-01 -4.14875746e-01 8.93864393e-01 7.02999532e-01 1.32262155e-01 7.29257941e-01 -1.36513126e+00 -9.24524128e-01 5.18310666e-01 -5.26946902e-01 4.77718055e-01 -2.76014417e-01 5.91916919e-01 1.27326083e+00 -1.47561181e+00 3.19597691e-01 1.17832518e+00 6.54519081e-01 6.15889907e-01 -1.29412174e+00 -8.51465881e-01 8.84706452e-02 4.74928230e-01 -1.40933597e+00 -5.49713314e-01 5.50988674e-01 -5.64499915e-01 1.15633464e+00 6.87668100e-02 6.04186356e-01 1.42999947e+00 6.26496747e-02 1.02622294e+00 1.18281221e+00 -1.28037885e-01 1.90733850e-01 6.62960038e-02 3.92915100e-01 8.81095171e-01 -1.56053901e-01 1.09123476e-01 -9.20812249e-01 6.93672746e-02 5.51460147e-01 3.43717486e-01 -1.59272075e-01 -3.20952356e-01 -1.07371783e+00 9.32101190e-01 8.82182181e-01 -4.21835203e-03 -2.16132402e-02 3.90032113e-01 4.96187150e-01 2.31925875e-01 4.49982047e-01 3.84988904e-01 -2.48330086e-01 5.40088527e-02 -7.14208603e-01 -3.29481751e-01 3.68358314e-01 9.96311426e-01 8.59028280e-01 2.98567861e-01 -7.67721891e-01 1.04142368e+00 3.00604533e-02 4.12420779e-01 6.05615139e-01 -7.82908559e-01 2.11334974e-01 6.72619045e-01 -2.93563426e-01 -3.74268055e-01 -2.11239234e-01 -6.29267097e-01 -9.09966648e-01 1.62915096e-01 2.30021015e-01 2.92474981e-02 -1.50002718e+00 1.46321857e+00 4.43086773e-03 5.22326052e-01 -9.22157913e-02 9.01202023e-01 1.31872058e+00 6.51849449e-01 3.13088715e-01 1.41548231e-01 1.69589746e+00 -1.27051830e+00 -5.19428372e-01 -3.51954788e-01 6.07597470e-01 -4.72652555e-01 1.55818725e+00 8.87986794e-02 -7.89247155e-01 -6.57212794e-01 -1.17863941e+00 -3.21594834e-01 -4.92367566e-01 1.69299319e-01 6.16593838e-01 5.78663588e-01 -8.74314725e-01 4.40802097e-01 -7.07104504e-01 -1.40739679e-01 1.22659242e+00 2.29434013e-01 -1.61458433e-01 -1.51055902e-01 -1.15417922e+00 6.08577430e-01 2.35340878e-01 -2.37198517e-01 -1.35532916e+00 -1.16420722e+00 -8.84262383e-01 4.29592848e-01 5.30234993e-01 -5.43946266e-01 1.21748912e+00 -7.67777205e-01 -1.30754685e+00 1.04251468e+00 6.63241968e-02 -6.51710749e-01 4.08925653e-01 -1.77924559e-01 -2.25100219e-01 2.14685977e-01 8.23958665e-02 8.96207750e-01 1.09033608e+00 -7.67415941e-01 -6.21926129e-01 -1.61233261e-01 2.36294661e-02 3.27526703e-02 -8.12959075e-01 -1.30924731e-01 -3.62424821e-01 -7.07203925e-01 -3.22814435e-01 -6.28424883e-01 5.14586410e-03 3.14856768e-01 -3.64668965e-01 -3.58636320e-01 9.12764311e-01 -6.50542974e-02 7.82144070e-01 -2.40627837e+00 -3.33466232e-01 -1.80514127e-01 5.12659132e-01 6.18103385e-01 -2.67441452e-01 4.52555902e-03 -5.18290652e-03 2.09988151e-02 -2.26353154e-01 -3.95805717e-01 1.06102519e-01 2.19711900e-01 -3.97060007e-01 3.90041083e-01 5.14222980e-01 1.34171164e+00 -9.34930623e-01 -5.29984236e-01 4.05626416e-01 5.80785632e-01 -3.51125121e-01 1.97535425e-01 4.29397374e-02 -9.05270427e-02 -2.06481054e-01 8.57442617e-01 3.57138395e-01 -6.28385663e-01 -3.51187587e-01 -4.29599285e-01 1.71400234e-01 -2.86506359e-02 -5.00654876e-01 1.62160313e+00 -3.31872016e-01 6.62197292e-01 -5.93532920e-01 -1.02827930e+00 9.05013502e-01 1.94264933e-01 3.68442893e-01 -9.94587839e-01 2.81043947e-01 -4.65064868e-02 -1.86353296e-01 -3.68264645e-01 9.94559228e-02 -2.19437227e-01 -1.30126119e-01 8.32431018e-02 6.96628809e-01 3.32691669e-01 3.18512470e-02 3.11904341e-01 1.12350070e+00 -1.25866802e-02 2.79352903e-01 -3.09276730e-01 1.88359454e-01 -2.82474071e-01 7.46600270e-01 8.55157852e-01 -3.75736952e-01 8.51444244e-01 5.18027127e-01 -4.83478606e-01 -8.93308342e-01 -1.44974399e+00 -1.90997392e-01 1.46523583e+00 1.01822384e-01 -4.64224428e-01 -5.39209545e-01 -6.49978817e-01 -9.13898498e-02 5.19305229e-01 -9.76845860e-01 -6.34578109e-01 2.64700223e-02 -9.89324033e-01 7.33415246e-01 1.01367021e+00 8.06839824e-01 -8.40839446e-01 -9.08830941e-01 6.38775378e-02 -6.98699057e-02 -1.31505954e+00 -6.77376091e-01 6.18141592e-01 -6.13610864e-01 -9.79328036e-01 -8.38624537e-01 -6.87306762e-01 5.08590162e-01 4.68239337e-01 1.13644242e+00 -1.53133631e-01 -6.86731398e-01 2.22020105e-01 -4.58028883e-01 -4.06392127e-01 2.53699005e-01 -1.86635386e-02 -1.25078544e-01 3.22776079e-01 4.52449173e-01 -5.60037255e-01 -9.36747491e-01 4.66031909e-01 -7.06649840e-01 2.40405798e-02 6.96743309e-01 1.32465339e+00 5.81060350e-01 -5.46762049e-01 4.46755141e-01 -9.87287223e-01 1.67459816e-01 -4.39686865e-01 -4.09716576e-01 3.07835102e-01 -5.69289327e-01 1.68158174e-01 6.36349916e-01 -6.25713110e-01 -1.08523762e+00 1.69314787e-01 2.71855708e-04 -9.51401949e-01 7.27373958e-02 1.07464738e-01 -1.44259453e-01 -1.04380153e-01 9.71937716e-01 1.14912242e-01 -2.93992609e-01 -3.42571259e-01 4.31556761e-01 5.64565957e-01 5.65441132e-01 -3.29389393e-01 6.60222471e-01 6.48426235e-01 -3.77224684e-01 -7.25179136e-01 -1.25286388e+00 -7.48184681e-01 -4.39805150e-01 -1.61653593e-01 1.07189703e+00 -1.22173464e+00 -6.13461852e-01 7.10688531e-01 -7.60181427e-01 -4.86356378e-01 -5.55727243e-01 2.34988034e-01 -4.52952892e-01 -1.81822777e-01 -7.85170853e-01 -4.87015784e-01 -6.27975345e-01 -1.11975336e+00 1.00149405e+00 3.45923126e-01 1.62393507e-02 -7.45515764e-01 -5.33419251e-01 2.85988003e-01 3.50662947e-01 7.69103914e-02 9.06544983e-01 -6.68156922e-01 -4.48584497e-01 6.24406189e-02 -5.97170174e-01 4.62480128e-01 7.04900995e-02 -2.60098726e-01 -1.64249623e+00 -2.63443500e-01 -2.91271031e-01 -8.67981315e-01 1.45870554e+00 3.88909996e-01 1.36627555e+00 -2.04048485e-01 -8.32258537e-02 1.02402818e+00 1.43834305e+00 -1.06209278e-01 6.13398671e-01 1.52603403e-01 9.47771192e-01 1.14099801e-01 3.30893666e-01 4.06324685e-01 3.86188209e-01 5.94739377e-01 4.94362950e-01 -3.04322213e-01 -4.83178049e-01 -2.25378737e-01 4.13077056e-01 6.07026875e-01 -2.76820008e-02 8.96979822e-04 -8.28237832e-01 6.03325188e-01 -1.80177367e+00 -9.58837330e-01 4.94849347e-02 2.09349227e+00 6.73455715e-01 2.72743493e-01 1.94519132e-01 -6.39128238e-02 4.71413940e-01 3.69975656e-01 -8.65294039e-01 -5.84537629e-03 -3.52526128e-01 2.69060254e-01 6.17635369e-01 6.17807731e-02 -1.24243891e+00 1.10292900e+00 5.25481558e+00 1.02305830e+00 -1.07248485e+00 4.99928921e-01 9.39026177e-01 -4.60048616e-01 6.31336942e-02 -1.19947985e-01 -9.00092304e-01 4.15929526e-01 8.11696172e-01 -4.07556407e-02 1.72583580e-01 9.00104403e-01 -1.72890916e-01 5.83912544e-02 -1.08244622e+00 1.23963821e+00 4.98716570e-02 -1.61167312e+00 8.75954926e-02 -1.66076779e-01 6.73789322e-01 4.15182531e-01 4.25064772e-01 6.09725773e-01 4.27258819e-01 -1.14861882e+00 8.11558664e-01 3.64157319e-01 9.68621433e-01 -5.96565485e-01 7.18553126e-01 7.17105437e-03 -1.30542958e+00 -3.37097108e-01 -5.83457410e-01 7.48773515e-02 -2.03500420e-01 4.24945533e-01 -6.58072174e-01 1.70037761e-01 1.15574300e+00 1.00185990e+00 -8.13281000e-01 1.22100329e+00 -3.27625066e-01 7.48096645e-01 3.49014699e-02 8.25781599e-02 5.30381799e-01 3.04791033e-01 1.11045770e-01 1.21309280e+00 6.80191815e-02 1.74825951e-01 1.25176579e-01 8.46454442e-01 -4.49701220e-01 -1.96693182e-01 -3.61292481e-01 -4.45425101e-02 4.41750258e-01 1.44762969e+00 -8.71097982e-01 -5.46580970e-01 -5.29816210e-01 1.03395867e+00 4.16965932e-01 5.58527172e-01 -1.05032420e+00 -4.68165457e-01 7.07426488e-01 5.95594458e-02 6.82402730e-01 2.42810339e-01 -2.26233855e-01 -1.36733150e+00 -1.75792620e-01 -6.48829520e-01 6.67369246e-01 -7.82846630e-01 -1.39038765e+00 6.30542755e-01 -5.45802191e-02 -1.32004130e+00 1.68381125e-01 -7.69656837e-01 -7.41310835e-01 5.30648649e-01 -1.50591445e+00 -1.32370925e+00 -6.02073610e-01 8.40007246e-01 8.07859182e-01 -3.01910877e-01 7.91208446e-01 2.69822299e-01 -6.62733018e-01 9.67369497e-01 1.91550422e-02 4.33627218e-01 7.75531709e-01 -1.23323345e+00 4.56899345e-01 7.68683434e-01 4.36234534e-01 2.59030521e-01 4.07644272e-01 -8.77342746e-02 -1.16116607e+00 -1.31557465e+00 3.26507062e-01 -3.37429255e-01 7.23151326e-01 -7.53104866e-01 -1.08673573e+00 5.45075417e-01 1.91352978e-01 8.41861427e-01 7.52157092e-01 1.48290750e-02 -9.91787076e-01 -4.64386821e-01 -8.66367042e-01 2.91284233e-01 1.16521168e+00 -8.11455369e-01 -4.52613890e-01 3.39762300e-01 7.45033026e-01 -5.69355860e-02 -8.32686365e-01 4.11995173e-01 5.04746318e-01 -9.20169890e-01 1.07309580e+00 -6.30486012e-01 4.76773024e-01 -7.29470998e-02 -2.61213064e-01 -1.26066709e+00 -4.56375867e-01 -4.76809740e-01 -1.78695604e-01 1.14659381e+00 4.23785299e-01 -5.38915753e-01 7.97319174e-01 3.50468814e-01 -1.66583002e-01 -9.76538301e-01 -8.17879140e-01 -1.01637208e+00 -1.16929553e-01 -3.15222740e-01 3.69805366e-01 9.33758199e-01 -2.70923316e-01 8.46176267e-01 -5.40707767e-01 -1.57241538e-01 8.73095334e-01 8.66082776e-03 4.36603695e-01 -1.13753510e+00 -2.68442363e-01 -5.06454766e-01 -5.80885291e-01 -7.56020844e-01 8.06633905e-02 -9.71060097e-01 5.40921018e-02 -1.36301589e+00 4.32072759e-01 -3.02381158e-01 -8.53436291e-01 1.07326603e+00 -2.30306730e-01 7.41493344e-01 3.21508706e-01 1.14721492e-01 -8.25102091e-01 9.13860321e-01 9.27544951e-01 -6.07529998e-01 7.90126473e-02 -2.44784549e-01 -5.47353923e-01 6.72955275e-01 6.95467889e-01 -4.62141007e-01 -6.87235177e-01 -4.12624568e-01 -2.23898590e-01 -3.72172087e-01 7.54955947e-01 -1.11834145e+00 2.60755271e-01 9.29754674e-02 6.90699935e-01 -2.62727320e-01 6.40823543e-01 -4.15057480e-01 -2.97513247e-01 5.02197564e-01 -2.84438431e-01 -2.41664261e-01 1.64373428e-01 6.07957780e-01 -1.11632921e-01 6.34126216e-02 1.06213105e+00 -1.05005160e-01 -1.27312863e+00 7.19963849e-01 -1.73078105e-01 3.63945335e-01 1.07864881e+00 -4.04447049e-01 -6.69172347e-01 -1.38636544e-01 -7.20468760e-01 2.05226317e-01 1.73888922e-01 4.96655703e-01 9.46099579e-01 -1.46678305e+00 -5.05856872e-01 1.88105747e-01 6.53780282e-01 -2.58106202e-01 3.90023440e-01 9.71583724e-01 -1.73550397e-02 1.03862047e-01 -6.00221276e-01 -8.05945575e-01 -1.15377831e+00 5.18007934e-01 4.81924951e-01 6.78607002e-02 -8.45771730e-01 1.34971631e+00 6.86483562e-01 -6.53020442e-02 3.07484239e-01 -3.38420480e-01 -1.10223621e-01 3.26855838e-01 7.24539101e-01 2.11375341e-01 1.16260633e-01 -5.14427841e-01 -4.29564327e-01 3.70907396e-01 -3.08414698e-01 2.09749490e-01 1.47288942e+00 1.63391918e-01 3.94810379e-01 5.75695693e-01 1.38107800e+00 -6.55798674e-01 -1.81099319e+00 -6.16710067e-01 5.88561893e-02 -3.65179777e-01 2.39488870e-01 -6.51931405e-01 -1.37241280e+00 1.25080323e+00 8.72906864e-01 -1.85202375e-01 1.23980665e+00 1.82024032e-01 7.37234473e-01 3.72438192e-01 7.82530904e-02 -1.01222777e+00 6.57286465e-01 5.13013124e-01 4.83614832e-01 -1.49471784e+00 -2.20837817e-01 -2.45308161e-01 -9.03598487e-01 7.56585896e-01 8.28494728e-01 -2.21932888e-01 5.82398176e-01 3.25682253e-01 6.84247762e-02 -2.58718789e-01 -1.01719403e+00 -5.17309844e-01 4.97477502e-01 6.16613865e-01 1.85080528e-01 -1.11081935e-02 3.15717578e-01 7.06767738e-01 9.94914398e-02 -8.93864632e-02 2.93285221e-01 6.30093038e-01 -4.92233366e-01 -5.93577981e-01 1.61069911e-02 7.52659023e-01 -3.50295782e-01 -4.23024297e-01 -1.92511991e-01 5.43652654e-01 9.13169384e-02 7.78870463e-01 1.21234939e-01 -5.59538662e-01 3.12238604e-01 1.08892890e-02 3.54284525e-01 -6.51874900e-01 -5.86366117e-01 1.27718085e-02 -9.07599330e-02 -6.84940040e-01 -4.05353069e-01 -2.67845720e-01 -1.14799356e+00 -4.92362976e-02 -1.91072851e-01 -1.25766113e-01 5.66574894e-02 9.67570662e-01 2.76730359e-01 7.68368661e-01 5.48805833e-01 -5.91421425e-01 -6.32247448e-01 -8.84958744e-01 -3.73589844e-01 3.47847641e-01 3.27690035e-01 -9.16204631e-01 -2.12126091e-01 9.13400277e-02]
[9.874216079711914, 2.6029934883117676]
9106637d-e5fa-4faa-a286-afd120aa32eb
2d-human-pose-estimation-a-survey
2204.07370
null
https://arxiv.org/abs/2204.07370v1
https://arxiv.org/pdf/2204.07370v1.pdf
2D Human Pose Estimation: A Survey
Human pose estimation aims at localizing human anatomical keypoints or body parts in the input data (e.g., images, videos, or signals). It forms a crucial component in enabling machines to have an insightful understanding of the behaviors of humans, and has become a salient problem in computer vision and related fields. Deep learning techniques allow learning feature representations directly from the data, significantly pushing the performance boundary of human pose estimation. In this paper, we reap the recent achievements of 2D human pose estimation methods and present a comprehensive survey. Briefly, existing approaches put their efforts in three directions, namely network architecture design, network training refinement, and post processing. Network architecture design looks at the architecture of human pose estimation models, extracting more robust features for keypoint recognition and localization. Network training refinement tap into the training of neural networks and aims to improve the representational ability of models. Post processing further incorporates model-agnostic polishing strategies to improve the performance of keypoint detection. More than 200 research contributions are involved in this survey, covering methodological frameworks, common benchmark datasets, evaluation metrics, and performance comparisons. We seek to provide researchers with a more comprehensive and systematic review on human pose estimation, allowing them to acquire a grand panorama and better identify future directions.
['Zhenguang Liu', 'Fengcheng Zhou', 'Hao Xu', 'Sifan Wu', 'Runyang Feng', 'Haoming Chen']
2022-04-15
null
null
null
null
['2d-human-pose-estimation']
['computer-vision']
[ 1.73148289e-01 1.28368931e-02 -5.89343309e-01 -1.74487278e-01 -2.90610820e-01 -3.27929705e-01 2.86819875e-01 9.07391757e-02 -7.12408602e-01 2.85559386e-01 2.82548338e-01 2.78216422e-01 -2.05724493e-01 -4.04206216e-01 -4.86287892e-01 -4.36073869e-01 -4.22353476e-01 4.48551655e-01 1.05638251e-01 -2.09661081e-01 8.60110074e-02 8.12050819e-01 -1.26148689e+00 7.26925163e-03 1.15790851e-01 1.17530525e+00 -4.11068052e-02 4.50913668e-01 3.75627786e-01 4.33403611e-01 -6.53970242e-01 -3.58639926e-01 2.30158880e-01 -6.18859231e-02 -8.54409337e-01 -1.32869974e-01 4.92929757e-01 -3.20181936e-01 -6.41707003e-01 7.10777581e-01 8.20862591e-01 4.64235507e-02 5.94142973e-01 -1.27394772e+00 -1.26910657e-01 3.30920488e-01 -4.43309933e-01 3.68517339e-01 4.80488896e-01 5.73256686e-02 7.05127656e-01 -8.15297604e-01 5.77341437e-01 1.02824497e+00 1.05446196e+00 7.00957417e-01 -7.49123931e-01 -4.75591838e-01 1.42742932e-01 3.32991272e-01 -1.39003754e+00 -2.17590168e-01 9.04313147e-01 -5.51278234e-01 7.09181726e-01 3.46704483e-01 1.15621293e+00 1.07644141e+00 5.18123329e-01 1.23180377e+00 4.97933596e-01 -3.81453782e-01 -1.87023237e-01 -1.66384026e-01 1.12482518e-01 7.77383029e-01 3.73448640e-01 1.78471938e-01 -7.51439869e-01 -7.01953564e-03 1.18060315e+00 1.48586571e-01 -4.23297346e-01 -8.43593419e-01 -1.44002342e+00 6.03002131e-01 9.35930789e-01 2.65019655e-01 -5.29067695e-01 1.43732458e-01 5.16437650e-01 -6.30792454e-02 -2.90618017e-02 6.72132194e-01 -4.25465435e-01 8.67241994e-02 -8.88382733e-01 5.13680458e-01 2.84479052e-01 7.00316548e-01 1.69684291e-01 -1.21609859e-01 -1.91601172e-01 6.00505829e-01 2.61901081e-01 4.47285652e-01 6.09203815e-01 -7.19882607e-01 3.75718713e-01 7.13453531e-01 -2.25705802e-01 -1.43293953e+00 -1.08168948e+00 -4.53279406e-01 -8.38199258e-01 -3.13037001e-02 3.55521291e-01 -1.78433165e-01 -8.24688554e-01 1.57205939e+00 4.43881452e-01 -3.13044339e-01 -5.90462029e-01 1.15161884e+00 1.07257891e+00 2.52706826e-01 1.63148865e-01 2.06277415e-01 1.67012644e+00 -9.00437593e-01 -5.22950649e-01 -5.02997160e-01 3.69295150e-01 -4.39313680e-01 6.32808030e-01 3.20180565e-01 -9.77067411e-01 -8.25347662e-01 -1.05018139e+00 -2.27314769e-03 -3.53002518e-01 5.94473124e-01 8.31405580e-01 5.26016057e-01 -5.89858174e-01 5.14459431e-01 -1.13044012e+00 -4.15439934e-01 3.39502215e-01 6.90876365e-01 -7.77710021e-01 3.20971638e-01 -1.33277524e+00 1.17342281e+00 3.50471050e-01 5.32160342e-01 -4.58758324e-01 -5.44479668e-01 -1.21696913e+00 -4.99481976e-01 4.10250545e-01 -9.32283938e-01 1.17381442e+00 -4.56152946e-01 -1.19704688e+00 9.91626382e-01 1.59144074e-01 -4.95504022e-01 5.88397205e-01 -6.69195712e-01 -2.63416648e-01 3.43835354e-01 -1.76773071e-01 8.47582698e-01 8.29686224e-01 -8.77745867e-01 -5.73370755e-01 -6.87651157e-01 -1.77320853e-01 4.00373429e-01 -3.35513502e-01 -3.61051634e-02 -8.64585876e-01 -8.14863384e-01 2.80126780e-01 -1.05489659e+00 -3.13116670e-01 2.08060831e-01 -4.56385285e-01 -2.19533026e-01 4.42832440e-01 -7.47156799e-01 1.42417502e+00 -1.85578716e+00 5.29005587e-01 3.38777125e-01 6.32534921e-01 3.60925853e-01 1.14741653e-01 4.05098528e-01 -1.68721840e-01 -5.25008619e-01 2.60861926e-02 -2.14671776e-01 -1.45835429e-01 -1.94718733e-01 2.09923405e-02 8.33478868e-01 -5.05302623e-02 1.32757282e+00 -5.11526704e-01 -4.81129497e-01 5.87435484e-01 5.46613514e-01 -3.76542479e-01 1.17656752e-01 3.52436483e-01 5.21114469e-01 -4.19005394e-01 6.61512792e-01 2.05663994e-01 -1.58956960e-01 -1.72840862e-03 -7.12020934e-01 2.00452060e-01 -3.71824577e-02 -1.28548539e+00 1.72813344e+00 -1.48353666e-01 6.91433609e-01 -1.56684387e-02 -9.42797363e-01 6.29986167e-01 2.27363199e-01 7.82925427e-01 -4.99200523e-01 5.11127055e-01 -1.11015253e-01 -7.32062981e-02 -3.41654420e-01 4.87581879e-01 1.48665413e-01 -3.75208527e-01 6.59987703e-02 6.41053319e-02 1.90121800e-01 -6.05841540e-02 -1.78543821e-01 6.77227974e-01 -2.70010270e-02 6.29178405e-01 6.52889982e-02 5.74726284e-01 -3.58319171e-02 2.66968042e-01 5.02551317e-01 -5.96567571e-01 5.23753762e-01 1.26214057e-01 -9.79408205e-01 -7.39286304e-01 -1.02589774e+00 -3.64729241e-02 1.02404904e+00 2.17428386e-01 -6.52419031e-01 -7.83972681e-01 -7.21848547e-01 2.01560766e-01 -2.59609699e-01 -1.06084871e+00 -5.66854656e-01 -9.48237777e-01 -4.94766176e-01 6.94790184e-01 9.84635293e-01 5.83701670e-01 -1.17246127e+00 -1.25629032e+00 -1.00956142e-01 -2.73142368e-01 -9.19206679e-01 -2.54051656e-01 1.40474319e-01 -9.32662189e-01 -1.30818450e+00 -1.06662071e+00 -9.18959200e-01 5.96327364e-01 -4.21325564e-02 8.81191075e-01 -5.06960861e-02 -7.90145755e-01 6.42184436e-01 -1.27106190e-01 -4.39993799e-01 4.09001678e-01 3.78007740e-01 4.50604886e-01 -5.23856044e-01 4.04929549e-01 -1.08311936e-01 -7.54528046e-01 3.64632279e-01 -5.51082075e-01 -1.54238388e-01 8.93410325e-01 7.83918440e-01 5.42106628e-01 -1.31027550e-01 -2.00498942e-02 -3.65739048e-01 7.02200651e-01 2.85891835e-02 -2.28515908e-01 2.02256754e-01 -3.12783450e-01 -7.71485716e-02 1.01896949e-01 -4.13683981e-01 -4.71697688e-01 3.70330095e-01 -3.08089286e-01 -3.85414213e-01 -2.73221821e-01 4.59788650e-01 -5.00304848e-02 -4.00675446e-01 6.94888830e-01 1.51606143e-01 2.41387039e-01 -4.35575873e-01 2.46864408e-01 2.55831659e-01 8.52994561e-01 -4.58061129e-01 6.89488828e-01 3.95555705e-01 1.00887716e-01 -8.56612384e-01 -6.89433098e-01 -7.50486135e-01 -1.15083933e+00 -5.28993130e-01 7.51273453e-01 -6.93555295e-01 -8.40293765e-01 5.95552027e-01 -8.14100206e-01 -1.16452754e-01 -1.53286517e-01 7.21497536e-01 -6.72854304e-01 1.87347770e-01 -7.08568931e-01 -4.46192056e-01 -5.08322120e-01 -1.09561872e+00 1.22098982e+00 3.01702201e-01 -7.65834570e-01 -1.02625549e+00 2.39627302e-01 2.35341787e-01 2.06146002e-01 4.48171645e-01 4.56319273e-01 -6.31962359e-01 -2.09029298e-03 -8.97712648e-01 1.42423421e-01 1.40912244e-02 -5.77989109e-02 -2.93974221e-01 -7.06254780e-01 -4.50957835e-01 -1.94327921e-01 -2.78665870e-01 6.46877706e-01 7.91454196e-01 1.21841300e+00 -3.76462974e-02 -8.21336448e-01 6.61048651e-01 7.47895896e-01 -8.65512863e-02 3.74469846e-01 5.11094213e-01 7.57871270e-01 8.98954272e-01 6.01761281e-01 3.41758400e-01 2.02684835e-01 9.11555052e-01 2.61782676e-01 -2.67183661e-01 -2.04012275e-01 -3.03241879e-01 -6.33456782e-02 5.11066198e-01 -4.99131322e-01 3.65632862e-01 -1.07532370e+00 2.41298527e-01 -1.56202865e+00 -7.13910043e-01 1.85761198e-01 2.00752544e+00 4.48106200e-01 1.72065914e-01 4.96504098e-01 4.28020060e-01 6.47325456e-01 1.41898140e-01 -4.71333921e-01 3.32809985e-01 3.48173290e-01 7.27363229e-02 4.98253554e-01 5.78638688e-02 -1.62910819e+00 8.61947119e-01 7.06286287e+00 4.06120390e-01 -1.30322230e+00 -3.74175340e-01 1.81466267e-01 -1.46486938e-01 5.86169302e-01 -6.94546342e-01 -8.75376523e-01 1.66904077e-01 4.30745184e-01 9.70783979e-02 -7.32895955e-02 1.04995227e+00 -8.67726058e-02 2.78507685e-03 -1.30080843e+00 1.43515992e+00 3.33871245e-01 -1.21844399e+00 -1.35428915e-02 9.06823725e-02 2.25139335e-01 -1.72339067e-01 2.62579769e-01 2.12814495e-01 -4.41535443e-01 -1.08543432e+00 7.43603349e-01 5.56722343e-01 5.97342134e-01 -8.08123529e-01 9.98353720e-01 3.53406668e-01 -1.46913314e+00 -2.44045988e-01 -5.47701567e-02 -1.62101418e-01 1.72865346e-01 3.95168476e-02 -5.84071338e-01 4.17869359e-01 9.71299946e-01 6.94558978e-01 -6.68975055e-01 1.37367272e+00 -3.43998313e-01 9.89720970e-02 -2.12189242e-01 -1.08412236e-01 -5.33456691e-02 4.03725594e-01 4.87463295e-01 1.12704647e+00 -2.10894138e-01 -2.94711231e-03 2.73434311e-01 3.52096975e-01 1.30697668e-01 1.22507416e-01 -4.01261657e-01 4.69518080e-02 2.41859406e-01 1.28248739e+00 -9.31917667e-01 -3.99440527e-02 -1.00285828e-01 8.99926782e-01 1.23336457e-01 4.07034643e-02 -8.17627549e-01 -6.53541505e-01 6.50795162e-01 3.67685497e-01 -1.72428787e-01 -4.12435949e-01 -2.51212150e-01 -9.05283332e-01 -3.49084511e-02 -9.92590249e-01 5.86178124e-01 -4.26079452e-01 -9.26952422e-01 4.66418654e-01 3.69264513e-01 -1.17439103e+00 -4.42567676e-01 -1.06526494e+00 -3.42665136e-01 5.26290715e-01 -7.88814187e-01 -1.19343209e+00 -5.93105614e-01 6.38212323e-01 4.51147676e-01 -1.07644118e-01 7.21161723e-01 2.64658540e-01 -5.97600877e-01 7.70327151e-01 -4.89929974e-01 6.92345440e-01 7.92479515e-01 -9.06526029e-01 4.89682227e-01 6.03120208e-01 2.03228131e-01 1.04807758e+00 4.89242613e-01 -6.12897992e-01 -1.37400055e+00 -5.88528454e-01 6.14405692e-01 -7.75840342e-01 2.32983038e-01 -4.13958043e-01 -3.72087985e-01 6.88344240e-01 -3.18969965e-01 -2.18396448e-02 6.97948158e-01 1.63831994e-01 5.93732819e-02 -2.81710364e-03 -9.07758117e-01 5.81238329e-01 9.57380593e-01 -4.01522398e-01 -8.65609467e-01 -4.62130504e-03 2.58197486e-01 -7.95046091e-01 -8.02707255e-01 8.29223275e-01 1.14946282e+00 -6.68453515e-01 1.35737467e+00 -6.86178267e-01 1.14498526e-01 -3.46958190e-02 2.47576386e-01 -1.03853297e+00 -6.61320925e-01 -2.87865043e-01 -4.54372048e-01 4.27876890e-01 -2.42652162e-03 -1.57707393e-01 1.19767582e+00 4.93138522e-01 5.49501628e-02 -1.08210337e+00 -7.34130085e-01 -4.70577747e-01 -5.18375561e-02 -4.69389617e-01 3.33046347e-01 5.52280366e-01 1.54442772e-01 2.13776022e-01 -4.63574141e-01 3.87253501e-02 6.92202270e-01 -1.24758124e-01 1.00990224e+00 -1.37239623e+00 -4.78760712e-02 -5.85664630e-01 -8.38755548e-01 -1.24743295e+00 -1.28321439e-01 -4.92612928e-01 -1.98589906e-01 -1.60028732e+00 1.60752639e-01 7.78466761e-02 -2.12010682e-01 6.34252906e-01 2.70002577e-02 6.61606431e-01 2.16260344e-01 2.25895375e-01 -5.29317260e-01 2.42396176e-01 1.36247861e+00 -1.31741881e-01 -1.97824135e-01 4.84672248e-01 -4.82456684e-01 1.05145991e+00 7.53794253e-01 -1.06296800e-01 -3.16867888e-01 -2.94278353e-01 2.27856845e-01 -1.51729897e-01 6.10223055e-01 -1.42404544e+00 4.76629823e-01 1.41932636e-01 1.21481490e+00 -8.67892742e-01 4.57373083e-01 -8.83985102e-01 -6.85253516e-02 9.85957444e-01 -3.83752197e-01 1.77403659e-01 3.17178547e-01 3.41190070e-01 -2.19910115e-01 7.43271708e-02 7.57870197e-01 -2.37368464e-01 -1.12172604e+00 5.19843876e-01 -1.71555206e-01 -7.50023723e-02 1.18357515e+00 -4.63408470e-01 3.10814768e-01 -2.89832056e-01 -1.05741298e+00 2.17726931e-01 1.95940480e-01 7.57005274e-01 8.57835829e-01 -1.40502489e+00 -1.90838069e-01 5.41184127e-01 2.50302106e-01 -1.11519888e-01 3.65340292e-01 1.01766193e+00 -5.90443552e-01 8.26168954e-01 -5.61171591e-01 -6.52207911e-01 -1.37193334e+00 4.17221159e-01 5.76354265e-01 -1.24977410e-01 -6.40663624e-01 9.79299903e-01 1.51728198e-01 -5.32984793e-01 6.93732440e-01 -3.72888505e-01 -5.60075045e-01 1.28115201e-02 5.78387618e-01 5.20934522e-01 1.29120901e-01 -8.88059258e-01 -8.01863611e-01 8.39065492e-01 9.63287577e-02 1.60276458e-01 1.14672661e+00 8.22523534e-02 2.15604275e-01 3.03443044e-01 1.07537651e+00 -1.59177437e-01 -1.10338414e+00 -9.20399874e-02 -8.86970088e-02 -2.34800130e-01 -6.33022860e-02 -7.26826549e-01 -1.04301584e+00 9.69299376e-01 7.53193855e-01 -3.25195014e-01 1.04144299e+00 2.62939215e-01 7.84690261e-01 4.28511709e-01 5.27005672e-01 -1.14030910e+00 4.14154887e-01 3.67018282e-01 9.59447682e-01 -1.08741808e+00 3.44084054e-01 -2.43504092e-01 -4.71392006e-01 1.25227785e+00 7.79709041e-01 -1.72389552e-01 7.04404354e-01 2.00642005e-01 -1.15977898e-02 -4.61039752e-01 -1.02326293e-02 -6.77000210e-02 1.06395948e+00 7.70562589e-01 5.00137508e-01 -2.67452630e-03 -1.68498904e-01 8.87968183e-01 -4.31487650e-01 -2.52302259e-01 -4.60216612e-01 1.00281525e+00 -4.92898822e-01 -7.96308339e-01 -6.11691594e-01 3.30018699e-01 -4.03760850e-01 2.80063182e-01 -6.24776065e-01 1.10495484e+00 2.10114598e-01 3.32754433e-01 -6.95914105e-02 -6.33874476e-01 6.87282622e-01 -8.55558962e-02 8.08372140e-01 -4.78164315e-01 -5.08976579e-01 -2.86644269e-02 -2.22067848e-01 -8.68635356e-01 -3.12493294e-01 -4.45874333e-01 -1.03280628e+00 -1.55872896e-01 -2.65161037e-01 1.28559181e-02 6.62814319e-01 8.20329130e-01 7.73438290e-02 6.59064949e-01 2.57065501e-02 -1.30247283e+00 -4.24723089e-01 -7.91705489e-01 -3.69094372e-01 1.53023377e-01 2.13890836e-01 -1.10376632e+00 1.49900839e-01 -1.02103017e-01]
[7.066722869873047, -0.7958130240440369]
802d6725-2791-43ec-b94b-96fadc83878e
supervised-raw-video-denoising-with-a
2003.14013
null
https://arxiv.org/abs/2003.14013v1
https://arxiv.org/pdf/2003.14013v1.pdf
Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes
In recent years, the supervised learning strategy for real noisy image denoising has been emerging and has achieved promising results. In contrast, realistic noise removal for raw noisy videos is rarely studied due to the lack of noisy-clean pairs for dynamic scenes. Clean video frames for dynamic scenes cannot be captured with a long-exposure shutter or averaging multi-shots as was done for static images. In this paper, we solve this problem by creating motions for controllable objects, such as toys, and capturing each static moment for multiple times to generate clean video frames. In this way, we construct a dataset with 55 groups of noisy-clean videos with ISO values ranging from 1600 to 25600. To our knowledge, this is the first dynamic video dataset with noisy-clean pairs. Correspondingly, we propose a raw video denoising network (RViDeNet) by exploring the temporal, spatial, and channel correlations of video frames. Since the raw video has Bayer patterns, we pack it into four sub-sequences, i.e RGBG sequences, which are denoised by the proposed RViDeNet separately and finally fused into a clean video. In addition, our network not only outputs a raw denoising result, but also the sRGB result by going through an image signal processing (ISP) module, which enables users to generate the sRGB result with their favourite ISPs. Experimental results demonstrate that our method outperforms state-of-the-art video and raw image denoising algorithms on both indoor and outdoor videos.
['Jingyu Yang', 'Ronghe Chu', 'Huanjing Yue', 'Lei Liao', 'Cong Cao']
2020-03-31
supervised-raw-video-denoising-with-a-1
http://openaccess.thecvf.com/content_CVPR_2020/html/Yue_Supervised_Raw_Video_Denoising_With_a_Benchmark_Dataset_on_Dynamic_CVPR_2020_paper.html
http://openaccess.thecvf.com/content_CVPR_2020/papers/Yue_Supervised_Raw_Video_Denoising_With_a_Benchmark_Dataset_on_Dynamic_CVPR_2020_paper.pdf
cvpr-2020-6
['video-denoising']
['computer-vision']
[ 4.00138110e-01 -6.82246327e-01 3.95903498e-01 -1.63885728e-01 -8.64998698e-01 -3.79711241e-01 2.39026785e-01 -4.60597754e-01 -4.69456285e-01 7.97450662e-01 1.33107632e-01 2.30831839e-02 -7.10582510e-02 -6.00208998e-01 -9.04314756e-01 -1.18815577e+00 -9.36308280e-02 -6.22584343e-01 1.47726730e-01 -1.01890832e-01 -1.70998350e-01 1.06181592e-01 -1.65394366e+00 2.50969827e-01 7.79989302e-01 1.18523932e+00 4.78210241e-01 7.68396854e-01 2.72852451e-01 9.85113502e-01 -6.99425936e-01 -3.24443251e-01 5.47537446e-01 -6.79670632e-01 -1.72979000e-03 2.29839757e-01 4.99447852e-01 -7.57346630e-01 -6.92072213e-01 1.41273105e+00 5.34916639e-01 4.00524408e-01 -2.17205863e-02 -1.04959869e+00 -5.38445473e-01 3.91826510e-01 -6.25280499e-01 2.47788787e-01 4.79148716e-01 4.16446447e-01 4.19866413e-01 -7.18048990e-01 6.09840751e-01 1.15268779e+00 6.12424076e-01 4.74227697e-01 -1.13175583e+00 -8.44613194e-01 8.96496400e-02 4.24970865e-01 -1.15421951e+00 -6.41160369e-01 9.16702569e-01 -6.07140139e-02 3.97584677e-01 2.84707725e-01 8.08026373e-01 1.56268537e+00 9.88768488e-02 6.10324502e-01 1.18341970e+00 -5.17492369e-02 3.31997335e-01 -5.85742474e-01 -1.18969597e-01 1.66407749e-01 3.15690666e-01 4.26184796e-02 -5.34054577e-01 1.75348476e-01 7.43555963e-01 2.85561562e-01 -8.14221561e-01 8.04539844e-02 -1.35746980e+00 3.70574206e-01 1.05705202e-01 2.52956301e-01 -5.43080389e-01 3.08171511e-01 4.15019453e-01 6.36305273e-01 4.10210222e-01 1.08619442e-03 -2.64157921e-01 -3.48483771e-01 -1.06356454e+00 2.34468192e-01 6.97654486e-01 9.96961594e-01 5.16712844e-01 3.78069013e-01 -1.29079819e-03 6.93608582e-01 -3.06484718e-02 7.52073765e-01 4.12637651e-01 -1.46304357e+00 4.96545285e-01 -3.63585114e-01 2.44152680e-01 -1.16082907e+00 3.11551224e-02 -1.77120924e-01 -1.51268280e+00 7.79351518e-02 3.81107718e-01 -3.26509774e-01 -7.23228812e-01 1.60982788e+00 1.32322654e-01 7.79389620e-01 1.52317032e-01 1.13339436e+00 8.46190572e-01 1.01229012e+00 -2.24427059e-01 -8.44862401e-01 9.53782618e-01 -8.45679104e-01 -1.23123598e+00 4.64694761e-02 -9.51266102e-03 -8.43824565e-01 7.94537961e-01 1.15572441e+00 -1.05208707e+00 -9.43357766e-01 -1.05300903e+00 7.12676048e-02 1.01808921e-01 -1.22388244e-01 2.35697240e-01 5.66538095e-01 -9.60140228e-01 6.45412445e-01 -9.79832113e-01 -5.63932955e-02 2.40448251e-01 -7.79447407e-02 -4.60179627e-01 -6.27466798e-01 -1.14039481e+00 3.68225753e-01 8.47489834e-02 5.92726231e-01 -1.22086096e+00 -4.87288684e-01 -9.88831162e-01 -1.43907472e-01 7.74151802e-01 -5.94401419e-01 8.69799078e-01 -1.07025111e+00 -1.45842779e+00 1.51711226e-01 -2.55064040e-01 -3.56421024e-01 6.19583130e-01 -5.18450618e-01 -6.82330072e-01 3.32038939e-01 1.11726217e-01 2.29297012e-01 1.44053233e+00 -1.54496062e+00 -3.87621254e-01 -7.01853633e-02 2.50240918e-02 4.41225208e-02 -2.16757059e-01 -5.79083860e-02 -7.37548232e-01 -1.02972674e+00 1.85847908e-01 -6.41942024e-01 -2.47297019e-01 -7.64054283e-02 -3.78589183e-01 5.30384004e-01 1.06433165e+00 -1.01412559e+00 1.17538536e+00 -2.50935507e+00 2.69637138e-01 3.55072170e-02 1.74141660e-01 2.95738518e-01 -2.98000157e-01 1.98142350e-01 -2.50842810e-01 -1.45234400e-02 -1.88475579e-01 -6.05789483e-01 -4.11184311e-01 3.46710235e-01 -2.85892189e-01 5.79708457e-01 -1.97433040e-01 4.01283294e-01 -1.15951943e+00 -3.42901200e-01 5.35753310e-01 6.86263978e-01 -4.20870453e-01 3.40767622e-01 1.28825247e-01 8.40067267e-01 -2.51356870e-01 6.26142502e-01 1.07836068e+00 2.35247880e-01 2.16342598e-01 -5.20246148e-01 -1.06851794e-01 -3.07653964e-01 -1.45060396e+00 1.76191521e+00 -4.50289249e-01 5.77458143e-01 6.18372560e-01 -9.59952652e-01 7.65825868e-01 3.15940648e-01 4.94961977e-01 -7.47012794e-01 1.11213014e-01 2.52535969e-01 -4.32861686e-01 -9.34449553e-01 4.41352189e-01 -3.83448526e-02 1.29655525e-01 -4.91357706e-02 7.54200146e-02 -1.27754509e-01 4.43228006e-01 1.43507525e-01 1.26976979e+00 3.06239516e-01 -4.96552140e-02 2.32394561e-01 5.61390698e-01 -5.12520909e-01 8.25570583e-01 9.39474463e-01 -1.76827610e-01 1.13592172e+00 3.98363173e-01 -1.87611386e-01 -1.01700795e+00 -1.05920935e+00 2.02856913e-01 4.59174097e-01 4.72028226e-01 -4.79507536e-01 -9.75457489e-01 -1.49065912e-01 -4.16804910e-01 3.10984969e-01 -2.73547560e-01 -5.48515581e-02 -8.31478357e-01 -6.56885386e-01 2.54893780e-01 1.66107357e-01 9.96114969e-01 -8.73010874e-01 -2.43381530e-01 2.45503515e-01 -5.94665051e-01 -1.39842522e+00 -5.11126876e-01 2.71445904e-02 -7.16719747e-01 -1.06720459e+00 -7.58793414e-01 -7.17200994e-01 3.83715838e-01 8.48125339e-01 8.41131032e-01 5.82177192e-02 -1.52712213e-02 3.44479293e-01 -5.94779611e-01 1.56141117e-01 -2.96349287e-01 -5.49378872e-01 2.29346395e-01 4.14129823e-01 -1.60548806e-01 -8.18743825e-01 -7.94187665e-01 2.66667336e-01 -1.38903522e+00 9.34038719e-04 3.27923417e-01 1.00750959e+00 8.31513464e-01 6.55726671e-01 2.65108228e-01 -3.76482934e-01 4.66482311e-01 -4.18909937e-01 -5.82453668e-01 -6.97071403e-02 6.21680766e-02 -5.10439634e-01 1.08644462e+00 -5.22391856e-01 -1.31888783e+00 -1.29378393e-01 -2.01165468e-01 -8.41456890e-01 -3.01400423e-01 3.56255323e-01 -3.99090588e-01 3.36015932e-02 2.78052509e-01 4.25919741e-01 1.10310368e-01 -6.36792421e-01 2.73305058e-01 6.06431544e-01 9.71572280e-01 -3.33991349e-01 1.01686323e+00 6.90222383e-01 -1.12350322e-01 -1.18423200e+00 -7.61043429e-01 -4.24091458e-01 -2.24101007e-01 -4.35054541e-01 9.95112717e-01 -1.35706794e+00 -6.40648007e-01 1.04502261e+00 -1.05620790e+00 -3.33599120e-01 -1.99769199e-01 6.57321513e-01 -4.16940361e-01 8.20707738e-01 -9.64317799e-01 -6.12538218e-01 -4.85324115e-02 -1.34094155e+00 1.01634383e+00 2.18291581e-01 2.64800817e-01 -5.16206861e-01 -2.37522811e-01 3.76551509e-01 4.37581658e-01 3.95944417e-01 2.00274512e-01 1.36060655e-01 -8.21748674e-01 9.72192455e-03 -1.56425796e-02 9.63571489e-01 2.08803922e-01 -1.84895083e-01 -8.70498359e-01 -4.45355952e-01 7.14926779e-01 -7.16751665e-02 1.02032709e+00 7.25895286e-01 1.37547648e+00 -1.72754750e-01 1.33074775e-01 1.07540190e+00 1.55135226e+00 3.30985904e-01 9.94924963e-01 4.14744586e-01 8.34378898e-01 1.93683505e-01 7.10496843e-01 4.44900662e-01 -5.69294691e-02 5.14284909e-01 5.91700256e-01 -6.99881017e-02 -2.78607696e-01 -3.08304746e-02 6.81538045e-01 9.58333373e-01 -3.75749230e-01 -5.57649732e-01 -2.30888695e-01 3.91580790e-01 -1.72840190e+00 -1.17109048e+00 -3.05173397e-01 2.01379633e+00 6.22877300e-01 -1.00351386e-02 -4.22730416e-01 2.64708221e-01 7.05584764e-01 6.50361001e-01 -4.15731341e-01 2.36809075e-01 -4.64699209e-01 2.69667029e-01 4.70986217e-01 2.40850687e-01 -1.19667029e+00 3.97862256e-01 5.28492737e+00 1.03726697e+00 -1.11020684e+00 2.32000887e-01 7.53907084e-01 -3.10037613e-01 7.93768540e-02 -1.68668821e-01 -2.48745263e-01 8.73511910e-01 6.72295868e-01 1.36379600e-01 8.20296884e-01 5.99280477e-01 9.42402244e-01 -2.98525721e-01 -6.46274388e-01 1.47165883e+00 1.83874473e-01 -1.00114071e+00 -1.00589700e-01 -1.90867841e-01 9.39358771e-01 -2.24427536e-01 -2.02612136e-03 3.28052677e-02 -5.54751828e-02 -7.76652336e-01 7.79285908e-01 8.49722743e-01 6.99921072e-01 -6.27858341e-01 9.20149922e-01 1.87170088e-01 -1.08094049e+00 -2.05590472e-01 -3.33854258e-01 -2.53789350e-02 5.73452234e-01 1.00573683e+00 3.06327909e-01 8.11842442e-01 1.18242717e+00 1.16259968e+00 -2.83614188e-01 1.03791881e+00 -3.47352296e-01 7.78017402e-01 -2.53010958e-01 5.70408106e-01 5.15385233e-02 -7.72625268e-01 6.79503322e-01 9.47330892e-01 7.91892469e-01 3.59728754e-01 7.64928013e-02 4.10663664e-01 -1.27960309e-01 -4.05731469e-01 -5.84686697e-01 3.38654727e-01 1.47289827e-01 1.27410448e+00 -4.59366083e-01 -4.86313939e-01 -5.31176448e-01 1.17416477e+00 -6.10836327e-01 8.25224400e-01 -9.37619328e-01 -2.75132805e-01 7.93203115e-01 -2.03025058e-01 5.54184437e-01 -3.72678995e-01 -7.61132035e-03 -1.66361582e+00 3.99301708e-01 -1.25881958e+00 -1.59418420e-03 -1.11561382e+00 -1.32061470e+00 5.83142400e-01 -6.66364431e-02 -1.52892840e+00 9.29654688e-02 -3.11557591e-01 -5.50373793e-01 5.20789266e-01 -1.47454214e+00 -7.64826059e-01 -8.50333512e-01 8.78134191e-01 7.40850210e-01 6.96059540e-02 2.96570748e-01 6.77111268e-01 -6.97335422e-01 6.41526356e-02 6.28123224e-01 7.26423040e-02 8.41452241e-01 -9.22439873e-01 2.84630895e-01 1.31626844e+00 -1.59268886e-01 4.72112894e-01 9.02458012e-01 -7.17030585e-01 -1.69996488e+00 -1.17513156e+00 1.25642940e-01 7.57355019e-02 5.07439435e-01 -3.08773130e-01 -1.01319551e+00 4.14567500e-01 3.23938340e-01 3.47520202e-01 5.53501509e-02 -6.97234869e-01 -1.72537230e-02 -5.39022505e-01 -1.02120483e+00 5.00364721e-01 1.19819152e+00 -3.62402290e-01 -1.41553909e-01 1.07830979e-01 8.64853382e-01 -5.62568128e-01 -8.04119170e-01 2.76715100e-01 3.04544628e-01 -1.42521596e+00 1.13102567e+00 9.28380862e-02 5.18166959e-01 -7.24414945e-01 -2.99862146e-01 -1.39449990e+00 7.15305563e-03 -9.16804850e-01 -1.26437888e-01 1.27205312e+00 -2.18788773e-01 -3.96645188e-01 3.94171506e-01 -1.06228599e-02 -2.22545266e-01 -3.96420449e-01 -8.13284576e-01 -7.06271350e-01 -5.86576760e-01 -7.96867669e-01 3.68170977e-01 8.14468682e-01 -6.26651347e-01 -2.14192227e-01 -1.02199030e+00 2.95508981e-01 1.08112538e+00 -5.88978007e-02 8.66622031e-01 -5.38347244e-01 -4.52936172e-01 1.37241259e-01 -3.77353400e-01 -1.34977078e+00 -7.42428154e-02 -6.70948252e-02 2.53041357e-01 -1.20993733e+00 4.57266346e-02 3.09936162e-02 -6.30788803e-02 -6.72592744e-02 -2.06091136e-01 5.45165300e-01 2.89919883e-01 1.23752594e-01 -6.11499548e-01 5.69429815e-01 1.25063264e+00 -1.34931147e-01 -3.12034525e-02 -2.44863600e-01 -3.87695879e-01 7.27776647e-01 5.47899246e-01 -2.86813080e-01 -2.80210435e-01 -5.33253968e-01 2.94404849e-02 3.54650378e-01 5.71639895e-01 -1.25666845e+00 1.24088727e-01 -4.91069965e-02 4.15242493e-01 -4.55383539e-01 5.10697544e-01 -9.20524359e-01 6.25374973e-01 1.61609605e-01 9.35862511e-02 -1.12165794e-01 -7.35197589e-02 9.13672447e-01 -7.30974615e-01 9.56627261e-03 7.04931140e-01 -3.19423079e-01 -8.20905089e-01 2.09909275e-01 -3.92184824e-01 -1.38596371e-01 8.86333823e-01 -3.23354155e-01 -3.23186874e-01 -7.43180156e-01 -7.53365993e-01 1.00477815e-01 5.22339046e-01 2.29530454e-01 7.74487913e-01 -1.17371011e+00 -5.45169175e-01 2.71690220e-01 -4.60170418e-01 2.13738069e-01 8.10058296e-01 9.54472244e-01 -6.52736664e-01 -3.12381953e-01 -6.46659359e-02 -6.37823880e-01 -1.23805904e+00 6.90199673e-01 1.60747513e-01 2.16969401e-02 -8.09334755e-01 4.37135100e-01 6.72349185e-02 1.39736444e-01 2.95080483e-01 -5.35689116e-01 -8.48281980e-02 1.16541050e-01 7.99192846e-01 5.03371060e-01 1.36196818e-02 -6.84468925e-01 1.19754426e-01 6.56428695e-01 3.72666538e-01 1.09527968e-01 1.67870915e+00 -5.23279846e-01 -2.91589856e-01 2.35287756e-01 1.39700091e+00 1.18889004e-01 -1.52282107e+00 7.40211010e-02 -5.59523046e-01 -8.44302535e-01 4.95815724e-02 -2.08329365e-01 -1.56990123e+00 4.36461657e-01 6.77953780e-01 3.02022070e-01 1.72815990e+00 -4.34396416e-01 1.18085253e+00 3.08423668e-01 4.15545911e-01 -9.23161507e-01 2.06112742e-01 3.26522589e-01 6.54457271e-01 -1.13443899e+00 -1.08226836e-01 -5.54304838e-01 -3.73184353e-01 1.10459995e+00 3.57346237e-01 -1.66823417e-01 4.59424853e-01 4.36656415e-01 1.52036831e-01 1.11738406e-01 -4.21859443e-01 -5.83469570e-02 -3.68299544e-01 6.80075943e-01 -6.13862462e-02 -2.73963600e-01 -1.25691682e-01 4.65700924e-01 -3.67042492e-03 2.79007763e-01 8.45992208e-01 8.95003974e-01 -2.12446153e-01 -8.75875294e-01 -8.18344831e-01 3.03031623e-01 -5.37353337e-01 -1.40068427e-01 3.74048680e-01 5.30777633e-01 4.18348283e-01 1.31630623e+00 -1.80598333e-01 -4.15926278e-01 4.57339346e-01 -4.06015813e-01 2.21100613e-01 -7.57830217e-02 -2.95955688e-01 4.02848959e-01 2.87445337e-02 -9.02208745e-01 -8.26833844e-01 -5.95950425e-01 -7.02062964e-01 -3.02094758e-01 -2.06748277e-01 2.69022975e-02 4.35669750e-01 7.36743927e-01 9.54625104e-03 6.80339396e-01 7.50899136e-01 -1.30823386e+00 -2.30305836e-01 -8.26960504e-01 -8.11701298e-01 7.18636096e-01 7.59135008e-01 -3.61231029e-01 -8.45331192e-01 4.57045108e-01]
[11.312362670898438, -2.1949517726898193]
1defe6c1-c2d9-43ea-913d-1c57872f0cc0
texture-representation-via-analysis-and
2212.09983
null
https://arxiv.org/abs/2212.09983v1
https://arxiv.org/pdf/2212.09983v1.pdf
Texture Representation via Analysis and Synthesis with Generative Adversarial Networks
We investigate data-driven texture modeling via analysis and synthesis with generative adversarial networks. For network training and testing, we have compiled a diverse set of spatially homogeneous textures, ranging from stochastic to regular. We adopt StyleGAN3 for synthesis and demonstrate that it produces diverse textures beyond those represented in the training data. For texture analysis, we propose GAN inversion using a novel latent domain reconstruction consistency criterion for synthesized textures, and iterative refinement with Gramian loss for real textures. We propose perceptual procedures for evaluating network capabilities, exploring the global and local behavior of latent space trajectories, and comparing with existing texture analysis-synthesis techniques.
['Thrasyvoulos N. Pappas', 'Gaurav Sharma', 'Jue Lin']
2022-12-20
null
null
null
null
['texture-classification']
['computer-vision']
[ 6.83820188e-01 2.77416885e-01 -9.51117948e-02 -1.91250771e-01 -7.14335203e-01 -7.34286249e-01 9.93940651e-01 -7.38675654e-01 3.78041804e-01 8.75932515e-01 3.56877029e-01 -1.89478412e-01 -7.81248733e-02 -8.99704456e-01 -8.27254295e-01 -1.07673800e+00 -1.72168631e-02 5.05182862e-01 -2.45085403e-01 -1.93534002e-01 -1.84282586e-01 8.41211557e-01 -1.25001323e+00 5.21845222e-01 4.35733646e-01 1.12455082e+00 -3.13843250e-01 9.72853482e-01 3.43849987e-01 1.17780674e+00 -6.25297010e-01 -2.80951232e-01 2.57350743e-01 -7.23911941e-01 -5.83456397e-01 4.51064348e-01 3.15876722e-01 -3.82071406e-01 -4.11609262e-01 1.05324709e+00 2.89293498e-01 1.10793538e-01 8.64103615e-01 -1.16563892e+00 -1.10433567e+00 4.55961883e-01 -2.16380402e-01 -4.07389045e-01 1.17975280e-01 3.18697989e-01 5.83820164e-01 -7.61245012e-01 1.26563942e+00 1.49100709e+00 6.99106216e-01 7.99867213e-01 -1.73231685e+00 -4.75933731e-01 -1.37849614e-01 -4.78594601e-01 -1.18899047e+00 -8.52334082e-01 1.07578123e+00 -3.58797908e-01 6.43130660e-01 5.15006483e-01 4.97588366e-01 2.01868510e+00 4.74620342e-01 6.20788217e-01 1.35908437e+00 -5.03472567e-01 4.97754544e-01 -1.55082121e-01 -7.37453640e-01 6.74746811e-01 -3.02207768e-01 3.91179204e-01 -3.90771300e-01 -1.22783042e-01 1.59481978e+00 -3.78248364e-01 1.63285300e-01 -6.34612799e-01 -1.28089738e+00 5.88018775e-01 1.62773766e-02 -1.45652264e-01 -5.36132812e-01 6.23846173e-01 2.88355589e-01 5.58627903e-01 8.83508086e-01 4.08468574e-01 -8.18962976e-02 -1.18916065e-01 -7.99306393e-01 3.55903953e-01 6.42106473e-01 1.26716650e+00 5.55680096e-01 8.81118476e-01 -1.73275441e-01 7.73161769e-01 -1.58359427e-02 9.21909809e-01 2.08889723e-01 -1.45635998e+00 1.56114042e-01 -2.01261677e-02 5.10229841e-02 -1.13001108e+00 2.89993286e-01 4.18494595e-03 -1.24407589e+00 5.00673890e-01 4.43170667e-01 -2.76923954e-01 -1.28633642e+00 1.82371390e+00 9.00581852e-02 7.76538178e-02 2.15686709e-01 5.83220005e-01 4.41037536e-01 5.58721602e-01 -1.59900263e-01 1.25783712e-01 6.81921482e-01 -8.49667490e-01 -8.13079655e-01 2.05213651e-01 1.25488475e-01 -7.28662610e-01 1.26591551e+00 4.71159548e-01 -1.30583620e+00 -5.98495841e-01 -8.76857579e-01 2.19406843e-01 -2.08030775e-01 -6.37586862e-02 7.66841590e-01 6.63026750e-01 -1.35292041e+00 8.18652689e-01 -1.09565914e+00 -2.51092851e-01 4.82817948e-01 1.28635198e-01 -5.41134834e-01 -4.93684411e-02 -8.92352879e-01 3.97894442e-01 -4.24064845e-02 1.80500939e-01 -1.48221660e+00 -3.46473873e-01 -9.30106342e-01 -2.66919434e-01 -8.11435804e-02 -6.85830951e-01 8.91497970e-01 -1.26631641e+00 -2.03325367e+00 6.86977327e-01 -1.70023382e-01 -3.60989869e-01 8.50583017e-01 1.87370062e-01 -7.12845564e-01 9.50682387e-02 -6.90621734e-02 8.27638626e-01 1.41100514e+00 -1.62552094e+00 5.30412421e-02 2.78817505e-01 -3.30300540e-01 9.05246437e-02 7.62975886e-02 -2.54091650e-01 -2.53102452e-01 -1.29248798e+00 1.60011187e-01 -9.53698874e-01 -3.17412645e-01 1.04242554e-02 -7.69291878e-01 6.21214867e-01 9.06881332e-01 -8.66093993e-01 5.31261027e-01 -2.30359435e+00 3.39038312e-01 7.74396479e-01 3.46167356e-01 -5.71715117e-01 -3.72631103e-01 2.84925073e-01 -1.72113284e-01 2.89696425e-01 -1.18082806e-01 -6.40722811e-01 1.29880160e-01 4.24544007e-01 -7.76121020e-01 3.51965934e-01 3.86784613e-01 1.08086455e+00 -5.47921360e-01 -9.69364196e-02 2.33248785e-01 5.00576377e-01 -6.65561497e-01 1.15747102e-01 -5.45811057e-01 9.73479152e-01 -2.51148999e-01 1.10848045e+00 5.14851451e-01 -2.31423885e-01 2.74578542e-01 -5.66170439e-02 2.86712646e-01 -1.51439086e-01 -8.01977456e-01 1.60096788e+00 -5.26974738e-01 8.92102897e-01 1.51956305e-01 -4.79693651e-01 1.06249964e+00 2.62752950e-01 2.62620062e-01 -6.87794387e-01 4.25836584e-03 1.01507813e-01 -1.22934014e-01 -5.23820333e-02 5.51547527e-01 -5.90202212e-02 -1.64767787e-01 5.95575988e-01 9.42450389e-02 -3.90475214e-01 -1.83394283e-01 -1.14905000e-01 1.23489869e+00 5.67907155e-01 -3.30631465e-01 -3.99754018e-01 -2.13975415e-01 -7.09903017e-02 2.07687750e-01 9.56384361e-01 1.89900577e-01 1.02946925e+00 8.35827291e-01 -5.44934332e-01 -1.91057920e+00 -1.42133665e+00 6.48773182e-03 7.96737909e-01 -6.61450475e-02 7.38719627e-02 -1.01183987e+00 -4.66686070e-01 -1.04537129e-01 5.91590941e-01 -1.24358320e+00 -1.03353985e-01 -4.60933656e-01 -3.33585113e-01 7.99342096e-01 5.21584094e-01 4.42707717e-01 -1.49447680e+00 4.01570909e-02 4.42617722e-02 1.75591782e-01 -9.02173638e-01 -1.86553329e-01 2.35559985e-01 -7.00453877e-01 -5.87843776e-01 -8.30095172e-01 -6.82484031e-01 7.50995278e-01 -4.44072574e-01 1.22712696e+00 -2.90395945e-01 -9.25725996e-02 3.56959045e-01 -1.42363504e-01 -1.98264699e-02 -9.67942238e-01 -1.13967992e-01 6.79361597e-02 8.73552114e-02 -3.43149662e-01 -8.25274885e-01 -4.16502148e-01 5.12750626e-01 -9.17516410e-01 4.15253907e-01 3.41373563e-01 1.13222849e+00 8.67183506e-01 2.50499398e-01 2.15855345e-01 -1.14644778e+00 7.10174441e-01 -3.51292580e-01 -4.34540123e-01 2.71129757e-01 -1.68556646e-01 2.78867614e-02 6.61044836e-01 -8.28936994e-01 -1.27735233e+00 -2.47819722e-01 -7.51793757e-02 -9.21274841e-01 -4.62990284e-01 2.01229647e-01 -2.28030488e-01 -1.94388255e-01 8.56426895e-01 3.52267206e-01 2.65110463e-01 -2.23847166e-01 6.18093133e-01 -1.25758260e-01 5.99848509e-01 -1.07549441e+00 7.78604865e-01 7.66470492e-01 -3.97559963e-02 -8.65667105e-01 -3.18842381e-01 6.34599209e-01 -5.04775465e-01 -2.24944592e-01 8.27420652e-01 -7.57855237e-01 -4.60184395e-01 8.07527006e-01 -8.32260430e-01 -1.30635297e+00 -1.00106156e+00 4.02990021e-02 -1.11702931e+00 -2.18789026e-01 -9.01343882e-01 -4.73866194e-01 1.01566426e-01 -1.35960519e+00 1.29755127e+00 -3.29569519e-01 -5.10197639e-01 -1.51437235e+00 -2.56174281e-02 -2.64754653e-01 7.39815116e-01 9.14122820e-01 9.88719642e-01 1.10019576e-02 -6.58517003e-01 5.31198420e-02 -1.21653140e-01 3.10676515e-01 3.78992498e-01 2.98183262e-01 -9.27348495e-01 -2.90662855e-01 -5.51420227e-02 -5.14434576e-01 6.27151668e-01 6.67868555e-01 1.46179020e+00 -5.41314602e-01 -5.33415042e-02 1.22634327e+00 1.11961985e+00 3.42246473e-01 1.08200681e+00 2.81830728e-01 9.14941192e-01 4.72661167e-01 1.11532502e-01 2.63973743e-01 -1.76736221e-01 2.83470899e-01 1.83909655e-01 -5.34891129e-01 -4.16403979e-01 -5.39308131e-01 2.19472393e-01 5.52411318e-01 -1.97996527e-01 -5.71635604e-01 -8.00591826e-01 3.36133152e-01 -1.55924189e+00 -9.73775208e-01 5.22882104e-01 1.57853329e+00 6.85402751e-01 2.89690524e-01 -1.16291031e-01 -9.49817374e-02 5.67241848e-01 3.29237759e-01 -6.96322560e-01 -4.32342589e-01 -6.94019020e-01 6.24750853e-01 6.05533779e-01 6.07945263e-01 -9.53808725e-01 1.31632304e+00 8.27845860e+00 1.09584272e+00 -1.18934298e+00 -9.36007053e-02 1.14960170e+00 1.65440768e-01 -8.67506087e-01 -1.32336214e-01 -1.83330417e-01 2.35683441e-01 6.72711432e-01 1.65441215e-01 8.46635044e-01 7.80866921e-01 5.15313037e-02 1.70077905e-01 -9.77011204e-01 6.64226830e-01 -1.84743196e-01 -1.71095586e+00 4.74485606e-01 1.70213193e-01 1.31285453e+00 -2.71174192e-01 7.57542014e-01 -9.02016610e-02 9.58696425e-01 -1.42856896e+00 9.98713195e-01 9.14893091e-01 1.60406768e+00 -6.96591437e-01 2.15808883e-01 -2.33658239e-01 -8.61880839e-01 3.82207215e-01 -1.56518131e-01 1.43666685e-01 -6.73513412e-02 2.02980071e-01 -5.14638603e-01 2.02379674e-01 4.41473514e-01 8.06295812e-01 -4.57700759e-01 5.22492789e-02 -2.27971345e-01 7.66981959e-01 -2.57761747e-01 3.35717201e-01 1.45161316e-01 -2.89952755e-01 5.83668947e-01 8.46564889e-01 4.75506961e-01 -2.66616344e-01 -1.16219647e-01 1.24269199e+00 -8.41642991e-02 -4.03166175e-01 -1.03433466e+00 -1.33374661e-01 3.59703660e-01 7.42401719e-01 -9.26783800e-01 -3.37811530e-01 2.52974540e-01 1.22607934e+00 -4.49290164e-02 9.95074689e-01 -7.51739323e-01 -1.21675186e-01 6.75256252e-01 -8.65593273e-03 1.14740156e-01 -4.48367685e-01 -7.12102771e-01 -1.08030701e+00 -2.26475015e-01 -1.28262258e+00 -3.94876063e-01 -1.03030801e+00 -1.32358754e+00 8.08773577e-01 -5.74645437e-02 -1.03859591e+00 -5.25328875e-01 -4.47522044e-01 -5.14824271e-01 1.11676550e+00 -6.93115234e-01 -1.63534820e+00 -2.88824528e-01 7.00907588e-01 4.52358037e-01 -7.43188977e-01 9.52266634e-01 -2.13908143e-02 -4.64991808e-01 7.46322274e-01 4.20972586e-01 2.33160183e-02 4.17213261e-01 -1.14368331e+00 1.11064339e+00 7.64042079e-01 -5.35341613e-02 6.08719349e-01 7.53741026e-01 -9.31184232e-01 -1.31685722e+00 -1.18112743e+00 1.75952390e-02 -5.20240724e-01 7.09517479e-01 -6.82758808e-01 -7.49446988e-01 1.02532172e+00 2.69208103e-01 -1.04491234e-01 1.82259694e-01 -8.46397281e-02 -2.67380506e-01 3.38043630e-01 -1.22455752e+00 1.08916700e+00 1.12345660e+00 -8.42954338e-01 2.94044316e-01 2.10765436e-01 6.34219825e-01 -6.74175501e-01 -9.86325324e-01 3.54686230e-01 7.58049309e-01 -8.36942017e-01 8.62220109e-01 -5.59838653e-01 9.50331450e-01 -6.31709248e-02 -4.47853148e-01 -1.38846195e+00 -4.57415760e-01 -8.94671023e-01 -9.41140279e-02 1.06022263e+00 4.66943234e-01 -5.57848632e-01 1.26716948e+00 3.99985284e-01 1.35064483e-01 -4.65004504e-01 -5.30249238e-01 -7.42727518e-01 1.26820907e-01 -2.77522773e-01 7.21546888e-01 1.23952079e+00 -7.31672525e-01 -3.30013663e-01 -7.40931034e-01 -7.80690089e-02 7.61643052e-01 -7.00385869e-02 9.69795048e-01 -5.14139175e-01 -4.48213369e-01 -4.68711019e-01 -1.48447677e-01 -8.89033318e-01 2.15998411e-01 -5.75742543e-01 -3.34614180e-02 -1.04553831e+00 -2.22457647e-01 -7.20607579e-01 1.20026387e-01 3.89359295e-01 5.17317355e-01 5.67263901e-01 -2.18706056e-01 3.17418337e-01 -2.17526942e-01 6.40968144e-01 1.75843263e+00 -1.26106396e-01 -4.32067625e-02 -4.19061601e-01 -2.42221653e-01 5.95709026e-01 7.22712636e-01 -2.49942705e-01 -5.61132193e-01 -4.16308939e-01 1.55521810e-01 2.83521980e-01 6.80350959e-01 -1.04736400e+00 -3.34592283e-01 -4.54433709e-01 8.06199610e-01 -1.79154530e-01 4.85144317e-01 -5.93513846e-01 8.25203300e-01 2.73248297e-03 -6.34153545e-01 9.61424857e-02 2.91130096e-01 5.32215655e-01 -3.82820815e-01 5.53060472e-01 8.45660686e-01 -1.55401668e-02 -6.46377981e-01 3.90316218e-01 -4.57847893e-01 -7.81080648e-02 7.51202047e-01 -4.59121764e-01 -3.29790831e-01 -7.19234169e-01 -1.42912686e+00 -4.48919952e-01 1.06953442e+00 3.12124133e-01 6.85565889e-01 -1.80134094e+00 -4.93776590e-01 8.39819193e-01 -1.18787892e-01 -1.08825319e-01 4.14751023e-01 2.29765043e-01 -1.07578683e+00 -2.47776449e-01 -6.91728890e-01 -7.01163888e-01 -8.37761581e-01 2.26637498e-01 5.25214612e-01 -1.57910764e-01 -5.97571194e-01 7.82215416e-01 4.17840123e-01 -5.15790999e-01 -7.53427111e-03 -2.85682350e-01 3.47072572e-01 -4.05329943e-01 6.91081258e-03 1.21959329e-01 -1.82493910e-01 -3.66268933e-01 2.36608386e-01 2.63097167e-01 3.40721518e-01 -5.68391263e-01 1.17918456e+00 -3.18879937e-03 -4.78245653e-02 5.19801497e-01 1.02987647e+00 1.06129780e-01 -1.87715101e+00 -3.99051309e-02 -4.78241712e-01 -3.71860236e-01 -2.15803251e-01 -6.76862419e-01 -1.02338696e+00 6.41898692e-01 5.10689139e-01 3.36144716e-01 1.02833319e+00 -3.22045147e-01 4.24042642e-01 2.16876462e-01 2.64530212e-01 -9.11439896e-01 2.88328260e-01 6.29840553e-01 1.06835032e+00 -8.81454229e-01 -3.48838359e-01 -2.41497532e-01 -7.11764872e-01 9.14121330e-01 3.60041201e-01 -6.56284273e-01 6.91834688e-01 7.48083711e-01 2.12963775e-01 -2.64009356e-01 -8.78806710e-01 3.21119010e-01 2.43441507e-01 8.29971969e-01 1.69048458e-01 2.35815749e-01 7.59180248e-01 -1.84948206e-01 -5.21808326e-01 -3.14141810e-01 2.37374708e-01 7.37025917e-01 2.34582320e-01 -1.09222877e+00 -3.13347161e-01 3.19538146e-01 -3.42890561e-01 -1.16847463e-01 -2.58900076e-01 9.83721733e-01 -1.15699992e-01 3.92949343e-01 3.50377798e-01 -5.62868953e-01 1.07696414e-01 -1.05967494e-02 7.71926284e-01 -1.93856448e-01 -1.57544255e-01 4.26878154e-01 2.78060645e-01 -5.91070533e-01 -2.25953043e-01 -7.47676015e-01 -4.17307258e-01 -7.14369535e-01 1.58631310e-01 -2.66968191e-01 5.70752919e-01 6.07024789e-01 2.42144465e-01 9.28864062e-01 7.21717536e-01 -1.13336933e+00 -5.76507412e-02 -8.57061625e-01 -8.03169906e-01 6.97277606e-01 4.48378116e-01 -5.26675999e-01 -2.45080501e-01 4.84293163e-01]
[11.573887825012207, -0.5502592325210571]
ebb65d25-e566-40c1-94d0-959cd3435997
rsfnet-a-white-box-image-retouching-approach
2303.08682
null
https://arxiv.org/abs/2303.08682v1
https://arxiv.org/pdf/2303.08682v1.pdf
RSFNet: A White-Box Image Retouching Approach using Region-Specific Color Filters
Retouching images is an essential aspect of enhancing the visual appeal of photos. Although users often share common aesthetic preferences, their retouching methods may vary based on their individual preferences. Therefore, there is a need for white-box approaches that produce satisfying results and enable users to conveniently edit their images simultaneously. Recent white-box retouching methods rely on cascaded global filters that provide image-level filter arguments but cannot perform fine-grained retouching. In contrast, colorists typically use a divide-and-conquer approach, performing a series of region-specific fine-grained enhancements when using traditional tools like Davinci Resolve. We draw on this insight to develop a white-box framework for photo retouching using parallel region-specific filters, called RSFNet. Our model generates filter arguments (e.g., saturation, contrast, hue) and attention maps of regions for each filter simultaneously. Instead of cascading filters, RSFNet employs linear summations of filters, allowing for a more diverse range of filter classes that can be trained more easily. Our experiments demonstrate that RSFNet achieves state-of-the-art results, offering satisfying aesthetic appeal and greater user convenience for editable white-box retouching.
['Xuansong Xie', 'Xin Xu', 'Xiaoyang Kang', 'Peiran Ren', 'Yi Dong', 'Wenqi Ouyang']
2023-03-15
null
null
null
null
['photo-retouching', 'image-retouching']
['computer-vision', 'computer-vision']
[ 3.48239899e-01 -1.22570992e-01 2.73232609e-02 -3.83780688e-01 -7.93785080e-02 -7.85954773e-01 5.10688305e-01 4.84517924e-02 -2.44373053e-01 4.12831694e-01 3.21014732e-01 -3.48395556e-01 2.14239731e-01 -8.87119114e-01 -5.67507744e-01 -2.73917854e-01 4.55892086e-01 -4.30610269e-01 4.25986081e-01 -4.82129157e-01 3.55855852e-01 5.99796355e-01 -1.82856631e+00 4.85846311e-01 1.05226529e+00 7.99188852e-01 2.24583045e-01 9.64355826e-01 -2.98500568e-01 5.01044393e-01 -7.15479136e-01 -6.43835545e-01 3.39006662e-01 -4.38249677e-01 -3.91242892e-01 1.56705499e-01 8.95637274e-01 -5.13320446e-01 -3.38672474e-02 9.70946312e-01 3.91513169e-01 3.72467935e-01 4.10383373e-01 -1.06391346e+00 -1.61345720e+00 4.28852767e-01 -1.02240789e+00 3.14111523e-02 4.56340104e-01 4.48291957e-01 1.05930424e+00 -7.63506114e-01 5.37817299e-01 1.35026455e+00 6.28793538e-01 6.23495877e-01 -1.69469810e+00 -7.77267337e-01 4.19002801e-01 6.96911886e-02 -1.13461280e+00 -2.79878914e-01 6.09182954e-01 -2.20309421e-01 9.44360375e-01 8.53770912e-01 1.10525954e+00 6.11605167e-01 2.58230627e-01 6.54986560e-01 1.28369689e+00 -4.09342319e-01 1.97020486e-01 3.60652715e-01 -3.96825641e-01 3.73571903e-01 1.04405239e-01 -8.38191286e-02 -6.00811243e-01 1.97606981e-01 1.27083933e+00 2.35445425e-01 -3.00034106e-01 -3.53099406e-01 -9.48683083e-01 4.47499514e-01 8.22106004e-01 -3.90166268e-02 -1.03947014e-01 2.69498825e-01 1.50182977e-01 2.37746611e-01 4.79127467e-01 8.67021501e-01 -3.15575927e-01 -1.06040584e-02 -9.78722215e-01 1.61082968e-01 3.36479813e-01 8.00059974e-01 1.02661920e+00 -9.13507789e-02 -5.40599227e-01 9.78285015e-01 3.57127115e-02 4.20208484e-01 2.02575475e-01 -9.06751275e-01 -1.63260311e-01 6.93667412e-01 2.58848190e-01 -9.86504436e-01 -2.72492647e-01 -2.39504084e-01 -5.03327191e-01 1.11081541e+00 1.53277040e-01 -4.39845957e-02 -1.18375909e+00 1.50772238e+00 3.27358156e-01 -2.70681947e-01 -5.19758403e-01 9.46944535e-01 6.33938551e-01 4.59336281e-01 5.54913938e-01 3.01699847e-01 1.51920342e+00 -1.03884900e+00 -7.00206578e-01 -3.08067173e-01 1.47455409e-01 -9.69586492e-01 1.96537554e+00 2.43413195e-01 -1.37089050e+00 -6.22005165e-01 -1.00391912e+00 -6.56448543e-01 -6.44802034e-01 1.15291201e-01 7.08189368e-01 7.41251707e-01 -1.35746932e+00 5.86821318e-01 -3.30866814e-01 -4.31028068e-01 3.94583791e-01 1.40651897e-01 -2.64037400e-01 2.66714007e-01 -7.26162076e-01 1.10521054e+00 -1.10965520e-02 2.09667366e-02 -2.02763766e-01 -1.09652865e+00 -6.38435543e-01 3.05251777e-01 2.86003083e-01 -8.06547701e-01 1.42521906e+00 -1.53041542e+00 -1.69420338e+00 8.70635271e-01 -4.81731109e-02 8.36782083e-02 5.73569000e-01 -2.97393411e-01 -4.80212927e-01 4.63179387e-02 -2.34933555e-01 1.05337918e+00 1.19282126e+00 -1.36551797e+00 -7.21931875e-01 1.50690690e-01 5.41326642e-01 3.89471769e-01 -5.78431368e-01 -1.44830748e-01 -4.20321465e-01 -8.75631630e-01 -3.61598969e-01 -5.49247742e-01 -1.50689662e-01 6.96656764e-01 -4.54979688e-01 2.50508338e-01 1.10714841e+00 -4.75537390e-01 1.67020190e+00 -2.28052235e+00 -1.84669912e-01 2.42305174e-01 5.22036254e-01 2.51216888e-01 -3.73467177e-01 3.43239874e-01 -3.00554097e-01 5.23770809e-01 8.19261894e-02 -1.12007596e-01 1.71567174e-03 -2.32960626e-01 -1.12826221e-01 1.97056867e-02 3.29998314e-01 1.14177537e+00 -8.97314906e-01 -1.54476389e-01 5.90986609e-01 6.92870140e-01 -6.82130635e-01 -5.83167374e-02 -2.39046231e-01 2.35629268e-02 2.75039244e-02 5.05810976e-01 9.30762291e-01 -2.62247711e-01 -1.38865471e-01 -5.06605089e-01 -4.38730210e-01 -3.72488722e-02 -1.05403042e+00 1.46671581e+00 -6.82753980e-01 8.78429234e-01 -9.02137831e-02 1.15411185e-01 8.55422318e-01 -2.60674268e-01 1.04369357e-01 -8.52933466e-01 9.86714661e-02 -1.12955607e-01 -2.38834098e-01 -3.04056287e-01 1.06130326e+00 -2.30226487e-01 6.07401729e-02 6.00666821e-01 -4.05516177e-01 -4.57305580e-01 1.95043519e-01 3.44297439e-01 8.40742648e-01 3.68424892e-01 3.81104469e-01 -2.29423240e-01 1.12877198e-01 -2.24137276e-01 2.55880281e-02 6.14335835e-01 -2.53522564e-02 8.78796399e-01 2.49614194e-01 -4.10049438e-01 -1.23621750e+00 -1.21031976e+00 7.24540055e-02 1.47880375e+00 2.58831561e-01 -5.06603181e-01 -8.19398344e-01 -4.19851303e-01 1.97401226e-01 8.39575827e-01 -1.01148629e+00 -2.52410531e-01 -3.95527482e-02 -2.99111426e-01 6.47422820e-02 6.19908094e-01 7.45614052e-01 -1.06467617e+00 -9.78649557e-01 -6.45496994e-02 2.15035275e-01 -4.43480462e-01 -1.09208238e+00 2.93236282e-02 -6.24095619e-01 -7.60726392e-01 -9.22586620e-01 -5.71702302e-01 9.40237939e-01 8.92196536e-01 1.19056678e+00 2.12023243e-01 -4.93745178e-01 4.34769183e-01 -4.17466164e-01 -2.86037922e-01 -1.34525791e-01 -1.28771171e-01 -4.68372434e-01 -2.12453991e-01 1.46461606e-01 -6.07409775e-01 -1.25012183e+00 5.25971353e-01 -1.18380678e+00 5.46835542e-01 5.60409069e-01 5.00285566e-01 4.12491024e-01 -1.84624735e-02 2.98229992e-01 -9.91632462e-01 1.02416539e+00 1.54042378e-01 -3.69553983e-01 4.48952407e-01 -5.08141577e-01 -6.00706972e-02 5.67884266e-01 -8.15021515e-01 -1.46475041e+00 -1.19359173e-01 2.99939305e-01 -1.54168397e-01 6.01712801e-02 1.53130749e-02 -3.08769047e-02 -4.27987248e-01 9.52171445e-01 -2.70571172e-01 -2.48796165e-01 -2.47443587e-01 1.25380898e+00 5.31915665e-01 6.13227010e-01 -2.82570481e-01 9.12625611e-01 5.04285395e-01 -5.61842859e-01 -5.56668878e-01 -4.88630176e-01 -2.53706183e-02 -5.01950026e-01 -5.09831071e-01 8.26893747e-01 -6.53449655e-01 -8.89026701e-01 4.26390886e-01 -7.31947124e-01 -7.22913921e-01 -8.01691115e-01 -2.30203792e-01 -2.05433652e-01 1.45251289e-01 -4.29149687e-01 -7.41359830e-01 -2.47400448e-01 -8.40353012e-01 9.99120831e-01 8.44310522e-01 -6.41595721e-01 -7.49848008e-01 -1.65436625e-01 -9.17063132e-02 8.31147552e-01 1.87755581e-02 8.75583589e-01 3.49287629e-01 -4.88450825e-01 -2.14473769e-01 -7.20499456e-01 1.91821620e-01 4.43178594e-01 5.18071771e-01 -1.04578602e+00 -4.43608910e-02 -6.59470499e-01 3.52393128e-02 7.64397204e-01 4.61690933e-01 1.43723083e+00 -3.04876059e-01 -2.03098312e-01 6.36436403e-01 1.38664210e+00 2.17324287e-01 1.01058888e+00 4.72712845e-01 7.63721049e-01 3.88443321e-01 2.73742169e-01 4.84673291e-01 3.13639790e-01 4.01395977e-01 2.58943379e-01 -8.78603280e-01 -5.10304630e-01 -4.25411224e-01 6.95853010e-02 -1.08967572e-01 -1.00611322e-01 -1.72603488e-01 -3.72832268e-01 2.94537485e-01 -1.55941188e+00 -9.61610436e-01 8.84107873e-02 2.25807834e+00 1.05174100e+00 -4.79884818e-02 3.08917552e-01 -1.49917409e-01 7.95995831e-01 1.28068596e-01 -8.46019566e-01 -8.88485372e-01 -2.81524986e-01 3.00589442e-01 6.94105983e-01 4.98885691e-01 -8.09672534e-01 1.17638516e+00 7.08090878e+00 6.97215140e-01 -1.37986541e+00 -2.65199602e-01 8.51780176e-01 -4.50260937e-01 -1.04954255e+00 2.74127051e-02 -3.74381363e-01 2.94038832e-01 1.60411313e-01 -7.21948445e-02 9.55043674e-01 5.55975676e-01 5.33993125e-01 -5.55303633e-01 -7.70487010e-01 1.06341064e+00 -3.00181732e-02 -1.40416932e+00 8.65540132e-02 -2.48727456e-01 8.91866922e-01 -5.98161280e-01 5.85496247e-01 -3.58051546e-02 6.08436465e-01 -9.35071647e-01 1.00811243e+00 5.39630890e-01 1.34618282e+00 -5.70515454e-01 -2.05641955e-01 -4.97483313e-01 -1.18910468e+00 -1.79281771e-01 -1.95531741e-01 -2.62766004e-01 1.14396431e-01 5.44363439e-01 -4.63353962e-01 -1.26279578e-01 9.95753586e-01 4.52266812e-01 -8.84214938e-01 1.23860145e+00 -4.50907677e-01 2.76118927e-02 -1.13149084e-01 -2.15105161e-01 -1.87942654e-01 -5.17246909e-02 1.93690851e-01 1.31296122e+00 3.19292665e-01 1.64748341e-01 -3.35934758e-01 1.12326849e+00 -1.43919721e-01 2.04777524e-01 -1.54980227e-01 -1.22634597e-01 5.52344918e-01 1.61860776e+00 -8.89605343e-01 -3.52691472e-01 -4.04236674e-01 1.41997159e+00 1.31231844e-01 7.26053715e-01 -8.28175485e-01 -6.59613132e-01 7.53903151e-01 4.70912069e-01 3.54601622e-01 -1.65223911e-01 -8.03920746e-01 -1.00872886e+00 -2.46809989e-01 -8.09291542e-01 1.31272525e-03 -1.50487185e+00 -1.33478045e+00 5.02169490e-01 -1.56808898e-01 -1.03574193e+00 5.95861435e-01 -5.56239545e-01 -9.33954775e-01 9.37536955e-01 -1.31409502e+00 -1.38056743e+00 -7.84763813e-01 5.78822076e-01 4.12277102e-01 5.28155923e-01 6.06334150e-01 1.50440289e-02 -2.38906890e-01 6.33023977e-01 -1.02167420e-01 -3.41040224e-01 1.10189986e+00 -1.41634727e+00 6.34246588e-01 7.67776012e-01 -1.15827315e-01 8.38275969e-01 8.84177566e-01 -6.28214955e-01 -1.04554033e+00 -7.76650012e-01 4.47047502e-01 -2.06279561e-01 4.55626726e-01 -4.23859715e-01 -7.42465854e-01 4.61705714e-01 5.88833690e-01 -2.54895031e-01 7.12636650e-01 2.86159068e-01 -7.01917827e-01 -2.59704053e-01 -1.26111841e+00 1.33348787e+00 1.09592044e+00 -6.52069211e-01 -1.59354970e-01 -7.93746188e-02 5.73786557e-01 -2.82136977e-01 -5.32743931e-01 -2.04707325e-01 1.06362045e+00 -1.23365545e+00 9.72312212e-01 -2.26047143e-01 4.63738829e-01 -6.35220170e-01 3.04340869e-01 -1.65426433e+00 -8.24898660e-01 -8.63867044e-01 3.93116146e-01 1.21510661e+00 5.32211006e-01 -6.27612710e-01 4.80892509e-01 1.18045890e+00 6.61041811e-02 -4.51729625e-01 -2.10927129e-01 -3.06721479e-01 -1.68376759e-01 -2.58598894e-01 8.94202828e-01 6.51870787e-01 2.95001566e-01 3.59989665e-02 -3.97609323e-01 -2.95024097e-01 2.13892713e-01 -5.35084903e-02 8.29752803e-01 -9.36496019e-01 -2.52863258e-01 -9.84941900e-01 -6.87908903e-02 -9.68029976e-01 -5.67630291e-01 -4.16255653e-01 -5.53447902e-02 -1.69609332e+00 3.05767238e-01 -3.43751609e-01 -1.90262586e-01 8.35902214e-01 -5.18100739e-01 7.64460444e-01 4.91798192e-01 -7.15431571e-02 -4.07517254e-01 2.12729663e-01 1.69379568e+00 -1.82621881e-01 -6.43878400e-01 -4.57045197e-01 -1.49010623e+00 4.28236395e-01 7.75287867e-01 2.99286395e-01 -5.93795061e-01 -5.78688085e-01 5.53511798e-01 -7.30403364e-01 4.33605433e-01 -8.51843297e-01 1.45867160e-02 -5.20824254e-01 8.30040574e-01 -1.59526065e-01 2.24365234e-01 -6.05904639e-01 2.88320571e-01 1.32552674e-02 -5.38645208e-01 1.34916306e-01 5.88916838e-01 3.63518029e-01 2.38973975e-01 1.86837718e-01 8.35797608e-01 -1.71495035e-01 -9.21399534e-01 7.09405839e-02 -3.71863216e-01 -3.94020587e-01 1.00090528e+00 -7.47527361e-01 -6.55612946e-01 -6.64768279e-01 -5.87031007e-01 -6.14878275e-02 1.08909166e+00 6.04664147e-01 6.34675622e-01 -1.26451313e+00 -2.49905542e-01 2.88230807e-01 2.06544310e-01 -3.00871640e-01 6.88669384e-01 4.40557808e-01 -4.58961070e-01 -3.38437438e-01 -6.27207339e-01 -2.07380593e-01 -1.27786875e+00 7.28528678e-01 2.41306156e-01 3.73606652e-01 -5.99016905e-01 1.15091169e+00 6.20063066e-01 6.67686686e-02 -1.51773468e-01 -5.01744747e-01 9.26830843e-02 8.44583809e-02 7.89810359e-01 3.31612706e-01 -1.62253648e-01 -1.38101518e-01 -1.14077382e-01 7.00017154e-01 -7.26050511e-02 -2.76950836e-01 1.06133628e+00 -5.91530442e-01 -3.36780511e-02 1.66184857e-01 7.53079236e-01 4.07255799e-01 -1.78678751e+00 5.38665242e-02 -7.54208803e-01 -1.08212781e+00 1.20093651e-01 -1.46451366e+00 -1.06538475e+00 7.61540890e-01 5.21741092e-01 3.72778445e-01 1.59429932e+00 -2.59463370e-01 6.40102386e-01 -3.24288636e-01 2.09212396e-02 -1.23850453e+00 2.83665568e-01 -8.02017823e-02 1.09578836e+00 -7.86068439e-01 3.32556069e-02 -4.48478669e-01 -8.85257483e-01 1.16876709e+00 8.22380602e-01 -1.29760802e-01 3.42097074e-01 4.28531766e-01 3.15036833e-01 3.09021883e-02 -5.47622502e-01 -3.31853837e-01 5.29379427e-01 7.90793598e-01 6.77870631e-01 2.68615574e-01 -1.70760870e-01 1.76763654e-01 -2.31479347e-01 -4.60226312e-02 4.83515143e-01 6.98355198e-01 -7.11224914e-01 -1.08890545e+00 -3.63414496e-01 4.98873413e-01 6.87212572e-02 -3.44324201e-01 -5.31254709e-01 6.78623438e-01 1.75076514e-01 9.18577790e-01 5.50846383e-02 -5.07731259e-01 4.35319573e-01 -3.64912301e-01 5.65885067e-01 -4.73123401e-01 -7.74988532e-01 1.48537725e-01 -1.69841409e-01 -6.86361372e-01 -6.57302467e-03 -2.74801940e-01 -9.47328806e-01 -6.94787264e-01 -3.12762409e-01 -3.41016263e-01 5.83286405e-01 3.54529768e-01 4.90716219e-01 8.58066738e-01 3.04143071e-01 -1.04724193e+00 1.58851624e-01 -7.27101743e-01 -6.41889989e-01 5.71133614e-01 3.16770017e-01 -4.97870952e-01 -5.18222004e-02 1.76458195e-01]
[11.36823558807373, -0.9740555286407471]
d66c2322-90c7-46aa-b2a9-2d64ef74ca72
delog-a-privacy-preserving-log-filtering
1902.04843
null
https://arxiv.org/abs/1902.04843v3
https://arxiv.org/pdf/1902.04843v3.pdf
Delog: A Privacy Preserving Log Filtering Framework for Online Compute Platforms
In many software applications, logs serve as the only interface between the application and the developer. However, navigating through the logs of long-running applications is often challenging. Logs from previously successful application runs can be leveraged to automatically identify errors and provide users with only the logs that are relevant to the debugging process. We describe a privacy preserving framework which can be employed by Platform as a Service (PaaS) providers to utilize the user logs generated on the platform while protecting the potentially sensitive logged data. Further, in order to accurately and scalably parse log lines, we present a distributed log parsing algorithm which leverages Locality Sensitive Hashing (LSH). We outperform the state-of-the-art on multiple datasets. We further demonstrate the scalability of Delog on publicly available Thunderbird log dataset with close to 27,000 unique patterns and 211 million lines.
['Amey Agrawal', 'Rajat Gupta', 'Namrata Shettar', 'Darshil Kapadia', 'Vikram Agrawal', 'Rohit Karlupia', 'Abhishek Dixit']
2019-02-13
null
null
null
null
['log-parsing']
['computer-code']
[-3.07763427e-01 -4.84091431e-01 -3.97104084e-01 -4.04991657e-01 -1.31339991e+00 -1.18982089e+00 -5.12120873e-02 6.28910542e-01 -6.86183050e-02 1.88367829e-01 -8.68362486e-02 -6.33915067e-01 2.15211779e-01 -4.60124075e-01 -9.58831787e-01 -4.79205437e-02 -5.94228327e-01 3.08579672e-02 5.55457532e-01 2.90275931e-01 5.42237103e-01 3.61949503e-01 -1.36143029e+00 5.85387886e-01 6.25059843e-01 8.81232083e-01 -2.70176649e-01 7.33353078e-01 2.32135564e-01 8.77726674e-01 -6.78792655e-01 -3.02975267e-01 5.16606450e-01 3.47497873e-02 -7.18291521e-01 -4.16032165e-01 4.25977170e-01 -7.11528718e-01 -1.47162661e-01 1.06494868e+00 1.51166096e-01 -3.69254887e-01 -1.97112650e-01 -1.75148749e+00 -3.87493908e-01 5.86420238e-01 -9.01325703e-01 3.22378427e-01 6.36637986e-01 1.87351052e-02 9.34201717e-01 -4.69808251e-01 6.92864478e-01 2.42382258e-01 6.62145793e-01 6.33302778e-02 -1.04221821e+00 -7.76557505e-01 -4.64093745e-01 9.46987048e-02 -1.30995035e+00 -5.91745436e-01 3.77008706e-01 -6.00842357e-01 1.26974559e+00 4.49302673e-01 5.36205135e-02 7.63434231e-01 3.92084360e-01 3.05832773e-01 8.88737023e-01 -3.74039054e-01 4.43221956e-01 2.99796075e-01 6.72580957e-01 8.37604463e-01 4.97199535e-01 -1.56791896e-01 -1.11279953e+00 -1.42928755e+00 -1.84822559e-01 9.96305048e-02 -3.27158630e-01 -4.12421316e-01 -5.81959307e-01 4.83872652e-01 -2.68553138e-01 -2.36902043e-01 -1.08989514e-01 1.69517577e-01 7.47140706e-01 4.15802091e-01 2.86040545e-01 4.62235600e-01 -7.09381342e-01 -7.50073552e-01 -1.05794597e+00 1.22435965e-01 1.43320715e+00 1.22817183e+00 1.16853333e+00 -6.78575277e-01 1.66532755e-01 3.01849097e-01 4.38297451e-01 2.88650155e-01 2.81431228e-01 -8.72782648e-01 3.39625090e-01 6.75113082e-01 1.32136261e-02 -7.70154953e-01 3.76306176e-01 2.67787814e-01 2.10297361e-01 4.53227788e-01 3.21559191e-01 7.39918873e-02 -2.27342084e-01 1.20883369e+00 2.42127538e-01 2.19168648e-01 -4.32361245e-01 3.65695000e-01 -1.14712723e-01 2.47633576e-01 -3.58827561e-01 -2.29657139e-03 1.46732080e+00 -6.21678472e-01 -2.47724935e-01 -3.45090747e-01 7.59764791e-01 -9.34019566e-01 1.27478600e+00 3.83350790e-01 -5.95869839e-01 3.03846389e-01 -1.21457076e+00 -6.95546493e-02 -2.84067363e-01 -6.57261387e-02 5.21889150e-01 7.34797418e-01 -1.11063576e+00 5.55998445e-01 -1.59154105e+00 -3.56758952e-01 5.51537514e-01 2.49920517e-01 -6.06130600e-01 -1.32251993e-01 -3.88184279e-01 2.68456161e-01 -4.35163230e-02 -5.42963922e-01 -1.11146402e+00 -1.06518483e+00 -7.04539359e-01 2.09554717e-01 4.34442669e-01 -5.80379404e-02 1.46445262e+00 1.03118487e-01 -8.99112165e-01 9.36444581e-01 -1.81743920e-01 -4.26959604e-01 2.31506437e-01 -7.43765175e-01 -4.91594672e-02 1.28502220e-01 2.05617711e-01 -4.95480001e-01 7.01213598e-01 -9.07060802e-01 -6.21871769e-01 -4.39754844e-01 -3.65628779e-01 -5.75780332e-01 -6.60278261e-01 6.14449084e-01 -3.66087317e-01 2.52744928e-02 -4.76723671e-01 -1.07864642e+00 3.39761168e-01 5.79364449e-02 -5.02476096e-01 1.57168239e-01 1.31911242e+00 -9.66819406e-01 1.62103534e+00 -2.52286243e+00 -5.35870850e-01 3.99219304e-01 2.64207095e-01 4.53605503e-02 9.96105522e-02 7.14615881e-01 1.19030684e-01 4.51962173e-01 -2.14268506e-01 -5.25194466e-01 4.57944646e-02 -8.52787271e-02 -7.85013437e-01 6.86519504e-01 -9.05020535e-02 6.09460890e-01 -7.02088833e-01 -4.16574359e-01 -3.60201508e-01 4.81452718e-02 -5.35600901e-01 6.36119604e-01 -3.28734905e-01 -2.42649555e-01 -3.65441084e-01 1.03597391e+00 7.15018928e-01 -5.18290699e-01 1.62604600e-01 5.52506089e-01 -2.58871436e-01 5.59444129e-01 -5.03850043e-01 1.70521927e+00 -3.62107694e-01 7.19893813e-01 3.16566586e-01 9.26572084e-02 6.64954126e-01 2.96426624e-01 2.80183673e-01 -9.52460691e-02 -3.69090915e-01 1.81595489e-01 -7.08519280e-01 -6.35290682e-01 3.78080487e-01 7.37580538e-01 -3.81748706e-01 1.27064621e+00 -3.96424681e-01 4.32295501e-01 -2.21536294e-01 3.30069780e-01 2.08359146e+00 1.38072684e-01 4.25116330e-01 1.27150312e-01 4.30293046e-02 2.81897992e-01 6.59825087e-01 6.68011248e-01 -2.11528778e-01 4.39016014e-01 1.06147051e+00 -1.98240831e-01 -9.13239896e-01 -9.12024915e-01 4.98211049e-02 1.40138745e+00 -2.17801809e-01 -1.01513100e+00 -8.93566191e-01 -9.87617314e-01 1.96733236e-01 6.36022627e-01 -3.44000757e-01 -1.05826989e-01 -6.05510175e-01 -4.01069731e-01 8.20196092e-01 4.68910784e-01 2.12864354e-01 -8.05287242e-01 -9.98886108e-01 3.31819691e-02 -3.18365246e-02 -9.23850238e-01 -1.06235564e+00 8.20235536e-02 -5.01932919e-01 -1.36361110e+00 3.33122730e-01 -3.32625121e-01 4.24691290e-01 3.97180527e-01 1.17562532e+00 3.20601523e-01 -7.84182072e-01 3.50199491e-01 -4.49616849e-01 -2.03968197e-01 -5.56895554e-01 7.22543970e-02 -4.03630376e-01 -2.60815084e-01 8.91640723e-01 -8.61474514e-01 -3.30335259e-01 1.78814605e-01 -8.14001679e-01 -7.96629846e-01 1.96125820e-01 4.40780461e-01 4.59826380e-01 -1.89847359e-03 4.54805046e-02 -1.50378156e+00 5.65400124e-01 -1.02292728e+00 -1.12962818e+00 3.68490070e-01 -1.04462755e+00 -1.51420116e-01 6.94258869e-01 -2.76228309e-01 -8.51214051e-01 1.55029044e-01 2.62979150e-01 -5.18122494e-01 -3.08971375e-01 4.01947200e-01 -3.86921735e-03 -4.48355258e-01 8.56663823e-01 7.09468946e-02 2.32753694e-01 -7.32013583e-01 -2.41800714e-02 1.05498517e+00 6.91463172e-01 -6.89866245e-01 8.17025423e-01 5.25846720e-01 -3.67397606e-01 -4.55294311e-01 -2.68262833e-01 -7.49021828e-01 -2.25805774e-01 5.08510649e-01 2.97182590e-01 -6.69124544e-01 -9.58091319e-01 5.74938416e-01 -1.20246446e+00 -4.91830260e-02 7.58710457e-03 -8.65641087e-02 -3.40521514e-01 7.43807018e-01 -8.81114483e-01 -6.77985430e-01 -5.93901873e-01 -1.07166338e+00 1.14512789e+00 5.19995652e-02 -4.02134061e-01 -4.73668218e-01 4.74703580e-01 3.26956391e-01 5.55957437e-01 4.15944308e-01 1.14627469e+00 -1.07373631e+00 -1.28866756e+00 -7.16534257e-01 -8.61613154e-02 2.22847968e-01 -9.08638388e-02 3.22271466e-01 -1.27487230e+00 -5.39660752e-01 1.11274987e-01 -1.67157292e-01 1.56108782e-01 -3.85353804e-01 1.16596663e+00 -6.87133729e-01 -2.89427102e-01 1.02553773e+00 1.47477686e+00 7.90686812e-03 6.48573697e-01 4.50697809e-01 6.20863855e-01 3.33192170e-01 6.37107611e-01 9.33065176e-01 2.14047208e-01 2.24927038e-01 4.57033187e-01 5.02298534e-01 4.60704088e-01 -4.25387681e-01 6.40594244e-01 5.44137537e-01 6.51691556e-01 -6.80519566e-02 -9.81014132e-01 6.87498391e-01 -1.83473873e+00 -6.70218706e-01 -1.38869226e-01 2.69165897e+00 9.41757560e-01 1.06465347e-01 -3.28727476e-02 -3.03658605e-01 5.02383471e-01 5.01549095e-02 -6.48272991e-01 -3.99565786e-01 5.40951431e-01 3.56345087e-01 8.84011090e-01 1.69931471e-01 -8.56260836e-01 5.45034170e-01 6.45337343e+00 4.42838937e-01 -9.67165768e-01 2.91951895e-01 5.15369661e-02 -4.55107354e-02 -2.97914118e-01 7.42268085e-01 -8.24469566e-01 7.16661274e-01 1.49545085e+00 -7.90569007e-01 6.53763652e-01 1.65585744e+00 -1.86153024e-01 -4.02855784e-01 -1.44201577e+00 6.53307557e-01 -2.11097032e-01 -1.20596707e+00 -8.83665025e-01 5.27652860e-01 2.25259960e-01 4.35295701e-01 -3.86219174e-02 -8.72827843e-02 4.07544762e-01 -8.73967290e-01 2.93841749e-01 1.28974929e-01 9.59240854e-01 -6.28180265e-01 5.52650809e-01 4.02012765e-01 -8.97577345e-01 4.84943353e-02 -2.63796896e-01 2.71232985e-02 -1.70674488e-01 7.12107301e-01 -1.38995683e+00 1.36002809e-01 1.25670791e+00 5.04361808e-01 -9.47596669e-01 1.13314998e+00 3.37849110e-02 1.00678134e+00 -6.32260084e-01 7.34998807e-02 -5.01092494e-01 1.81761324e-01 4.44746464e-01 1.06831443e+00 5.68681121e-01 -4.74151731e-01 1.42951265e-01 9.23555970e-01 -3.22399318e-01 5.02191409e-02 -1.02405417e+00 -4.28892463e-01 1.13708031e+00 1.24460077e+00 -2.50913590e-01 1.34706706e-01 -5.58161736e-01 9.96560574e-01 3.79859746e-01 1.66011974e-01 -5.11923134e-01 -7.78093636e-01 1.35773814e+00 4.44636732e-01 2.51780212e-01 -4.08054143e-01 -1.57957628e-01 -1.08075547e+00 7.29119539e-01 -1.07799602e+00 6.18874550e-01 -3.36833745e-01 -1.38852406e+00 5.56522131e-01 -1.58005446e-01 -9.51825023e-01 -4.19823110e-01 -2.33269632e-01 -7.65074492e-01 8.82936776e-01 -1.20410132e+00 -8.98135066e-01 -3.15757334e-01 2.92481869e-01 -2.51289129e-01 -9.99161154e-02 9.75415707e-01 2.64104128e-01 -3.84631455e-01 9.55008090e-01 2.70245403e-01 1.02902725e-01 1.12706256e+00 -1.20415485e+00 7.76409864e-01 1.20410967e+00 1.22375906e-01 1.29735744e+00 5.25727570e-01 -9.30295646e-01 -1.86063099e+00 -1.01244831e+00 7.52424240e-01 -7.93915510e-01 1.05751324e+00 -7.51273155e-01 -1.48328805e+00 1.16650319e+00 2.20535487e-01 4.30899024e-01 1.22258806e+00 3.84977683e-02 -9.83223736e-01 -2.37279013e-01 -1.17302656e+00 2.51497421e-02 5.69109261e-01 -1.24448347e+00 -4.19822186e-02 4.50639457e-01 7.66090453e-01 -4.71643329e-01 -9.95827258e-01 -4.24140900e-01 3.95851225e-01 -1.14003658e+00 4.26276475e-01 -5.92911303e-01 2.34822214e-01 -3.85882616e-01 -2.23378912e-02 -6.76723897e-01 4.92913425e-02 -1.57035089e+00 -3.66661847e-01 1.63245988e+00 2.45648175e-01 -8.38013887e-01 8.69374990e-01 1.06710386e+00 2.31858850e-01 -3.86067241e-01 -7.59481549e-01 -6.43974543e-01 -5.29662251e-01 -4.75213736e-01 9.61398244e-01 7.68152118e-01 3.76947910e-01 -3.81594032e-01 -3.45171511e-01 7.74726510e-01 7.76009619e-01 1.72167897e-01 7.94634283e-01 -7.21481681e-01 -7.15609014e-01 3.74573022e-01 -4.58804190e-01 -5.39154887e-01 2.74860471e-01 -8.22080970e-01 2.36670807e-01 -3.22483957e-01 3.77330571e-01 -5.78510106e-01 -2.46305957e-01 8.37866187e-01 9.35168192e-03 -2.25910228e-02 -7.11797625e-02 4.92877245e-01 -6.79126918e-01 -2.44129360e-01 -1.04299419e-01 5.81748188e-01 -7.46752396e-02 2.17751876e-01 -9.14674461e-01 5.26910603e-01 4.63842958e-01 -1.21034384e+00 -2.10403398e-01 -4.67614412e-01 3.53239805e-01 2.04823658e-01 3.14579189e-01 -8.74949574e-01 7.77037024e-01 -2.72554010e-02 -2.11299121e-01 -4.73898798e-01 -1.86640322e-01 -8.37542057e-01 2.99542964e-01 1.02584183e-01 -2.51728356e-01 4.07992542e-01 1.39696330e-01 8.35073948e-01 -1.14358209e-01 -4.40098882e-01 4.16518301e-01 5.77382408e-02 -6.31174564e-01 5.02943635e-01 -1.13873243e-01 3.61672312e-01 1.38060975e+00 1.92230746e-01 -1.08673477e+00 -6.98757917e-02 7.12671131e-02 3.18534464e-01 1.65836954e+00 1.86880738e-01 3.12014520e-01 -8.20624769e-01 -2.75677830e-01 4.72458065e-01 6.70865178e-01 -2.13546664e-01 -1.56259328e-01 4.84597057e-01 -8.81519258e-01 -6.58083931e-02 -1.01322912e-01 -3.10662866e-01 -1.73269176e+00 6.41215682e-01 -4.08558547e-02 -2.04305612e-02 -7.11144269e-01 7.01948524e-01 -3.34236145e-01 -3.52478549e-02 3.06342602e-01 2.55944431e-02 8.27835083e-01 -3.40763628e-01 1.13114429e+00 5.33229589e-01 5.35619557e-01 1.80460751e-01 -8.08123708e-01 -1.39719835e-02 -4.11540091e-01 -5.67829683e-02 1.55243778e+00 2.97552701e-02 -7.73824513e-01 3.55046630e-01 1.69576550e+00 7.72022605e-01 -1.38851786e+00 -1.44085333e-01 5.10846853e-01 -1.08364952e+00 -2.68658280e-01 -5.66755593e-01 -8.00079346e-01 8.51764321e-01 2.41065800e-01 2.75572926e-01 1.07529461e+00 2.59354003e-02 1.12679410e+00 1.97169974e-01 8.88696969e-01 -5.69335520e-01 -2.89307654e-01 -8.78824890e-02 2.04638004e-01 -1.09129989e+00 6.91645667e-02 -5.46432674e-01 -3.98249000e-01 1.17104602e+00 5.47099710e-01 -2.63526011e-02 7.25161016e-01 1.15128100e+00 2.11241692e-01 -9.51861590e-02 -1.16113138e+00 8.01338196e-01 -3.08308542e-01 7.01874852e-01 2.45345578e-01 -7.43317679e-02 1.56820998e-01 6.48818254e-01 1.33057639e-01 2.12042734e-01 1.02808678e+00 1.96232140e+00 -2.16295928e-01 -1.53105450e+00 -4.66572016e-01 5.39969862e-01 -9.91122305e-01 -1.92626014e-01 -3.47989619e-01 3.50896209e-01 -5.42054653e-01 7.96034396e-01 -2.62131304e-01 -5.62059224e-01 -2.52217501e-02 3.58618587e-01 -2.06703007e-01 -1.03410459e+00 -9.52128828e-01 -2.92591751e-01 1.24519758e-01 -1.14017773e+00 7.27055669e-01 -9.45710957e-01 -1.11353362e+00 -6.66192174e-01 -1.42231047e-01 2.19655454e-01 7.67387390e-01 2.90645391e-01 1.17116868e+00 -1.03541575e-01 8.07187855e-01 -3.50171328e-02 -1.03923774e+00 -2.80561835e-01 -6.84238255e-01 3.54860246e-01 4.57580566e-01 4.03019274e-03 -6.70077920e-01 3.92146260e-01]
[6.408806324005127, 6.859131813049316]
53742da7-9a4e-44c6-bf1f-65c966fc7864
context-aware-cascade-attention-based-rnn-for
1805.12098
null
http://arxiv.org/abs/1805.12098v1
http://arxiv.org/pdf/1805.12098v1.pdf
Context-aware Cascade Attention-based RNN for Video Emotion Recognition
Emotion recognition can provide crucial information about the user in many applications when building human-computer interaction (HCI) systems. Most of current researches on visual emotion recognition are focusing on exploring facial features. However, context information including surrounding environment and human body can also provide extra clues to recognize emotion more accurately. Inspired by "sequence to sequence model" for neural machine translation, which models input and output sequences by an encoder and a decoder in recurrent neural network (RNN) architecture respectively, a novel architecture, "CACA-RNN", is proposed in this work. The proposed network consists of two RNNs in a cascaded architecture to process both context and facial information to perform video emotion classification. Results of the model were submitted to video emotion recognition sub-challenge in Multimodal Emotion Recognition Challenge (MEC2017). CACA-RNN outperforms the MEC2017 baseline (mAP of 21.7%): it achieved mAP of 45.51% on the testing set in the video only challenge.
['Jen-Hsien Chien', 'Min-Chun Yang', 'Shih-Huan Hsu', 'Man-Chin Sun']
2018-05-30
null
null
null
null
['video-emotion-recognition', 'multimodal-emotion-recognition', 'multimodal-emotion-recognition']
['computer-vision', 'computer-vision', 'speech']
[ 4.85639006e-01 -2.12703049e-01 1.30902946e-01 -6.14885926e-01 -2.23786980e-01 -2.32528523e-01 4.18955624e-01 -4.60708916e-01 -6.53294504e-01 3.83926004e-01 3.77911538e-01 -3.01558506e-02 8.21439862e-01 -1.18852936e-01 -5.64405382e-01 -6.07836485e-01 2.55624264e-01 -3.33364129e-01 -5.64742386e-01 -2.77075887e-01 1.81906000e-02 4.33741152e-01 -1.65116501e+00 9.31955397e-01 3.71841252e-01 1.37651598e+00 1.95856243e-02 1.01507616e+00 -7.96638057e-02 1.09362733e+00 -4.27278429e-01 -4.66608137e-01 -1.25908926e-01 -7.58621037e-01 -7.62187660e-01 5.09519987e-02 -4.05931063e-02 -1.38005167e-01 -2.24814355e-01 8.30620348e-01 7.13667750e-01 3.29355508e-01 7.63314664e-01 -1.41233873e+00 -6.75393820e-01 6.34967387e-02 -6.63592279e-01 -1.16540138e-02 4.15916920e-01 -5.36283813e-02 3.42699558e-01 -1.13853645e+00 7.10805953e-01 1.10286903e+00 4.64387149e-01 1.19905925e+00 -6.35331392e-01 -6.38815522e-01 2.60479629e-01 6.88391089e-01 -1.25561583e+00 -5.60592949e-01 7.75871158e-01 -1.72000110e-01 1.29126489e+00 3.50171268e-01 6.80416226e-01 1.69896173e+00 2.42573634e-01 1.10584664e+00 9.07174170e-01 -3.36996138e-01 2.22435184e-02 2.76432365e-01 -1.99417472e-01 6.23633802e-01 -6.45044625e-01 -2.03873470e-01 -6.69260621e-01 2.71451741e-01 5.12929857e-01 1.45078480e-01 -2.07382560e-01 8.01582932e-02 -8.95054102e-01 5.36250770e-01 5.34622133e-01 3.19829702e-01 -8.25423419e-01 1.81220993e-01 9.75050747e-01 5.66973388e-01 4.24498200e-01 -1.21333867e-01 -3.97094488e-01 -5.03044784e-01 -4.93418545e-01 -3.93020868e-01 5.25945127e-01 6.50051951e-01 2.53142476e-01 3.27293068e-01 -1.83654144e-01 9.77874458e-01 5.13622403e-01 4.09124166e-01 7.99862742e-01 -6.06876552e-01 2.20559239e-01 6.36829257e-01 -1.03612080e-01 -1.11930335e+00 -4.25442010e-01 4.09375094e-02 -1.21789837e+00 1.42759442e-01 -1.74129620e-01 -5.47293127e-01 -1.17015207e+00 1.67811489e+00 1.27612621e-01 4.22227979e-01 4.47187006e-01 1.21377838e+00 1.14752483e+00 9.88063872e-01 3.69308174e-01 -2.44883314e-01 1.38725579e+00 -1.21012652e+00 -8.08781981e-01 -6.77247718e-02 7.27761090e-01 -7.78365254e-01 8.23372245e-01 4.75049913e-01 -7.78226852e-01 -7.29629874e-01 -8.23564410e-01 -1.05930336e-01 -6.37997210e-01 6.00600421e-01 3.93720418e-01 6.79745972e-01 -1.44775617e+00 -5.97061962e-02 -4.93198723e-01 -6.46582186e-01 3.32628161e-01 4.75160658e-01 -6.73233986e-01 7.34087974e-02 -1.03682911e+00 8.65986049e-01 -2.94535039e-05 9.11946893e-01 -7.82508612e-01 -1.17402211e-01 -9.86112237e-01 -1.22029465e-02 2.80855540e-02 -4.79797214e-01 1.10266101e+00 -2.06275034e+00 -1.77572465e+00 9.15327430e-01 -6.18568063e-01 -3.21011722e-01 2.23625571e-01 -4.31983232e-01 -8.16841185e-01 2.55154788e-01 -5.96310675e-01 1.15050519e+00 9.94921625e-01 -8.56505692e-01 -3.84042710e-01 -5.19535840e-01 -5.70145726e-01 3.35994542e-01 -2.53737241e-01 5.78954220e-01 -5.59879839e-01 -5.05299926e-01 -2.87352264e-01 -9.25934315e-01 -1.55006856e-01 -2.46697694e-01 1.53997382e-02 -2.66140610e-01 1.13220978e+00 -9.73866284e-01 1.15423834e+00 -2.22106767e+00 3.04481953e-01 1.44965380e-01 -7.13003948e-02 5.64704657e-01 -5.16657174e-01 2.07549021e-01 -4.96180415e-01 4.24557664e-02 1.41213059e-01 -2.82363564e-01 -1.07873783e-01 2.13599298e-02 -1.57038912e-01 1.89523324e-01 5.06505489e-01 1.25841403e+00 -4.88399029e-01 -2.02952087e-01 1.78381339e-01 1.03229678e+00 -2.91513443e-01 4.50593799e-01 1.82313874e-01 3.17626953e-01 -1.79820091e-01 8.67985308e-01 4.11968291e-01 7.13543817e-02 5.92855252e-02 -3.83907408e-01 5.70313595e-02 -4.27015722e-01 -7.29554296e-01 1.73791468e+00 -4.82070774e-01 1.09566009e+00 1.42795578e-01 -9.12873864e-01 1.03568351e+00 8.37551117e-01 1.57098025e-01 -8.35131884e-01 6.83013439e-01 -2.27986410e-01 1.32121006e-02 -1.07972050e+00 5.13231575e-01 -1.05359145e-01 -1.28233731e-01 1.49092853e-01 2.09408581e-01 6.86583579e-01 -2.23791718e-01 1.64481383e-02 9.35967445e-01 5.03488600e-01 1.17730387e-01 3.19818646e-01 8.42274308e-01 -4.95565027e-01 5.40624201e-01 2.02632979e-01 -5.91033995e-01 5.52293003e-01 4.83127266e-01 -6.23316824e-01 -8.30502391e-01 -4.42585975e-01 5.55364728e-01 1.34162819e+00 -9.12994966e-02 -3.29154998e-01 -8.72235358e-01 -7.41077304e-01 -6.69897497e-01 3.38666350e-01 -1.04542398e+00 -3.95946831e-01 -1.34370998e-01 -4.52546656e-01 6.45728171e-01 7.97980011e-01 6.94173574e-01 -1.67770350e+00 -8.17668140e-01 1.61936507e-01 -4.04536575e-01 -1.21617949e+00 -3.70891631e-01 -1.41843826e-01 -4.24036562e-01 -8.39193583e-01 -8.46979022e-01 -8.27317417e-01 5.81613183e-01 3.33066918e-02 7.35245407e-01 7.17995269e-03 -5.33404112e-01 5.99685788e-01 -7.92030215e-01 -5.32997668e-01 -1.94517255e-04 -1.96782574e-01 -7.60366619e-02 6.16659820e-01 8.01608324e-01 -2.41714269e-01 -6.20991766e-01 2.51170069e-01 -7.90311456e-01 2.64689654e-01 7.58702755e-01 9.22506571e-01 2.17041612e-01 -5.57942033e-01 6.95053041e-01 -4.57577109e-01 6.47142708e-01 -4.39267963e-01 1.52651528e-02 4.88945484e-01 -1.37784973e-01 -2.48029470e-01 4.16000962e-01 -5.30241430e-01 -1.37650621e+00 3.03933680e-01 -4.21527088e-01 -6.84185743e-01 -5.11889935e-01 3.97282243e-01 -2.99691826e-01 -4.44464348e-02 2.35512257e-01 3.34699064e-01 3.54686640e-02 -1.69048622e-01 1.26433447e-01 1.05581415e+00 5.89936554e-01 -1.53715804e-01 -2.12543771e-01 1.20076582e-01 -1.91356182e-01 -7.66626298e-01 -2.42601529e-01 -5.46934247e-01 -5.66572309e-01 -8.29923511e-01 1.23973775e+00 -9.85169232e-01 -1.17966032e+00 6.58060312e-01 -1.31603432e+00 -2.05549464e-01 5.37554860e-01 5.09107709e-01 -4.06195402e-01 -7.61929154e-03 -7.02858329e-01 -1.15140676e+00 -6.56023204e-01 -1.13450181e+00 1.08570135e+00 5.68010628e-01 -2.74815828e-01 -7.50011623e-01 -1.85825393e-01 3.14991146e-01 4.69298214e-01 4.13880438e-01 3.92166823e-01 -5.03101110e-01 1.47241980e-01 -2.66080201e-01 -4.87693220e-01 5.80366492e-01 -6.21062778e-02 7.28488564e-02 -1.06649446e+00 1.18895397e-01 -5.85760064e-02 -6.62100494e-01 8.31488013e-01 1.76672027e-01 1.14630854e+00 -1.72625989e-01 -9.79699194e-02 4.23116297e-01 1.38588023e+00 4.93542194e-01 1.15325892e+00 3.45878191e-02 8.10640693e-01 7.60774255e-01 3.93056035e-01 4.49438006e-01 3.41492236e-01 4.51032668e-01 4.52587485e-01 -2.43611544e-01 2.35191286e-01 3.24083865e-02 8.13623309e-01 7.91162252e-01 -3.87248814e-01 -4.09176320e-01 -7.07756758e-01 2.88096607e-01 -1.96070087e+00 -1.05714047e+00 -4.88939807e-02 1.49724066e+00 2.82862484e-01 -5.15973330e-01 1.23923853e-01 -1.38785303e-01 6.35447145e-01 -4.51725237e-02 -5.85194290e-01 -1.20279229e+00 -1.74297482e-01 1.38445824e-01 -2.27582175e-02 1.47053748e-01 -1.14995837e+00 1.18306506e+00 5.40407276e+00 5.18226564e-01 -1.62030065e+00 2.86093559e-02 9.72116947e-01 -1.49452254e-01 2.90709257e-01 -6.98854804e-01 -3.37824792e-01 3.07077855e-01 1.42034972e+00 4.72335994e-01 4.13404882e-01 7.69368231e-01 3.09421629e-01 -2.62101311e-02 -7.47704029e-01 1.60084355e+00 6.94242895e-01 -8.96414220e-01 2.04788059e-01 -2.29110584e-01 4.21033442e-01 -4.07244414e-02 1.24775395e-01 6.93269372e-01 -3.74103814e-01 -1.48955035e+00 2.27238327e-01 9.05135214e-01 8.36126149e-01 -1.13266718e+00 1.08271396e+00 -5.46977520e-02 -1.17410493e+00 -9.13671106e-02 -2.22096294e-01 -1.01566814e-01 9.23966840e-02 -2.08120570e-01 -7.01351047e-01 4.00660008e-01 8.88565719e-01 8.98739040e-01 -4.20094371e-01 6.12355471e-01 3.52343544e-02 6.88095927e-01 2.22845729e-02 -3.15792739e-01 3.59307379e-01 -1.34863123e-01 9.55626369e-02 1.57661366e+00 2.74864346e-01 4.88850027e-01 -3.61859918e-01 3.04667503e-01 -4.63970959e-01 4.18082595e-01 -5.82983077e-01 -2.20776945e-01 -2.54486173e-01 1.72869372e+00 -6.60878003e-01 -3.14107388e-01 -4.92385328e-01 1.68869841e+00 3.30294669e-01 6.18010998e-01 -9.94753182e-01 -5.95980942e-01 6.26943707e-01 -5.78744233e-01 4.64616567e-01 1.79324150e-01 2.20907047e-01 -1.11195362e+00 -1.87448971e-02 -1.01347136e+00 2.75137872e-01 -1.39019895e+00 -8.83136392e-01 1.16663158e+00 -6.24972165e-01 -1.04418159e+00 -4.62116420e-01 -1.12308264e+00 -5.32739580e-01 7.29432046e-01 -1.07609487e+00 -1.48770487e+00 -3.71104151e-01 7.70961046e-01 6.61323011e-01 -2.58190781e-01 9.71566439e-01 3.32350194e-01 -8.08720469e-01 8.27782989e-01 -2.75871307e-01 4.39604878e-01 9.07586217e-01 -8.09139788e-01 3.70593369e-03 7.75222003e-01 6.44402653e-02 2.75732040e-01 4.72300649e-01 -4.60601270e-01 -1.56588650e+00 -1.11994457e+00 9.65730011e-01 -2.61557847e-01 1.66644350e-01 -4.11177874e-01 -8.33011448e-01 6.09230101e-01 7.63131380e-01 -1.06866896e-01 9.62559938e-01 -2.98134908e-02 -4.44706053e-01 1.06386356e-01 -1.10181308e+00 8.00255716e-01 8.18984926e-01 -6.75020576e-01 -2.19760045e-01 -3.43058556e-01 5.42468369e-01 -2.39181176e-01 -7.03645885e-01 5.98369539e-01 9.72481728e-01 -8.43557298e-01 6.59061670e-01 -9.19388652e-01 6.85428083e-01 -1.41163439e-01 -2.00418636e-01 -1.12640500e+00 1.26844749e-01 -6.75772309e-01 -8.16378221e-02 1.13520479e+00 3.92213404e-01 -1.57214612e-01 7.23105967e-01 8.19907486e-01 -2.58839279e-02 -1.03212273e+00 -6.86282098e-01 -5.47300428e-02 -6.29780889e-01 -6.08936250e-01 3.22266936e-01 8.98386717e-01 1.28590390e-01 6.52797461e-01 -8.69786024e-01 -2.15905666e-01 -1.88416228e-01 -3.17244798e-01 5.39480925e-01 -6.99813664e-01 2.07540765e-01 -5.40144444e-01 -7.71990538e-01 -7.09160864e-01 3.47780138e-01 -6.20745003e-01 8.50394517e-02 -1.22596121e+00 3.19605798e-01 5.94635665e-01 -5.89131236e-01 6.74091935e-01 -6.42789155e-02 6.86428428e-01 2.13202298e-01 -4.98951286e-01 -9.86035228e-01 7.61154711e-01 7.41125166e-01 8.92340112e-03 -1.69887036e-01 -2.83290982e-01 -5.44677496e-01 6.53722465e-01 8.41898799e-01 1.01286964e-02 -2.54565656e-01 -3.27626467e-01 2.88791329e-01 1.25386268e-01 3.93020093e-01 -7.61044562e-01 2.65244931e-01 1.40113115e-01 1.02315617e+00 -5.65581322e-01 5.10618865e-01 -1.01543915e+00 -3.35854618e-03 1.96310669e-01 -5.53597867e-01 5.44332445e-01 5.57860196e-01 4.64093059e-01 -5.10412216e-01 3.91591899e-02 2.76225984e-01 1.73230663e-01 -1.19687426e+00 2.71231741e-01 -9.20454204e-01 -5.37577391e-01 9.97419059e-01 -3.68103474e-01 1.12537676e-02 -7.93348014e-01 -9.38661933e-01 1.04155444e-01 -1.39063243e-02 8.43513370e-01 1.12304068e+00 -1.52631593e+00 -6.66440487e-01 1.52606443e-01 1.68180808e-01 -7.02870488e-01 7.18773425e-01 8.65067780e-01 -3.21232527e-01 2.70974249e-01 -6.48956776e-01 -3.35684419e-01 -1.93068957e+00 4.07145232e-01 3.64248872e-01 1.11221634e-01 -7.30751529e-02 1.02959490e+00 1.33923627e-02 -2.58736700e-01 3.78708988e-01 -4.28019743e-03 -6.42048717e-01 7.59359151e-02 9.38004792e-01 1.39896408e-01 -1.61899284e-01 -1.24120104e+00 -3.20038587e-01 4.23368782e-01 -8.88468921e-02 -2.74526507e-01 1.24904823e+00 -4.02642399e-01 -2.02739164e-01 3.96598577e-01 1.58843708e+00 -6.25864923e-01 -8.41250241e-01 1.18534379e-01 -7.05519542e-02 -2.54223403e-02 -3.89261954e-02 -1.28276932e+00 -1.15021002e+00 1.36760962e+00 1.02942860e+00 -4.93889987e-01 1.77981257e+00 -4.19122249e-01 6.99540436e-01 5.23814380e-01 -1.76833123e-01 -1.22645295e+00 1.65284976e-01 5.00538409e-01 1.11358356e+00 -1.35288298e+00 -7.04786122e-01 1.50572747e-01 -1.33217621e+00 1.28784657e+00 9.71760988e-01 5.39962649e-02 4.88835007e-01 4.03822660e-02 4.88050818e-01 -2.25625038e-02 -1.11027730e+00 -1.15484230e-01 5.87171793e-01 4.87126470e-01 7.46091366e-01 -1.24699391e-01 9.45983678e-02 8.48288000e-01 1.90418825e-01 2.88278997e-01 1.17798209e-01 8.17057014e-01 -1.01326309e-01 -9.44887221e-01 -1.22440875e-01 2.75409013e-01 -6.39082491e-01 -1.34626001e-01 -7.02900052e-01 4.93164361e-01 8.53420123e-02 1.03941882e+00 1.07759304e-01 -8.81850064e-01 1.29573464e-01 5.62742651e-01 4.62645799e-01 -3.48649323e-02 -9.08447623e-01 2.43565589e-01 1.02482520e-01 -8.28801870e-01 -7.76558936e-01 -4.73304003e-01 -1.17833936e+00 9.21467543e-02 1.34037033e-01 1.09983832e-01 9.10384178e-01 9.69032764e-01 7.58994102e-01 6.29488528e-01 5.18053949e-01 -8.52177799e-01 2.86725491e-01 -1.21266365e+00 -2.92896032e-01 3.76865298e-01 2.15231940e-01 -1.62438855e-01 1.27316475e-01 4.21504855e-01]
[13.283439636230469, 5.040441989898682]
6252049b-2265-4601-911e-39a8408b5219
edge-weighted-pfista-net-for-mri
2302.07468
null
https://arxiv.org/abs/2302.07468v1
https://arxiv.org/pdf/2302.07468v1.pdf
Edge-weighted pFISTA-Net for MRI Reconstruction
Deep learning based on unrolled algorithm has served as an effective method for accelerated magnetic resonance imaging (MRI). However, many methods ignore the direct use of edge information to assist MRI reconstruction. In this work, we present the edge-weighted pFISTA-Net that directly applies the detected edge map to the soft-thresholding part of pFISTA-Net. The soft-thresholding value of different regions will be adjusted according to the edge map. Experimental results of a public brain dataset show that the proposed yields reconstructions with lower error and better artifact suppression compared with the state-of-the-art deep learning-based methods. The edge-weighted pFISTA-Net also shows robustness for different undersampling masks and edge detection operators. In addition, we extend the edge weighted structure to joint reconstruction and segmentation network and obtain improved reconstruction performance and more accurate segmentation results.
['Jianpeng Cao']
2023-02-15
null
null
null
null
['edge-detection', 'mri-reconstruction']
['computer-vision', 'computer-vision']
[ 2.45094776e-01 -2.13525787e-01 1.33709639e-01 -5.32705724e-01 -4.94516224e-01 2.82669775e-02 -5.71224540e-02 -8.22171196e-02 -8.37418675e-01 7.14091182e-01 2.76696868e-02 -3.28264952e-01 -7.56622180e-02 -7.28612125e-01 -4.48485702e-01 -8.38226676e-01 -4.50500399e-01 2.55585581e-01 7.40678787e-01 4.04387340e-02 2.40707487e-01 7.06124902e-01 -7.91895092e-01 3.96088868e-01 8.62466753e-01 1.00051773e+00 6.99656725e-01 1.85665175e-01 5.96614480e-02 3.91940147e-01 -1.66221216e-01 1.00967318e-01 3.45800638e-01 -2.57543683e-01 -5.75706244e-01 -3.82717722e-03 1.18997380e-01 -5.26752114e-01 -3.49229991e-01 1.29276097e+00 9.04221475e-01 4.22430187e-02 6.21935725e-01 -6.99527085e-01 -3.03312868e-01 6.36472464e-01 -9.48790073e-01 9.45586920e-01 -4.12626773e-01 -1.56553034e-02 9.13750902e-02 -9.00533319e-01 6.84474707e-01 6.09755218e-01 1.01858008e+00 1.81591630e-01 -1.20041907e+00 -7.64684141e-01 -2.58091509e-01 6.22775555e-01 -1.15866005e+00 -7.41405785e-02 9.35297310e-01 -4.39327598e-01 8.14252198e-01 6.67206869e-02 7.08415389e-01 4.31163162e-01 7.70790637e-01 7.28065491e-01 1.40777898e+00 -3.02854419e-01 1.23315834e-01 -4.17107344e-01 3.55767518e-01 8.08651090e-01 3.70468915e-01 -1.27862243e-03 6.73037767e-02 1.50150493e-01 1.14931953e+00 -3.03071775e-02 -5.93082130e-01 -4.62790310e-01 -1.37576437e+00 5.73250055e-01 7.60719121e-01 6.73770130e-01 -9.49444056e-01 1.33166507e-01 6.76720560e-01 -1.41092017e-01 4.90681618e-01 6.97874948e-02 -2.42537513e-01 3.59144479e-01 -1.34817874e+00 -1.64661184e-01 1.70868248e-01 3.20314288e-01 3.96974772e-01 3.58906955e-01 -4.30686563e-01 8.54822338e-01 1.08403675e-01 1.27494976e-01 7.78240621e-01 -6.85817838e-01 -6.69292137e-02 2.45952964e-01 -2.81807333e-01 -1.02757168e+00 -9.54171181e-01 -7.62806594e-01 -1.19197083e+00 6.00307047e-01 4.13453549e-01 -3.12377930e-01 -1.22070956e+00 1.28780150e+00 4.86627191e-01 2.33223319e-01 -4.61127758e-01 1.21972406e+00 7.58548439e-01 2.56103545e-01 -4.13668789e-02 -3.83983135e-01 1.44006205e+00 -1.03910267e+00 -1.07532966e+00 -1.15976490e-01 5.76991141e-01 -6.50310457e-01 6.86404407e-01 5.22250831e-01 -1.15370059e+00 -4.14977312e-01 -1.26970792e+00 2.16642857e-01 1.53423315e-02 2.32767105e-01 7.63143241e-01 7.68255830e-01 -1.15796566e+00 6.82479680e-01 -1.24587786e+00 1.64540678e-01 6.71974003e-01 5.02228916e-01 -3.41363370e-01 8.73406306e-02 -1.11531258e+00 1.13874269e+00 5.52154124e-01 3.20205986e-01 -6.56771600e-01 -7.89914191e-01 -6.35873556e-01 -1.75897330e-01 3.31619233e-01 -4.06794399e-01 1.15245259e+00 -7.32923329e-01 -1.36872613e+00 8.31020236e-01 2.28441413e-02 -6.51990712e-01 7.90106773e-01 5.58535159e-02 -4.08795327e-01 5.97622216e-01 7.59695023e-02 6.42172277e-01 6.60019636e-01 -1.00680256e+00 -2.82654524e-01 -5.92336833e-01 -4.92126554e-01 9.45776105e-02 3.02505326e-02 1.18719682e-01 -3.86926055e-01 -9.32402670e-01 6.11042023e-01 -5.90578020e-01 -4.25841570e-01 1.87026143e-01 -1.62594527e-01 1.31785914e-01 9.21999693e-01 -1.16725159e+00 1.34110618e+00 -1.79429996e+00 -2.70614892e-01 2.89302617e-01 4.24343556e-01 2.98035443e-01 1.44238859e-01 -4.92437333e-01 -4.17703331e-01 -2.72099108e-01 -6.73986912e-01 2.11131617e-01 -6.82455778e-01 -3.60868685e-02 4.17277336e-01 9.25680757e-01 -3.69011790e-01 7.21233845e-01 -8.29751372e-01 -7.65307486e-01 4.71206695e-01 6.16711915e-01 -5.39783895e-01 -9.96338651e-02 6.35253370e-01 6.25833690e-01 -2.60134816e-01 4.92626578e-01 9.76757169e-01 8.00434425e-02 2.65766382e-01 -8.67242575e-01 -2.00557202e-01 -2.41986662e-01 -1.24391723e+00 1.81798804e+00 -2.78256774e-01 5.57572842e-01 4.84290689e-01 -1.33948171e+00 7.65398204e-01 4.19679493e-01 9.61122692e-01 -6.92118764e-01 4.02653217e-01 4.65774983e-01 4.97311682e-01 -7.59100616e-01 9.98405591e-02 -3.39273989e-01 5.64171076e-01 3.40673327e-01 -1.50682181e-01 8.14052671e-02 7.98380077e-02 1.41779622e-02 8.98337185e-01 1.34452447e-01 1.65161595e-01 -7.73202896e-01 5.30794501e-01 -1.28059581e-01 6.07148767e-01 7.12019324e-01 -6.76425576e-01 7.56776452e-01 5.31317713e-03 -5.36767483e-01 -9.25756156e-01 -9.26017165e-01 -7.57648885e-01 5.69431961e-01 1.58022553e-01 4.18595076e-01 -1.16802299e+00 -6.57323360e-01 -3.10682058e-01 6.23505771e-01 -5.64044952e-01 3.51548456e-02 -8.72531235e-01 -1.23824763e+00 3.08464378e-01 6.19339585e-01 9.60361540e-01 -1.12058544e+00 -9.65798736e-01 5.84306717e-01 -3.25615644e-01 -8.48737359e-01 -6.67001724e-01 2.74125695e-01 -1.21371067e+00 -8.98404539e-01 -1.02159464e+00 -9.94119823e-01 9.50301409e-01 1.27825618e-01 8.07191074e-01 8.29416662e-02 -4.43430334e-01 -6.87890351e-02 -1.37575522e-01 6.60214275e-02 -1.09001070e-01 -1.16568446e-01 -2.02512264e-01 -7.63223916e-02 3.34761553e-02 -5.88853180e-01 -1.08780646e+00 3.27066660e-01 -8.83051574e-01 3.18858802e-01 7.69002557e-01 9.49352384e-01 7.32533932e-01 9.26402286e-02 7.19525456e-01 -8.18411291e-01 6.98946357e-01 -2.12341353e-01 -3.63766491e-01 2.59829015e-01 -8.16999912e-01 1.37777746e-01 3.17671359e-01 -5.08987963e-01 -1.15207982e+00 3.90705206e-02 -3.31703335e-01 -9.97287631e-02 9.01197866e-02 3.92043680e-01 1.47563204e-01 -4.87575233e-01 4.83861893e-01 2.51745671e-01 2.07484722e-01 -2.85137832e-01 -1.87947508e-02 5.39871991e-01 8.72638941e-01 -1.32903859e-01 3.14908810e-02 7.00037539e-01 1.58732999e-02 -5.05263567e-01 -2.34870151e-01 -3.42752606e-01 -6.73498154e-01 -7.27760077e-01 1.08353233e+00 -3.51586550e-01 -4.71552938e-01 6.90664470e-01 -1.08492994e+00 -2.95160800e-01 -3.61384228e-02 9.11348820e-01 -3.20081800e-01 6.95261478e-01 -9.12572205e-01 -4.21607763e-01 -9.83275652e-01 -1.82039070e+00 6.00233436e-01 1.64437100e-01 6.21680543e-02 -8.98131073e-01 -2.38559246e-01 1.51276737e-01 6.85021758e-01 4.00734425e-01 7.48653889e-01 -4.33041722e-01 -2.34643996e-01 -2.21392363e-01 -3.79913509e-01 3.49452853e-01 1.34333804e-01 -4.45097476e-01 -5.42584717e-01 -3.04342061e-01 3.83505285e-01 1.57506958e-01 7.96862960e-01 1.20619321e+00 1.57641077e+00 1.85591906e-01 -2.55766034e-01 8.70939732e-01 1.55115056e+00 4.52048123e-01 8.61084759e-01 6.29276037e-01 4.43103313e-01 4.28362638e-02 1.08821258e-01 2.10272983e-01 1.61901284e-02 5.42856753e-01 3.90200555e-01 -4.82075930e-01 -5.39576590e-01 3.94936562e-01 -1.59309372e-01 8.56019557e-01 -2.55979002e-01 3.88081968e-01 -1.00505650e+00 6.10731483e-01 -1.57166898e+00 -7.29724586e-01 -6.31748259e-01 2.02882266e+00 9.28538620e-01 1.85550824e-01 -1.32563427e-01 1.53654620e-01 1.14761138e+00 -3.01245581e-02 -6.46974862e-01 -2.25784019e-01 9.24040377e-02 4.41564411e-01 9.27110791e-01 5.52659810e-01 -1.11407721e+00 4.91276801e-01 6.61590242e+00 9.66749191e-01 -1.29935992e+00 7.25849509e-01 6.98234081e-01 1.74676672e-01 -9.68894083e-03 -3.51577222e-01 -3.32091838e-01 4.85732168e-01 2.33299434e-01 6.15762137e-02 3.06459546e-01 7.27977514e-01 4.39411730e-01 -5.31752825e-01 -4.89560008e-01 1.06358254e+00 -1.22161880e-02 -1.33039105e+00 -3.17151606e-01 -2.16471091e-01 6.74275637e-01 5.49957491e-02 -2.57523894e-01 -2.07640394e-03 -1.66402265e-01 -5.84784746e-01 5.84480345e-01 4.80463654e-01 6.96483791e-01 -6.31807745e-01 9.03138638e-01 3.28823626e-02 -1.03370965e+00 2.13989168e-01 -2.71886945e-01 1.66613474e-01 4.54325706e-01 1.07872188e+00 -8.99755895e-01 5.21847844e-01 8.15260172e-01 3.44496727e-01 -2.63100475e-01 1.46338093e+00 -1.95788547e-01 4.94482666e-01 -2.37187371e-01 3.36197048e-01 2.33301148e-01 -4.47444081e-01 6.42915130e-01 1.43108344e+00 2.43175641e-01 2.66337514e-01 6.47125989e-02 7.10055768e-01 5.49767092e-02 1.90232113e-01 -1.93354383e-01 6.06151342e-01 1.46530718e-01 1.56849182e+00 -1.39765251e+00 -7.37506032e-01 -3.45289022e-01 9.46299493e-01 1.42912880e-01 3.94907504e-01 -7.57635713e-01 -3.77039641e-01 -3.18922512e-02 4.97112155e-01 8.97621736e-02 -2.99623072e-01 -8.50618362e-01 -8.50945234e-01 -2.46052667e-01 -5.87536693e-01 3.34304571e-01 -8.25942993e-01 -9.27507043e-01 7.51956522e-01 1.39098436e-01 -8.70039642e-01 3.13416153e-01 -5.58917940e-01 -6.85339093e-01 7.58249938e-01 -1.34956849e+00 -4.61753458e-01 -2.55463243e-01 4.58278090e-01 4.75077301e-01 1.12904504e-01 3.00573736e-01 6.96860075e-01 -4.79047805e-01 3.17975998e-01 8.03618282e-02 2.60930300e-01 5.29509723e-01 -1.07639492e+00 -1.17442079e-01 1.23152745e+00 -5.31542122e-01 4.50198203e-01 6.92196131e-01 -9.64829266e-01 -8.99689436e-01 -8.21229458e-01 2.77190417e-01 4.48313922e-01 6.64612055e-01 3.14008236e-01 -1.05877399e+00 6.29975438e-01 4.32221562e-01 4.09695059e-01 1.74762413e-01 -6.67986095e-01 4.15631711e-01 -2.20022053e-01 -1.74489748e+00 4.60741550e-01 8.85458648e-01 9.63435601e-03 -6.80526137e-01 2.71682799e-01 2.07690045e-01 -6.63254142e-01 -8.54507446e-01 8.14493179e-01 5.47925234e-01 -9.64227796e-01 1.07318449e+00 -4.96504232e-02 2.08180264e-01 -2.33552337e-01 3.08470219e-01 -1.40697026e+00 -7.26029813e-01 -2.36610882e-02 1.62184879e-01 4.70206380e-01 1.70059994e-01 -6.49068117e-01 7.09866762e-01 4.95659232e-01 -7.08222866e-01 -9.78330970e-01 -1.16562259e+00 -5.80117345e-01 -1.38577163e-01 -4.01154339e-01 2.07188964e-01 9.62967992e-01 -2.41612971e-01 -1.95320457e-01 -1.81838989e-01 1.10476837e-01 1.05530226e+00 -1.78963512e-01 -5.04727811e-02 -8.44445765e-01 -9.75813717e-02 -6.05501890e-01 -4.65466022e-01 -7.29699552e-01 -2.47296497e-01 -1.19637716e+00 7.20707923e-02 -1.92582738e+00 2.37238452e-01 -3.17514718e-01 -5.68105638e-01 5.96238852e-01 -2.82684535e-01 6.99609339e-01 -1.04435228e-01 -9.51226521e-03 -1.49278581e-01 1.49006963e-01 1.85695231e+00 -1.40647784e-01 -1.47627890e-01 -3.22500646e-01 -9.10961851e-02 9.50667739e-01 9.09047425e-01 -5.35146773e-01 -1.17243119e-01 -5.93870223e-01 -3.99025887e-01 8.96705016e-02 1.92682639e-01 -1.31237817e+00 3.12109381e-01 3.59408140e-01 6.42933965e-01 -6.96735442e-01 -2.33737752e-01 -9.10489202e-01 1.97929472e-01 9.92589831e-01 -9.33706537e-02 2.70979792e-01 2.85209864e-01 6.88124895e-02 5.71340919e-02 -4.37112957e-01 1.22819805e+00 -3.08796555e-01 -7.28144825e-01 3.71587127e-01 -5.79345942e-01 -2.25758716e-01 1.03785956e+00 -5.06603301e-01 2.57944137e-01 -4.11467860e-03 -1.06927609e+00 -6.10783584e-02 -7.81536028e-02 -1.17846869e-01 8.75225365e-01 -1.31326079e+00 -6.66902721e-01 2.30165258e-01 -5.90746462e-01 -3.16852927e-01 5.52432001e-01 1.58888686e+00 -9.44698572e-01 6.52429461e-02 -7.10878670e-01 -7.23857105e-01 -1.11380672e+00 4.36023057e-01 8.00708294e-01 -4.44628388e-01 -1.20733488e+00 7.24237978e-01 -1.53590245e-02 -1.25709221e-01 1.53328583e-01 -5.14134645e-01 -2.33714834e-01 -1.87098712e-01 5.66307068e-01 5.75943053e-01 4.07393575e-01 -4.43314135e-01 -5.78906953e-01 3.69355291e-01 -1.11952439e-01 -2.02727377e-01 1.38543797e+00 -7.40365162e-02 -2.35239089e-01 -5.92324659e-02 1.04931378e+00 -3.48221034e-01 -1.25707006e+00 -1.69500113e-01 -1.80590689e-01 -3.21759015e-01 9.68001723e-01 -9.55770552e-01 -1.76363838e+00 8.15729260e-01 1.37947166e+00 -1.05334252e-01 1.23045599e+00 -5.36432028e-01 1.10308051e+00 -2.07370445e-01 5.68627000e-01 -1.16119671e+00 -3.15828025e-01 -2.89428774e-02 8.51861775e-01 -1.16614711e+00 1.33242041e-01 -3.03921849e-01 -4.90328372e-01 1.25061214e+00 5.08772492e-01 -2.09594294e-01 7.29079425e-01 6.05161726e-01 3.86340864e-04 -2.34930277e-01 1.67696938e-01 -1.45131559e-03 2.33668476e-01 6.06426656e-01 5.01092076e-01 1.35875806e-01 -1.13323033e+00 4.18826967e-01 3.42961758e-01 5.39911926e-01 3.76067460e-01 8.39516938e-01 -7.14905739e-01 -7.23178089e-01 -6.74493432e-01 6.86471701e-01 -7.15388179e-01 -2.19240203e-01 4.59704995e-01 6.07609391e-01 1.60115615e-01 6.28665984e-01 -4.46400940e-02 2.96298079e-02 2.24485412e-01 -6.21766932e-02 6.98834062e-01 -1.05534934e-01 -8.08094501e-01 3.53983521e-01 -8.13969001e-02 -4.03954268e-01 -3.42894226e-01 -5.19520342e-01 -1.80931008e+00 -1.21521773e-02 -3.17035675e-01 -2.94993967e-02 7.61520922e-01 8.94937515e-01 1.57566607e-01 9.95580554e-01 2.33073249e-01 -1.11900675e+00 -3.40484887e-01 -1.00874841e+00 -7.11911142e-01 4.77107435e-01 -5.83771840e-02 -8.54927480e-01 -1.01598769e-01 -4.12289537e-02]
[14.097617149353027, -2.4156830310821533]
9acf617c-c930-4ffd-8be7-3942bdc2ba6b
a-perspective-on-neural-capacity-estimation
2203.11793
null
https://arxiv.org/abs/2203.11793v2
https://arxiv.org/pdf/2203.11793v2.pdf
A Perspective on Neural Capacity Estimation: Viability and Reliability
Recently, several methods have been proposed for estimating the mutual information from sample data using deep neural networks. These estimators ar referred to as neural mutual information estimation (NMIE)s. NMIEs differ from other approaches as they are data-driven estimators. As such, they have the potential to perform well on a large class of capacity problems. In order to test the performance across various NMIEs, it is desirable to establish a benchmark encompassing the different challenges of capacity estimation. This is the objective of this paper. In particular, we consider three scenarios for benchmarking:i the classic AWGN channel, ii channels continuous inputs optical intensity and peak-power constrained AWGN channel iii channels with a discrete output, i.e., Poisson channel. We also consider the extension to the multi-terminal case with iv the AWGN and optical MAC models. We argue that benchmarking a certain NMIE across these four scenarios provides a substantive test of performance. In this paper we study the performance of mutual information neural estimator (MINE), smoothed mutual information lower-bound estimator (SMILE), and directed information neural estimator (DINE). and provide insights on the performance of other methods as well. To summarize our benchmarking results, MINE provides the most reliable performance.
['Nariman Farsad', 'Stefano Rini', 'Farhad Mirkarimi']
2022-03-22
null
null
null
null
['mutual-information-estimation']
['methodology']
[ 3.69727880e-01 -5.36856577e-02 5.65169938e-02 -1.59645900e-01 -8.04234326e-01 -2.14910775e-01 5.05649090e-01 -2.76128232e-01 -6.96020782e-01 1.25672936e+00 -3.89983878e-02 -6.06954336e-01 -7.22934186e-01 -6.20642722e-01 -5.51991343e-01 -9.53751624e-01 -7.14342058e-01 1.56103805e-01 -2.87346572e-01 2.87458509e-01 2.88001209e-01 6.58467412e-01 -1.20982003e+00 -2.96956718e-01 7.77403235e-01 1.42879903e+00 -1.20649608e-02 1.08180404e+00 5.60160428e-02 7.27402866e-01 -6.65258586e-01 -5.08107126e-01 1.06295608e-01 -4.58363146e-01 -8.55600834e-01 -3.26271474e-01 -3.11904430e-01 -5.23603201e-01 -6.65518045e-01 8.02821696e-01 8.94893765e-01 -2.03767061e-01 1.07243609e+00 -1.43241751e+00 -1.79294124e-01 7.83812881e-01 -3.39599550e-01 2.43448362e-01 -1.64320250e-03 4.23131995e-02 1.16852987e+00 -5.69701076e-01 3.73202384e-01 9.95939732e-01 8.15049410e-01 4.99185443e-01 -1.06337810e+00 -6.92364395e-01 -5.46091437e-01 1.31134957e-01 -1.51796234e+00 -6.58574641e-01 1.34301290e-01 -2.62181580e-01 8.48281682e-01 2.63077945e-01 1.14878543e-01 9.82770920e-01 2.32186273e-01 8.72742295e-01 1.09978724e+00 -5.98787487e-01 2.45921925e-01 2.86772281e-01 -2.28969846e-03 4.81832474e-01 3.06373954e-01 4.00659084e-01 -2.16878608e-01 -3.21808398e-01 6.90462470e-01 -4.79201943e-01 -3.82658094e-01 -2.01535121e-01 -8.56683552e-01 7.65636981e-01 1.06022991e-02 3.06714237e-01 -1.18754953e-01 6.30233943e-01 3.11088145e-01 6.67467654e-01 2.73721933e-01 1.93368509e-01 -3.13930839e-01 -3.27487588e-01 -8.47849071e-01 3.91680077e-02 1.42643929e+00 1.18481815e+00 5.98660052e-01 4.43985350e-02 -4.33458060e-01 7.23051369e-01 2.65457600e-01 5.16983926e-01 -1.12244904e-01 -9.85547304e-01 5.96606672e-01 -2.88736582e-01 4.49378882e-03 -5.35494447e-01 -5.66733897e-01 -8.20414662e-01 -1.20140004e+00 -9.40411165e-02 4.83273447e-01 -9.13961053e-01 -5.68758190e-01 1.84823740e+00 -5.21514297e-01 -6.09505400e-02 3.24346185e-01 4.98150557e-01 4.93933320e-01 4.06699002e-01 -1.89601094e-01 -3.89526427e-01 6.90961123e-01 -2.82443196e-01 -6.92108214e-01 1.92838937e-01 7.12946892e-01 -5.99371314e-01 1.23472691e-01 2.24193737e-01 -1.28607202e+00 4.71570641e-02 -1.01640570e+00 5.19844234e-01 -2.41567776e-01 -1.86034486e-01 6.14752948e-01 1.05618048e+00 -1.33883464e+00 6.44737005e-01 -3.58223468e-01 -4.08434451e-01 4.04737055e-01 5.04227281e-01 -1.30832687e-01 1.32787693e-02 -1.37677586e+00 6.30970657e-01 5.45391321e-01 -4.78891544e-02 -7.74053991e-01 -2.23324507e-01 -5.91651499e-01 3.31541926e-01 1.78192705e-01 -5.95696509e-01 1.27737010e+00 -7.66492128e-01 -1.32112908e+00 3.74525219e-01 -8.95329192e-02 -7.05264270e-01 5.49735904e-01 1.25787541e-01 -3.42553228e-01 -1.93305045e-01 -3.43424767e-01 4.59530801e-01 2.36053556e-01 -1.22335291e+00 -5.45923173e-01 -9.84167606e-02 -8.40129629e-02 -2.43436188e-01 -1.12597816e-01 2.16366038e-01 -3.96792114e-01 -2.15467006e-01 -9.43679735e-02 -8.54377091e-01 -7.46731507e-03 -2.81277150e-01 -9.02725518e-01 3.27778427e-04 5.67320764e-01 -2.22151324e-01 1.44087052e+00 -2.04148197e+00 -2.47094408e-01 4.66733992e-01 2.58120656e-01 7.79201835e-02 -2.84458995e-01 8.19294930e-01 5.24479710e-02 4.14369792e-01 -2.68574268e-01 -4.15456057e-01 1.69560298e-01 1.24567747e-01 2.71818221e-01 5.09927690e-01 1.70274511e-01 8.39905977e-01 -5.34051359e-01 -4.02276576e-01 -1.73875377e-01 4.43583429e-01 -6.40101850e-01 2.91889131e-01 1.99091896e-01 4.15308356e-01 -2.00961292e-01 5.34636140e-01 7.87243605e-01 -5.73522985e-01 4.41945419e-02 -1.71270251e-01 -2.06679180e-01 -1.38964683e-01 -1.17760336e+00 1.00972152e+00 -6.28298938e-01 1.28263378e+00 -6.61510378e-02 -1.01666892e+00 5.62119663e-01 5.21853924e-01 6.01817369e-01 -5.46657562e-01 5.64870596e-01 3.64940047e-01 4.77178693e-01 -4.81915444e-01 2.95432776e-01 -1.34962350e-01 9.64999273e-02 5.48974216e-01 3.95941466e-01 3.59617233e-01 3.72934453e-02 3.43660176e-01 1.38117099e+00 -7.07807779e-01 4.72272903e-01 -1.56989083e-01 2.30625138e-01 -8.75499129e-01 2.07931668e-01 1.42161977e+00 -4.89886194e-01 4.45412427e-01 7.88428843e-01 2.42092356e-01 -1.25091267e+00 -1.34461343e+00 -3.63051116e-01 6.09980106e-01 -2.47472096e-02 -8.29101261e-03 -7.31886327e-01 -1.17627583e-01 -5.30432910e-02 6.65417194e-01 -3.91792744e-01 1.23837687e-01 2.24570915e-01 -9.50265169e-01 1.05412495e+00 3.13307196e-01 7.73971677e-01 -7.09299624e-01 -2.49448881e-01 1.33342877e-01 -1.01818465e-01 -1.41364491e+00 6.91689253e-02 5.68750381e-01 -3.88961852e-01 -8.26366782e-01 -8.58557284e-01 -2.25650385e-01 1.52156549e-02 -1.87214240e-01 1.19885254e+00 -3.50955635e-01 -1.23864636e-01 7.08919942e-01 -2.76493341e-01 -5.40665925e-01 -4.66504574e-01 3.80914584e-02 2.31826454e-01 -1.29348338e-01 4.00501907e-01 -5.15541673e-01 -5.54591715e-01 3.35236549e-01 -9.08216715e-01 -2.77647108e-01 1.00844431e+00 7.55096078e-01 -5.08910418e-02 8.76392275e-02 5.86009145e-01 -6.29391670e-01 1.03711855e+00 -8.54605734e-01 -4.39843595e-01 1.91210479e-01 -6.64800942e-01 3.50525647e-01 2.49689877e-01 1.10832646e-01 -7.47529089e-01 -4.16546047e-01 -3.33056360e-01 -3.72345597e-02 -9.81126875e-02 5.21405995e-01 7.78896958e-02 -2.08442941e-01 3.84313375e-01 2.65523076e-01 8.61988738e-02 -1.67227179e-01 1.04677908e-01 1.28722882e+00 2.58454919e-01 -4.03975248e-01 6.01666868e-01 2.44442284e-01 2.03095719e-01 -8.51885378e-01 -6.71737671e-01 -5.58293641e-01 -3.38252366e-01 -3.10726553e-01 7.55205631e-01 -6.19009197e-01 -1.09679544e+00 5.15766978e-01 -1.34555984e+00 -3.70179832e-01 9.45797265e-02 6.82587743e-01 -9.55628395e-01 3.13082069e-01 -8.60571265e-01 -1.58991349e+00 -2.80193418e-01 -1.12891448e+00 7.47602046e-01 1.76880270e-01 2.00182110e-01 -1.27008975e+00 -1.14682838e-01 -2.57492900e-01 8.23064446e-01 1.75477937e-01 7.03034639e-01 -7.33972967e-01 -5.70461690e-01 -1.05316520e-01 -9.26064372e-01 6.39234006e-01 -1.19847462e-01 1.37488889e-02 -1.16723704e+00 -3.55541259e-01 -2.67623365e-01 -2.75504947e-01 1.02081358e+00 8.42543900e-01 1.42619658e+00 -2.41749898e-01 -3.31139982e-01 7.42704570e-01 1.76499212e+00 1.63624972e-01 9.09881651e-01 8.20655525e-02 5.21780103e-02 4.70414430e-01 4.08001281e-02 9.57204998e-01 3.98427807e-02 3.00529778e-01 6.01320624e-01 -1.10320471e-01 3.89125705e-01 3.11195672e-01 1.10284448e-01 8.84337366e-01 -2.52712429e-01 -1.07123387e+00 -8.04676175e-01 1.30384937e-01 -1.56807804e+00 -1.01557934e+00 -1.77244350e-01 2.16867542e+00 6.02399647e-01 1.07071541e-01 1.39677301e-01 2.01545760e-01 7.53107905e-01 -6.57421425e-02 -4.11196679e-01 -4.72010761e-01 -2.39096105e-01 1.13536604e-01 1.14783251e+00 2.62351245e-01 -1.03958583e+00 2.46084347e-01 7.31345510e+00 1.01573086e+00 -6.40952468e-01 1.04505934e-01 9.63491380e-01 1.70012131e-01 -2.97777187e-02 -1.84947312e-01 -7.05702960e-01 5.02478421e-01 1.38454235e+00 9.67831165e-02 4.35498655e-01 3.23832095e-01 2.03942046e-01 -3.95478368e-01 -1.07168353e+00 1.20968783e+00 -2.53175288e-01 -1.26010573e+00 -3.55098933e-01 5.18998921e-01 7.06526935e-01 4.61712390e-01 1.71395659e-01 3.00723016e-01 5.01106560e-01 -1.17864382e+00 7.27806538e-02 1.13916147e+00 1.18934453e+00 -8.85086298e-01 1.25332904e+00 3.11425060e-01 -7.17998147e-01 -2.51902103e-01 -3.13545316e-01 -7.09029660e-02 3.28489125e-01 8.64096820e-01 -5.22679389e-01 4.87778604e-01 3.92684281e-01 1.47472724e-01 7.78982565e-02 1.54753196e+00 5.96169591e-01 7.11833358e-01 -2.39949614e-01 -3.30184460e-01 4.87292796e-01 1.01065347e-02 6.32036150e-01 1.54033935e+00 6.59659863e-01 -2.96913058e-01 -4.26471055e-01 1.01928949e+00 -1.44566819e-01 -1.57961845e-01 -6.55471981e-01 -1.92121878e-01 5.19532740e-01 1.01683915e+00 -3.19395140e-02 2.76567582e-02 -5.34243703e-01 8.15281987e-01 8.65010172e-02 6.58058107e-01 -7.73176253e-01 -7.83641040e-01 7.67350852e-01 -2.52010137e-01 7.66829997e-02 -3.91555130e-01 8.60972628e-02 -6.25575781e-01 -3.89129162e-01 -3.14123213e-01 1.04171835e-01 -4.87438649e-01 -1.49597096e+00 2.08126679e-01 -9.55556482e-02 -1.22787309e+00 -3.57388437e-01 -8.48451495e-01 -5.01850069e-01 9.48413253e-01 -1.78110552e+00 -2.49513000e-01 -2.81959951e-01 2.07026824e-01 -1.02846436e-01 -3.57834965e-01 6.40730023e-01 5.02600133e-01 -6.82657957e-01 8.33587766e-01 8.94985497e-01 4.59911615e-01 4.16937709e-01 -1.26048374e+00 1.18661389e-01 3.45745951e-01 -2.05346450e-01 4.85863239e-01 7.26090848e-01 -7.63710737e-02 -1.14742553e+00 -9.34487045e-01 4.40634459e-01 -7.30496272e-02 7.34887421e-01 -2.47902289e-01 -3.41695577e-01 3.84809583e-01 2.39067286e-01 -7.89098963e-02 1.00765169e+00 5.57122119e-02 2.02527512e-02 1.57954752e-01 -9.37848508e-01 4.32073802e-01 9.97357249e-01 -4.56399441e-01 5.00659347e-01 3.99853855e-01 3.43774050e-01 1.26087898e-02 -1.01579070e+00 3.63247544e-01 8.90933394e-01 -1.58589625e+00 5.34456015e-01 -4.37112600e-01 3.49642783e-01 3.44554365e-01 -4.86179531e-01 -1.11051321e+00 -6.88236654e-02 -8.21581125e-01 -2.12125510e-01 1.12275970e+00 7.21260369e-01 -7.43988991e-01 6.71365261e-01 5.75723708e-01 2.38830149e-01 -9.56609070e-01 -1.08477926e+00 -1.24607730e+00 1.75449416e-01 -9.66249347e-01 2.65140772e-01 4.50651377e-01 2.51965784e-02 -1.35446936e-02 -5.70120096e-01 -1.32165655e-01 7.19687402e-01 -6.52911603e-01 7.36477435e-01 -1.11449790e+00 -4.24203068e-01 -6.15199924e-01 -7.13559389e-01 -1.25571513e+00 6.47340566e-02 -7.53410995e-01 1.03404336e-01 -1.26419222e+00 5.75888276e-01 -6.96485519e-01 -6.40360177e-01 -3.65370035e-01 3.40202540e-01 7.06764981e-02 -2.57270504e-02 -9.09990456e-04 -7.69995749e-01 4.66879308e-01 8.01172197e-01 9.33897570e-02 2.24958032e-01 5.20138860e-01 -4.76640880e-01 3.50528449e-01 1.16502416e+00 -2.86386430e-01 -1.27510339e-01 -1.84526071e-01 3.24821919e-01 3.14591020e-01 4.01952177e-01 -1.42135894e+00 3.64513665e-01 1.93071291e-01 2.70294368e-01 -4.44134712e-01 3.26854974e-01 -6.50931954e-01 -1.90819949e-01 3.70539784e-01 -3.72138172e-01 -2.17827082e-01 -7.85254836e-02 8.61045063e-01 -6.82943463e-02 -5.11828303e-01 7.77780116e-01 -7.69363642e-02 -5.07702231e-01 4.44777191e-01 -5.26070356e-01 1.95869803e-01 7.40233600e-01 -4.27866876e-01 -1.93164542e-01 -1.08290267e+00 -5.66222548e-01 4.75251414e-02 -3.23873982e-02 -2.76264727e-01 4.29346621e-01 -1.11172318e+00 -8.34471226e-01 -4.95902561e-02 1.51525721e-01 -8.03671420e-01 -2.53269318e-02 1.26367986e+00 -2.02008665e-01 9.51754451e-01 1.15337744e-01 -7.33168304e-01 -8.86979401e-01 2.21177265e-02 6.98247254e-01 -2.39171669e-01 3.23808581e-01 9.35195804e-01 -2.68965065e-02 -1.69191808e-01 4.08445150e-01 -3.60622518e-02 -6.65338635e-02 -2.71447897e-01 3.48649472e-01 5.52297652e-01 -1.92298755e-01 -4.69142348e-01 -1.35182902e-01 2.05495264e-02 2.16820687e-01 -2.92201430e-01 9.30666327e-01 -4.26609546e-01 -6.23040497e-02 4.50179756e-01 1.78244126e+00 -1.23879142e-01 -1.00495052e+00 -4.74298626e-01 1.25346228e-01 -1.94328934e-01 8.84994417e-02 -6.16900563e-01 -9.90848899e-01 9.00698304e-01 1.03753543e+00 5.57823122e-01 9.76781070e-01 -1.11879865e-02 5.11125505e-01 4.92763311e-01 3.30505490e-01 -1.13750958e+00 -1.76782206e-01 7.95131624e-01 3.92148674e-01 -1.25653291e+00 -2.34188110e-01 -1.22670516e-01 -1.95810422e-01 1.21320927e+00 1.80681258e-01 3.13107044e-01 9.03492808e-01 6.70971632e-01 -3.93397510e-01 -3.05115506e-02 -7.11444020e-01 -7.72138834e-01 1.71871498e-01 7.23667502e-01 8.56514692e-01 1.66597635e-01 -1.93392068e-01 8.16417038e-02 9.30474028e-02 -1.51921809e-01 5.44297755e-01 5.38190067e-01 -5.20007014e-01 -9.27601755e-01 4.01599482e-02 1.06020570e+00 -6.67447329e-01 -4.12189841e-01 -2.94449329e-01 8.96769762e-01 -2.81195849e-01 1.19104242e+00 8.91325548e-02 -4.65596110e-01 -1.65428981e-01 -2.88085222e-01 3.27925920e-01 -1.33362025e-01 7.92840943e-02 -3.78839195e-01 3.43940705e-01 -3.80948037e-01 -4.99961227e-01 -4.35366988e-01 -8.11192572e-01 -6.48366690e-01 -8.73655200e-01 1.04969449e-01 8.80617380e-01 1.27306628e+00 2.05207124e-01 5.46430707e-01 7.16082335e-01 -5.67288578e-01 -7.21574962e-01 -1.09131145e+00 -9.43835557e-01 -1.07007883e-01 5.15292108e-01 -5.50546288e-01 -5.31031489e-01 -6.43274903e-01]
[6.440377712249756, 1.7513105869293213]
c47f63ac-75a7-4f22-a54f-d092d6fb84f1
what-does-plate-glass-reveal-about-camera
null
null
http://openaccess.thecvf.com/content_CVPR_2020/html/Zheng_What_Does_Plate_Glass_Reveal_About_Camera_Calibration_CVPR_2020_paper.html
http://openaccess.thecvf.com/content_CVPR_2020/papers/Zheng_What_Does_Plate_Glass_Reveal_About_Camera_Calibration_CVPR_2020_paper.pdf
What Does Plate Glass Reveal About Camera Calibration?
This paper aims to calibrate the orientation of glass and the field of view of the camera from a single reflection-contaminated image. We show how a reflective amplitude coefficient map can be used as a calibration cue. Different from existing methods, the proposed solution is free from image contents. To reduce the impact of a noisy calibration cue estimated from a reflection-contaminated image, we propose two strategies: an optimization-based method that imposes part of though reliable entries on the map and a learning-based method that fully exploits all entries. We collect a dataset containing 320 samples as well as their camera parameters for evaluation. We demonstrate that our method not only facilitates a general single image camera calibration method that leverages image contents but also contributes to improving the performance of single image reflection removal. Furthermore, we show our byproduct output helps alleviate the ill-posed problem of estimating the panorama from a single image.
[' Alex C. Kot', ' Ling-Yu Duan', ' Kim-Hui Yap', ' Xudong Jiang', ' Boxin Shi', ' Zhan Lu', ' Jinnan Chen', 'Qian Zheng']
2020-06-01
null
null
null
cvpr-2020-6
['reflection-removal']
['computer-vision']
[ 5.28880358e-01 -1.75611377e-02 2.94556111e-01 -3.31120282e-01 -1.27283716e+00 -6.78050756e-01 2.96959907e-01 -4.61383432e-01 -3.25808793e-01 2.90825456e-01 1.85157314e-01 -2.38564551e-01 5.53868487e-02 -4.84795362e-01 -9.63254333e-01 -9.73803103e-01 4.98162419e-01 -5.74446656e-02 2.81422347e-01 6.69842064e-02 5.32847345e-01 3.82601559e-01 -1.24673486e+00 -6.70398548e-02 6.80564702e-01 8.95479739e-01 3.00479710e-01 5.25896251e-01 5.38190305e-01 5.88240266e-01 -5.10286868e-01 -3.05156171e-01 7.02127218e-01 -2.60323107e-01 -1.13977768e-01 5.19474506e-01 7.50766098e-01 -7.12946773e-01 -1.98687047e-01 1.11070466e+00 3.20996642e-01 -9.76425111e-02 4.62847024e-01 -7.31326759e-01 -9.92553383e-02 1.54728502e-01 -9.25584376e-01 -3.60628486e-01 2.22045228e-01 1.01625547e-01 6.05205059e-01 -8.37609351e-01 5.30864060e-01 7.51841545e-01 8.13156307e-01 -1.20711356e-01 -1.05299330e+00 -6.02078795e-01 -1.08188942e-01 -1.78824812e-01 -1.39147925e+00 -6.13225222e-01 1.03293455e+00 -3.96139294e-01 3.53714585e-01 -6.43884018e-02 5.94250679e-01 8.75977039e-01 -6.97825523e-03 2.34526247e-01 1.29304171e+00 -8.23477626e-01 3.36141288e-02 3.23289484e-01 2.65292805e-02 6.62767351e-01 5.02435863e-01 2.29627490e-01 -3.98012280e-01 -9.80188325e-02 9.73567605e-01 -1.72760990e-02 -5.69891751e-01 -6.29251182e-01 -1.18987596e+00 6.45680130e-01 3.57861102e-01 -1.28012314e-01 -1.36372790e-01 8.76904279e-02 -3.54525208e-01 -4.79384735e-02 9.81379524e-02 6.83551669e-01 -1.30724609e-01 1.03839070e-01 -8.40305686e-01 -9.14429054e-02 6.44481599e-01 1.06598139e+00 1.18466878e+00 -9.99418553e-03 1.77187592e-01 8.10030580e-01 2.88627625e-01 9.88040268e-01 -2.19533052e-02 -1.19349456e+00 4.66236651e-01 4.37439799e-01 4.47244406e-01 -9.72128928e-01 -2.40239233e-01 -3.13742965e-01 -3.37860435e-01 2.68614829e-01 6.03393972e-01 -2.07786098e-01 -9.23728704e-01 1.48878860e+00 3.75882834e-01 -7.13035930e-04 -9.73832160e-02 1.05852449e+00 2.62422234e-01 3.80869031e-01 -7.96862900e-01 -1.58033177e-01 1.20698106e+00 -1.02188349e+00 -4.61530566e-01 -3.42794567e-01 1.39074013e-01 -1.27490282e+00 9.23205376e-01 7.08750784e-01 -9.01638508e-01 -2.65494585e-01 -1.38081384e+00 -7.70711973e-02 1.18587114e-01 5.34524381e-01 4.37028080e-01 9.89150107e-01 -8.38891506e-01 2.44169384e-01 -6.26695752e-01 -1.65326953e-01 -8.42849836e-02 2.29075491e-01 -2.96457827e-01 -2.67069191e-01 -4.91496950e-01 8.76230180e-01 1.04203306e-01 6.64704219e-02 -6.06957853e-01 -7.21133113e-01 -7.30190158e-01 -1.45841047e-01 5.50469220e-01 -5.49942195e-01 1.04069722e+00 -9.03260767e-01 -1.77806985e+00 5.94207525e-01 -1.83414832e-01 -3.59346792e-02 5.25900722e-01 -4.51008856e-01 -1.31742358e-01 4.71009463e-01 1.19705617e-01 2.87128478e-01 1.28267348e+00 -1.65737748e+00 -3.97014230e-01 -2.72524863e-01 -1.16626292e-01 1.09978579e-01 -2.36399829e-01 -3.06655198e-01 -1.04121780e+00 -4.20064449e-01 6.20448351e-01 -1.18633687e+00 -2.06877649e-01 -1.88740660e-02 -6.02550447e-01 9.37500000e-01 4.82473195e-01 -6.04604721e-01 8.50352526e-01 -2.12443233e+00 -3.53524685e-01 5.31524301e-01 -7.73304105e-02 -1.10344440e-01 -8.60820487e-02 4.72594291e-01 -7.88072031e-03 -2.79889673e-01 -3.70598584e-01 -3.39380831e-01 -4.83402669e-01 -7.77642578e-02 -3.33349973e-01 7.55173385e-01 5.78803159e-02 3.61312628e-01 -5.32230496e-01 -2.24842787e-01 5.62462926e-01 7.12126195e-01 -5.50539374e-01 2.42354259e-01 9.83300358e-02 6.10735774e-01 -1.80390194e-01 7.43709326e-01 1.16535199e+00 -2.88538635e-01 4.02842313e-01 -6.99259520e-01 -3.10499877e-01 1.11970440e-01 -1.43575048e+00 1.59602320e+00 -5.81576765e-01 4.30397362e-01 1.59559429e-01 -4.05429840e-01 1.03606117e+00 -5.52799851e-02 6.26971841e-01 -7.12117851e-01 1.57344401e-01 2.00065359e-01 -3.19747597e-01 -4.42310542e-01 7.33543634e-01 -1.02100028e-02 2.08495975e-01 5.38374245e-01 -1.72750473e-01 -4.54890490e-01 -1.43334299e-01 7.42122307e-02 9.00350571e-01 3.56072217e-01 3.40020686e-01 -2.61892974e-01 2.99839526e-01 -9.70182419e-02 4.37151849e-01 8.54204476e-01 1.99821055e-01 1.29271579e+00 2.36541808e-01 -2.92149425e-01 -1.37056601e+00 -1.00384235e+00 -2.66900837e-01 4.05327886e-01 4.10692781e-01 -4.25698847e-01 -7.19896674e-01 -2.40701512e-01 -7.56142661e-02 3.98613483e-01 -5.00527263e-01 8.24452415e-02 -7.09130526e-01 -9.91347790e-01 3.65737155e-02 3.24333847e-01 5.48854470e-01 -1.77827731e-01 -5.52562356e-01 -2.00860500e-01 -4.16945577e-01 -1.54018080e+00 -5.95951438e-01 2.15602964e-01 -7.67965138e-01 -1.42491102e+00 -5.58322370e-01 -3.21272612e-01 9.94875371e-01 9.48760808e-01 1.02068698e+00 -1.22044235e-01 -6.07496547e-03 7.02504396e-01 -2.20601305e-01 -2.97943652e-01 -2.52838165e-01 -1.74828842e-01 -2.28930309e-01 2.34732792e-01 3.17788869e-02 -4.93156940e-01 -7.94577658e-01 7.03359067e-01 -7.54239678e-01 1.40646920e-01 5.91372788e-01 5.99344432e-01 6.13286197e-01 -2.09952131e-01 -1.02516361e-01 -9.40765977e-01 -1.95326805e-02 -1.08555466e-01 -1.25880480e+00 1.57251060e-01 -7.71539211e-01 1.51186287e-01 4.10708338e-01 -2.68858492e-01 -1.25869870e+00 5.23190618e-01 3.07555526e-01 -3.55938256e-01 1.34471700e-01 -2.26978175e-02 -1.44329175e-01 -5.23215950e-01 6.76191211e-01 -7.25211054e-02 1.81107987e-02 -3.74039412e-01 2.32314333e-01 4.95002985e-01 8.38119030e-01 -6.14072800e-01 1.04159367e+00 9.26069558e-01 2.78253585e-01 -1.10409045e+00 -9.18494344e-01 -8.57686639e-01 -6.50585055e-01 -1.70854419e-01 6.20263815e-01 -1.27951086e+00 -6.24081075e-01 4.64573294e-01 -9.58362937e-01 -2.35121086e-01 1.32173732e-01 6.81052923e-01 -4.06664163e-01 6.30760670e-01 -3.51503044e-01 -7.28627801e-01 -9.81584936e-02 -1.28871894e+00 1.27897692e+00 3.40133071e-01 2.23896995e-01 -6.57193720e-01 1.38474852e-01 6.68294132e-01 2.78752565e-01 1.04112618e-01 3.41004789e-01 2.10995346e-01 -1.15390015e+00 -2.80131400e-01 -3.20485830e-01 3.73348445e-01 1.94661573e-01 1.61241516e-01 -1.53827560e+00 -4.19243455e-01 4.50744420e-01 -3.73738408e-02 8.87365818e-01 5.42570353e-01 6.71882629e-01 6.25726655e-02 -7.39288256e-02 1.16800082e+00 1.83844411e+00 1.08361170e-01 9.58652973e-01 7.44314313e-01 8.77670705e-01 4.57361579e-01 6.25462651e-01 3.45099807e-01 2.76240200e-01 8.79773319e-01 4.85214740e-01 -1.86085522e-01 -1.52167931e-01 -1.59780800e-01 2.92467177e-01 6.49331629e-01 -1.64188981e-01 -1.48228526e-01 -6.31768882e-01 3.02392900e-01 -1.60066044e+00 -6.05420649e-01 -2.49635071e-01 2.59432459e+00 4.50583667e-01 -1.57584742e-01 -8.64483267e-02 1.26097854e-02 6.42538726e-01 3.95282097e-02 -4.16384101e-01 2.07921997e-01 -3.13809574e-01 2.11793147e-02 1.12349236e+00 8.36991191e-01 -8.82670164e-01 6.41953707e-01 7.07243538e+00 2.10674405e-01 -1.26818264e+00 -2.20172629e-01 3.20078939e-01 9.33187827e-02 -4.03331459e-01 3.31848115e-01 -9.05616164e-01 3.02416593e-01 5.36760747e-01 4.80246753e-01 3.57142955e-01 7.64152765e-01 1.46222368e-01 -6.83501124e-01 -8.41397285e-01 1.21545053e+00 4.45598394e-01 -9.87290442e-01 -1.90903753e-01 2.96785742e-01 8.21706057e-01 -5.74678481e-02 1.41351193e-01 -4.95778441e-01 1.72091767e-01 -5.35130560e-01 6.91669226e-01 4.49677408e-01 7.17917621e-01 -5.32982349e-01 5.77342093e-01 -1.08495884e-01 -9.15937126e-01 -2.66574603e-02 -3.19476277e-01 1.99560583e-01 1.51306733e-01 9.43382323e-01 -1.10055923e+00 5.87537587e-01 6.42757475e-01 5.30055761e-01 -6.56079769e-01 1.01388919e+00 -5.15170157e-01 5.69729149e-01 -5.62802970e-01 6.07827306e-01 -1.04391269e-01 -8.12333345e-01 5.12941003e-01 8.70376408e-01 5.17300963e-01 -2.76204273e-02 1.00744329e-01 7.10409284e-01 1.07478149e-01 -2.57374853e-01 -6.22119248e-01 4.71691161e-01 4.13151681e-01 1.42456961e+00 -7.60608196e-01 -4.43803100e-03 -5.40870786e-01 7.82179117e-01 4.21889266e-03 6.30900979e-01 -7.60765851e-01 -4.75092344e-02 3.48202229e-01 3.60223740e-01 7.26324081e-01 -3.52978289e-01 -4.10244882e-01 -1.38120413e+00 3.93783033e-01 -9.26651776e-01 6.07284047e-02 -1.17423856e+00 -7.71010518e-01 3.22881043e-01 -4.26084123e-04 -1.43047690e+00 -1.60048962e-01 -6.67289913e-01 -5.12996733e-01 6.50929213e-01 -1.68027568e+00 -1.22802556e+00 -7.08503366e-01 5.32632768e-01 6.26576990e-02 1.57517925e-01 5.24890125e-01 3.04047078e-01 -4.12361652e-01 3.97231102e-01 3.76303464e-01 1.50621589e-03 1.23483264e+00 -1.03084624e+00 -8.83487687e-02 1.27395475e+00 6.18764646e-02 7.03361094e-01 7.66681194e-01 -3.23283225e-01 -1.61334157e+00 -5.58262408e-01 1.80954233e-01 -5.88442981e-01 4.28767413e-01 -3.21294338e-01 -6.27683282e-01 8.39150846e-01 8.43766630e-02 -1.14283800e-01 3.88700366e-01 -5.06144203e-02 -5.40492058e-01 -5.08590519e-01 -9.46583152e-01 4.43059444e-01 5.48715055e-01 -5.42511761e-01 -1.28085643e-01 1.78130805e-01 3.58766913e-01 -6.74776077e-01 -7.16780603e-01 2.20971793e-01 7.32252359e-01 -1.46455061e+00 1.21501458e+00 2.80134141e-01 3.26350838e-01 -5.69126368e-01 -3.80437165e-01 -1.13191795e+00 -7.33994171e-02 -8.44911098e-01 3.63962770e-01 1.16171587e+00 2.74687499e-01 -6.45061851e-01 7.85799742e-01 6.96083069e-01 -2.27947280e-01 -9.42202657e-02 -4.69212711e-01 -5.49687386e-01 -2.94025779e-01 -3.33795905e-01 3.71198177e-01 7.30477989e-01 -5.62079489e-01 3.52592647e-01 -6.63650513e-01 5.24317980e-01 1.03998184e+00 4.62954849e-01 1.28061616e+00 -7.17127621e-01 -4.89235520e-01 1.69981182e-01 -1.21368930e-01 -1.15533161e+00 -4.27001834e-01 -1.59913629e-01 2.01400384e-01 -9.15728033e-01 2.90538818e-01 -5.45418203e-01 1.15260012e-01 1.36337221e-01 -5.28878681e-02 4.02864516e-01 1.85440063e-01 2.45731294e-01 -3.21073234e-01 5.95479570e-02 1.19572783e+00 1.53267875e-01 -2.02809930e-01 -1.99209470e-02 -7.98847497e-01 9.16966140e-01 5.67058742e-01 -6.48063898e-01 -3.86585742e-01 -5.79438865e-01 4.38558519e-01 4.73947227e-02 4.91472006e-01 -1.02597284e+00 2.47224703e-01 -3.73395607e-02 4.74396557e-01 -5.58139265e-01 5.11008382e-01 -9.99608815e-01 2.71856815e-01 5.89977242e-02 1.95725203e-01 -1.18830584e-01 -1.06668398e-01 4.87114877e-01 -6.69506043e-02 -4.01973009e-01 1.04427791e+00 -6.85428008e-02 -3.15184206e-01 -1.47533402e-01 -1.36953713e-02 -2.94446219e-02 4.97936845e-01 -4.12064523e-01 -5.57531357e-01 -6.06834173e-01 -5.62951416e-02 -1.75732896e-01 1.00258148e+00 -7.69189373e-02 2.81152010e-01 -9.86162305e-01 -2.85056502e-01 3.63932848e-01 1.53264910e-01 7.53953531e-02 3.99633572e-02 9.28998113e-01 -7.17977643e-01 1.79074675e-01 -3.57566923e-02 -8.67672920e-01 -1.17584145e+00 4.29389149e-01 3.39078516e-01 3.18927243e-02 -7.57163107e-01 4.98761028e-01 2.13621825e-01 -2.69107580e-01 4.72669071e-03 -3.07100117e-01 2.62922734e-01 -1.65695444e-01 5.37264884e-01 2.61722505e-01 2.71033764e-01 -6.80052876e-01 -2.03971103e-01 1.15284693e+00 -1.10001490e-02 -3.49325448e-01 1.35693491e+00 -4.26671028e-01 1.26688108e-01 3.11142266e-01 1.21234024e+00 6.20243728e-01 -1.62078118e+00 -2.15876043e-01 -3.98080081e-01 -8.13359678e-01 1.69681147e-01 -6.12617731e-01 -1.26379573e+00 6.46170080e-01 5.44602215e-01 -2.26013809e-01 1.16133928e+00 -3.73585135e-01 5.65011084e-01 5.71786344e-01 2.93425620e-01 -1.07024837e+00 3.24852526e-01 1.27699897e-01 5.48832178e-01 -1.58759916e+00 5.35735905e-01 -7.44232833e-01 -5.20224094e-01 1.37834656e+00 3.21556270e-01 -1.43335477e-01 5.01246989e-01 5.67904353e-01 5.07581711e-01 -6.20582290e-02 -9.56930444e-02 -8.54276214e-03 1.81727812e-01 6.49697006e-01 2.33252645e-01 -3.63580763e-01 2.51644522e-01 9.61014479e-02 -2.98165113e-01 -9.75090265e-02 9.18988883e-01 8.67544234e-01 -2.95293897e-01 -1.12644005e+00 -9.12513494e-01 7.41664395e-02 -2.47694671e-01 -9.13342685e-02 -9.73673314e-02 8.65820050e-01 -2.45658204e-01 8.58174980e-01 -2.90987510e-02 -1.68738157e-01 2.64932364e-01 -3.26936662e-01 6.75718844e-01 -2.26605356e-01 -3.28299999e-01 4.94446129e-01 1.40947932e-02 -5.91266513e-01 -6.62733912e-01 -4.51517701e-01 -7.61760950e-01 -1.43755853e-01 -6.56553149e-01 -1.75390676e-01 9.48090613e-01 6.12981260e-01 9.70849544e-02 1.83006451e-02 8.64480674e-01 -9.63940144e-01 -4.36866522e-01 -6.66986465e-01 -5.79186499e-01 3.55012923e-01 4.88382190e-01 -6.20754600e-01 -7.52377510e-01 2.29087979e-01]
[9.43759822845459, -2.660884141921997]
5dcbbaca-4a14-454e-9bfc-8c2bb79f042c
fourier-analysis-on-robustness-of-graph
2305.17939
null
https://arxiv.org/abs/2305.17939v1
https://arxiv.org/pdf/2305.17939v1.pdf
Fourier Analysis on Robustness of Graph Convolutional Neural Networks for Skeleton-based Action Recognition
Using Fourier analysis, we explore the robustness and vulnerability of graph convolutional neural networks (GCNs) for skeleton-based action recognition. We adopt a joint Fourier transform (JFT), a combination of the graph Fourier transform (GFT) and the discrete Fourier transform (DFT), to examine the robustness of adversarially-trained GCNs against adversarial attacks and common corruptions. Experimental results with the NTU RGB+D dataset reveal that adversarial training does not introduce a robustness trade-off between adversarial attacks and low-frequency perturbations, which typically occurs during image classification based on convolutional neural networks. This finding indicates that adversarial training is a practical approach to enhancing robustness against adversarial attacks and common corruptions in skeleton-based action recognition. Furthermore, we find that the Fourier approach cannot explain vulnerability against skeletal part occlusion corruption, which highlights its limitations. These findings extend our understanding of the robustness of GCNs, potentially guiding the development of more robust learning methods for skeleton-based action recognition.
['Kazuhiko Kawamoto', 'Hiroshi Kera', 'Nariki Tanaka']
2023-05-29
null
null
null
null
['skeleton-based-action-recognition', 'action-recognition-in-videos']
['computer-vision', 'computer-vision']
[ 8.71856153e-01 1.27871022e-01 1.18601536e-02 1.40553921e-01 -4.43026811e-01 -5.74940264e-01 5.43079793e-01 -3.49122226e-01 -1.81706965e-01 3.09987038e-01 3.99408937e-01 -3.80990505e-01 -1.29662335e-01 -1.01496112e+00 -9.26870763e-01 -7.84007370e-01 -4.95473295e-01 -4.11381483e-01 2.21274585e-01 -3.11627567e-01 4.17372845e-02 9.67588246e-01 -1.07115483e+00 3.31299365e-01 2.37342313e-01 8.48756969e-01 -9.79336679e-01 1.04785085e+00 5.31141222e-01 1.03423214e+00 -9.46488917e-01 -3.43080550e-01 6.88764811e-01 -5.26137114e-01 -8.55965853e-01 -3.20919529e-02 8.07386339e-01 -6.08705580e-01 -1.04809546e+00 7.93244660e-01 6.41726971e-01 2.27912515e-01 6.16083384e-01 -1.50659418e+00 -6.05126381e-01 2.47643203e-01 -3.28242868e-01 3.87139499e-01 6.02763891e-01 6.20181143e-01 4.77145851e-01 -5.99412546e-02 6.30927503e-01 1.33479846e+00 1.06072271e+00 7.07488418e-01 -1.15550339e+00 -5.65937340e-01 -1.99814990e-01 1.43557787e-01 -9.83905613e-01 -4.67652798e-01 9.63100374e-01 -2.01962411e-01 1.10731137e+00 3.37966323e-01 7.97679663e-01 1.54261267e+00 7.24080265e-01 5.27215898e-01 8.03195477e-01 -2.94376612e-01 3.21967714e-02 -1.11722350e+00 -4.56254542e-01 7.63483167e-01 7.47992918e-02 5.69474399e-01 -6.50125444e-01 -4.21095043e-01 1.12137353e+00 -3.28706473e-01 -3.80009830e-01 -1.18478268e-01 -1.07808065e+00 7.42085457e-01 5.58807075e-01 9.70252976e-02 -1.29689023e-01 9.26087797e-01 8.06478739e-01 5.24558723e-01 1.56443179e-01 4.50444549e-01 -3.22974324e-01 -2.53291756e-01 -4.72315967e-01 7.59156197e-02 5.61367989e-01 3.33634317e-01 1.17236368e-01 7.34028935e-01 5.62135577e-02 4.08418089e-01 1.69001713e-01 5.94858944e-01 3.54903877e-01 -1.25538731e+00 3.74904633e-01 3.59367132e-01 -6.29411519e-01 -1.34227347e+00 -4.52638894e-01 -1.65371135e-01 -6.55214071e-01 7.74140060e-01 8.06134343e-01 -9.62826982e-02 -9.12674844e-01 1.68026376e+00 2.05192640e-01 3.99219215e-01 8.54270011e-02 6.06128991e-01 7.82510817e-01 -1.41170338e-01 1.30687788e-01 2.73974031e-01 7.30563164e-01 -3.64326864e-01 -3.13919336e-01 -3.50237675e-02 7.38221884e-01 -7.54019797e-01 8.10425878e-01 3.50059628e-01 -7.66980171e-01 -4.51347768e-01 -1.29266989e+00 1.90204024e-01 -3.27226013e-01 -3.28632444e-01 7.43188500e-01 1.14645815e+00 -7.02741861e-01 1.21393430e+00 -1.20213819e+00 -2.90876299e-01 7.11809397e-01 4.68750387e-01 -7.54622936e-01 -7.09703416e-02 -1.32216871e+00 8.24888051e-01 5.85830994e-02 -2.64612921e-02 -9.29063618e-01 -5.58598936e-01 -9.40312564e-01 -4.37424332e-01 9.60471407e-02 -4.28655058e-01 6.48589849e-01 -1.09778047e+00 -1.50154364e+00 6.13740981e-01 5.15613794e-01 -7.32963383e-01 6.04091704e-01 -1.04913846e-01 -5.66812873e-01 6.68130338e-01 -3.42548281e-01 3.08070958e-01 1.31318760e+00 -6.45584106e-01 2.83804029e-01 -2.92599350e-01 3.43763441e-01 -1.67055920e-01 -1.71126708e-01 3.64586562e-02 3.31235796e-01 -1.09914446e+00 1.64241552e-01 -1.02803755e+00 3.11239902e-03 4.28218603e-01 -3.73916388e-01 3.24312478e-01 1.17880058e+00 -7.40578592e-01 7.32757092e-01 -2.17598772e+00 -5.77999763e-02 3.64131093e-01 4.19545732e-02 5.00601649e-01 -4.05860603e-01 5.22276402e-01 -7.40220070e-01 2.78368622e-01 -1.08026095e-01 2.54629284e-01 -2.51191407e-01 4.75037962e-01 -3.27578902e-01 1.02854204e+00 4.84379798e-01 1.24008954e+00 -7.76318371e-01 -1.77625507e-01 3.24625254e-01 7.48285651e-01 -3.51095498e-01 -2.85406560e-01 3.17949392e-02 6.32132292e-01 -4.80097234e-01 9.02488887e-01 3.77051860e-01 2.27862418e-01 -3.66569608e-02 -3.89030755e-01 5.99515557e-01 -2.08576750e-02 -9.10511851e-01 1.40875578e+00 -6.42831624e-02 8.93974364e-01 -2.43892580e-01 -1.07122791e+00 6.74919605e-01 2.66870350e-01 7.23008871e-01 -7.36933112e-01 2.95076042e-01 -3.08715589e-02 1.37448907e-01 -4.66598064e-01 -9.11498517e-02 -1.40955165e-01 1.39104754e-01 7.75634587e-01 9.01404619e-02 3.61864477e-05 -8.83395523e-02 1.48691669e-01 2.00101709e+00 4.92565036e-01 4.82273586e-02 8.99344236e-02 3.43412548e-01 -1.96533650e-01 2.55986154e-01 6.32492840e-01 -4.40738291e-01 8.56689453e-01 6.48494899e-01 -6.70995951e-01 -8.45815480e-01 -1.15550017e+00 4.70409058e-02 8.60086679e-01 -2.01975763e-01 -3.69140327e-01 -7.89638579e-01 -1.09745514e+00 2.60543287e-01 1.99514225e-01 -8.84497404e-01 -9.81818080e-01 -8.87359798e-01 -4.66846228e-01 1.56242037e+00 9.18884337e-01 6.96163774e-01 -9.00671422e-01 -7.31789231e-01 1.30886540e-01 -1.79132164e-01 -1.23139906e+00 -2.84016281e-01 8.54262263e-02 -9.28827465e-01 -1.76485991e+00 -6.13799393e-01 -9.79427472e-02 6.77319407e-01 9.05775651e-03 8.58268678e-01 5.80888689e-01 -6.33808315e-01 1.10075259e+00 -5.77214420e-01 -1.38299003e-01 -8.90645921e-01 -5.26999533e-01 2.45617211e-01 -1.79770634e-01 -4.81502600e-02 -9.17846382e-01 -5.57213604e-01 5.27184904e-01 -1.26464272e+00 -6.81333959e-01 3.48015815e-01 6.92583740e-01 2.37284884e-01 4.66160268e-01 7.08070993e-02 -2.28297099e-01 5.61500311e-01 -1.00422174e-01 -5.16439043e-02 -2.98841801e-02 -4.61816415e-02 -4.10549641e-02 7.74302602e-01 -7.86182940e-01 -4.44534838e-01 8.70710090e-02 -2.28821635e-01 -6.28837287e-01 -2.18821958e-01 3.28347445e-01 -4.77753617e-02 -1.14687133e+00 1.31180084e+00 1.59958124e-01 3.87624115e-01 -3.76616418e-02 2.20554724e-01 9.63717550e-02 7.69037902e-01 -5.58207810e-01 1.09996450e+00 7.68076897e-01 5.57727098e-01 -1.13392198e+00 -3.55374098e-01 9.93239284e-02 -5.77120662e-01 -6.45254910e-01 9.51048315e-01 -6.17297232e-01 -7.86440551e-01 9.41892445e-01 -8.66344213e-01 -6.82508588e-01 -4.19677138e-01 3.10973704e-01 -9.74473834e-01 9.43565369e-01 -6.54671967e-01 -4.59729880e-01 -1.08388901e-01 -9.99181569e-01 9.16608453e-01 -2.24708259e-01 -3.54723394e-01 -1.02218473e+00 4.87861456e-03 6.18106604e-01 2.66253412e-01 1.40412962e+00 7.95892298e-01 -5.68539739e-01 -3.42479616e-01 -4.61111784e-01 1.73907578e-01 7.29713440e-01 2.21741065e-01 3.06845486e-01 -8.38202477e-01 -4.82068479e-01 -7.26547539e-02 -7.25305378e-01 8.08976293e-01 1.76242948e-01 9.25220430e-01 -3.62491697e-01 9.65475813e-02 8.71144176e-01 1.16288435e+00 -5.85291758e-02 1.18070972e+00 5.15973508e-01 8.56584132e-01 1.93252400e-01 2.31170923e-01 1.93390116e-01 -4.99395788e-01 5.22268713e-01 8.11521053e-01 -1.35350138e-01 -5.62759757e-01 -1.78992361e-01 7.11557925e-01 -1.73534930e-01 -6.61344767e-01 -1.75119817e-01 -1.02184606e+00 -5.58335409e-02 -1.38240993e+00 -1.03937781e+00 -1.22207336e-01 2.14259791e+00 4.95033413e-01 3.35705489e-01 2.76052862e-01 7.98659027e-01 5.18458962e-01 4.95473772e-01 -5.55688083e-01 -3.86078328e-01 -1.22906387e-01 6.76417768e-01 8.30546379e-01 7.66743422e-02 -1.30697966e+00 6.99784994e-01 7.47698450e+00 6.52077615e-01 -1.13382292e+00 -2.85676271e-01 1.69540420e-01 7.97393844e-02 2.08660647e-01 -3.08034718e-01 6.72900751e-02 2.09627897e-01 9.06351745e-01 1.14831984e-01 5.02550185e-01 6.12227559e-01 7.29523376e-02 1.07561804e-01 -9.02284205e-01 4.06863868e-01 1.34266034e-01 -1.18182373e+00 6.72300160e-02 3.52804363e-01 4.23319787e-01 -4.07357216e-02 2.20325381e-01 -1.93891302e-01 5.10562956e-01 -1.25489330e+00 3.69684994e-01 3.24348360e-01 7.50923932e-01 -9.17805314e-01 5.14796138e-01 -2.06762314e-01 -1.19977999e+00 -5.66278249e-02 -2.49512836e-01 5.77621646e-02 -1.05777219e-01 1.44713134e-01 -5.16493976e-01 6.35348439e-01 5.49289167e-01 7.61232734e-01 -6.54585004e-01 5.35516322e-01 -3.56432647e-01 6.97484314e-01 -3.80991876e-01 6.45504355e-01 9.56799313e-02 2.56840467e-01 7.18830347e-01 8.48391891e-01 -1.42489597e-01 -3.48305628e-02 -1.67431742e-01 4.74674314e-01 2.49795318e-01 -2.96562046e-01 -8.97694290e-01 -5.98328114e-01 -1.88618496e-01 5.46918988e-01 -9.59252834e-01 2.55125374e-01 -2.86641657e-01 1.11828959e+00 -1.20232301e-02 5.05128026e-01 -8.75561357e-01 -2.11422458e-01 8.75786722e-01 7.88699910e-02 3.68348658e-01 -5.24188995e-01 -6.37256056e-02 -8.58089805e-01 2.08513886e-02 -1.34580696e+00 4.72601950e-01 -6.14860177e-01 -1.07704854e+00 1.48439128e-02 -1.32763788e-01 -1.51513851e+00 -1.84355140e-01 -7.52148628e-01 -9.31230307e-01 2.79726654e-01 -9.74148989e-01 -1.50160825e+00 -1.31079942e-01 1.12763345e+00 7.65148401e-02 -1.59019664e-01 9.55595732e-01 -1.05215989e-01 -3.06903005e-01 7.51287222e-01 -3.02107155e-01 7.25627124e-01 4.22184289e-01 -9.42473888e-01 7.70599544e-01 1.16089356e+00 1.65814176e-01 5.06908655e-01 7.52268612e-01 -9.73918974e-01 -1.55636370e+00 -1.11839056e+00 7.73229599e-02 -6.02513015e-01 7.88706839e-01 1.59179449e-01 -8.11723173e-01 6.83224976e-01 -3.52732152e-01 4.43928957e-01 8.44481289e-01 -4.17922348e-01 -7.35050559e-01 2.81295180e-01 -1.26492155e+00 6.11133635e-01 1.26184976e+00 -7.94745326e-01 -4.51479137e-01 4.64545965e-01 5.98508179e-01 -6.20786607e-01 -1.28093255e+00 5.52108228e-01 7.43640423e-01 -1.11480594e+00 1.48414338e+00 -8.77746284e-01 6.36616707e-01 -1.30221292e-01 -1.97497293e-01 -1.09579134e+00 -1.20934889e-01 -7.18011796e-01 -3.08084905e-01 6.16984785e-01 -6.36052862e-02 -7.47880876e-01 9.37645137e-01 5.11193573e-01 9.52905044e-02 -4.95117605e-01 -1.22201240e+00 -1.26052046e+00 2.62451798e-01 -7.62451947e-01 3.28545451e-01 9.40203965e-01 -3.26351911e-01 -7.09869862e-01 -2.18182027e-01 1.47033408e-01 6.30599022e-01 -6.98815823e-01 9.33424473e-01 -7.12222219e-01 -4.39794868e-01 -2.87418783e-01 -1.41969597e+00 -2.31307939e-01 2.94383138e-01 -7.30434239e-01 -3.11814368e-01 -1.12407196e+00 -5.86905360e-01 1.21715024e-01 -2.13765725e-01 9.00396764e-01 6.72741234e-02 7.64088511e-01 2.21476167e-01 -1.55809205e-02 -2.08014175e-02 3.65173668e-01 1.32208622e+00 -2.63351172e-01 1.79046437e-01 1.10821515e-01 -2.90976614e-01 9.03886080e-01 7.97552049e-01 -5.60116410e-01 -3.82428706e-01 -1.24044061e-01 1.80688113e-01 -2.27348059e-01 8.15341115e-01 -1.44778955e+00 -9.97392610e-02 -1.10191055e-01 6.83838069e-01 1.01392880e-01 2.69980937e-01 -8.55391681e-01 2.31244832e-01 9.07089233e-01 -1.84038073e-01 -1.46613717e-01 5.36865175e-01 8.23093355e-01 1.43887132e-01 1.78152159e-01 7.80683875e-01 -2.60971606e-01 -4.42427576e-01 3.03747803e-01 -6.66210175e-01 1.21616662e-01 9.35029864e-01 -7.59627402e-01 -4.56831008e-01 -4.52740282e-01 -8.83007288e-01 -4.90413040e-01 6.53712451e-01 2.82582939e-01 7.51819968e-01 -1.56651020e+00 -4.61534232e-01 4.60520059e-01 -1.12422869e-01 -5.69852352e-01 1.00768350e-01 8.07513714e-01 -7.68605709e-01 -1.34526163e-01 -6.52434647e-01 -4.14945573e-01 -1.55545378e+00 3.27742219e-01 7.07115412e-01 -1.42228380e-01 -8.02927971e-01 8.10787678e-01 -3.38893622e-01 -1.25406459e-01 2.41098970e-01 -2.41189282e-02 7.24826381e-02 -3.93030792e-01 3.84266615e-01 6.79657280e-01 5.13580367e-02 -8.10186803e-01 -4.25051451e-01 7.20020235e-01 4.22033697e-01 6.56920820e-02 1.11974382e+00 4.16510552e-01 1.37375012e-01 -1.74360126e-01 1.29258943e+00 -2.28202894e-01 -1.30678010e+00 1.68952256e-01 -5.17641306e-01 -6.25491917e-01 3.63227800e-02 -5.48189938e-01 -1.45436251e+00 6.13074422e-01 4.33715194e-01 3.13458771e-01 1.21155071e+00 -3.64527673e-01 8.36649418e-01 4.11208957e-01 2.46017590e-01 -1.01608622e+00 5.60442924e-01 3.86941642e-01 1.15806210e+00 -6.74402416e-01 3.86506319e-01 -4.13433909e-01 -2.22491354e-01 1.48137152e+00 4.59860921e-01 -4.44389880e-01 6.75184071e-01 2.31022000e-01 2.85612375e-01 -3.11035186e-01 -1.81674242e-01 -1.77875862e-01 3.21728379e-01 1.24861228e+00 7.36556053e-02 -2.26501077e-01 -1.07993586e-02 -2.01981276e-01 -3.44070584e-01 -1.60776258e-01 4.38959301e-01 1.35074770e+00 2.71058232e-02 -1.19409311e+00 -6.30401671e-01 2.74871796e-01 -6.33745372e-01 1.57127261e-01 -9.57318783e-01 1.04000783e+00 7.38470703e-02 8.76269400e-01 -3.71408492e-01 -7.88788021e-01 4.12318736e-01 1.21591389e-01 8.68441284e-01 -2.34758601e-01 -7.44405568e-01 -3.41478676e-01 2.36981392e-01 -1.35574377e+00 -6.53358817e-01 -5.50717831e-01 -1.13259995e+00 -4.13419187e-01 -3.35621566e-01 -7.06265867e-01 5.22142529e-01 1.06118059e+00 1.44134477e-01 7.69412100e-01 4.75566715e-01 -8.64048958e-01 -5.09137392e-01 -5.82917511e-01 -4.64999318e-01 5.78862071e-01 3.80586773e-01 -7.52263963e-01 -7.90315807e-01 2.05939531e-01]
[5.553149700164795, 7.763954162597656]
e401c704-a568-4e91-a07f-f12b00bb45e5
two-stage-framework-for-optic-disc
2005.14284
null
https://arxiv.org/abs/2005.14284v1
https://arxiv.org/pdf/2005.14284v1.pdf
Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning
With the advancement of powerful image processing and machine learning techniques, CAD has become ever more prevalent in all fields of medicine including ophthalmology. Since optic disc is the most important part of retinal fundus image for glaucoma detection, this paper proposes a two-stage framework that first detects and localizes optic disc and then classifies it into healthy or glaucomatous. The first stage is based on RCNN and is responsible for localizing and extracting optic disc from a retinal fundus image while the second stage uses Deep CNN to classify the extracted disc into healthy or glaucomatous. In addition to the proposed solution, we also developed a rule-based semi-automatic ground truth generation method that provides necessary annotations for training RCNN based model for automated disc localization. The proposed method is evaluated on seven publicly available datasets for disc localization and on ORIGA dataset, which is the largest publicly available dataset for glaucoma classification. The results of automatic localization mark new state-of-the-art on six datasets with accuracy reaching 100% on four of them. For glaucoma classification we achieved AUC equal to 0.874 which is 2.7% relative improvement over the state-of-the-art results previously obtained for classification on ORIGA. Once trained on carefully annotated data, Deep Learning based methods for optic disc detection and localization are not only robust, accurate and fully automated but also eliminates the need for dataset-dependent heuristic algorithms. Our empirical evaluation of glaucoma classification on ORIGA reveals that reporting only AUC, for datasets with class imbalance and without pre-defined train and test splits, does not portray true picture of the classifier's performance and calls for additional performance metrics to substantiate the results.
['Sheraz Ahmed', 'Wolfgang Neumeier', 'Shoaib Ahmed Siddiqui', 'Muhammad Naseer Bajwa', 'Faisal Shafait', 'Muhammad Imran Malik', 'Andreas Dengel']
2020-05-28
null
null
null
null
['optic-disc-detection']
['medical']
[ 1.20535761e-01 1.58552408e-01 -7.21101984e-02 -2.12775439e-01 -8.57419133e-01 -4.89445806e-01 2.98687994e-01 1.67399213e-01 -5.08281827e-01 8.32811832e-01 2.62269139e-01 -5.41708231e-01 -5.76936424e-01 -5.07142901e-01 -1.96155995e-01 -6.47845805e-01 -2.82804638e-01 6.74340069e-01 2.71442026e-01 3.17719728e-01 4.53322858e-01 5.40585399e-01 -2.04948235e+00 3.52107078e-01 1.09106660e+00 1.22975814e+00 1.08315587e-01 8.07954669e-01 3.16935182e-01 5.67352116e-01 -6.29596293e-01 -1.32760167e-01 5.16139746e-01 -5.15797794e-01 -9.53072011e-01 3.52343887e-01 8.67439985e-01 -2.27112904e-01 8.47075582e-02 7.95617521e-01 9.25861478e-01 -6.44924641e-01 5.12566805e-01 -3.18996340e-01 -3.21927905e-01 5.27374297e-02 -3.46144855e-01 3.83560240e-01 -1.30819827e-01 4.99095201e-01 6.12424612e-01 -3.63597035e-01 7.20681250e-01 6.28026962e-01 7.26736844e-01 3.64797652e-01 -9.51797903e-01 -1.29932478e-01 -6.65355265e-01 4.45757573e-03 -1.09393942e+00 -3.16176474e-01 -1.08743161e-01 -8.48316073e-01 7.03303635e-01 2.92466760e-01 1.09353995e+00 1.69733062e-01 2.87676156e-01 4.64474380e-01 1.90494633e+00 -5.78016341e-01 1.39040798e-01 -1.36115208e-01 1.58444986e-01 5.91985166e-01 7.96911240e-01 2.16916889e-01 7.38770440e-02 -8.15891400e-02 7.20175564e-01 -3.71403873e-01 -4.27781433e-01 1.22541748e-02 -1.11419153e+00 5.74269176e-01 4.21877205e-01 1.10547006e-01 -3.79173905e-01 -2.09335715e-01 3.88768554e-01 1.03345074e-01 4.44909602e-01 8.62498760e-01 -2.94994056e-01 -1.12148859e-01 -1.24522555e+00 1.58527359e-01 3.66683781e-01 2.64327675e-01 2.07304195e-01 -4.27201599e-01 -6.53998375e-01 8.61788273e-01 1.83307245e-01 7.28073642e-02 7.31198728e-01 -7.77914643e-01 -1.44424513e-01 1.12683868e+00 9.24023613e-02 -2.16016546e-01 -6.03087068e-01 -1.12355065e+00 -5.15401125e-01 6.96099460e-01 7.98886597e-01 -3.62487286e-01 -1.57430100e+00 8.39178145e-01 8.13064948e-02 -4.01965417e-02 -1.12635516e-01 1.10643852e+00 5.69169879e-01 -2.77487010e-01 -2.82057613e-01 -7.02608377e-02 1.54662502e+00 -5.93517184e-01 -2.90871292e-01 -1.15803905e-01 8.78674626e-01 -9.56169307e-01 8.34590375e-01 6.42579317e-01 -1.00014269e+00 -3.37725848e-01 -1.00698268e+00 -2.35225886e-01 -1.77796856e-01 9.81889606e-01 7.30992615e-01 4.97451425e-01 -1.53157055e+00 2.36832842e-01 -6.21104956e-01 -4.38974977e-01 9.74801421e-01 7.29799032e-01 -5.37073851e-01 -4.27896194e-02 -5.81751704e-01 9.97667730e-01 3.36020797e-01 2.27963865e-01 -4.81760442e-01 -3.39267403e-01 -3.15912366e-01 -3.44500273e-01 -8.49184245e-02 -8.43929589e-01 1.04450727e+00 -7.79412627e-01 -1.18748260e+00 1.43241215e+00 -2.26401076e-01 -1.01868153e+00 6.23696685e-01 -2.50764668e-01 -3.62219214e-01 3.49675536e-01 2.24783748e-01 5.93560159e-01 7.99460232e-01 -9.68034446e-01 -1.08921754e+00 -6.46249831e-01 -2.31980421e-02 -2.33787790e-01 2.15487197e-01 1.35733604e-01 -4.71890152e-01 -4.06921655e-01 2.12095767e-01 -1.02845156e+00 -9.58854854e-02 1.55913308e-01 -5.59069872e-01 -2.46565327e-01 5.00100017e-01 -7.38812685e-01 1.15423417e+00 -1.85169494e+00 -3.23948383e-01 1.28973901e-01 6.51041031e-01 8.76176178e-01 2.34509572e-01 5.98573498e-02 -1.74767449e-01 4.04013842e-02 -7.06319958e-02 -3.19076508e-01 -6.25167787e-01 -1.80409282e-01 1.92440152e-01 6.54648125e-01 3.47549021e-01 6.22505605e-01 -6.59267366e-01 -3.03625673e-01 2.40765765e-01 4.41742748e-01 -4.27840054e-01 -1.36132408e-02 -1.15413126e-02 5.46990752e-01 8.14892352e-03 8.35406303e-01 4.84017789e-01 -4.95045513e-01 -4.92014438e-02 -2.46570900e-01 -4.04538423e-01 2.38818526e-01 -8.03800046e-01 1.36553097e+00 -1.37905240e-01 8.43132555e-01 -4.10643905e-01 -7.43991911e-01 7.52830803e-01 2.65672088e-01 1.71504617e-01 -5.16232073e-01 4.16299254e-01 6.21839464e-01 6.42784715e-01 -8.60428810e-01 5.26938066e-02 8.76656920e-02 4.95986044e-01 1.35783106e-01 1.00082748e-01 2.37600833e-01 3.89565587e-01 -2.87540376e-01 1.01194084e+00 1.33823752e-01 3.42102557e-01 -2.47209698e-01 5.26814103e-01 1.61277682e-01 2.93442488e-01 5.93939245e-01 -3.64446789e-01 1.06617904e+00 6.87086582e-01 -5.93521595e-01 -8.19663405e-01 -6.56918883e-01 -6.95838094e-01 -9.77319926e-02 -1.44868717e-01 -2.28395328e-01 -8.45550418e-01 -6.31905317e-01 1.03384770e-01 3.72938439e-02 -8.34922552e-01 1.46944553e-01 -1.18756540e-01 -1.05550110e+00 4.69717652e-01 2.16795906e-01 7.15502024e-01 -5.90610743e-01 -7.15645432e-01 6.83756024e-02 3.05222183e-01 -7.21527159e-01 3.27795930e-02 -3.30907583e-01 -9.68071640e-01 -1.68834293e+00 -9.99457300e-01 -8.45684290e-01 8.03915620e-01 5.79948537e-02 8.55501235e-01 2.14790642e-01 -9.30494547e-01 -1.89198509e-01 -1.26114115e-01 -6.70217931e-01 -1.89969912e-01 -1.08804293e-01 -2.31113806e-01 3.22555304e-01 5.28380692e-01 -2.75252581e-01 -1.31278491e+00 1.47532925e-01 -4.09806430e-01 -1.43706918e-01 1.32771301e+00 6.40211403e-01 7.69513309e-01 -2.19743308e-02 6.21291161e-01 -8.59909117e-01 5.64936101e-01 -1.66290313e-01 -6.98994100e-01 7.93765411e-02 -9.48960185e-01 -1.03933260e-01 2.58952286e-02 1.94628760e-02 -5.08066118e-01 1.08319305e-01 1.29786968e-01 -8.07485282e-02 -3.25628132e-01 5.16205728e-01 4.97199774e-01 -3.11338663e-01 1.04323602e+00 -2.65619829e-02 5.75046301e-01 -6.50018692e-01 -9.65025350e-02 1.23964989e+00 5.98505020e-01 3.31419408e-02 1.93316877e-01 7.50095963e-01 2.75428861e-01 -5.88589787e-01 -1.04031765e+00 -8.22971046e-01 -5.10342360e-01 -2.02407241e-01 8.82349908e-01 -7.79382169e-01 -5.90762556e-01 9.73757505e-01 -6.87717438e-01 -1.22145064e-01 -4.09633905e-01 7.77252078e-01 -2.48619348e-01 1.85823485e-01 -2.26391658e-01 -8.06285441e-01 -5.84281921e-01 -1.25189567e+00 1.22200155e+00 3.26390922e-01 -1.13494650e-01 -7.70438194e-01 3.21303420e-02 7.34126151e-01 4.87304688e-01 3.83394063e-01 8.12662303e-01 -4.96171415e-01 -5.11948705e-01 -6.15732014e-01 -6.38371885e-01 7.75945842e-01 4.07149553e-01 9.47214887e-02 -1.10634732e+00 -2.93723583e-01 -2.62110502e-01 -1.86528131e-01 1.05281401e+00 7.82811284e-01 9.64998603e-01 -1.27479717e-01 -3.16891342e-01 3.58904004e-01 1.59297633e+00 -3.86053883e-03 1.03079140e+00 6.30400956e-01 2.47751027e-01 5.95305502e-01 5.06397307e-01 5.76266050e-02 2.10242346e-01 4.35273767e-01 5.74960470e-01 -4.09035623e-01 -8.62812340e-01 3.07486415e-01 -3.22410077e-01 -4.35299762e-02 -6.03284061e-01 6.50696605e-02 -1.10500658e+00 8.93918753e-01 -1.46048784e+00 -5.56482136e-01 -4.48014796e-01 2.58646297e+00 8.98579657e-01 3.14416677e-01 3.50343585e-01 2.76876569e-01 6.74624026e-01 -5.72093844e-01 -3.24763119e-01 4.24649604e-02 -2.27792129e-01 7.13886380e-01 7.13957310e-01 2.97378898e-01 -1.20594966e+00 7.78678656e-01 6.22535467e+00 3.96294475e-01 -1.50514400e+00 -3.98033485e-02 6.42048657e-01 -2.64187664e-01 5.80358326e-01 1.10010460e-01 -7.78733730e-01 5.42657256e-01 7.54814446e-01 2.80642182e-01 -6.94954842e-02 3.01611394e-01 5.93760431e-01 -5.43225527e-01 -6.25445008e-01 7.82161355e-01 -7.44844973e-02 -1.65373003e+00 1.09660476e-01 4.95903909e-01 7.70854652e-01 4.26243305e-01 -1.00589924e-01 -3.77729982e-01 -2.47323170e-01 -1.09275949e+00 1.29836112e-01 9.47995484e-01 1.09308767e+00 -3.77164572e-01 1.32187855e+00 -2.16110259e-01 -2.97397435e-01 -1.60930321e-01 -5.35713881e-02 -1.77378908e-01 -2.31822163e-01 7.27027595e-01 -1.22213769e+00 2.69798726e-01 6.93043947e-01 8.01416039e-01 -1.05514812e+00 2.28527427e+00 -2.24742785e-01 8.30152273e-01 -4.17864509e-02 3.32592607e-01 1.59122333e-01 -2.29250431e-01 6.37555063e-01 8.01963568e-01 4.31005508e-01 -3.50229144e-01 -3.18950891e-01 4.85438228e-01 1.15854055e-01 1.87248006e-01 -2.87155509e-01 1.80615298e-02 1.57767624e-01 1.15448284e+00 -7.83565640e-01 -2.03171074e-01 -4.06032383e-01 3.40561986e-01 -7.16419592e-02 1.90104991e-01 -1.34930953e-01 -4.41381902e-01 5.43396652e-01 8.35177183e-01 1.29005956e-02 9.69958007e-02 -3.95035505e-01 -6.98693633e-01 1.55821785e-01 -7.99889922e-01 2.45111644e-01 -7.52887666e-01 -9.07344997e-01 6.75496280e-01 -4.48568821e-01 -1.60047221e+00 -1.38159096e-01 -8.82310987e-01 -5.20911992e-01 1.07600331e+00 -1.52800739e+00 -1.38983214e+00 -5.23494899e-01 2.20043331e-01 7.50449076e-02 -4.28837001e-01 7.39222288e-01 2.19926745e-01 -4.30006355e-01 3.38912338e-01 -5.50279878e-02 2.00625733e-01 9.42263365e-01 -1.47791004e+00 5.23195080e-02 8.90711367e-01 -3.25721860e-01 6.65044308e-01 4.32971299e-01 -5.87772250e-01 -6.82568491e-01 -1.22944558e+00 8.91439080e-01 -3.01407099e-01 5.34513831e-01 3.12141478e-01 -6.69172406e-01 3.11997265e-01 -7.32274577e-02 1.39622316e-01 6.15358055e-01 3.92233320e-02 1.28708795e-01 -1.86879098e-01 -1.03537321e+00 2.72429794e-01 8.16500962e-01 -3.49440157e-01 -4.97481436e-01 6.93399429e-01 1.17611105e-03 -6.79003596e-01 -9.07309353e-01 6.32641017e-01 5.88237286e-01 -1.37998736e+00 4.06402171e-01 -5.26084304e-01 2.63441354e-01 -5.93030632e-01 3.24949354e-01 -8.04663599e-01 8.50714743e-02 -6.30508542e-01 2.71887839e-01 7.13392913e-01 5.52225113e-01 -1.10562944e+00 7.90199518e-01 8.65640417e-02 -5.80957830e-01 -1.15652692e+00 -8.03499043e-01 -4.85507965e-01 -1.51409388e-01 -1.11472845e-01 1.42379120e-01 5.43991923e-01 -5.76023161e-01 -1.51931405e-01 1.38274178e-01 2.26377681e-01 4.57578570e-01 1.77091792e-01 7.25165009e-01 -1.70044887e+00 -1.71337888e-01 -4.54702497e-01 -1.32429922e+00 -3.04933101e-01 -4.49241489e-01 -8.11595678e-01 -3.89243186e-01 -2.08916497e+00 -7.58383796e-02 -5.00909746e-01 -1.79898605e-01 6.15993142e-01 5.97407743e-02 8.21451426e-01 -5.39868295e-01 6.04757249e-01 -8.11390653e-02 -2.85055548e-01 1.59141910e+00 7.60704204e-02 -3.32961231e-01 5.30920327e-01 -9.20295894e-01 6.56913996e-01 8.12004447e-01 -7.63125867e-02 -5.19952893e-01 -1.83046520e-01 1.10270493e-01 -3.63530546e-01 8.16002190e-01 -1.44528556e+00 7.10054487e-02 5.72635353e-01 3.41686785e-01 -3.65075618e-01 1.96489301e-02 -1.67688176e-01 -2.63298541e-01 5.86661160e-01 -1.02257859e-02 -6.36911094e-01 2.11295471e-01 3.45896930e-01 -4.86137092e-01 -2.47283792e-03 9.69214737e-01 5.02255373e-02 -5.07012725e-01 2.53775358e-01 -1.12397127e-01 1.05221890e-01 9.60386038e-01 -5.93668044e-01 -8.02132428e-01 -4.53060381e-02 -1.03986180e+00 -1.92484986e-02 5.67486286e-01 2.69573271e-01 2.66448379e-01 -5.22770524e-01 -1.05598140e+00 3.20119083e-01 3.71620327e-01 1.58846319e-01 1.99983362e-02 1.30259740e+00 -9.56870437e-01 6.43125296e-01 -1.75567448e-01 -9.32289183e-01 -1.41920257e+00 -5.55339344e-02 8.78630936e-01 3.83695215e-02 -6.59484506e-01 6.93887413e-01 -3.16559464e-01 2.88911223e-01 5.21720909e-02 -6.73259616e-01 -4.41288888e-01 1.12291135e-01 5.75429022e-01 2.74200439e-01 6.64717674e-01 -5.24788260e-01 1.97671782e-02 7.82827377e-01 -3.81898731e-01 1.94638237e-01 1.06356585e+00 1.41154528e-01 -5.44179380e-01 1.18664771e-01 7.36844897e-01 5.65136857e-02 -9.93403673e-01 1.15887381e-01 5.44019230e-02 -4.83788639e-01 5.43811917e-01 -1.36851382e+00 -9.44262564e-01 7.63813674e-01 1.39734447e+00 1.93283111e-01 1.17057097e+00 -9.69183296e-02 5.36094248e-01 -9.41326320e-02 3.12173635e-01 -8.25623274e-01 -5.23228765e-01 -5.61883748e-02 8.81110668e-01 -1.30518973e+00 1.12943470e-01 -4.27037805e-01 -2.95753777e-01 9.69508708e-01 3.94465148e-01 -2.74187207e-01 5.57871759e-01 -2.24275455e-01 4.21108246e-01 -4.83543515e-01 -3.08050781e-01 -7.20389187e-01 8.31825495e-01 6.39041543e-01 6.11690104e-01 -5.92766888e-03 -8.08633208e-01 2.24026591e-01 -3.33287448e-01 5.38137674e-01 4.76340532e-01 8.19035470e-01 -6.24031246e-01 -1.18461978e+00 4.71083187e-02 1.24459088e+00 -7.54762292e-01 -1.12239264e-01 -6.16540313e-01 1.08637214e+00 5.94962656e-01 8.77726912e-01 1.80304989e-01 -1.52161056e-02 1.12074450e-01 -6.01514988e-02 4.59672511e-01 -8.31965148e-01 -5.86012661e-01 1.84782267e-01 4.11856800e-01 -4.32185054e-01 -6.69005156e-01 -5.21762311e-01 -1.10939062e+00 4.32897836e-01 -4.39794809e-01 6.06706664e-02 6.78389609e-01 1.06515801e+00 8.56029451e-01 4.13264096e-01 3.11551213e-01 -4.94514495e-01 -1.59902096e-01 -1.21542120e+00 -5.93059123e-01 1.30912289e-01 5.81091702e-01 -5.67810237e-01 -3.75651926e-01 4.03166562e-02]
[15.818700790405273, -3.991852283477783]
7d1a7b2b-6e04-4ecb-9bde-59be4593c6cc
mmdialog-a-large-scale-multi-turn-dialogue
2211.05719
null
https://arxiv.org/abs/2211.05719v3
https://arxiv.org/pdf/2211.05719v3.pdf
MMDialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation
Responding with multi-modal content has been recognized as an essential capability for an intelligent conversational agent. In this paper, we introduce the MMDialog dataset to better facilitate multi-modal conversation. MMDialog is composed of a curated set of 1.08 million real-world dialogues with 1.53 million unique images across 4,184 topics. MMDialog has two main and unique advantages. First, it is the largest multi-modal conversation dataset by the number of dialogues by 88x. Second, it contains massive topics to generalize the open-domain. To build engaging dialogue system with this dataset, we propose and normalize two response producing tasks based on retrieval and generative scenarios. In addition, we build two baselines for above tasks with state-of-the-art techniques and report their experimental performance. We also propose a novel evaluation metric MM-Relevance to measure the multi-modal responses. Our dataset and scripts are available in https://github.com/victorsungo/MMDialog.
['QIngwei Lin', 'Dongyan Zhao', 'Chongyang Tao', 'Yaming Yang', 'Pu Zhao', 'Can Xu', 'Qingfeng Sun', 'Jiazhan Feng']
2022-11-10
null
null
null
null
['multimodal-intent-recognition']
['miscellaneous']
[-2.85656720e-01 -6.74448535e-03 9.52171460e-02 -6.55654669e-01 -1.31008911e+00 -6.43321991e-01 1.20124495e+00 -5.53604126e-01 -3.55329961e-01 8.85948300e-01 9.52077329e-01 2.61981547e-01 3.43047440e-01 -6.34685159e-01 -3.64970975e-02 -6.87100172e-01 4.73347366e-01 1.12606525e+00 1.03477187e-01 -6.09573007e-01 3.75776023e-01 -1.39942423e-01 -1.19322622e+00 9.40920591e-01 8.44193161e-01 8.24535668e-01 3.66185337e-01 9.01895106e-01 -1.69541135e-01 8.74896348e-01 -9.84858811e-01 -5.35408020e-01 -2.15698317e-01 -7.08216965e-01 -1.28926945e+00 6.63999692e-02 2.71784514e-01 -7.06951261e-01 -5.69972098e-01 7.66808093e-01 1.09854889e+00 3.75895888e-01 8.48103940e-01 -1.27886021e+00 -1.05364144e+00 6.67051077e-01 -5.17598927e-01 2.55144864e-01 9.92515504e-01 3.40240866e-01 8.66018713e-01 -9.79248524e-01 7.82807410e-01 1.82147419e+00 -1.72252860e-02 1.00057805e+00 -7.49441564e-01 -6.37905300e-01 -2.21300021e-01 2.68282443e-01 -8.81290317e-01 -6.58547759e-01 6.57916665e-01 -2.72309393e-01 9.13283408e-01 4.05866802e-01 8.46282095e-02 1.69956660e+00 -2.25134283e-01 1.15118504e+00 1.30366325e+00 -2.86646336e-01 -2.93520540e-01 4.00907964e-01 -9.39628258e-02 3.93332183e-01 -7.50793576e-01 -5.47751904e-01 -6.82100832e-01 -2.49401912e-01 3.68328571e-01 -2.04893306e-01 -4.59307373e-01 2.51968265e-01 -1.33678162e+00 1.22453189e+00 1.29177690e-01 1.94900453e-01 -1.31196246e-01 -4.01654333e-01 7.42983282e-01 5.34490645e-01 5.82069278e-01 2.75745243e-01 -1.06600665e-01 -5.79070270e-01 -9.37396437e-02 4.86322522e-01 1.07880712e+00 9.63224709e-01 7.45283365e-01 -4.24993902e-01 -4.66318280e-01 1.68241930e+00 1.86888859e-01 5.50487339e-01 8.75215054e-01 -1.16539168e+00 8.12098324e-01 7.25904226e-01 -6.87786117e-02 -8.58527422e-01 -5.19127488e-01 3.61979485e-01 -1.00927269e+00 -5.55116773e-01 3.18592012e-01 -3.30413073e-01 -1.22425422e-01 1.81049597e+00 5.08487403e-01 -4.51693863e-01 3.44381481e-01 1.00868428e+00 1.57434738e+00 8.64169717e-01 -1.16879493e-01 -2.53303707e-01 1.46887147e+00 -1.49316406e+00 -7.71137714e-01 -1.58559144e-01 4.89941001e-01 -1.00593042e+00 1.70145321e+00 1.18028671e-01 -1.09313715e+00 -2.71338433e-01 -5.85350454e-01 -2.91951537e-01 -3.48832548e-01 -7.02489316e-02 5.89599729e-01 2.65578747e-01 -9.59578514e-01 -3.48831832e-01 4.11890820e-02 -7.35758722e-01 -1.39308795e-01 -2.16442198e-01 -3.16250473e-01 6.07789010e-02 -1.51561737e+00 1.07616687e+00 5.51709614e-04 -5.00058591e-01 -9.32953656e-01 -3.23707700e-01 -5.68528950e-01 -3.24922025e-01 4.81499135e-02 -6.84595168e-01 1.82242072e+00 -4.27573949e-01 -1.80056143e+00 1.35487461e+00 -1.30762607e-01 -2.09782019e-01 6.99076474e-01 -1.36642188e-01 -4.61721063e-01 4.40908015e-01 3.78281534e-01 8.82605433e-01 4.03112829e-01 -1.01149130e+00 -5.98635137e-01 -3.85878712e-01 4.47302818e-01 6.63824737e-01 -5.43850124e-01 1.58947691e-01 -6.65981174e-01 -3.81627172e-01 -1.08534589e-01 -1.09837282e+00 2.83558488e-01 -7.32101500e-01 -5.25765121e-01 -7.06660628e-01 8.33431125e-01 -3.24973345e-01 9.08692122e-01 -1.98854315e+00 5.99444099e-02 -6.47338986e-01 2.59595364e-01 -1.71721131e-01 -1.11305162e-01 8.68680954e-01 3.95560354e-01 -1.89040989e-01 2.67775394e-02 -5.75109124e-01 3.22905660e-01 -5.44620231e-02 -2.89047807e-01 3.34606737e-01 -1.85657874e-01 8.68326902e-01 -6.41203105e-01 -6.29783869e-01 2.53376603e-01 2.07598865e-01 -4.08745557e-01 7.24709630e-01 -3.35310906e-01 8.05596232e-01 -4.77253944e-01 4.62243438e-01 6.63503647e-01 -3.91976565e-01 1.07412517e-01 -1.05702095e-01 7.48128965e-02 5.37004292e-01 -5.60477316e-01 2.02838755e+00 -6.74762011e-01 6.89115405e-01 1.46602005e-01 -6.43901110e-01 8.98298383e-01 3.99194151e-01 4.09687698e-01 -9.53223050e-01 2.12336704e-01 -8.49020109e-02 -4.16226864e-01 -7.12109149e-01 9.11036789e-01 5.45169376e-02 -8.19321692e-01 1.04156280e+00 2.15619087e-01 -2.75547504e-01 3.61758709e-01 7.13017046e-01 8.82725775e-01 -4.65973049e-01 2.19957322e-01 -4.96980101e-02 7.46905148e-01 -4.62462194e-02 3.40595841e-01 7.50298381e-01 -4.35114920e-01 5.45769334e-01 4.98402894e-01 -1.89253494e-01 -7.15277910e-01 -9.72223818e-01 -1.97501093e-01 1.70066416e+00 1.61723390e-01 -1.65048361e-01 -7.76415706e-01 -4.14677560e-01 -3.55688870e-01 4.13129359e-01 -6.33700669e-01 1.49702802e-01 -3.29781830e-01 -1.00505936e+00 7.32586622e-01 -1.74123403e-02 1.18398941e+00 -1.35332549e+00 2.71681929e-04 -2.68908273e-02 -1.13643014e+00 -1.31898129e+00 -8.00587952e-01 -5.71126044e-01 -4.37134206e-02 -1.14732981e+00 -8.86339009e-01 -8.56890142e-01 7.47926235e-02 6.03127122e-01 1.58820069e+00 -3.06009442e-01 -4.20684852e-02 5.42992592e-01 -6.43943906e-01 -8.12126249e-02 -6.85862899e-01 2.54783660e-01 7.21321851e-02 -9.17230248e-02 7.11730659e-01 -4.95828420e-01 -7.47671187e-01 5.31406522e-01 -5.62637031e-01 2.77858824e-01 4.10747468e-01 9.09317791e-01 1.33601174e-01 -7.41648138e-01 1.02960682e+00 -1.03097856e+00 1.45668817e+00 -7.89701760e-01 2.55218167e-02 2.06578493e-01 -1.70594633e-01 -4.04787183e-01 3.39690536e-01 -4.82975096e-01 -1.47385728e+00 -4.71656412e-01 -1.55917376e-01 2.59048969e-01 -3.63078833e-01 2.15803728e-01 -2.56658196e-01 3.97673190e-01 6.76243186e-01 2.59445041e-01 -9.92926285e-02 -3.18318963e-01 6.79780066e-01 1.39968073e+00 7.27550149e-01 -7.18446136e-01 6.45573810e-02 2.75323391e-01 -7.80792236e-01 -8.52308214e-01 -7.64437914e-01 -6.84054613e-01 -2.32757285e-01 -5.91210663e-01 8.17387283e-01 -1.01920593e+00 -1.24603796e+00 7.91029930e-01 -1.40505934e+00 -3.13275814e-01 3.01325262e-01 2.91631252e-01 -8.03367913e-01 3.91613156e-01 -1.10636914e+00 -6.79879427e-01 -7.96895802e-01 -1.04362047e+00 8.13214064e-01 5.10981560e-01 -2.85771459e-01 -8.96482348e-01 5.02638817e-01 9.35893118e-01 3.72209817e-01 -8.71034935e-02 3.65453869e-01 -8.29528928e-01 -1.23419322e-01 1.79053649e-01 -3.90017986e-01 -2.50972975e-02 1.50649268e-02 -3.61882001e-01 -1.25975084e+00 -1.69238314e-01 1.46662310e-01 -1.18346751e+00 7.77367890e-01 3.82334664e-02 7.36511230e-01 -5.28827429e-01 -7.87416324e-02 1.16844557e-01 7.30800271e-01 1.43244192e-01 5.98116815e-01 4.85934794e-01 3.20660353e-01 8.42096269e-01 8.21619570e-01 8.84010613e-01 1.18057477e+00 6.53319895e-01 2.27300748e-01 1.27371788e-01 1.15981802e-01 -1.32976755e-01 3.62621218e-01 1.28326440e+00 4.10115838e-01 -5.15064299e-01 -6.81095362e-01 6.55766904e-01 -1.99158251e+00 -1.22200704e+00 -5.52799255e-02 1.65094519e+00 1.22543800e+00 -3.31417292e-01 5.09905994e-01 -6.71992958e-01 8.10426891e-01 4.83002275e-01 -5.87930739e-01 -4.06612426e-01 -5.44863105e-01 -5.25988638e-01 -3.25799286e-01 5.66638172e-01 -1.04070246e+00 9.75574374e-01 5.77140570e+00 7.21989036e-01 -7.01735437e-01 4.35589105e-01 7.65214801e-01 -2.91704178e-01 -1.69325367e-01 -4.50418711e-01 -9.02037144e-01 5.37807465e-01 9.83974993e-01 -4.13244575e-01 3.02763581e-01 8.81052315e-01 7.78730884e-02 -1.83517963e-01 -8.67898345e-01 1.12157881e+00 5.27771056e-01 -1.22763598e+00 7.44911954e-02 -2.26603270e-01 6.78029418e-01 1.76221400e-01 2.18063533e-01 6.75600469e-01 6.92593277e-01 -7.78674662e-01 7.40329474e-02 4.45839435e-01 6.97594821e-01 -7.12297976e-01 6.31566226e-01 4.11536038e-01 -9.11733329e-01 2.49204695e-01 -3.81127656e-01 9.87358540e-02 3.58794928e-01 2.22523078e-01 -1.03283405e+00 2.19294846e-01 7.42474437e-01 5.07665873e-01 -2.78317481e-01 4.50497746e-01 2.35208049e-02 1.10362194e-01 -1.77949235e-01 -3.06375831e-01 2.96110749e-01 -2.31397867e-01 4.36871648e-01 1.53552997e+00 -7.57225752e-02 3.24036986e-01 2.62789428e-01 5.85619390e-01 -4.24345851e-01 2.67511159e-01 -5.60359418e-01 1.54510245e-01 9.88614798e-01 1.65268850e+00 -1.33948412e-03 -4.48404968e-01 -5.63505352e-01 1.11644316e+00 4.82621044e-01 1.07174695e-01 -9.00454581e-01 -2.72386521e-01 6.92151129e-01 -4.39859360e-01 -4.33089703e-01 8.75995308e-02 1.25368327e-01 -1.15333903e+00 -3.31873484e-02 -1.13137496e+00 6.20003343e-01 -7.59545088e-01 -1.77545094e+00 8.59986126e-01 -1.14946760e-01 -1.13143444e+00 -7.62524486e-01 -2.27246180e-01 -6.27264678e-01 7.99590349e-01 -1.10907233e+00 -1.33550501e+00 -7.34530747e-01 9.44160223e-01 1.15271342e+00 -4.56450611e-01 1.19616961e+00 3.68864715e-01 -6.11816108e-01 7.02382684e-01 1.10051036e-01 2.36516997e-01 1.51792383e+00 -1.17964339e+00 2.61642307e-01 9.80970636e-02 -3.57857883e-01 4.85442311e-01 6.64889216e-01 -1.64508596e-01 -1.26446128e+00 -7.15232968e-01 6.81864858e-01 -6.18240595e-01 7.25056589e-01 -3.75804812e-01 -7.62295485e-01 7.07056582e-01 9.77177918e-01 -7.07301438e-01 9.31135118e-01 1.27426878e-01 -2.45484248e-01 1.40615180e-01 -1.16786170e+00 6.30746841e-01 7.06623971e-01 -7.10262954e-01 -6.37566745e-01 9.25654829e-01 8.11834812e-01 -6.19696021e-01 -1.04291666e+00 6.42930865e-02 4.10865605e-01 -1.26684344e+00 8.16074491e-01 -3.85831058e-01 6.23416901e-01 3.66164446e-01 -3.19368035e-01 -1.42248011e+00 -1.13156371e-01 -7.60916352e-01 -2.13508308e-02 1.72673523e+00 4.52880055e-01 -6.42402112e-01 6.17301643e-01 5.93594134e-01 -1.71619788e-01 -5.07666588e-01 -8.17810953e-01 -1.38211176e-01 2.98187047e-01 -3.29224183e-03 6.60588503e-01 1.20417261e+00 5.12652814e-01 1.05748868e+00 -7.11666465e-01 -3.72479916e-01 3.66608202e-01 3.75923693e-01 1.45066047e+00 -8.58368039e-01 -1.85950786e-01 -3.70751113e-01 1.51488379e-01 -1.72178555e+00 3.86341244e-01 -4.25732791e-01 -9.47941542e-02 -1.47246051e+00 7.25777090e-01 -2.46479481e-01 3.14889163e-01 8.66922140e-02 -1.34047329e-01 2.63148725e-01 -4.64807339e-02 4.82324094e-01 -1.07799792e+00 8.83899570e-01 1.43436849e+00 -3.27325255e-01 -1.06819369e-01 -2.29240134e-01 -7.50955582e-01 5.70343733e-01 1.08389449e+00 1.17711127e-02 -4.16967750e-01 -3.75283629e-01 -2.21123517e-01 4.83111352e-01 -3.39780226e-02 -4.81657207e-01 4.32128072e-01 -2.97119528e-01 -6.66440502e-02 -9.22301531e-01 9.37174499e-01 3.10179815e-02 -3.07802469e-01 -1.16330177e-01 -6.40420496e-01 2.57343799e-01 -1.42224412e-02 3.30161721e-01 -4.25719053e-01 -4.92186733e-02 8.13199878e-01 -4.38378751e-01 -8.50071490e-01 3.10941022e-02 -4.07043964e-01 6.74675584e-01 8.92928362e-01 3.78087729e-01 -1.15606391e+00 -1.14867640e+00 -4.10444766e-01 5.42512298e-01 3.12229097e-01 8.41491699e-01 6.00169539e-01 -1.39072669e+00 -1.13621867e+00 -3.37389678e-01 4.35807943e-01 -2.13636875e-01 8.35030794e-01 7.24799037e-01 -2.69518048e-01 7.10148513e-01 -2.83254981e-01 -4.79028106e-01 -1.44435227e+00 2.11963341e-01 2.37684131e-01 -3.52603704e-01 -5.26420474e-01 9.82320964e-01 5.65155804e-01 -1.02290487e+00 1.52627125e-01 4.93718445e-01 -4.32171464e-01 2.91975677e-01 9.92526531e-01 2.98047721e-01 -2.38604754e-01 -8.23377371e-01 -2.04720482e-01 4.01201881e-02 -4.75107610e-01 -5.46025217e-01 1.03875721e+00 -7.03261733e-01 -3.61466825e-01 5.23716807e-01 1.23232484e+00 -1.11179680e-01 -7.96959043e-01 -4.56352770e-01 -4.56982881e-01 -4.87026691e-01 -4.15975153e-01 -9.02062774e-01 -7.74263799e-01 6.82571411e-01 3.10314596e-01 4.08927470e-01 9.82136369e-01 3.74790579e-01 9.81680095e-01 4.40629929e-01 2.70622581e-01 -1.26956248e+00 6.72713220e-01 8.09827030e-01 1.41995394e+00 -1.66852307e+00 -3.01283121e-01 -1.18159018e-01 -1.23549068e+00 7.13055134e-01 1.12597203e+00 3.12423497e-01 1.39786810e-01 -8.23026821e-02 6.14323139e-01 -2.37289429e-01 -1.13647449e+00 -8.93348604e-02 -1.76569253e-01 5.87087691e-01 6.73685789e-01 1.36619315e-01 -4.00667667e-01 6.29017472e-01 -5.85948348e-01 -5.67508459e-01 6.53607786e-01 4.97964084e-01 -5.46028018e-01 -9.42984641e-01 -2.46645242e-01 2.50720412e-01 -2.90310174e-01 -6.96341097e-02 -9.47793245e-01 6.51062727e-01 -7.44970977e-01 1.59483850e+00 7.32358359e-03 -5.98772407e-01 3.00086677e-01 -4.97079231e-02 2.21071646e-01 -4.77041394e-01 -4.89635557e-01 -1.37406915e-01 4.64616746e-01 -3.48820150e-01 -5.74921906e-01 -6.59191489e-01 -9.90198016e-01 -9.40573037e-01 -1.50236383e-01 3.57726753e-01 4.77247000e-01 6.64909244e-01 4.37669367e-01 2.24269047e-01 9.63127851e-01 -6.16264045e-01 -5.56691527e-01 -1.77096260e+00 -3.48764896e-01 6.39300466e-01 -7.70126879e-02 -6.40833318e-01 -4.64041948e-01 -2.04823390e-01]
[12.81352424621582, 7.918302536010742]
bf71048d-02bd-43ad-b548-abd9546c6023
open-set-recognition-via-augmentation-based
2203.13238
null
https://arxiv.org/abs/2203.13238v3
https://arxiv.org/pdf/2203.13238v3.pdf
Open-set Recognition via Augmentation-based Similarity Learning
The primary assumption of conventional supervised learning or classification is that the test samples are drawn from the same distribution as the training samples, which is called closed set learning or classification. In many practical scenarios, this is not the case because there are unknowns or unseen class samples in the test data, which is called the open set scenario, and the unknowns need to be detected. This problem is referred to as the open set recognition problem and is important in safety-critical applications. We propose to detect unknowns (or unseen class samples) through learning pairwise similarities. The proposed method works in two steps. It first learns a closed set classifier using the seen classes that have appeared in training and then learns how to compare seen classes with pseudo-unseen (automatically generated unseen class samples). The pseudo-unseen generation is carried out by performing distribution shifting augmentations on the seen or training samples. We call our method OPG (Open set recognition based on Pseudo unseen data Generation). The experimental evaluation shows that the learned similarity-based features can successfully distinguish seen from unseen in benchmark datasets for open set recognition.
['Lei Shu', 'Bing Liu', 'Sepideh Esmaeilpour']
2022-03-24
null
null
null
null
['open-set-learning']
['miscellaneous']
[ 6.50645554e-01 1.09888189e-01 -4.14298140e-02 -4.78616685e-01 -6.87879145e-01 -8.18684697e-01 5.77810884e-01 2.98432738e-01 -5.09236120e-02 1.03862619e+00 -2.50598162e-01 -1.06788956e-01 -3.40001017e-01 -8.48171115e-01 -8.08755338e-01 -1.04084802e+00 1.49812967e-01 8.84793103e-01 2.35470325e-01 -3.90554853e-02 2.86605984e-01 3.69690090e-01 -2.13457274e+00 5.45404851e-01 9.89635587e-01 1.07959378e+00 -2.18519166e-01 5.02112448e-01 -2.84984559e-01 3.13343227e-01 -8.47860873e-01 1.55418053e-01 7.81129479e-01 -6.95632279e-01 -5.16722739e-01 1.74344555e-01 7.52297461e-01 -2.73932993e-01 1.78253576e-01 9.33976829e-01 5.97066879e-01 1.58037946e-01 1.15026712e+00 -1.61847365e+00 -5.74093699e-01 2.13542908e-01 -4.67899233e-01 1.83662832e-01 3.68199378e-01 -1.65161058e-01 5.93983829e-01 -9.03303564e-01 4.17624950e-01 9.21237051e-01 3.53169769e-01 8.11523020e-01 -1.13955367e+00 -8.42747390e-01 -2.29493067e-01 3.09184194e-01 -1.49121523e+00 -4.19965565e-01 7.03992069e-01 -5.78859031e-01 3.05981368e-01 5.76540232e-01 3.53851646e-01 1.10540545e+00 1.64636195e-01 7.58328795e-01 1.22924709e+00 -6.04725063e-01 6.78911686e-01 6.46816552e-01 4.80395615e-01 1.93180323e-01 6.12121403e-01 6.12226307e-01 -9.93211120e-02 -3.94199073e-01 4.25405145e-01 4.38059241e-01 -7.75289536e-01 -9.42061305e-01 -1.13925660e+00 7.58799732e-01 3.34646255e-01 3.45420875e-02 -1.12631157e-01 -6.02696776e-01 3.57505143e-01 6.31374061e-01 2.50853807e-01 2.60935843e-01 -5.01611471e-01 2.55790502e-01 -4.87386614e-01 -2.81433780e-02 1.10772634e+00 9.82891679e-01 7.02946424e-01 -1.81421459e-01 -1.43194988e-01 9.57997322e-01 1.10121801e-01 5.45243025e-01 8.64487410e-01 -1.01691954e-01 3.84950519e-01 6.27373338e-01 1.33254841e-01 -6.37936056e-01 7.28812516e-02 -4.70104992e-01 -6.02174461e-01 4.30678785e-01 4.37749922e-01 -2.03004703e-01 -1.13823795e+00 1.34509540e+00 5.75232983e-01 5.58318436e-01 4.77663368e-01 7.26453304e-01 8.68270159e-01 7.44654536e-01 -5.87472081e-01 -4.22113657e-01 7.96398640e-01 -6.91352665e-01 -6.39725029e-01 -7.86112025e-02 7.06376493e-01 -5.58008075e-01 6.44074023e-01 5.42266667e-01 -2.24350408e-01 -7.10906267e-01 -1.36304772e+00 6.19561911e-01 -7.11761475e-01 -1.49383917e-01 1.87351052e-02 8.54423106e-01 -3.83203298e-01 3.13214809e-01 -2.06322819e-01 -4.13064927e-01 6.21003926e-01 4.75750536e-01 -5.15926778e-01 -4.00904059e-01 -8.78751159e-01 5.37570477e-01 7.47188151e-01 5.34282438e-02 -1.19305182e+00 -5.15573621e-01 -1.08394372e+00 -4.19973880e-02 5.64794958e-01 -3.60087514e-01 7.93224752e-01 -9.95373368e-01 -9.47797596e-01 7.43255615e-01 9.30476934e-02 -2.34348267e-01 4.58029419e-01 2.87898928e-02 -5.98763883e-01 -2.29217321e-01 -1.82858948e-02 4.08100933e-01 1.15114427e+00 -1.71779501e+00 -7.83286870e-01 -6.31940901e-01 -3.26217115e-01 -6.86764717e-03 -3.74090225e-01 -4.73148584e-01 4.07531291e-01 -4.35569018e-01 5.12784064e-01 -8.67525816e-01 2.66490519e-01 -1.40700385e-01 -3.78083706e-01 -2.50727922e-01 1.57983720e+00 -1.42645538e-01 9.20849144e-01 -2.13374305e+00 -4.25848961e-01 7.11589992e-01 3.51220042e-01 4.70405549e-01 -2.47535273e-01 4.14160192e-01 -7.76509106e-01 -3.47214699e-01 -4.00801688e-01 4.17340368e-01 -1.87541321e-01 3.90988648e-01 -6.41368687e-01 4.63716537e-01 9.94486511e-02 4.93757427e-01 -1.05379713e+00 -2.43373156e-01 3.22431743e-01 5.12416475e-02 -1.32950649e-01 3.48793089e-01 1.69907436e-02 5.59028983e-01 -5.02166152e-01 5.82006156e-01 9.39107716e-01 9.62521508e-02 -2.32000396e-01 2.07697563e-02 3.99610132e-01 -4.48808551e-01 -1.52026272e+00 9.46975708e-01 -5.18650450e-02 2.36670926e-01 -5.58879793e-01 -1.16675484e+00 1.28303945e+00 3.75704885e-01 4.44253627e-03 -3.13335717e-01 1.58177420e-01 4.64797169e-01 2.62829065e-01 -6.11039221e-01 1.71791017e-02 -3.15048575e-01 1.56660303e-01 4.87286538e-01 1.27383053e-01 -7.51888454e-02 -5.85322194e-02 -1.79681823e-01 9.22568798e-01 -9.83167067e-02 4.63170886e-01 -1.70012280e-01 6.83949769e-01 -6.13054149e-02 8.02467227e-01 7.19797075e-01 -2.59366095e-01 8.90717626e-01 3.56757581e-01 -4.54996824e-01 -7.48646557e-01 -1.39026046e+00 -6.60478354e-01 3.78019214e-01 2.32117817e-01 5.33634946e-02 -6.62190318e-01 -1.31672871e+00 1.48845404e-01 5.17375648e-01 -7.67730653e-01 -4.62687194e-01 -1.63843706e-01 -3.08929145e-01 9.11913663e-02 5.77171922e-01 1.84637412e-01 -9.06673014e-01 -3.59931111e-01 -2.65074745e-02 1.22906134e-01 -5.48347414e-01 -3.91736299e-01 4.54995632e-01 -7.73112833e-01 -1.62334895e+00 -7.45900035e-01 -9.87517118e-01 1.20547807e+00 1.06376342e-01 6.25840724e-01 -2.49404982e-01 -5.69177270e-01 2.90326864e-01 -7.14348197e-01 -7.76918054e-01 -4.96225476e-01 -5.73436499e-01 4.84350950e-01 7.07430542e-01 5.96382678e-01 -2.66948014e-01 -2.73997992e-01 7.61121690e-01 -1.08833444e+00 -5.56203485e-01 6.21459424e-01 1.39299846e+00 8.21540892e-01 4.13629204e-01 9.70150232e-01 -1.12999022e+00 4.58430588e-01 -5.29369831e-01 -6.02828443e-01 5.91625869e-01 -3.78261566e-01 1.54179454e-01 9.17422295e-01 -7.14083672e-01 -7.30024219e-01 2.50248853e-02 2.57517844e-01 -7.85611510e-01 -7.45695829e-01 8.68658125e-02 -4.50046450e-01 -1.94182768e-01 8.89681816e-01 3.85244310e-01 2.04270318e-01 -2.67001867e-01 5.79257980e-02 1.25368214e+00 4.08254087e-01 -5.77602565e-01 1.04140913e+00 5.35315394e-01 -1.97882175e-01 -9.15415943e-01 -8.53723824e-01 -7.06706822e-01 -6.54497683e-01 -1.39866784e-01 5.66076934e-01 -4.83033091e-01 -2.08907440e-01 4.13937330e-01 -5.97146511e-01 -6.21652789e-02 -9.29907799e-01 6.74786031e-01 -5.19528627e-01 4.24852073e-01 1.00499891e-01 -8.88117909e-01 -1.49311572e-01 -1.07567859e+00 1.10002458e+00 2.09366009e-01 -9.19122547e-02 -8.84156942e-01 9.17266458e-02 2.89070874e-01 -9.35642421e-02 6.06419265e-01 9.48261082e-01 -1.66154766e+00 -2.44811654e-01 -6.96374297e-01 1.27613768e-01 8.19529057e-01 4.49256688e-01 -5.25107622e-01 -1.19796431e+00 -5.22470891e-01 3.42484355e-01 -6.00907445e-01 5.82277775e-01 4.72873934e-02 1.19103718e+00 -2.00215429e-01 -4.51673657e-01 2.08738819e-01 1.19336927e+00 4.59188819e-01 6.18080080e-01 -3.02055448e-01 4.72562879e-01 7.86573946e-01 9.39844429e-01 5.17545104e-01 -4.80203003e-01 2.55431950e-01 1.41930088e-01 -4.45606001e-03 1.53758377e-01 -2.74286062e-01 8.51327404e-02 3.97900432e-01 5.84520757e-01 -3.12108755e-01 -9.08741236e-01 5.08626640e-01 -1.77974796e+00 -1.09843147e+00 -2.91005015e-01 2.83787608e+00 6.49086893e-01 1.48231208e-01 -2.65821546e-01 8.19775224e-01 1.13827133e+00 -5.00413716e-01 -7.20194042e-01 -2.68041879e-01 -4.48283885e-04 4.90412503e-01 2.63716821e-02 1.19508930e-01 -9.65572953e-01 1.50934055e-01 5.37023687e+00 1.03266561e+00 -8.93855393e-01 -2.47614563e-01 7.33301759e-01 1.78515166e-01 -6.87929168e-02 -7.21104816e-03 -9.42484558e-01 3.39283764e-01 5.14196455e-01 -6.54243380e-02 -4.70009111e-02 7.85328031e-01 -1.06112912e-01 -2.14060426e-01 -1.92318356e+00 1.29560328e+00 6.32344127e-01 -8.48907351e-01 2.30487585e-01 1.68791845e-01 9.36793387e-01 -4.89926487e-01 3.23301814e-02 6.04210019e-01 -1.20151348e-01 -8.04215014e-01 2.93047160e-01 4.94687140e-01 7.74866045e-01 -6.36122584e-01 1.11480331e+00 8.01650643e-01 -7.91381299e-01 -3.75475347e-01 -4.55510706e-01 9.84152332e-02 -3.31339747e-01 6.66146994e-01 -1.03185284e+00 4.90294814e-01 4.93598849e-01 7.03152835e-01 -4.38688099e-01 1.46968699e+00 -6.78583309e-02 6.41392112e-01 -3.55315357e-01 1.05270840e-01 -4.08230498e-02 -3.23479235e-01 5.48227787e-01 2.93348223e-01 2.65439183e-01 2.08120439e-02 3.35509300e-01 7.89654374e-01 3.98583375e-02 -7.66013861e-02 -9.53594148e-01 1.25866339e-01 3.73895228e-01 1.00474286e+00 -6.45376623e-01 -3.87979448e-01 -2.56426156e-01 1.01079631e+00 -1.74171671e-01 2.77652502e-01 -6.94831133e-01 -8.45936537e-01 1.56076312e-01 5.47982529e-02 3.08087736e-01 6.89152181e-01 1.34063557e-01 -1.00776768e+00 2.47449785e-01 -9.21336472e-01 8.37226510e-01 -5.99845171e-01 -1.87937450e+00 4.27163243e-01 4.16126810e-02 -1.94032800e+00 -1.10899784e-01 -6.86631620e-01 -8.35820436e-01 7.22326756e-01 -1.24681175e+00 -6.77722514e-01 -4.73357826e-01 6.23654723e-01 5.42688966e-01 -2.84922361e-01 8.59838188e-01 1.26803771e-01 -3.71901661e-01 8.20422530e-01 5.97438157e-01 2.81940103e-01 9.53545332e-01 -1.25386083e+00 -3.30253184e-01 5.37696540e-01 1.12553559e-01 4.42148805e-01 4.76955771e-01 -5.78297317e-01 -9.84036744e-01 -1.26135755e+00 6.53373003e-01 -6.04565382e-01 2.71055073e-01 -5.80709696e-01 -9.31205153e-01 4.35357302e-01 -1.70789629e-01 6.44639671e-01 1.13467550e+00 -2.32455194e-01 -2.91944087e-01 -3.40620339e-01 -1.58771574e+00 7.67798275e-02 6.83521450e-01 -1.94774553e-01 -1.20592058e+00 5.08666694e-01 4.10661072e-01 -3.45255762e-01 -6.84208870e-01 5.64234436e-01 4.37750757e-01 -8.03224802e-01 6.08654141e-01 -8.13688755e-01 -1.56557560e-03 -6.28439009e-01 -1.90106764e-01 -1.42525113e+00 1.97868511e-01 -2.83112019e-01 -9.01929438e-02 1.20638120e+00 3.98987025e-01 -1.21879065e+00 7.01680124e-01 3.35346043e-01 -2.14142457e-01 -7.80636132e-01 -6.91784382e-01 -1.21759248e+00 -3.36880647e-02 4.46413420e-02 6.18126094e-01 1.25972843e+00 -5.16180228e-03 2.93024927e-01 1.13176465e-01 2.88922101e-01 7.44851291e-01 3.91040802e-01 7.42632091e-01 -1.53828657e+00 -3.73470902e-01 2.68571228e-01 -9.42902267e-01 -7.51620829e-01 1.01665311e-01 -8.43266428e-01 1.00227028e-01 -1.17017508e+00 2.75814742e-01 -7.63264894e-01 -3.68037462e-01 4.51586127e-01 -3.31296250e-02 1.73960194e-01 -4.03091013e-01 1.11479640e-01 -5.09934306e-01 6.17913723e-01 1.13995421e+00 -1.87342882e-01 -3.12487036e-01 3.37709188e-01 -5.64838827e-01 4.43484962e-01 6.37009144e-01 -4.61234510e-01 -7.09528446e-01 1.52013376e-01 -3.56775671e-01 8.51194561e-02 3.57718736e-01 -1.31789923e+00 2.02324037e-02 2.70753000e-02 6.44996464e-01 -8.92370045e-01 4.28130999e-02 -1.17623496e+00 -3.98516133e-02 5.33822179e-01 -2.87899584e-01 -4.41823840e-01 7.50054941e-02 9.76186633e-01 -3.28763783e-01 -5.22602379e-01 7.76356459e-01 2.93379009e-01 -6.13965452e-01 2.35902831e-01 1.64311200e-01 2.82461733e-01 1.77616680e+00 -9.43939030e-01 -3.44331503e-01 -1.02791123e-01 -8.17645967e-01 3.16683948e-01 1.98088124e-01 4.89142954e-01 1.03466630e+00 -1.31381309e+00 -7.89646387e-01 8.27795982e-01 8.66759777e-01 1.80958211e-01 9.15623754e-02 5.58082521e-01 -1.70176655e-01 1.99727118e-01 1.79100670e-02 -8.13634217e-01 -1.23772919e+00 8.10551345e-01 3.77158880e-01 1.50265381e-01 -4.03725654e-01 8.27076018e-01 5.52353442e-01 -8.76104712e-01 4.29228067e-01 -8.24682191e-02 -2.67586857e-01 -6.77033067e-02 6.91697121e-01 2.74865657e-01 3.16885889e-01 -4.26437855e-01 -2.53154966e-03 2.99866229e-01 -3.28551561e-01 4.58414525e-01 1.15156651e+00 4.21979159e-01 2.55404003e-02 6.60029292e-01 1.45845163e+00 -1.12541735e-01 -8.19305062e-01 -2.71831900e-01 -3.21512938e-01 -6.63340330e-01 -3.66641730e-01 -8.13891768e-01 -6.92203879e-01 8.01258802e-01 1.21721947e+00 5.61861433e-02 9.80625212e-01 5.39319357e-03 7.92932272e-01 6.59984231e-01 5.51557899e-01 -1.05040622e+00 4.56045270e-02 3.43344778e-01 8.37992370e-01 -1.37052906e+00 -3.66082579e-01 -6.87551677e-01 -2.33181477e-01 1.14126813e+00 9.52148318e-01 -4.68943678e-02 8.28988194e-01 7.65986294e-02 1.07502505e-01 -4.91320528e-02 -4.76425976e-01 -5.55316284e-02 4.03040171e-01 9.07406211e-01 -2.52766460e-02 -4.65038046e-02 -2.04003632e-01 5.11851013e-01 -5.11572137e-02 -2.19340757e-01 4.69545156e-01 1.29718900e+00 -5.54829538e-01 -1.29071486e+00 -9.69331324e-01 1.05475080e+00 2.98555434e-01 1.58270061e-01 -6.12409592e-01 5.21996737e-01 4.04419541e-01 1.02687073e+00 1.46870911e-01 -5.52060485e-01 3.07644129e-01 1.95313990e-01 4.18916106e-01 -1.01833808e+00 -2.74769872e-01 -3.00566941e-01 -1.69933975e-01 -2.71730781e-01 6.16950095e-02 -4.71834064e-01 -1.28201592e+00 3.70179147e-01 -1.01191258e+00 5.16054988e-01 2.46109769e-01 8.93953860e-01 1.48944780e-01 4.39111084e-01 1.15475178e+00 -4.01024729e-01 -1.14237428e+00 -6.76807225e-01 -8.28920543e-01 6.94921732e-01 4.52813417e-01 -8.71693075e-01 -8.83278787e-01 1.08459210e-02]
[9.789421081542969, 2.956890821456909]
d4dbf85d-035b-4e92-be5b-8c9c9e207a91
unsupervised-domain-adaptation-for-robust
1707.06265
null
http://arxiv.org/abs/1707.06265v2
http://arxiv.org/pdf/1707.06265v2.pdf
Unsupervised Domain Adaptation for Robust Speech Recognition via Variational Autoencoder-Based Data Augmentation
Domain mismatch between training and testing can lead to significant degradation in performance in many machine learning scenarios. Unfortunately, this is not a rare situation for automatic speech recognition deployments in real-world applications. Research on robust speech recognition can be regarded as trying to overcome this domain mismatch issue. In this paper, we address the unsupervised domain adaptation problem for robust speech recognition, where both source and target domain speech are presented, but word transcripts are only available for the source domain speech. We present novel augmentation-based methods that transform speech in a way that does not change the transcripts. Specifically, we first train a variational autoencoder on both source and target domain data (without supervision) to learn a latent representation of speech. We then transform nuisance attributes of speech that are irrelevant to recognition by modifying the latent representations, in order to augment labeled training data with additional data whose distribution is more similar to the target domain. The proposed method is evaluated on the CHiME-4 dataset and reduces the absolute word error rate (WER) by as much as 35% compared to the non-adapted baseline.
['Yu Zhang', 'Wei-Ning Hsu', 'James Glass']
2017-07-19
null
null
null
null
['robust-speech-recognition']
['speech']
[ 6.96968675e-01 4.09465492e-01 8.61020163e-02 -6.55677736e-01 -1.24189723e+00 -7.20680833e-01 6.43379807e-01 -8.44665766e-02 -4.96182799e-01 8.03031862e-01 4.29435104e-01 -5.13856173e-01 2.62857050e-01 -2.93300450e-01 -5.54813504e-01 -8.75005364e-01 5.25770903e-01 6.16529524e-01 1.39824376e-01 -1.72299445e-01 -1.93093911e-01 3.75435501e-01 -1.49704754e+00 3.65782320e-01 9.05549169e-01 5.70761681e-01 4.16917861e-01 5.50240636e-01 -2.87641883e-01 3.50736469e-01 -1.20430791e+00 -1.89996734e-01 1.31016269e-01 -5.87865531e-01 -8.07620168e-01 6.35134995e-01 2.82369345e-01 -1.37949839e-01 -2.45043680e-01 1.00651586e+00 5.59966028e-01 5.06067455e-01 7.88432896e-01 -8.81448030e-01 -6.56809926e-01 6.78827107e-01 -5.06562926e-02 1.90974563e-01 7.22313374e-02 -1.35377973e-01 7.29907751e-01 -9.95121300e-01 4.24947709e-01 1.32935393e+00 -1.58556961e-02 1.02348006e+00 -1.23343587e+00 -5.72851360e-01 2.28117570e-01 9.38044041e-02 -1.31906486e+00 -1.21366358e+00 7.73258984e-01 -2.03438073e-01 1.21068490e+00 2.66150415e-01 -1.08287007e-01 1.70348859e+00 -3.93940032e-01 6.31291568e-01 8.54327857e-01 -7.04526484e-01 4.28701133e-01 4.68646258e-01 -5.41832857e-03 7.91500732e-02 -1.27306581e-01 4.28614654e-02 -5.97190320e-01 -2.74689738e-02 3.12412500e-01 -5.45512795e-01 -2.82565266e-01 -2.65434742e-01 -1.13787198e+00 6.88625872e-01 -1.88794315e-01 5.37891686e-01 -4.75258082e-01 -3.96489054e-01 3.82928044e-01 5.17166436e-01 8.03008318e-01 2.12340400e-01 -5.52312911e-01 -1.70173779e-01 -1.02749467e+00 -2.35893324e-01 6.77610874e-01 8.68465245e-01 5.33668876e-01 7.13010371e-01 -2.94673324e-01 1.41325939e+00 4.46161389e-01 7.57802069e-01 8.80710244e-01 -5.66942811e-01 7.08522201e-01 1.39772817e-01 -5.70830926e-02 -3.16228926e-01 1.36439130e-01 -4.28501546e-01 -6.92038298e-01 -2.10277699e-02 3.15928340e-01 -1.80475533e-01 -1.29514170e+00 1.80524063e+00 3.81979853e-01 1.08646706e-01 8.47825587e-01 6.61070287e-01 7.88449764e-01 1.11773741e+00 6.97933361e-02 -4.41413671e-01 1.03638208e+00 -9.34226274e-01 -1.05766773e+00 -6.77297890e-01 5.41670501e-01 -9.39781487e-01 1.16268241e+00 3.09804767e-01 -9.33905780e-01 -5.10032535e-01 -1.19925523e+00 1.43708944e-01 -3.20522398e-01 2.55869448e-01 -2.45695338e-01 1.06538093e+00 -8.47122610e-01 1.62714496e-01 -7.12874413e-01 -4.00256187e-01 1.70752220e-03 2.79041141e-01 -5.39838493e-01 -1.20382980e-01 -1.17921078e+00 9.46080685e-01 5.99922538e-01 -1.43890396e-01 -1.09127367e+00 -5.17782688e-01 -1.09593880e+00 -4.82028201e-02 3.76942635e-01 -1.18113518e-01 1.47635543e+00 -1.15898418e+00 -1.89248741e+00 6.98595762e-01 -4.45649773e-01 -4.66521978e-01 2.21184030e-01 1.37304723e-01 -8.80578101e-01 -1.72982737e-01 -8.34317729e-02 2.58061975e-01 1.22095335e+00 -1.12087286e+00 -4.86678898e-01 -3.85768592e-01 -4.91525263e-01 2.34581202e-01 -5.79594791e-01 1.77308887e-01 -2.61745274e-01 -7.72946894e-01 1.08946465e-01 -8.21890473e-01 1.51650742e-01 -6.01408303e-01 -2.12426394e-01 -3.14960569e-01 1.02112377e+00 -1.00232804e+00 9.60545599e-01 -2.43520546e+00 2.57113993e-01 1.67716116e-01 -4.45106506e-01 7.74308622e-01 -4.37024862e-01 3.40916634e-01 -1.75205782e-01 7.08823055e-02 -5.76424181e-01 -6.87810719e-01 -2.68082321e-02 6.48390651e-01 -5.21719575e-01 3.54332715e-01 4.69838381e-01 3.53030264e-01 -6.40076220e-01 -1.52755216e-01 3.05916697e-01 5.08310556e-01 -2.86300451e-01 4.83705431e-01 -2.01147497e-01 6.72954857e-01 -6.58751875e-02 2.98053950e-01 7.00521529e-01 3.87132287e-01 3.56165707e-01 2.44089767e-01 7.69346058e-02 8.47983718e-01 -1.21746099e+00 1.46974027e+00 -6.40824080e-01 7.19851732e-01 2.97426373e-01 -1.29292095e+00 1.21744275e+00 7.63862967e-01 7.70201534e-02 -6.21885300e-01 -1.67287499e-01 2.93669343e-01 9.57881734e-02 -2.42644742e-01 3.37232560e-01 -5.31508803e-01 9.76119563e-03 1.76199958e-01 3.44637662e-01 -1.28168181e-01 -1.07439026e-01 -1.36561587e-01 9.41599786e-01 -1.80360541e-01 2.72822171e-01 6.10319264e-02 6.30669713e-01 -2.72050977e-01 7.05742180e-01 4.12488163e-01 -1.96229443e-01 6.10733747e-01 1.47690341e-01 2.64561355e-01 -1.16028631e+00 -1.28995204e+00 4.87543605e-02 1.14232969e+00 -2.97630906e-01 -1.83653399e-01 -8.91847908e-01 -7.23838508e-01 -3.53229284e-01 1.28782821e+00 -2.30357438e-01 -3.71722579e-01 -5.39250135e-01 -3.70961934e-01 7.86225080e-01 4.37847227e-01 2.79337883e-01 -1.06568217e+00 6.07852302e-02 3.33122939e-01 -4.22857195e-01 -1.41859996e+00 -4.70740288e-01 4.15397912e-01 -7.46313512e-01 -4.76177305e-01 -8.93117070e-01 -8.88051212e-01 5.50295949e-01 1.71248481e-01 7.89173245e-01 -3.05647999e-01 3.91553283e-01 1.43936992e-01 -6.60469055e-01 -4.03920352e-01 -1.16407895e+00 1.13590725e-01 2.65783608e-01 3.77621651e-01 4.39887792e-01 -2.96698034e-01 1.99233696e-01 4.02421743e-01 -1.02938938e+00 -3.95036161e-01 6.12860143e-01 9.97473061e-01 5.18755257e-01 6.58022836e-02 8.84202302e-01 -7.17382729e-01 5.82533300e-01 -5.07510722e-01 -3.83381546e-01 2.54636228e-01 -3.30607563e-01 1.55496284e-01 5.70832312e-01 -6.89755440e-01 -1.53572261e+00 9.69104618e-02 -5.85520625e-01 -4.68175739e-01 -6.04332149e-01 4.10803229e-01 -7.74124861e-01 5.07569075e-01 7.92213917e-01 4.66949940e-01 -8.89097303e-02 -7.27626741e-01 2.21671179e-01 1.34611344e+00 4.29138243e-01 -3.52992326e-01 8.90716910e-01 -3.75656821e-02 -6.95728898e-01 -1.49545562e+00 -5.45929968e-01 -5.20796835e-01 -7.32787132e-01 1.13923304e-01 7.30732679e-01 -8.44151974e-01 2.68849283e-01 2.95788556e-01 -1.34793019e+00 -3.46286476e-01 -3.86258662e-01 6.73263967e-01 -3.81492078e-01 3.81324708e-01 -3.26877236e-02 -1.07334292e+00 -7.85125867e-02 -1.21327055e+00 1.01394415e+00 -1.93700776e-01 -1.92875326e-01 -8.97413790e-01 9.27412733e-02 5.09745359e-01 3.22350830e-01 -3.47513705e-01 8.85081828e-01 -1.44598150e+00 -6.06252700e-02 6.25114795e-03 2.58307934e-01 1.09207237e+00 4.79296744e-01 -2.19587579e-01 -1.29986537e+00 -3.87131274e-01 1.86955050e-01 -1.27943411e-01 5.73422909e-01 1.12008922e-01 6.51430726e-01 -4.09775466e-01 -8.49133804e-02 2.44089246e-01 6.67988420e-01 5.67185640e-01 6.06237054e-01 -3.62909911e-03 3.51450711e-01 8.55937123e-01 5.91450036e-01 1.43712774e-01 -1.29782185e-01 8.74347866e-01 -2.28723455e-02 6.92027062e-02 -4.28838909e-01 -3.44114840e-01 8.39787483e-01 1.27338326e+00 5.04816949e-01 -5.52963138e-01 -9.15821314e-01 9.46409464e-01 -1.43462169e+00 -8.13996077e-01 1.80001467e-01 2.35680270e+00 8.71618688e-01 -2.42408402e-02 2.57075448e-02 3.10209006e-01 1.05004466e+00 1.41735956e-01 -4.17376816e-01 -5.70920467e-01 -2.17145592e-01 2.97656983e-01 1.87206537e-01 6.94065273e-01 -9.60882783e-01 1.14956856e+00 5.93115616e+00 9.71309483e-01 -1.19410992e+00 5.15770614e-01 2.00220078e-01 4.98276316e-02 -4.80912626e-01 -1.07653677e-01 -6.76640689e-01 3.18883270e-01 1.57101893e+00 -1.32001907e-01 2.99947023e-01 8.39357197e-01 2.48918310e-01 4.77975309e-01 -1.13759112e+00 9.56643343e-01 2.23847330e-01 -7.91789234e-01 7.10613951e-02 8.43698829e-02 5.16607583e-01 -8.95722657e-02 1.59460440e-01 5.41904807e-01 1.27409071e-01 -8.61012042e-01 6.43894076e-01 -6.51889592e-02 8.40346813e-01 -7.73498416e-01 7.24951267e-01 6.71971977e-01 -7.44855821e-01 1.65144742e-01 -4.89279598e-01 2.60755211e-01 1.18661270e-01 4.63832706e-01 -1.48507929e+00 3.79776478e-01 4.56522822e-01 2.14269266e-01 -2.51667291e-01 5.83828747e-01 -3.20123196e-01 1.12586737e+00 -2.76711106e-01 4.18556258e-02 9.65342149e-02 -2.01767068e-02 8.83897960e-01 1.24314058e+00 5.16250908e-01 -6.00241460e-02 -8.08152407e-02 6.99685752e-01 -2.15051398e-01 3.35797518e-01 -8.62243950e-01 -3.87351722e-01 7.18731344e-01 6.64661050e-01 -3.08849156e-01 -4.06642467e-01 -3.97387505e-01 1.29728961e+00 1.92638427e-01 5.66053808e-01 -4.64443296e-01 -3.56233954e-01 8.56680155e-01 -1.49353579e-01 4.06714290e-01 -3.52327287e-01 -9.97503847e-03 -1.12218440e+00 1.71744481e-01 -1.17460060e+00 9.51153487e-02 -5.12117207e-01 -1.21248770e+00 9.05769706e-01 -3.89318634e-03 -1.03493726e+00 -7.83604920e-01 -4.40213382e-01 -3.76548290e-01 1.23031676e+00 -1.43039024e+00 -9.79214907e-01 1.77763179e-01 6.49719417e-01 1.12697315e+00 -5.97753704e-01 1.09925663e+00 3.54188979e-01 -5.41646540e-01 8.54236245e-01 4.40837502e-01 2.20915779e-01 8.79277945e-01 -1.07879758e+00 7.76541650e-01 1.20147181e+00 5.50485075e-01 5.44898510e-01 8.29335511e-01 -6.48099303e-01 -9.28080797e-01 -1.16795349e+00 1.11776376e+00 -3.56932998e-01 3.29427242e-01 -6.39711618e-01 -1.26050651e+00 7.32440531e-01 3.03809255e-01 -2.06809074e-01 8.63708913e-01 3.37893479e-02 -4.42191035e-01 -6.03090413e-02 -1.20167339e+00 5.61774135e-01 7.74458885e-01 -7.92342305e-01 -1.11740446e+00 2.13323265e-01 1.00292253e+00 -1.84836924e-01 -5.79368532e-01 1.50129184e-01 -5.12096891e-03 -4.76744086e-01 8.12679172e-01 -6.80799901e-01 -2.00680777e-01 -2.62894988e-01 -6.07119322e-01 -1.82961977e+00 1.33816764e-01 -5.63450933e-01 5.34917898e-02 1.69289804e+00 7.00784922e-01 -6.98929131e-01 5.74021459e-01 4.51890796e-01 -4.62838739e-01 9.82760787e-02 -1.40438485e+00 -1.20546496e+00 3.25586379e-01 -5.70049882e-01 5.92561483e-01 8.12963188e-01 -1.72179937e-01 5.27805209e-01 -3.29102159e-01 4.36032295e-01 3.79968733e-01 -4.48739827e-01 7.00524628e-01 -1.01721621e+00 -1.69187203e-01 2.89605316e-02 -2.57968605e-01 -1.03328311e+00 6.68412983e-01 -8.90567839e-01 4.74862516e-01 -1.33961272e+00 -3.92770499e-01 -8.17595273e-02 -2.19095320e-01 4.59583312e-01 9.00388733e-02 -9.20370743e-02 1.29231542e-01 -3.54687795e-02 1.42462719e-02 8.22732627e-01 7.12900102e-01 -3.87056708e-01 -2.92771637e-01 2.27482587e-01 -4.77151453e-01 4.53862548e-01 8.74184191e-01 -6.49951577e-01 -6.44134581e-01 -5.41044533e-01 -6.10650957e-01 1.22198239e-01 -3.92598063e-02 -9.34545636e-01 1.10801265e-01 -1.62646726e-01 7.23115206e-02 -3.47903758e-01 5.95012903e-01 -8.83784950e-01 -1.34271070e-01 -1.95439104e-02 -4.68605578e-01 -4.41857129e-01 3.85502666e-01 5.49709320e-01 -4.58162457e-01 -6.25153303e-01 9.69333947e-01 1.52095690e-01 -6.43039584e-01 -9.23868120e-02 -8.20970833e-01 3.16600241e-02 8.25646222e-01 -2.19376877e-01 -9.15118903e-02 -5.60662687e-01 -8.81044805e-01 -3.25352848e-01 2.48293668e-01 7.05906570e-01 6.28576040e-01 -1.28433120e+00 -9.76002753e-01 5.58854878e-01 3.19460064e-01 -2.28815719e-01 3.16147268e-01 2.99958080e-01 1.00583099e-01 5.66495299e-01 1.25561327e-01 -4.83503819e-01 -1.48064733e+00 5.07215917e-01 2.97822624e-01 2.57962570e-02 -3.20624262e-01 8.39620531e-01 1.76969305e-01 -7.96675146e-01 3.66048604e-01 -2.15663642e-01 -1.40096679e-01 1.11214042e-01 4.83077198e-01 1.17922395e-01 5.75079560e-01 -1.05677700e+00 -5.33404291e-01 6.56800643e-02 -1.90725446e-01 -6.58196986e-01 1.14026070e+00 -3.58761132e-01 3.88831645e-01 5.68871677e-01 1.28475511e+00 1.70676872e-01 -1.00808930e+00 -6.05729640e-01 1.67187527e-01 -3.17343831e-01 1.72755137e-01 -8.03392887e-01 -6.78576112e-01 1.20875084e+00 6.28704429e-01 2.28141382e-01 1.00124907e+00 8.48380923e-02 6.42055571e-01 4.53009367e-01 -4.39300798e-02 -1.42005002e+00 -1.49284350e-02 7.21082926e-01 1.02432418e+00 -1.26697552e+00 -6.28137946e-01 -2.78225750e-01 -9.56478298e-01 7.66370952e-01 4.65263516e-01 3.67805392e-01 4.48103428e-01 1.05817810e-01 3.88168961e-01 3.34721774e-01 -7.80993164e-01 -2.93155640e-01 4.35851306e-01 1.09802556e+00 4.13188845e-01 8.11309144e-02 9.16874483e-02 6.63384318e-01 -1.94257870e-01 -5.65351665e-01 4.83556688e-01 7.68820524e-01 -5.61979532e-01 -1.45548308e+00 -7.16924846e-01 9.99527350e-02 -4.46454078e-01 -1.98336214e-01 -6.25588238e-01 4.14326310e-01 -2.06771135e-01 1.58947861e+00 1.98436692e-01 -2.50554532e-01 5.70030212e-01 7.01699734e-01 9.03221667e-02 -1.08725476e+00 -2.47936353e-01 3.53478521e-01 3.27431202e-01 -1.53002188e-01 -1.87036246e-01 -7.33987212e-01 -1.19901168e+00 1.74097553e-01 -2.46918470e-01 4.34917897e-01 1.10989547e+00 1.15732265e+00 1.95098907e-01 7.39276350e-01 5.94314575e-01 -5.72406292e-01 -8.58192265e-01 -1.28713548e+00 -5.79703271e-01 3.12571108e-01 6.96381986e-01 -5.56223512e-01 -5.40557444e-01 2.56603956e-01]
[14.474555969238281, 6.577635765075684]
ebd22bed-5d14-4e24-b94b-dbc8cea74acc
blind-predicting-similar-quality-map-for
1805.08493
null
http://arxiv.org/abs/1805.08493v2
http://arxiv.org/pdf/1805.08493v2.pdf
Blind Predicting Similar Quality Map for Image Quality Assessment
A key problem in blind image quality assessment (BIQA) is how to effectively model the properties of human visual system in a data-driven manner. In this paper, we propose a simple and efficient BIQA model based on a novel framework which consists of a fully convolutional neural network (FCNN) and a pooling network to solve this problem. In principle, FCNN is capable of predicting a pixel-by-pixel similar quality map only from a distorted image by using the intermediate similarity maps derived from conventional full-reference image quality assessment methods. The predicted pixel-by-pixel quality maps have good consistency with the distortion correlations between the reference and distorted images. Finally, a deep pooling network regresses the quality map into a score. Experiments have demonstrated that our predictions outperform many state-of-the-art BIQA methods.
['Ming Hou', 'Ping Shi', 'Yuan Zhang', 'Zefeng Ying', 'Sizhe Fu', 'Da Pan']
2018-05-22
blind-predicting-similar-quality-map-for-1
http://openaccess.thecvf.com/content_cvpr_2018/html/Pan_Blind_Predicting_Similar_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/papers/Pan_Blind_Predicting_Similar_CVPR_2018_paper.pdf
cvpr-2018-6
['blind-image-quality-assessment']
['computer-vision']
[ 7.92410970e-02 -4.11492288e-01 4.18209791e-01 -6.20796561e-01 -1.02795029e+00 -3.36126745e-01 4.85172987e-01 -4.06716585e-01 -2.91561306e-01 5.28486431e-01 4.05917108e-01 -1.33449525e-01 -2.56339848e-01 -7.83411324e-01 -6.26192570e-01 -5.47362924e-01 2.05097422e-01 -2.55336761e-01 2.90043414e-01 -2.33484536e-01 5.35848260e-01 6.36274695e-01 -1.68014705e+00 6.19123101e-01 1.15553391e+00 1.41356254e+00 9.63173136e-02 9.57744241e-01 1.29551575e-01 9.43120778e-01 -7.33018398e-01 -6.28429711e-01 7.16716051e-01 -5.04865468e-01 -7.39184976e-01 -5.71734784e-03 7.88378775e-01 -7.28467405e-01 -7.15838909e-01 1.43930650e+00 7.62395561e-01 -1.63389876e-01 5.88727057e-01 -1.17500401e+00 -1.09384608e+00 -1.62211016e-01 -1.78937346e-01 2.26845294e-01 5.04748464e-01 6.54892266e-01 9.52942967e-01 -9.11943793e-01 1.90871537e-01 1.21295512e+00 5.24407446e-01 3.36937755e-01 -1.05240560e+00 -4.39627498e-01 -1.96795508e-01 6.06657624e-01 -1.14873195e+00 -3.53910118e-01 6.12503171e-01 -4.42164272e-01 1.04812658e+00 3.13749760e-01 6.95915341e-01 5.71380317e-01 4.38138783e-01 5.45030713e-01 1.44357407e+00 -2.74143338e-01 2.08379060e-01 -2.82216132e-01 -2.04536557e-01 7.07311749e-01 -2.14061923e-02 5.63067734e-01 -5.21056354e-01 7.83579201e-02 9.57428694e-01 -1.42694712e-01 -6.66339576e-01 -4.90547985e-01 -1.26907706e+00 4.84085441e-01 1.00804734e+00 1.01993479e-01 -3.95419896e-01 1.33141875e-01 2.06487516e-06 5.53914666e-01 1.54826894e-01 5.90362489e-01 -3.11596155e-01 8.65335763e-02 -1.03945649e+00 3.50052983e-01 3.42218429e-01 6.73018932e-01 7.60285079e-01 -9.97137651e-02 -6.89164996e-01 7.05931365e-01 5.00921905e-01 5.17996550e-01 6.24839127e-01 -1.38378346e+00 2.83946574e-01 6.98157430e-01 4.15421337e-01 -8.89148891e-01 -2.19252720e-01 -3.49444628e-01 -8.69627833e-01 1.16567898e+00 5.50716996e-01 2.72058636e-01 -1.24997151e+00 1.34310186e+00 -3.20612133e-01 -2.66544819e-01 -1.07149623e-01 1.40071201e+00 8.31165493e-01 5.44799387e-01 -1.21213615e-01 -8.21730047e-02 1.11167693e+00 -1.09707546e+00 -6.19060934e-01 4.15305123e-02 -1.02623768e-01 -7.64561772e-01 1.33323359e+00 7.00880349e-01 -1.52641535e+00 -9.74913180e-01 -1.38136816e+00 -3.02545488e-01 -3.54406565e-01 1.18516229e-01 2.13515729e-01 7.60519147e-01 -1.66198099e+00 6.63028181e-01 -3.16545814e-01 -5.89488335e-02 4.58344042e-01 3.23879838e-01 -4.77447063e-01 -2.94849694e-01 -9.37580943e-01 1.05070603e+00 -1.49389645e-02 1.20447293e-01 -1.07792997e+00 -6.58780158e-01 -7.03916371e-01 2.27801159e-01 -2.45777562e-01 -9.43600714e-01 1.45237184e+00 -1.24383652e+00 -1.78877842e+00 7.71621704e-01 -3.97024244e-01 -4.23590600e-01 5.55455685e-01 -1.69607386e-01 -6.79719865e-01 3.19217443e-01 -1.35801435e-01 6.63506210e-01 1.01304877e+00 -1.43301845e+00 -6.60586298e-01 -2.33796716e-01 2.61154830e-01 2.32790217e-01 -1.78980809e-02 2.73184240e-01 -4.68108416e-01 -6.07474029e-01 2.12770015e-01 -3.01431209e-01 -1.22568473e-01 6.68602705e-01 -1.53328255e-01 8.00644979e-02 2.57539690e-01 -9.67788696e-01 1.15823579e+00 -1.85500157e+00 -4.09421176e-02 1.38487086e-01 4.55899656e-01 5.55531204e-01 -4.48036253e-01 1.36173824e-02 -2.18082741e-02 -3.91092300e-02 -3.53555471e-01 -1.82732329e-01 2.77928449e-02 -1.74628854e-01 -1.65114626e-01 4.29345638e-01 4.31348622e-01 1.09399009e+00 -7.35027730e-01 -4.05671716e-01 3.41078460e-01 5.51685512e-01 -4.82497811e-01 7.36257195e-01 2.84317732e-02 2.94303119e-01 1.76663205e-01 7.17593670e-01 1.00329232e+00 -2.26854593e-01 -3.16708475e-01 -6.11903310e-01 -8.70462134e-02 1.98773518e-01 -9.16501343e-01 1.88752818e+00 -3.43084335e-01 7.87058949e-01 -2.41362125e-01 -5.00832319e-01 9.72597480e-01 3.00532788e-01 1.59658492e-01 -1.33633780e+00 8.51325467e-02 1.58136815e-01 1.81040868e-01 -4.10470873e-01 4.08017755e-01 -9.65794176e-02 4.07295853e-01 4.38130200e-01 3.86328280e-01 -2.27573574e-01 -6.37602210e-02 -1.98095456e-01 9.48158562e-01 1.76821183e-03 2.00421199e-01 5.74689582e-02 7.94103920e-01 -4.22008514e-01 5.94734371e-01 7.36385107e-01 -8.45029354e-01 1.26225626e+00 4.03377891e-01 -6.93301141e-01 -1.43674493e+00 -1.51220298e+00 -5.53661995e-02 4.86287296e-01 3.89763236e-01 -1.74450427e-01 -8.66236389e-01 -5.34611940e-01 -1.84973270e-01 1.38817534e-01 -5.73321760e-01 -2.06909344e-01 -2.97296017e-01 -5.22278309e-01 2.62670696e-01 5.10044098e-01 9.77007210e-01 -1.19129777e+00 -3.38399678e-01 1.21920221e-02 -1.92816421e-01 -7.73605466e-01 -4.44301605e-01 -3.56306791e-01 -6.66383505e-01 -1.03534532e+00 -1.03236294e+00 -8.35753143e-01 6.46346748e-01 4.25503969e-01 1.37069225e+00 5.04693352e-02 -2.36052334e-01 6.11154479e-04 -1.00342162e-01 -2.46580765e-01 -3.19142461e-01 -6.70424640e-01 6.95927814e-03 1.16645589e-01 3.56924385e-01 -3.08553606e-01 -1.17310357e+00 5.21724701e-01 -9.08409297e-01 -5.58156446e-02 8.69506657e-01 7.71869659e-01 8.10699999e-01 1.39887363e-01 4.01595533e-01 3.78320031e-02 9.43296134e-01 1.98145121e-01 -6.60869479e-01 6.17381394e-01 -7.15748847e-01 1.27567083e-01 4.55353498e-01 -1.65083766e-01 -1.14606082e+00 -6.54056296e-02 -1.87843159e-01 -1.94824666e-01 -2.14786649e-01 2.06217337e-02 -5.20840228e-01 -5.71704388e-01 8.57138216e-01 2.15768650e-01 2.16894951e-02 -4.02934223e-01 5.55911899e-01 8.84447813e-01 9.42450941e-01 -1.41258687e-01 8.22512150e-01 3.17990601e-01 -1.75637603e-01 -6.69028386e-02 -5.85895121e-01 -4.24049199e-01 -6.56725347e-01 -3.63675892e-01 9.47136402e-01 -1.01124299e+00 -8.43372881e-01 9.82995868e-01 -1.21411586e+00 -3.23527247e-01 -2.75953829e-01 4.38889146e-01 -8.04737210e-01 5.39555609e-01 -6.33018970e-01 -5.06927490e-01 -4.93696839e-01 -1.36811996e+00 7.48970449e-01 4.45762545e-01 3.47192913e-01 -4.28576291e-01 9.34123248e-02 3.56707394e-01 7.08414197e-01 -1.94017142e-01 6.78863883e-01 8.48600119e-02 -8.76449764e-01 -1.38962954e-01 -1.02864063e+00 8.65091443e-01 2.68804699e-01 -1.43238038e-01 -1.26139462e+00 -3.21250677e-01 6.72331899e-02 -2.67621815e-01 7.51992106e-01 6.18425369e-01 1.32290423e+00 -2.18233839e-01 4.73735482e-01 9.82027531e-01 1.61166859e+00 1.56195402e-01 1.17131567e+00 4.43975180e-01 3.78256351e-01 1.82570994e-01 2.95161366e-01 1.19986022e-02 3.28713894e-01 6.45727813e-01 6.18649662e-01 -2.76387811e-01 -6.43970609e-01 -1.52976930e-01 2.25546330e-01 4.43427145e-01 -1.25249356e-01 -8.88948739e-02 -6.70753181e-01 5.71037948e-01 -1.52922344e+00 -9.34361696e-01 4.38612625e-02 2.12941670e+00 8.76344562e-01 1.47782162e-01 2.63833683e-02 3.25376570e-01 5.20006716e-01 2.41897311e-02 -5.74892044e-01 -5.21923363e-01 -3.61696005e-01 2.99573272e-01 3.64876688e-01 4.33945239e-01 -9.84800875e-01 5.69861591e-01 7.70323849e+00 4.18594718e-01 -8.64327192e-01 -1.38002604e-01 6.38045430e-01 -4.97575337e-03 -1.32508531e-01 -2.57192105e-01 -1.34581596e-01 4.18883175e-01 9.01324868e-01 -1.50715902e-01 7.25960970e-01 5.36262393e-01 1.95843011e-01 -5.53186499e-02 -1.05403042e+00 1.27096081e+00 3.72942686e-01 -1.14248896e+00 3.26793700e-01 -4.62753959e-02 8.29581380e-01 8.64806643e-05 4.87012327e-01 -1.20535657e-01 2.95441270e-01 -1.42513871e+00 6.60185874e-01 1.16314662e+00 1.05231977e+00 -5.11742115e-01 9.30041730e-01 -1.34738103e-01 -8.62937093e-01 -3.47262532e-01 -6.87427878e-01 -6.70761913e-02 6.46585226e-02 4.75282222e-01 -3.49095166e-01 4.32476312e-01 1.15795612e+00 4.88476217e-01 -9.53394651e-01 1.83410013e+00 -3.26784760e-01 1.49475977e-01 3.90970230e-01 4.54238176e-01 4.23661288e-04 -1.68656856e-02 2.83280045e-01 8.69728804e-01 5.76243639e-01 6.29176870e-02 -5.76168954e-01 1.14662790e+00 -1.58902556e-01 -1.44316122e-01 -1.96347550e-01 3.79133165e-01 5.19751804e-04 1.00987029e+00 9.83646736e-02 -1.72267005e-01 -7.05134273e-01 1.19088078e+00 1.02841914e-01 5.42606652e-01 -3.78748953e-01 -6.14154160e-01 1.01813269e+00 -1.00711778e-01 3.06923598e-01 -8.91111344e-02 -6.26559913e-01 -1.13141179e+00 3.51885974e-01 -1.04333568e+00 -2.27209423e-02 -1.57428288e+00 -1.68695176e+00 9.84181166e-01 -6.38959885e-01 -1.65533090e+00 -2.19897577e-03 -1.06060958e+00 -7.02019632e-01 1.56288767e+00 -2.05836296e+00 -1.09888589e+00 -8.11608434e-01 1.00632918e+00 2.00928137e-01 -3.83316636e-01 8.35130692e-01 1.40774474e-01 -7.58207887e-02 7.53389239e-01 -5.29103503e-02 3.75591159e-01 9.69153106e-01 -1.50175726e+00 6.00445509e-01 1.25899148e+00 2.44051218e-04 2.88069904e-01 5.20174742e-01 -1.79353759e-01 -8.82021964e-01 -8.74573469e-01 7.81953931e-01 -4.25285280e-01 3.55217278e-01 1.24386773e-01 -1.08488214e+00 8.48924518e-02 2.66213089e-01 4.75265414e-01 4.41437960e-01 -3.12349647e-01 -7.30751097e-01 -4.24797148e-01 -1.41844106e+00 4.79413360e-01 9.59492624e-01 -1.01813066e+00 -7.67758846e-01 -7.82012567e-02 7.27319419e-01 -2.61071056e-01 -8.32632601e-01 3.30650747e-01 6.79620445e-01 -1.59146023e+00 1.21515203e+00 -4.36016262e-01 5.04572868e-01 -7.02010036e-01 -3.24658573e-01 -1.51431417e+00 -6.92667544e-01 -1.92218736e-01 -1.89406365e-01 7.25484788e-01 2.43514940e-01 -3.23650390e-01 5.47834873e-01 6.56944811e-01 -1.11050695e-01 -4.35112238e-01 -9.28849339e-01 -7.30419159e-01 1.10856570e-01 -3.42052042e-01 9.93093610e-01 2.57900029e-01 -1.87907532e-01 -3.93902451e-01 -3.67575049e-01 4.27836001e-01 7.07036853e-01 -1.38238994e-02 4.61361378e-01 -1.10980773e+00 -2.47470468e-01 -6.90884292e-01 -8.95798802e-01 -9.55508351e-01 -2.96019942e-01 -4.84313369e-01 3.06882173e-01 -1.96805739e+00 2.14242548e-01 -1.13055073e-01 -7.58915782e-01 1.34778798e-01 -3.04326653e-01 6.29501343e-01 1.88257188e-01 2.33141258e-01 -6.33827090e-01 4.65504497e-01 1.60252178e+00 -3.76446456e-01 -1.85061812e-01 -1.52277768e-01 -6.94266915e-01 4.26434517e-01 7.83326745e-01 6.35435581e-02 -2.19128564e-01 -7.43852019e-01 2.82561630e-01 3.89929898e-02 6.60129845e-01 -1.45520675e+00 3.50813806e-01 6.12914115e-02 7.71855235e-01 -3.44199032e-01 1.93951726e-01 -8.34911704e-01 -1.97300389e-01 2.14406103e-01 -3.35426152e-01 -1.68198124e-02 -4.06638384e-02 3.12853485e-01 -6.46895111e-01 6.68412969e-02 9.69931722e-01 -1.14072189e-01 -8.66073966e-01 5.78932106e-01 2.52780803e-02 -3.27273160e-01 6.59381211e-01 -2.85506845e-01 -7.59266555e-01 -5.61335683e-01 -4.88228083e-01 -6.90549687e-02 5.44544339e-01 4.55294758e-01 1.15344274e+00 -1.63683140e+00 -7.60732532e-01 5.12123764e-01 4.40331519e-01 -3.14592719e-01 4.31556702e-01 3.80742192e-01 -7.46577263e-01 4.25133377e-01 -9.32169080e-01 -4.05261904e-01 -1.05958772e+00 7.11125076e-01 9.51314628e-01 -4.53945063e-02 -4.28825200e-01 8.34142983e-01 1.81489199e-01 -2.87576616e-01 3.03845137e-01 -4.65160698e-01 -1.99873626e-01 -5.95113754e-01 1.06412184e+00 2.54991174e-01 3.13101351e-01 -8.35971653e-01 -5.35950959e-02 6.90039515e-01 2.11802572e-01 -2.14678898e-01 1.13855767e+00 -2.66075999e-01 -1.55228302e-01 2.84222029e-02 1.21393621e+00 -3.61974210e-01 -1.69614065e+00 -3.99989367e-01 -3.20189625e-01 -1.02997184e+00 4.45509493e-01 -1.54150939e+00 -1.19081521e+00 1.10538912e+00 1.35084987e+00 2.79530678e-02 1.70430470e+00 -2.66907781e-01 6.81010664e-01 1.11896887e-01 2.86429226e-01 -9.26656067e-01 2.69070774e-01 4.08700891e-02 1.38736212e+00 -1.50653040e+00 -1.26874238e-01 1.19035656e-03 -5.52541971e-01 1.07861185e+00 6.43311381e-01 -1.88484386e-01 6.58625722e-01 -2.31228739e-01 4.91394192e-01 2.18316540e-02 -4.15251732e-01 -2.99787790e-01 9.96144056e-01 1.09017348e+00 2.40366578e-01 8.55076686e-02 3.20382230e-02 5.81818283e-01 -1.77111015e-01 2.81876564e-01 4.56380397e-01 3.58576387e-01 -5.60405374e-01 -1.05369890e+00 -4.68299448e-01 4.45202827e-01 -3.46964508e-01 -2.05131128e-01 -1.58075094e-01 9.51632485e-02 3.34447920e-01 1.18663812e+00 1.13868602e-01 -5.93945622e-01 5.35065055e-01 -1.31385028e-01 5.41068733e-01 -1.38201639e-01 -5.45832336e-01 -2.84913868e-01 -4.53482956e-01 -1.11253810e+00 -4.60065991e-01 -1.70243174e-01 -7.32879460e-01 -3.14827859e-01 1.83093250e-01 -4.45347339e-01 6.78098977e-01 6.43949926e-01 1.17908478e-01 5.98131895e-01 6.40315175e-01 -7.93614149e-01 -3.68106008e-01 -1.00639296e+00 -7.21724331e-01 5.36042452e-01 8.03921402e-01 -3.14256251e-01 -3.99775267e-01 8.83235857e-02]
[11.857734680175781, -1.833631157875061]
99ff7318-b9af-4e43-8b79-e9d913ef82a1
a-practical-toolkit-for-multilingual-question
2305.17416
null
https://arxiv.org/abs/2305.17416v1
https://arxiv.org/pdf/2305.17416v1.pdf
A Practical Toolkit for Multilingual Question and Answer Generation
Generating questions along with associated answers from a text has applications in several domains, such as creating reading comprehension tests for students, or improving document search by providing auxiliary questions and answers based on the query. Training models for question and answer generation (QAG) is not straightforward due to the expected structured output (i.e. a list of question and answer pairs), as it requires more than generating a single sentence. This results in a small number of publicly accessible QAG models. In this paper, we introduce AutoQG, an online service for multilingual QAG, along with lmqg, an all-in-one Python package for model fine-tuning, generation, and evaluation. We also release QAG models in eight languages fine-tuned on a few variants of pre-trained encoder-decoder language models, which can be used online via AutoQG or locally via lmqg. With these resources, practitioners of any level can benefit from a toolkit that includes a web interface for end users, and easy-to-use code for developers who require custom models or fine-grained controls for generation.
['Jose Camacho-Collados', 'Fernando Alva-Manchego', 'Asahi Ushio']
2023-05-27
null
null
null
null
['reading-comprehension', 'answer-generation']
['natural-language-processing', 'natural-language-processing']
[ 5.75162731e-02 5.41121840e-01 4.07497704e-01 -4.09939826e-01 -1.63168335e+00 -9.41646576e-01 4.88185346e-01 3.09551716e-01 -1.71984538e-01 8.46652329e-01 3.81887347e-01 -9.04771745e-01 1.39045805e-01 -1.04263353e+00 -6.10708952e-01 6.35485947e-02 4.82996613e-01 8.38893175e-01 2.22368971e-01 -6.99422896e-01 2.16161758e-01 -1.73441336e-01 -1.55796814e+00 5.10788500e-01 1.35855532e+00 5.17934203e-01 5.49985945e-01 1.14489067e+00 -6.34898245e-01 8.65385771e-01 -8.65140200e-01 -8.87983680e-01 -1.88301042e-01 -7.77650476e-01 -1.24649298e+00 -5.40494621e-01 6.02892399e-01 -3.42965811e-01 2.56677181e-01 5.33011377e-01 7.57447898e-01 7.54843093e-03 3.51609081e-01 -9.78580534e-01 -1.00680542e+00 7.80741394e-01 4.33555275e-01 -1.68341994e-01 9.13194895e-01 4.13102269e-01 1.02193439e+00 -7.75743842e-01 5.78703105e-01 1.13243818e+00 4.66575176e-01 9.07728910e-01 -1.21923423e+00 -3.73350263e-01 -3.04704666e-01 1.00512907e-01 -8.99431884e-01 -5.44322252e-01 2.12421283e-01 -4.35254127e-01 1.22081256e+00 5.35364628e-01 3.51606399e-01 1.04924822e+00 2.06157178e-01 5.75181901e-01 9.46595192e-01 -6.62865698e-01 -9.44986269e-02 3.08131158e-01 5.81936501e-02 7.44944334e-01 -1.62879273e-01 -4.45080072e-01 -4.18715090e-01 -1.38706774e-01 3.57379913e-01 -6.88127339e-01 -2.55396158e-01 2.16570199e-02 -1.03150403e+00 8.67215872e-01 -1.40945628e-01 -8.39935169e-02 -7.41992220e-02 8.08095410e-02 1.61151916e-01 7.82514334e-01 3.12068403e-01 8.66681993e-01 -7.45481133e-01 -5.34193814e-01 -8.19590390e-01 7.18804717e-01 1.23708975e+00 1.21366155e+00 8.42519701e-01 -9.70395803e-02 -7.77066290e-01 9.32077348e-01 3.21495265e-01 5.59474528e-01 6.46944284e-01 -1.04409230e+00 7.91407943e-01 6.58096552e-01 1.89594656e-01 -4.03660804e-01 -7.94377401e-02 -3.13077211e-01 -3.22269320e-01 -8.18998963e-02 6.65807605e-01 -4.49417382e-01 -6.54595733e-01 1.67154253e+00 2.29062855e-01 -4.69964504e-01 2.60089129e-01 4.22698647e-01 1.47366834e+00 8.12866390e-01 1.02660134e-01 2.18780681e-01 1.46956325e+00 -1.12490761e+00 -6.88998997e-01 -3.84615242e-01 1.04407620e+00 -1.13289988e+00 1.55218852e+00 1.89025894e-01 -1.60975897e+00 -6.47145987e-01 -6.32440209e-01 -7.67738163e-01 -6.26289606e-01 -4.57677525e-03 2.49548122e-01 7.24840522e-01 -1.46244121e+00 4.81063366e-01 -5.30887306e-01 -4.35351253e-01 -1.07097484e-01 1.11119203e-01 -3.24585512e-02 -1.88728705e-01 -1.37227917e+00 1.17807698e+00 2.42583424e-01 -2.28951544e-01 -6.66367233e-01 -8.20444167e-01 -1.17839289e+00 1.66395858e-01 7.86886737e-02 -9.79860961e-01 1.97151518e+00 -4.58614260e-01 -1.72690558e+00 7.89997458e-01 -2.46041596e-01 -1.73401549e-01 3.12636763e-01 -2.00604662e-01 -1.96605414e-01 -5.63153289e-02 3.26450735e-01 8.52371633e-01 4.71015275e-01 -5.14822185e-01 -2.22071633e-01 -7.87701756e-02 4.49328035e-01 3.94409120e-01 -2.69385278e-02 2.21047357e-01 -3.63442987e-01 -3.84171724e-01 -2.68791407e-01 -5.47901928e-01 -1.38210565e-01 -4.79542643e-01 -3.32816809e-01 -4.63178992e-01 4.66517210e-01 -1.38692832e+00 1.40277100e+00 -1.45986593e+00 -2.11876199e-01 -1.96910977e-01 -3.09728414e-01 3.26011777e-01 -5.90909839e-01 1.01943290e+00 1.35251954e-01 2.71445572e-01 -1.23523168e-01 -3.84092152e-01 4.51243311e-01 -9.04931203e-02 -3.02160054e-01 -4.14151907e-01 4.94602412e-01 1.25230205e+00 -1.17502522e+00 -4.65069979e-01 -4.29061241e-03 2.25257546e-01 -7.16941476e-01 6.57318354e-01 -7.27084398e-01 4.08483595e-01 -2.38194555e-01 3.66916835e-01 3.19082826e-01 -2.88321286e-01 -9.04569626e-02 4.85234380e-01 2.31250878e-02 1.21945918e+00 -1.00528264e+00 1.91411173e+00 -1.06641793e+00 4.25773948e-01 4.37385477e-02 -3.60638946e-01 9.56970096e-01 5.95147133e-01 -3.82345706e-01 -6.81253254e-01 -2.82432646e-01 5.59190214e-01 -2.59524554e-01 -6.00630939e-01 9.29818511e-01 2.98563838e-01 -2.32872143e-01 9.35448349e-01 4.61075664e-01 -7.60575116e-01 8.14714909e-01 5.33749044e-01 1.11729383e+00 4.88824219e-01 1.66084960e-01 -1.08945914e-01 5.98587930e-01 1.35036362e-02 -1.81000143e-01 9.36931133e-01 4.57639992e-01 7.00132012e-01 3.62833589e-01 2.27236256e-01 -9.43183243e-01 -9.09870744e-01 8.57169330e-02 1.32976460e+00 -6.60788715e-01 -8.17018449e-01 -1.08651507e+00 -5.40836930e-01 -3.43920916e-01 1.25775552e+00 -1.12125665e-01 -7.11185485e-02 -6.38179958e-01 -1.09614238e-01 5.70813775e-01 4.21840400e-01 3.15856606e-01 -1.44561100e+00 -4.47752178e-01 4.62540478e-01 -5.50288796e-01 -7.38802612e-01 -6.09793723e-01 6.51575550e-02 -6.97580278e-01 -7.75996566e-01 -7.26939738e-01 -9.41703320e-01 4.21383262e-01 -9.74527225e-02 1.85767567e+00 3.62875491e-01 9.52780694e-02 7.12243199e-01 -4.54531759e-01 -4.48144168e-01 -1.01373541e+00 5.84207475e-01 -7.68252134e-01 -6.41145408e-01 3.33736211e-01 -3.70023936e-01 -4.48871642e-01 -1.02594726e-01 -9.19803262e-01 3.79694223e-01 3.56433928e-01 6.49040282e-01 2.61264920e-01 -8.02687824e-01 1.13252234e+00 -9.69854593e-01 1.34440637e+00 -4.19000536e-01 -7.08216369e-01 5.93860686e-01 -5.93257844e-01 3.06865603e-01 7.44602561e-01 7.16939270e-02 -1.07043171e+00 -2.97469735e-01 -8.35387707e-01 4.30458039e-01 -2.00698987e-01 7.47309506e-01 -3.83391738e-01 3.49176109e-01 7.19493508e-01 2.66450703e-01 -9.22117755e-03 -5.51984310e-01 8.79411638e-01 8.86293232e-01 4.38858777e-01 -6.71528339e-01 7.56218851e-01 -5.72371900e-01 -6.06276691e-01 -4.96667802e-01 -8.69214058e-01 -3.39168012e-01 -2.28027225e-01 -1.50561318e-01 8.10137987e-01 -7.83144951e-01 -5.45393467e-01 3.01613301e-01 -1.34419000e+00 -8.25163484e-01 -4.51706201e-01 9.22286185e-04 -5.83674252e-01 1.21881254e-01 -7.09505558e-01 -5.17744303e-01 -6.99243486e-01 -1.16055453e+00 1.10721266e+00 4.48776364e-01 -7.19397426e-01 -1.25961232e+00 1.44025087e-01 7.86039770e-01 7.79375732e-01 -2.35648915e-01 1.17750812e+00 -6.78290129e-01 -7.84487545e-01 -1.72268748e-01 6.40384108e-02 4.71034974e-01 -1.82417557e-01 -1.54178530e-01 -8.97806346e-01 -1.34426892e-01 -2.17507005e-01 -8.75362575e-01 4.42977041e-01 -5.57800941e-02 1.09221303e+00 -6.71874881e-01 1.58038184e-01 3.47428173e-01 9.68156517e-01 -1.24750525e-01 6.77543223e-01 2.54374325e-01 5.27526259e-01 8.41012895e-01 3.42321754e-01 7.90290534e-02 8.87515545e-01 5.16474247e-01 2.17965171e-01 2.34387308e-01 -2.75959671e-01 -5.89619279e-01 5.75100720e-01 1.14609241e+00 4.49019283e-01 -3.22627664e-01 -7.76511073e-01 6.63298845e-01 -1.55040884e+00 -8.54014337e-01 -5.03610492e-01 2.26839042e+00 1.46278131e+00 -2.94589370e-01 -1.36137992e-01 -2.38357648e-01 2.71555036e-01 -1.25268295e-01 -1.70131817e-01 -9.42740321e-01 8.41329917e-02 1.00259209e+00 6.74768984e-02 1.00987601e+00 -5.08466482e-01 9.68236446e-01 6.32362890e+00 8.31958294e-01 -8.13596368e-01 2.32739732e-01 4.59689438e-01 1.69393852e-01 -9.12818432e-01 1.86747685e-01 -1.07275581e+00 3.44684988e-01 1.45436287e+00 -4.53841299e-01 5.25084376e-01 6.90619230e-01 2.77816564e-01 -2.29306296e-02 -1.13558698e+00 5.58641374e-01 1.27476245e-01 -1.39024687e+00 1.75152734e-01 -2.78602540e-01 7.04089701e-01 -1.18830048e-01 -1.55693248e-01 8.09352398e-01 7.50572145e-01 -1.25313163e+00 6.28428519e-01 5.32864690e-01 8.21783125e-01 -5.95838666e-01 6.11155450e-01 5.03876626e-01 -8.18835080e-01 2.10348591e-01 -2.60445863e-01 -2.70311326e-01 3.28689575e-01 3.20573509e-01 -1.14311802e+00 5.50527394e-01 4.26612049e-01 1.16148405e-01 -1.17961085e+00 9.60288882e-01 -7.20753312e-01 8.51545691e-01 -3.83473039e-02 -3.06783378e-01 -4.20572050e-02 -1.84057504e-01 1.16442360e-01 1.25083196e+00 6.08582318e-01 -4.51476350e-02 -5.05343229e-02 1.03496253e+00 -7.86716342e-02 4.35936838e-01 -2.79824167e-01 -9.10512656e-02 5.39358079e-01 1.56991482e+00 -1.44926965e-01 -3.86595607e-01 -3.97423625e-01 9.95796144e-01 3.62144470e-01 3.40007544e-01 -4.52752501e-01 -8.43665838e-01 2.00328320e-01 3.78771365e-01 -5.39244451e-02 -2.01396406e-01 -1.16811134e-01 -1.14855659e+00 9.08275545e-02 -1.58368111e+00 2.93855757e-01 -1.25970864e+00 -1.02730286e+00 5.90366960e-01 -6.38434142e-02 -7.99012244e-01 -1.11547065e+00 -4.54099834e-01 -7.51557827e-01 1.65648723e+00 -1.33650744e+00 -1.20883548e+00 -4.69059497e-01 4.22679931e-01 5.44420421e-01 8.46105963e-02 1.26765287e+00 3.51176471e-01 -5.50625622e-02 6.74928606e-01 -1.25152349e-01 4.07131165e-02 9.22042668e-01 -1.65104795e+00 8.87764096e-01 7.56643653e-01 7.54966587e-02 8.22006643e-01 6.38175905e-01 -5.54554880e-01 -1.11520481e+00 -1.09241927e+00 1.75680280e+00 -1.03888023e+00 6.30516171e-01 -5.31822681e-01 -9.84315574e-01 7.13443935e-01 8.21474850e-01 -7.78703094e-01 8.12100887e-01 9.00592580e-02 2.68630288e-03 1.29314855e-01 -8.29056978e-01 6.55456722e-01 5.97722113e-01 -7.05585480e-01 -6.82286739e-01 6.30837500e-01 9.93751466e-01 -6.98468268e-01 -7.89675117e-01 7.43196905e-02 2.81234145e-01 -7.61933446e-01 5.41440606e-01 -5.18388867e-01 8.19545388e-01 -3.13551724e-01 1.28170654e-01 -1.52865839e+00 8.47812369e-03 -8.05839300e-01 -1.16692111e-01 1.59246671e+00 9.53667164e-01 -6.82434022e-01 5.38354278e-01 7.89574742e-01 -5.20972967e-01 -5.57614446e-01 -5.13848007e-01 -5.12988329e-01 4.61258948e-01 -5.16260386e-01 9.35537219e-01 5.25487304e-01 3.56526636e-02 7.80830801e-01 6.51282519e-02 -1.68156207e-01 1.19982474e-01 5.00107147e-02 1.02222431e+00 -7.96965897e-01 -7.41868138e-01 -2.28293017e-01 3.95813048e-01 -1.26107132e+00 -3.45823728e-02 -1.22336137e+00 1.18261188e-01 -2.25209618e+00 -7.96691999e-02 -2.93679088e-01 5.98444462e-01 5.28724492e-01 -5.42345166e-01 1.15918510e-01 1.63184419e-01 -1.42119244e-01 -5.54221094e-01 4.74335194e-01 1.35214388e+00 3.46495323e-02 -8.42357576e-02 1.43577278e-01 -1.03775823e+00 3.65411431e-01 7.45573997e-01 -3.86075079e-01 -6.41714871e-01 -7.78805852e-01 6.36098802e-01 2.88795769e-01 3.19583803e-01 -9.41810191e-01 9.29718763e-02 1.12619735e-01 5.30761667e-02 -5.66257954e-01 2.17653558e-01 -1.09238543e-01 -1.03235714e-01 1.40456870e-01 -6.08272612e-01 4.88526523e-01 2.62066692e-01 -2.61758983e-01 -3.54898006e-01 -1.01566625e+00 2.53536552e-01 -4.57308114e-01 -2.63134837e-01 -1.38882130e-01 -5.10323822e-01 5.88294566e-01 4.69963998e-01 -6.15144856e-02 -6.57985449e-01 -1.15203059e+00 -4.16029811e-01 5.32732546e-01 2.02906191e-01 5.30717492e-01 3.66882324e-01 -1.13761806e+00 -1.00105166e+00 2.93448325e-02 2.56733268e-01 1.60097793e-01 2.31778726e-01 3.10993403e-01 -7.18186617e-01 8.20288599e-01 1.92649409e-01 -1.79497838e-01 -1.15258265e+00 2.06324216e-02 2.93236434e-01 -7.56486833e-01 6.53775036e-02 9.22235727e-01 -1.60654306e-01 -1.23336101e+00 -1.70648351e-01 -4.20664638e-01 -3.51979971e-01 -5.90573847e-02 7.16833949e-01 2.05363214e-01 4.97454047e-01 -1.63180679e-01 1.42120466e-01 -7.94168375e-03 4.55550328e-02 -4.64617133e-01 9.57269728e-01 -9.07935649e-02 -1.97669715e-01 1.95806473e-01 9.24117684e-01 2.22637475e-01 -8.07678759e-01 6.60785139e-02 -5.34159318e-02 4.16533500e-02 -4.79335308e-01 -1.28716922e+00 -3.98685127e-01 1.03043032e+00 1.97451890e-01 2.72214621e-01 9.86429989e-01 1.16526552e-01 8.68644595e-01 5.13042569e-01 2.52312511e-01 -8.99227083e-01 1.29208654e-01 9.88930523e-01 1.08478308e+00 -8.94280374e-01 -4.74994034e-01 -1.35227412e-01 -4.81813669e-01 9.68407273e-01 7.69141436e-01 3.56578737e-01 1.05738692e-01 -1.25668392e-01 3.75069410e-01 1.06510483e-01 -1.10179925e+00 -2.22991437e-01 3.66083056e-01 7.47301161e-01 1.17324054e+00 -8.79985988e-02 -4.68984991e-01 6.78887069e-01 -1.10895300e+00 8.93629715e-02 7.33275592e-01 8.37190211e-01 -3.54836255e-01 -1.80543053e+00 -3.68025929e-01 6.41700029e-01 -6.29342973e-01 -8.23255956e-01 -3.80159050e-01 4.84894842e-01 -1.28666654e-01 1.37927651e+00 -1.00917481e-01 6.09159004e-03 3.16822112e-01 4.99476582e-01 4.25558001e-01 -1.26016450e+00 -1.04728019e+00 -5.38223505e-01 6.92311227e-01 -3.16052288e-01 2.33991995e-01 -4.28463608e-01 -8.87891591e-01 -1.44115075e-01 -2.32354701e-01 5.95885754e-01 7.33419061e-01 8.54820073e-01 6.28839612e-01 4.11866635e-01 -1.01073803e-02 -1.66940883e-01 -7.10382819e-01 -1.39322138e+00 -3.56031209e-02 1.58753216e-01 -1.04669757e-01 2.56527007e-01 -6.73788786e-02 2.42669091e-01]
[11.469834327697754, 8.292272567749023]
4dcb6603-0109-4aaf-9431-2ce560897aee
adaptive-graph-convolutional-networks-for
2202.06503
null
https://arxiv.org/abs/2202.06503v3
https://arxiv.org/pdf/2202.06503v3.pdf
Adaptive Graph Convolutional Networks for Weakly Supervised Anomaly Detection in Videos
For weakly supervised anomaly detection, most existing work is limited to the problem of inadequate video representation due to the inability of modeling long-term contextual information. To solve this, we propose a novel weakly supervised adaptive graph convolutional network (WAGCN) to model the complex contextual relationship among video segments. By which, we fully consider the influence of other video segments on the current one when generating the anomaly probability score for each segment. Firstly, we combine the temporal consistency as well as feature similarity of video segments to construct a global graph, which makes full use of the association information among spatial-temporal features of anomalous events in videos. Secondly, we propose a graph learning layer in order to break the limitation of setting topology manually, which can extract graph adjacency matrix based on data adaptively and effectively. Extensive experiments on two public datasets (i.e., UCF-Crime dataset and ShanghaiTech dataset) demonstrate the effectiveness of our approach which achieves state-of-the-art performance.
['Yanning Zhang', 'Peng Wang', 'Shizhou Zhang', 'Xin Zhang', 'Congqi Cao']
2022-02-14
null
null
null
null
['supervised-anomaly-detection']
['computer-vision']
[-4.49131280e-02 -3.16772968e-01 -1.32714644e-01 -2.61560261e-01 -7.53244609e-02 -3.30053627e-01 2.79650748e-01 3.96974057e-01 -2.74063081e-01 2.65498757e-01 3.52211475e-01 -2.38235459e-01 -9.56045240e-02 -7.49277294e-01 -7.23416984e-01 -5.82163155e-01 -5.36190689e-01 -1.02225952e-01 5.05222142e-01 -1.28564656e-01 1.34481803e-01 2.90102512e-01 -1.17476618e+00 9.40419957e-02 1.02877676e+00 9.72414136e-01 -1.44153848e-01 4.08714950e-01 -1.10856488e-01 1.04375231e+00 -2.54031897e-01 -1.43278867e-01 8.30639377e-02 -4.80803758e-01 -5.25787175e-01 4.10150498e-01 3.25679421e-01 -6.58743203e-01 -1.04407001e+00 1.21170425e+00 2.20169723e-01 2.70622939e-01 3.65531951e-01 -1.47962332e+00 -4.53509718e-01 4.86753225e-01 -7.40593433e-01 8.14197063e-01 3.41984302e-01 3.05543214e-01 9.95878875e-01 -6.53517365e-01 5.21790743e-01 8.89993966e-01 6.11346185e-01 1.37014970e-01 -8.42324853e-01 -5.99531829e-01 9.09790993e-01 7.20271468e-01 -1.39610243e+00 -1.52655184e-01 1.10149622e+00 -2.87573755e-01 7.75845468e-01 4.37579788e-02 7.29874909e-01 1.06746554e+00 -1.50030226e-01 9.28219438e-01 3.52435261e-01 4.73122904e-03 5.29803447e-02 -6.32688165e-01 2.50621378e-01 9.80274677e-01 1.30234689e-01 -4.22874689e-01 -3.01432222e-01 -2.96471864e-01 6.12739623e-01 3.42562318e-01 -2.26773769e-01 -4.32393789e-01 -1.04100013e+00 6.44239306e-01 4.34593350e-01 3.37647557e-01 -4.63770777e-01 -6.01313822e-03 6.45267069e-01 3.75822663e-01 5.87279439e-01 -6.00126348e-02 -2.47616693e-01 -8.56376812e-02 -6.67120636e-01 7.69269988e-02 3.81159276e-01 8.85372579e-01 6.86142564e-01 1.76449239e-01 -1.45877600e-01 6.82694733e-01 3.81835759e-01 4.52131219e-02 3.62998962e-01 -5.90382755e-01 6.86049938e-01 9.70009089e-01 -2.48097196e-01 -1.54133594e+00 -4.47316885e-01 -3.34450155e-01 -9.63687778e-01 -3.91290069e-01 4.07709926e-01 -1.33817717e-01 -9.58512843e-01 1.82315230e+00 4.46350396e-01 1.05251384e+00 -2.67101020e-01 8.72929335e-01 7.09355056e-01 6.19085312e-01 5.30892611e-02 -3.30276728e-01 9.02095854e-01 -8.76639605e-01 -6.83851480e-01 -1.67095602e-01 9.29001570e-01 -2.45269507e-01 8.87272239e-01 1.66397512e-01 -7.03731060e-01 -2.86139190e-01 -8.82166564e-01 2.29274139e-01 -2.12162018e-01 -2.31750116e-01 5.78904808e-01 6.23002350e-02 -6.70567572e-01 5.00799954e-01 -1.07351625e+00 -3.60510856e-01 5.91826081e-01 9.58696455e-02 -4.54170227e-01 -3.78602237e-01 -1.25733268e+00 1.75749958e-01 5.90365410e-01 3.07845563e-01 -7.94395089e-01 -3.86990786e-01 -1.03075421e+00 5.50978743e-02 9.05810714e-01 -2.91529685e-01 5.66246331e-01 -1.01720834e+00 -7.96355247e-01 3.65793049e-01 -1.13426283e-01 -4.94778723e-01 5.18676460e-01 -2.82358676e-01 -7.41126955e-01 3.56876552e-01 7.19347745e-02 3.90541479e-02 7.27991879e-01 -8.89306247e-01 -4.61298019e-01 -4.80091900e-01 2.30033100e-01 1.38242990e-01 -6.28736734e-01 -6.80524930e-02 -1.02214646e+00 -1.00058985e+00 3.32260370e-01 -9.02608395e-01 -4.70249712e-01 -2.47220993e-01 -5.21290004e-01 -3.37251186e-01 1.13339591e+00 -7.78391004e-01 1.78846848e+00 -2.46516967e+00 1.43271342e-01 5.88327825e-01 3.77326190e-01 3.09681624e-01 -2.72324383e-01 3.14195514e-01 -2.22660571e-01 9.48749781e-02 -3.43125820e-01 -1.22945353e-01 -4.20430958e-01 4.49048817e-01 -1.08732104e-01 5.29743552e-01 2.51489967e-01 8.13630760e-01 -1.10481989e+00 -5.85543752e-01 5.11486307e-02 1.05153814e-01 -6.89115345e-01 1.96916297e-01 -1.38382360e-01 4.99780446e-01 -8.73123169e-01 7.22878993e-01 6.39481485e-01 -3.34916055e-01 1.38275295e-01 -6.87315688e-02 2.41329238e-01 -1.48622645e-02 -1.29643667e+00 1.84793580e+00 2.32490197e-01 2.72128761e-01 -1.77919924e-01 -1.33918715e+00 5.44803202e-01 1.26279593e-01 7.53271759e-01 -5.85776508e-01 -1.23086654e-01 -4.03183512e-02 5.88309243e-02 -7.18991518e-01 7.14593679e-02 6.11193180e-01 5.54619208e-02 3.42526436e-01 3.61098088e-02 7.07685828e-01 3.43215972e-01 7.54281998e-01 1.47836745e+00 9.25828442e-02 7.74785578e-02 -2.79588774e-02 7.59355783e-01 -3.61995131e-01 8.56794059e-01 7.38898158e-01 -4.19584304e-01 7.03037083e-01 8.91802132e-01 -7.29485869e-01 -8.07801068e-01 -9.36867118e-01 3.99291456e-01 9.89019275e-01 3.76392543e-01 -8.28036427e-01 -7.62601316e-01 -1.25330448e+00 -1.75487638e-01 3.48262697e-01 -7.78889894e-01 -5.27282894e-01 -8.47525537e-01 -8.32757711e-01 4.02100086e-01 5.88431001e-01 6.86195910e-01 -9.58357096e-01 1.44607633e-01 2.21775055e-01 -4.47074890e-01 -1.35104144e+00 -7.47504234e-01 -4.54225183e-01 -8.04645121e-01 -1.33150446e+00 -1.56065121e-01 -5.30754566e-01 7.51158297e-01 4.13433045e-01 8.36780071e-01 6.90347373e-01 -1.27128825e-01 4.08554167e-01 -5.25896370e-01 1.11711212e-01 -3.20349522e-02 1.24571202e-02 8.11374485e-02 4.06071484e-01 4.13332552e-01 -7.78360248e-01 -7.29882777e-01 3.71336222e-01 -1.09406435e+00 -3.42781156e-01 4.19001848e-01 7.02843070e-01 6.40533626e-01 3.02124500e-01 5.32513797e-01 -8.61395121e-01 4.53258336e-01 -9.55896556e-01 -2.42658824e-01 1.26695275e-01 -4.14749235e-01 -2.48340920e-01 6.95530415e-01 -4.62446153e-01 -8.04322004e-01 -1.78808291e-02 1.10120224e-02 -8.00227284e-01 -2.75325596e-01 8.17704201e-01 -3.39406103e-01 1.83276266e-01 2.23731950e-01 3.76049399e-01 -1.15320839e-01 -3.50925952e-01 6.14377819e-02 1.61835328e-01 7.07679510e-01 -4.10445333e-01 8.46754432e-01 4.57318783e-01 8.53666384e-03 -7.45651424e-01 -8.49985659e-01 -6.14053071e-01 -7.29088366e-01 -2.73224622e-01 8.47406089e-01 -9.55979168e-01 -2.59329528e-01 7.83329487e-01 -7.28595555e-01 -1.18372776e-01 -1.48815382e-02 5.34966052e-01 -1.67127863e-01 9.90524769e-01 -6.60013974e-01 -5.52609146e-01 2.98935641e-02 -8.88374805e-01 7.05071270e-01 1.39605301e-02 1.00415356e-01 -1.06210363e+00 -4.76659760e-02 1.72862470e-01 6.27184510e-02 5.63951373e-01 8.91057312e-01 -8.22153568e-01 -6.71422958e-01 -3.89006346e-01 -3.15986544e-01 3.25122178e-01 1.68044448e-01 8.62511322e-02 -5.27660787e-01 -4.33331758e-01 -2.99721420e-01 1.39172270e-03 1.08042681e+00 2.65259266e-01 1.70459414e+00 -4.61539865e-01 -3.68994921e-01 7.50307620e-01 1.10418344e+00 -5.60679585e-02 7.50407696e-01 3.00539702e-01 1.41594207e+00 3.50190550e-01 6.55369461e-01 5.39282322e-01 5.96054137e-01 4.99786139e-01 6.84163868e-01 2.28568278e-02 1.68165267e-01 -3.73623550e-01 3.94618839e-01 8.51221263e-01 -4.35028195e-01 -3.39880675e-01 -8.72687757e-01 5.82444489e-01 -2.33434176e+00 -1.03372622e+00 -2.45204523e-01 2.02924728e+00 1.75126567e-01 3.81640702e-01 2.30504155e-01 -2.51231864e-02 8.40597689e-01 5.11763811e-01 -5.74938118e-01 1.23634361e-01 -8.13472420e-02 -4.46130604e-01 2.87761718e-01 9.61269066e-02 -1.38508248e+00 8.88283610e-01 5.33744431e+00 8.96107078e-01 -8.25445533e-01 -1.56661004e-01 6.65988803e-01 -9.00099128e-02 -1.17685646e-01 2.54815370e-02 -1.32999867e-01 8.56493294e-01 6.65729165e-01 4.58027869e-02 5.09777367e-01 7.14513302e-01 2.45482340e-01 1.74969226e-01 -8.75306726e-01 6.97401404e-01 1.94890648e-01 -9.25090075e-01 3.00429940e-01 3.57607901e-02 6.22973800e-01 1.29009992e-01 -1.99658647e-01 2.98331052e-01 1.21584900e-01 -7.85970807e-01 3.00602525e-01 6.03958368e-01 3.56787562e-01 -9.54110324e-01 8.14720511e-01 3.72065663e-01 -1.49236202e+00 -1.70775488e-01 -2.72234738e-01 -5.23926802e-02 8.06558952e-02 6.33251131e-01 -4.09483522e-01 8.73050988e-01 9.39783871e-01 1.23426521e+00 -7.77379274e-01 1.01729858e+00 -1.58698753e-01 9.50775743e-01 -3.89310360e-01 5.21989763e-01 4.99471366e-01 -3.69091153e-01 8.28874826e-01 1.13604403e+00 2.80979931e-01 3.20208788e-01 6.54349566e-01 3.96763742e-01 -1.38489202e-01 1.63444236e-01 -8.06814313e-01 -8.64976719e-02 3.84482503e-01 1.15246284e+00 -7.15200126e-01 -2.82277167e-01 -8.32087576e-01 1.04694688e+00 5.12199283e-01 5.75876355e-01 -8.88066173e-01 -1.98787779e-01 6.44156575e-01 1.05343806e-02 3.60207140e-01 -3.54904473e-01 2.61701345e-01 -1.57665396e+00 4.30452198e-01 -8.51819992e-01 9.97044086e-01 -4.32375818e-01 -1.42374492e+00 4.89618540e-01 -4.93483432e-02 -1.44517505e+00 -1.91635862e-01 -1.92744628e-01 -1.07597375e+00 3.38534027e-01 -1.33695197e+00 -1.26924336e+00 -5.63165128e-01 1.10780990e+00 3.43637764e-01 -2.81637102e-01 4.05725807e-01 5.00430882e-01 -9.49603319e-01 6.36053085e-01 -2.13793501e-01 5.80843329e-01 6.14072144e-01 -1.04877615e+00 5.39020181e-01 1.40678942e+00 1.92532986e-01 4.36501116e-01 3.63560468e-01 -8.61708641e-01 -1.24746454e+00 -1.42689586e+00 4.21102434e-01 -3.61234188e-01 9.62159276e-01 -2.35810965e-01 -1.47757530e+00 8.44598234e-01 -2.30308950e-01 6.82991385e-01 5.50927341e-01 8.70394483e-02 -4.82109547e-01 -1.31326467e-02 -8.07545543e-01 6.30585670e-01 1.65341246e+00 -5.55647135e-01 -3.70548487e-01 1.78138286e-01 8.64171684e-01 -3.37972015e-01 -5.81064343e-01 6.89601183e-01 2.04305142e-01 -9.11998630e-01 8.83323729e-01 -9.44280148e-01 3.57674956e-01 -4.80194002e-01 3.98839824e-02 -1.23408568e+00 -4.37405735e-01 -5.51352739e-01 -5.71684778e-01 1.25636029e+00 1.50540888e-01 -6.26638114e-01 7.23692775e-01 4.10083801e-01 -3.19911063e-01 -8.10943842e-01 -8.83275449e-01 -6.66022003e-01 -5.26949048e-01 -6.72423840e-01 7.20239818e-01 1.35245979e+00 1.17760208e-02 4.44231257e-02 -5.78625441e-01 6.04061365e-01 4.98867333e-01 7.93262478e-03 6.98485315e-01 -1.05895138e+00 -1.29123032e-01 -2.44971722e-01 -9.28210855e-01 -8.99682581e-01 2.42594406e-01 -7.43769646e-01 -2.18476966e-01 -1.24391496e+00 2.78241098e-01 -2.31015027e-01 -8.47482264e-01 4.23134506e-01 -7.48876393e-01 2.32903764e-01 -1.54277623e-01 2.84887940e-01 -1.13092065e+00 4.97522593e-01 1.11713779e+00 -2.29722820e-02 -2.31948778e-01 -1.66627273e-01 -4.98965591e-01 1.06319368e+00 6.56991005e-01 -2.39082947e-01 -5.77831089e-01 -5.12818217e-01 1.23910844e-01 -1.62310705e-01 4.64649171e-01 -1.00778699e+00 2.85255402e-01 -1.10111065e-01 4.39209938e-01 -4.58232909e-01 -2.00314417e-01 -9.44348991e-01 -2.85928160e-01 1.44400477e-01 -1.52360469e-01 3.24297786e-01 5.70045831e-03 1.24645090e+00 -4.34340030e-01 1.66836888e-01 3.14652950e-01 -4.55143824e-02 -1.08491898e+00 1.09995627e+00 -2.27483749e-01 2.11027995e-01 1.06048048e+00 7.45594501e-03 -2.54886538e-01 -5.29664755e-01 -8.07014525e-01 7.83913016e-01 4.77746874e-01 6.52477682e-01 6.96753144e-01 -1.60763395e+00 -7.46749043e-01 3.14314872e-01 4.23958242e-01 8.55992660e-02 6.64884984e-01 8.78289282e-01 -3.80621672e-01 -2.05475628e-01 4.22669668e-03 -5.60686409e-01 -1.21404731e+00 7.82664418e-01 1.45432085e-01 -3.04019839e-01 -9.22296524e-01 5.91434300e-01 2.46133342e-01 -1.70963462e-02 1.74398974e-01 -1.69102848e-01 -4.95937198e-01 -1.13967799e-01 5.22835791e-01 2.32271641e-01 -1.47071600e-01 -7.64214873e-01 -5.25094628e-01 3.89130265e-01 -2.78116673e-01 4.38998759e-01 1.24810898e+00 -3.47221911e-01 -1.43315941e-01 2.57880986e-01 1.12749183e+00 1.10383563e-01 -1.36427116e+00 -5.30775487e-01 5.58670089e-02 -6.63887322e-01 -1.96562409e-02 -2.35837281e-01 -1.39122915e+00 5.74565589e-01 3.65336806e-01 3.26284438e-01 1.22821903e+00 -8.67805481e-02 1.03794801e+00 4.68626231e-01 -5.49770985e-03 -1.09968519e+00 2.78779954e-01 5.24817526e-01 5.16626358e-01 -1.31139648e+00 -2.48270780e-02 -4.30005550e-01 -6.90121889e-01 9.59579229e-01 8.83169472e-01 -3.22867900e-01 7.13132203e-01 -2.29292125e-01 -1.50598645e-01 -3.32187086e-01 -5.12826025e-01 -2.01548740e-01 4.55596566e-01 4.17948186e-01 1.18943051e-01 -2.01545596e-01 -9.14917961e-02 4.88154560e-01 3.46289575e-01 -2.68435419e-01 3.54931146e-01 9.21073556e-01 -2.63190120e-01 -7.40928471e-01 1.39090031e-01 6.89395964e-01 -6.86993241e-01 -1.03933200e-01 -3.40975374e-01 6.04469538e-01 1.87239528e-01 8.35013986e-01 2.47330636e-01 -5.53854287e-01 3.50365907e-01 2.49927700e-03 2.20423564e-02 -3.28932166e-01 -5.20103723e-02 5.45579344e-02 1.57072172e-01 -9.70902443e-01 -3.89531374e-01 -7.43659973e-01 -1.22496033e+00 -2.14636490e-01 -1.54977530e-01 1.07203119e-01 3.45045477e-02 1.17138565e+00 4.54331338e-01 5.77722073e-01 7.67240047e-01 -4.45721865e-01 1.13342218e-02 -8.49266291e-01 -6.54510140e-01 9.89839315e-01 4.93528545e-01 -6.14886999e-01 -4.88124013e-01 -1.22372299e-01]
[7.842347145080566, 1.6342964172363281]
d8108ed1-8219-48ba-86c4-ee1af3f68ddb
human-machine-co-adaption-interface-via
2305.02058
null
https://arxiv.org/abs/2305.02058v1
https://arxiv.org/pdf/2305.02058v1.pdf
Human Machine Co-adaption Interface via Cooperation Markov Decision Process System
This paper aims to develop a new human-machine interface to improve rehabilitation performance from the perspective of both the user (patient) and the machine (robot) by introducing the co-adaption techniques via model-based reinforcement learning. Previous studies focus more on robot assistance, i.e., to improve the control strategy so as to fulfill the objective of Assist-As-Needed. In this study, we treat the full process of robot-assisted rehabilitation as a co-adaptive or mutual learning process and emphasize the adaptation of the user to the machine. To this end, we proposed a Co-adaptive MDPs (CaMDPs) model to quantify the learning rates based on cooperative multi-agent reinforcement learning (MARL) in the high abstraction layer of the systems. We proposed several approaches to cooperatively adjust the Policy Improvement among the two agents in the framework of Policy Iteration. Based on the proposed co-adaptive MDPs, the simulation study indicates the non-stationary problem can be mitigated using various proposed Policy Improvement approaches.
['Steven W. Su', 'Rob Duffield', 'Jun Li', 'Yaqi Li', 'Adrian Cheng', 'Kairui Guo']
2023-05-03
null
null
null
null
['multi-agent-reinforcement-learning', 'model-based-reinforcement-learning']
['methodology', 'reasoning']
[-2.19739050e-01 5.92347860e-01 -2.75650322e-01 5.83056360e-02 -2.84789562e-01 1.46276698e-01 1.27520069e-01 6.31182343e-02 -6.94257498e-01 1.15729856e+00 2.74392277e-01 -6.65917024e-02 -5.84744096e-01 -5.69986343e-01 -2.84931451e-01 -9.42246735e-01 -1.14420697e-01 6.56254470e-01 1.05938487e-01 -6.85266316e-01 1.91214472e-01 3.52988601e-01 -1.28180170e+00 -1.93517864e-01 1.16768384e+00 2.11563215e-01 7.38888621e-01 7.93734968e-01 3.31607878e-01 8.16087663e-01 -2.98357457e-01 4.26073492e-01 5.56537509e-02 -4.08950418e-01 -9.28495705e-01 2.87189424e-01 -9.78795409e-01 -6.09578907e-01 -2.20098361e-01 7.71868825e-01 1.01278389e+00 3.85291070e-01 6.83820724e-01 -1.49755979e+00 -1.60615399e-01 5.00392735e-01 -5.70511460e-01 7.22221583e-02 3.03831160e-01 3.80487651e-01 3.74176949e-01 -2.85229623e-01 2.78829187e-01 1.56066489e+00 1.73496053e-01 9.99101877e-01 -7.95650959e-01 -3.69430840e-01 9.25061107e-02 6.82365775e-01 -1.08225214e+00 -5.66647947e-03 6.67662561e-01 -2.89825886e-01 6.60528600e-01 -2.05232263e-01 9.22865152e-01 6.37112617e-01 6.43683791e-01 7.81691492e-01 9.26747084e-01 -8.04548323e-01 4.29166168e-01 7.77822211e-02 7.54648000e-02 4.53173190e-01 3.27072680e-01 1.55057549e-01 3.70264910e-02 -1.95627019e-01 1.06657064e+00 -6.80290908e-02 -2.26396844e-02 -5.34245253e-01 -9.67315555e-01 6.79623187e-01 3.00246865e-01 3.36424619e-01 -1.27448690e+00 -2.97699356e-03 4.36235487e-01 3.82128179e-01 2.68052015e-02 3.41884017e-01 -5.85274518e-01 -2.71753252e-01 1.15554817e-01 2.85586119e-01 6.41517043e-01 5.04259884e-01 3.32145393e-01 7.26932809e-02 -1.94920674e-01 7.13700891e-01 4.40883875e-01 9.31235701e-02 4.62243706e-01 -1.29055631e+00 2.39689961e-01 5.16465008e-01 6.82306826e-01 -5.57333827e-01 -6.51558459e-01 -2.18275219e-01 -8.05163145e-01 7.59819627e-01 5.79843344e-03 -8.57989132e-01 -3.18911105e-01 1.57985032e+00 7.66578138e-01 -3.57188433e-02 4.49193567e-01 9.16355252e-01 -8.44629556e-02 6.21229827e-01 5.52519262e-01 -7.94800401e-01 1.12251103e+00 -9.37380850e-01 -1.22857583e+00 1.15400486e-01 8.20981026e-01 -3.17228615e-01 8.70362222e-01 3.87236685e-01 -1.20950699e+00 -5.99851012e-01 -8.33459377e-01 8.76911581e-01 2.40587607e-01 -1.34966169e-02 -2.98216287e-03 2.67185926e-01 -1.03450263e+00 7.21712351e-01 -9.11941171e-01 -6.58040762e-01 -1.58842131e-01 6.78951442e-01 9.16521698e-02 9.54976976e-02 -1.26092076e+00 1.35200381e+00 5.89922190e-01 6.47194386e-02 -6.23095214e-01 -2.39831477e-01 -3.68132442e-01 -2.70399958e-01 3.33503842e-01 -1.06210053e+00 1.31997085e+00 -1.02225339e+00 -2.01669550e+00 2.07099572e-01 3.34119380e-01 -2.96231598e-01 6.53012097e-01 -4.94816422e-01 -9.18654650e-02 2.56662577e-01 1.49658779e-02 1.45365044e-01 4.67104107e-01 -1.45891094e+00 -1.07938087e+00 -2.49602616e-01 1.61995918e-01 1.05948317e+00 -4.30916101e-01 -9.28181484e-02 2.39881784e-01 -2.98369020e-01 -3.38477910e-01 -1.07364178e+00 -6.56651258e-01 -4.15657401e-01 9.62015763e-02 -5.24409890e-01 9.38342035e-01 -6.12681091e-01 1.12305796e+00 -1.93281853e+00 6.66387141e-01 -8.88211951e-02 -1.05095550e-01 3.39286417e-01 7.19521567e-02 7.18804240e-01 5.51419221e-02 -2.81554043e-01 1.61876846e-02 2.11897101e-02 -3.65688533e-01 6.98028982e-01 3.50935876e-01 4.75001425e-01 -1.53474301e-01 2.79227376e-01 -1.05619514e+00 -8.38487983e-01 3.95225316e-01 1.86479181e-01 -6.57758415e-01 7.95231402e-01 1.24523275e-01 9.90495920e-01 -8.57505977e-01 2.30664790e-01 3.07746947e-01 2.02955499e-01 4.33357775e-01 -8.38411674e-02 -9.86129791e-02 -5.83700836e-01 -1.17325974e+00 1.21681654e+00 -4.49087054e-01 -3.15085888e-01 6.29527867e-01 -1.38940060e+00 6.63826704e-01 8.15685213e-01 1.43591869e+00 -4.63290304e-01 2.28544027e-01 1.47788242e-01 3.06867331e-01 -1.14844263e+00 3.21067482e-01 -9.00949538e-02 1.77349120e-01 3.91874045e-01 -6.99433684e-02 1.11706384e-01 -2.33449548e-01 -2.29236148e-02 1.14628971e+00 2.86715418e-01 8.21186244e-01 -3.90436113e-01 8.02363813e-01 9.97466370e-02 6.56587064e-01 6.11609221e-01 -7.79896080e-01 -4.91941392e-01 -5.53104542e-02 6.88206851e-02 -9.21858788e-01 -7.54387319e-01 4.38282579e-01 9.77973104e-01 4.42895472e-01 3.34120989e-01 -8.28310907e-01 -4.40393031e-01 9.55629945e-02 6.43652439e-01 -1.31002814e-01 -5.60595691e-01 -7.58207023e-01 -7.15846598e-01 -9.57332626e-02 3.04269165e-01 5.77268243e-01 -1.38673556e+00 -8.26342523e-01 7.63466716e-01 -1.88904375e-01 -8.19106996e-01 -2.38731325e-01 2.24873535e-02 -1.05447781e+00 -9.88307118e-01 -8.63409042e-01 -1.02480602e+00 6.09185100e-01 4.05459106e-03 2.81357974e-01 7.16159642e-02 3.58989388e-02 1.16631961e+00 -6.16551399e-01 -3.22204530e-01 -5.65531373e-01 4.21078689e-03 5.89197099e-01 -6.02340624e-02 -2.33980462e-01 -6.30117536e-01 -8.50489855e-01 4.87708271e-01 -4.70284581e-01 9.35694575e-02 8.02774966e-01 9.03244972e-01 3.71596575e-01 3.80611211e-01 1.19378591e+00 -2.90270686e-01 1.38431191e+00 -5.55586934e-01 6.31826147e-02 3.55440766e-01 -7.85881400e-01 1.64547428e-01 4.17392701e-01 -7.94322252e-01 -1.31831670e+00 1.92280307e-01 -1.08596437e-01 -4.82821129e-02 -1.58181146e-01 2.57241547e-01 -2.41204008e-01 -3.56636979e-02 3.77667993e-01 1.40429005e-01 4.92693156e-01 -2.02844679e-01 3.05039793e-01 1.11509979e+00 3.41645420e-01 -8.52990687e-01 3.94745260e-01 -6.44972324e-02 1.56983092e-01 -4.79928732e-01 -7.27483109e-02 -5.07410824e-01 -6.92009151e-01 -7.96854436e-01 8.84890616e-01 -6.20857298e-01 -1.40812194e+00 6.14222646e-01 -1.11923361e+00 -7.19452322e-01 -2.73115158e-01 8.91581833e-01 -1.12833071e+00 4.98354375e-01 -7.13066339e-01 -1.44699168e+00 -5.19683242e-01 -1.03271198e+00 5.73906720e-01 4.57579046e-01 -6.94220364e-02 -9.83819425e-01 3.26947808e-01 1.06253400e-01 3.92004162e-01 2.42687061e-01 9.77734864e-01 -2.76301533e-01 1.70969442e-02 -6.58192951e-03 3.25848728e-01 2.81073064e-01 4.63003576e-01 -4.73048627e-01 -1.64480984e-01 -6.17783129e-01 2.75825769e-01 -2.64525503e-01 -2.29716986e-01 5.51043510e-01 5.77103615e-01 -5.01140833e-01 -3.87393206e-01 -3.74904662e-01 1.33504164e+00 8.66932571e-01 8.22572172e-01 7.27514923e-01 3.86870801e-01 7.99105406e-01 1.42737460e+00 9.72307801e-01 6.52000904e-01 5.92391908e-01 6.57225490e-01 -1.12353966e-01 2.67069072e-01 1.91652551e-01 4.10156399e-01 8.44085455e-01 -5.34392178e-01 4.72396687e-02 -6.31157398e-01 3.57488394e-01 -2.62987876e+00 -9.06582713e-01 5.34915738e-02 1.89107752e+00 7.90509224e-01 -1.50527596e-01 4.00137424e-01 1.62046775e-01 1.10667598e+00 -6.11497402e-01 -6.02542579e-01 -3.41488838e-01 6.26857340e-01 -1.80302635e-01 4.89825159e-01 4.85292047e-01 -5.88140905e-01 7.18820155e-01 6.09712839e+00 5.27361512e-01 -7.24865317e-01 8.31937864e-02 1.97042078e-01 2.46899620e-01 4.50887620e-01 -1.30245268e-01 -4.01962966e-01 4.30874109e-01 8.90617251e-01 -3.15745354e-01 6.29578590e-01 8.50378454e-01 1.16242075e+00 -3.16650748e-01 -5.95569074e-01 6.18491709e-01 -5.80461562e-01 -3.80639941e-01 -3.81524950e-01 5.82239740e-02 3.35208982e-01 -4.28950995e-01 -6.15543246e-01 4.73977119e-01 5.04457593e-01 -2.96388686e-01 4.04774755e-01 8.96230757e-01 1.47899583e-01 -9.78368759e-01 9.15305078e-01 9.87481415e-01 -1.15287626e+00 -7.52172172e-01 4.69878316e-03 -2.17731208e-01 5.77023864e-01 -1.26533031e-01 -8.19592535e-01 6.31839573e-01 3.42816234e-01 4.11967725e-01 1.11483067e-01 9.03917909e-01 3.89543138e-02 1.90355211e-01 1.40225440e-01 -3.27780753e-01 -5.01411036e-02 -2.80480057e-01 6.29768014e-01 5.49472392e-01 2.23681867e-01 5.57929873e-01 6.56880081e-01 2.14677066e-01 8.45067561e-01 2.74892539e-01 -2.89710313e-01 3.42411757e-01 2.94015318e-01 1.10690236e+00 -3.18822652e-01 -3.21254790e-01 6.92857727e-02 9.69561040e-01 2.99956262e-01 2.84452409e-01 -7.70430088e-01 -4.79787081e-01 5.59800923e-01 6.82326630e-02 -3.09283972e-01 -4.49721277e-01 -3.22349630e-02 -5.99765778e-01 -2.90208757e-01 -7.46286392e-01 3.38604748e-01 -6.47670627e-01 -1.06878984e+00 2.57564992e-01 2.36843839e-01 -1.41782081e+00 -6.07458174e-01 -1.81686729e-01 -4.48188514e-01 6.44502103e-01 -1.36940670e+00 -7.39388227e-01 -1.76349565e-01 9.53842223e-01 5.62375546e-01 -2.22953945e-01 7.92550385e-01 3.56390268e-01 -6.01326048e-01 6.80650473e-02 1.14387639e-01 -4.30097073e-01 7.07138479e-01 -9.30412054e-01 -8.17809105e-01 4.25703675e-01 -1.26264381e+00 9.52250361e-02 1.04120612e+00 -8.86398911e-01 -1.38156962e+00 -7.76190042e-01 1.69692039e-01 3.56914312e-01 4.35793072e-01 5.53976238e-01 -7.73124754e-01 2.59893119e-01 4.32834983e-01 -3.43602508e-01 4.99111265e-02 -3.45039636e-01 1.10541821e+00 -1.65667012e-01 -1.47695470e+00 6.90741301e-01 8.08265328e-01 1.02235034e-01 -4.16064829e-01 2.41028264e-01 7.63863146e-01 -1.60724968e-01 -1.06781471e+00 6.08424127e-01 4.59454745e-01 -2.54730672e-01 7.44870007e-01 -6.84722483e-01 -9.40152109e-02 -1.90620899e-01 -5.53891659e-02 -1.74749351e+00 -6.39460683e-01 -5.64165592e-01 -3.01400393e-01 9.14547145e-01 -2.71025509e-01 -8.11527550e-01 6.12998724e-01 6.64219618e-01 -2.06964970e-01 -7.83681035e-01 -9.49995339e-01 -6.61551297e-01 -8.18826556e-02 2.76825488e-01 2.67284334e-01 5.98499775e-01 7.45473444e-01 2.05617800e-01 -6.54656947e-01 4.10813779e-01 5.50908864e-01 -6.80175006e-01 7.61367440e-01 -8.36862683e-01 -5.45786560e-01 -8.94292817e-02 -1.13991261e-01 -5.01355529e-01 1.01199344e-01 -2.45172724e-01 4.26368684e-01 -2.06397223e+00 9.20550823e-02 -4.99609411e-01 -3.89157265e-01 3.52440745e-01 -3.17664117e-01 -8.74954104e-01 8.90914872e-02 5.01395464e-01 -5.75101912e-01 8.75897408e-01 1.61271787e+00 1.21465549e-01 -7.51483917e-01 4.43315119e-01 -4.58989561e-01 5.97729981e-01 1.20912385e+00 -4.35909301e-01 -4.62723881e-01 -4.10450064e-02 -4.30031151e-01 9.67306137e-01 4.76128533e-02 -1.06539309e+00 2.90585965e-01 -7.39098787e-01 -4.52336639e-01 -2.62452692e-01 1.29898727e-01 -1.23936558e+00 5.45091219e-02 1.35569358e+00 -3.46536815e-01 2.23895073e-01 -1.86040789e-01 8.10374737e-01 7.98354372e-02 -3.02081615e-01 8.32601726e-01 -1.21069290e-01 -6.75333858e-01 -1.00580655e-01 -9.60708261e-01 -4.80269104e-01 1.53354359e+00 1.31084472e-01 -1.13732144e-02 -6.06412828e-01 -1.05830967e+00 6.30932450e-01 -8.06410015e-02 1.18145451e-01 5.06526768e-01 -1.12801743e+00 -4.51220453e-01 -5.29686749e-01 -2.71578163e-01 -4.60054010e-01 3.94185275e-01 8.07321668e-01 -2.40176737e-01 8.73749629e-02 -8.34078848e-01 -3.26052129e-01 -1.31875885e+00 4.26422328e-01 6.04432821e-01 -7.21476138e-01 -5.29803455e-01 -2.43098900e-01 -4.04501677e-01 -4.45107430e-01 4.30782884e-01 1.32577866e-01 -8.17787409e-01 -3.72600049e-01 5.52051403e-02 7.39891231e-01 -5.62749386e-01 -3.10622513e-01 -1.47131830e-01 4.48821306e-01 2.48075202e-01 -4.50148672e-01 1.39431226e+00 -6.78126276e-01 -6.31962270e-02 2.72059679e-01 3.88064653e-01 -7.41951704e-01 -1.19619477e+00 -1.62996605e-01 4.14706543e-02 1.14435203e-01 -6.90459982e-02 -6.49184406e-01 -7.50646710e-01 2.93801695e-01 1.27669632e+00 8.83420836e-03 1.12948513e+00 -4.29658890e-01 6.13373578e-01 5.46412945e-01 7.15621829e-01 -1.63685942e+00 5.00783741e-01 2.29611397e-01 8.99992466e-01 -1.06074047e+00 -1.11504113e-02 -2.00827971e-01 -1.07466817e+00 1.10922039e+00 9.95458007e-01 -4.36240882e-01 9.01321411e-01 1.52235672e-01 -2.03954414e-01 1.38795495e-01 -5.57409346e-01 -1.90173954e-01 -3.24946165e-01 7.76689231e-01 9.38539654e-02 2.76109934e-01 -9.16341126e-01 5.08116364e-01 5.68562806e-01 5.53742647e-01 6.65097058e-01 1.42882013e+00 -8.54467809e-01 -1.31002700e+00 -5.62725008e-01 1.78496420e-01 -1.71414006e-03 7.91449428e-01 3.05658579e-01 7.98203826e-01 2.54711881e-02 1.15331948e+00 -3.47360343e-01 -3.98259133e-01 5.32844186e-01 -2.58005679e-01 4.70892727e-01 -3.99143845e-01 -3.80782425e-01 1.29223436e-01 9.37242061e-02 -2.88619220e-01 -7.94997513e-01 -6.10135615e-01 -1.63201010e+00 2.46044137e-02 -1.64387748e-01 1.88056275e-01 6.26301229e-01 1.12766171e+00 3.70313764e-01 1.04549074e+00 1.02692223e+00 -9.69623625e-01 -9.89227593e-01 -1.14952958e+00 -8.47040057e-01 1.05730250e-01 9.99635011e-02 -8.92430604e-01 -9.95170772e-02 -2.01120809e-01]
[4.224880695343018, 1.910614252090454]
1e4afd04-aea6-4ddd-ac8a-55695a1ed8df
let-s-verify-step-by-step-1
2305.20050
null
https://arxiv.org/abs/2305.20050v1
https://arxiv.org/pdf/2305.20050v1.pdf
Let's Verify Step by Step
In recent years, large language models have greatly improved in their ability to perform complex multi-step reasoning. However, even state-of-the-art models still regularly produce logical mistakes. To train more reliable models, we can turn either to outcome supervision, which provides feedback for a final result, or process supervision, which provides feedback for each intermediate reasoning step. Given the importance of training reliable models, and given the high cost of human feedback, it is important to carefully compare the both methods. Recent work has already begun this comparison, but many questions still remain. We conduct our own investigation, finding that process supervision significantly outperforms outcome supervision for training models to solve problems from the challenging MATH dataset. Our process-supervised model solves 78% of problems from a representative subset of the MATH test set. Additionally, we show that active learning significantly improves the efficacy of process supervision. To support related research, we also release PRM800K, the complete dataset of 800,000 step-level human feedback labels used to train our best reward model.
['Karl Cobbe', 'Ilya Sutskever', 'John Schulman', 'Jan Leike', 'Teddy Lee', 'Bowen Baker', 'Harri Edwards', 'Yura Burda', 'Vineet Kosaraju', 'Hunter Lightman']
2023-05-31
let-s-verify-step-by-step
https://cdn.openai.com/improving-mathematical-reasoning-with-process-supervision/Lets_Verify_Step_by_Step.pdf
https://cdn.openai.com/improving-mathematical-reasoning-with-process-supervision/Lets_Verify_Step_by_Step.pdf
preprint-2023-5
['math-word-problem-solving', 'active-learning', 'active-learning', 'math-word-problem-solving', 'math-word-problem-solving']
['knowledge-base', 'methodology', 'natural-language-processing', 'reasoning', 'time-series']
[ 1.50706679e-01 3.35724264e-01 -1.98521003e-01 -7.05112398e-01 -1.18951976e+00 -6.69183791e-01 4.33798283e-01 6.37639642e-01 -5.18293858e-01 8.87500226e-01 2.73317754e-01 -5.67192614e-01 -1.75898001e-01 -8.52563441e-01 -6.47953391e-01 -4.08726037e-02 2.38388881e-01 8.16686749e-01 1.90394253e-01 -2.37623930e-01 6.30632520e-01 2.33671829e-01 -1.08159709e+00 5.54467976e-01 1.23669171e+00 4.40369219e-01 -2.07431763e-02 8.98469806e-01 -3.78819741e-02 1.71957278e+00 -7.39656568e-01 -7.98288941e-01 -8.63251984e-02 -3.56511056e-01 -1.18176830e+00 -3.20509046e-01 4.95462924e-01 -5.39630592e-01 -1.87805165e-02 7.68140197e-01 3.56885284e-01 5.05859971e-01 6.32666707e-01 -1.12225842e+00 -9.08556342e-01 1.06815684e+00 -2.31421173e-01 3.31171334e-01 6.32187128e-01 4.08533752e-01 1.29125249e+00 -8.15417111e-01 7.38698900e-01 1.20643890e+00 6.15478814e-01 7.00631678e-01 -1.35999954e+00 -6.71612799e-01 2.12354049e-01 3.43471438e-01 -9.07332599e-01 -6.20320022e-01 5.33128202e-01 -3.37184846e-01 1.24937999e+00 -1.12524293e-01 5.26215851e-01 9.79323745e-01 9.68730152e-02 1.21619582e+00 1.11851156e+00 -4.97648925e-01 1.62984118e-01 8.26609042e-03 4.96322274e-01 9.90099072e-01 1.32891014e-01 -2.23700535e-02 -7.23658562e-01 -1.56301230e-01 5.87576210e-01 -1.64274737e-01 -1.57993302e-01 -2.20695347e-01 -9.31301534e-01 6.60199940e-01 2.70980090e-01 7.53962100e-02 -2.84237526e-02 1.36886939e-01 1.78153768e-01 6.34559691e-01 1.76328450e-01 1.10727453e+00 -5.70978403e-01 -5.99402308e-01 -8.74058604e-01 4.80476022e-01 1.14454401e+00 7.36321270e-01 5.43585956e-01 -1.84706941e-01 -3.04608375e-01 5.70001423e-01 3.06394577e-01 7.73069188e-02 1.65521890e-01 -1.44360638e+00 9.43816483e-01 8.60709012e-01 3.23364943e-01 -5.01801312e-01 -1.48527935e-01 -2.08611056e-01 -3.16043645e-01 4.58786458e-01 8.32600474e-01 -8.87862593e-02 -7.63998628e-01 1.56686425e+00 -8.74274522e-02 -9.84046385e-02 4.31859680e-02 6.35459661e-01 6.00321829e-01 4.55711752e-01 3.23287785e-01 -1.69433989e-02 6.08262062e-01 -1.36195993e+00 -5.37137210e-01 -2.42236406e-01 1.12385952e+00 -7.38975942e-01 1.25882256e+00 6.86748028e-01 -1.63980174e+00 -4.63105619e-01 -9.47948873e-01 -3.72391075e-01 -8.17069709e-02 -1.74954459e-01 9.44445431e-01 3.02078277e-01 -1.15842021e+00 9.00658488e-01 -9.41350281e-01 3.76243219e-02 4.83564287e-01 3.53305608e-01 -1.94982007e-01 -4.57193017e-01 -1.11080503e+00 1.18628383e+00 9.44208652e-02 -1.08211018e-01 -1.05940020e+00 -9.16773498e-01 -9.01528478e-01 3.14120889e-01 5.70770741e-01 -4.76474911e-01 1.79399693e+00 -6.89267874e-01 -1.42575908e+00 7.07687616e-01 -1.02061041e-01 -4.49264169e-01 6.91617429e-01 -4.90400195e-01 7.76123628e-02 1.05964735e-01 1.15103394e-01 5.38556159e-01 3.41844201e-01 -8.25450957e-01 -4.95931119e-01 -9.00035501e-02 3.62865210e-01 2.87606031e-01 -6.34372756e-02 3.35433602e-01 -1.65984944e-01 -2.66114265e-01 -1.80947334e-01 -7.45730519e-01 -3.51771027e-01 -1.02241084e-01 -4.70346585e-02 -7.90155649e-01 1.07452057e-01 -5.50514340e-01 9.54250336e-01 -1.91294301e+00 3.91816914e-01 6.06403798e-02 3.79930913e-01 1.47206843e-01 -1.90348506e-01 2.37381503e-01 -1.88761741e-01 4.59078640e-01 -1.59052074e-01 -6.15567029e-01 -5.47679253e-02 -4.32220064e-02 -4.33847785e-01 1.38510540e-02 5.36788940e-01 1.05185282e+00 -1.15851200e+00 -5.82610309e-01 3.82354707e-02 -4.85120565e-02 -7.20049322e-01 3.80378485e-01 -4.98513997e-01 2.12478459e-01 -4.34410483e-01 5.51061809e-01 1.28655151e-01 -6.60213768e-01 9.11255479e-02 6.96855724e-01 1.21694930e-01 8.23184311e-01 -9.86429095e-01 1.83274829e+00 -3.64423007e-01 5.29444635e-01 -1.80548206e-01 -8.16981316e-01 7.54364252e-01 3.32021356e-01 1.13137089e-01 -7.96067238e-01 -1.64244622e-01 1.54100716e-01 4.48152512e-01 -3.33047718e-01 5.96101463e-01 -1.86644215e-02 1.29191086e-01 8.24245512e-01 1.74153261e-02 -3.83578330e-01 4.96775359e-01 6.20827794e-01 1.53980649e+00 2.50671148e-01 1.92631334e-01 1.12521939e-01 4.02673960e-01 3.15370888e-01 4.55235183e-01 1.05059803e+00 -4.03196096e-01 5.30099273e-01 6.08116210e-01 -2.94798672e-01 -8.09914887e-01 -1.02946770e+00 2.52835482e-01 1.20405626e+00 -2.40265623e-01 -7.60182619e-01 -3.50008637e-01 -9.81727898e-01 5.94252199e-02 1.02213073e+00 -3.88536900e-01 -1.94074735e-01 -9.25210655e-01 -3.77426356e-01 4.82710332e-01 8.03547502e-01 3.81522417e-01 -1.37646782e+00 -2.11357549e-01 2.56195992e-01 -9.54664275e-02 -8.01699102e-01 5.89291453e-02 3.07651460e-01 -1.12504017e+00 -1.11078274e+00 -2.97459871e-01 -6.33765638e-01 7.67306626e-01 2.63758358e-02 1.70861876e+00 6.96811914e-01 -1.11838140e-01 5.13179600e-01 -3.83807838e-01 -3.25424880e-01 -6.26810372e-01 2.11094990e-01 -2.92817146e-01 -9.83248770e-01 3.51118416e-01 -3.56201708e-01 3.17962244e-02 -5.13238134e-03 -3.46451491e-01 1.34441614e-01 5.36821961e-01 7.72761166e-01 1.04233555e-01 8.28066543e-02 4.21047807e-01 -1.16177058e+00 8.12848687e-01 -3.35106879e-01 -4.88524437e-01 4.47257817e-01 -7.53105760e-01 2.81801671e-01 7.44477034e-01 -1.34596676e-01 -1.19169557e+00 -1.32464573e-01 1.10228797e-02 -1.66377388e-02 -2.57995352e-02 6.65002108e-01 3.95060897e-01 1.99711502e-01 9.13978755e-01 -1.01071037e-01 -2.74119616e-01 -2.55275339e-01 9.05112475e-02 1.97132885e-01 3.21799278e-01 -1.16501963e+00 8.25618207e-01 -7.31790066e-02 -2.65618443e-01 -3.00994039e-01 -1.42996418e+00 -1.78123623e-01 -3.95795345e-01 -4.98522520e-02 5.25012314e-01 -1.01053882e+00 -8.62814784e-01 3.76796633e-01 -1.11508000e+00 -1.21884608e+00 -2.51354933e-01 3.91036123e-01 -6.13346934e-01 7.30910972e-02 -1.29876089e+00 -8.76819551e-01 -1.47275597e-01 -1.19405282e+00 6.74657583e-01 2.63790131e-01 -6.82935178e-01 -1.09978378e+00 5.36912978e-02 9.64347780e-01 3.41290742e-01 -2.12798312e-01 1.20179605e+00 -7.53467798e-01 -1.07721817e+00 -1.10509619e-01 -6.24309108e-02 3.01067710e-01 -2.26491541e-01 1.15645766e-01 -7.48076797e-01 -1.86394285e-02 -7.09809363e-02 -1.30025816e+00 9.39089894e-01 1.76199172e-02 1.16485012e+00 2.94663519e-01 -3.06198243e-02 1.23756073e-01 9.50129509e-01 -9.46686268e-02 6.57428741e-01 4.60211009e-01 4.93555337e-01 4.39981967e-01 8.40313792e-01 -5.27022481e-02 5.41719556e-01 2.33992234e-01 -5.25023118e-02 2.21954703e-01 -4.72121350e-02 -4.72193956e-01 5.72376192e-01 7.22873211e-01 -2.84524918e-01 -1.39946878e-01 -1.27904785e+00 3.23722363e-01 -1.81325293e+00 -1.01247430e+00 -1.07854798e-01 2.03585768e+00 1.25076282e+00 8.30915689e-01 -1.13699816e-01 3.53052408e-01 1.82897687e-01 -7.53857568e-02 -3.91797096e-01 -4.16791499e-01 2.77608424e-01 6.40050471e-01 -7.44166151e-02 8.61099541e-01 -7.17315257e-01 1.09323466e+00 7.20912170e+00 6.24776661e-01 -6.89252794e-01 -3.24963965e-02 7.09722877e-01 -1.95173323e-01 -3.43968034e-01 1.35523230e-01 -8.61987591e-01 5.84440865e-02 1.11959481e+00 -1.61560342e-01 5.48848331e-01 1.00287688e+00 1.12861462e-01 -4.34520304e-01 -1.59452283e+00 5.73400080e-01 -2.06979867e-02 -1.21063161e+00 -1.60824448e-01 -2.25740969e-01 1.00215447e+00 -2.16786712e-01 -1.12345420e-01 1.07324266e+00 1.04084730e+00 -1.45499194e+00 6.17256343e-01 5.27696192e-01 3.09718609e-01 -7.51226902e-01 6.91836834e-01 7.01127470e-01 -8.30416739e-01 -7.58192539e-02 -3.12710434e-01 -7.78778374e-01 6.86721429e-02 4.20598388e-01 -1.11583269e+00 2.71583706e-01 3.98944885e-01 8.61155748e-01 -9.19291914e-01 9.52271819e-01 -9.18537080e-01 9.85498428e-01 -9.72056836e-02 -1.64997727e-01 -2.52004229e-02 -2.51493417e-03 1.26499653e-01 7.97804117e-01 -1.87835574e-01 1.53043449e-01 3.63608122e-01 1.07719159e+00 -2.55645931e-01 -1.81363612e-01 -3.60662401e-01 -3.63000631e-01 4.77193058e-01 1.04361188e+00 -7.76303530e-01 -6.39221072e-01 -3.10241014e-01 8.73170733e-01 1.11005116e+00 2.40544602e-01 -7.11816311e-01 -1.06466167e-01 3.06353182e-01 -1.10788658e-01 -1.78559020e-01 -4.50982034e-01 -7.43264437e-01 -1.18706059e+00 5.96531257e-02 -1.10338402e+00 5.13841689e-01 -1.07664585e+00 -1.15719545e+00 -2.55217706e-03 -2.18838692e-01 -5.64463377e-01 -3.04927975e-01 -5.86076081e-01 -6.95770562e-01 9.17863011e-01 -1.38106084e+00 -5.29209495e-01 -2.81032711e-01 2.72062689e-01 7.58841574e-01 -1.09388292e-01 9.32703674e-01 9.08473060e-02 -5.45584500e-01 4.70710576e-01 -3.67065907e-01 4.16936964e-01 1.01876152e+00 -1.57790983e+00 5.65148354e-01 7.65123904e-01 4.11840938e-02 1.14300537e+00 6.75685942e-01 -8.41381788e-01 -1.26285994e+00 -5.35166681e-01 1.18612993e+00 -1.11903775e+00 7.39150941e-01 -1.55409768e-01 -9.18490887e-01 1.08960211e+00 2.56038345e-02 -2.85054684e-01 5.96922398e-01 6.98803484e-01 -3.08858812e-01 1.76169559e-01 -9.61379588e-01 7.11131930e-01 1.11220753e+00 -4.87199128e-01 -1.20587242e+00 2.85975456e-01 7.38351524e-01 -7.84451604e-01 -7.23872781e-01 1.89680159e-01 2.25589588e-01 -9.71889138e-01 8.04571629e-01 -8.26414526e-01 1.27005911e+00 -1.26017798e-02 3.77502084e-01 -1.26904368e+00 -4.49030787e-01 -3.15961987e-01 -3.25017124e-01 1.21804595e+00 7.76293695e-01 -2.32101038e-01 9.82864320e-01 1.05945253e+00 -2.34373704e-01 -9.82920289e-01 -2.20212355e-01 -4.71767664e-01 2.63131261e-01 -6.35398686e-01 1.21398516e-01 9.71798241e-01 2.40718573e-01 5.38453579e-01 -4.16495167e-02 -1.85852572e-01 5.09184003e-01 5.12224324e-02 8.11556637e-01 -1.31197155e+00 -5.42563081e-01 -3.59579086e-01 2.73084436e-02 -1.08798897e+00 3.64855438e-01 -9.69933689e-01 4.41430695e-02 -1.81394291e+00 3.99647146e-01 -5.97741127e-01 -2.35704869e-01 8.01413596e-01 -5.88768303e-01 1.71862487e-02 1.61674842e-01 9.19618234e-02 -1.09998620e+00 3.27832609e-01 1.39981008e+00 -1.05465315e-01 -1.85812429e-01 3.32670175e-02 -9.42693532e-01 7.26793766e-01 7.02978313e-01 -5.26223660e-01 -5.33722520e-01 -5.47076344e-01 6.23359203e-01 2.67798811e-01 1.30278826e-01 -1.06834877e+00 4.52913761e-01 -4.68588084e-01 7.36791968e-01 -3.41072440e-01 3.80248457e-01 -4.29937214e-01 -5.68136275e-01 4.30431634e-01 -9.59055364e-01 2.57298470e-01 9.11145583e-02 1.93848580e-01 -1.70177445e-01 -5.70126295e-01 6.20703936e-01 -4.89171118e-01 -6.28011286e-01 -1.33037969e-01 -4.68494713e-01 4.14658755e-01 7.25679398e-01 6.48177043e-02 -5.87517977e-01 -4.83617127e-01 -6.01496696e-01 5.21242917e-01 5.16114593e-01 2.04440057e-01 5.03227830e-01 -9.62947607e-01 -6.98894322e-01 -8.41980055e-02 -9.59107429e-02 4.23024118e-01 3.49108838e-02 7.91152477e-01 -5.29870093e-01 4.53140587e-01 -3.87377068e-02 -2.91380256e-01 -1.26648152e+00 3.33042383e-01 1.35428086e-01 -7.54850566e-01 -4.76833969e-01 1.09839797e+00 -5.02236843e-01 -5.80504537e-01 3.08132291e-01 -4.02312398e-01 -8.31442401e-02 -1.22734413e-01 6.45647407e-01 3.97163957e-01 1.16751574e-01 2.42715225e-01 -1.36933520e-01 3.66513096e-02 -4.95506972e-01 -2.59486228e-01 1.42377198e+00 4.43782270e-01 -1.58867821e-01 6.89649403e-01 5.48267424e-01 1.62198529e-01 -1.05606413e+00 -9.78722051e-02 3.69477689e-01 -3.20002466e-01 -2.48544261e-01 -1.31054866e+00 -5.25558710e-01 8.24726224e-01 -1.46700695e-01 9.97779798e-03 6.40142620e-01 -2.54264116e-01 3.13625038e-01 1.02917540e+00 5.77813506e-01 -1.08615649e+00 5.52160442e-01 1.01427197e+00 6.78341389e-01 -1.48188615e+00 1.80689409e-01 -4.26858336e-01 -5.97738385e-01 1.13328075e+00 1.11477709e+00 -1.74180880e-01 -8.73711519e-03 2.77099252e-01 5.19583467e-03 -1.83236614e-01 -1.33925104e+00 1.71669483e-01 2.47637201e-02 1.55624196e-01 1.03698039e+00 -8.20213091e-03 -6.26722053e-02 4.12903398e-01 -5.36397398e-01 3.44565719e-01 6.47571445e-01 1.28351092e+00 -4.86361593e-01 -1.23049247e+00 -3.47271442e-01 4.87175465e-01 -3.31826240e-01 -2.59168983e-01 -5.84204137e-01 7.21790612e-01 -2.80306727e-01 1.11110854e+00 -6.27857372e-02 -6.27831817e-02 2.35611141e-01 5.87606192e-01 8.85274172e-01 -1.09304798e+00 -8.47949862e-01 -5.92455089e-01 4.19837892e-01 -5.35178602e-01 -1.00899130e-01 -5.29044211e-01 -1.57323384e+00 -6.16448641e-01 -1.60274848e-01 2.90892810e-01 2.51270324e-01 1.25839615e+00 -1.88171491e-01 6.32359505e-01 -9.31420643e-03 -5.21367013e-01 -1.11540365e+00 -1.07698584e+00 -1.81106031e-01 4.77236986e-01 1.15607239e-01 -5.16545713e-01 -4.92361486e-01 -1.12367220e-01]
[9.740891456604004, 7.404353141784668]
0d9fb503-d14d-43e4-9101-6a507445c87c
early-melanoma-diagnosis-with-sequential
2110.05976
null
https://arxiv.org/abs/2110.05976v1
https://arxiv.org/pdf/2110.05976v1.pdf
Early Melanoma Diagnosis with Sequential Dermoscopic Images
Dermatologists often diagnose or rule out early melanoma by evaluating the follow-up dermoscopic images of skin lesions. However, existing algorithms for early melanoma diagnosis are developed using single time-point images of lesions. Ignoring the temporal, morphological changes of lesions can lead to misdiagnosis in borderline cases. In this study, we propose a framework for automated early melanoma diagnosis using sequential dermoscopic images. To this end, we construct our method in three steps. First, we align sequential dermoscopic images of skin lesions using estimated Euclidean transformations, extract the lesion growth region by computing image differences among the consecutive images, and then propose a spatio-temporal network to capture the dermoscopic changes from aligned lesion images and the corresponding difference images. Finally, we develop an early diagnosis module to compute probability scores of malignancy for lesion images over time. We collected 179 serial dermoscopic imaging data from 122 patients to verify our method. Extensive experiments show that the proposed model outperforms other commonly used sequence models. We also compared the diagnostic results of our model with those of seven experienced dermatologists and five registrars. Our model achieved higher diagnostic accuracy than clinicians (63.69% vs. 54.33%, respectively) and provided an earlier diagnosis of melanoma (60.7% vs. 32.7% of melanoma correctly diagnosed on the first follow-up images). These results demonstrate that our model can be used to identify melanocytic lesions that are at high-risk of malignant transformation earlier in the disease process and thereby redefine what is possible in the early detection of melanoma.
['ZongYuan Ge', 'Victoria Mar', 'Lei Zhang', 'Paul Bonnington', 'Catriona Mclean', 'John Kelly', 'Toan D Nguyen', 'Jennifer Nguyen', 'Zhen Yu']
2021-10-12
null
null
null
null
['melanoma-diagnosis']
['computer-vision']
[ 7.85242498e-01 -3.30683351e-01 -3.12767386e-01 -7.57982507e-02 -3.75473469e-01 -6.07594728e-01 4.90872681e-01 1.23763904e-01 -6.73833847e-01 4.88880754e-01 -2.68640935e-01 -4.03805166e-01 -3.43262494e-01 -7.08797514e-01 1.26602482e-02 -9.57961142e-01 7.36555830e-02 8.02807510e-02 4.13366497e-01 1.55021161e-01 2.83218086e-01 7.00045824e-01 -1.06886923e+00 3.98461133e-01 1.23820436e+00 5.38750947e-01 2.74071187e-01 1.19954610e+00 -2.62966193e-02 6.03441775e-01 -5.16233027e-01 -6.03710055e-01 2.24471748e-01 -5.43982744e-01 -8.41894925e-01 7.44274199e-01 4.19363201e-01 -5.89127004e-01 -2.96190172e-01 1.26364601e+00 3.11635494e-01 -4.73952383e-01 8.47557425e-01 -8.65237892e-01 -5.28044999e-01 -5.81986792e-02 -1.18768811e+00 3.08653384e-01 2.01591566e-01 4.03861105e-01 2.90135801e-01 -5.30371368e-01 1.00994837e+00 6.68107748e-01 7.79022634e-01 8.83042276e-01 -8.93398106e-01 -2.02087402e-01 2.48564798e-02 4.08374131e-01 -1.26825786e+00 -2.18382046e-01 2.48925537e-01 -4.99284774e-01 3.83194566e-01 6.82331383e-01 9.46171165e-01 9.99060631e-01 3.94851238e-01 6.32332444e-01 1.44672382e+00 -4.49711531e-01 -2.56116897e-01 1.77972801e-02 8.86780545e-02 9.96276438e-01 2.31467322e-01 3.75078797e-01 -2.15258867e-01 -1.17014401e-01 1.02940786e+00 5.10955930e-01 -1.36168942e-01 3.62788856e-01 -1.02914417e+00 3.64305019e-01 3.55680108e-01 1.14711165e-01 -5.24069846e-01 -2.71914721e-01 1.81926548e-01 2.72212088e-01 4.96042162e-01 -8.72298554e-02 4.00507838e-01 1.56820372e-01 -7.82798171e-01 -4.82483119e-01 3.75081569e-01 1.46302283e-01 2.29883149e-01 -4.61584032e-01 -1.31079450e-01 1.00679135e+00 -2.97741964e-02 4.63360399e-01 4.61569160e-01 -4.29645211e-01 -7.13791847e-02 6.23068213e-01 -7.66964778e-02 -7.73703039e-01 -3.43388289e-01 -3.98941748e-02 -1.11584496e+00 1.47315696e-01 5.11902273e-01 -3.03491652e-01 -1.37849414e+00 8.27717304e-01 5.01550972e-01 2.81509399e-01 7.39451079e-03 9.71470833e-01 2.45929629e-01 3.27499330e-01 1.25695392e-01 -5.37348866e-01 1.27130377e+00 -9.04036939e-01 -6.02007568e-01 5.87087311e-02 4.64493781e-01 -9.11287844e-01 4.53265488e-01 4.50335354e-01 -8.62579823e-01 -2.37341896e-01 -7.18832135e-01 5.16163349e-01 6.63533285e-02 6.40543044e-01 6.88325524e-01 4.41907078e-01 -1.26254761e+00 5.23703039e-01 -1.06599891e+00 -9.45593238e-01 2.58543074e-01 1.91604748e-01 -2.20283002e-01 -2.92703301e-01 -7.42703795e-01 7.72447467e-01 1.03519224e-01 3.18710774e-01 -7.46945202e-01 -5.66519201e-01 -4.91370976e-01 -8.85627091e-01 3.91773432e-01 -6.93917096e-01 1.06016028e+00 -1.25394189e+00 -1.30697620e+00 1.17333162e+00 -6.39254987e-01 -3.60130101e-01 7.10618377e-01 2.77285725e-01 -8.81151676e-01 5.98033965e-01 -2.65175909e-01 4.61520135e-01 9.99689996e-01 -9.53407288e-01 -1.29693663e+00 -3.76032561e-01 -1.10224113e-01 3.75906438e-01 -3.77630770e-01 1.13232210e-02 -5.69353878e-01 -3.16042751e-01 -1.46487072e-01 -1.04644608e+00 -5.52696109e-01 7.11641252e-01 -5.84419787e-01 5.85622638e-02 5.65342486e-01 -1.14799345e+00 1.19719112e+00 -2.18040442e+00 -2.70402998e-01 3.51571113e-01 6.74912333e-01 7.36987412e-01 -2.72198260e-01 3.69322956e-01 -1.48004107e-02 2.37815201e-01 -1.32988662e-01 6.23634718e-02 -7.92709470e-01 -1.32655814e-01 1.85634032e-01 6.65986955e-01 3.82385403e-01 8.69473875e-01 -9.88331914e-01 -6.45757973e-01 4.30033892e-01 3.99495840e-01 4.90929693e-01 -7.37612769e-02 2.62039036e-01 1.63973466e-01 -2.40461174e-02 9.61936712e-01 7.00806856e-01 -4.38222647e-01 4.25767779e-01 -1.35513961e-01 7.87515640e-02 -4.81432468e-01 -6.51273489e-01 1.16480446e+00 -1.73274636e-01 7.46269524e-01 -7.57474378e-02 -1.88464239e-01 5.11083305e-01 3.59293133e-01 5.18107653e-01 -5.35303235e-01 -1.62230417e-01 4.17354964e-02 3.19490075e-01 -1.05120480e+00 1.71926051e-01 -3.00198905e-02 6.70365393e-01 4.59500372e-01 -6.05370104e-01 2.00618580e-01 5.12826562e-01 1.13907829e-02 1.07420576e+00 -4.47367579e-01 5.39847553e-01 3.43414009e-01 6.02165043e-01 4.11908478e-01 3.54015946e-01 5.13727069e-01 -4.81385052e-01 3.30233783e-01 2.93860137e-01 -4.69945550e-01 -8.42520297e-01 -1.38258719e+00 -2.15935364e-01 3.02302778e-01 5.14352441e-01 -3.37655321e-02 -5.35944760e-01 -8.69656026e-01 6.49219900e-02 1.71340212e-01 -7.71770537e-01 -3.51521187e-02 -1.55513123e-01 -1.04997826e+00 4.66780305e-01 3.39375913e-01 5.06545901e-01 -4.16495293e-01 -9.64339897e-02 -8.76410976e-02 4.21080813e-02 -6.46735609e-01 -5.48402309e-01 -5.06058097e-01 -8.86922956e-01 -1.63128138e+00 -1.19233608e+00 -9.68926311e-01 1.38637030e+00 6.41988575e-01 3.88507605e-01 3.97844076e-01 -1.17574012e+00 2.13289097e-01 -1.51141480e-01 -1.38840169e-01 -7.79057503e-01 -3.90511632e-01 -8.54664817e-02 3.28843623e-01 2.89974451e-01 5.83466282e-03 -8.68018925e-01 3.82746994e-01 -1.01819813e+00 3.25828195e-01 1.08438110e+00 8.82287979e-01 8.15250635e-01 2.16296926e-01 1.51260570e-01 -1.00850332e+00 8.63001943e-01 -4.55046922e-01 -4.09482449e-01 7.75213599e-01 -6.21196568e-01 -3.77813816e-01 3.80953968e-01 -7.54059613e-01 -1.20790923e+00 1.69928074e-01 -6.47017062e-02 -2.45951846e-01 -3.56015384e-01 3.53099495e-01 9.03460026e-01 -4.84322578e-01 7.24034011e-01 4.78326559e-01 6.27630949e-01 7.74599984e-02 -7.75714293e-02 9.24907088e-01 5.29948771e-01 3.12269092e-01 7.16066420e-01 8.42354417e-01 1.61252096e-01 -9.95406449e-01 -5.53136885e-01 -8.57504785e-01 -6.61002815e-01 -5.68496585e-01 5.89627206e-01 -6.31073296e-01 -4.67328936e-01 9.86870289e-01 -8.14623535e-01 -1.09452762e-01 -3.82306948e-02 4.32328135e-01 1.04391977e-01 8.09771359e-01 -9.99861181e-01 -9.85686958e-01 -4.80538309e-01 -7.96042383e-01 9.79724705e-01 5.99783063e-01 -2.91638672e-01 -1.53810585e+00 1.04731463e-01 9.90423411e-02 1.22954644e-01 3.37260425e-01 7.07697809e-01 7.00959004e-03 -2.41029814e-01 -3.29001635e-01 -4.06874061e-01 1.49536252e-01 7.50747561e-01 8.92917395e-01 -7.52211809e-01 -2.88589954e-01 -3.47750574e-01 1.30558923e-01 9.93399799e-01 5.51266253e-01 1.01932180e+00 -1.04839012e-01 -7.96584964e-01 6.86518371e-01 1.61912549e+00 5.65173090e-01 5.86945832e-01 -1.57473296e-01 5.85686684e-01 7.63044000e-01 8.76030207e-01 9.75754634e-02 9.10615623e-02 1.28972977e-01 3.58778596e-01 -4.85247999e-01 -4.73411977e-01 -1.43073738e-01 3.46940994e-01 6.69957936e-01 -4.70856786e-01 -2.60253906e-01 -9.26495671e-01 8.64369035e-01 -1.51923203e+00 -7.92378187e-01 -5.96700251e-01 2.20580125e+00 7.97372639e-01 -2.41788104e-01 2.76817143e-01 -1.51267618e-01 1.30962121e+00 -2.45521858e-01 -7.27464557e-01 -2.84512222e-01 -4.81917858e-02 4.31052968e-02 6.21718168e-01 5.15066564e-01 -9.13362741e-01 6.43050134e-01 6.81904459e+00 9.37812746e-01 -1.59778428e+00 -1.74813628e-01 7.41783857e-01 -1.67351052e-01 -5.84834144e-02 -2.21560135e-01 -6.77401423e-01 3.74877393e-01 5.73375165e-01 -3.71758819e-01 2.12520316e-01 7.09930211e-02 2.15779811e-01 -6.17566526e-01 -8.64675760e-01 9.68682170e-01 8.40670019e-02 -1.38042879e+00 4.74791341e-02 2.98263848e-01 9.03685570e-01 -4.38549131e-01 4.01470572e-01 -6.21132612e-01 3.89657706e-01 -9.94607985e-01 -2.11825266e-01 1.13923717e+00 1.37816322e+00 -5.24493575e-01 7.80287862e-01 3.55807632e-01 -1.02727997e+00 7.75996000e-02 -2.05520287e-01 1.80087075e-01 9.43948925e-02 7.54862428e-01 -1.62750340e+00 5.61409295e-01 5.53333238e-02 9.22662437e-01 -8.87816191e-01 1.37403405e+00 -3.47494543e-01 4.63273108e-01 -9.05811861e-02 -3.24963003e-01 1.57615423e-01 -1.39990553e-01 4.10864949e-01 9.25514460e-01 3.52467358e-01 -2.40437701e-01 -3.05387616e-01 5.23910761e-01 4.80134547e-01 3.66489915e-03 -4.90841806e-01 -2.41572201e-01 4.03290421e-01 1.51689017e+00 -6.38363361e-01 -1.17317446e-01 -2.05902919e-01 1.52497303e+00 -6.56239688e-02 4.76623833e-01 -6.22036099e-01 -3.41866583e-01 4.95664656e-01 1.27358809e-01 -3.59927505e-01 1.60931259e-01 -8.78804028e-02 -8.64181936e-01 6.65595904e-02 -5.09377182e-01 5.31095684e-01 -6.09848738e-01 -1.55820394e+00 5.82377613e-01 -5.03674090e-01 -1.21269107e+00 -4.18598682e-01 -8.11960399e-01 -1.00888705e+00 9.37513053e-01 -1.61226690e+00 -1.19065928e+00 -7.13876605e-01 6.19600117e-01 3.76612842e-01 6.98040649e-02 7.81209826e-01 -2.57699877e-01 -7.96637654e-01 5.10902762e-01 1.87749252e-01 1.25109509e-01 9.51812625e-01 -1.20562148e+00 3.46783310e-01 1.03423274e+00 -1.99927390e-01 4.98049885e-01 -8.62469599e-02 -1.02938712e+00 -9.04523373e-01 -1.20698380e+00 7.32657194e-01 -9.58451927e-02 8.81683052e-01 3.27893853e-01 -4.24406081e-01 1.25065342e-01 1.95019260e-01 -1.50158346e-01 8.32286716e-01 -4.14934129e-01 1.92240372e-01 -1.87456131e-01 -1.34697592e+00 1.03237319e+00 9.59473431e-01 -5.67246199e-01 3.89827676e-02 6.39957964e-01 8.22761506e-02 -3.01774830e-01 -9.97582436e-01 2.59382516e-01 7.63777256e-01 -7.35543787e-01 8.26808989e-01 -3.65508705e-01 4.71594244e-01 -5.98786473e-02 5.43322921e-01 -1.28371131e+00 -3.27272296e-01 -4.85958427e-01 1.12666443e-01 8.32269788e-01 3.98498535e-01 -6.31285727e-01 8.55420530e-01 2.81874508e-01 3.99927437e-01 -1.12231743e+00 -4.44475442e-01 -4.72332180e-01 -2.19886079e-01 9.87573564e-02 -3.48424390e-02 7.25696683e-01 -1.94668114e-01 -3.15379202e-01 -8.29509646e-02 3.93064946e-01 7.54523277e-01 5.55148209e-03 2.87231296e-01 -9.55390394e-01 1.32700452e-03 -3.50709647e-01 -5.47544718e-01 -5.30273914e-01 -3.61641586e-01 -8.01976204e-01 -3.15018624e-01 -1.70778072e+00 5.26537180e-01 -2.74105668e-01 -7.90380836e-02 3.68385971e-01 -5.90529978e-01 2.85504669e-01 -1.85018972e-01 3.92637849e-01 7.49207684e-04 -4.22917247e-01 1.75438738e+00 -2.13158891e-01 -6.83905333e-02 2.33905315e-01 -5.13636947e-01 8.35875988e-01 8.97010744e-01 -2.53651887e-02 -3.76201719e-01 -3.42468798e-01 -2.01643288e-01 2.34616861e-01 7.09904492e-01 -8.22321594e-01 7.13370442e-01 -6.83170378e-01 5.99300921e-01 -4.98236507e-01 2.26094902e-01 -6.17315412e-01 1.92200229e-01 1.04317486e+00 -4.46011573e-02 -1.66942894e-01 3.62464041e-02 7.10176110e-01 -1.81716546e-01 -4.10957456e-01 9.18422222e-01 -9.16309282e-02 -1.28516054e+00 5.92894793e-01 -6.76330805e-01 -6.09914780e-01 1.75989199e+00 -5.00153840e-01 -6.61631823e-01 -7.35533759e-02 -9.16468561e-01 -4.85117408e-03 6.38386250e-01 6.05699196e-02 1.10282636e+00 -1.03276193e+00 -8.15639734e-01 1.24283031e-01 2.40302101e-01 -3.41619760e-01 7.39431202e-01 1.40435207e+00 -9.83143032e-01 8.80388618e-02 -2.18914598e-01 -8.43218684e-01 -1.97297442e+00 2.75532156e-01 5.50387740e-01 -4.00961399e-01 -3.08159530e-01 1.03305960e+00 -1.04920961e-01 7.21598640e-02 -7.96033740e-02 -4.16299440e-02 4.81671141e-03 -6.67318478e-02 6.76406443e-01 3.31806719e-01 -1.61514103e-01 -2.29361281e-01 -1.36226013e-01 7.11402893e-01 -7.11379766e-01 2.21148413e-02 8.47202659e-01 -2.85261661e-01 -2.29765177e-01 2.46437043e-01 8.29655826e-01 1.00212835e-01 -1.26085722e+00 -1.03715710e-01 -4.12462473e-01 -6.07662916e-01 -1.71936184e-01 -1.11317897e+00 -1.10195100e+00 7.98182964e-01 8.81459653e-01 5.22590205e-02 1.41597843e+00 -4.01116759e-01 7.48643756e-01 1.15405083e-01 2.50098586e-01 -9.82261539e-01 -2.63881050e-02 -8.95202830e-02 3.36329490e-01 -1.18074775e+00 2.79752025e-03 -1.01441133e+00 -8.20526242e-01 1.35643852e+00 5.57160020e-01 -1.29981369e-01 1.82521597e-01 2.20977426e-01 4.92039859e-01 -9.00244638e-02 -8.21205735e-01 -3.14215511e-01 4.11746204e-01 1.06996500e+00 1.08106315e-01 2.09907919e-01 -4.36818004e-01 -9.61203575e-02 4.17498976e-01 1.16716184e-01 6.10773563e-01 7.78370500e-01 -1.65060401e-01 -1.14710140e+00 -3.31086367e-01 8.89217019e-01 -2.87478000e-01 -9.88683105e-02 -9.71678913e-01 9.33420897e-01 2.19537258e-01 8.38988841e-01 1.61639005e-01 -6.53128088e-01 -1.97630912e-01 -1.93625778e-01 6.88856363e-01 -5.23873091e-01 -2.80746371e-01 2.96913870e-02 2.34760061e-01 -3.33815485e-01 -5.59220791e-01 -6.67748272e-01 -7.99508035e-01 -3.95029932e-01 -3.66913289e-01 -3.17631453e-01 6.26230121e-01 7.07447946e-01 5.17767631e-02 5.75855017e-01 8.23861063e-01 -2.14784103e-03 -5.03669560e-01 -5.87742388e-01 -9.35298443e-01 2.28728831e-01 3.74016225e-01 -1.29289120e-01 -3.01056355e-01 3.98290157e-01]
[15.645354270935059, -2.9877421855926514]
2ab3818c-d5e7-48b0-b423-c5a9ffc9ffcb
cluster-forests
1104.2930
null
http://arxiv.org/abs/1104.2930v3
http://arxiv.org/pdf/1104.2930v3.pdf
Cluster Forests
With inspiration from Random Forests (RF) in the context of classification, a new clustering ensemble method---Cluster Forests (CF) is proposed. Geometrically, CF randomly probes a high-dimensional data cloud to obtain "good local clusterings" and then aggregates via spectral clustering to obtain cluster assignments for the whole dataset. The search for good local clusterings is guided by a cluster quality measure kappa. CF progressively improves each local clustering in a fashion that resembles the tree growth in RF. Empirical studies on several real-world datasets under two different performance metrics show that CF compares favorably to its competitors. Theoretical analysis reveals that the kappa measure makes it possible to grow the local clustering in a desirable way---it is "noise-resistant". A closed-form expression is obtained for the mis-clustering rate of spectral clustering under a perturbation model, which yields new insights into some aspects of spectral clustering.
['Michael. I. Jordan', 'Aiyou Chen', 'Donghui Yan']
2011-04-14
null
null
null
null
['clustering-ensemble']
['graphs']
[ 1.84693381e-01 -2.39888191e-01 -2.07768127e-01 -2.89086431e-01 -7.59989798e-01 -8.12508941e-01 4.82765764e-01 1.01782451e-03 -6.84139505e-02 6.68628037e-01 1.24612838e-01 -3.43166679e-01 -4.47733432e-01 -8.94961178e-01 -2.98858434e-01 -1.48914027e+00 -3.84884655e-01 5.30998766e-01 2.83686608e-01 4.07121480e-01 3.84624720e-01 5.52495122e-01 -1.63520217e+00 2.93039888e-01 9.66480255e-01 7.82344818e-01 8.73190016e-02 6.13067508e-01 -2.83767395e-02 2.84725666e-01 -3.47805351e-01 -1.96317568e-01 4.87456530e-01 -2.84542531e-01 -1.10136747e+00 3.86166245e-01 -1.69773117e-01 5.58476031e-01 3.05324018e-01 1.03364205e+00 3.04199249e-01 7.14532733e-02 9.65172827e-01 -1.28248608e+00 -1.47471830e-01 4.90195900e-01 -8.13798308e-01 5.92998788e-02 1.30633950e-01 -6.65966198e-02 1.02751744e+00 -6.40203953e-01 7.97050536e-01 1.13470328e+00 8.21917415e-01 3.01828563e-01 -1.83898377e+00 -7.12513328e-01 -1.01449586e-01 -5.23895919e-02 -1.74052501e+00 -1.97094917e-01 5.65309882e-01 -5.81629217e-01 3.36886585e-01 4.94288892e-01 5.60675204e-01 7.68131435e-01 6.32429123e-03 3.94599825e-01 1.69100726e+00 -5.25258660e-01 5.82142353e-01 4.10914831e-02 1.32742137e-01 3.35428745e-01 3.65077466e-01 4.16850075e-02 -4.89569455e-01 -4.93425816e-01 5.75074255e-01 -1.57139316e-01 -1.72103614e-01 -1.03994250e+00 -1.23579407e+00 7.52394795e-01 6.07560456e-01 5.31193018e-01 -3.19524735e-01 -1.46953791e-01 1.89439356e-01 1.89186901e-01 5.90149343e-01 3.16749036e-01 -2.97264487e-01 7.54147246e-02 -1.17894924e+00 -2.49709208e-02 6.28597200e-01 6.29803181e-01 1.01135290e+00 -3.75116020e-01 1.78538740e-01 6.20274305e-01 1.12622730e-01 4.90122050e-01 -1.12445382e-02 -1.29615772e+00 1.86150596e-01 6.77779377e-01 2.03555435e-01 -1.02886450e+00 -4.52683419e-01 -6.85469329e-01 -1.47301662e+00 2.27882698e-01 5.08099675e-01 5.57546504e-02 -7.02249110e-01 1.63905466e+00 5.96705317e-01 4.83497605e-02 -2.29490116e-01 7.18509495e-01 9.32552665e-03 3.66126150e-01 -3.28838965e-03 -8.79950821e-01 8.37704837e-01 -3.88117582e-01 -4.18387383e-01 2.67617732e-01 4.07098651e-01 -4.42823172e-01 1.02676165e+00 5.90592206e-01 -7.03713596e-01 -3.42472047e-01 -7.37625360e-01 8.92111599e-01 -2.24455371e-01 -3.01508278e-01 4.01602209e-01 9.61464942e-01 -1.36264956e+00 4.28056389e-01 -7.17922390e-01 -7.32439935e-01 2.32979238e-01 3.53318453e-01 -1.20976605e-01 -1.28424466e-01 -5.34476876e-01 5.01405418e-01 2.63509095e-01 -2.40348920e-01 -4.59043950e-01 -3.46755117e-01 1.39579684e-01 -3.05980802e-01 1.80275455e-01 -9.57641423e-01 7.84570456e-01 -8.69189084e-01 -9.64307606e-01 8.56927693e-01 -6.99802220e-01 -2.92418927e-01 4.41253901e-01 2.32594326e-01 -4.51188117e-01 2.13155270e-01 4.49937731e-01 3.47006917e-01 7.79209733e-01 -1.98491538e+00 -4.27113742e-01 -7.04068065e-01 -6.39043450e-01 1.31399542e-01 -9.13525224e-02 -2.12858543e-02 -1.35072812e-01 -4.63898689e-01 6.59505665e-01 -1.16848290e+00 -8.08440149e-01 -7.31320083e-01 -6.95392609e-01 -1.03810914e-01 7.01722682e-01 -2.40919180e-02 1.68976820e+00 -1.95756137e+00 4.45625149e-02 1.07168937e+00 5.10753810e-01 -3.66882086e-01 3.04392874e-01 3.82668376e-01 -1.89654127e-01 4.74197507e-01 -5.86974680e-01 2.24012658e-01 -3.90017629e-01 9.23437104e-02 -4.49097268e-02 4.50414270e-01 -2.38780692e-01 4.46383506e-01 -8.57624888e-01 -6.39262676e-01 7.28047639e-02 6.70324219e-03 -4.28728521e-01 -3.99926193e-02 1.20726459e-01 4.89573777e-01 -2.15198636e-01 6.53402925e-01 9.84918654e-01 -6.73683524e-01 6.15380108e-01 1.79221988e-01 -1.70505494e-01 -9.62594599e-02 -1.38720763e+00 1.24195695e+00 1.96743384e-02 1.41397834e-01 3.58183622e-01 -1.09542179e+00 1.03248179e+00 1.24003932e-01 8.74232233e-01 -5.00170700e-02 -1.88378453e-01 2.64397323e-01 -2.75794238e-01 -2.69935280e-02 1.42364189e-01 -3.19278628e-01 1.16792498e-02 6.36777043e-01 -3.04340631e-01 2.85607576e-01 1.05543554e-01 3.87241930e-01 1.36811817e+00 -3.59439522e-01 3.48797917e-01 -8.41847062e-01 3.44145328e-01 3.33047628e-01 3.03577244e-01 8.07162106e-01 -2.09853053e-01 4.90671158e-01 6.42962009e-02 -4.01069760e-01 -7.77037740e-01 -1.62469471e+00 -2.58013874e-01 1.01265037e+00 1.93466246e-01 -4.41260457e-01 -1.16381907e+00 -6.28250062e-01 5.64311780e-02 3.45044374e-01 -6.79589748e-01 1.23847507e-01 -1.38287827e-01 -1.36654580e+00 1.11380436e-01 1.87810585e-01 5.25617659e-01 -8.48035395e-01 -2.88066536e-01 2.13144213e-01 -5.22131979e-01 -7.81489015e-01 -1.42439380e-01 6.53675437e-01 -1.24737811e+00 -1.20913661e+00 -3.62923652e-01 -4.10543680e-01 6.70323730e-01 8.24981332e-01 1.25613403e+00 -6.76526725e-02 -1.73701167e-01 2.22322270e-01 -3.53588879e-01 -1.37084546e-02 -4.32022184e-01 3.34631830e-01 4.26447362e-01 2.22925603e-01 6.17141068e-01 -1.00418818e+00 -5.99299729e-01 6.87715054e-01 -5.14949381e-01 -4.67382818e-01 5.42282343e-01 6.22579753e-01 6.92971230e-01 6.85815275e-01 4.55833554e-01 -8.84269893e-01 5.63138962e-01 -6.37176692e-01 -2.64204055e-01 1.86643660e-01 -1.08909035e+00 -3.26840766e-03 3.76307487e-01 -1.65210769e-01 -8.42131138e-01 4.03374881e-01 5.63556910e-01 -4.50465322e-01 -4.42516118e-01 3.11095584e-02 -2.04268768e-01 1.39824450e-01 9.44143295e-01 3.12629879e-01 -1.03767812e-01 -4.73259628e-01 6.22058868e-01 7.56409824e-01 6.50668681e-01 -7.98894107e-01 1.04304194e+00 7.40391612e-01 7.02064037e-02 -7.45743394e-01 -5.67422688e-01 -1.06487453e+00 -1.13585746e+00 -5.09893537e-01 8.50704670e-01 -7.57840753e-01 -8.21344137e-01 9.78895277e-02 -6.54322803e-01 -8.32121894e-02 -2.19334930e-01 1.24659456e-01 -5.98925531e-01 1.59053966e-01 -1.76228434e-01 -1.21041667e+00 -5.64692654e-02 -6.97535634e-01 8.37584555e-01 -7.84345195e-02 -3.09902310e-01 -8.10517609e-01 1.99339822e-01 3.57728034e-01 1.68180004e-01 4.20250922e-01 9.41672802e-01 -3.04412186e-01 -6.06801033e-01 1.62269637e-01 -2.83620119e-01 1.11598270e-02 -2.25892588e-02 3.10084462e-01 -9.21353161e-01 -3.27082217e-01 -2.07800284e-01 2.23594576e-01 9.30635631e-01 6.87905490e-01 1.29616439e+00 -3.53169322e-01 -7.72452056e-01 4.27011818e-01 1.63328815e+00 1.66584849e-01 4.07989115e-01 4.09302741e-01 3.46492946e-01 5.86984158e-01 4.34772074e-01 5.15465677e-01 1.93510339e-01 3.89207274e-01 3.06336015e-01 -9.50499848e-02 2.61184394e-01 -1.90688923e-01 6.91798106e-02 1.03836989e+00 -4.91730124e-01 6.33252338e-02 -1.15956140e+00 5.79471827e-01 -1.88498902e+00 -1.29934990e+00 -6.44334614e-01 2.40596223e+00 6.99122965e-01 1.54196247e-01 8.96220565e-01 5.42604685e-01 1.12707090e+00 -1.05411395e-01 -3.42792064e-01 -1.94312483e-01 -2.23286092e-01 2.09756151e-01 6.21328235e-01 2.90579617e-01 -1.12826645e+00 7.36871779e-01 7.69371414e+00 9.51610148e-01 -7.25523055e-01 1.01063550e-01 8.83981764e-01 8.78292769e-02 -2.11794272e-01 2.07141981e-01 -5.29380023e-01 5.03111660e-01 8.93017232e-01 -1.65562689e-01 4.81396914e-01 8.78057897e-01 4.20605779e-01 -3.00436795e-01 -5.06956637e-01 7.73092628e-01 -7.06277847e-01 -1.45920396e+00 -2.99082045e-02 5.26185274e-01 9.08012748e-01 2.02592313e-01 -1.85260460e-01 -3.90016735e-01 1.22119451e+00 -9.92130339e-01 4.11062807e-01 5.46043277e-01 9.44828689e-01 -1.04172432e+00 4.06367689e-01 5.42032003e-01 -1.43436229e+00 -2.89816737e-01 -2.45772824e-01 5.00355475e-02 -2.50985265e-01 1.38435495e+00 -9.88631546e-01 6.32692099e-01 1.33705854e+00 4.28224653e-01 -6.57601953e-01 1.01719856e+00 3.53084683e-01 8.96830678e-01 -4.81420279e-01 1.28521696e-01 2.01951023e-02 -7.06054211e-01 4.89570737e-01 1.40679288e+00 3.03457230e-01 1.95094422e-01 2.75954604e-01 6.70390189e-01 2.45671690e-01 1.51644126e-01 -7.18278289e-01 2.76443720e-01 1.00654948e+00 1.21879351e+00 -1.17730379e+00 -1.58551887e-01 1.73980966e-01 6.64292336e-01 1.25332877e-01 3.84517878e-01 -1.32391602e-01 -6.03728183e-02 4.81497526e-01 4.56212074e-01 1.48290589e-01 -3.22958857e-01 -8.38330388e-01 -8.03241074e-01 -1.27628893e-01 -7.79191554e-01 4.72382128e-01 -5.82235515e-01 -1.45802736e+00 4.81345385e-01 -1.28362656e-01 -1.35009670e+00 -4.91934307e-02 -3.10339220e-03 -5.28084219e-01 5.16510785e-01 -5.44902742e-01 -8.37845981e-01 -3.58609945e-01 9.27080750e-01 4.96457145e-02 -1.63789988e-02 9.11391079e-01 -2.94837773e-01 -3.91145468e-01 2.16178522e-01 6.12495244e-01 -1.90622523e-01 5.51773846e-01 -1.54275119e+00 5.42044416e-02 8.06539476e-01 1.15683429e-01 8.13568950e-01 7.59556949e-01 -5.00939846e-01 -7.05211282e-01 -1.08623815e+00 7.87828803e-01 -5.96683919e-01 5.96817374e-01 -2.62505710e-01 -7.18791604e-01 1.09602496e-01 5.01717441e-02 -2.07302958e-01 9.79116023e-01 4.99888301e-01 -6.52436137e-01 -3.15003544e-01 -1.30231488e+00 2.78952360e-01 1.32623994e+00 -3.92125994e-01 -6.59660846e-02 2.44913220e-01 3.13557446e-01 5.83014011e-01 -1.05862737e+00 3.90367597e-01 4.95497406e-01 -1.50403798e+00 9.01341140e-01 -3.52624804e-01 9.61784869e-02 -6.82527006e-01 -5.46776831e-01 -1.36396694e+00 -8.27840567e-01 -7.87891030e-01 2.01315597e-01 1.06248391e+00 2.76509821e-01 -5.76326013e-01 1.01049495e+00 -1.16104968e-01 4.77662325e-01 -6.04527712e-01 -1.06093526e+00 -9.92064595e-01 2.01935187e-01 -4.31889564e-01 6.33024693e-01 1.26488233e+00 1.35134429e-01 4.21459764e-01 1.16675511e-01 2.72472501e-01 1.22073591e+00 3.31332237e-01 8.53817999e-01 -1.94149864e+00 1.42562240e-01 -4.58148211e-01 -2.17851013e-01 -6.27443731e-01 -6.43175095e-02 -8.61785293e-01 -2.03873053e-01 -1.21615052e+00 5.65370321e-01 -8.96256328e-01 -2.83393323e-01 1.81134179e-01 -1.33242399e-01 2.35075861e-01 1.54658958e-01 8.80106449e-01 -7.97906518e-01 -1.51869893e-01 8.74157429e-01 2.17948213e-01 -2.64121592e-01 5.16959548e-01 -7.72398412e-01 5.38331628e-01 8.39465618e-01 -5.43364346e-01 -8.10102150e-02 4.69314337e-01 6.39932230e-02 1.36307076e-01 2.12359950e-01 -1.23249805e+00 1.03459008e-01 -2.96919405e-01 3.88805270e-01 -8.15808594e-01 -1.15524210e-01 -9.89716172e-01 5.31328499e-01 3.16113174e-01 -1.84864253e-01 1.20052338e-01 -4.76514071e-01 1.05884826e+00 -2.92855483e-02 3.24545294e-01 1.10221732e+00 -2.51068830e-01 -1.76140293e-01 9.99252722e-02 -6.34645820e-01 -1.41402736e-01 1.11487150e+00 -5.67038655e-01 -1.85144022e-02 -4.42099780e-01 -1.09276199e+00 4.57863808e-02 8.88249755e-01 -1.03556231e-01 -1.41322082e-02 -1.34623694e+00 -5.15547276e-01 1.16426632e-01 9.60711837e-02 -3.60776410e-02 -1.84414849e-01 9.88188446e-01 -4.01581414e-02 1.71722040e-01 1.31337434e-01 -1.18968463e+00 -1.39684200e+00 7.39492774e-01 2.70555884e-01 -4.93880302e-01 -1.85683161e-01 7.05292761e-01 3.17111472e-03 -6.35122538e-01 -5.59159229e-03 1.57907367e-01 3.63524139e-01 6.37484640e-02 1.06757060e-01 7.14098036e-01 1.80202574e-01 -5.58401883e-01 -5.91253042e-01 6.18968844e-01 4.13191020e-01 -2.21674010e-01 1.15330112e+00 -5.11604726e-01 -4.92943227e-01 5.26950002e-01 9.85305130e-01 -1.49162877e-02 -8.37101638e-01 -2.62967616e-01 6.63328111e-01 -5.00333309e-01 -3.08339834e-01 -8.76619935e-01 -9.00450349e-01 6.99974298e-01 6.22739017e-01 8.95992696e-01 1.37439752e+00 1.53880984e-01 1.15102373e-01 1.38506308e-01 7.36883104e-01 -1.15187001e+00 -2.42568105e-02 1.66740894e-01 3.44115645e-01 -9.05633688e-01 -8.69564363e-04 -5.95505893e-01 -6.63508415e-01 9.31249380e-01 1.66258588e-01 2.32519861e-03 8.97568405e-01 3.41372102e-01 4.66995239e-02 -1.74161434e-01 -7.97723770e-01 -3.18826705e-01 -1.09239124e-01 9.52778339e-01 1.76242247e-01 6.75703526e-01 -2.33109351e-02 3.54742020e-01 -5.00754118e-01 -1.11019328e-01 3.10547858e-01 4.87556368e-01 -9.02950048e-01 -9.68518555e-01 -8.69503379e-01 6.98982894e-01 -6.84021935e-02 1.64399132e-01 -8.50501001e-01 6.57961071e-01 2.27158010e-01 1.31902492e+00 2.12839227e-02 -8.78181458e-01 -1.27492905e-01 4.53731537e-01 1.74713567e-01 -2.62233824e-01 -4.92273152e-01 3.84369642e-01 -9.76061299e-02 -6.79059744e-01 -9.66881633e-01 -8.93696010e-01 -9.27832544e-01 -7.84089684e-01 -5.88411808e-01 6.08534455e-01 5.17897010e-01 7.42884338e-01 3.78032506e-01 -2.86360141e-02 1.21038985e+00 -7.44162679e-01 -2.61905581e-01 -6.18929505e-01 -9.40734863e-01 2.74438351e-01 1.89259201e-02 -6.89948201e-01 -6.31997406e-01 2.16996282e-01]
[7.5567402839660645, 4.585978031158447]
716c857a-82aa-4a6e-ae03-b22e399444e7
native-language-identification-using-a
null
null
https://aclanthology.org/W17-5022
https://aclanthology.org/W17-5022.pdf
Native Language Identification Using a Mixture of Character and Word N-grams
Native language identification (NLI) is the task of determining an author{'}s native language, based on a piece of his/her writing in a second language. In recent years, NLI has received much attention due to its challenging nature and its applications in language pedagogy and forensic linguistics. We participated in the NLI2017 shared task under the name UT-DSP. In our effort to implement a method for native language identification, we made use of a fusion of character and word N-grams, and achieved an optimal F1-Score of 77.64{\%}, using both essay and speech transcription datasets.
['Elham Mohammadi', 'Hadi Veisi', 'Hessam Amini']
2017-09-01
null
null
null
ws-2017-9
['native-language-identification']
['natural-language-processing']
[ 3.36103663e-02 -2.60446906e-01 -4.27424729e-01 -1.64768249e-01 -1.09786141e+00 -9.74477768e-01 8.34884644e-01 2.66679555e-01 -7.28402972e-01 6.20998144e-01 3.10247749e-01 -7.87511289e-01 1.08990431e-01 -1.64386272e-01 -2.12902695e-01 -2.35552698e-01 5.78177035e-01 3.44692409e-01 -1.90945014e-01 2.13274464e-01 7.28559613e-01 5.45074344e-01 -1.21719098e+00 3.25437859e-02 1.12043476e+00 4.67655391e-01 3.19151655e-02 7.48592377e-01 -4.84863907e-01 8.72069299e-01 -7.98566520e-01 -9.06797290e-01 -8.64587650e-02 -4.41317379e-01 -1.06878853e+00 -2.96097517e-01 6.93482280e-01 -1.86765477e-01 -4.10669446e-01 1.35973513e+00 5.34195483e-01 8.81064907e-02 8.43287289e-01 -7.86519170e-01 -7.02453017e-01 1.02563429e+00 -3.01891029e-01 5.55773556e-01 7.71307409e-01 -3.91581878e-02 1.17694676e+00 -1.08479321e+00 6.41144872e-01 1.41555560e+00 6.65114284e-01 5.97832203e-01 -1.30407608e+00 -1.00473034e+00 -3.89525503e-01 8.96875113e-02 -1.68937016e+00 -8.62982810e-01 6.68750763e-01 -8.79920840e-01 7.26902306e-01 8.59060697e-03 1.62077881e-02 1.55895388e+00 -9.57459733e-02 1.13139009e+00 1.41277993e+00 -1.02940583e+00 1.18945045e-02 3.96304727e-01 6.41085684e-01 4.45537567e-01 3.69761027e-02 -1.66123286e-01 -8.53199244e-01 -2.16600239e-01 3.28786790e-01 -5.66103160e-01 -8.03304464e-02 7.17732072e-01 -1.32417059e+00 9.52068508e-01 -6.71674788e-01 7.97394812e-01 1.26376614e-01 -3.60075474e-01 5.30356348e-01 1.50337085e-01 2.95933604e-01 7.26684928e-01 -5.44640683e-02 -9.03894544e-01 -1.13474047e+00 1.63411036e-01 1.03966010e+00 7.71123648e-01 2.25906298e-01 -1.06909327e-01 -2.90459186e-01 1.16319120e+00 -1.30101973e-02 6.13937378e-01 1.03721607e+00 -9.12130117e-01 4.85461295e-01 4.90754992e-01 -1.50034487e-01 -7.62496710e-01 5.11753224e-02 -2.14328095e-01 -7.03116596e-01 -2.20204741e-01 7.97967672e-01 9.35629085e-02 -4.58530962e-01 1.62822139e+00 -1.79092646e-01 -9.98799130e-02 5.58892675e-02 2.94921339e-01 1.00211227e+00 5.85275352e-01 1.30847052e-01 -2.70139664e-01 1.35467136e+00 -5.77253461e-01 -8.14333439e-01 -7.21217170e-02 6.27651632e-01 -1.18554199e+00 1.26167142e+00 4.96499926e-01 -9.80411470e-01 -7.08637834e-01 -6.42871082e-01 -9.07181725e-02 -2.66981423e-01 6.02965593e-01 1.76473200e-01 1.20226645e+00 -8.40038419e-01 3.42415214e-01 -3.22374403e-01 -4.53174680e-01 1.28759667e-01 8.39480460e-02 -5.69967389e-01 1.43363625e-01 -1.17435992e+00 4.77963746e-01 1.46336958e-01 -3.52438241e-01 -4.06161606e-01 -8.08968246e-01 -6.75540507e-01 -1.10273801e-01 1.72165304e-01 2.62065679e-01 1.24250150e+00 -5.70286870e-01 -1.69145191e+00 1.51352012e+00 -4.41486090e-01 -1.97503850e-01 5.18713593e-01 -1.31872192e-01 -6.59004152e-01 2.71101948e-03 5.16752958e-01 1.07554413e-01 6.67378783e-01 -5.37797630e-01 -7.40812480e-01 -4.80667293e-01 -3.71114939e-01 -2.80100793e-01 -8.95662963e-01 7.66004384e-01 -2.79892296e-01 -9.24031377e-01 -1.18693314e-01 -9.97441173e-01 4.90888298e-01 -5.87786615e-01 -6.54223084e-01 -8.15454245e-01 3.74918818e-01 -1.33822203e+00 1.69529724e+00 -2.19777679e+00 -1.11189291e-01 2.51371145e-01 2.70953089e-01 6.34720206e-01 1.70487821e-01 3.31697404e-01 2.06650257e-01 5.65083146e-01 1.33536413e-01 -5.86763382e-01 2.57796556e-01 -2.64829397e-01 -3.23583066e-01 3.91518265e-01 -3.33723933e-01 7.60648906e-01 -8.32287908e-01 -6.09026372e-01 -1.08785138e-01 2.51279294e-01 -6.13077264e-03 3.45088631e-01 4.07161206e-01 3.73667359e-01 -3.50702778e-02 7.57523179e-01 3.00644577e-01 1.08226180e-01 4.57031131e-02 3.73939604e-01 -5.50276756e-01 7.36684680e-01 -1.06089580e+00 1.37785769e+00 -3.61175746e-01 1.00271416e+00 2.68358141e-01 -6.61429524e-01 1.01385427e+00 4.67807442e-01 7.20428899e-02 -5.69640458e-01 1.98947206e-01 7.16844022e-01 2.20777825e-01 -3.56777459e-01 4.84804332e-01 1.71260074e-01 -3.26866448e-01 7.09550381e-01 1.37178615e-01 8.79799798e-02 6.08061492e-01 2.66625255e-01 9.69685614e-01 -1.83124974e-01 5.52418947e-01 -7.36502051e-01 1.10099804e+00 -2.88347840e-01 3.79036129e-01 9.63156044e-01 -5.36506832e-01 3.93101573e-01 3.10109496e-01 -4.78101335e-02 -9.46719170e-01 -8.86021376e-01 -2.73638606e-01 1.19484472e+00 -5.14105082e-01 -4.93836433e-01 -8.72486830e-01 -4.68520999e-01 4.80374545e-02 7.85933137e-01 -2.44981542e-01 -1.09493539e-01 -6.93200469e-01 -2.74545792e-02 1.29973245e+00 2.90576100e-01 2.98545927e-01 -1.15828168e+00 8.78765136e-02 2.50829130e-01 -3.05256397e-01 -1.37134361e+00 -1.03491306e+00 -5.15735000e-02 -1.65993601e-01 -8.88149261e-01 -9.79659319e-01 -9.47279572e-01 2.01565191e-01 -4.05802764e-02 9.07105863e-01 -1.31428078e-01 -3.81582767e-01 4.61914629e-01 -4.54081684e-01 -3.11034709e-01 -1.01396048e+00 8.54033649e-01 4.43523079e-01 -4.98552620e-02 9.32865381e-01 -2.70035386e-01 1.94574371e-01 -1.49973007e-02 -4.65401977e-01 -3.03428680e-01 2.07044482e-01 6.77796483e-01 2.67941579e-02 -1.21442229e-01 3.08449537e-01 -9.13645744e-01 1.00182605e+00 -4.65662777e-02 -5.34669042e-01 5.21523535e-01 -5.77401936e-01 -2.09651276e-01 8.18751812e-01 -7.24916637e-01 -7.64065742e-01 -2.37505704e-01 -4.08298761e-01 -6.89613596e-02 -2.32048079e-01 4.28688675e-01 -3.89201611e-01 -1.38912350e-01 4.12386388e-01 6.27080202e-01 -9.51961279e-02 -7.27854252e-01 -6.00715354e-02 1.31468379e+00 1.01572537e+00 -7.79123425e-01 7.85112381e-01 -3.17362636e-01 -4.13532823e-01 -1.24778461e+00 -9.26228225e-01 -6.82635725e-01 -1.05531752e+00 -5.49527444e-02 6.93516612e-01 -7.88493514e-01 -1.17505932e+00 8.10182929e-01 -1.28027618e+00 4.54227999e-03 2.19162367e-02 6.28526628e-01 -1.28632225e-02 7.29246914e-01 -5.23664415e-01 -1.12408328e+00 -5.21423459e-01 -1.14467108e+00 6.34583235e-01 3.81427497e-01 -9.27557945e-01 -1.02012742e+00 5.59709407e-02 6.16867244e-01 1.92412481e-01 -3.35760981e-01 9.83217180e-01 -1.21008062e+00 2.04640865e-01 -3.07227194e-01 -1.33949786e-01 6.52184784e-01 3.79918516e-02 1.26030967e-01 -9.72410262e-01 -2.91160166e-01 -1.44338325e-01 -2.86612213e-01 4.92178112e-01 -2.17052568e-02 1.03554106e+00 -3.58313471e-01 1.08110316e-01 6.55531764e-01 1.00192261e+00 1.87011212e-01 1.95411533e-01 3.76806021e-01 8.22255552e-01 5.53504825e-01 1.61639437e-01 5.33984244e-01 3.39449465e-01 5.92204630e-01 -5.36779165e-01 5.48889577e-01 -2.33615145e-01 -5.46691656e-01 6.92757070e-01 1.08841598e+00 1.66611478e-01 -2.05731899e-01 -1.47804368e+00 7.13146508e-01 -1.33236670e+00 -1.02476192e+00 -1.69716731e-01 2.33832240e+00 1.21246493e+00 1.73070773e-01 3.30295414e-01 3.70277464e-01 9.14821923e-01 -1.40138462e-01 -2.69375294e-01 -5.07122040e-01 -3.94185841e-01 3.15989822e-01 5.65086305e-01 8.56823087e-01 -9.77039337e-01 1.26399636e+00 6.51131344e+00 1.39832687e+00 -1.16224813e+00 -7.22577646e-02 6.93343163e-01 3.24427545e-01 -2.85394222e-01 -2.00870946e-01 -1.60198021e+00 9.42296863e-01 1.38727415e+00 -6.71156466e-01 5.63647151e-01 5.92179954e-01 4.20493335e-02 -1.78680643e-01 -1.00552559e+00 1.20223689e+00 3.24063033e-01 -1.11935902e+00 -6.37090579e-02 2.55857617e-01 5.24148107e-01 -3.88819188e-01 9.28213820e-02 3.64727110e-01 3.53673249e-01 -1.28140306e+00 9.02522147e-01 3.48979145e-01 1.18275392e+00 -7.57228315e-01 4.42553878e-01 7.17518926e-01 -8.64518642e-01 -3.70954201e-02 -6.76441640e-02 -1.63311377e-01 -1.93381026e-01 5.54128706e-01 -9.91385520e-01 1.82900187e-02 3.88158023e-01 6.19096041e-01 -6.31161273e-01 5.78515410e-01 -4.24676567e-01 1.49113679e+00 -2.52442747e-01 -2.98008680e-01 1.06058447e-02 -2.86222041e-01 5.78574717e-01 1.52200246e+00 3.30368400e-01 -7.15885460e-02 4.17433888e-01 8.67148280e-01 -2.87584633e-01 5.10984778e-01 -3.55173111e-01 -7.36524522e-01 9.30106759e-01 1.12784159e+00 -5.25372684e-01 -3.96481454e-01 -2.87677497e-01 1.07356739e+00 3.54456842e-01 1.64560378e-01 -2.53483474e-01 -8.17491770e-01 7.19841182e-01 1.14524536e-01 -1.34609982e-01 -4.54879761e-01 -6.20399058e-01 -1.09190059e+00 -2.55183782e-02 -1.08656955e+00 2.52903610e-01 -9.36609358e-02 -1.42449582e+00 6.24377310e-01 -3.35926384e-01 -7.17284560e-01 -6.12829089e-01 -8.45050752e-01 -5.30391872e-01 1.38283813e+00 -1.16961086e+00 -1.08849859e+00 -2.90017202e-02 3.58479798e-01 4.61051673e-01 -1.06294727e+00 9.78298247e-01 4.27667230e-01 -8.21067154e-01 1.33303595e+00 4.84982729e-01 6.93372965e-01 1.02474129e+00 -1.28863251e+00 4.79660362e-01 1.05614495e+00 3.38091880e-01 9.95881081e-01 6.12835228e-01 -6.06525481e-01 -1.37054765e+00 -6.67017579e-01 1.99568093e+00 -4.22028929e-01 1.02838337e+00 -6.65155947e-01 -7.28805780e-01 3.99435312e-01 3.95505838e-02 -4.09692943e-01 9.91740942e-01 3.68804932e-02 -4.30709302e-01 2.59422004e-01 -1.02196920e+00 4.94103819e-01 9.60440934e-01 -1.25778413e+00 -4.85836178e-01 2.99859285e-01 4.90462333e-01 -8.39636847e-02 -9.84477282e-01 -9.96466801e-02 5.39906979e-01 -6.83081686e-01 8.84660602e-01 -3.88480097e-01 4.27528828e-01 6.36783913e-02 -2.21294817e-02 -9.49516892e-01 -5.49490690e-01 -1.02839994e+00 4.87143174e-02 1.94918299e+00 1.15566790e-01 -4.66871530e-01 5.52929938e-01 6.36630535e-01 2.39389092e-01 -2.94371009e-01 -1.01563847e+00 -1.03068185e+00 4.79947418e-01 -4.22379136e-01 3.65724862e-01 9.11351323e-01 1.21841997e-01 4.70753074e-01 -2.40743682e-01 -2.95537531e-01 5.17180681e-01 -1.83967739e-01 7.40607321e-01 -1.43864596e+00 -3.60296704e-02 -9.43273187e-01 -2.58549422e-01 -9.22683418e-01 1.04119098e+00 -1.24930930e+00 -1.70050666e-01 -7.84111917e-01 3.39132994e-01 -1.29776210e-01 8.89488831e-02 5.21322489e-01 -3.45873535e-01 3.94768596e-01 1.33757815e-01 4.75006461e-01 -3.51915926e-01 2.44843572e-01 5.02351284e-01 -2.84723550e-01 -1.19139783e-01 2.00008914e-01 -8.07444990e-01 5.33124566e-01 6.92468405e-01 -2.63528734e-01 1.73166081e-01 -1.15437955e-01 -7.23431185e-02 -3.10568064e-01 -1.77313276e-02 -9.31078970e-01 3.88015747e-01 -1.31489664e-01 1.43353298e-01 -4.60774362e-01 5.72709478e-02 -3.35779309e-01 -3.58475447e-01 3.94463390e-01 -5.99024832e-01 1.31789073e-01 -1.78672262e-02 -2.60056138e-01 -3.20218921e-01 -8.29405129e-01 7.11257219e-01 -8.90291259e-02 -6.33292973e-01 1.49643034e-01 -8.33384395e-01 5.17889023e-01 7.18364954e-01 -2.87690014e-01 2.92173866e-02 -1.75565407e-01 -1.28545076e-01 -1.93655148e-01 5.26799798e-01 4.55400765e-01 2.82504052e-01 -1.22824371e+00 -9.89949226e-01 3.37321550e-01 2.28100047e-01 -8.70963693e-01 -3.34505290e-01 5.82352877e-01 -4.77788478e-01 6.97585702e-01 -1.66854318e-02 -1.52604908e-01 -1.61584377e+00 1.63975373e-01 -7.94428661e-02 -3.15777600e-01 -4.51834828e-01 9.44082499e-01 -2.51164198e-01 -5.93757927e-01 5.66325963e-01 4.37784135e-01 -4.06069040e-01 1.58802122e-01 9.93627191e-01 6.57741606e-01 -9.40997601e-02 -1.12280178e+00 -5.08269429e-01 2.79024333e-01 -2.26898581e-01 -4.92639214e-01 8.94014180e-01 -1.16648331e-01 -3.44830483e-01 8.26511264e-01 1.45070481e+00 7.40470827e-01 -4.18682754e-01 -5.03056288e-01 4.89874631e-01 -6.17431879e-01 7.93096423e-03 -7.63848543e-01 -3.47855151e-01 8.36439550e-01 1.06813662e-01 3.51575017e-02 3.76980394e-01 -2.77945191e-01 1.03975570e+00 3.35518152e-01 1.00216575e-01 -1.51486135e+00 -2.65110433e-01 1.17329144e+00 4.65728343e-01 -1.41723180e+00 -2.19660774e-01 -2.09688872e-01 -3.29341263e-01 1.35192513e+00 3.55859250e-01 2.75127023e-01 5.67561150e-01 1.13035157e-01 1.93894163e-01 3.77671570e-01 -1.74961984e-02 9.49782729e-02 6.07482672e-01 4.54429448e-01 1.06965661e+00 2.02173054e-01 -5.99328756e-01 1.00705075e+00 -7.28344917e-01 -2.92917699e-01 4.06779915e-01 6.08800709e-01 -3.25247139e-01 -1.35359085e+00 -6.56941593e-01 3.97761077e-01 -8.72729897e-01 -3.03543717e-01 -6.87469125e-01 3.91247183e-01 1.73502453e-02 1.04057753e+00 -1.42314583e-01 -3.55986863e-01 -2.04219162e-01 4.64334816e-01 2.93195814e-01 -6.07859612e-01 -9.27949429e-01 -3.43345165e-01 -7.33026862e-02 -1.39317438e-01 4.03644331e-02 -1.15391648e+00 -9.95386362e-01 -7.22839117e-01 1.19525611e-01 4.09515798e-01 6.89850450e-01 1.09511530e+00 -3.51614654e-02 6.10880591e-02 6.76584721e-01 -5.06883562e-01 -8.32169235e-01 -1.14648688e+00 -8.18479061e-01 3.73007089e-01 1.97659303e-02 -2.21865728e-01 -5.12912750e-01 6.53744638e-02]
[10.388199806213379, 10.52476978302002]
23478c1d-efba-4fb5-a797-9d913067dbea
follownet-a-comprehensive-benchmark-for-car
2306.05381
null
https://arxiv.org/abs/2306.05381v1
https://arxiv.org/pdf/2306.05381v1.pdf
FollowNet: A Comprehensive Benchmark for Car-Following Behavior Modeling
Car-following is a control process in which a following vehicle (FV) adjusts its acceleration to keep a safe distance from the lead vehicle (LV). Recently, there has been a booming of data-driven models that enable more accurate modeling of car-following through real-world driving datasets. Although there are several public datasets available, their formats are not always consistent, making it challenging to determine the state-of-the-art models and how well a new model performs compared to existing ones. In contrast, research fields such as image recognition and object detection have benchmark datasets like ImageNet, Microsoft COCO, and KITTI. To address this gap and promote the development of microscopic traffic flow modeling, we establish a public benchmark dataset for car-following behavior modeling. The benchmark consists of more than 80K car-following events extracted from five public driving datasets using the same criteria. These events cover diverse situations including different road types, various weather conditions, and mixed traffic flows with autonomous vehicles. Moreover, to give an overview of current progress in car-following modeling, we implemented and tested representative baseline models with the benchmark. Results show that the deep deterministic policy gradient (DDPG) based model performs competitively with a lower MSE for spacing compared to traditional intelligent driver model (IDM) and Gazis-Herman-Rothery (GHR) models, and a smaller collision rate compared to fully connected neural network (NN) and long short-term memory (LSTM) models in most datasets. The established benchmark will provide researchers with consistent data formats and metrics for cross-comparing different car-following models, promoting the development of more accurate models. We open-source our dataset and implementation code in https://github.com/HKUST-DRIVE-AI-LAB/FollowNet.
['Yinhai Wang', 'Xu Han', 'Hui Zhong', 'Hongliang Lu', 'Pengqin Wang', 'Kehua Chen', 'Meixin Zhu', 'Xianda Chen']
2023-05-25
null
null
null
null
['autonomous-vehicles']
['computer-vision']
[-3.63513976e-01 -5.88510573e-01 -6.47459924e-01 -5.79445064e-01 -3.81139666e-01 -2.56800443e-01 7.62502432e-01 -3.19040358e-01 -7.54743516e-01 6.26001418e-01 -1.40289739e-01 -9.03649390e-01 -3.06397881e-02 -9.74403560e-01 -9.50576961e-01 -6.14814162e-01 -1.00800171e-01 3.22175086e-01 5.81926465e-01 -5.45393288e-01 2.43763283e-01 8.27636957e-01 -1.94789684e+00 3.71928848e-02 7.62759805e-01 1.01464069e+00 3.66845518e-01 7.44715512e-01 -1.27732798e-01 1.04091418e+00 -2.47155309e-01 -3.44444335e-01 2.10616738e-01 6.95002899e-02 -5.09354949e-01 -5.41211307e-01 4.93708521e-01 -3.23369801e-01 -1.01235294e+00 7.78692722e-01 3.20257008e-01 3.78151506e-01 5.44123292e-01 -1.86407125e+00 -5.75575113e-01 2.03473300e-01 -1.78095594e-01 5.70744693e-01 -3.44289392e-01 5.92175186e-01 4.64993596e-01 -5.59310257e-01 4.42564458e-01 1.33761179e+00 5.59697747e-01 6.75487578e-01 -7.50662029e-01 -1.06082177e+00 2.69998252e-01 9.72837865e-01 -1.15384626e+00 -3.93349230e-01 5.78528345e-01 -4.21110362e-01 1.08384395e+00 1.47638440e-01 5.47005534e-01 1.33907521e+00 6.22853398e-01 9.90413904e-01 8.60360086e-01 2.67055035e-02 -3.21968757e-02 2.31960833e-01 6.09044969e-01 6.48416877e-01 4.33662944e-02 9.65325832e-01 -1.67018548e-01 3.83767158e-01 1.10276878e-01 5.61043732e-02 2.01102883e-01 -1.33172974e-01 -9.86949444e-01 8.83130610e-01 6.73239529e-01 2.83911619e-02 -3.11367035e-01 4.62028414e-01 5.72979867e-01 1.25670552e-01 1.88185737e-01 -1.48141220e-01 -3.74961227e-01 -3.37002784e-01 -7.61880279e-01 8.27445626e-01 5.70493221e-01 1.06655025e+00 1.04581368e+00 3.04388374e-01 -2.52419353e-01 7.34675050e-01 1.36539787e-01 7.75786698e-01 3.26904267e-01 -1.13467121e+00 5.20322919e-01 3.69078815e-01 -1.00243546e-03 -1.09473717e+00 -4.37177032e-01 -1.55736610e-01 -7.63874531e-01 4.48537111e-01 4.46201086e-01 -1.98461279e-01 -9.73592401e-01 1.65987623e+00 3.95534672e-02 6.09895408e-01 -6.09055385e-02 8.61724019e-01 8.77840936e-01 9.49936271e-01 2.08523735e-01 3.65386099e-01 1.14251196e+00 -1.27617681e+00 -6.39863789e-01 -4.72260505e-01 8.60066593e-01 -3.69288951e-01 8.05008590e-01 -4.79391357e-03 -7.71376729e-01 -1.05675328e+00 -1.13624346e+00 -9.34876949e-02 -1.13755512e+00 -1.95974514e-01 5.30760407e-01 5.20767689e-01 -8.56178522e-01 3.78617793e-01 -7.26764321e-01 -3.37453425e-01 5.35143375e-01 1.49952888e-01 -1.87576130e-01 -1.61611512e-01 -1.50937879e+00 1.22204876e+00 2.65999921e-02 3.63746941e-01 -1.43438494e+00 -9.59766865e-01 -8.80427063e-01 -3.38587970e-01 4.14379120e-01 -4.51510221e-01 1.26986957e+00 -5.18161058e-01 -1.28074872e+00 7.42903590e-01 -4.79228407e-01 -1.02014506e+00 5.90767682e-01 -1.38215557e-01 -8.42126071e-01 -4.35193181e-01 1.73441023e-01 1.09535348e+00 4.09442186e-01 -1.22419083e+00 -1.18961728e+00 -9.81683508e-02 1.28509402e-02 -1.91030294e-01 1.28481001e-01 4.94640097e-02 -6.60501897e-01 -2.60057971e-02 -8.50505829e-01 -1.12343931e+00 -2.66315520e-01 -1.32173270e-01 -4.01787132e-01 -4.00509298e-01 1.32904422e+00 -3.49836230e-01 1.34962916e+00 -2.03807807e+00 -4.40077990e-01 -7.81961232e-02 9.91888568e-02 8.02902997e-01 -3.47870916e-01 2.28462338e-01 2.27765083e-01 4.83236201e-02 -1.04788303e-01 -2.56665230e-01 1.32455677e-01 7.07428634e-01 -3.77080411e-01 4.95752901e-01 1.07320115e-01 1.30527699e+00 -7.44976699e-01 -4.48873937e-01 7.38908172e-01 5.05383849e-01 -2.34597251e-01 8.02989602e-02 4.16483246e-02 1.43876344e-01 -4.99110430e-01 5.06661475e-01 9.45480168e-01 4.01707321e-01 -6.67686403e-01 -4.00009379e-02 -4.65461969e-01 3.32211629e-02 -8.65343750e-01 1.01898611e+00 -6.00925267e-01 1.22574198e+00 4.85359831e-03 -1.14241421e+00 9.66091812e-01 -2.29913011e-01 2.12325662e-01 -1.41384554e+00 3.26751858e-01 1.34598255e-01 1.16258785e-01 -6.74737871e-01 5.48765838e-01 3.04547876e-01 -1.29450589e-01 -9.69217792e-02 -3.18975568e-01 2.51962215e-01 5.32290995e-01 9.34185907e-02 8.20119679e-01 -7.38272220e-02 -3.55404407e-01 -2.66190618e-01 7.41273642e-01 2.81814009e-01 6.11006200e-01 8.23390484e-01 -9.50070500e-01 1.79296449e-01 2.32694089e-01 -7.77490675e-01 -7.76660860e-01 -1.02016222e+00 -3.09726954e-01 1.03397036e+00 5.29679656e-01 -1.60161983e-02 -7.50960052e-01 -5.38675785e-01 4.80525732e-01 1.10683024e+00 -7.59870946e-01 -3.98111880e-01 -9.60242569e-01 -6.95388138e-01 1.00684214e+00 6.65766537e-01 8.86307418e-01 -1.21152532e+00 -5.47780156e-01 2.85921186e-01 -9.62484106e-02 -1.47946680e+00 -4.66545433e-01 -4.06763293e-02 -4.02190179e-01 -1.18639123e+00 -3.19865853e-01 -7.38262832e-01 2.22145200e-01 4.76004899e-01 1.10425854e+00 4.54127528e-02 -2.30350494e-01 -1.31711155e-01 9.82383639e-02 -7.45618761e-01 -6.75948322e-01 1.81282252e-01 7.79990405e-02 -4.67913365e-03 9.26097095e-01 7.61895478e-02 -6.11205578e-01 7.39221156e-01 -5.66229045e-01 -4.79535898e-03 3.46203566e-01 5.02177656e-01 4.70404625e-01 -2.67862435e-02 6.53014123e-01 -4.02163953e-01 5.68178117e-01 -6.68979824e-01 -8.86815608e-01 -1.36169434e-01 -8.74091744e-01 -1.90041453e-01 7.53603458e-01 -2.55053699e-01 -1.01537931e+00 -1.62746489e-01 -3.80425066e-01 -5.07831752e-01 -5.35944164e-01 1.34083897e-01 1.37809440e-02 4.88463342e-02 4.21179444e-01 3.75553459e-01 2.55986542e-01 -1.28861398e-01 3.80679250e-01 7.03340769e-01 7.55401015e-01 -2.34387353e-01 6.63099706e-01 5.55253446e-01 -1.09264795e-02 -7.24534750e-01 -5.67178667e-01 -2.96299547e-01 -4.50327158e-01 -5.67542434e-01 9.47205007e-01 -8.79205644e-01 -1.02851915e+00 8.47320199e-01 -8.74598622e-01 -7.17285752e-01 9.82887819e-02 5.02310872e-01 -5.02445459e-01 -5.95806874e-02 -5.72407782e-01 -7.13365078e-01 9.24255420e-03 -1.61659420e+00 5.52989781e-01 3.65912318e-01 1.59513146e-01 -1.04412854e+00 -1.20480713e-02 5.27727723e-01 8.27935100e-01 2.04564139e-01 6.69646800e-01 -1.77310079e-01 -5.98947346e-01 -3.64698172e-01 -4.47632760e-01 5.41754425e-01 -1.62138179e-01 3.57258260e-01 -9.48720336e-01 -7.70902960e-03 -5.60461223e-01 4.13791090e-02 1.26655364e+00 6.95503891e-01 1.37245953e+00 7.28872344e-02 -7.88856328e-01 7.05181599e-01 1.06035626e+00 5.82611263e-01 8.44593287e-01 7.54079998e-01 7.27406561e-01 7.12979376e-01 7.57730246e-01 -3.29562008e-01 9.84035492e-01 6.54663026e-01 6.39049053e-01 -2.49048397e-01 -2.81309545e-01 -3.39801788e-01 5.58042943e-01 3.32515687e-01 1.12420291e-01 -3.59055519e-01 -1.06992543e+00 7.83851147e-01 -1.99952614e+00 -1.22409880e+00 -6.62867308e-01 1.82986784e+00 2.23093197e-01 4.62424278e-01 2.95851111e-01 6.86563505e-03 6.93125308e-01 1.50784597e-01 -7.29253829e-01 -7.31459439e-01 -2.17904463e-01 -2.55287290e-01 1.10425878e+00 6.71111584e-01 -1.14882457e+00 1.22192800e+00 6.32053089e+00 1.06707096e+00 -1.38027132e+00 7.34291598e-02 8.25918436e-01 -1.89907402e-01 1.33829132e-01 -1.68585047e-01 -1.44070995e+00 8.59622180e-01 1.66901350e+00 -3.52587670e-01 3.57127368e-01 8.20196509e-01 8.45889807e-01 -1.36385173e-01 -8.26051652e-01 8.08920324e-01 -2.38898277e-01 -1.61416757e+00 -1.06760338e-01 1.51025504e-01 5.24469256e-01 8.81846905e-01 7.88921565e-02 9.51257885e-01 2.65345424e-01 -1.12218988e+00 7.17624307e-01 5.99344015e-01 4.27091032e-01 -8.86809409e-01 8.09013546e-01 4.98532742e-01 -1.20570064e+00 -3.26696217e-01 -4.09255862e-01 -1.36045262e-01 5.19004762e-01 2.12706879e-01 -4.25586194e-01 2.34888449e-01 9.02827084e-01 8.61382663e-01 -5.67089260e-01 9.39008474e-01 2.18158185e-01 9.11043823e-01 -1.78106532e-01 -1.67780533e-01 8.93333077e-01 -2.35318556e-01 4.50227827e-01 1.55116177e+00 1.00052401e-01 -5.24474084e-01 5.56784170e-03 9.67570901e-01 2.08121166e-02 -2.02884659e-01 -8.15369308e-01 3.58991712e-01 4.35998172e-01 1.34488547e+00 -3.00102919e-01 -4.25480455e-01 -6.60412431e-01 2.47522935e-01 1.49102092e-01 4.78404999e-01 -1.41615164e+00 -3.35451543e-01 1.34250247e+00 4.67267334e-01 1.25885859e-01 -2.87651777e-01 -1.11051500e-01 -4.91984248e-01 -1.63144261e-01 -4.78770226e-01 2.25381941e-01 -6.30295694e-01 -9.98139083e-01 5.43944001e-01 3.34486246e-01 -1.10913181e+00 -8.46848190e-02 -8.82344782e-01 -8.30570221e-01 7.54461527e-01 -2.33715940e+00 -9.40122008e-01 -5.84711730e-01 5.96929610e-01 6.01709962e-01 -4.16263908e-01 2.13347644e-01 8.79330993e-01 -1.10314631e+00 6.01042151e-01 1.17427908e-01 1.66603625e-01 6.17839575e-01 -8.48929524e-01 7.87245452e-01 7.46562600e-01 -2.67588228e-01 1.31405413e-01 5.41176021e-01 -3.42912287e-01 -1.34562182e+00 -1.66748130e+00 7.95366049e-01 -6.73208714e-01 6.32972538e-01 -3.44133794e-01 -9.18175101e-01 7.20787644e-01 2.00746447e-01 2.28173926e-01 4.25320454e-02 -4.40272748e-01 4.02610656e-03 -6.23912573e-01 -8.57946575e-01 5.54327190e-01 1.07152689e+00 -2.72549748e-01 -9.86168832e-02 5.33319861e-02 4.30493802e-01 -2.24175945e-01 -3.26757282e-01 4.72263157e-01 4.94192511e-01 -1.03637040e+00 9.17529285e-01 -7.03674316e-01 1.58892065e-01 -4.46191132e-01 -1.07541196e-01 -1.27508402e+00 -4.02007729e-01 -2.92369217e-01 -1.06962390e-01 9.33881164e-01 4.69147921e-01 -8.37650955e-01 7.64475346e-01 5.93563080e-01 -5.12876630e-01 -9.48413670e-01 -9.78395641e-01 -1.03463793e+00 6.21460676e-01 -1.07305396e+00 8.29877615e-01 3.86727363e-01 -6.01455331e-01 6.98325410e-02 -2.94600189e-01 7.43160844e-02 4.75719631e-01 -2.08700866e-01 1.11289501e+00 -9.83370245e-01 5.31399906e-01 -8.60949636e-01 -5.59007406e-01 -1.21124077e+00 7.18459249e-01 -1.04493237e+00 -5.43729030e-02 -1.53638828e+00 -5.52778542e-02 -4.74917859e-01 -4.51101214e-01 2.68473864e-01 -4.69414517e-02 5.92578612e-02 7.86169171e-02 5.90958213e-03 -4.29874092e-01 5.30835748e-01 1.24321592e+00 -3.55328977e-01 -3.69185954e-02 1.21329688e-01 -5.86845994e-01 5.20312130e-01 9.84314561e-01 -3.68508905e-01 -2.84979105e-01 -4.61835206e-01 -3.50445032e-01 -2.90153414e-01 8.16496730e-01 -1.15506017e+00 4.58654583e-01 -2.85110712e-01 8.89756717e-03 -1.03078628e+00 1.90979257e-01 -5.48437536e-01 -6.23028018e-02 6.53838396e-01 -1.85806483e-01 2.40310878e-01 5.53802729e-01 4.24341530e-01 -3.07775676e-01 2.54980803e-01 9.27434683e-01 1.76219523e-01 -1.50156188e+00 7.29187191e-01 -7.59169698e-01 1.67930368e-02 1.42359793e+00 -4.30964053e-01 -5.30411839e-01 -3.83211136e-01 -1.42380863e-01 8.74185145e-01 -3.58684026e-02 1.24302173e+00 4.68910426e-01 -1.39112079e+00 -8.86260390e-01 3.36291134e-01 3.27184051e-01 -2.98983723e-01 3.84493440e-01 7.80793667e-01 -4.71105337e-01 9.62257862e-01 -2.59475887e-01 -7.04412520e-01 -9.37105417e-01 6.47005916e-01 8.69930446e-01 8.52790847e-02 -5.47247827e-01 4.57355827e-01 1.92156702e-01 -8.39383185e-01 8.45104232e-02 -4.27701503e-01 -1.55623794e-01 -1.39734671e-01 5.89196563e-01 8.06687057e-01 1.41866520e-01 -1.19597208e+00 -5.00077069e-01 3.73048156e-01 -7.35930651e-02 3.78819764e-01 8.62178981e-01 -2.28716895e-01 5.14375806e-01 3.83944094e-01 1.49386811e+00 -6.24282122e-01 -1.44816411e+00 3.47606763e-02 -1.89784154e-01 -3.81443679e-01 4.64729816e-01 -5.70423067e-01 -1.39740884e+00 9.41247523e-01 9.12653208e-01 1.36219606e-01 5.81813574e-01 -2.55271465e-01 1.18846464e+00 3.57325017e-01 2.39536777e-01 -1.27631915e+00 -4.94252533e-01 7.53312886e-01 7.12714016e-01 -1.61096156e+00 -5.97579777e-01 1.17863491e-02 -6.37385368e-01 8.46460581e-01 1.00999784e+00 -1.68211177e-01 1.10564721e+00 5.18866658e-01 5.42220950e-01 -8.72889385e-02 -9.45513248e-01 -4.20730501e-01 1.75925955e-01 6.06764555e-01 5.01613319e-02 2.74145991e-01 6.64788932e-02 2.11410061e-01 -3.14531654e-01 2.29316041e-01 3.91524941e-01 5.93572378e-01 -2.80718982e-01 -7.95705199e-01 -6.57964796e-02 6.45150542e-01 -1.86778113e-01 2.92007267e-01 8.42265412e-02 1.16802669e+00 1.92600623e-01 1.31862652e+00 3.42095792e-01 -5.54549754e-01 7.54289269e-01 -1.93196714e-01 -1.36797339e-01 1.43205494e-01 -3.54220688e-01 -6.42627597e-01 1.23105362e-01 -1.00960314e+00 -2.29691073e-01 -6.09892309e-01 -1.40038073e+00 -1.05827630e+00 -1.08208679e-01 -1.00907095e-01 7.41363347e-01 9.77103174e-01 5.93487322e-01 6.11328721e-01 6.28251731e-01 -9.35372055e-01 -1.82739422e-01 -7.08686411e-01 -3.06385279e-01 4.39369529e-01 5.69134057e-01 -9.83931363e-01 -4.77693230e-01 -2.42561385e-01]
[6.101931571960449, 0.8346863389015198]
e43ce53c-7df7-4828-957b-b6865fc59b8f
operation-wise-attention-network-for
2105.05515
null
https://arxiv.org/abs/2105.05515v2
https://arxiv.org/pdf/2105.05515v2.pdf
Operation-wise Attention Network for Tampering Localization Fusion
In this work, we present a deep learning-based approach for image tampering localization fusion. This approach is designed to combine the outcomes of multiple image forensics algorithms and provides a fused tampering localization map, which requires no expert knowledge and is easier to interpret by end users. Our fusion framework includes a set of five individual tampering localization methods for splicing localization on JPEG images. The proposed deep learning fusion model is an adapted architecture, initially proposed for the image restoration task, that performs multiple operations in parallel, weighted by an attention mechanism to enable the selection of proper operations depending on the input signals. This weighting process can be very beneficial for cases where the input signal is very diverse, as in our case where the output signals of multiple image forensics algorithms are combined. Evaluation in three publicly available forensics datasets demonstrates that the performance of the proposed approach is competitive, outperforming the individual forensics techniques as well as another recently proposed fusion framework in the majority of cases.
['Ioannis Kompatsiaris', 'Symeon Papadopoulos', 'Giorgos Kordopatis-Zilos', 'Polychronis Charitidis']
2021-05-12
null
null
null
null
['image-forensics']
['computer-vision']
[ 2.76340038e-01 -5.42941928e-01 3.58537465e-01 9.58980247e-03 -1.21330059e+00 -4.99754876e-01 7.31020689e-01 2.51438051e-01 -5.36247730e-01 4.25225407e-01 9.42431390e-02 -3.57642084e-01 -1.18867442e-01 -5.24524868e-01 -7.42186129e-01 -9.12335396e-01 1.43328413e-01 3.00539672e-01 2.18037277e-01 -5.59395440e-02 6.60317719e-01 7.45116889e-01 -1.36366081e+00 6.30757928e-01 7.63571441e-01 1.04371297e+00 2.58995205e-01 5.72163343e-01 -1.86814919e-01 8.80572736e-01 -9.84381974e-01 -6.51578486e-01 3.22837681e-01 2.59225257e-02 -5.70815027e-01 1.35399982e-01 6.11076415e-01 -4.40553397e-01 -4.14111882e-01 1.15228438e+00 5.20446479e-01 -8.80973488e-02 4.40105945e-01 -1.09944713e+00 -5.86362064e-01 5.13626099e-01 -7.82847822e-01 6.22264206e-01 3.55162382e-01 3.40049624e-01 4.78346556e-01 -7.67754614e-01 4.69559491e-01 1.31600320e+00 6.75981939e-01 -2.02456534e-01 -9.58945513e-01 -6.92618072e-01 -4.40537393e-01 8.03134322e-01 -1.16499197e+00 -3.95625979e-01 8.61692250e-01 -3.51637453e-01 6.65874243e-01 -1.77603751e-01 1.32663935e-01 1.07865345e+00 3.39960158e-01 8.29771161e-01 1.28811324e+00 -4.72571641e-01 1.99229643e-01 5.90315424e-02 2.04741746e-01 4.35938567e-01 4.12542909e-01 -8.33791420e-02 -8.87842357e-01 -4.32295144e-01 4.10372972e-01 2.24592328e-01 -2.05190152e-01 -2.49369424e-02 -9.02264297e-01 7.77291834e-01 3.35592031e-01 6.14087462e-01 -6.80847645e-01 2.72032589e-01 6.48961484e-01 4.28755403e-01 3.36577982e-01 9.87502560e-02 2.11460039e-01 1.57442570e-01 -1.59837282e+00 1.45118490e-01 3.26679021e-01 2.15155274e-01 7.81241000e-01 1.99675098e-01 -8.05641040e-02 4.45069671e-01 3.43791902e-01 2.51764715e-01 5.34541309e-01 -9.21056867e-01 5.86821139e-01 4.05682355e-01 2.19947875e-01 -1.16819644e+00 5.12453401e-03 -3.10521334e-01 -6.12265527e-01 5.13402224e-01 3.39607537e-01 9.10124108e-02 -8.01807046e-01 1.23332727e+00 1.85470507e-01 5.58824956e-01 2.17811968e-02 6.19434476e-01 5.54489434e-01 3.87838364e-01 1.62929267e-01 6.07416146e-02 1.39394855e+00 -6.13161623e-01 -8.49984109e-01 -5.36262430e-02 1.87865600e-01 -1.04991925e+00 5.66192448e-01 7.32062459e-01 -8.60159874e-01 -6.89427733e-01 -1.35377729e+00 9.93087143e-02 -5.71096480e-01 2.19661161e-01 2.96936154e-01 8.32382381e-01 -1.07161450e+00 7.80566812e-01 -6.18744731e-01 -2.13506877e-01 6.87824965e-01 4.30116892e-01 -5.41989267e-01 -1.59086749e-01 -9.86886621e-01 9.71756458e-01 4.96354461e-01 1.63607806e-01 -1.10488224e+00 -2.43573293e-01 -6.75781727e-01 2.05976173e-01 2.14798421e-01 -3.85954887e-01 7.59954929e-01 -8.83832991e-01 -9.95363176e-01 7.66907275e-01 8.05421174e-02 -8.67167413e-01 8.13815653e-01 -3.08961183e-01 -4.28740680e-01 5.79129219e-01 7.74103254e-02 2.77060777e-01 1.31946433e+00 -1.44799316e+00 -5.58135211e-01 -5.95407784e-01 -1.65485471e-01 -1.71266809e-01 -4.39825237e-01 3.71939272e-01 -2.87667125e-01 -6.32676423e-01 -1.89487249e-01 -4.86486077e-01 1.45205213e-02 -1.90690234e-01 -1.83661804e-01 4.14493568e-02 1.35311687e+00 -1.15517557e+00 8.98358822e-01 -2.19843936e+00 -6.48876354e-02 2.79841870e-01 8.81384164e-02 6.68631554e-01 -1.00256704e-01 6.35101080e-01 -1.25465706e-01 5.37612662e-02 -4.24995542e-01 -6.51312411e-01 -2.09495947e-01 -1.61495119e-01 -3.81598234e-01 1.00495875e+00 1.53279796e-01 3.89296174e-01 -9.14866388e-01 -6.33440018e-01 7.22271502e-01 7.43181765e-01 -2.36795731e-02 2.48598680e-01 2.14831159e-01 4.70232248e-01 -4.99056876e-02 7.75686204e-01 1.04168499e+00 1.12606689e-01 7.69632161e-02 -5.03071249e-01 1.30693346e-01 -1.01442561e-01 -1.34039950e+00 1.65182817e+00 -4.93771642e-01 8.44647348e-01 3.43748540e-01 -1.11242902e+00 9.48362887e-01 3.74502063e-01 5.09429932e-01 -6.13921762e-01 3.44811201e-01 2.65415221e-01 -1.00807019e-01 -6.63638830e-01 6.38744652e-01 9.90976915e-02 8.34872574e-02 8.30121219e-01 5.85239351e-01 3.43433589e-01 2.91178972e-01 2.42800370e-01 1.25918043e+00 2.37220764e-01 1.71996862e-01 1.85717285e-01 7.75510490e-01 -2.63248444e-01 3.03042263e-01 9.13530946e-01 -3.50498527e-01 5.56102097e-01 2.87411451e-01 -4.75974649e-01 -1.04249072e+00 -7.86671162e-01 1.26021117e-01 8.10427666e-01 2.71844059e-01 -2.16616526e-01 -9.29456532e-01 -7.73535669e-01 -1.09786019e-01 6.14953518e-01 -5.96770227e-01 -1.31951258e-01 -8.43980968e-01 -8.00017834e-01 7.66918719e-01 3.63839537e-01 8.16481113e-01 -1.21512532e+00 -7.14246571e-01 1.10111192e-01 -3.68487209e-01 -1.27516568e+00 -1.08662799e-01 2.12285295e-01 -6.77075744e-01 -1.25225461e+00 -4.56249982e-01 -3.83986115e-01 2.31865749e-01 4.57840085e-01 5.39631009e-01 3.12815309e-01 -2.52165616e-01 3.56328696e-01 -4.16985989e-01 -1.98216200e-01 -5.93716025e-01 -2.59923816e-01 -2.55887777e-01 5.72162628e-01 3.01992148e-01 -5.44162631e-01 -5.16961157e-01 -7.98915923e-02 -1.36299634e+00 -5.52007318e-01 6.89849794e-01 7.77942538e-01 1.09717622e-01 2.61101186e-01 3.87417316e-01 -5.91079354e-01 8.15357745e-01 -7.90851235e-01 -3.36046606e-01 3.88035297e-01 -1.31026030e-01 -5.35485409e-02 5.60948610e-01 -2.47061878e-01 -1.03069043e+00 -3.02417558e-02 -6.05334416e-02 -7.67978787e-01 -3.72665495e-01 2.62093931e-01 -1.66927382e-01 -5.23444772e-01 5.98303437e-01 3.21406364e-01 1.01303048e-02 -7.47623861e-01 2.09881723e-01 9.09629166e-01 8.84919345e-01 -3.57606500e-01 7.87978590e-01 6.46535575e-01 -6.21273369e-02 -6.58605456e-01 -9.28671062e-02 -5.75765610e-01 -8.36837292e-01 -4.16093379e-01 6.65424883e-01 -6.60455465e-01 -6.36332393e-01 7.31886685e-01 -1.49877679e+00 3.84943366e-01 1.58620253e-01 1.44171551e-01 -4.21544492e-01 1.13506424e+00 -5.15469551e-01 -9.95846212e-01 -5.27973354e-01 -1.57229567e+00 1.33397210e+00 1.02105699e-01 9.07748342e-02 -8.76966953e-01 -2.11668998e-01 7.07244098e-01 3.21514487e-01 3.49352628e-01 6.21860743e-01 -1.03990901e+00 -4.66290772e-01 -4.51984346e-01 -2.87878573e-01 6.32780731e-01 -1.33282587e-01 -1.09396487e-01 -1.04173255e+00 -3.18970948e-01 2.73601949e-01 -1.69424698e-01 1.17681658e+00 4.73410599e-02 1.02737379e+00 1.37488991e-01 -4.17060666e-02 4.85427469e-01 1.63137066e+00 1.68759450e-01 9.58725512e-01 7.27587223e-01 6.19433463e-01 4.76949483e-01 4.98665512e-01 4.47212934e-01 -9.06077921e-02 6.51668370e-01 9.07007098e-01 -1.75415128e-01 -2.54720181e-01 1.75213680e-01 6.19087636e-01 1.04335114e-01 1.29315510e-01 -4.55809236e-01 -9.38303709e-01 4.87681746e-01 -1.86496437e+00 -1.26946366e+00 2.07151193e-02 2.29050565e+00 5.77871986e-02 -1.60323549e-02 1.13150075e-01 5.00694871e-01 1.15269506e+00 2.91232467e-01 -2.94133574e-01 -4.77809995e-01 -2.26560161e-01 5.86828113e-01 8.01720321e-01 3.05770308e-01 -1.24518621e+00 8.09690475e-01 6.15804243e+00 1.14317226e+00 -1.09382069e+00 5.27106106e-01 3.44118178e-01 2.40189061e-01 3.26802321e-02 7.71847069e-02 -2.61110246e-01 7.74809182e-01 9.28824127e-01 3.96817833e-01 2.05726355e-01 3.42211545e-01 2.56852359e-01 -2.95435071e-01 -5.12248218e-01 1.18641806e+00 3.97114575e-01 -1.41505516e+00 1.00905746e-01 1.89744800e-01 1.47402868e-01 -1.07523993e-01 1.81678846e-01 -1.98259503e-01 2.37092793e-01 -8.81492913e-01 8.45122218e-01 4.38230127e-01 2.92363584e-01 -8.07990730e-01 1.07457900e+00 1.94930479e-01 -8.48854780e-01 -5.25174379e-01 -1.12037748e-01 4.21354175e-01 4.78952825e-01 4.48590368e-01 -8.45225096e-01 8.16664815e-01 7.21767247e-01 3.51923227e-01 -7.36710429e-01 1.20632470e+00 -1.13027029e-01 6.84682667e-01 -2.15838298e-01 5.56781530e-01 4.09316629e-01 -3.83190922e-02 6.56039119e-01 1.51213133e+00 6.26710892e-01 -5.41455090e-01 -3.24321724e-02 8.13075542e-01 -5.04819155e-02 1.88706324e-01 -6.44729614e-01 1.51366010e-01 5.11108994e-01 1.49814224e+00 -8.93283010e-01 -4.60484564e-01 -1.97558895e-01 1.03824806e+00 1.02889672e-01 2.19016284e-01 -8.46099794e-01 -2.96793431e-01 1.93146214e-01 9.11561102e-02 6.52736664e-01 -2.64103591e-01 -8.64595696e-02 -9.53693926e-01 -3.87248932e-03 -1.02553070e+00 5.77444851e-01 -8.66225123e-01 -1.00066364e+00 5.22621334e-01 7.41743541e-04 -1.27596104e+00 -8.74340758e-02 -6.64627433e-01 -8.89029205e-01 6.45165920e-01 -1.35106683e+00 -1.66054595e+00 -1.33829504e-01 6.71454787e-01 4.02514905e-01 -5.43359756e-01 3.49337935e-01 6.07446730e-01 -4.57539022e-01 3.96873713e-01 1.86410263e-01 7.14197606e-02 8.24847639e-01 -1.10228240e+00 1.01573847e-01 1.39464545e+00 3.58998775e-01 6.87006950e-01 6.90041840e-01 -8.40235710e-01 -1.32653201e+00 -8.56786966e-01 4.15465474e-01 -9.80071425e-02 5.12219727e-01 1.89633798e-02 -9.46733654e-01 3.78283560e-01 7.28081226e-01 -1.27149820e-01 8.41473579e-01 -3.81598204e-01 -6.08914912e-01 -2.02650815e-01 -1.64083362e+00 4.34986614e-02 2.98613846e-01 -6.11788392e-01 -5.42829812e-01 3.84375542e-01 1.42160300e-02 -1.55037204e-02 -6.54880106e-01 1.08451486e-01 3.31443608e-01 -1.30738842e+00 1.11933112e+00 -1.67585403e-01 1.23818152e-01 -6.70501411e-01 -3.58915627e-01 -8.99228811e-01 -2.99186856e-02 -5.96397698e-01 -2.66927898e-01 1.30737031e+00 -3.52079839e-01 -2.58353502e-01 3.66123885e-01 -1.36430636e-01 -8.17026943e-04 -5.29553108e-02 -1.18333960e+00 -5.52617311e-01 -3.57394278e-01 -4.50902134e-01 6.13453686e-01 7.22494781e-01 -4.86459583e-01 -1.27335951e-01 -8.10568333e-01 3.10772300e-01 9.91352022e-01 -5.09503372e-02 6.69655859e-01 -8.29632461e-01 -3.82332772e-01 -3.44288766e-01 -8.70523632e-01 -2.44244039e-01 2.75751919e-01 -7.54525244e-01 -3.66617948e-01 -1.24354792e+00 2.05803677e-01 1.66321024e-01 -5.54911911e-01 3.56565475e-01 -1.39836311e-01 7.10767269e-01 5.23633480e-01 3.43353003e-01 -6.07029080e-01 9.08253342e-02 6.41484201e-01 -2.54418433e-01 2.49842510e-01 -3.31337780e-01 -6.89538300e-01 6.56464159e-01 5.52381694e-01 -5.70488572e-01 1.06386347e-02 -4.90596980e-01 -3.02352220e-01 2.62158606e-02 7.09173918e-01 -1.39764142e+00 5.03793061e-01 2.97324687e-01 5.90390265e-01 -7.61671364e-01 3.67645353e-01 -8.81742716e-01 3.04425359e-01 5.05665898e-01 6.84792325e-02 1.37687415e-01 4.08093631e-02 5.57939589e-01 -4.52112138e-01 -4.32548016e-01 9.59762514e-01 -3.33557397e-01 -8.37916553e-01 -1.73984412e-02 -4.11198288e-01 -6.37908578e-01 9.67249811e-01 -5.39349139e-01 -2.45443717e-01 -4.57622051e-01 -6.04953527e-01 -2.86544383e-01 3.17520946e-01 2.23101482e-01 6.28868759e-01 -1.16482055e+00 -6.80032074e-01 -1.44566938e-01 -1.20566055e-01 -6.37994111e-01 4.23631191e-01 8.10691476e-01 -6.85101509e-01 -2.25399807e-02 -5.48737586e-01 -5.23942947e-01 -1.30721569e+00 7.16839671e-01 1.54705763e-01 -4.33104098e-01 -4.55938369e-01 4.22450542e-01 -4.26218271e-01 9.91333425e-02 4.88272160e-02 1.88292101e-01 -3.59724581e-01 3.54547858e-01 9.12647963e-01 7.77506709e-01 4.35918689e-01 -1.18302155e+00 -3.15901846e-01 4.97164369e-01 -1.27779573e-01 -2.75065690e-01 1.52103949e+00 -4.44774255e-02 -1.26162738e-01 -1.00983799e-01 1.15128005e+00 5.79988526e-04 -8.03198040e-01 -1.96118891e-01 6.53489828e-02 -7.70078719e-01 3.29226196e-01 -6.32200360e-01 -1.27837801e+00 1.10863018e+00 1.07871222e+00 6.15988784e-02 1.22104061e+00 -3.43434483e-01 8.96866441e-01 8.60043615e-02 2.58354753e-01 -1.03855276e+00 1.67517498e-01 -1.57363191e-02 6.22135520e-01 -1.13236070e+00 9.78980362e-02 1.23934954e-01 -3.86268198e-01 1.40092182e+00 2.34842315e-01 -3.70198816e-01 2.81799078e-01 3.61400783e-01 -8.35362226e-02 -2.41357923e-01 -1.39418527e-01 -1.72639057e-01 -1.02888539e-01 8.50245774e-01 1.97330326e-01 -3.62215698e-01 -4.20497954e-01 1.93222463e-01 3.31749320e-01 -1.37894377e-01 3.50844115e-01 1.00128758e+00 -4.51627374e-01 -1.39761245e+00 -1.12191200e+00 2.46602654e-01 -8.07677865e-01 1.27156362e-01 -4.48629647e-01 5.94867945e-01 5.85029542e-01 1.07250702e+00 -6.05394915e-02 -3.80191654e-01 -8.74566883e-02 9.57153738e-02 4.47726250e-01 -7.76412487e-02 -1.07596552e+00 6.77281842e-02 -2.24197432e-01 -4.95306492e-01 -5.91457963e-01 -8.53322029e-01 -8.11192334e-01 -3.91597956e-01 -4.05570626e-01 -7.40884542e-02 9.12685692e-01 1.11981320e+00 3.82571995e-01 2.86567509e-01 5.33709884e-01 -1.11971283e+00 -4.93615657e-01 -9.86591816e-01 -4.90768135e-01 7.14815378e-01 4.14173603e-01 -8.10285687e-01 -2.73376942e-01 1.28916070e-01]
[12.410805702209473, 1.0147883892059326]
d853c3dc-02f9-4531-8ad3-3f6344273180
modified-qpsk-partition-algorithm-based-on
2010.10106
null
https://arxiv.org/abs/2010.10106v1
https://arxiv.org/pdf/2010.10106v1.pdf
Modified QPSK Partition Algorithm Based on MAP Estimation for Probabilistically-Shaped 16-QAM
Probabilistic shaping (PS) is investigated as a potential technique to approach the Shannon limit. However, it has been proved that conventional carrier phase recovery (CPR) algorithm designed for uniform distribution may have extra penalty in PS systems. In this paper, we find that the performance of QPSK partition algorithm is degenerated when PS is implemented. To solve this issue, a modified QPSK partition algorithm that jointly optimizes the amplitude decision threshold and filter weight is proposed, where the optimization of decision threshold is based on maximum a posterior probability (MAP) estimation. Different from the conventional decision methods which commonly use Euclidean distance metric, the MAP-based decision introduces the statistical characteristics of the received signals to obtain an accurate amplitude partition. In addition, the filter weight is optimized for different decision thresholds to enhance the tolerance of ASE-induced phase noise. We verify the feasibility of the proposed algorithm in a 56 GBaud PS 16-ary quadrature amplitude modulation (16-QAM) system. The proposed algorithm reduces the error of phase noise estimation by nearly half. Compared with conventional QPSK partition, the proposed algorithm could narrow the gap with theoretical mutual information (MI) by more than 0.1 bit/symbol. The channel capacity is increased by 4.2%, 4.3% and 3.6% with signal-to-noise ratio (SNR) from 8 dB to 10 dB respectively. These observations show that the proposed algorithm is a promising method to relieve the penalty of QPSK partition algorithm in PS systems.
['Yaojun Qiao', 'Yueming Lu', 'Xizi Tang', 'Mengqi Guo', 'Xuekai Xu', 'Zhongliang Sun', 'Jin Hu']
2020-10-20
null
null
null
null
['noise-estimation']
['medical']
[ 4.74608868e-01 1.52751029e-01 1.39002129e-02 8.98044705e-02 -6.05643868e-01 -2.65163273e-01 4.31361496e-02 7.42422566e-02 -4.61092800e-01 1.17038035e+00 -1.19984902e-01 -5.88734984e-01 -4.57002431e-01 -6.59973562e-01 -1.72856048e-01 -1.37734830e+00 -2.90338606e-01 -1.48051217e-01 3.60721678e-01 9.93682817e-03 6.68993413e-01 4.58046466e-01 -1.09365809e+00 -2.76233226e-01 1.30837488e+00 1.09649456e+00 3.60018790e-01 6.47140682e-01 2.00017005e-01 1.00859359e-01 -1.11282372e+00 -4.13536327e-03 1.45415589e-01 -6.78555310e-01 -1.14169233e-01 -1.92988589e-01 -3.12717468e-01 -4.87393402e-02 -5.85215807e-01 1.21877372e+00 7.95470774e-01 -1.38788417e-01 7.81823397e-01 -1.16164958e+00 -2.56064031e-02 5.07713139e-01 -9.16851461e-01 3.10071915e-01 5.62669858e-02 2.21964255e-01 2.76021093e-01 -2.40618184e-01 8.90769362e-02 8.89936566e-01 3.51973772e-01 -2.19206452e-01 -8.24546158e-01 -1.08270442e+00 -9.11566198e-01 6.69732630e-01 -1.96213150e+00 -4.82843310e-01 5.32165706e-01 -1.27023250e-01 6.36927962e-01 2.52472878e-01 4.51638013e-01 -1.05275244e-01 6.79865360e-01 -3.60261202e-02 1.54201174e+00 -9.27319705e-01 6.22512586e-02 1.90285102e-01 3.47343236e-02 4.11155313e-01 9.29109752e-01 2.78753489e-01 -3.15170944e-01 -2.40162671e-01 4.54741329e-01 -9.97525036e-01 -7.12095082e-01 -4.06131670e-02 -8.12242568e-01 3.81635964e-01 2.05092523e-02 3.58796656e-01 -2.51707554e-01 2.98723936e-01 -1.63461834e-01 2.65144944e-01 -1.46568120e-01 3.97346258e-01 1.13315091e-01 -1.72827631e-01 -1.02952731e+00 1.77555624e-02 8.17436397e-01 1.01747811e+00 7.03433990e-01 3.69923025e-01 -3.97831082e-01 4.57013041e-01 7.56644309e-01 1.01480079e+00 1.20652036e-03 -8.58909905e-01 3.40141386e-01 -4.74088676e-02 3.97062302e-01 -9.67387140e-01 -2.81226844e-01 -1.16133845e+00 -6.66358948e-01 1.19846620e-01 4.35857177e-01 -3.77962977e-01 -7.45875478e-01 1.35742986e+00 -9.39061493e-03 1.93027198e-01 5.09812951e-01 5.16050637e-01 3.72713089e-01 6.96092129e-01 -1.72537759e-01 -6.93555176e-01 1.32066905e+00 -2.24377751e-01 -1.13492119e+00 4.71328385e-02 2.52379984e-01 -1.23776579e+00 4.85845245e-02 5.65746427e-01 -8.27764511e-01 -2.14193150e-01 -1.67001200e+00 9.26970959e-01 4.38542515e-01 3.14605534e-01 -9.22599286e-02 1.43322873e+00 -8.44979525e-01 4.52088594e-01 -4.83671337e-01 -1.23080470e-01 2.39487052e-01 7.27328777e-01 2.02317581e-01 9.87791792e-02 -1.18722796e+00 7.11867869e-01 5.61182201e-01 8.99885371e-02 -6.68134494e-03 -4.55858946e-01 -4.14797604e-01 1.92318663e-01 1.86921135e-02 -1.94398686e-01 9.13428247e-01 -3.87195885e-01 -1.75205517e+00 1.14541367e-01 -3.15168083e-01 -6.37497902e-01 -8.95825177e-02 1.87558934e-01 -7.83782721e-01 6.08619988e-01 -8.34410712e-02 -1.63927436e-01 4.92270708e-01 -1.16135752e+00 -6.10305309e-01 -1.87644765e-01 -3.51616144e-01 1.48235396e-01 1.39036208e-01 7.96098784e-02 -3.10767759e-02 -3.03960562e-01 4.96439874e-01 -8.29212308e-01 -3.10274184e-01 -5.46292543e-01 -2.84444630e-01 2.24546626e-01 8.76666725e-01 -4.53536600e-01 1.48928809e+00 -2.20077443e+00 -5.49976587e-01 5.82481086e-01 -1.83447435e-01 5.95823884e-01 3.54336798e-01 7.11500645e-01 1.87050387e-01 -7.26570487e-02 -4.22259986e-01 2.35920355e-01 -2.27526858e-01 -9.25300717e-02 1.95102960e-01 9.16845441e-01 -1.27656281e-01 1.03723906e-01 -7.53631294e-01 -3.36316854e-01 1.20490626e-01 1.49205416e-01 -3.91332746e-01 -1.25411987e-01 3.89592081e-01 4.56166118e-01 -2.57856220e-01 5.67243576e-01 1.58686125e+00 7.19837025e-02 4.08257395e-01 -4.65668976e-01 -4.45524663e-01 2.12848783e-01 -1.51962578e+00 9.17315662e-01 8.13230872e-05 8.35051894e-01 1.79671660e-01 -9.78882849e-01 9.68749583e-01 4.94919062e-01 2.56426483e-01 -7.82501340e-01 2.84869939e-01 4.31685090e-01 7.01574445e-01 -4.66213524e-01 7.32239723e-01 -4.08209503e-01 -7.62298703e-02 1.95107460e-01 -1.15686012e-02 9.64282230e-02 7.12486282e-02 2.34371759e-02 9.23573136e-01 -1.56246051e-01 6.46077812e-01 -6.34470105e-01 8.22269619e-01 -3.43832582e-01 8.97484422e-01 6.23408258e-01 -3.85693967e-01 1.45069405e-01 3.45378011e-01 5.35673678e-01 -7.10746229e-01 -1.13062632e+00 -5.52353680e-01 -1.81500971e-01 9.31081176e-01 -2.83234209e-01 -3.95710737e-01 5.30684441e-02 -1.86514631e-01 9.58893418e-01 5.61910272e-01 -1.58639878e-01 -3.78399402e-01 -1.30331659e+00 8.82362783e-01 -1.81966186e-01 1.07642269e+00 -3.53258073e-01 -2.87391454e-01 4.21083748e-01 -1.54202640e-01 -1.28952432e+00 2.42834851e-01 -7.89805490e-04 -5.14897227e-01 -1.09999967e+00 -2.93812841e-01 -4.27928329e-01 5.92346311e-01 2.80359417e-01 4.94360179e-01 -1.40457004e-01 9.17632729e-02 2.01622635e-01 -6.69126332e-01 -2.36461446e-01 -5.95342159e-01 -3.82622570e-01 1.86471537e-01 2.09362563e-02 4.46215987e-01 -6.65968120e-01 -1.00065267e+00 4.64223057e-01 -4.89644557e-01 -4.21874911e-01 8.90975952e-01 4.54502404e-01 -1.06041729e-01 5.21426260e-01 1.05057609e+00 -2.49905691e-01 3.76809746e-01 -5.04864752e-01 -8.81482959e-01 -1.36252731e-01 -7.36297131e-01 1.03615068e-01 4.35999632e-01 1.69037536e-01 -1.26839352e+00 -1.90983444e-01 -1.69413596e-01 5.10656953e-01 1.37999028e-01 3.82456094e-01 -2.59023666e-01 -6.97345257e-01 5.82910419e-01 2.95266658e-01 4.83917408e-02 -1.01342648e-01 2.30492298e-02 1.26126492e+00 2.42173195e-01 -2.88172007e-01 1.12803864e+00 2.99639702e-01 5.27209878e-01 -1.31007791e+00 1.02621652e-01 -5.30482054e-01 -5.98142259e-02 -1.06377676e-01 4.15316492e-01 -9.04719591e-01 -8.58167768e-01 4.77750182e-01 -9.22981441e-01 1.71734855e-01 3.79631877e-01 1.01014316e+00 -3.35490972e-01 1.03204548e+00 -4.31767464e-01 -1.30706596e+00 -2.70741463e-01 -9.53984499e-01 3.89156789e-01 6.57417893e-01 1.09363481e-01 -2.89931655e-01 -5.14533639e-01 1.69802487e-01 6.39689267e-01 1.01593435e-01 6.21787190e-01 -1.26637906e-01 -1.03849483e+00 -4.05643545e-02 -4.08935398e-01 2.71682173e-01 2.28449851e-01 -4.08200473e-01 -7.38709509e-01 -3.25327575e-01 2.16057077e-01 4.60713446e-01 5.49973726e-01 6.26169205e-01 6.47297025e-01 -1.16317207e-03 -6.64084733e-01 3.93835455e-01 1.82841432e+00 9.17192161e-01 1.39524567e+00 3.11717987e-01 -2.41592377e-02 -7.21759126e-02 1.05929267e+00 7.47536004e-01 -3.12588662e-02 6.43830717e-01 1.90420091e-01 3.71326894e-01 -1.62905023e-01 3.41579050e-01 1.85567006e-01 6.31709397e-01 1.48762882e-01 -7.29524910e-01 -5.09696960e-01 3.38034779e-01 -1.35308659e+00 -8.64525318e-01 -6.32484019e-01 2.59107137e+00 8.57989073e-01 2.40666687e-01 -4.11138982e-01 4.98558253e-01 7.93974400e-01 -2.68152822e-02 2.07823142e-01 -4.39326793e-01 -3.08151484e-01 5.13051867e-01 1.28218222e+00 7.32337177e-01 -8.33742321e-01 4.93894577e-01 4.82387590e+00 1.32022130e+00 -9.62829411e-01 -9.19320211e-02 1.04668282e-01 3.85001600e-01 -2.30265260e-01 4.74445432e-01 -1.00976360e+00 9.66419399e-01 1.08596051e+00 -4.51936722e-01 -2.05101728e-01 3.63785215e-02 5.72106063e-01 -1.11395359e+00 -2.95230955e-01 9.80705440e-01 -4.14994135e-02 -9.26381946e-01 -2.26510897e-01 4.23983812e-01 4.64661747e-01 -6.48051441e-01 -8.73000100e-02 6.05569072e-02 -3.75815779e-01 -6.84196711e-01 1.45632893e-01 6.64520442e-01 7.21745372e-01 -8.83639991e-01 1.06367850e+00 3.36904496e-01 -1.09022081e+00 -1.81107000e-01 -1.91513047e-01 -1.19665548e-01 5.53471863e-01 9.89897072e-01 -1.14578867e+00 9.74683940e-01 2.10577816e-01 -8.67659673e-02 -3.99344452e-02 1.94036865e+00 -1.57832742e-01 1.04169536e+00 -6.58072114e-01 -1.55159965e-01 3.30445878e-02 -4.76519585e-01 1.15309072e+00 1.04150236e+00 9.73399937e-01 2.84463167e-01 -3.28965545e-01 4.16064709e-01 3.09475362e-01 2.91884318e-02 -2.51265496e-01 1.83066353e-01 9.84664917e-01 7.58758545e-01 -4.69332308e-01 -9.63360220e-02 -1.93760365e-01 7.06197798e-01 -6.71407521e-01 5.69506168e-01 -7.03507483e-01 -1.15114009e+00 5.48793972e-01 3.43272179e-01 4.90746439e-01 -5.76333821e-01 -2.83203870e-01 -3.92188668e-01 -1.00105539e-01 -5.64456344e-01 -1.26711190e-01 -2.98145980e-01 -5.29218078e-01 1.99809641e-01 5.17664105e-02 -1.75809038e+00 -8.68444890e-03 -1.35094047e-01 -3.97098780e-01 1.15091240e+00 -1.80236673e+00 -3.63366693e-01 -4.50708792e-02 -1.51593775e-01 -1.94693923e-01 -1.25519961e-01 4.31144804e-01 5.76732337e-01 -2.29058459e-01 6.52437925e-01 7.67012417e-01 -2.35714182e-01 6.25203669e-01 -9.17103410e-01 -4.29814637e-01 1.04498625e+00 -5.88072538e-01 4.99244690e-01 1.07215238e+00 -6.77520156e-01 -1.22242177e+00 -6.25262618e-01 7.89723456e-01 5.30630827e-01 2.60036767e-01 1.18975036e-01 -4.59850818e-01 -5.95395379e-02 6.95787609e-01 -4.41428632e-01 9.77883518e-01 -6.84158027e-01 3.99052560e-01 -3.11942071e-01 -1.38597667e+00 5.62824070e-01 3.95278901e-01 6.07232228e-02 -2.60039538e-01 -6.02984503e-02 2.91276067e-01 -4.41428632e-01 -8.17459524e-01 8.16494226e-01 5.07337749e-01 -1.00635242e+00 6.77754939e-01 4.65703756e-01 -4.20021445e-01 -1.11696148e+00 -4.01176572e-01 -1.19176555e+00 -2.89133102e-01 -1.12843788e+00 2.15291455e-01 1.15961611e+00 3.03498179e-01 -9.18991864e-01 7.47327626e-01 -1.32212207e-01 -2.62403995e-01 -5.37815332e-01 -1.25215185e+00 -1.02424669e+00 -3.64394754e-01 -2.11076692e-01 1.39695212e-01 2.72747576e-01 1.02117114e-01 2.36875281e-01 -3.07432890e-01 8.62401783e-01 1.06804299e+00 -2.27809861e-01 6.23975277e-01 -9.64429140e-01 -4.79878277e-01 -2.43289039e-01 -8.01274121e-01 -1.41989589e+00 -3.09197217e-01 -5.61649859e-01 1.24962218e-02 -1.54111469e+00 -2.58762419e-01 -8.20724666e-01 -2.85095781e-01 -4.28731263e-01 -1.23711549e-01 3.16098690e-01 1.11082628e-01 -1.30328581e-01 -3.94309573e-02 6.88362300e-01 1.06522834e+00 2.82711834e-01 -2.53184021e-01 5.68339825e-01 -5.83043277e-01 4.04229730e-01 1.08473134e+00 -4.70449954e-01 -3.69282812e-01 2.65693426e-01 5.10109179e-02 3.34706783e-01 6.35604262e-02 -1.59304786e+00 2.99110860e-01 -8.03313777e-03 1.71997249e-01 -7.92301953e-01 5.29051960e-01 -7.76827455e-01 2.18040615e-01 6.01292372e-01 6.54179454e-01 -8.17135870e-01 2.79526561e-01 8.92827392e-01 -1.61332533e-01 -5.56595862e-01 8.60938013e-01 2.44403258e-01 -5.68907917e-01 -2.61495352e-01 -8.88634145e-01 -3.25465322e-01 1.29962957e+00 -8.25312853e-01 -5.44539630e-01 -5.31806469e-01 -3.84474725e-01 2.18914881e-01 8.09076428e-02 -4.08181995e-01 4.36590910e-01 -1.04966331e+00 -6.65706515e-01 9.63596702e-02 -1.60670117e-01 -6.38416767e-01 3.25548351e-01 1.19931781e+00 -8.04736018e-01 8.21923912e-01 -3.12956888e-03 -6.81051672e-01 -1.40252340e+00 -3.08451205e-01 4.09876257e-01 4.69407737e-02 -2.13823766e-01 5.92779934e-01 -3.26304436e-01 4.83364999e-01 -9.80605334e-02 -2.92577650e-02 -3.14945281e-01 -4.07464623e-01 2.84471810e-01 4.94916260e-01 3.54973860e-02 -5.49498856e-01 -3.96500587e-01 6.98877513e-01 4.40836161e-01 -3.10110241e-01 6.87387049e-01 -4.67618495e-01 -1.83936775e-01 -2.55231649e-01 9.64016855e-01 7.38534331e-01 -7.40006268e-01 -1.44526988e-01 -1.76106626e-03 -8.31618428e-01 2.51123291e-02 -5.73456228e-01 -4.98711646e-01 4.12469149e-01 9.38547254e-01 1.67602524e-01 1.24732244e+00 -3.93590271e-01 8.52573693e-01 1.37364805e-01 7.15041339e-01 -1.13305664e+00 -2.73772627e-01 2.82239825e-01 4.01593119e-01 -6.55428827e-01 3.84581506e-01 -8.68097484e-01 -1.85219258e-01 1.06736720e+00 3.02372187e-01 4.88971956e-02 8.67081881e-01 3.91603529e-01 -2.61723608e-01 1.33553952e-01 -7.18482956e-02 -4.41773355e-01 -1.99727565e-02 7.48285174e-01 3.60710531e-01 3.00702721e-01 -1.28650248e+00 4.12655264e-01 -3.05950910e-01 -8.95779654e-02 1.04564166e+00 1.00355363e+00 -1.14569211e+00 -1.57078493e+00 -8.09530735e-01 4.86119479e-01 -6.11747801e-01 -1.76350683e-01 4.82134610e-01 5.78039289e-01 2.75889993e-01 1.49236071e+00 -5.44209741e-02 -3.37796301e-01 1.54460251e-01 -2.00396642e-01 5.68280935e-01 -3.66649836e-01 2.12624803e-01 2.08627835e-01 5.41934967e-01 -9.21555310e-02 -4.98880535e-01 -4.79195386e-01 -1.48443723e+00 -5.28982133e-02 -5.75352907e-01 6.32876217e-01 5.15439570e-01 1.00017130e+00 3.66250128e-01 3.75390142e-01 7.90381789e-01 1.96257643e-02 -3.50671470e-01 -8.59474182e-01 -9.88444507e-01 -5.57239950e-01 1.91810802e-01 -7.41204917e-01 -5.09770155e-01 -3.58735383e-01]
[6.362705230712891, 1.280679702758789]
eadc0339-a8ea-4f18-b859-3dd2c2191358
focus-effective-embedding-initialization-for
2305.14481
null
https://arxiv.org/abs/2305.14481v1
https://arxiv.org/pdf/2305.14481v1.pdf
FOCUS: Effective Embedding Initialization for Specializing Pretrained Multilingual Models on a Single Language
Using model weights pretrained on a high-resource language as a warm start can reduce the need for data and compute to obtain high-quality language models in low-resource languages. To accommodate the new language, the pretrained vocabulary and embeddings need to be adapted. Previous work on embedding initialization for such adapted vocabularies has mostly focused on monolingual source models. In this paper, we investigate the multilingual source model setting and propose FOCUS - Fast Overlapping Token Combinations Using Sparsemax, a novel embedding initialization method that outperforms previous work when adapting XLM-R. FOCUS represents newly added tokens as combinations of tokens in the overlap of the pretrained and new vocabularies. The overlapping tokens are selected based on semantic similarity in an auxiliary token embedding space. Our implementation of FOCUS is publicly available on GitHub.
['Gerard de Melo', 'Konstantin Dobler']
2023-05-23
null
null
null
null
['semantic-textual-similarity', 'semantic-similarity', 'xlm-r']
['natural-language-processing', 'natural-language-processing', 'natural-language-processing']
[-0.433459 -0.21803297 -0.63326406 -0.2976352 -1.099041 -0.71310747 0.42788133 0.15614085 -1.0228633 0.74991244 0.70788056 -0.21072936 0.20678149 -0.59595585 -0.43984145 -0.2981911 0.05496901 0.64439297 -0.10112511 -0.5024713 -0.24194269 0.15267132 -1.1276172 0.05924038 0.932841 0.206148 0.63602906 0.45314187 -0.7885457 0.1797946 -0.4417436 -0.58965105 0.49235767 0.02283672 -0.58925307 -0.3276871 0.37603334 -0.04977392 -0.32345402 0.845963 0.67708457 0.2063704 0.37194982 -1.1401818 -1.1420419 1.5458543 -0.13797711 0.15565978 0.14819828 -0.10527565 1.2340989 -1.6163609 0.9872473 1.1231451 0.5308179 0.56606585 -1.4413711 -1.0426096 0.40241557 0.24240214 -1.8977957 -0.5637864 0.9289418 -0.20905808 1.5160983 -0.09197644 0.70164436 1.1240386 -0.19961035 0.74102485 0.51185954 -0.74280447 -0.05834012 0.7382341 0.04981641 0.42897132 0.49193567 -0.2802041 -0.5844461 -0.2227828 0.5790341 -0.05542315 -0.06526374 -0.32154116 -1.4836607 1.0372071 0.3172124 0.5855618 -0.33610424 0.27739823 0.5225698 0.4917166 0.64554393 0.6981867 -0.86599344 -0.05859766 -1.166585 -0.06008124 0.5360127 1.3916048 1.1783998 0.32771233 0.0104351 1.1356393 0.53894913 0.7424569 0.7670979 -0.3891365 0.6426756 0.5264592 -0.02684779 -0.47418773 -0.18565704 -0.35032845 -0.4802314 -0.48994327 -0.08785247 -0.12731132 -0.9801783 1.7581414 0.44700563 0.3053585 0.5039981 0.55752605 1.125189 0.75588834 0.23018809 0.17768186 1.3544043 -1.0275292 -0.82007337 -0.24518916 1.1406881 -1.1526653 1.4173224 -0.17109106 -0.9509246 -0.5555341 -0.959161 -0.5498308 -1.0185095 0.29765022 0.6101292 0.5538684 -1.1639497 -0.06472985 -0.6365659 -0.30452588 -0.15241566 0.31992087 -0.63251317 -0.31148243 -1.8756617 0.932664 0.82854944 -0.09134335 -0.7055925 -1.0447224 -1.5422931 0.10743058 0.31251097 -0.4648887 0.7650735 -0.7098666 -1.3621329 0.7005436 -0.30656087 -0.23561032 0.01218204 0.04946272 -0.5239089 -0.36813954 0.21046753 1.0070089 0.72754157 -1.0861512 -0.2963567 0.1974165 0.06358019 0.2980621 -0.8278109 0.3269879 -0.77768916 -1.0871955 -0.29337108 -0.7775708 -0.32733288 -0.39972728 -0.14061004 -0.35995665 0.40009183 -0.6070591 1.616955 -2.1245506 0.29399216 0.36825603 0.03740503 0.1743937 -0.71055055 0.7591833 -0.1127257 0.47916758 0.19288984 -0.7443193 0.2481148 0.34075698 -0.36148748 0.16972792 0.21617529 0.8848109 -1.1095413 -0.740797 0.22652653 0.7461184 -0.75868887 0.15561564 0.02659491 -0.10899718 -0.11389352 0.5492003 0.55605453 -0.07980827 0.17799169 -0.06057988 -0.15332949 0.5837281 -1.3994875 2.0880055 -1.1251022 0.48013657 -0.1561268 -0.47337225 0.93529385 0.54406655 0.5209608 -0.20016684 -0.01812037 0.5006746 -0.05335773 -0.1955501 1.1376452 -0.1383826 -0.44840577 0.51590604 0.6416083 -0.2050326 0.46966192 0.3821125 0.57381815 -0.04250418 0.37745166 -0.30146015 0.42545116 -0.06494441 0.5160311 0.45583293 0.18234907 0.27142525 -0.016948 -0.2613502 -1.2078044 -1.1213839 -0.36256513 1.4084255 -0.17005964 -1.0869117 -0.1901002 -0.6072235 0.16396695 0.70616716 -0.538668 -0.1225291 -0.6881638 -0.5696022 0.61137295 0.5933361 -0.08700548 -1.0441954 0.23984571 0.42866105 -0.13122486 -1.0598325 -1.0300533 0.4675045 -0.38588616 -0.588837 -0.8387036 -1.0510037 0.7884525 0.11723219 1.1764251 0.1747565 -0.04604467 0.32482588 -0.3915133 -0.3833646 -0.30859172 0.791576 0.35117275 -0.34970903 0.7803437 -0.14827926 -0.04217273 -0.1617083 -1.2209232 -0.09991813 0.30003652 0.990899 0.67399645 -0.33844227 0.6999434 -0.7477393 0.70036757 -0.8210724 -0.65300226 0.4258987 -0.5927288 0.4182921 0.6960909 -0.85068065 -0.66705894 -0.0981228 -0.18523349 -0.51140386 0.40146336 0.89622265 -0.02671799 0.1770343 0.31620964 0.06945181 -0.57242876 -0.6044286 0.9157376 0.7151421 -0.1631405 -0.71404564 0.994805 0.1427692 -0.7737092 -0.8516713 -0.366861 -0.87086654 -0.9742252 0.2379985 0.652633 -1.3236861 0.14842781 0.06359056 -1.0620382 -0.34687254 -0.72288346 0.8411843 -0.03849383 0.14062162 -0.3122054 -0.3564172 -0.42833358 -1.3108288 1.1605333 -0.02480141 -0.22766759 -1.6429359 0.5421622 -0.17502427 0.7460041 -0.48901334 0.7785856 -0.91824746 -0.33574393 -0.13968563 0.0426592 0.25659648 0.37387782 0.06745964 -0.60394764 -0.5903777 -0.6544818 -0.447207 0.9650618 0.11187398 0.5682242 -0.29524237 -0.25641298 0.9042553 1.6043252 -0.3751778 0.15156011 0.5165583 0.8287287 0.05814349 0.25664318 0.42385614 0.9062604 0.73999196 -0.28311434 -0.4313716 -0.3125781 -0.51138306 0.7796574 1.7325761 0.47050893 -0.08928891 -1.0478885 1.1242142 -1.505232 -0.8323601 0.4241151 2.1716344 1.5823603 -0.04465243 -0.22446273 -0.5501417 0.46162388 0.18358079 -0.33766997 -0.40160125 -0.369208 0.6769528 0.71310526 1.0051109 -0.84885067 1.7262576 6.2696886 0.8311932 -1.2227491 0.57610434 -0.16593659 -0.48737475 -0.966929 0.3232321 -1.3703821 0.35392317 1.0226722 -0.54319143 0.40289935 0.9292817 0.05094064 0.31367406 -0.93585455 0.8049328 0.39866453 -1.1938099 0.3658988 -0.17891765 0.9470084 0.5109153 0.15247114 0.89969975 0.8044258 -0.92297584 0.5433237 0.32157472 1.178462 -0.83989054 0.8168161 -0.20879728 -1.8036047 0.3186934 -0.72637606 0.410444 0.40575057 0.27443844 -1.1802807 0.36627224 0.47150716 0.7671333 -0.74542236 0.6831711 -0.25240335 0.638632 -0.5903249 -0.00925129 0.4141498 0.07579596 0.4468139 1.6148015 0.2822309 -0.57373655 0.6263234 0.70960027 -0.5614031 0.75902367 -0.70269525 0.01625411 0.8495021 1.3155842 -0.27457476 -0.6825636 -0.6627978 0.76567036 0.6257663 0.4744586 -0.77875495 -0.6944263 0.954693 -0.14017045 0.41290277 -0.51194674 0.09280915 -1.8294708 -0.0271632 -0.76699424 0.30705616 -0.39090452 -1.2470064 0.65059704 0.28728807 -0.95790195 -0.25048858 -0.36055753 -0.19601575 1.1828706 -1.9682933 -1.4627765 0.08926734 0.6606038 0.78208995 -0.40691876 1.0243483 0.60382265 -0.47820994 1.1338111 0.37274826 0.359069 1.1761994 -1.3009586 0.5872773 0.91842484 0.5553096 1.1149312 0.35974684 -0.7293666 -1.1049045 -1.244267 1.4978862 -0.5531071 1.0487776 -0.8682079 -0.9792329 1.1003206 0.5912975 0.02860693 1.1055267 0.4399083 -0.56694186 -0.05797015 -0.7224812 0.7824266 0.6398892 -0.7578916 -0.58091486 0.40911222 0.9771782 -0.22450486 -1.2226282 0.03844814 0.3573329 0.25550196 1.0485162 -0.7977733 -0.17485863 -0.3028318 -0.27104145 -1.6652536 -0.26990476 -0.52024275 0.13617314 1.3818254 0.8260201 -0.5908309 0.3067248 0.38322574 -0.03863092 -0.5148338 -1.1474372 -0.89711505 0.40985173 -0.47339985 0.97638273 1.3116357 0.26846027 0.3575609 -0.35726383 -0.02018204 0.30753562 -0.3503393 0.8769753 -0.880982 0.02651965 -0.39560112 -0.21094756 -0.8208261 0.77565444 -1.7293912 -0.15519302 -1.5473555 0.17120345 -1.0642415 -0.67217696 0.9196152 -0.4774584 0.13899496 0.26474375 0.11802443 -0.59415096 0.8716853 0.58318585 -0.36991218 -0.46322933 -0.7151999 -0.6417406 0.3482014 0.7761504 -0.86079127 -0.34915063 -0.8785741 0.51957 -0.69313353 -0.3340613 -0.5676801 0.07890885 -0.19334254 0.23995812 -0.39228773 0.32497114 -0.99755657 0.07710056 0.04162147 -0.56649935 0.5509074 0.321395 0.07326903 -0.24266776 -0.5711271 0.55674714 -0.15310995 -0.7510458 0.42697725 -0.36111897 0.28055918 0.82172716 0.05018234 0.09808356 -0.09206579 -0.6465389 0.44782585 0.69073457 0.981276 0.6556465 -1.8513553 -1.0707939 0.3608298 0.67143553 -0.21460988 -0.04950672 0.42784268 -0.30357563 0.5070315 0.12248205 -0.15136495 -1.0684153 0.67728835 0.16635606 -0.6788267 -0.40195566 0.896117 -0.20797288 -0.9910791 0.11330111 -0.67434394 -0.27109396 0.23593663 0.41189224 -0.13640916 0.04967001 -0.9863015 -0.42468688 0.4838143 -0.40011388 -0.37328815 1.3286933 -0.09189754 -0.09679203 0.69968534 1.3925841 0.6670323 -0.51063365 -0.731506 0.107018 -0.34374514 0.10590538 -0.2415387 -0.9405947 0.57211316 0.3067714 -0.35492942 0.6771857 0.17081983 0.8882319 0.53731793 0.22568591 -1.3436828 -0.12207905 0.89918214 0.7502136 -1.2613709 -0.01858648 0.17639668 -0.6042221 1.0244315 0.6141639 -0.0687913 1.0670192 0.4584275 0.38178328 0.00664725 -0.96887356 -0.35428092 0.4467106 0.5255449 0.78619 0.09431876 -0.20196848 0.49517745 -0.48171294 -0.34830114 0.46675673 0.7171804 -0.08678836 -1.6957808 -0.26031587 0.2953172 -0.25066248 -0.9773563 -0.07745852 0.79636943 0.31607467 0.47748384 0.15830389 -0.08774856 0.1591648 0.4050864 0.1376654 -1.1140914 -0.8609961 0.01424553 -0.09302223 -0.2217476 -0.25142375 -0.554064 -1.1384925 -0.0505934 -0.695671 0.27024278 0.783821 0.57817435 0.47756013 0.33354512 0.42200026 -0.6935499 -0.30822688 -1.302163 -0.3359327 0.3818818 0.3098081 -0.62500304 -0.30322233 0.06030832]
[11.059049606323242, 9.974159240722656]
905f4432-cca4-4442-ab91-b32263f63a4e
deep-attention-unet-a-network-model-with
2304.10829
null
https://arxiv.org/abs/2304.10829v1
https://arxiv.org/pdf/2304.10829v1.pdf
Deep Attention Unet: A Network Model with Global Feature Perception Ability
Remote sensing image segmentation is a specific task of remote sensing image interpretation. A good remote sensing image segmentation algorithm can provide guidance for environmental protection, agricultural production, and urban construction. This paper proposes a new type of UNet image segmentation algorithm based on channel self attention mechanism and residual connection called . In my experiment, the new network model improved mIOU by 2.48% compared to traditional UNet on the FoodNet dataset. The image segmentation algorithm proposed in this article enhances the internal connections between different items in the image, thus achieving better segmentation results for remote sensing images with occlusion.
['Jiacheng Li']
2023-04-21
null
null
null
null
['deep-attention', 'deep-attention']
['computer-vision', 'natural-language-processing']
[ 4.96018529e-01 -5.13612591e-02 -3.91484529e-01 -3.71936560e-01 3.93042594e-01 -3.03485394e-01 -2.04040781e-01 7.34615624e-02 -4.88080353e-01 4.93253022e-01 -1.76715046e-01 -8.59739125e-01 -2.58919686e-01 -1.48380697e+00 -4.23064798e-01 -5.85314751e-01 -1.01945862e-01 1.48592636e-01 7.25200325e-02 -2.58272558e-01 1.46504998e-01 6.28481448e-01 -1.09641731e+00 -5.22848815e-02 1.23881793e+00 8.35237563e-01 6.32522047e-01 5.55926740e-01 -4.90618289e-01 1.94234133e-01 -5.18083990e-01 3.20853412e-01 5.44329643e-01 -4.85714078e-01 -8.23103189e-01 4.06674594e-01 1.52365863e-01 -3.63642037e-01 -7.58481920e-02 1.40615976e+00 3.75337899e-01 1.48560062e-01 5.81502259e-01 -7.09969163e-01 -9.13273036e-01 1.47917616e+00 -1.15864408e+00 6.22252643e-01 -4.41747695e-01 -5.56773460e-03 7.31559515e-01 -3.36729348e-01 3.11856627e-01 1.24069989e+00 4.83750761e-01 2.45857760e-02 -8.07342410e-01 -8.20639908e-01 4.77710873e-01 6.84711486e-02 -1.43946254e+00 2.72301495e-01 4.84304488e-01 -2.75762044e-02 8.07602704e-01 4.67987031e-01 1.05904281e+00 -7.83824995e-02 6.31975904e-02 9.16430056e-01 9.14880812e-01 -1.62699476e-01 -5.67544959e-02 -1.97524235e-01 5.28174639e-01 4.31224048e-01 6.07358396e-01 -1.49877504e-01 3.28690082e-01 5.14983237e-01 1.18136418e+00 3.64015043e-01 -1.36447296e-01 2.70433307e-01 -8.80824089e-01 1.18639851e+00 1.25100350e+00 5.88122725e-01 -4.82493848e-01 6.33078143e-02 -1.34786874e-01 2.65214473e-01 7.23410249e-01 4.50171947e-01 -7.57510602e-01 5.89048684e-01 -8.72265041e-01 -3.72586340e-01 3.54916781e-01 5.74734569e-01 9.33373511e-01 2.02002347e-01 1.95969701e-01 7.39912391e-01 5.49205184e-01 1.04001987e+00 3.07591766e-01 -8.00414443e-01 2.93775946e-01 7.55049109e-01 -2.78721243e-01 -1.20314920e+00 -6.18523061e-01 -6.98148668e-01 -1.04309165e+00 1.05215535e-01 1.50869697e-01 -4.73020315e-01 -1.33707464e+00 1.07953727e+00 1.86432332e-01 -1.90792114e-01 6.66328967e-02 9.34676588e-01 1.09814155e+00 1.27030456e+00 4.79955763e-01 -3.81374955e-02 1.01018846e+00 -1.01931024e+00 -8.34296763e-01 -4.73923832e-01 2.64454812e-01 -6.73643708e-01 7.09154546e-01 2.86146939e-01 -5.68312883e-01 -7.04959273e-01 -1.00726378e+00 3.87098461e-01 -8.03562880e-01 2.18508258e-01 1.31501424e+00 7.52186835e-01 -7.34877527e-01 4.93723720e-01 -5.28367758e-01 -5.71218014e-01 8.26892316e-01 3.87415349e-01 5.63489385e-02 1.98165048e-02 -1.10035360e+00 4.98570174e-01 8.25795054e-01 7.07924306e-01 -4.78626460e-01 -3.21059197e-01 -8.68749976e-01 1.03089206e-01 2.65602082e-01 -1.75348431e-01 7.84218252e-01 -1.23547852e+00 -1.05734313e+00 6.15518272e-01 9.61775705e-02 -3.98820400e-01 1.17763892e-01 -2.89282233e-01 -3.19579303e-01 1.95388258e-01 3.03792715e-01 1.27771258e+00 4.69652683e-01 -1.30097651e+00 -9.12725687e-01 -5.10464430e-01 -2.54400279e-02 5.06755710e-01 -2.29244959e-02 -2.57740229e-01 -2.06908524e-01 -5.87918580e-01 6.16150916e-01 -4.22244877e-01 -7.71455348e-01 -2.67682314e-01 -5.15517771e-01 1.31761301e-02 1.08926260e+00 -7.79145360e-01 8.94619465e-01 -2.01878190e+00 -3.49525571e-01 6.93377733e-01 3.45604420e-02 3.81001055e-01 -3.31276745e-01 -3.56914967e-01 -1.51919052e-01 7.32641459e-01 -5.22237957e-01 8.66819024e-01 -4.41213250e-01 3.69728684e-01 3.00083935e-01 3.09024304e-01 1.35388136e-01 9.83132005e-01 -6.38011336e-01 -4.90126878e-01 4.99906749e-01 2.65662879e-01 -2.11734697e-01 -1.70619190e-01 -8.98261443e-02 5.85587919e-01 -8.27489316e-01 7.04707861e-01 1.02103066e+00 -2.33631924e-01 -1.74739093e-01 -1.62860397e-02 -3.61370981e-01 -4.89168018e-01 -9.54339564e-01 1.49321878e+00 -9.84161496e-02 7.00281799e-01 6.90108212e-03 -1.32217383e+00 1.22589993e+00 -2.10002765e-01 7.28094637e-01 -9.36817348e-01 5.44257402e-01 -9.70294029e-02 1.55534282e-01 -6.87785149e-01 5.79685271e-01 2.28847519e-01 1.33764371e-01 2.49914587e-01 -4.54870820e-01 -4.58151810e-02 1.79954752e-01 -2.73785722e-02 2.20055819e-01 -1.45964222e-02 1.77584793e-02 -5.61434090e-01 2.06794545e-01 5.98763883e-01 4.10061270e-01 8.10808480e-01 -1.89798117e-01 1.50518417e-01 -3.90929542e-02 -6.98292375e-01 -9.30195272e-01 -7.14933455e-01 -4.37518626e-01 1.10343599e+00 7.41736889e-01 6.37143373e-01 -8.72669518e-01 -5.12281895e-01 9.42933038e-02 4.35109466e-01 -6.39814079e-01 1.44132391e-01 -5.74065089e-01 -1.47387755e+00 2.83963412e-01 4.99629229e-01 1.60361910e+00 -1.37008798e+00 -6.68768823e-01 3.89952600e-01 -4.04667884e-01 -7.34550357e-01 -2.46496439e-01 2.94987619e-01 -1.32659400e+00 -9.41551328e-01 -8.54327142e-01 -9.79574621e-01 8.92175257e-01 8.52670729e-01 8.92832518e-01 2.90901065e-01 -3.93555224e-01 -1.93492010e-01 -5.37436843e-01 -5.23189008e-01 -1.69012368e-01 3.89235258e-01 -9.02076244e-01 -2.45534763e-01 5.80203712e-01 -1.26044109e-01 -8.21650147e-01 3.80340785e-01 -1.13366580e+00 1.71010867e-02 8.70854020e-01 4.81354177e-01 7.09068179e-01 8.50780964e-01 2.66904831e-01 -9.93758917e-01 2.26212069e-01 -4.60360944e-01 -6.37934268e-01 2.43373498e-01 -7.59222448e-01 -3.30458701e-01 5.28808609e-02 -2.71808505e-01 -1.31030357e+00 2.21141428e-01 -2.76563376e-01 3.40511262e-01 -5.93417525e-01 8.07456911e-01 -2.06625953e-01 -1.08426131e-01 4.81914788e-01 -1.03650272e-01 -6.34730533e-02 -4.51582193e-01 3.59432191e-01 8.03114772e-01 3.37604403e-01 1.27780512e-01 3.43257695e-01 3.94681245e-01 -2.89621711e-01 -1.24436200e+00 -6.99053645e-01 -5.08716404e-01 -8.36467743e-01 -1.45252377e-01 1.33236289e+00 -9.06980276e-01 -6.01855636e-01 5.69825470e-01 -8.49086821e-01 -6.05927169e-01 -2.64391184e-01 7.33940780e-01 2.82371879e-01 1.72498450e-01 -5.61047494e-01 -5.55811584e-01 -5.06597519e-01 -8.59159172e-01 4.65442330e-01 8.55422914e-01 4.22255039e-01 -1.06637561e+00 -3.76007855e-01 3.86255413e-01 4.50282276e-01 1.78010911e-01 5.05443811e-01 -1.28270477e-01 -5.77339292e-01 1.67298764e-01 -8.86091769e-01 4.19213176e-01 1.51638523e-01 1.82635382e-01 -6.22821748e-01 1.97062254e-01 -2.16542974e-01 3.16531032e-01 1.44041240e+00 1.24022031e+00 1.05566776e+00 -8.19388330e-02 -3.63291442e-01 8.19182813e-01 1.78025305e+00 7.72647560e-01 8.32874775e-01 4.26545084e-01 9.01384950e-01 7.02218771e-01 6.68341577e-01 2.31665634e-02 1.27905264e-01 -2.25064486e-01 6.29132569e-01 -1.03031504e+00 -5.36154062e-02 6.51463419e-02 2.26153191e-02 4.93999362e-01 -1.57928467e-01 -4.74299252e-01 -9.01473522e-01 5.93638599e-01 -1.83639097e+00 -1.01991785e+00 -7.12905645e-01 1.40175450e+00 2.94152617e-01 -2.60480642e-01 -2.59720325e-01 2.33378202e-01 1.02170706e+00 -1.50316525e-02 -7.65220702e-01 -2.94802010e-01 -5.53614736e-01 2.26522282e-01 1.33365750e+00 4.89367068e-01 -1.38736331e+00 1.36687279e+00 7.08741331e+00 8.30777943e-01 -1.09762752e+00 4.74876314e-02 9.90728617e-01 7.55817115e-01 -1.46644041e-01 -2.09739387e-01 -7.36438692e-01 -2.23157201e-02 3.17795843e-01 2.50189364e-01 2.15118289e-01 4.98739868e-01 5.16146600e-01 -7.56654978e-01 9.04514045e-02 6.17343843e-01 -1.89430758e-01 -9.94199097e-01 2.98530251e-01 7.58445710e-02 9.08677757e-01 2.01657698e-01 -2.89993975e-02 -2.98220992e-01 6.21315658e-01 -1.07497168e+00 5.03895998e-01 1.82608783e-01 3.18956226e-01 -7.13896513e-01 9.10088778e-01 1.09622739e-01 -1.36997902e+00 -1.94230035e-01 -7.46192217e-01 -2.44745627e-01 3.86375822e-02 7.15325177e-01 -4.46840882e-01 5.69796145e-01 8.42141628e-01 9.13183808e-01 -5.91815531e-01 1.21021187e+00 -3.86163592e-01 9.43705976e-01 -6.37104928e-01 2.60573532e-03 7.71953285e-01 -7.61471033e-01 2.41152644e-01 1.00070679e+00 1.79234698e-01 3.55007410e-01 4.15067047e-01 8.92022252e-01 2.05301479e-01 3.59938204e-01 -5.65776587e-01 5.83848804e-02 2.53573954e-01 1.20495737e+00 -1.61952817e+00 -3.89615953e-01 8.08992051e-03 6.86583102e-01 -5.94173729e-01 6.30969822e-01 -8.82486403e-01 -5.27876616e-01 1.94005728e-01 -2.60873109e-01 3.30845207e-01 -1.49243698e-01 -7.84411073e-01 -7.38670588e-01 -6.46322012e-01 -2.46087372e-01 4.76375580e-01 -7.97714353e-01 -7.95504153e-01 3.49494129e-01 1.06926382e-01 -6.16115749e-01 7.07488775e-01 -4.83963996e-01 -4.89845484e-01 7.90583968e-01 -1.93186367e+00 -1.06768906e+00 -5.85759699e-01 4.38636929e-01 4.64154512e-01 1.21644728e-01 4.46808845e-01 3.06239307e-01 -9.01009858e-01 8.49550813e-02 1.62543505e-01 5.43395936e-01 -2.29187891e-01 -9.31218803e-01 2.13259339e-01 1.19176424e+00 8.69903713e-02 7.55727366e-02 2.89432615e-01 -9.26966906e-01 -6.87483072e-01 -1.51438200e+00 3.68454337e-01 5.07424891e-01 1.65084600e-01 5.54151356e-01 -6.75876737e-01 5.14633060e-01 3.79567564e-01 -4.52587336e-01 5.99462330e-01 -3.07762593e-01 1.97401583e-01 -3.12275231e-01 -1.31975389e+00 2.22129375e-01 8.34160089e-01 2.73468345e-01 -2.32314348e-01 2.36543491e-01 7.45088100e-01 -8.14876035e-02 -7.53694415e-01 3.53448063e-01 4.55278248e-01 -4.67943490e-01 1.11604881e+00 -1.50127992e-01 3.05850148e-01 -4.08134222e-01 1.51501387e-01 -1.07814264e+00 -6.87401056e-01 -1.75202921e-01 9.93540943e-01 8.79545391e-01 7.79732525e-01 -7.02929556e-01 8.22705030e-01 1.91682559e-02 -8.98008719e-02 1.04561532e-02 -1.83125719e-01 -7.16518641e-01 1.53828695e-01 -3.43643218e-01 9.18661058e-01 9.33719516e-01 -6.35613680e-01 4.31000412e-01 -3.08960266e-02 3.12614322e-01 7.05133975e-01 2.66570985e-01 2.39659801e-01 -1.35444069e+00 2.35424370e-01 -7.72530377e-01 1.09214991e-01 -1.29881275e+00 -9.20321867e-02 -8.04371476e-01 2.10193902e-01 -2.11566281e+00 2.07126319e-01 -6.82198763e-01 1.02056023e-02 8.38626027e-01 -2.90612280e-01 7.85215616e-01 7.05692917e-02 1.88541308e-01 -9.38722715e-02 1.47365823e-01 1.88265145e+00 -6.81485593e-01 -6.04177177e-01 1.81822162e-02 -9.08619463e-01 5.53373277e-01 1.51343524e+00 -3.60855877e-01 -3.50737244e-01 -9.95973229e-01 1.98580503e-01 -1.42278329e-01 2.40923628e-01 -7.20770597e-01 6.27221400e-03 -3.74428779e-01 6.39137447e-01 -9.98350680e-01 -4.37807828e-01 -1.10972857e+00 2.72339851e-01 1.00117981e+00 -1.91534653e-01 -2.73719281e-01 3.92771810e-01 2.48381853e-01 -1.03306383e-01 -3.31446618e-01 7.42830157e-01 -4.09757912e-01 -1.29668856e+00 3.70690048e-01 -6.27210438e-01 -4.56764549e-01 1.08302212e+00 -6.89813673e-01 -3.11851561e-01 -1.00697309e-01 -8.42062294e-01 4.38871861e-01 -6.79178908e-02 1.37344360e-01 6.02850437e-01 -9.33078110e-01 -8.11541796e-01 4.62289423e-01 -3.33440095e-01 2.67551512e-01 2.14627638e-01 5.80017209e-01 -1.21076369e+00 3.42095912e-01 -5.74267328e-01 -5.93368292e-01 -1.07278430e+00 1.39266983e-01 3.69736820e-01 -7.70633593e-02 -5.50875962e-01 9.49639797e-01 7.81171471e-02 -3.29501331e-01 -1.57473236e-01 -4.57709610e-01 -9.09708977e-01 1.93057567e-01 2.22236663e-01 4.93117630e-01 -2.99589217e-01 -7.60339260e-01 -2.52745813e-03 8.67373943e-01 3.07366073e-01 1.32294312e-01 1.25993288e+00 -6.11932933e-01 -4.05032516e-01 1.21493023e-02 8.17015707e-01 -4.92013246e-01 -1.08883512e+00 -1.56695265e-02 -2.62814373e-01 -4.72069830e-01 6.65757120e-01 -1.03952289e+00 -1.90815628e+00 9.24618602e-01 1.01372600e+00 5.65887690e-01 1.36702669e+00 -1.29968703e-01 8.81966829e-01 3.64908308e-01 4.78001125e-02 -1.05852175e+00 -3.90315354e-01 4.91160184e-01 2.55259931e-01 -1.45259094e+00 1.26423210e-01 -6.52600646e-01 -3.35775524e-01 1.07656825e+00 5.22953629e-01 -7.46598318e-02 9.25189793e-01 5.44322170e-02 4.20158237e-01 -3.52613807e-01 3.61979157e-01 -7.55427539e-01 -2.99027823e-02 8.04804444e-01 3.21420312e-01 3.09503317e-01 -4.98946160e-01 -1.04377987e-02 7.96349123e-02 -2.58057624e-01 3.01666558e-01 7.32502282e-01 -1.05722392e+00 -6.94838107e-01 -5.12572110e-01 7.21113384e-01 -4.97987062e-01 -2.51131594e-01 -2.90320456e-01 7.21163630e-01 3.72422576e-01 1.30997229e+00 4.10071313e-01 -1.18672632e-01 1.31552950e-01 -6.44532025e-01 1.94161177e-01 -3.92818004e-01 -7.14442611e-01 6.18532360e-01 -2.61524647e-01 -1.41284555e-01 -1.19870543e+00 -3.54141682e-01 -1.53705812e+00 -4.85892862e-01 -7.54943728e-01 3.59341472e-01 8.58429611e-01 7.21493006e-01 -1.13234244e-01 7.69869268e-01 7.72377789e-01 -6.23655736e-01 3.79014999e-01 -9.15276229e-01 -1.10866559e+00 1.06768318e-01 -2.18978643e-01 -1.00689672e-01 2.58525833e-02 1.92373082e-01]
[9.3312349319458, -1.3879891633987427]
2121e676-53d3-4ed2-922f-5ab59c15754d
considering-image-information-and-self
2209.06417
null
https://arxiv.org/abs/2209.06417v1
https://arxiv.org/pdf/2209.06417v1.pdf
Considering Image Information and Self-similarity: A Compositional Denoising Network
Recently, convolutional neural networks (CNNs) have been widely used in image denoising. Existing methods benefited from residual learning and achieved high performance. Much research has been paid attention to optimizing the network architecture of CNN but ignored the limitations of residual learning. This paper suggests two limitations of it. One is that residual learning focuses on estimating noise, thus overlooking the image information. The other is that the image self-similarity is not effectively considered. This paper proposes a compositional denoising network (CDN), whose image information path (IIP) and noise estimation path (NEP) will solve the two problems, respectively. IIP is trained by an image-to-image way to extract image information. For NEP, it utilizes the image self-similarity from the perspective of training. This similarity-based training method constrains NEP to output a similar estimated noise distribution for different image patches with a specific kind of noise. Finally, image information and noise distribution information will be comprehensively considered for image denoising. Experiments show that CDN achieves state-of-the-art results in synthetic and real-world image denoising. Our code will be released on https://github.com/JiaHongZ/CDN.
['Jingning Ma', 'Wenshu Yu', 'Yonggui Zhu', 'Jiahong Zhang']
2022-09-14
null
null
null
null
['noise-estimation']
['medical']
[ 1.45602301e-01 -3.72079641e-01 2.22490430e-01 -3.49859059e-01 -4.66451406e-01 8.29884876e-03 2.13187978e-01 -4.02206004e-01 -3.98870796e-01 3.38067383e-01 1.40332147e-01 -4.08232883e-02 -2.56562978e-02 -9.48693395e-01 -5.14761925e-01 -1.11542904e+00 2.14940414e-01 -4.59146649e-01 2.78265715e-01 -3.39380354e-01 1.99340433e-01 3.37833941e-01 -1.45508230e+00 3.02090168e-01 9.47404683e-01 1.15129733e+00 6.01435483e-01 4.67362106e-01 -2.48487636e-01 8.33696842e-01 -6.53525710e-01 -3.71745266e-02 4.16723162e-01 -6.44224882e-01 -3.34726244e-01 -2.12363023e-02 2.82060713e-01 -3.42318356e-01 -6.46384895e-01 1.54962611e+00 8.01384330e-01 8.26181695e-02 3.22638035e-01 -1.10007477e+00 -8.01049709e-01 4.39747602e-01 -5.57367861e-01 1.71325132e-01 -3.28981429e-01 1.09858535e-01 3.98576230e-01 -8.16574693e-01 4.41289067e-01 1.34680188e+00 9.56201315e-01 5.57721615e-01 -9.87332642e-01 -8.06728721e-01 6.86006248e-02 3.02576691e-01 -1.34491980e+00 -7.10663423e-02 1.09669423e+00 -2.41444260e-01 4.27317679e-01 2.43885756e-01 5.94505072e-01 8.37689936e-01 4.37811762e-01 8.09870243e-01 1.13785636e+00 -2.26943031e-01 1.02643281e-01 -2.74804924e-02 1.38835192e-01 4.21856970e-01 1.81053773e-01 1.85314938e-01 -2.89520413e-01 3.47064078e-01 9.35046613e-01 8.72792080e-02 -5.80787539e-01 1.00563154e-01 -7.44095266e-01 6.84683084e-01 6.10720575e-01 5.85505843e-01 -2.15743378e-01 6.78795278e-02 5.26522219e-01 5.12673497e-01 6.06877148e-01 -3.11181173e-02 -4.90730286e-01 1.02140561e-01 -7.27672100e-01 3.79511379e-02 5.79105496e-01 7.37497568e-01 1.02355456e+00 5.19643009e-01 -1.82738021e-01 1.19634223e+00 6.87452033e-02 5.31593919e-01 5.53837538e-01 -1.16609991e+00 3.11311454e-01 3.70898604e-01 -2.91141212e-01 -1.56375468e+00 -2.65741229e-01 -5.69530368e-01 -1.72988725e+00 5.81808329e-01 6.24325648e-02 -2.57036060e-01 -1.13053679e+00 1.57958889e+00 2.25084163e-02 4.26834285e-01 6.10240875e-03 8.97583187e-01 1.24702013e+00 8.09950173e-01 -9.57622081e-02 -2.63638020e-01 1.13270736e+00 -1.05142331e+00 -1.07080007e+00 -2.14037642e-01 1.52471527e-01 -9.71674740e-01 8.55860889e-01 6.92583978e-01 -1.00510037e+00 -1.12025821e+00 -9.67408061e-01 -3.80488299e-02 -2.16797933e-01 2.52363771e-01 2.32357264e-01 5.09361744e-01 -1.09995759e+00 8.52519512e-01 -6.74231768e-01 -1.39127150e-01 5.25778770e-01 1.89837739e-01 -4.13836241e-01 -2.33860627e-01 -1.22418153e+00 7.04947054e-01 2.80430287e-01 7.43354142e-01 -9.47191298e-01 -5.61224222e-01 -8.43869746e-01 -1.06759751e-02 2.95082003e-01 -5.20567060e-01 9.94790077e-01 -1.33198500e+00 -1.50083804e+00 5.08429408e-01 -3.09502520e-02 -1.20962359e-01 4.46219295e-01 -2.22144634e-01 -5.97324073e-01 2.10100025e-01 1.94172248e-01 3.46017390e-01 1.05116808e+00 -1.66969991e+00 -4.57721233e-01 -2.63010532e-01 -4.78934199e-01 5.99899376e-03 -3.07264298e-01 -1.39044747e-01 -7.54653573e-01 -1.05347121e+00 6.09151304e-01 -5.22696853e-01 -3.25204581e-01 6.31305128e-02 -3.79362553e-01 -1.83999278e-02 1.07026160e+00 -9.15825009e-01 1.21493566e+00 -2.20798707e+00 2.26832610e-02 1.99510694e-01 2.21061975e-01 7.28325963e-01 -4.66110587e-01 2.86833286e-01 -2.31322899e-01 2.51104742e-01 -4.81246352e-01 -2.84528524e-01 -4.19016480e-01 2.98491210e-01 5.18779345e-02 3.33372921e-01 1.01478286e-01 5.92665195e-01 -7.12256610e-01 -4.63593870e-01 3.71753246e-01 8.45010042e-01 -3.42565507e-01 3.60931039e-01 2.28521749e-01 7.08247662e-01 -3.12822253e-01 5.56844890e-01 1.41805041e+00 3.64543706e-01 -3.27908918e-02 -8.64830613e-01 -2.24524245e-01 -4.13934737e-01 -1.41277444e+00 1.39232635e+00 -4.96088058e-01 6.15173221e-01 5.07674336e-01 -1.25796771e+00 1.18101394e+00 1.58850551e-01 4.16667640e-01 -9.78651762e-01 3.56135041e-01 3.45842242e-01 -1.16647571e-01 -9.96352017e-01 2.21523512e-02 -8.48784968e-02 5.09101033e-01 -1.08194232e-01 1.97200060e-01 -1.31237477e-01 7.73018450e-02 -2.38351524e-02 8.32157254e-01 8.86011049e-02 7.85253644e-02 -4.53221142e-01 7.15999842e-01 -3.03146333e-01 1.02529299e+00 1.01194382e+00 -2.43409723e-01 9.51925397e-01 3.57074142e-01 -4.73941505e-01 -9.91963744e-01 -8.42329264e-01 -1.41653746e-01 5.69115281e-01 5.07979155e-01 -1.56428829e-01 -8.48903418e-01 -3.51183772e-01 -3.20519894e-01 3.39306086e-01 -6.75282955e-01 -2.57332385e-01 -8.55212748e-01 -7.76371777e-01 4.03191119e-01 4.06081170e-01 1.21670282e+00 -1.26875806e+00 -7.08100721e-02 1.92094654e-01 -3.37965101e-01 -8.42402458e-01 -4.40600723e-01 1.45457104e-01 -9.94395018e-01 -1.09715211e+00 -7.99799204e-01 -1.18017828e+00 8.13315570e-01 6.26620471e-01 1.12173367e+00 4.01175797e-01 -3.79676998e-01 2.00699970e-01 -2.83678442e-01 -2.25445852e-01 -1.56889230e-01 -3.81710559e-01 -2.99704969e-01 5.86738586e-02 2.61842519e-01 -7.89130330e-01 -8.07241201e-01 3.94558430e-01 -1.24552000e+00 -1.76784709e-01 7.20370770e-01 1.05637074e+00 7.26369083e-01 7.41661906e-01 3.93939555e-01 -8.76173139e-01 7.77594984e-01 -4.02578503e-01 -4.26596224e-01 -2.12550312e-02 -4.47148025e-01 -2.99236923e-01 7.34564304e-01 -4.24410671e-01 -1.40963304e+00 -1.06732249e-01 -6.21271670e-01 -3.69715363e-01 -2.65606701e-01 4.95271206e-01 -4.72924680e-01 -1.32028952e-01 4.45798606e-01 4.66413349e-01 2.86055535e-01 -6.65149748e-01 -2.32112482e-02 5.63083053e-01 6.10243917e-01 -3.61936837e-01 7.68736959e-01 5.33708453e-01 1.01505406e-02 -9.42926943e-01 -8.56409848e-01 -4.90725189e-01 -4.42990392e-01 -2.09577873e-01 8.31926525e-01 -1.02157545e+00 -7.77765810e-01 1.06332493e+00 -1.03763449e+00 -3.78638744e-01 -3.06804646e-02 3.59396666e-01 -8.07312727e-02 6.17179990e-01 -8.66957724e-01 -6.94921792e-01 -4.18280333e-01 -1.25671494e+00 6.40561223e-01 3.24669868e-01 5.45048892e-01 -9.67822850e-01 -1.86931089e-01 4.32720818e-02 7.16547191e-01 1.61890194e-01 4.96857703e-01 -2.17496580e-03 -4.39905316e-01 -1.52089968e-01 -4.90845561e-01 1.20065212e+00 2.88352907e-01 -3.29562537e-02 -8.26230764e-01 -2.46445373e-01 6.84499264e-01 -6.80890158e-02 1.32573390e+00 8.07161808e-01 1.58231390e+00 -2.89238870e-01 2.27810964e-02 9.08690453e-01 1.97569156e+00 1.88712806e-01 1.35789418e+00 5.59762478e-01 7.92231023e-01 5.47196269e-01 3.88575584e-01 9.59785879e-02 5.69402389e-02 3.89395177e-01 6.15425587e-01 -5.11889637e-01 -5.60763478e-01 -1.32932700e-02 1.55939624e-01 1.04508913e+00 -5.90005517e-02 -1.63812831e-01 -6.59572184e-01 5.51872253e-01 -1.82276356e+00 -9.56284702e-01 -4.55567777e-01 1.75136721e+00 7.66666114e-01 1.60619412e-02 -4.36000198e-01 1.26949102e-01 9.18367803e-01 5.95507920e-02 -4.75487977e-01 -7.14074224e-02 -4.79377806e-01 1.74143657e-01 3.65581810e-01 6.11436248e-01 -1.16331220e+00 6.21247530e-01 5.37286472e+00 1.17728245e+00 -1.09689546e+00 1.01191245e-01 9.19209182e-01 4.61296707e-01 -1.96946189e-01 -1.92246586e-01 -5.38643420e-01 6.98201001e-01 2.14091033e-01 3.62488270e-01 3.32826763e-01 6.39218271e-01 4.32981730e-01 -2.73870140e-01 -2.84715205e-01 1.15790427e+00 6.45231530e-02 -1.11944830e+00 1.12231500e-01 -4.14616108e-01 8.57207298e-01 -8.48222524e-02 3.82841118e-02 2.99785078e-01 -1.20841796e-02 -1.04576743e+00 4.22611892e-01 8.05656612e-01 4.57377464e-01 -7.52499640e-01 1.40352762e+00 3.00308704e-01 -1.22068501e+00 -2.17115149e-01 -7.63502181e-01 -3.65613736e-02 -3.52568962e-02 1.13373017e+00 9.33991447e-02 6.64172709e-01 1.17868769e+00 8.73574138e-01 -4.73720133e-01 1.01733327e+00 -4.72785473e-01 8.32581997e-01 -7.21869841e-02 4.04657334e-01 2.44360954e-01 -6.74864769e-01 4.75782603e-01 1.27612901e+00 4.65149760e-01 8.74430910e-02 1.50549024e-01 6.65387809e-01 -4.89114821e-02 5.76231964e-02 -3.42746973e-01 5.97423017e-01 2.73059130e-01 1.42437947e+00 -6.40840590e-01 -2.79468536e-01 -3.25988531e-01 9.17470872e-01 -7.88124651e-02 5.65424979e-01 -4.82090414e-01 -6.80642605e-01 5.34004271e-01 5.57938069e-02 3.52222383e-01 -4.28534150e-02 -5.02211869e-01 -9.15624321e-01 1.38104662e-01 -9.49549854e-01 9.78966877e-02 -7.86235869e-01 -1.58992147e+00 8.26075852e-01 -3.17417383e-01 -1.31018162e+00 5.57201266e-01 -6.11072481e-01 -9.66486096e-01 1.01335013e+00 -1.70376897e+00 -1.07070315e+00 -8.91402423e-01 6.23270690e-01 6.61127925e-01 -1.48135290e-01 4.27145034e-01 6.29143655e-01 -7.50189781e-01 3.53859067e-01 3.56411815e-01 3.34296018e-01 7.30335653e-01 -1.11750615e+00 -1.37338238e-02 1.05592740e+00 -4.90484029e-01 5.72946429e-01 6.99597538e-01 -7.08997190e-01 -1.02303016e+00 -1.24819171e+00 4.23214436e-01 2.53241658e-01 3.56325179e-01 -9.74994376e-02 -1.21813095e+00 3.19514066e-01 4.56476122e-01 2.23347008e-01 2.72226691e-01 -2.58101881e-01 -2.35344827e-01 -6.29120469e-01 -1.29430044e+00 5.92517316e-01 8.64590585e-01 -2.25196421e-01 -9.18501318e-02 1.02121562e-01 7.57970989e-01 -2.83412278e-01 -6.83188438e-01 6.69882417e-01 2.71366417e-01 -1.20241797e+00 1.13308299e+00 -6.13591336e-02 6.73858941e-01 -6.34447455e-01 -9.23237503e-02 -1.31470788e+00 -5.66211402e-01 -2.60319650e-01 1.76878273e-01 1.35382819e+00 -7.78413638e-02 -5.96577287e-01 5.17067432e-01 8.58186856e-02 -3.43837112e-01 -8.42440009e-01 -6.39917791e-01 -7.05019891e-01 6.98663294e-02 -4.32956904e-01 2.31865555e-01 8.20737422e-01 -7.82442808e-01 1.87189907e-01 -6.95275605e-01 2.66578168e-01 8.24976563e-01 -2.90085375e-01 5.65394461e-01 -1.07189310e+00 8.93232673e-02 -3.97602051e-01 -2.71703899e-01 -1.04526460e+00 1.93933882e-02 -5.82304537e-01 2.62683183e-01 -1.79649115e+00 2.10727736e-01 -3.54929626e-01 -4.09557045e-01 3.58757377e-01 -3.62243533e-01 6.81905866e-01 9.02593359e-02 3.04218173e-01 -2.87664384e-01 5.92532754e-01 1.61696041e+00 -2.99246907e-01 -3.15583497e-02 7.30550513e-02 -7.87446737e-01 8.22268546e-01 1.42161000e+00 -4.15411532e-01 -3.87540162e-01 -7.82096267e-01 -3.32687572e-02 -1.85208336e-01 5.56166410e-01 -1.15113020e+00 4.45856184e-01 8.68074298e-02 5.78476846e-01 -7.53881812e-01 6.61418065e-02 -1.04282951e+00 5.61562628e-02 6.60062730e-01 -7.54282549e-02 -1.88680381e-01 2.00613052e-01 5.76688468e-01 -7.46479928e-01 -4.79832143e-01 1.09442210e+00 -5.45090795e-01 -9.40762341e-01 2.70705342e-01 -3.71667147e-01 -8.75744075e-02 6.09965861e-01 -3.56692225e-01 -1.34268984e-01 -5.32388747e-01 -6.14005685e-01 7.31843114e-02 1.14578838e-02 1.51234895e-01 8.85067821e-01 -1.26724851e+00 -8.70699167e-01 2.92484075e-01 -3.51797670e-01 7.70746097e-02 7.96414077e-01 7.42351413e-01 -7.12916911e-01 -2.38414213e-01 -2.13560104e-01 -5.99899709e-01 -1.25265813e+00 4.53399211e-01 5.05383909e-01 -1.52265236e-01 -7.33537436e-01 9.55988705e-01 2.32556134e-01 -7.05144823e-01 3.25550377e-01 2.54672412e-02 -2.92865098e-01 -8.73539969e-02 6.65668547e-01 4.67665046e-01 2.34865863e-02 -5.09968042e-01 2.66415272e-02 8.49715352e-01 8.25611725e-02 3.88035655e-01 1.61602342e+00 -3.09140235e-01 -7.37090409e-01 2.13554893e-02 1.48532987e+00 -8.69526714e-02 -1.31956697e+00 -3.25389385e-01 -3.46756965e-01 -5.99754214e-01 4.41565931e-01 -7.94120133e-01 -1.79045033e+00 8.24319720e-01 1.00662005e+00 1.41982406e-01 1.74900842e+00 -5.35265207e-01 9.66589153e-01 1.91393599e-01 2.12835311e-03 -1.29594982e+00 4.38743532e-01 5.01508057e-01 9.69272196e-01 -1.44937086e+00 9.02344510e-02 -6.00191236e-01 -4.97397095e-01 1.34695911e+00 8.52572799e-01 -3.36824834e-01 1.09354317e+00 4.69453841e-01 4.44831252e-01 -8.84537175e-02 -1.36685222e-01 -1.82330966e-01 2.60924269e-02 7.72895098e-01 2.83075899e-01 -2.84876704e-01 -4.14427996e-01 6.28527999e-01 1.80092752e-01 -6.17725402e-02 4.24790174e-01 7.78004467e-01 -5.89579284e-01 -1.01429749e+00 -5.24366617e-01 3.05036217e-01 -4.89773959e-01 -3.07290018e-01 2.03870416e-01 6.17862284e-01 6.24030352e-01 1.16373241e+00 -7.73633495e-02 -3.63971293e-01 4.03619468e-01 -6.68103874e-01 1.55369177e-01 -2.76827484e-01 -5.81628859e-01 1.92313239e-01 -3.44705462e-01 -5.79110682e-01 -5.13505578e-01 -7.02960119e-02 -8.42331231e-01 -2.91235358e-01 -2.49730244e-01 1.14984207e-01 7.39159822e-01 4.67114985e-01 1.31153926e-01 9.23899531e-01 6.72677100e-01 -8.90991092e-01 -2.68523633e-01 -1.02079165e+00 -7.13568807e-01 4.87561256e-01 3.93174857e-01 -3.32640231e-01 -5.94536304e-01 5.10136969e-02]
[11.390170097351074, -2.35683536529541]
ed42c669-7c14-4659-889b-8cf858b91d33
recognizing-involuntary-actions-from-3d
1708.06227
null
http://arxiv.org/abs/1708.06227v1
http://arxiv.org/pdf/1708.06227v1.pdf
Recognizing Involuntary Actions from 3D Skeleton Data Using Body States
Human action recognition has been one of the most active fields of research in computer vision for last years. Two dimensional action recognition methods are facing serious challenges such as occlusion and missing the third dimension of data. Development of depth sensors has made it feasible to track positions of human body joints over time. This paper proposes a novel method of action recognition which uses temporal 3D skeletal Kinect data. This method introduces the definition of body states and then every action is modeled as a sequence of these states. The learning stage uses Fisher Linear Discriminant Analysis (LDA) to construct discriminant feature space for discriminating the body states. Moreover, this paper suggests the use of the Mahalonobis distance as an appropriate distance metric for the classification of the states of involuntary actions. Hidden Markov Model (HMM) is then used to model the temporal transition between the body states in each action. According to the results, this method significantly outperforms other popular methods, with recognition rate of 88.64% for eight different actions and up to 96.18% for classifying fall actions.
['Benyamin Ghojogh', 'Hoda Mohammadzade', 'Mozhgan Mokari']
2017-08-21
null
null
null
null
['3d-human-action-recognition']
['computer-vision']
[ 9.64010805e-02 -3.01412374e-01 -3.94248098e-01 -2.95294464e-01 -4.10443395e-01 -1.21787146e-01 5.83881974e-01 -2.69645393e-01 -5.85634172e-01 4.90831554e-01 3.85493517e-01 6.96084425e-02 -7.00867772e-02 -4.89422768e-01 9.09586325e-02 -7.54330039e-01 -3.22618186e-02 5.38348675e-01 5.33391893e-01 -1.78995579e-02 3.34182173e-01 7.09823191e-01 -1.71994340e+00 1.71796709e-01 2.64748394e-01 7.53483176e-01 -1.18374564e-01 6.92802131e-01 -6.26493096e-02 5.22533536e-01 -4.01426196e-01 5.92220835e-02 3.62213343e-01 -7.42913127e-01 -7.28201807e-01 3.82547617e-01 2.02971715e-02 -5.25322795e-01 -3.83845121e-01 7.06212878e-01 5.72804332e-01 5.20523489e-01 8.17492962e-01 -1.26013064e+00 -8.27066079e-02 -9.71248001e-02 -5.86141348e-01 3.78713489e-01 7.63769746e-01 2.73733325e-02 5.23842633e-01 -6.04477048e-01 4.32427168e-01 1.14768136e+00 5.14874339e-01 6.94879949e-01 -7.63341069e-01 -4.71687317e-01 -2.29781598e-01 8.34910870e-01 -1.26651812e+00 -2.23967433e-01 7.59314179e-01 -7.75541484e-01 1.06949973e+00 2.01994777e-01 9.55516458e-01 8.52006137e-01 5.99522471e-01 7.92798221e-01 1.17628455e+00 -5.57576656e-01 3.11884612e-01 -4.28642690e-01 3.71628314e-01 5.49445450e-01 1.93540990e-01 -6.15380593e-02 -4.66828406e-01 -4.01663482e-02 6.66125476e-01 3.82570446e-01 2.91475147e-01 -4.41784710e-01 -7.81033337e-01 6.20142639e-01 -1.06828399e-01 4.70063686e-01 -5.75331330e-01 -2.26826668e-01 4.81887698e-01 -3.78401056e-02 -1.85753498e-02 -3.72793406e-01 -8.01941007e-02 -6.78004920e-01 -8.03533256e-01 2.71202266e-01 5.37553549e-01 3.56150150e-01 3.07797700e-01 -6.86432719e-02 1.56766176e-03 5.48466861e-01 7.02182770e-01 4.65382308e-01 9.67503071e-01 -9.41426992e-01 3.05264682e-01 9.91752207e-01 1.45267844e-01 -9.48650658e-01 -5.11295021e-01 2.55219132e-01 -5.67844570e-01 5.76126456e-01 5.82248211e-01 5.04925288e-02 -1.00723517e+00 1.06009674e+00 6.63714409e-01 -1.47067815e-01 -4.11514863e-02 9.53479290e-01 3.42414498e-01 3.74031454e-01 1.45284325e-01 -2.45786920e-01 1.33451426e+00 -6.35304213e-01 -8.98799300e-01 -9.12601724e-02 5.57165086e-01 -5.31796813e-01 6.04425669e-01 5.84680259e-01 -6.37265325e-01 -6.75538480e-01 -9.89239037e-01 1.17383234e-01 -2.44799122e-01 3.52256924e-01 5.51939845e-01 8.58697951e-01 -4.49266404e-01 5.62223852e-01 -1.66462553e+00 -6.41617835e-01 5.24908770e-03 5.48928261e-01 -6.68279469e-01 1.17338903e-01 -8.43863845e-01 1.14192665e+00 3.41260195e-01 2.99348682e-01 -6.19224966e-01 5.28041542e-01 -7.81111360e-01 -5.12868285e-01 -3.70679088e-02 -1.59985483e-01 9.68887091e-01 -7.37780452e-01 -1.72383106e+00 8.80117834e-01 -2.37576216e-01 -2.68652797e-01 5.44845223e-01 -5.06722331e-01 -5.59824467e-01 1.60102770e-01 6.12268448e-02 3.17386240e-02 6.19549215e-01 -4.24602509e-01 -6.52947605e-01 -1.08363056e+00 -3.45430017e-01 5.24858415e-01 -2.49024965e-02 8.82276669e-02 -3.27211618e-01 -2.11125791e-01 8.30030739e-01 -1.13496280e+00 -1.17095381e-01 -1.03515245e-01 -1.00533523e-01 -5.61680317e-01 8.01951230e-01 -1.01191366e+00 1.25837612e+00 -2.11429811e+00 2.76248723e-01 4.23951121e-03 -1.94191754e-01 3.65935355e-01 6.04377031e-01 4.89657819e-01 -5.09427004e-02 -4.93176758e-01 -2.32423842e-02 -2.77778149e-01 -1.61421105e-01 5.88362515e-01 3.07847053e-01 8.38435352e-01 -3.43679965e-01 2.68621117e-01 -5.30634224e-01 -5.70131123e-01 6.97956920e-01 4.86392558e-01 -1.55751919e-02 1.12298086e-01 5.19343078e-01 6.25105381e-01 -7.17783630e-01 5.57308793e-01 3.17577720e-01 4.02458608e-01 2.34029189e-01 -8.13035816e-02 -1.91354677e-01 1.39558643e-01 -1.60578597e+00 1.59784997e+00 2.01664463e-01 2.48381928e-01 -3.60050321e-01 -1.21434629e+00 1.11078370e+00 5.14995635e-01 9.41293299e-01 -5.93741298e-01 3.60508621e-01 1.43830046e-01 1.31775076e-02 -1.05947363e+00 2.27535851e-02 -3.24436992e-01 8.19497705e-02 3.47108036e-01 -3.84359173e-02 3.66422623e-01 1.22958541e-01 -4.20085669e-01 1.11939335e+00 4.54974115e-01 6.07887864e-01 2.70961016e-01 6.84740305e-01 -8.92104581e-02 6.46921992e-01 2.43929893e-01 -8.42385352e-01 4.55270767e-01 -1.63658410e-02 -7.91573405e-01 -7.01919138e-01 -1.02527785e+00 2.10863575e-01 5.71918964e-01 7.37322792e-02 -1.94775894e-01 -5.54252267e-01 -5.62673628e-01 -1.62852127e-02 4.05089259e-01 -5.34769356e-01 -3.08055162e-01 -7.56709337e-01 -3.84444773e-01 5.30067205e-01 7.09679067e-01 7.34448195e-01 -1.20321751e+00 -1.19161451e+00 6.68528154e-02 -1.23440497e-01 -7.15421259e-01 1.64333746e-01 2.20357142e-02 -1.37322795e+00 -1.33241785e+00 -7.04667509e-01 -5.20625532e-01 3.57158273e-01 3.43844295e-02 2.56646901e-01 -3.00448686e-01 -5.43065548e-01 4.23140466e-01 -5.31529725e-01 -6.54106513e-02 -2.69373685e-01 -2.12287068e-01 3.75324309e-01 1.47771046e-01 9.20181394e-01 -5.30583203e-01 -5.08719146e-01 3.56794745e-01 -5.66100001e-01 -2.01858923e-01 6.15284443e-01 3.98131281e-01 5.81913233e-01 5.29704168e-02 -9.37048867e-02 -1.66876465e-01 3.07164967e-01 -2.33502150e-01 -1.51888937e-01 2.30790377e-01 -5.07946670e-01 1.01341859e-01 8.73502940e-02 -3.29895645e-01 -1.05827308e+00 5.80152035e-01 -1.98468834e-01 -1.35629579e-01 -5.97563267e-01 1.73192561e-01 -2.70005524e-01 2.46584222e-01 6.20316625e-01 5.04600406e-01 3.93267840e-01 -9.13892329e-01 1.52300950e-03 9.42992866e-01 4.16439801e-01 -2.04817504e-01 2.11657792e-01 6.38324261e-01 2.38492891e-01 -9.06388760e-01 -4.28305507e-01 -9.64913726e-01 -1.20055687e+00 -6.98476613e-01 1.35315108e+00 -5.31578839e-01 -8.52029204e-01 9.15511310e-01 -8.34665000e-01 9.78089944e-02 -5.69255184e-03 1.09878957e+00 -7.13085473e-01 8.19805562e-01 -5.02930343e-01 -1.28876054e+00 -1.56057522e-01 -1.02337003e+00 9.25596416e-01 2.39328191e-01 -4.51441795e-01 -5.73126853e-01 4.32100981e-01 6.63857818e-01 -2.13104069e-01 5.39580882e-01 3.34858090e-01 -4.39508408e-01 9.60926712e-02 -7.81970739e-01 4.60260719e-01 4.68954831e-01 4.70475405e-01 -1.30474463e-01 -4.36482489e-01 -1.70911010e-02 3.63663256e-01 -2.85651647e-02 4.59764957e-01 4.31802273e-01 4.68132168e-01 1.28176315e-02 -3.99679899e-01 1.11900661e-02 1.12521887e+00 8.45688820e-01 9.75550830e-01 5.07098734e-01 5.88659108e-01 5.72543502e-01 9.33800876e-01 5.12015581e-01 2.03377262e-01 9.61104929e-01 2.38180503e-01 4.22308087e-01 -3.14068166e-03 -1.50637031e-01 5.51949978e-01 7.00966358e-01 -6.78463340e-01 3.15843999e-01 -1.10155463e+00 3.14161420e-01 -1.94558287e+00 -1.23877740e+00 -3.47568095e-01 2.34442782e+00 4.95038182e-01 1.35093421e-01 4.58684564e-01 8.13714504e-01 6.58983171e-01 -1.07028529e-01 -3.92502487e-01 -3.73833060e-01 4.32048082e-01 2.55822986e-01 4.82317090e-01 5.06540835e-01 -1.31212890e+00 7.27175057e-01 6.23093653e+00 4.10702825e-01 -9.80867267e-01 -4.00279509e-03 -1.12408839e-01 1.01355888e-01 7.17040420e-01 -4.89470474e-02 -9.05695617e-01 5.24630487e-01 6.94797873e-01 2.39143014e-01 -1.57712832e-01 8.51234794e-01 5.01908123e-01 -7.05942273e-01 -7.52440989e-01 1.14045215e+00 2.14575857e-01 -3.22353065e-01 -1.01042233e-01 7.13798702e-02 2.72843599e-01 -3.52087438e-01 -3.86234403e-01 2.86985599e-02 -1.23193488e-01 -7.90254056e-01 3.81013036e-01 8.53068829e-01 3.58783424e-01 -6.15878284e-01 6.12108886e-01 6.50212169e-01 -1.15590572e+00 -1.50080442e-01 -1.99120790e-01 -6.73218548e-01 3.84590656e-01 9.36560333e-02 -6.27969861e-01 3.70831043e-01 6.97621346e-01 7.67379344e-01 -4.36425626e-01 1.02762675e+00 -2.07006276e-01 6.49724841e-01 -5.18323839e-01 -5.81256077e-02 1.14527242e-02 -3.60173285e-01 4.98633623e-01 7.10551977e-01 2.95773357e-01 3.04453999e-01 3.06678057e-01 5.99226691e-02 1.05430996e+00 1.37397274e-01 -6.96907341e-01 -7.36623108e-02 -2.56473757e-02 7.19257116e-01 -8.14547002e-01 -1.73134819e-01 -3.14612240e-01 1.28868794e+00 -2.57889211e-01 -7.13171661e-02 -5.87989151e-01 -1.30525976e-01 5.08632004e-01 1.69198990e-01 -2.56916098e-02 -7.56040871e-01 -1.39204860e-01 -9.19542611e-01 2.43660375e-01 -6.83520675e-01 6.54130876e-01 -4.84431684e-01 -6.56040311e-01 1.61445379e-01 2.29858473e-01 -1.52243733e+00 -4.12179977e-01 -6.75867260e-01 -1.94039896e-01 8.00264478e-01 -4.65428293e-01 -8.80403459e-01 -3.19644958e-01 7.30621219e-01 7.55013227e-01 -1.40421286e-01 9.88874614e-01 2.72601783e-01 -5.58428764e-01 9.03376639e-02 5.46872988e-02 2.96906859e-01 4.85602975e-01 -9.21689153e-01 2.68486217e-02 8.49904418e-01 9.13115069e-02 4.37136352e-01 7.96913445e-01 -9.90795970e-01 -1.18660414e+00 -2.86606073e-01 1.12860811e+00 -4.76416856e-01 2.43102148e-01 1.25199646e-01 -4.97064978e-01 6.34827793e-01 -4.51988786e-01 -1.70098811e-01 7.64888406e-01 -2.74772942e-01 8.53501260e-02 1.35100342e-03 -1.07931602e+00 3.80785972e-01 9.43985701e-01 -2.96435595e-01 -9.45981562e-01 7.34865367e-02 -2.54894793e-01 -3.11080366e-01 -6.23590648e-01 3.77510697e-01 1.02558351e+00 -1.25211501e+00 7.55771279e-01 -6.41557157e-01 1.66392187e-03 -5.36615014e-01 -1.62316576e-01 -5.11780620e-01 -1.99460119e-01 -2.78362129e-02 -1.87363371e-01 7.73831904e-01 -1.67909950e-01 -3.55985969e-01 1.17027509e+00 6.75581455e-01 1.30976945e-01 -5.63479722e-01 -1.26364994e+00 -8.90494466e-01 -4.73973244e-01 -3.73446703e-01 -1.05838284e-01 5.51358879e-01 1.54422939e-01 7.40662590e-02 -5.29138327e-01 -5.96475229e-02 6.85885310e-01 -1.72657982e-01 7.26487935e-01 -1.25512493e+00 -2.62139201e-01 -1.04143232e-01 -1.34948325e+00 -9.49361026e-01 -1.50931135e-01 -2.77493358e-01 4.95255776e-02 -1.76943433e+00 2.38841847e-02 1.40344188e-01 -2.06863716e-01 4.79868114e-01 9.82642770e-02 1.30249262e-01 1.18585937e-02 3.62807155e-01 -3.30988228e-01 4.45921570e-01 1.07685864e+00 1.00419566e-01 -2.51755506e-01 6.19772732e-01 3.21934819e-01 7.98836589e-01 8.47038567e-01 -4.24251556e-01 -4.35981244e-01 4.02697967e-03 -2.43377581e-01 1.87047586e-01 2.32068926e-01 -1.60659933e+00 1.09286696e-01 -2.17271954e-01 4.35242116e-01 -8.23020577e-01 5.91959178e-01 -9.81475711e-01 5.78667700e-01 9.05145586e-01 -1.90302059e-02 -6.31860420e-02 -1.70786530e-01 5.29900551e-01 -2.81956106e-01 -2.56729364e-01 5.63037992e-01 -1.77137032e-01 -1.09736347e+00 -6.91172481e-02 -7.36271381e-01 -4.05102789e-01 1.37691915e+00 -9.97201622e-01 5.28586566e-01 -2.50510365e-01 -1.35014784e+00 -2.35033035e-01 1.35757685e-01 4.49657291e-01 5.12375295e-01 -1.36890209e+00 -1.82184055e-01 1.74689725e-01 -9.29690599e-02 -3.98914695e-01 4.09039766e-01 1.08279014e+00 -6.31779671e-01 4.51837569e-01 -7.45011389e-01 -5.80095232e-01 -1.96288633e+00 1.23911105e-01 3.25320184e-01 -1.63644820e-01 -7.85139859e-01 4.05938953e-01 -6.02417588e-01 3.98580544e-02 2.61843145e-01 -6.51349947e-02 -7.52346098e-01 -1.93258207e-02 4.70314652e-01 9.14696038e-01 -1.19386353e-01 -1.07886863e+00 -6.40663385e-01 7.73691416e-01 2.53874570e-01 -4.19469118e-01 1.03325653e+00 -1.51495054e-01 9.15548131e-02 8.97611141e-01 1.04847932e+00 -4.54087734e-01 -1.23702741e+00 1.26931861e-01 3.23203921e-01 -4.78282571e-01 -3.16017628e-01 -6.70513391e-01 -6.73062623e-01 1.03721189e+00 1.22861743e+00 -2.35992037e-02 9.76315796e-01 -2.51125634e-01 6.69163823e-01 1.52948231e-01 5.77925444e-01 -1.28809023e+00 -4.38481197e-02 3.84462178e-01 6.09368443e-01 -1.10281134e+00 1.30287454e-01 -2.95044094e-01 -6.81183875e-01 1.24135923e+00 4.28461701e-01 -3.10870200e-01 7.71658182e-01 -1.28940746e-01 1.99411109e-01 -2.37979338e-01 -3.03724539e-02 -3.03100288e-01 3.64578545e-01 6.73145354e-01 4.42335427e-01 3.04412186e-01 -1.14005542e+00 4.06572580e-01 2.96159424e-02 3.26015800e-01 3.91760059e-02 1.42543375e+00 -7.35778809e-01 -1.26026070e+00 -5.38890421e-01 1.84549078e-01 -4.44428563e-01 7.23924458e-01 -3.80770266e-01 8.60300660e-01 2.93431520e-01 9.80317295e-01 -1.37733594e-01 -5.54357827e-01 4.16014761e-01 6.51804924e-01 7.38197088e-01 -5.88456273e-01 -6.35052323e-02 2.29610819e-02 -7.50645399e-02 -8.15110862e-01 -7.04095244e-01 -1.16189516e+00 -1.56010091e+00 9.03928354e-02 -3.41216847e-02 7.70019293e-02 7.77723610e-01 1.22222674e+00 -3.73864993e-02 6.34032162e-03 3.06016535e-01 -7.21451759e-01 -6.40845597e-01 -1.05364740e+00 -8.77564490e-01 6.10727429e-01 3.35173011e-02 -1.11877525e+00 -2.35495597e-01 3.51964563e-01]
[7.758524417877197, 0.32074931263923645]
a7bcf718-ef2b-4757-bec5-27b49cc880ef
unsupervised-dependency-parsing-using
null
null
https://aclanthology.org/W12-1911
https://aclanthology.org/W12-1911.pdf
Unsupervised Dependency Parsing using Reducibility and Fertility features
null
["Zden{\\v{e}}k {\\v{Z}}abokrtsk{\\'y}", 'David Mare{\\v{c}}ek']
2012-06-01
null
null
null
ws-2012-6
['unsupervised-dependency-parsing']
['natural-language-processing']
[-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01 -8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01 -2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00 -3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01 -9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01 7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01 7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00 -1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01 3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01 9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01 5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00 -5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01 1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00 7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01 -1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02 -1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01 1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00 1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01 3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01 8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01 9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01 -9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01 -1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01 -2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01 -8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00 1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01 8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00 -6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01 -6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01 3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01 4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02 4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01 1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01 9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01 -1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01 -7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00 -1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02 1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01 -1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01 -1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01 -4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01 -1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01 6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01 -1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00 -7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01 -1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01 3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01 -1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01 1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01 3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00 -2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01 2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01 -1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01 4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01 2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00 1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01 -3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00 7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01 3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01 -2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01 7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01 -2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01 6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00 7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00 -3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01 -6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00 3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01 1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01 -5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01 -5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01 -2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01 -1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01 5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01 -2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01 -4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01 5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01 -6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00 1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01 8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02 -6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01 -1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01 1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01 8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03 3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01 8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01 -1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01 6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01 -9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01 -1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00 -5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02 -5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01 1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01 -4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01 1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01 6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01 5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01 1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01 1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01 1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01 1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00 -8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01 -1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01 6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01 4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00 -1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00 -7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00 2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01 -4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02 1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01 3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01 9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01 7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01 6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01 1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01 -1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00 3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01 9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01 -4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01 4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00 2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01 5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01 2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01 -2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01 -6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01 -1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01 -5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01 -1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00 -6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01 -1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01 1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02 1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01 5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01 -4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01 -1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01 6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01 7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01 1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01 1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01 8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01 8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00 -4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01 -5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02 5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01 -2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00 -3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01 6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01 5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00 3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01 -8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00 -8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01 3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01 -3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05 -1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01 8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02 6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01 5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00 1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01 2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02 -1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01 -4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02 9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01 -8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02 7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01 -3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01 -1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01 -1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01 -2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01 1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03 6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01 -4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01 9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01 8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01 1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01 -1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01 8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01 5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01 9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01 -4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01 1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01 -9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00 5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01 -7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00 -6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01 -5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01 -5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01 4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01 -9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00 -8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00 -5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01 -2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00 -3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02 2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01]
[-7.285802364349365, 3.733289957046509]
2db5f232-6bd9-43af-9294-5e0822f1a3e5
sem-pos-grammatically-and-semantically
2303.14829
null
https://arxiv.org/abs/2303.14829v2
https://arxiv.org/pdf/2303.14829v2.pdf
SEM-POS: Grammatically and Semantically Correct Video Captioning
Generating grammatically and semantically correct captions in video captioning is a challenging task. The captions generated from the existing methods are either word-by-word that do not align with grammatical structure or miss key information from the input videos. To address these issues, we introduce a novel global-local fusion network, with a Global-Local Fusion Block (GLFB) that encodes and fuses features from different parts of speech (POS) components with visual-spatial features. We use novel combinations of different POS components - 'determinant + subject', 'auxiliary verb', 'verb', and 'determinant + object' for supervision of the POS blocks - Det + Subject, Aux Verb, Verb, and Det + Object respectively. The novel global-local fusion network together with POS blocks helps align the visual features with language description to generate grammatically and semantically correct captions. Extensive qualitative and quantitative experiments on benchmark MSVD and MSRVTT datasets demonstrate that the proposed approach generates more grammatically and semantically correct captions compared to the existing methods, achieving the new state-of-the-art. Ablations on the POS blocks and the GLFB demonstrate the impact of the contributions on the proposed method.
['Armin Mustafa', 'Graham Thomas', 'Robert Dawes', 'Adrian Hilton', 'Asmar Nadeem']
2023-03-26
null
null
null
null
['video-captioning']
['computer-vision']
[ 2.11064771e-01 1.96380705e-01 2.39163879e-02 -5.72441161e-01 -1.01791215e+00 -7.21882999e-01 5.92850804e-01 8.29140469e-02 -9.50426981e-02 7.71131814e-01 6.18649423e-01 -8.87811780e-02 3.36932510e-01 -3.23617369e-01 -1.11796105e+00 -5.50049245e-01 2.90742069e-01 2.46722788e-01 2.36097962e-01 -3.27816963e-01 1.12451822e-01 1.72901079e-01 -1.69275427e+00 8.34536314e-01 8.61406744e-01 9.26794708e-01 5.86704135e-01 5.03618956e-01 -2.89040208e-01 8.04426134e-01 -5.00459075e-01 -5.55385113e-01 1.26424134e-01 -5.41083157e-01 -5.96220255e-01 -7.88049325e-02 8.26210737e-01 -1.16295017e-01 -2.49942198e-01 1.17642045e+00 4.29813981e-01 5.07395752e-02 6.94047570e-01 -1.44179523e+00 -1.04486334e+00 2.70765215e-01 -6.75784588e-01 2.46315569e-01 5.84099591e-01 1.28511369e-01 1.17338192e+00 -8.08475196e-01 7.62334824e-01 1.64404726e+00 2.78532237e-01 7.25313663e-01 -7.32802391e-01 -5.15712559e-01 3.38205278e-01 4.21081305e-01 -1.20235169e+00 -3.28637004e-01 6.44074619e-01 -6.31449521e-01 9.24546599e-01 4.25079882e-01 2.86679059e-01 1.24252379e+00 1.48510933e-01 9.68000531e-01 9.07618999e-01 -3.80765319e-01 -5.78826480e-02 1.02850579e-01 8.32334533e-02 7.14522243e-01 1.20924212e-01 2.99875140e-01 -4.47951764e-01 1.69311613e-01 5.68332672e-01 -4.37514335e-01 -4.86756444e-01 -4.00269866e-01 -1.37607121e+00 7.40150273e-01 3.75561833e-01 2.14477494e-01 -3.39390248e-01 2.94317693e-01 3.50075305e-01 -1.63753644e-01 1.97420746e-01 3.08423042e-02 -3.04718465e-01 -1.07529216e-01 -8.04633319e-01 2.35512525e-01 3.40865850e-01 1.33022213e+00 6.48701429e-01 2.76875943e-02 -9.49054897e-01 7.63889492e-01 6.81949675e-01 8.86641920e-01 2.33304515e-01 -5.83583891e-01 8.36441100e-01 5.34412265e-01 1.76843941e-01 -9.68140125e-01 -2.10996598e-01 -3.95136327e-01 -5.69651246e-01 -1.20373495e-01 -8.38039294e-02 6.30781194e-03 -1.26541591e+00 2.05623198e+00 2.50437647e-01 1.74867734e-01 3.77806515e-01 1.23577809e+00 1.46337688e+00 1.11690080e+00 6.95474029e-01 -1.25341132e-01 1.71912169e+00 -1.21701789e+00 -8.41359258e-01 -5.20065904e-01 3.95417333e-01 -9.00818229e-01 1.00118959e+00 -1.26759008e-01 -1.14614487e+00 -8.16813588e-01 -7.58368254e-01 -8.78876969e-02 -9.30302590e-02 5.86613119e-01 1.55223981e-01 2.39841387e-01 -1.23818302e+00 2.24415101e-02 -2.55763739e-01 -3.58723581e-01 3.41645688e-01 3.07249188e-01 -6.87233806e-01 -3.05235758e-02 -1.22744167e+00 9.40183938e-01 5.85579038e-01 1.65393412e-01 -8.64096582e-01 -2.92734116e-01 -1.26882684e+00 9.23213437e-02 -2.45493394e-03 -8.30652356e-01 1.27218986e+00 -1.44483614e+00 -9.43621814e-01 7.14235365e-01 -4.24446940e-01 -1.68419018e-01 5.95252141e-02 6.71790168e-03 -3.07671249e-01 4.18541282e-01 2.92104721e-01 1.45274746e+00 9.66384292e-01 -1.40256619e+00 -8.14247668e-01 -1.31530389e-01 -2.05952097e-02 6.65603459e-01 7.41932914e-02 3.31295133e-01 -5.11423767e-01 -8.82637203e-01 -9.36673135e-02 -7.57880032e-01 3.04439425e-01 -2.33171955e-01 -1.52771086e-01 -4.32999879e-01 9.58349466e-01 -1.06570363e+00 1.05655730e+00 -2.34645319e+00 5.23856699e-01 -2.88338870e-01 -3.31812426e-02 4.45688605e-01 -5.81757724e-01 3.77066851e-01 -2.91731298e-01 9.26790535e-02 -7.22866282e-02 -4.28775340e-01 -2.47068275e-02 2.94420511e-01 -2.60272026e-01 1.64340496e-01 4.44046140e-01 1.09259558e+00 -1.10079229e+00 -6.86899483e-01 4.16370273e-01 5.66104114e-01 -3.69948953e-01 3.96835625e-01 -3.85596931e-01 3.90818566e-01 -4.48161662e-01 7.54981816e-01 5.89176238e-01 -1.01782441e-01 -1.85705289e-01 -5.72953701e-01 9.69658867e-02 1.30692333e-01 -8.04033399e-01 1.60405552e+00 -1.00054882e-01 5.29740632e-01 1.88958030e-02 -8.71281028e-01 1.03935719e+00 4.86147732e-01 1.70209669e-02 -9.17257607e-01 2.12376878e-01 2.46049777e-01 -1.90255165e-01 -9.01798725e-01 3.56476247e-01 -3.41147371e-02 -1.06104061e-01 -1.79836541e-01 3.76677752e-01 2.61173874e-01 4.48293775e-01 3.41123432e-01 7.96763897e-01 6.15629852e-01 1.64449379e-01 -4.64816503e-02 8.78593743e-01 5.65568954e-02 5.98923028e-01 3.91091824e-01 -5.19240558e-01 8.98795724e-01 6.18257344e-01 -8.13036114e-02 -1.18610919e+00 -1.06603932e+00 3.51372302e-01 1.00089157e+00 3.86069536e-01 -3.80303919e-01 -9.33573961e-01 -9.66762602e-01 -2.58576900e-01 8.04121017e-01 -5.32937706e-01 -7.49395192e-02 -5.64750731e-01 -3.68640035e-01 3.46503437e-01 7.48853564e-01 5.49831986e-01 -1.47721148e+00 -2.70842850e-01 1.09307937e-01 -6.45240188e-01 -1.46047246e+00 -6.94582701e-01 -2.84420729e-01 -3.87047082e-01 -7.93420613e-01 -7.49664903e-01 -1.18952787e+00 8.66289854e-01 1.87276989e-01 1.04684365e+00 -1.83132783e-01 1.43112510e-01 2.96066672e-01 -8.92261684e-01 -2.87129670e-01 -6.00181103e-01 -3.07517290e-01 -3.46886933e-01 1.82664707e-01 2.30613604e-01 -1.38248742e-01 -4.09684241e-01 1.07973076e-01 -8.02686691e-01 6.70107543e-01 7.82817841e-01 6.82753563e-01 5.46683490e-01 -6.65298760e-01 5.18967867e-01 -2.37015098e-01 4.30841655e-01 -4.38101381e-01 -3.93559009e-01 3.86905849e-01 1.61579758e-01 4.96390797e-02 4.88892198e-01 -2.07993224e-01 -7.83291698e-01 3.53388786e-01 -1.04314737e-01 -6.19711220e-01 -3.10292393e-01 3.07498068e-01 -4.71090198e-01 1.72615275e-01 2.41833687e-01 4.56840545e-01 -4.21448871e-02 -3.27516615e-01 2.73259044e-01 8.34106803e-01 7.43198931e-01 -4.64859664e-01 7.15256155e-01 1.95520118e-01 -9.91808549e-02 -5.05476058e-01 -7.33270645e-01 -4.37573135e-01 -3.71120870e-01 -3.51708353e-01 1.24594474e+00 -1.29818857e+00 -3.55044752e-01 2.98056185e-01 -1.65891123e+00 2.10433468e-01 -1.37944773e-01 4.08825040e-01 -5.77881396e-01 5.42035043e-01 -2.51054943e-01 -5.64443171e-01 -5.08764565e-01 -1.36725748e+00 1.69334793e+00 3.70144904e-01 -9.91011634e-02 -6.22795761e-01 -1.71771765e-01 6.27719402e-01 1.56536341e-01 2.49759510e-01 1.01282549e+00 -6.18601561e-01 -5.48615396e-01 1.30776197e-01 -7.59964526e-01 6.32732093e-01 6.84564561e-02 -1.40170202e-01 -7.10394681e-01 -2.96954215e-01 -4.35965806e-01 1.85122509e-02 6.46525502e-01 3.37148488e-01 5.66156685e-01 -4.29883301e-01 -2.87799120e-01 3.04943532e-01 1.44994175e+00 3.22178423e-01 7.29323924e-01 1.16472311e-01 9.70626891e-01 5.83476305e-01 9.22617137e-01 5.19973636e-02 5.74549437e-01 7.30707049e-01 7.24808753e-01 -7.01617524e-02 -5.29640436e-01 -3.31328064e-01 8.01865757e-01 6.28466845e-01 2.81291217e-01 -7.01681614e-01 -8.03962171e-01 9.49314058e-01 -2.08208513e+00 -8.04721951e-01 -3.28486174e-01 1.76367080e+00 4.95846987e-01 -3.16220164e-01 -3.59203182e-02 -1.45467430e-01 1.17628992e+00 1.55285910e-01 1.42470345e-01 -6.58795118e-01 -3.23289633e-01 -7.52641559e-02 2.81056195e-01 4.42915171e-01 -1.23826551e+00 1.18207061e+00 5.11627817e+00 8.38361204e-01 -1.07515204e+00 1.47028089e-01 4.41792756e-01 2.05293775e-01 -4.56468910e-01 6.09890074e-02 -9.53585625e-01 7.04454422e-01 7.58952737e-01 2.76727617e-01 1.13496773e-01 6.46902740e-01 4.88557845e-01 -4.94488925e-02 -1.09126782e+00 1.26704979e+00 6.79653883e-01 -1.25943232e+00 6.25664532e-01 -3.34260285e-01 5.68993509e-01 -1.42722651e-01 -6.71601743e-02 2.88608402e-01 -6.70187250e-02 -1.06315839e+00 1.32750142e+00 3.63158941e-01 8.40763569e-01 -5.73578656e-01 8.96027982e-01 9.77281630e-02 -1.29947889e+00 -7.22198486e-02 -2.35902160e-01 2.03167632e-01 4.80561048e-01 1.30456164e-01 -6.84153378e-01 6.96892321e-01 7.05775142e-01 8.51850986e-01 -7.37092197e-01 8.68661225e-01 -4.30283964e-01 4.31483299e-01 -6.29793182e-02 -2.52129823e-01 5.67310214e-01 1.63364988e-02 8.85466874e-01 1.29368484e+00 4.94217843e-01 5.81637844e-02 2.49431748e-02 8.85636747e-01 1.07731827e-01 3.98224264e-01 -4.44894314e-01 -2.11254776e-01 2.54103035e-01 1.24748862e+00 -4.52576965e-01 -4.44488525e-01 -5.14126301e-01 8.79560351e-01 1.26259923e-01 3.05996090e-01 -1.17624140e+00 -1.21293567e-01 4.96377021e-01 1.12473071e-01 6.19783223e-01 -3.16213518e-02 8.91459698e-04 -1.04484797e+00 4.93532568e-01 -1.06655037e+00 3.25375557e-01 -1.40008795e+00 -1.14434099e+00 8.81501555e-01 2.08522201e-01 -1.34905922e+00 -1.61252439e-01 -6.20129287e-01 -3.29612195e-01 9.21914220e-01 -1.54255021e+00 -1.70746839e+00 -4.98734176e-01 4.94479299e-01 6.97467566e-01 -3.77319723e-01 4.84618664e-01 3.84371400e-01 -4.04554963e-01 4.18702930e-01 -2.18565762e-01 1.18287243e-01 7.34983921e-01 -9.45014119e-01 1.47082046e-01 1.02692366e+00 1.10491447e-01 2.38109916e-01 7.97985554e-01 -8.01259577e-01 -1.10820270e+00 -1.34497809e+00 1.28782392e+00 -2.90547907e-01 1.43210202e-01 -4.20633048e-01 -6.46444917e-01 6.63475811e-01 3.80583614e-01 -7.84144029e-02 1.12728328e-01 -6.70477927e-01 -3.10056776e-01 -1.13119662e-01 -1.20155776e+00 5.61350048e-01 8.71196926e-01 -1.63669497e-01 -9.74767327e-01 3.39928895e-01 8.36205542e-01 -4.66117710e-01 -1.97284222e-01 7.13281870e-01 2.19440877e-01 -8.11957061e-01 8.03744495e-01 -4.49312806e-01 6.91013634e-01 -7.44049191e-01 -3.68800372e-01 -1.09799004e+00 -3.40246975e-01 -4.00770932e-01 3.97992767e-02 1.52165508e+00 3.40569437e-01 -1.73560120e-02 3.20744783e-01 3.55735198e-02 -6.16241097e-01 -4.45090175e-01 -1.12545860e+00 -5.54613471e-01 -1.74360782e-01 -2.20567152e-01 5.50713480e-01 6.26298010e-01 -1.55411601e-01 6.64742291e-01 -4.67558533e-01 1.62907138e-01 2.66081244e-01 -1.36183530e-01 3.99571121e-01 -9.13990140e-01 9.97661613e-03 -1.79070994e-01 -7.34263003e-01 -9.54654694e-01 2.67618060e-01 -1.01289296e+00 3.09408784e-01 -2.07743263e+00 4.37440038e-01 1.29811214e-02 -1.32779062e-01 8.61055315e-01 -2.65049607e-01 3.35386395e-01 4.45938796e-01 5.12929261e-02 -7.12631404e-01 5.40976763e-01 1.42871737e+00 -3.31066579e-01 5.31768426e-02 -6.40856504e-01 -7.46788442e-01 4.78917211e-01 5.07419646e-01 -3.66961807e-01 -4.34277415e-01 -7.17674434e-01 1.83967844e-01 1.35638982e-01 5.98546147e-01 -1.01181531e+00 -1.48400709e-01 -1.47663444e-01 2.60003626e-01 -6.68156743e-01 2.88311809e-01 -7.27660537e-01 8.29440206e-02 1.63639680e-01 -8.85432214e-02 2.53750563e-01 4.62103277e-01 4.23807323e-01 -6.22454703e-01 -1.58459306e-01 8.75898123e-01 -5.90628646e-02 -9.35340226e-01 6.82939664e-02 -1.39487907e-01 -8.91390890e-02 1.35497046e+00 -3.36098552e-01 -4.79651153e-01 -4.48082745e-01 -7.62434006e-01 3.00502449e-01 2.69432545e-01 1.05255520e+00 8.05064440e-01 -1.60188806e+00 -1.20113051e+00 1.15297213e-01 2.74496526e-01 -1.27382219e-01 4.54353124e-01 7.84461558e-01 -6.78904295e-01 6.86781287e-01 -4.19117600e-01 -7.90791690e-01 -1.56198752e+00 5.97962201e-01 2.84303457e-01 -3.15250866e-02 -2.80202985e-01 9.28371131e-01 7.24671721e-01 -9.73982960e-02 1.69743776e-01 -1.85175389e-01 -6.09251082e-01 3.13974842e-02 2.49712154e-01 -6.60289750e-02 -1.96112216e-01 -1.50363553e+00 -5.15993774e-01 7.26073623e-01 -3.60031091e-02 -5.11734001e-02 1.05721533e+00 -3.73790920e-01 -2.12982148e-01 -1.06010847e-02 1.19105744e+00 -2.35798791e-01 -9.87326384e-01 1.25336006e-01 -4.13157493e-01 -3.40856194e-01 -2.17426077e-01 -1.08456659e+00 -1.00734341e+00 9.96644199e-01 7.10660815e-01 -3.12222093e-01 1.17384839e+00 1.92454815e-01 8.81228924e-01 -3.93053442e-01 6.95405602e-02 -8.25305402e-01 1.80571042e-02 5.30939162e-01 1.28532767e+00 -1.17211986e+00 -4.03029591e-01 -7.63450146e-01 -9.14538205e-01 8.76782954e-01 8.72413278e-01 3.91597748e-02 -4.68104705e-02 -2.15765938e-01 5.04809804e-02 3.68422456e-02 -6.95504844e-01 -2.34920532e-01 7.50865221e-01 5.78291535e-01 2.73318738e-01 -7.54049048e-02 -6.48971021e-01 6.97799623e-01 -3.48887146e-02 -1.65638611e-01 4.75982964e-01 8.15755904e-01 -4.86644775e-01 -1.18459213e+00 -4.34501320e-01 1.37824640e-01 -2.72128493e-01 -3.61657888e-01 -4.44388330e-01 6.33472264e-01 4.84490275e-01 1.03105783e+00 3.00483495e-01 -3.07836592e-01 1.74979284e-01 7.64572695e-02 5.13824046e-01 -6.53487086e-01 -6.14321291e-01 2.74345845e-01 1.50889114e-01 -4.63183761e-01 -5.79122245e-01 -6.98036671e-01 -1.27416790e+00 1.81140095e-01 -7.54316524e-02 1.89651638e-01 6.46951616e-01 1.01646006e+00 6.53488100e-01 5.56128323e-01 3.66193742e-01 -5.79248965e-01 -2.49602720e-01 -1.00341177e+00 -9.65650007e-02 6.14622176e-01 3.35511774e-01 -6.70932174e-01 -3.02923501e-01 3.52568001e-01]
[10.703654289245605, 0.8071751594543457]
82057e8a-74e1-40a9-bd6a-7407f5242916
cross-corpus-native-language-identification
null
null
https://aclanthology.org/W18-1605
https://aclanthology.org/W18-1605.pdf
Cross-corpus Native Language Identification via Statistical Embedding
In this paper, we approach the task of native language identification in a realistic cross-corpus scenario where a model is trained with available data and has to predict the native language from data of a different corpus. The motivation behind this study is to investigate native language identification in the Australian academic scenario where a majority of students come from China, Indonesia, and Arabic-speaking nations. We have proposed a statistical embedding representation reporting a significant improvement over common single-layer approaches of the state of the art, identifying Chinese, Arabic, and Indonesian in a cross-corpus scenario. The proposed approach was shown to be competitive even when the data is scarce and imbalanced.
['ra', 'Julian Brooke', 'Francisco Rangel', 'Alex Uitdenbogerd', 'Paolo Rosso']
2018-06-01
null
null
null
ws-2018-6
['cross-corpus', 'native-language-identification']
['computer-vision', 'natural-language-processing']
[-1.16878025e-01 -1.16590008e-01 -2.58704036e-01 -2.78499097e-01 -9.84755754e-01 -7.18147457e-01 6.77185833e-01 3.09800714e-01 -9.12519872e-01 8.61178041e-01 3.93348277e-01 -5.64605951e-01 1.92225292e-01 -5.47363997e-01 -1.51218981e-01 -4.29562956e-01 2.13863090e-01 7.93165267e-01 -4.68502045e-01 -4.04496908e-01 4.95069116e-01 4.96976227e-01 -1.22239733e+00 -5.07608987e-02 1.15798998e+00 2.90880769e-01 -2.42986828e-02 8.34482193e-01 -4.52696025e-01 6.23091698e-01 -5.31905234e-01 -7.70429909e-01 3.05000871e-01 -1.69174731e-01 -1.08654785e+00 -4.11757678e-02 8.76177549e-01 -4.08190349e-03 -1.20408252e-01 1.07806265e+00 1.10155940e+00 -1.73845254e-02 6.12639487e-01 -7.35619485e-01 -8.65775108e-01 9.30065632e-01 -4.15497333e-01 4.05068368e-01 5.73211193e-01 -2.23407894e-01 9.91338849e-01 -1.16465175e+00 7.38696456e-01 1.39966214e+00 7.83308804e-01 7.02774048e-01 -1.13787293e+00 -8.56118560e-01 2.95050885e-03 -3.36978175e-02 -1.37347138e+00 -5.99371314e-01 7.53481269e-01 -4.82185543e-01 1.04834795e+00 4.31174487e-02 1.95194989e-01 1.13199198e+00 -1.61565766e-01 9.44845438e-01 1.42891383e+00 -1.04538345e+00 -2.34072521e-01 8.89075398e-01 4.15834725e-01 4.34651583e-01 2.24294737e-01 -1.78656787e-01 -6.36846185e-01 2.18695551e-02 7.78467804e-02 -6.34818077e-01 -1.31241679e-01 5.67604899e-02 -1.31311715e+00 1.05503237e+00 -1.27877131e-01 8.91767621e-01 -2.89854765e-01 -6.66182101e-01 5.37967265e-01 5.04867911e-01 4.89675641e-01 6.69014752e-01 -4.93371487e-01 -4.99899566e-01 -1.21486354e+00 -1.14549950e-01 1.12977517e+00 7.00458705e-01 2.39234746e-01 4.45811659e-01 4.08362478e-01 9.13778126e-01 2.04115927e-01 1.96567819e-01 1.19704187e+00 -3.38402092e-01 8.80255222e-01 8.51714849e-01 -1.89002022e-01 -6.19532287e-01 -9.79841873e-02 -4.00221586e-01 -6.77963138e-01 1.80913657e-01 6.78879142e-01 -4.69212592e-01 -5.80936193e-01 1.38898647e+00 5.22695929e-02 1.22005185e-02 6.61766350e-01 3.99042547e-01 8.02031994e-01 5.19509792e-01 4.86081056e-02 1.14411250e-01 1.17909324e+00 -8.39173377e-01 -5.81573784e-01 -4.08500493e-01 6.29474461e-01 -1.30987000e+00 1.03398681e+00 3.31417620e-01 -8.99663150e-01 -8.65534425e-01 -1.04908764e+00 -2.06837412e-02 -9.24975157e-01 5.35429060e-01 1.01809919e-01 1.20878828e+00 -1.20476949e+00 1.72001332e-01 -1.73313424e-01 -5.42672276e-01 8.35263282e-02 5.65833211e-01 -9.10023808e-01 -3.05180550e-01 -1.12685537e+00 9.55681920e-01 8.61026287e-01 -1.17243394e-01 -1.76481977e-01 -6.50010407e-01 -9.06909406e-01 -5.92160709e-02 -3.13958764e-01 2.17063084e-01 6.57090008e-01 -1.20264125e+00 -1.35401535e+00 1.28246844e+00 7.87436515e-02 -2.37700075e-01 5.51888227e-01 -8.99249539e-02 -7.47574806e-01 -4.56069946e-01 1.00302115e-01 4.25373167e-01 1.95708692e-01 -1.01003754e+00 -5.92841744e-01 -4.26498115e-01 -3.64124298e-01 3.07201952e-01 -7.65039444e-01 4.79214489e-01 -1.21279880e-01 -6.15231752e-01 -2.65375257e-01 -7.78723121e-01 -7.82568287e-03 -1.01854670e+00 -1.49538755e-01 -5.04211903e-01 5.83223343e-01 -1.30382860e+00 1.54631829e+00 -2.03582907e+00 9.52286720e-02 2.46877104e-01 -1.18356384e-01 4.80313480e-01 -2.58870870e-01 6.83886766e-01 -2.40794912e-01 4.57574934e-01 4.44110185e-02 -4.42179918e-01 1.42206222e-01 4.09538485e-02 -2.23914385e-02 4.55753982e-01 2.91381717e-01 2.68304110e-01 -7.50492513e-01 -7.10978985e-01 -7.47258402e-03 5.63454628e-01 -1.10600241e-01 3.31261307e-01 5.97726047e-01 1.85828596e-01 -1.87548518e-01 9.04196322e-01 6.80175960e-01 4.35691983e-01 4.65710133e-01 1.81012630e-01 -5.45689046e-01 4.26727682e-01 -1.66914201e+00 1.26347613e+00 -7.23395467e-01 9.29147005e-01 1.68036506e-01 -1.07714248e+00 1.14675486e+00 4.91095752e-01 2.25353137e-01 -6.03403986e-01 2.20820084e-01 7.69956291e-01 5.31703174e-01 -2.81822920e-01 7.93679714e-01 8.81428644e-02 -3.34688008e-01 5.69078267e-01 4.01917160e-01 1.87986538e-01 5.17532349e-01 -1.69639736e-02 5.44145942e-01 7.27750584e-02 5.12825191e-01 -6.85470700e-01 1.26561999e+00 3.84255797e-02 3.07429612e-01 5.55081904e-01 -5.14104545e-01 3.57985884e-01 2.45182469e-01 -5.19333482e-01 -1.14740658e+00 -7.79202700e-01 -2.97613263e-01 1.34499359e+00 -5.87102115e-01 -2.44153187e-01 -6.71931803e-01 -7.03056633e-01 -8.89459029e-02 6.58858538e-01 -4.33363616e-01 7.34390244e-02 -1.06581974e+00 -9.88371909e-01 7.50642240e-01 2.24163309e-01 3.96909565e-01 -9.88733947e-01 -1.34697273e-01 3.32364917e-01 8.43038633e-02 -1.18562555e+00 -6.68027580e-01 9.47413296e-02 -4.74137902e-01 -8.73928785e-01 -7.37206638e-01 -1.45388091e+00 6.02493703e-01 -5.57957470e-01 1.53599668e+00 -2.91165531e-01 -2.96709370e-02 3.41119051e-01 -1.48625255e-01 -6.51417196e-01 -7.73161829e-01 6.35688186e-01 4.03004408e-01 8.37394688e-03 1.08112824e+00 1.66337583e-02 -5.16101904e-02 -3.38392049e-01 -5.70681930e-01 -4.95273978e-01 5.12040913e-01 9.63483870e-01 1.11258410e-01 2.64972299e-01 5.79776287e-01 -1.07502615e+00 1.09462070e+00 -5.14603555e-01 -3.46225888e-01 5.61967194e-01 -7.97919273e-01 -2.24069841e-02 8.40817809e-01 -6.30486667e-01 -7.96023726e-01 2.60333627e-01 -2.61407405e-01 1.94079459e-01 -2.93099463e-01 5.75709939e-01 -2.22762510e-01 -1.47206098e-01 3.28611284e-01 5.05086839e-01 -8.19316804e-02 -6.46456599e-01 -1.67590333e-04 1.34964502e+00 4.63955492e-01 -6.00050092e-01 6.32972896e-01 -4.05594230e-01 -5.65165818e-01 -7.53252208e-01 -2.67602712e-01 -7.80405462e-01 -1.27885544e+00 -1.08914472e-01 6.14775181e-01 -1.30358839e+00 -6.90181971e-01 5.95362544e-01 -9.45234418e-01 -5.73548377e-02 9.85388532e-02 7.81921983e-01 1.48483083e-01 1.31992564e-01 -4.30346042e-01 -1.00872958e+00 -4.64480340e-01 -1.31475985e+00 5.64849257e-01 4.28626329e-01 -3.31665099e-01 -1.57568884e+00 2.33774424e-01 4.36492622e-01 3.97191167e-01 2.05531064e-02 7.69939661e-01 -1.44315374e+00 1.56386733e-01 -4.23663706e-01 7.35584786e-03 5.42351902e-01 2.37801164e-01 7.32202977e-02 -1.03049839e+00 -6.62913740e-01 -3.68890971e-01 -5.54155707e-01 4.24711734e-01 -2.27501571e-01 4.73013967e-01 -2.67328233e-01 1.88607007e-01 1.27733499e-01 1.71833098e+00 -5.90677555e-05 -6.72270358e-02 5.79441965e-01 8.34786892e-01 7.04285145e-01 1.77160472e-01 -4.55216458e-03 5.98099649e-01 3.59555155e-01 -2.68461853e-01 -1.75901817e-03 -5.30478694e-02 -4.36142944e-02 7.21350551e-01 1.56654203e+00 1.90662056e-01 -1.47228047e-01 -1.59060097e+00 1.00359201e+00 -1.12594807e+00 -7.62689829e-01 7.92327002e-02 2.06551743e+00 1.36440384e+00 -1.93557027e-03 3.59109402e-01 1.78472415e-01 5.09582818e-01 -2.29671031e-01 -7.55681768e-02 -1.23680234e+00 -3.24764282e-01 4.73399431e-01 7.49351323e-01 8.67969692e-01 -1.24192417e+00 1.03093410e+00 6.49622393e+00 6.81177795e-01 -1.45387721e+00 9.07750428e-03 7.68156946e-01 4.00629252e-01 -7.62580931e-02 -4.11606640e-01 -1.37622571e+00 5.58447599e-01 1.53388786e+00 -3.56165707e-01 1.53296247e-01 5.75980306e-01 -3.43319535e-01 1.72589108e-01 -9.76415873e-01 8.18620861e-01 6.48651361e-01 -8.27576995e-01 -1.15351304e-02 1.83719426e-01 8.96297753e-01 1.83465645e-01 1.55919731e-01 6.05745494e-01 5.96729875e-01 -1.32403159e+00 4.65782046e-01 2.19331726e-01 6.19910359e-01 -8.51481676e-01 1.11383510e+00 5.02714157e-01 -7.98768818e-01 -9.47983935e-02 -1.10052742e-01 7.21699744e-02 -4.13917154e-01 -2.88797133e-02 -1.18395352e+00 4.60841030e-01 5.74398935e-01 4.83489633e-01 -9.04307961e-01 6.13490522e-01 3.74652594e-01 8.86322737e-01 -1.94965050e-01 -8.54646266e-02 5.16742826e-01 -4.50383514e-01 2.59071052e-01 1.52488577e+00 4.80679482e-01 -5.88383734e-01 3.91249090e-01 2.98919916e-01 -2.30391055e-01 8.51623952e-01 -7.26800561e-01 -3.59968722e-01 4.40697193e-01 9.87150967e-01 -4.37749535e-01 -2.36393228e-01 -8.59496713e-01 9.63068545e-01 5.68669260e-01 4.77149151e-02 -8.29374641e-02 -4.87785518e-01 5.18206477e-01 -2.65395552e-01 1.79093495e-01 -1.95943654e-01 -3.37408662e-01 -1.08549261e+00 -7.47591481e-02 -1.35863185e+00 6.19885921e-01 -1.44218942e-02 -1.47958148e+00 8.89312744e-01 -4.05013293e-01 -1.06461263e+00 -4.88104522e-01 -1.22479737e+00 -5.48174143e-01 1.63083589e+00 -1.55470693e+00 -1.22247553e+00 3.74901742e-01 3.63316774e-01 6.98427379e-01 -1.20438910e+00 1.19124007e+00 6.23890579e-01 -9.04382706e-01 9.92259800e-01 5.44005871e-01 7.95537412e-01 9.70776796e-01 -1.70941257e+00 1.21001050e-01 1.20165575e+00 4.23808426e-01 8.17400694e-01 4.85559732e-01 -4.80637521e-01 -1.21979475e+00 -7.52327442e-01 1.78652859e+00 -6.19643927e-01 8.39258313e-01 -4.59007651e-01 -7.88678765e-01 5.40444195e-01 8.66534710e-01 -2.32234135e-01 1.23393357e+00 1.89613804e-01 -2.52315044e-01 -1.23062981e-02 -1.13398468e+00 3.52262855e-01 1.49659999e-03 -8.23552787e-01 -6.20550990e-01 2.46229187e-01 -9.04812664e-02 -3.30829471e-01 -1.33753026e+00 -1.85523540e-01 5.04264891e-01 -6.01997435e-01 1.03276813e+00 -8.48456621e-01 2.22938120e-01 2.29316831e-01 -1.29943892e-01 -1.50208592e+00 -3.69402170e-02 -4.80598330e-01 1.19739220e-01 1.78725803e+00 6.22238934e-01 -3.94783795e-01 6.39881611e-01 4.76280391e-01 2.10374340e-01 -3.92961532e-01 -1.12388003e+00 -5.13698161e-01 8.43397439e-01 -6.11951239e-02 4.98675585e-01 1.45555592e+00 -1.42397240e-01 4.23555076e-01 -2.99662501e-01 -1.15650535e-01 2.28402525e-01 -1.16360309e-02 5.10695517e-01 -1.33606756e+00 1.90066472e-01 -7.33178139e-01 -3.09949934e-01 -2.80833282e-02 8.24588835e-01 -1.16953170e+00 -2.73540407e-01 -1.09077728e+00 -3.54855098e-02 -3.01672488e-01 -4.36502337e-01 2.29856476e-01 -4.24293905e-01 3.46976936e-01 2.43121549e-01 -9.14017558e-02 -6.54191449e-02 7.88536016e-03 7.34534383e-01 -2.58725435e-01 -3.61420773e-02 -5.97380921e-02 -8.90870154e-01 4.18926567e-01 9.89361048e-01 -3.56470346e-01 -5.19874468e-02 -4.27457184e-01 7.50888586e-02 -5.86296201e-01 -2.39855915e-01 -9.63292956e-01 2.32971907e-01 1.57082409e-01 5.41626096e-01 -9.88967270e-02 -2.33311206e-02 -1.00501931e+00 -4.63408113e-01 5.23260295e-01 -2.80329317e-01 9.10418749e-01 4.23382282e-01 -8.27256516e-02 -5.82309961e-01 -5.11537910e-01 6.54237509e-01 -2.63987035e-01 -9.74837542e-01 1.36307236e-02 -4.39208806e-01 3.30811679e-01 8.43043983e-01 -3.75833035e-01 1.13925271e-01 1.62865669e-02 -3.51492286e-01 1.28130570e-01 2.53920823e-01 7.01273501e-01 2.05723569e-01 -1.48370123e+00 -1.40509522e+00 4.87038285e-01 4.35227267e-02 -6.75807893e-01 -2.41441160e-01 6.39860332e-01 -7.22055733e-01 7.02144146e-01 -5.05228281e-01 -1.53388977e-01 -1.49856901e+00 1.03655621e-01 1.86735883e-01 -6.08944416e-01 2.07670797e-02 8.86513650e-01 -6.73205078e-01 -1.46046805e+00 2.99997240e-01 2.50303388e-01 -8.31171155e-01 5.42307675e-01 3.12423497e-01 3.11563820e-01 1.56385079e-01 -1.42737567e+00 -4.08297420e-01 5.30823231e-01 -7.85368681e-02 -1.95312172e-01 1.17929852e+00 -3.28502655e-02 -1.88362733e-01 7.62301266e-01 1.35403335e+00 7.81680346e-01 -3.61376166e-01 -2.57978886e-01 2.85017610e-01 -1.76093340e-01 1.07011005e-01 -9.16818738e-01 -7.52480209e-01 9.13989484e-01 9.59492028e-01 3.44334245e-02 9.12070513e-01 -4.60941106e-01 5.29474676e-01 1.16191722e-01 -2.50016391e-01 -1.63451254e+00 -4.24314976e-01 8.07099938e-01 5.36368668e-01 -1.84910238e+00 -1.07347608e-01 9.46907997e-02 -5.76616108e-01 1.61240613e+00 8.16576481e-01 1.62943229e-01 7.38505185e-01 2.65523374e-01 5.50155878e-01 3.90782118e-01 -3.71254146e-01 -1.17939927e-01 6.21073306e-01 5.37182331e-01 1.39035296e+00 2.08653271e-01 -3.74410987e-01 5.34839392e-01 -5.72886050e-01 -4.43535894e-01 6.42621040e-01 5.33163548e-01 1.58366904e-01 -1.76827955e+00 -5.26201546e-01 2.44906634e-01 -1.01110446e+00 -4.76473242e-01 -6.85597777e-01 1.21699393e+00 4.45925206e-01 7.31024027e-01 2.34995738e-01 -2.55147040e-01 5.69556095e-02 7.75429308e-01 1.43705383e-01 -4.62474883e-01 -1.18731141e+00 -2.61001736e-01 1.97870195e-01 1.77265346e-01 -5.17504752e-01 -1.08651924e+00 -7.42822587e-01 -3.80624712e-01 4.08808067e-02 4.27447945e-01 7.26816297e-01 6.07147336e-01 5.13479114e-02 3.55148166e-01 5.51165640e-01 -3.10393989e-01 -6.39001727e-01 -1.32585919e+00 -4.29927856e-01 4.39062476e-01 3.38292420e-01 -6.08207509e-02 -1.73520908e-01 4.32257243e-02]
[10.332315444946289, 10.503157615661621]
04527bc4-7517-4e33-bc57-374ceb8069cd
background-modeling-via-uncertainty
2006.07006
null
https://arxiv.org/abs/2006.07006v3
https://arxiv.org/pdf/2006.07006v3.pdf
Weakly-supervised Temporal Action Localization by Uncertainty Modeling
Weakly-supervised temporal action localization aims to learn detecting temporal intervals of action classes with only video-level labels. To this end, it is crucial to separate frames of action classes from the background frames (i.e., frames not belonging to any action classes). In this paper, we present a new perspective on background frames where they are modeled as out-of-distribution samples regarding their inconsistency. Then, background frames can be detected by estimating the probability of each frame being out-of-distribution, known as uncertainty, but it is infeasible to directly learn uncertainty without frame-level labels. To realize the uncertainty learning in the weakly-supervised setting, we leverage the multiple instance learning formulation. Moreover, we further introduce a background entropy loss to better discriminate background frames by encouraging their in-distribution (action) probabilities to be uniformly distributed over all action classes. Experimental results show that our uncertainty modeling is effective at alleviating the interference of background frames and brings a large performance gain without bells and whistles. We demonstrate that our model significantly outperforms state-of-the-art methods on the benchmarks, THUMOS'14 and ActivityNet (1.2 & 1.3). Our code is available at https://github.com/Pilhyeon/WTAL-Uncertainty-Modeling.
['Pilhyeon Lee', 'Yan Lu', 'Jinglu Wang', 'Hyeran Byun']
2020-06-12
null
null
null
null
['weakly-supervised-action-localization', 'weakly-supervised-temporal-action']
['computer-vision', 'computer-vision']
[ 1.71560884e-01 1.46444574e-01 -6.74152076e-01 -3.30799967e-01 -1.07730854e+00 -4.09108579e-01 4.85179543e-01 -2.21633404e-01 -1.68941662e-01 9.25949991e-01 1.52832955e-01 -2.41765771e-02 1.63460255e-01 -4.62925375e-01 -1.09004235e+00 -1.05070722e+00 -2.65744567e-01 6.55865744e-02 5.58993638e-01 5.39760113e-01 -1.21450327e-01 -2.84077935e-02 -1.29562306e+00 5.83801806e-01 5.12258291e-01 1.24542224e+00 -8.16750377e-02 5.99442422e-01 2.98959874e-02 1.73350358e+00 -6.78155422e-01 -1.24975957e-01 2.52643734e-01 -6.33839488e-01 -6.16527438e-01 4.67552841e-01 5.00092447e-01 -7.36462653e-01 -6.65557504e-01 1.28570235e+00 1.17368825e-01 2.24570289e-01 4.96307135e-01 -1.63117552e+00 -2.97825903e-01 5.84963500e-01 -7.91975141e-01 5.91716170e-01 2.20587105e-01 2.44473979e-01 8.51594687e-01 -7.27814257e-01 3.49741518e-01 1.29744196e+00 3.12354267e-01 5.49541891e-01 -9.56697047e-01 -6.58407032e-01 7.34937787e-01 5.95837533e-01 -1.40708518e+00 -6.28178895e-01 7.21959651e-01 -3.87138158e-01 4.79545534e-01 2.35063374e-01 3.50581855e-01 1.43608749e+00 6.16771132e-02 1.34409094e+00 9.34458435e-01 -7.22957999e-02 4.36101437e-01 -2.14170590e-01 -1.40133044e-02 6.26542687e-01 -1.05160698e-02 -8.97899941e-02 -7.14962006e-01 4.07373905e-02 8.35111141e-01 2.33671039e-01 -4.11982000e-01 -2.78176755e-01 -1.20776927e+00 4.01222259e-01 -8.95323610e-05 -4.49943962e-03 -7.37290382e-02 6.08440816e-01 4.10629660e-01 -6.12946562e-02 6.63063467e-01 -4.60687041e-01 -5.55192828e-01 -4.45254505e-01 -8.17222536e-01 -6.38352409e-02 4.59830046e-01 1.16556644e+00 6.42148376e-01 -2.76119020e-02 -6.67408705e-01 4.12635386e-01 2.79811591e-01 4.55163807e-01 1.63183376e-01 -1.37677658e+00 5.52163064e-01 2.48079255e-01 4.43427354e-01 -7.52513885e-01 7.27041904e-03 -2.00664267e-01 -7.04411626e-01 2.44383827e-01 7.88996518e-01 -2.51012176e-01 -7.97034144e-01 1.86021733e+00 3.16643357e-01 1.19796443e+00 3.53933312e-02 8.44681919e-01 4.17455763e-01 6.93691313e-01 1.12641439e-01 -4.86930341e-01 1.19592345e+00 -1.21897674e+00 -8.18038881e-01 -2.27175444e-01 4.87188369e-01 -3.58478755e-01 8.51534367e-01 3.13318372e-01 -9.59409475e-01 -5.85833073e-01 -7.32011557e-01 2.27977067e-01 1.83267012e-01 2.08154693e-01 4.66417283e-01 3.91368687e-01 -5.31989336e-01 6.51739299e-01 -1.44111073e+00 1.37684882e-01 1.02772927e+00 -1.37581900e-02 -1.58871502e-01 -5.64212501e-02 -9.38810647e-01 4.49706912e-01 4.57897872e-01 -9.84261557e-02 -1.34126329e+00 -5.63969553e-01 -9.47032750e-01 -9.83844027e-02 1.00492597e+00 -2.15416685e-01 1.26471281e+00 -1.16084957e+00 -1.24537826e+00 5.07334411e-01 -4.10316736e-01 -6.41137779e-01 8.35651398e-01 -4.06534463e-01 -4.06753093e-01 3.85224551e-01 1.82958841e-01 4.16801512e-01 1.04195297e+00 -1.15930319e+00 -1.08898818e+00 -1.20558329e-02 4.23058450e-01 8.82868096e-02 -7.16307061e-03 4.07879800e-02 -7.83651114e-01 -5.83715618e-01 5.12595698e-02 -8.44741464e-01 -2.70405784e-03 2.65425920e-01 -4.72854733e-01 -1.93751469e-01 8.26156378e-01 -5.63788176e-01 1.32827437e+00 -2.26030731e+00 -2.94198871e-01 -1.55745715e-01 1.47806749e-01 9.46523342e-03 9.32049751e-02 -2.16065675e-01 1.10095009e-01 8.29815045e-02 -1.68156803e-01 -4.00658399e-01 1.04145110e-01 4.90642846e-01 -2.88992941e-01 7.21304238e-01 3.65353912e-01 7.16226399e-01 -1.33294690e+00 -7.06910431e-01 4.11145985e-01 3.98154408e-01 -3.73668998e-01 7.93004483e-02 -4.37431335e-01 8.02620292e-01 -5.06927371e-01 9.12553251e-01 6.79530025e-01 -2.90848345e-01 -2.33042352e-02 -2.63031006e-01 2.05921367e-01 4.03758548e-02 -1.39646959e+00 1.61761200e+00 -1.40148416e-01 6.15328789e-01 -1.99635372e-01 -1.01225245e+00 1.85983837e-01 3.69391829e-01 6.69392645e-01 -3.21702957e-01 9.21738595e-02 -2.11013034e-01 -1.71675280e-01 -4.61554170e-01 5.85077181e-02 1.21454477e-01 6.45405203e-02 1.84579492e-01 1.24436796e-01 4.69463110e-01 4.61019158e-01 1.28860921e-01 1.14218831e+00 5.41238129e-01 1.07577778e-01 -5.20895720e-02 5.07598162e-01 -5.84070623e-01 1.18414485e+00 8.75947237e-01 -7.40910292e-01 6.31525755e-01 8.12576950e-01 -2.03678980e-01 -4.96530503e-01 -1.19997561e+00 -4.52573150e-02 9.71913993e-01 4.10002470e-01 -4.54417080e-01 -8.19357336e-01 -1.04011595e+00 -2.79405117e-01 6.31971538e-01 -6.17094398e-01 -1.03813283e-01 -4.14262265e-01 -6.16520166e-01 4.51923728e-01 7.32485831e-01 5.86828768e-01 -6.77855670e-01 -6.42503440e-01 6.93809539e-02 -4.80889201e-01 -1.46663833e+00 -6.63849354e-01 9.22399163e-02 -7.30191886e-01 -1.34713900e+00 -5.28909326e-01 -2.43342817e-01 6.30283654e-01 2.13407502e-01 1.24895251e+00 -9.37174782e-02 3.21772136e-02 5.61418533e-01 -4.00340736e-01 -3.15118909e-01 -1.78110614e-01 -5.65919638e-01 8.48013386e-02 3.46699476e-01 4.79382336e-01 -4.85677153e-01 -7.19871819e-01 5.60603976e-01 -8.43760550e-01 -1.01589106e-01 2.43050382e-01 6.06068909e-01 1.00394857e+00 5.88589251e-01 2.94281512e-01 -5.43739974e-01 -2.27102861e-01 -5.74648142e-01 -5.95740438e-01 3.46956849e-01 1.62099469e-02 -1.06195211e-01 2.37749174e-01 -6.23659909e-01 -1.14244998e+00 9.87125039e-02 2.37483561e-01 -8.01609039e-01 -3.62617731e-01 -2.99133696e-02 -4.71861660e-01 3.17679167e-01 2.57364362e-01 1.12437725e-01 -3.72829139e-01 -1.97135240e-01 2.74611443e-01 3.74687195e-01 6.24999821e-01 -8.12319934e-01 6.45632565e-01 9.54553008e-01 -8.01657215e-02 -6.86853051e-01 -1.32980895e+00 -5.16966701e-01 -4.74493861e-01 -5.10403752e-01 9.51885402e-01 -1.29775298e+00 -4.29961264e-01 5.91077268e-01 -9.91972208e-01 -5.58994591e-01 -5.06152868e-01 6.07197762e-01 -6.35893762e-01 6.76333845e-01 -5.89871526e-01 -1.15873480e+00 3.08246434e-01 -1.11213076e+00 1.24549842e+00 3.38236421e-01 8.68129134e-02 -9.15323913e-01 -2.87872851e-01 3.60745579e-01 -1.88003436e-01 4.59297806e-01 1.80986255e-01 -4.04394537e-01 -9.46530819e-01 -1.21263061e-02 -8.36708769e-02 6.57170296e-01 3.00925285e-01 1.21316023e-01 -1.18767953e+00 -8.81842300e-02 2.88833044e-02 -3.61642987e-01 1.10772479e+00 6.23622298e-01 1.55053604e+00 -2.93739915e-01 -2.44863153e-01 4.51676607e-01 1.04763520e+00 2.19360486e-01 7.94879317e-01 6.38454556e-02 6.82810783e-01 2.25611880e-01 8.83067429e-01 7.84639060e-01 2.94758618e-01 6.18583977e-01 6.39429927e-01 2.17095971e-01 -1.62601277e-01 -2.80081362e-01 8.09333503e-01 5.56048304e-02 -1.07207507e-01 -4.30187702e-01 -5.85894585e-01 4.38519597e-01 -2.30791926e+00 -1.44731259e+00 -1.09058157e-01 2.18843865e+00 8.69107187e-01 5.28974891e-01 2.02974081e-01 7.76562169e-02 8.81706834e-01 3.98945063e-01 -7.54868090e-01 5.28697968e-01 -2.15081647e-01 -1.61957592e-01 4.73311901e-01 5.97331166e-01 -1.68444121e+00 7.88037181e-01 4.93190527e+00 1.08383429e+00 -4.74217951e-01 2.55967498e-01 1.11256957e+00 -4.18490559e-01 7.60243312e-02 3.55404094e-02 -9.47835863e-01 9.84573126e-01 7.32527554e-01 5.73051870e-02 2.84887880e-01 7.84122825e-01 4.56879318e-01 -4.13831145e-01 -1.37660813e+00 1.04447353e+00 -2.80705281e-02 -1.06904435e+00 -3.04521054e-01 -2.33999074e-01 8.56888175e-01 -1.24737307e-01 -2.22638205e-01 4.95915264e-01 1.04058370e-01 -6.64243996e-01 1.09468484e+00 6.29351437e-01 4.95166928e-01 -5.77515721e-01 6.48848951e-01 3.62420887e-01 -1.31988096e+00 -8.47525448e-02 -4.37553674e-01 -1.40679613e-01 3.34007770e-01 9.10150230e-01 -1.12306163e-01 3.78207117e-01 8.52337301e-01 1.02447152e+00 -3.18816185e-01 8.22669744e-01 -4.96133268e-01 8.10524285e-01 -3.56361985e-01 4.16023493e-01 6.93282634e-02 -1.59592435e-01 4.42822307e-01 1.10395849e+00 2.37153798e-01 1.91055849e-01 6.29847467e-01 7.41817594e-01 -9.36512128e-02 -5.10685146e-01 -1.76257908e-01 -5.55725442e-03 3.80947351e-01 9.37345803e-01 -7.85958946e-01 -5.75135887e-01 -7.30616152e-01 1.05711389e+00 -6.19473010e-02 5.03325403e-01 -1.53169179e+00 2.16591060e-01 9.01650250e-01 -2.02537224e-01 2.73301303e-01 4.23142835e-02 1.02824301e-01 -1.56494975e+00 3.23337406e-01 -6.82282865e-01 5.02353191e-01 -6.99857593e-01 -1.23739398e+00 2.22158954e-01 1.99096799e-01 -1.46248865e+00 -7.45732039e-02 -5.36628962e-01 -5.43362319e-01 4.10245895e-01 -1.54250169e+00 -9.04102862e-01 -3.31372827e-01 7.77871132e-01 8.19548845e-01 1.87840134e-01 2.43661329e-01 3.31835836e-01 -7.54769444e-01 3.94732416e-01 -4.44322415e-02 3.56737912e-01 7.13670015e-01 -1.35487640e+00 -5.41117005e-02 1.14016819e+00 3.40751976e-01 1.28516853e-02 5.77672660e-01 -5.91518760e-01 -9.62468147e-01 -1.33027673e+00 3.77686977e-01 -7.44859397e-01 9.19955254e-01 -1.98772296e-01 -8.18912506e-01 8.42453778e-01 -1.68469697e-02 6.54533446e-01 4.98634458e-01 -2.96417803e-01 -1.91453755e-01 -5.95385171e-02 -9.65796590e-01 5.77215254e-01 1.25838256e+00 -5.73009670e-01 -3.88406813e-01 6.13282979e-01 6.80945635e-01 -5.62866986e-01 -6.99158788e-01 4.30747718e-01 4.03503150e-01 -1.22268951e+00 9.37367857e-01 -5.91884375e-01 4.34574991e-01 -6.33459508e-01 -3.99978518e-01 -8.25206697e-01 -7.07549378e-02 -6.56083763e-01 -9.29780245e-01 1.38698554e+00 1.64267331e-01 -2.50393540e-01 9.03954089e-01 6.42093122e-01 -4.47200760e-02 -6.77502453e-01 -1.15260243e+00 -1.09936321e+00 -2.79220700e-01 -7.80628502e-01 2.50953287e-01 7.52870500e-01 -1.55765280e-01 -9.55739021e-02 -6.24375761e-01 5.36215603e-01 8.09129477e-01 -1.00382447e-01 5.95842540e-01 -7.25733221e-01 -6.23937845e-01 -2.11913019e-01 -4.79487836e-01 -1.29126108e+00 4.31054950e-01 -3.27171564e-01 3.14725429e-01 -1.12922609e+00 4.28232253e-01 -3.86015661e-02 -7.72588193e-01 5.33707023e-01 -3.71836066e-01 1.57261267e-01 2.01702118e-01 1.28224984e-01 -1.28946602e+00 5.84443748e-01 1.03003490e+00 -3.04341376e-01 5.91674596e-02 2.94780463e-01 -3.75980467e-01 1.18313336e+00 9.11057413e-01 -5.19168675e-01 -6.21126413e-01 -2.98533976e-01 -1.61243260e-01 1.08842559e-01 6.05604887e-01 -1.19506180e+00 -7.88589343e-02 -3.17678779e-01 3.31808597e-01 -6.81363225e-01 2.85141230e-01 -9.09370661e-01 -2.31834985e-02 2.33166695e-01 -3.05097908e-01 -5.27413607e-01 5.77159598e-02 1.13882887e+00 -1.78568795e-01 -1.73504606e-01 8.26647222e-01 -1.39554590e-01 -9.29488003e-01 5.71380377e-01 -2.64816552e-01 3.90476882e-01 1.23457944e+00 -1.76453050e-02 -3.70818466e-01 -4.49521601e-01 -8.50567877e-01 3.47357899e-01 3.27733308e-01 2.47876540e-01 3.63171846e-01 -1.39336824e+00 -5.57177186e-01 -1.13797136e-01 1.58978105e-01 1.58559412e-01 4.63651091e-01 1.09409785e+00 -1.12906225e-01 8.08902904e-02 2.67978817e-01 -9.12051916e-01 -1.22059548e+00 5.46576083e-01 3.92991930e-01 -2.58104235e-01 -4.92462963e-01 9.50190544e-01 4.96112615e-01 2.29037389e-01 7.00523853e-01 -6.89173698e-01 9.52085480e-02 -6.94900230e-02 8.24322939e-01 5.96795440e-01 -4.20640618e-01 -5.88331878e-01 -5.35968840e-01 1.76242769e-01 2.08934665e-01 9.47972015e-02 9.17361438e-01 -2.37060606e-01 1.23352900e-01 6.48955882e-01 9.63066638e-01 -3.70437116e-03 -2.29278755e+00 -2.78485060e-01 8.51177331e-03 -7.12868750e-01 -3.47547308e-02 -6.10645294e-01 -1.13468730e+00 7.63810694e-01 7.80126274e-01 1.91756450e-02 1.19326973e+00 2.69993871e-01 5.47164440e-01 2.62091845e-01 4.65942025e-01 -1.21096444e+00 3.69432867e-01 3.19488913e-01 4.97783184e-01 -1.62134182e+00 -6.15561791e-02 -4.35106695e-01 -7.05117881e-01 8.48851383e-01 6.44054055e-01 6.24591261e-02 7.18915224e-01 4.37912941e-01 -1.66795120e-01 1.60220757e-01 -6.88223958e-01 -4.24053043e-01 1.28802642e-01 6.53080463e-01 2.03534395e-01 9.56185907e-02 9.39084217e-02 7.15462327e-01 7.19968557e-01 2.04990581e-01 5.29437959e-01 1.02528727e+00 -4.48876351e-01 -8.50820422e-01 -3.15541744e-01 2.87744313e-01 -7.56735504e-01 -7.71937072e-02 -1.37485610e-02 5.57822108e-01 3.87267500e-01 1.16988766e+00 1.38558317e-02 -1.37853727e-01 1.05706915e-01 2.82713287e-02 5.71798265e-01 -4.18380558e-01 3.41152459e-01 3.59892666e-01 1.80132851e-01 -8.95929396e-01 -8.45227599e-01 -8.65415871e-01 -1.34505320e+00 7.87059683e-03 -2.95248926e-01 -5.07293530e-02 -3.14035267e-02 1.00060725e+00 1.41711399e-01 6.79671466e-01 5.40646791e-01 -8.96281123e-01 -5.41080415e-01 -7.57380366e-01 -6.91678882e-01 3.90724450e-01 4.84626830e-01 -8.52478087e-01 -6.93465769e-01 5.43592334e-01]
[8.503457069396973, 0.6667400002479553]
d4d49087-b07c-4aa3-9edd-b888d049440f
deep-co-attention-based-comparators-for
1804.11027
null
http://arxiv.org/abs/1804.11027v1
http://arxiv.org/pdf/1804.11027v1.pdf
Deep Co-attention based Comparators For Relative Representation Learning in Person Re-identification
Person re-identification (re-ID) requires rapid, flexible yet discriminant representations to quickly generalize to unseen observations on-the-fly and recognize the same identity across disjoint camera views. Recent effective methods are developed in a pair-wise similarity learning system to detect a fixed set of features from distinct regions which are mapped to their vector embeddings for the distance measuring. However, the most relevant and crucial parts of each image are detected independently without referring to the dependency conditioned on one and another. Also, these region based methods rely on spatial manipulation to position the local features in comparable similarity measuring. To combat these limitations, in this paper we introduce the Deep Co-attention based Comparators (DCCs) that fuse the co-dependent representations of the paired images so as to focus on the relevant parts of both images and produce their \textit{relative representations}. Given a pair of pedestrian images to be compared, the proposed model mimics the foveation of human eyes to detect distinct regions concurrent on both images, namely co-dependent features, and alternatively attend to relevant regions to fuse them into the similarity learning. Our comparator is capable of producing dynamic representations relative to a particular sample every time, and thus well-suited to the case of re-identifying pedestrians on-the-fly. We perform extensive experiments to provide the insights and demonstrate the effectiveness of the proposed DCCs in person re-ID. Moreover, our approach has achieved the state-of-the-art performance on three benchmark data sets: DukeMTMC-reID \cite{DukeMTMC}, CUHK03 \cite{FPNN}, and Market-1501 \cite{Market1501}.
['DaCheng Tao', 'Lin Wu', 'Yang Wang', 'Junbin Gao']
2018-04-30
null
null
null
null
['foveation']
['computer-vision']
[ 1.57066043e-02 -3.72744918e-01 2.06931576e-01 -5.12620866e-01 -6.64097667e-01 -5.54342091e-01 8.22254300e-01 1.46169409e-01 -8.11909020e-01 5.76961219e-01 -8.23196843e-02 1.94601104e-01 -3.32389399e-02 -6.17721379e-01 -7.24948645e-01 -6.49098754e-01 -4.06715348e-02 3.50203097e-01 3.11347634e-01 -1.01013832e-01 1.77824393e-01 5.72724581e-01 -1.96021998e+00 1.71610385e-01 7.19997346e-01 8.30644786e-01 2.62740046e-01 6.69582248e-01 4.04747963e-01 1.88589409e-01 -4.64451075e-01 -7.63677061e-01 5.25805950e-01 -3.41300249e-01 -6.04143381e-01 1.48074761e-01 1.00837028e+00 -3.05240124e-01 -5.40489376e-01 1.29293799e+00 6.01271510e-01 4.59997594e-01 7.59247363e-01 -1.39388871e+00 -9.16635692e-01 -9.26576480e-02 -7.84513772e-01 6.96386158e-01 5.75830042e-01 4.20599133e-01 5.71362674e-01 -1.06701136e+00 4.22596395e-01 1.35669017e+00 5.92621863e-01 6.79769814e-01 -1.03196633e+00 -7.96541214e-01 3.55126768e-01 5.58395028e-01 -1.68536198e+00 -7.02484787e-01 4.94247794e-01 -3.20142448e-01 6.22823000e-01 3.26030880e-01 5.75109780e-01 1.19933903e+00 -1.27490759e-01 5.26335835e-01 1.17500484e+00 -3.74474645e-01 -4.15084437e-02 4.18656886e-01 2.74502605e-01 5.90131462e-01 3.11554074e-01 3.24347615e-01 -4.16111052e-01 8.64323005e-02 5.88118374e-01 4.02077705e-01 -4.10971612e-01 -3.32533747e-01 -1.14394307e+00 4.26688790e-01 6.10391915e-01 1.74965605e-01 -8.59877989e-02 -2.57553935e-01 2.85887927e-01 2.60049939e-01 1.01844966e-01 9.92725696e-03 -5.11411317e-02 1.81407392e-01 -6.85927689e-01 3.22265536e-01 2.00718984e-01 1.02505887e+00 7.85507917e-01 -4.60636139e-01 -2.88580328e-01 6.79525197e-01 1.10853374e-01 5.66968083e-01 6.46106601e-01 -5.17621994e-01 7.19749570e-01 5.71389079e-01 3.62776130e-01 -1.21576548e+00 -1.77888364e-01 -3.84300590e-01 -9.75902259e-01 2.45582461e-01 6.76574826e-01 1.75024733e-01 -7.22064853e-01 1.88753951e+00 3.91423225e-01 2.98802555e-01 1.61418676e-01 1.11326313e+00 7.26213038e-01 3.46091479e-01 1.41674906e-01 1.58885330e-01 1.49902058e+00 -9.35042083e-01 -2.55524293e-02 -2.60984570e-01 3.61215323e-01 -5.00947237e-01 7.43358672e-01 -1.39145732e-01 -9.82059598e-01 -1.29384732e+00 -1.12645125e+00 6.72774855e-03 -7.90115476e-01 3.68766129e-01 -1.05393030e-01 7.01777637e-01 -1.14338541e+00 5.40110230e-01 -3.70682776e-01 -8.83467078e-01 2.89585352e-01 3.46920162e-01 -8.24907362e-01 -1.78485751e-01 -1.12338853e+00 9.29488659e-01 3.23467761e-01 3.12397152e-01 -8.10136676e-01 -4.05453235e-01 -8.40212286e-01 -7.68025219e-03 -3.36989611e-02 -7.18043864e-01 6.53516591e-01 -1.14774919e+00 -1.04382479e+00 1.42009187e+00 -3.46249312e-01 -4.84066069e-01 8.27229738e-01 -1.23238578e-01 -7.58657813e-01 1.40883371e-01 5.34845650e-01 9.09535646e-01 8.56920421e-01 -1.22642016e+00 -1.06277263e+00 -6.11293077e-01 1.06839336e-01 3.82149369e-01 -3.18109930e-01 2.65746474e-01 -5.47675073e-01 -4.38315123e-01 -1.01058275e-01 -8.65001619e-01 8.63877311e-02 2.03767151e-01 -2.76765406e-01 -2.71558374e-01 6.46396518e-01 -5.66448331e-01 7.69201636e-01 -2.15306449e+00 8.35951641e-02 8.71161819e-02 1.66357785e-01 4.84442860e-01 -3.18785518e-01 1.12645134e-01 -3.91277164e-01 -1.20597437e-01 7.75283054e-02 -4.63339239e-01 -2.94751376e-01 -1.82806224e-01 5.17736897e-02 8.38006437e-01 2.53571957e-01 7.78494954e-01 -9.68452275e-01 -4.70773399e-01 4.58797008e-01 3.20032626e-01 2.35018171e-02 3.35918278e-01 6.94055974e-01 4.13656205e-01 -1.82299599e-01 5.19500196e-01 9.03060019e-01 7.95739591e-02 -1.02592424e-01 -4.45686519e-01 -1.52863353e-01 -4.66062844e-01 -1.33187711e+00 1.22077906e+00 -9.01578143e-02 4.88511980e-01 -1.58289626e-01 -1.12741590e+00 9.72905219e-01 -3.44620161e-02 6.31117001e-02 -8.52762282e-01 3.82645875e-02 5.21656387e-02 -3.28474343e-02 -3.41770381e-01 4.34789151e-01 3.23550016e-01 -2.68988777e-02 3.33713531e-01 5.12809977e-02 6.89508080e-01 2.77990282e-01 -1.83362458e-02 4.98474628e-01 -1.35677740e-01 4.67069477e-01 -4.32719678e-01 1.15755081e+00 -4.77345228e-01 3.76074225e-01 8.78699243e-01 -8.32196057e-01 8.56936932e-01 -4.96008471e-02 -6.54636204e-01 -9.95357037e-01 -1.28067684e+00 -5.16134724e-02 1.03231573e+00 6.57313824e-01 8.59903991e-02 -7.10737169e-01 -8.64273906e-01 7.70784244e-02 4.43056792e-01 -9.13869143e-01 -2.51634628e-01 -5.60632706e-01 -5.00231504e-01 5.12876213e-01 5.72538733e-01 9.53867197e-01 -6.85008407e-01 -6.83481634e-01 -1.44631907e-01 -7.75032416e-02 -1.01009214e+00 -8.75306785e-01 -1.97543249e-01 -1.90532759e-01 -1.35640991e+00 -1.21038842e+00 -1.00079882e+00 8.06308329e-01 8.67591321e-01 7.03876019e-01 -9.02785659e-02 -2.74508029e-01 5.26792288e-01 -9.32895541e-02 -5.01549430e-02 -1.13507159e-01 -1.88775539e-01 5.37528694e-01 6.59733534e-01 5.46561182e-01 -3.81079018e-01 -8.49122822e-01 8.08140934e-01 -4.56418753e-01 -2.60680705e-01 3.90111595e-01 8.98250103e-01 5.19342124e-01 -2.03080624e-02 5.41701794e-01 -2.72002041e-01 3.86759669e-01 -4.32193309e-01 -3.80166054e-01 6.45197630e-01 -3.24111789e-01 -2.37935409e-01 6.90737307e-01 -5.51339447e-01 -1.04494774e+00 8.91994908e-02 3.64051133e-01 -4.75529969e-01 -4.83485848e-01 -2.44871855e-01 -3.83293331e-01 -7.77174532e-02 6.29405677e-01 4.75624174e-01 6.83847070e-02 -2.61197984e-01 4.67948467e-01 7.77269781e-01 1.03327239e+00 -4.22355562e-01 9.43896651e-01 6.20067537e-01 -2.19060421e-01 -5.77997863e-01 -5.50740302e-01 -6.38744056e-01 -1.12180161e+00 -3.21331769e-01 8.73179972e-01 -1.07805860e+00 -7.44813740e-01 7.15872705e-01 -9.33530748e-01 2.86785036e-01 -2.11396649e-01 3.12428564e-01 -1.78055108e-01 6.34109497e-01 -2.03531131e-01 -8.07107925e-01 -3.34338933e-01 -1.15947700e+00 1.11410093e+00 8.85349751e-01 -3.08441352e-02 -7.42676795e-01 -1.58204198e-01 1.89813182e-01 1.39121756e-01 9.12029371e-02 4.55531836e-01 -8.23646665e-01 -3.64261061e-01 -4.88693953e-01 -6.81691945e-01 2.33082086e-01 3.41797948e-01 -1.24625847e-01 -1.17383325e+00 -7.23577261e-01 -3.64851683e-01 3.59303114e-04 8.64265561e-01 1.24957107e-01 9.06829000e-01 -6.78339154e-02 -7.36593962e-01 6.32636786e-01 1.12446117e+00 1.74866378e-01 5.02690911e-01 4.60828841e-01 5.92468381e-01 7.01579452e-01 5.23237884e-01 1.76973253e-01 6.47553086e-01 8.42190921e-01 1.85473889e-01 -2.25363657e-01 -1.10205494e-01 -1.52668357e-01 3.30701351e-01 1.77059308e-01 -1.81796655e-01 -1.55705258e-01 -5.52703321e-01 7.11940467e-01 -1.79898000e+00 -1.26170111e+00 5.66759892e-02 2.57809258e+00 3.33900601e-01 -3.98521908e-02 4.11377579e-01 -6.85343221e-02 1.38285398e+00 -5.40976115e-02 -6.01342142e-01 -4.01037000e-02 -2.28804380e-01 -7.58256167e-02 4.46566850e-01 1.18592545e-01 -1.46933758e+00 6.50395811e-01 4.94602823e+00 6.85337067e-01 -9.32663143e-01 2.63818372e-02 8.55184913e-01 -3.04064211e-02 3.01029146e-01 -3.12550992e-01 -9.87263858e-01 7.82673717e-01 7.16304541e-01 -2.92146355e-01 2.25177363e-01 7.05590665e-01 -1.39386230e-03 -2.14291945e-01 -1.43951213e+00 1.37123907e+00 3.13551307e-01 -9.70901489e-01 1.14330180e-01 -3.92879099e-02 5.88940024e-01 -4.20970678e-01 4.85241085e-01 2.63607264e-01 5.54616489e-02 -1.03240860e+00 7.88139880e-01 7.76302040e-01 9.21601415e-01 -8.36979508e-01 8.61364901e-01 1.36150166e-01 -1.64124179e+00 -2.65526116e-01 -6.19237304e-01 9.95360501e-03 -5.28385043e-02 -3.26094851e-02 -5.55712461e-01 8.17152500e-01 1.11226523e+00 7.95553565e-01 -1.11526322e+00 9.72685337e-01 2.81048268e-01 -2.32483849e-01 -8.56929719e-02 1.29986256e-01 6.02582581e-02 -1.21314690e-01 4.48020846e-01 1.06949544e+00 3.81807476e-01 -5.40654697e-02 1.81872964e-01 9.05120492e-01 1.37743741e-01 -7.08932057e-02 -5.54358900e-01 5.49727917e-01 5.39327264e-01 1.12120986e+00 -5.65247416e-01 -4.72947210e-01 -5.48742473e-01 1.44538283e+00 5.35329223e-01 4.64275032e-01 -9.55145240e-01 -3.15685719e-01 9.99375224e-01 1.54897466e-01 4.04570103e-01 1.35274408e-02 2.96758235e-01 -1.12699211e+00 2.73762286e-01 -7.43442774e-01 7.39390373e-01 -6.04605079e-01 -1.78603983e+00 7.18508899e-01 2.70702034e-01 -1.43722844e+00 -1.41630873e-01 -6.09241664e-01 -7.20031440e-01 1.25307691e+00 -1.46746230e+00 -1.37153828e+00 -6.15717888e-01 9.77108419e-01 4.52369958e-01 -4.39077675e-01 6.55495167e-01 3.01338047e-01 -7.92430639e-01 1.16646528e+00 2.29114622e-01 4.81809288e-01 9.47281778e-01 -1.02600646e+00 6.83018386e-01 1.18219042e+00 2.87603457e-02 6.89028382e-01 2.52562046e-01 -4.75013554e-01 -8.91233563e-01 -1.26887298e+00 6.91809595e-01 -5.70591807e-01 2.36899570e-01 -3.12769324e-01 -8.13666463e-01 5.18061459e-01 -1.82999875e-02 4.75835830e-01 3.52645367e-01 -2.71307737e-01 -5.38943410e-01 -4.59724188e-01 -1.31493533e+00 5.56519806e-01 1.33832598e+00 -7.06106424e-01 -6.36753321e-01 7.20136538e-02 1.89615563e-01 -1.92776620e-01 -4.95447814e-01 2.09328100e-01 6.84074461e-01 -1.28785920e+00 1.30600321e+00 -6.20488763e-01 -7.59862736e-02 -5.80721438e-01 -2.51096487e-01 -1.16713810e+00 -5.40853500e-01 -3.29199940e-01 3.09705764e-01 1.61060715e+00 -9.18919817e-02 -9.30071056e-01 5.19422174e-01 5.48546135e-01 2.34317526e-01 -3.22197646e-01 -1.22832727e+00 -8.05522799e-01 -5.48060685e-02 1.34008273e-01 6.28121078e-01 6.82538033e-01 -2.95781493e-01 -4.34077010e-02 -2.73515642e-01 4.88202840e-01 8.11789989e-01 1.00851588e-01 9.02960718e-01 -1.18569052e+00 -1.02665745e-01 -4.20489401e-01 -9.62937117e-01 -9.52946186e-01 9.31767523e-02 -8.43930066e-01 -1.73586622e-01 -9.36390877e-01 5.47883213e-01 -3.27420086e-01 -4.69509363e-01 1.43765524e-01 -6.20331705e-01 3.42200994e-01 3.77056450e-01 3.18831086e-01 -6.18952572e-01 4.39700216e-01 8.51574779e-01 -4.59508836e-01 7.91711137e-02 1.29600883e-01 -6.99910522e-01 4.51060444e-01 4.43605810e-01 -9.09962505e-02 -2.95438766e-01 -2.50626028e-01 -6.68869853e-01 -3.41286749e-01 9.50412154e-01 -1.43735468e+00 4.65524077e-01 1.81623876e-01 1.04077494e+00 -4.25541967e-01 3.33161443e-01 -6.27715766e-01 1.16362609e-01 3.25525314e-01 -3.06236774e-01 5.00353932e-01 6.37513101e-02 8.08493733e-01 -1.25849873e-01 -2.01079264e-01 1.08157432e+00 -3.18629086e-01 -1.08671999e+00 4.35459375e-01 -8.73095244e-02 3.19794007e-02 1.40643728e+00 -6.54600441e-01 -3.00926834e-01 -3.09336185e-01 -6.35093808e-01 2.61709988e-01 6.01770103e-01 5.78207910e-01 7.31869698e-01 -1.35157692e+00 -8.11630726e-01 5.34626305e-01 3.88169497e-01 -3.73991698e-01 5.91884851e-01 5.36857784e-01 -5.61966375e-02 3.24741721e-01 -6.59608901e-01 -8.21884453e-01 -1.40724659e+00 9.67311740e-01 7.69328415e-01 4.68763001e-02 -4.77458239e-01 9.05480087e-01 5.67587912e-01 -2.43384257e-01 1.78318530e-01 -2.66263224e-02 -3.66070241e-01 1.56087786e-01 8.51027429e-01 5.21312475e-01 -1.44269019e-01 -1.22787166e+00 -6.18933737e-01 8.45083356e-01 -3.34273994e-01 4.75890152e-02 7.24105954e-01 -5.18955469e-01 2.78784513e-01 1.02897845e-01 1.42483115e+00 -3.27611417e-01 -1.42167759e+00 -4.05444324e-01 -1.94020838e-01 -7.31735945e-01 -5.62893927e-01 -4.80137408e-01 -9.79502976e-01 7.73761690e-01 1.37073159e+00 -1.58409238e-01 9.20251131e-01 -8.26439336e-02 5.54457486e-01 1.68319523e-01 3.51780295e-01 -9.13016081e-01 3.40170860e-02 5.17918635e-03 7.11902320e-01 -1.51764381e+00 -8.60387683e-02 -9.19651836e-02 -5.73480248e-01 1.23412812e+00 8.42949212e-01 -2.05051288e-01 4.32344228e-01 -2.65671641e-01 -6.18016422e-02 1.76211506e-01 -1.22910850e-01 -5.89199305e-01 3.94199014e-01 1.20701778e+00 -8.26808512e-02 8.20772350e-02 2.57340550e-01 4.97163266e-01 1.35289291e-02 -4.14730489e-01 1.07324176e-01 5.36724031e-01 -1.92691043e-01 -7.93326437e-01 -6.30784810e-01 2.02811345e-01 1.30429059e-01 1.35902554e-01 -3.14092159e-01 9.63120401e-01 4.05126065e-01 9.66851175e-01 2.96744019e-01 -4.53448266e-01 4.67456222e-01 -1.69015806e-02 4.86530036e-01 -2.36567870e-01 -4.79849428e-01 -4.33202147e-01 -2.44275838e-01 -4.41683292e-01 -5.03423989e-01 -1.06678569e+00 -7.62499750e-01 -2.96753883e-01 -7.65263140e-02 -1.06257789e-01 -2.88409851e-02 8.76172125e-01 4.51333761e-01 1.21610858e-01 8.27202499e-01 -1.14925778e+00 -5.98136127e-01 -8.20440650e-01 -4.22650874e-01 8.93178701e-01 3.07497710e-01 -9.29226339e-01 -2.21257225e-01 3.37751061e-02]
[14.697342872619629, 0.9457085728645325]
76685bb2-e6d6-4b03-abe2-92ccc55d3739
semeval-2015-task-5-qa-tempeval-evaluating
null
null
https://aclanthology.org/S15-2134
https://aclanthology.org/S15-2134.pdf
SemEval-2015 Task 5: QA TempEval - Evaluating Temporal Information Understanding with Question Answering
null
['Nasrin Mostafazadeh', 'James Allen', 'Naushad UzZaman', 'Nathanael Chambers', 'Hector Llorens', 'James Pustejovsky']
2015-06-01
null
null
null
semeval-2015-6
['temporal-information-extraction']
['natural-language-processing']
[-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01 -8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01 -2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00 -3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01 -9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01 7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01 7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00 -1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01 3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01 9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01 5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00 -5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01 1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00 7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01 -1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02 -1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01 1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00 1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01 3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01 8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01 9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01 -9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01 -1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01 -2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01 -8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00 1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01 8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00 -6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01 -6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01 3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01 4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02 4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01 1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01 9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01 -1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01 -7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00 -1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02 1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01 -1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01 -1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01 -4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01 -1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01 6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01 -1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00 -7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01 -1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01 3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01 -1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01 1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01 3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00 -2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01 2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01 -1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01 4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01 2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00 1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01 -3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00 7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01 3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01 -2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01 7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01 -2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01 6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00 7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00 -3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01 -6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00 3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01 1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01 -5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01 -5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01 -2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01 -1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01 5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01 -2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01 -4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01 5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01 -6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00 1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01 8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02 -6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01 -1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01 1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01 8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03 3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01 8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01 -1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01 6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01 -9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01 -1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00 -5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02 -5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01 1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01 -4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01 1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01 6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01 5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01 1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01 1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01 1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01 1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00 -8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01 -1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01 6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01 4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00 -1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00 -7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00 2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01 -4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02 1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01 3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01 9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01 7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01 6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01 1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01 -1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00 3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01 9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01 -4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01 4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00 2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01 5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01 2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01 -2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01 -6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01 -1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01 -5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01 -1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00 -6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01 -1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01 1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02 1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01 5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01 -4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01 -1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01 6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01 7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01 1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01 1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01 8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01 8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00 -4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01 -5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02 5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01 -2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00 -3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01 6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01 5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00 3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01 -8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00 -8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01 3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01 -3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05 -1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01 8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02 6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01 5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00 1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01 2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02 -1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01 -4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02 9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01 -8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02 7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01 -3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01 -1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01 -1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01 -2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01 1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03 6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01 -4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01 9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01 8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01 1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01 -1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01 8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01 5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01 9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01 -4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01 1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01 -9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00 5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01 -7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00 -6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01 -5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01 -5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01 4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01 -9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00 -8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00 -5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01 -2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00 -3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02 2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01]
[-7.224506855010986, 3.7446227073669434]
0db149b2-8dd4-4a5e-9f7a-a85d3974a1e2
on-the-relationship-between-normalising-flows
null
null
https://openreview.net/forum?id=HklKEUUY_E
https://openreview.net/pdf?id=HklKEUUY_E
On the relationship between Normalising Flows and Variational- and Denoising Autoencoders
Normalising Flows (NFs) are a class of likelihood-based generative models that have recently gained popularity. They are based on the idea of transforming a simple density into that of the data. We seek to better understand this class of models, and how they compare to previously proposed techniques for generative modeling and unsupervised representation learning. For this purpose we reinterpret NFs in the framework of Variational Autoencoders (VAEs), and present a new form of VAE that generalises normalising flows. The new generalised model also reveals a close connection to denoising autoencoders, and we therefore call our model the Variational Denoising Autoencoder (VDAE). Using our unified model, we systematically examine the model space between flows, variational autoencoders, and denoising autoencoders, in a set of preliminary experiments on the MNIST handwritten digits. The experiments shed light on the modeling assumptions implicit in these models, and they suggest multiple new directions for future research in this space.
['Tim Salimans', 'Jasper Snoek', 'Alexey A. Gritsenko']
2019-03-27
null
null
null
iclr-workshop-deepgenstruct-2019
['normalising-flows']
['methodology']
[ 1.16526475e-02 2.14934200e-01 2.00565353e-01 -4.79372919e-01 3.12252194e-02 -3.86033267e-01 1.17355251e+00 -6.96863055e-01 -4.25496027e-02 6.41435325e-01 7.12552130e-01 -2.68387437e-01 -3.35073978e-01 -1.07102108e+00 -6.77771270e-01 -8.25695872e-01 2.01384887e-01 5.40549219e-01 -2.51655821e-02 -2.01758012e-01 5.74969761e-02 4.60028112e-01 -1.47988236e+00 1.78646415e-01 6.90742373e-01 6.32916212e-01 7.90435225e-02 8.24935555e-01 -2.29984418e-01 1.28229249e+00 -7.05344141e-01 -7.85472035e-01 1.60223171e-02 -9.06425059e-01 -7.94906557e-01 5.05618513e-01 2.03336775e-01 -5.42348862e-01 -7.70253658e-01 9.19980049e-01 -5.00492230e-02 4.45589632e-01 1.37136638e+00 -1.45159686e+00 -1.28031206e+00 6.93999350e-01 3.87757942e-02 4.93313462e-01 -2.30612576e-01 -3.67655121e-02 9.05945718e-01 -7.33939886e-01 6.46439910e-01 1.41908383e+00 6.21208370e-01 7.62556970e-01 -1.50877094e+00 -2.05077901e-01 1.25887007e-01 1.24170948e-02 -1.09878254e+00 -5.29022813e-01 7.49786556e-01 -8.01568031e-01 9.33720529e-01 -8.00609514e-02 7.26968884e-01 1.64410341e+00 4.17647153e-01 1.11342895e+00 8.87898564e-01 -4.39907730e-01 4.93173897e-01 2.49129787e-01 -2.34593381e-03 4.31442827e-01 1.77966788e-01 4.17697549e-01 -4.83551443e-01 -2.20151007e-01 1.46584344e+00 4.51830216e-02 -1.51311561e-01 -7.10015118e-01 -8.37074220e-01 1.55208921e+00 2.57674634e-01 4.90336925e-01 -4.96555686e-01 3.64035308e-01 1.58057705e-01 1.39701262e-01 6.07536733e-01 -8.33071917e-02 -6.14559166e-02 -8.14990178e-02 -1.10177910e+00 2.46103048e-01 1.07920539e+00 8.29164922e-01 8.32646012e-01 8.54609728e-01 1.31957769e-01 7.22727597e-01 8.47236574e-01 1.29990995e-01 4.92714912e-01 -1.25832701e+00 -1.19630732e-01 1.38800234e-01 -3.44531208e-01 -4.91126448e-01 3.74157876e-01 -4.41257149e-01 -8.61188531e-01 2.66669363e-01 2.28911817e-01 -2.58298427e-01 -1.01526642e+00 1.62402773e+00 -1.36216104e-01 3.52768093e-01 3.80139321e-01 6.42867386e-01 5.37773728e-01 8.85548234e-01 2.51172692e-01 -1.41752258e-01 8.52076113e-01 -4.71235752e-01 -8.88410211e-01 -4.54586931e-02 8.95585939e-02 -4.77655828e-01 4.48735774e-01 3.94994289e-01 -1.14157367e+00 -6.36403918e-01 -8.87000978e-01 -1.26252202e-02 -3.72280985e-01 4.18863520e-02 1.02060235e+00 9.59764600e-01 -1.45768046e+00 8.40855062e-01 -1.40414798e+00 -4.77194399e-01 3.90314102e-01 -1.40101928e-03 5.63599728e-02 3.22843641e-01 -1.06005311e+00 6.51449919e-01 3.09504479e-01 2.11280525e-01 -1.25390470e+00 -7.04262435e-01 -1.05674040e+00 6.60784021e-02 -5.49065806e-02 -9.81937230e-01 1.39527524e+00 -1.06345654e+00 -1.67479861e+00 4.06627685e-01 -3.66186351e-01 -4.58942860e-01 3.35770667e-01 -2.14966521e-01 -4.11196023e-01 6.04858771e-02 -1.93763793e-01 6.60940886e-01 1.20033503e+00 -1.46534419e+00 -3.15088630e-01 -8.42238218e-02 -1.46009848e-01 -2.91127861e-01 -2.77568042e-01 -2.87362665e-01 1.07350156e-01 -1.05439401e+00 -1.33922622e-01 -5.82618773e-01 -1.26253068e-01 -3.61097693e-01 -2.09786773e-01 -4.05652285e-01 9.48359251e-01 -4.56188530e-01 1.10958767e+00 -2.11188722e+00 5.68708301e-01 2.73890018e-01 3.44198197e-01 9.53174606e-02 8.04271400e-02 6.66879654e-01 -2.28614882e-01 1.78722739e-01 -5.52547693e-01 -5.73953807e-01 1.93704784e-01 1.00290751e+00 -7.02750266e-01 1.92032427e-01 4.60130543e-01 9.89994287e-01 -7.19366431e-01 -2.37681255e-01 3.42032373e-01 1.00475180e+00 -7.45273352e-01 1.60881385e-01 -2.45805994e-01 2.02915981e-01 -4.32371914e-01 2.65678287e-01 4.35436368e-01 -1.51377112e-01 1.75583139e-01 -1.92059115e-01 8.83987267e-03 1.13505863e-01 -1.17868221e+00 1.40254569e+00 -1.03788994e-01 9.60680306e-01 -1.04850799e-01 -1.26097739e+00 9.00341272e-01 3.41328472e-01 3.83600861e-01 7.67784640e-02 1.86206043e-01 -1.43464701e-02 -6.30367249e-02 -2.92121470e-01 5.22472143e-01 -6.15256071e-01 3.01439017e-01 6.93518281e-01 1.08416569e+00 5.12307435e-02 3.96118850e-01 5.70726931e-01 7.12246895e-01 4.33252752e-01 2.61927813e-01 -3.69000793e-01 2.84171820e-01 -2.72205859e-01 3.74810219e-01 8.88076186e-01 -4.20361981e-02 4.90088165e-01 6.30160511e-01 -4.43008125e-01 -1.18840551e+00 -1.53556645e+00 -1.80542603e-01 7.33102083e-01 -4.55927908e-01 -5.14782369e-01 -8.50518286e-01 -4.43175882e-01 3.47306691e-02 9.27651763e-01 -9.73314404e-01 -1.28188789e-01 -3.37304235e-01 -9.53980982e-01 6.05933130e-01 1.07285249e+00 2.72960484e-01 -1.16783261e+00 -3.52981716e-01 2.26827860e-01 -7.11341128e-02 -8.13114583e-01 -3.00240633e-03 2.81018168e-01 -1.25933313e+00 -8.01620722e-01 -8.99402380e-01 -6.38019919e-01 4.02615756e-01 -3.29936683e-01 1.26473892e+00 -4.15011019e-01 -1.19611919e-01 9.37774479e-01 -4.29110944e-01 -3.79841805e-01 -1.00066090e+00 -6.74577802e-02 8.83911476e-02 1.64977834e-01 5.94055533e-01 -9.52421725e-01 -1.66779399e-01 3.93755510e-02 -1.39623213e+00 -4.23003763e-01 4.63970125e-01 8.85943949e-01 4.35017496e-01 1.16707444e-01 4.65171486e-01 -9.59172189e-01 9.08466876e-01 -7.43589699e-01 -3.85518074e-01 4.18872684e-02 -4.27087724e-01 3.91819090e-01 3.30715239e-01 -4.23260182e-01 -1.56201077e+00 -2.50525981e-01 -4.17971909e-01 -8.92559588e-01 -4.38377619e-01 4.25910145e-01 -2.07150318e-02 2.31337726e-01 6.20181799e-01 5.42100549e-01 2.46136561e-01 -5.67340434e-01 6.97016776e-01 4.35450435e-01 7.00741470e-01 -5.06244242e-01 7.04397857e-01 5.98554254e-01 -2.11784482e-01 -1.17194259e+00 -3.96942824e-01 -9.43515636e-03 -6.49320662e-01 -2.71502107e-01 9.24356282e-01 -8.19009781e-01 -4.27724689e-01 4.29083943e-01 -1.11088276e+00 -3.44242454e-01 -8.39137375e-01 6.22508705e-01 -1.02343869e+00 4.15136844e-01 -9.83337700e-01 -1.13722003e+00 2.75108665e-01 -9.18022931e-01 8.21246386e-01 3.34509552e-01 -2.83556759e-01 -1.65516186e+00 3.81556958e-01 -2.91563105e-02 4.38965410e-01 -1.65025555e-02 9.43576872e-01 -6.46610320e-01 -5.00906169e-01 3.06156069e-01 3.22150230e-01 1.03478301e+00 4.88782413e-02 3.16122681e-01 -1.05796528e+00 -1.20492689e-02 3.72110963e-01 -1.17502131e-01 1.30312121e+00 8.07460129e-01 8.43564212e-01 -1.91336185e-01 -9.22393575e-02 7.39807308e-01 1.48109460e+00 3.40254456e-01 8.36324215e-01 -1.61463678e-01 5.16476631e-01 4.71037060e-01 -3.82581830e-01 5.07737935e-01 1.15519300e-01 -1.28000110e-01 2.49112472e-01 3.10024410e-01 -7.18076825e-02 -4.91488546e-01 4.80417579e-01 1.08670425e+00 -5.48514664e-01 -5.05265176e-01 -4.61171687e-01 6.55385256e-01 -1.82344866e+00 -1.25757098e+00 -1.77255664e-02 1.53624177e+00 3.76408339e-01 -1.61199093e-01 2.58476734e-01 1.51174188e-01 5.94471514e-01 3.58614326e-01 -3.01468194e-01 -4.40741211e-01 -6.88574240e-02 5.94947875e-01 -3.05842459e-02 6.63218260e-01 -1.05149662e+00 8.29745173e-01 8.00041294e+00 5.97192764e-01 -6.07917011e-01 2.82337088e-02 3.69400024e-01 3.53834629e-01 -5.22910118e-01 4.16857228e-02 -7.77740777e-01 2.78177261e-01 1.22651529e+00 5.95761016e-02 4.41287816e-01 9.54730868e-01 -1.56649485e-01 1.03535958e-01 -1.31035948e+00 6.96260810e-01 3.08559120e-01 -1.47032022e+00 4.80992526e-01 3.53079498e-01 6.88914597e-01 -1.08745366e-01 3.24434489e-01 3.78628314e-01 8.83878946e-01 -1.03831625e+00 6.91671431e-01 9.67631757e-01 2.15649828e-01 -6.89962685e-01 6.82813525e-01 2.58184433e-01 -7.84793675e-01 7.29166437e-03 -6.34303570e-01 -5.55853210e-02 5.05495608e-01 4.75224435e-01 -3.25304031e-01 3.28579426e-01 5.58163822e-01 1.04690707e+00 -1.31848156e-01 7.22937584e-01 -2.32676893e-01 9.71422195e-01 -1.36767998e-01 6.34012148e-02 2.32339114e-01 -4.39403325e-01 7.17869341e-01 1.26584101e+00 3.18226159e-01 -4.86474186e-02 -3.38024676e-01 1.68108058e+00 2.20305353e-01 -4.41922396e-01 -5.17264426e-01 -5.35692990e-01 -1.09876823e-02 9.27816391e-01 -8.15025926e-01 -3.87458533e-01 -3.06888521e-01 8.65455270e-01 6.58766646e-03 7.46355116e-01 -6.25295401e-01 -1.80284441e-01 9.24010456e-01 -4.81913649e-02 6.97573066e-01 -3.05642128e-01 1.43954650e-01 -1.47867656e+00 -4.75231797e-01 -5.41177154e-01 1.43634737e-01 -7.64687598e-01 -1.84656763e+00 5.67172766e-01 5.05547404e-01 -8.99892628e-01 -9.27361190e-01 -8.92876923e-01 -6.25937462e-01 7.81240463e-01 -1.12186480e+00 -7.93183744e-01 -1.03198960e-01 7.07751811e-01 6.48537278e-01 -3.37632030e-01 8.86000276e-01 5.02226949e-02 -3.34315598e-01 8.41252357e-02 3.42066824e-01 3.19275409e-01 3.36499996e-02 -1.36854458e+00 5.63531399e-01 8.47776413e-01 7.05416977e-01 8.50896299e-01 8.60248327e-01 -5.89319527e-01 -9.61160302e-01 -9.34848905e-01 6.97186351e-01 -6.32243872e-01 5.49611032e-01 -3.88027668e-01 -9.87603009e-01 1.28261697e+00 4.25980300e-01 -1.33064955e-01 9.96481836e-01 -7.06102923e-02 -1.18361078e-01 4.45402622e-01 -7.87785649e-01 2.42896706e-01 9.67807353e-01 -5.87617338e-01 -9.06115770e-01 -1.01455338e-01 3.24333519e-01 8.69366974e-02 -9.84911323e-01 3.52190621e-02 3.79580796e-01 -1.34684896e+00 1.03055716e+00 -7.37275541e-01 6.42474115e-01 -3.96434702e-02 -3.16395819e-01 -1.72690034e+00 -6.46815181e-01 -6.55839145e-01 -6.71603501e-01 1.22285986e+00 -2.06137300e-02 -5.47308326e-01 7.36202180e-01 2.01892242e-01 -1.43242180e-01 -5.37995040e-01 -6.51677072e-01 -7.79059708e-01 5.42481601e-01 -6.22718096e-01 4.11406100e-01 7.80109406e-01 -2.29095101e-01 1.87491462e-01 -3.64748448e-01 -2.04107225e-01 8.12150776e-01 -3.77025217e-01 4.81517404e-01 -1.49852848e+00 -5.32278538e-01 -4.28696185e-01 -6.21696830e-01 -1.29475856e+00 4.09157604e-01 -8.33329380e-01 -1.30818203e-01 -1.48876882e+00 -2.85716038e-02 2.31558010e-01 2.51068827e-02 1.30552590e-01 2.74572343e-01 1.28117502e-01 5.80429286e-02 2.28347212e-01 -1.28231095e-02 9.02712703e-01 8.10995519e-01 8.12039748e-02 -1.16197757e-01 -5.63095920e-02 -7.74318695e-01 9.20880914e-01 6.22418165e-01 -2.51862288e-01 -8.39752734e-01 -4.03430849e-01 -6.49707299e-03 -1.03269115e-01 6.87451661e-01 -7.39721060e-01 1.27597794e-01 -6.97620362e-02 7.41513848e-01 -4.55116004e-01 2.92405695e-01 -4.52330947e-01 2.95631528e-01 1.35746941e-01 -3.63646865e-01 -1.38982683e-01 -4.74384762e-02 7.73221731e-01 -4.21076387e-01 -3.87564063e-01 6.50132656e-01 -3.12862933e-01 -8.10743868e-01 7.10710287e-02 -1.13217068e+00 -4.10892349e-03 7.58780479e-01 -3.89558256e-01 2.87602842e-02 -7.43188977e-01 -1.31912518e+00 -4.30073172e-01 4.79807965e-02 3.15323532e-01 7.66146541e-01 -1.29682183e+00 -5.51336110e-01 5.09504318e-01 -3.49854857e-01 -2.86364645e-01 2.44208246e-01 4.21613932e-01 -3.90031815e-01 4.79584724e-01 -3.31849694e-01 -4.52904552e-01 -5.00095487e-01 4.05665845e-01 4.35888827e-01 2.46957280e-02 -6.84170723e-01 9.37055051e-01 4.59492445e-01 -1.57159120e-01 -3.94449495e-02 -3.03446919e-01 -1.38791025e-01 1.63272526e-02 3.35539550e-01 5.06060302e-01 -3.41609299e-01 -7.94441164e-01 -5.87047376e-02 6.49430677e-02 -5.41029610e-02 -3.96389395e-01 1.53303158e+00 3.61908078e-02 -4.03462537e-02 6.91546142e-01 1.06436026e+00 -3.66007566e-01 -1.58866894e+00 -8.78474563e-02 -4.01380658e-01 -2.39647552e-01 1.25173762e-01 -2.62842715e-01 -1.30593741e+00 1.08028841e+00 2.13708758e-01 5.74940801e-01 9.25066352e-01 3.00821930e-01 3.58940631e-01 1.39650017e-01 -1.05077498e-01 -8.45281422e-01 1.39355317e-01 4.37532187e-01 7.27381706e-01 -6.63661063e-01 -2.77879775e-01 -2.87374079e-01 -7.34099269e-01 1.34340990e+00 3.37380111e-01 -7.51465082e-01 1.16513526e+00 5.03500283e-01 -1.93721026e-01 -2.28302076e-01 -7.48976648e-01 -1.95551574e-01 1.86206594e-01 1.04602182e+00 5.57266831e-01 -1.57127768e-01 1.04639292e-01 7.14986801e-01 -4.71556097e-01 1.75397471e-01 6.57130897e-01 9.17866707e-01 -2.54060000e-01 -1.09982860e+00 -1.91180676e-01 4.54978019e-01 -2.61861920e-01 1.00305490e-01 -3.10132384e-01 8.60363305e-01 8.40520710e-02 8.20926785e-01 5.76216638e-01 -3.46707016e-01 -5.61325112e-03 5.13779700e-01 6.92384541e-01 -3.76489401e-01 -2.17244163e-01 3.35154027e-01 -3.90151381e-01 -2.52709925e-01 -8.82043958e-01 -8.78328860e-01 -5.29791594e-01 -3.59004855e-01 -1.83185011e-01 2.76486635e-01 4.44195807e-01 1.00432885e+00 7.10469782e-02 7.33750403e-01 1.26514271e-01 -9.36725080e-01 -6.18589282e-01 -1.13127017e+00 -1.00701237e+00 1.89705685e-01 3.08831334e-01 -7.83235669e-01 -6.17483437e-01 7.32658565e-01]
[11.5596342086792, 0.033370330929756165]
4b11913d-8197-4879-a28d-6348539bfd79
hierarchical-semantic-contrast-for-scene
2303.13051
null
https://arxiv.org/abs/2303.13051v1
https://arxiv.org/pdf/2303.13051v1.pdf
Hierarchical Semantic Contrast for Scene-aware Video Anomaly Detection
Increasing scene-awareness is a key challenge in video anomaly detection (VAD). In this work, we propose a hierarchical semantic contrast (HSC) method to learn a scene-aware VAD model from normal videos. We first incorporate foreground object and background scene features with high-level semantics by taking advantage of pre-trained video parsing models. Then, building upon the autoencoder-based reconstruction framework, we introduce both scene-level and object-level contrastive learning to enforce the encoded latent features to be compact within the same semantic classes while being separable across different classes. This hierarchical semantic contrast strategy helps to deal with the diversity of normal patterns and also increases their discrimination ability. Moreover, for the sake of tackling rare normal activities, we design a skeleton-based motion augmentation to increase samples and refine the model further. Extensive experiments on three public datasets and scene-dependent mixture datasets validate the effectiveness of our proposed method.
['Xiaojin Gong', 'Shengyang Sun']
2023-03-23
null
http://openaccess.thecvf.com//content/CVPR2023/html/Sun_Hierarchical_Semantic_Contrast_for_Scene-Aware_Video_Anomaly_Detection_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Sun_Hierarchical_Semantic_Contrast_for_Scene-Aware_Video_Anomaly_Detection_CVPR_2023_paper.pdf
cvpr-2023-1
['video-anomaly-detection']
['computer-vision']
[ 3.91724110e-01 -2.18830600e-01 -1.57559797e-01 -4.40853983e-01 -2.57527947e-01 -1.80794865e-01 5.44001222e-01 -5.21485955e-02 -6.39102012e-02 1.67352363e-01 3.69093984e-01 1.08858114e-02 7.16300402e-03 -7.41554558e-01 -8.50632906e-01 -6.37035131e-01 3.64507586e-02 9.57501456e-02 5.74426830e-01 1.95394590e-01 2.42830236e-02 4.63747919e-01 -1.67748666e+00 5.15812218e-01 1.08119822e+00 1.04117119e+00 2.68195748e-01 4.56905007e-01 -3.25643629e-01 1.23638189e+00 -2.36059472e-01 -6.31076097e-02 4.51784492e-01 -5.40494502e-01 -5.46674728e-01 8.90496016e-01 6.76384985e-01 -6.24633908e-01 -5.88558137e-01 1.09853804e+00 -6.55726194e-02 3.74030024e-01 5.17768145e-01 -1.38683140e+00 -1.92513764e-01 3.62208113e-02 -6.51320696e-01 5.36201417e-01 2.26301849e-01 2.43550450e-01 9.17649209e-01 -7.38141298e-01 4.70980227e-01 1.38335335e+00 3.87403935e-01 5.80311775e-01 -1.04802918e+00 -3.54581624e-01 7.57817864e-01 4.37803715e-01 -1.03934646e+00 -4.57941860e-01 1.27623081e+00 -5.37858009e-01 6.10085368e-01 1.54257834e-01 8.87311220e-01 1.30777931e+00 -2.64632583e-01 1.25795555e+00 7.35694826e-01 -2.30050027e-01 3.49781364e-01 -2.57698894e-01 5.29628471e-02 8.74705374e-01 2.87548602e-01 -3.02477032e-01 -4.67123330e-01 -8.66285190e-02 8.30429256e-01 3.79382759e-01 -3.01549882e-01 -1.01557100e+00 -1.12827623e+00 6.56500697e-01 1.41229689e-01 2.33238623e-01 -4.68276501e-01 6.30489513e-02 4.52550858e-01 -9.83863696e-02 4.22533065e-01 9.59994346e-02 -4.15219337e-01 1.87677890e-02 -8.63834620e-01 5.48645891e-02 3.21907341e-01 8.54221404e-01 6.24136925e-01 5.04334331e-01 -3.29077810e-01 9.05890107e-01 4.02886987e-01 2.48218641e-01 5.27279496e-01 -1.08080924e+00 4.11933601e-01 7.90298641e-01 -2.62975812e-01 -1.23433721e+00 -1.28122807e-01 -5.63878059e-01 -9.00404930e-01 7.63614103e-02 3.93550009e-01 4.15301621e-01 -1.28517151e+00 1.78720176e+00 5.72653353e-01 8.69019687e-01 4.92454097e-02 8.13678026e-01 4.02854770e-01 7.10668504e-01 3.43188077e-01 -2.09344909e-01 1.18499553e+00 -1.18513346e+00 -6.40050471e-01 -3.72850537e-01 6.67168856e-01 -3.24211776e-01 1.15103030e+00 3.50742638e-01 -8.89129937e-01 -6.42184377e-01 -1.03385031e+00 -3.77358682e-02 8.33444223e-02 1.75372422e-01 6.31681263e-01 5.03376484e-01 -5.86630821e-01 1.09747037e-01 -1.28307021e+00 -2.06926897e-01 8.81064057e-01 -1.65078595e-01 -3.33978444e-01 -4.40026790e-01 -6.79417491e-01 2.46871173e-01 5.47348022e-01 -8.26705620e-03 -1.32066286e+00 -6.35043323e-01 -1.22194862e+00 -1.36432853e-02 6.30531549e-01 -7.99476445e-01 7.68671095e-01 -1.15288794e+00 -1.31029487e+00 5.92895448e-01 -2.72393048e-01 -3.05875987e-01 4.79837388e-01 -3.88360679e-01 -2.86013454e-01 4.34348464e-01 1.94449157e-01 5.49637616e-01 1.13007319e+00 -1.36146486e+00 -7.23828077e-01 -2.92833924e-01 1.25294849e-01 4.03832138e-01 -4.41628814e-01 -1.65295914e-01 -8.36029291e-01 -1.00078535e+00 5.13576686e-01 -6.18779719e-01 -2.86380559e-01 1.74677014e-01 -4.25905824e-01 3.26875709e-02 1.01851439e+00 -9.23893869e-01 1.04818571e+00 -2.31761003e+00 4.30580139e-01 2.41825715e-01 3.09469312e-01 1.34582296e-01 -1.84267223e-01 -3.80338132e-01 7.62674734e-02 -3.73574644e-01 -6.25008702e-01 -5.15247047e-01 -2.21651196e-01 5.92217386e-01 -1.34162739e-01 3.44343305e-01 5.59237123e-01 5.66160798e-01 -8.92021656e-01 -6.10770583e-01 5.19830525e-01 1.46944374e-01 -1.05554712e+00 4.14932162e-01 -5.21075964e-01 7.38492370e-01 -6.67797387e-01 9.22783554e-01 7.32772410e-01 -1.89587578e-01 -5.68878651e-03 -2.98773468e-01 2.70155430e-01 2.91990731e-02 -1.35263658e+00 1.95742917e+00 -1.65455103e-01 2.51156271e-01 -2.74137985e-02 -1.34570527e+00 5.27591944e-01 -1.89992964e-01 5.83366513e-01 -5.65733314e-01 -3.14424075e-02 -3.27190123e-02 -7.30163530e-02 -5.86626291e-01 2.42041871e-01 1.85145199e-01 1.82380185e-01 5.07483296e-02 2.99345046e-01 3.06225479e-01 6.07246347e-02 3.36637139e-01 1.02152646e+00 3.31634790e-01 2.04318598e-01 -1.08148634e-01 8.27073097e-01 -2.16356322e-01 1.05238748e+00 6.63856983e-01 -4.59223449e-01 6.41027153e-01 5.06428599e-01 -4.83714402e-01 -9.74389970e-01 -1.13413143e+00 6.11358993e-02 1.00302279e+00 3.25890809e-01 -3.81278425e-01 -7.10596204e-01 -1.04384446e+00 -2.53870726e-01 7.22838521e-01 -5.80734015e-01 -3.47731799e-01 -6.23630226e-01 -7.38454759e-01 2.72651374e-01 6.82206988e-01 7.79232264e-01 -7.12451756e-01 -5.40224254e-01 2.40241624e-02 -4.91230756e-01 -1.53245425e+00 -2.76133478e-01 2.10897978e-02 -9.76488650e-01 -1.01960409e+00 -5.73064029e-01 -6.90539241e-01 7.50371993e-01 4.08804715e-01 8.48302484e-01 1.59738511e-01 -3.11715990e-01 6.79283500e-01 -4.91504222e-01 5.97153418e-02 -4.09012705e-01 -2.27891028e-01 7.08767846e-02 5.12967944e-01 2.88561016e-01 -6.74420297e-01 -5.19775569e-01 6.28134832e-02 -1.07414460e+00 1.98639080e-01 6.48358941e-01 7.47174919e-01 7.76139617e-01 2.05869779e-01 7.85061494e-02 -6.72947347e-01 -1.93734020e-01 -6.46717131e-01 -3.74564439e-01 8.10649768e-02 -9.52372625e-02 2.40674075e-02 4.27904338e-01 -5.00546217e-01 -1.18505669e+00 2.88428336e-01 -3.51713710e-02 -1.00336158e+00 -5.40898442e-01 3.98404635e-02 -8.72018874e-01 2.00158954e-01 2.47341454e-01 6.28621340e-01 -1.80414945e-01 -4.38571155e-01 3.52726847e-01 1.75610691e-01 6.44679308e-01 -6.48235977e-01 8.58148694e-01 6.83202684e-01 -1.84339415e-02 -9.36025321e-01 -9.99292552e-01 -5.30171096e-01 -7.81886578e-01 -1.76729858e-01 1.21027362e+00 -1.17735994e+00 1.31064117e-01 7.00830817e-01 -8.23046267e-01 -3.54906738e-01 -3.24847132e-01 4.66466874e-01 -6.15461648e-01 9.03901100e-01 -5.20171463e-01 -7.30351865e-01 1.65709659e-01 -1.18618536e+00 1.19742692e+00 2.33612563e-02 1.39696270e-01 -8.00647140e-01 -8.16746280e-02 4.86420244e-01 -3.78227644e-02 3.70779335e-01 8.90346766e-01 -7.44030833e-01 -9.75934029e-01 1.81889310e-01 -1.92983344e-01 5.70893824e-01 2.30528787e-01 -1.22918457e-01 -9.57097828e-01 -9.81767103e-02 1.46834478e-01 -3.79390866e-02 1.12688506e+00 4.31884974e-01 1.61874926e+00 -2.95763671e-01 -2.95954078e-01 9.47062373e-01 1.04297936e+00 6.52091280e-02 6.70892835e-01 4.54503149e-01 1.29472744e+00 5.31786978e-01 6.45171642e-01 4.38730031e-01 4.10789162e-01 6.05458677e-01 5.51148355e-01 7.67243952e-02 -2.57515609e-01 -3.38869661e-01 5.26191950e-01 6.86942995e-01 1.51304677e-01 -1.79234803e-01 -6.99132085e-01 6.16518378e-01 -1.74537623e+00 -1.05607188e+00 -4.82915044e-02 1.85487723e+00 3.93692553e-01 2.06166893e-01 2.01881483e-01 2.55819649e-01 6.45569265e-01 3.36068988e-01 -5.98995686e-01 1.75976649e-01 -3.21624726e-01 -3.08365673e-01 4.89084013e-02 2.02694729e-01 -1.47484553e+00 1.02446806e+00 4.94094515e+00 9.54290092e-01 -8.61681938e-01 1.19975716e-01 6.72035038e-01 9.35118049e-02 -3.10857624e-01 4.38098051e-02 -4.39568311e-01 6.99580729e-01 4.04217184e-01 4.23260659e-01 2.43055925e-01 1.07201278e+00 -2.97216810e-02 2.77440641e-02 -9.69148815e-01 9.71624732e-01 2.44280592e-01 -1.07518268e+00 5.19606829e-01 -4.78959680e-02 6.83377504e-01 -2.33258635e-01 -1.52366847e-01 3.63774359e-01 -3.66197713e-02 -5.68677604e-01 8.76112103e-01 4.69288737e-01 2.39274532e-01 -6.55610442e-01 4.06536698e-01 2.54306376e-01 -1.23555613e+00 -2.96617180e-01 -4.13931102e-01 1.07627973e-01 1.34264380e-01 5.71318984e-01 -3.77646804e-01 6.79213583e-01 8.52579474e-01 1.09392154e+00 -7.07617104e-01 1.00608790e+00 -1.65482059e-01 6.95404887e-01 -2.26484627e-01 6.49615645e-01 1.63020119e-01 -2.16958314e-01 8.64768028e-01 1.01046789e+00 2.12168708e-01 1.41489878e-01 4.68077630e-01 7.92233884e-01 2.14404568e-01 9.81502119e-04 -5.38126588e-01 7.68935382e-02 2.79502362e-01 1.03568935e+00 -8.05701613e-01 -4.00404871e-01 -5.88410616e-01 1.47312713e+00 1.54398933e-01 4.03974324e-01 -1.00007761e+00 2.25918874e-01 8.55854630e-01 -9.19659622e-03 5.57269216e-01 -3.46551090e-01 4.95125540e-02 -1.70084012e+00 2.14262292e-01 -9.82397020e-01 6.33029759e-01 -4.79720503e-01 -1.18672061e+00 3.06868076e-01 1.23699151e-01 -1.56511188e+00 -4.49928828e-02 -5.90011656e-01 -5.96049547e-01 1.61053047e-01 -1.41889894e+00 -1.40990889e+00 -6.23757362e-01 8.80980790e-01 9.80529308e-01 -2.38156900e-01 4.14241791e-01 4.30096239e-01 -8.51724207e-01 4.10427868e-01 -2.40443900e-01 3.06387305e-01 2.91517943e-01 -1.13481283e+00 8.64553377e-02 1.45554757e+00 2.64107853e-01 3.34080249e-01 4.13531363e-01 -7.29335725e-01 -1.20719063e+00 -1.52196336e+00 6.16470948e-02 -4.15316314e-01 4.60524172e-01 -3.82249385e-01 -1.21422589e+00 7.59002864e-01 -3.13661098e-01 2.75202036e-01 6.53001249e-01 -1.12720996e-01 -5.32416105e-01 -5.84647898e-03 -9.64457512e-01 6.29318953e-01 1.51767695e+00 -5.16519248e-01 -7.17910707e-01 1.70823947e-01 7.88411021e-01 -3.65088969e-01 -4.91104603e-01 7.89007008e-01 2.47899339e-01 -9.98410881e-01 1.23190749e+00 -7.23096490e-01 4.16258872e-01 -5.65846801e-01 -5.68020821e-01 -9.20871496e-01 -3.15829307e-01 -4.65830117e-02 -7.69344091e-01 1.31572998e+00 -2.78595448e-01 -1.85724780e-01 8.15294623e-01 3.10678333e-01 -4.50584829e-01 -5.69097817e-01 -7.76555955e-01 -8.41884553e-01 -3.43271136e-01 -7.24070847e-01 3.93767506e-01 1.17678475e+00 -6.31814003e-01 7.13011846e-02 -6.15057588e-01 6.54004753e-01 8.87169719e-01 4.61083977e-03 9.31868136e-01 -1.11559355e+00 -5.16327262e-01 -3.20324838e-01 -9.31111574e-01 -1.23262298e+00 2.64202625e-01 -7.98659444e-01 -7.39229470e-02 -1.17022002e+00 3.73032779e-01 -2.74559975e-01 -5.43143868e-01 3.96612048e-01 -4.31927055e-01 1.24312349e-01 6.08491898e-02 1.73336476e-01 -1.00580287e+00 9.68891382e-01 9.92621779e-01 -1.89772099e-01 -2.41079330e-01 -4.16747481e-02 -5.01577497e-01 1.03239357e+00 5.92750609e-01 -3.60340029e-01 -6.02088273e-01 -5.33603668e-01 -3.55146557e-01 -2.89446563e-01 6.28384054e-01 -1.21940243e+00 -1.47641644e-01 -3.43942106e-01 6.79205954e-01 -6.04627669e-01 3.20542932e-01 -8.32461119e-01 -2.17925653e-01 4.74603504e-01 -1.53625950e-01 -3.69479656e-01 1.74098924e-01 1.19425821e+00 -2.29596153e-01 6.90943971e-02 8.09747279e-01 1.94439385e-02 -1.24194849e+00 4.96074110e-01 -3.56355816e-01 5.70382066e-02 1.14133966e+00 -4.11263317e-01 3.11609432e-02 -2.58207232e-01 -6.28709912e-01 2.94070095e-01 6.07670546e-01 6.30622268e-01 6.96468174e-01 -1.30516601e+00 -4.79170293e-01 5.66920936e-01 4.79966670e-01 2.91792154e-01 6.95393503e-01 8.65171731e-01 -5.22646368e-01 -3.31474841e-02 -3.43341142e-01 -1.06402886e+00 -1.03757942e+00 6.28123999e-01 2.98086464e-01 -4.43470217e-02 -8.66257668e-01 8.41430247e-01 7.95604706e-01 -1.72298253e-01 2.69513160e-01 -4.52693194e-01 -1.43516257e-01 -2.50691324e-01 5.04314244e-01 3.55110168e-01 -2.43494824e-01 -7.59854317e-01 -4.43426937e-01 4.90567833e-01 -3.53392139e-02 1.94780514e-01 1.19736862e+00 -3.28218251e-01 6.01435229e-02 3.46075624e-01 9.77950990e-01 1.98758304e-01 -1.65378785e+00 -3.00883055e-01 9.77694318e-02 -8.18010032e-01 6.70362590e-03 -2.80974358e-01 -1.11806846e+00 8.19228709e-01 6.36137605e-01 -2.19939455e-01 1.40018022e+00 1.21066116e-01 7.05125034e-01 2.39126042e-01 7.58839250e-02 -8.70356619e-01 6.29389644e-01 2.45909989e-01 4.17321026e-01 -1.18643761e+00 -1.29628062e-01 -6.85777545e-01 -7.17801511e-01 9.02732432e-01 9.91111100e-01 -1.42721057e-01 2.67105311e-01 -1.33958682e-01 -1.83862746e-01 -7.24341720e-02 -3.30541879e-01 -3.99680108e-01 5.26807070e-01 6.47368431e-01 -1.49482384e-01 -2.39716679e-01 2.16456622e-01 6.95527852e-01 3.97380412e-01 -2.96343267e-01 4.11570758e-01 9.81577754e-01 -5.45779526e-01 -9.41755712e-01 -1.48665220e-01 4.19140190e-01 -3.86713624e-01 1.24668449e-01 -2.01677904e-02 5.87059975e-01 3.29044908e-01 6.51803553e-01 2.77390987e-01 -3.23764801e-01 3.44733186e-02 2.06009850e-01 5.37398219e-01 -5.48250139e-01 3.38612974e-01 2.05833644e-01 -1.15011908e-01 -8.86671126e-01 -5.19045532e-01 -7.60365009e-01 -1.15898776e+00 2.79490054e-01 -8.92267600e-02 -2.06422970e-01 1.91610456e-01 1.05926383e+00 3.99638355e-01 6.97643995e-01 5.93551219e-01 -7.35943019e-01 -2.25166276e-01 -6.42758667e-01 -3.75656098e-01 7.51970351e-01 4.85927016e-01 -9.21241760e-01 -4.12724346e-01 2.89054990e-01]
[8.163847923278809, 1.235967993736267]
02410799-967f-4aea-aa99-69f5083f1e95
continual-causal-inference-with-incremental
2303.01775
null
https://arxiv.org/abs/2303.01775v1
https://arxiv.org/pdf/2303.01775v1.pdf
Continual Causal Inference with Incremental Observational Data
The era of big data has witnessed an increasing availability of observational data from mobile and social networking, online advertising, web mining, healthcare, education, public policy, marketing campaigns, and so on, which facilitates the development of causal effect estimation. Although significant advances have been made to overcome the challenges in the academic area, such as missing counterfactual outcomes and selection bias, they only focus on source-specific and stationary observational data, which is unrealistic in most industrial applications. In this paper, we investigate a new industrial problem of causal effect estimation from incrementally available observational data and present three new evaluation criteria accordingly, including extensibility, adaptability, and accessibility. We propose a Continual Causal Effect Representation Learning method for estimating causal effects with observational data, which are incrementally available from non-stationary data distributions. Instead of having access to all seen observational data, our method only stores a limited subset of feature representations learned from previous data. Combining selective and balanced representation learning, feature representation distillation, and feature transformation, our method achieves the continual causal effect estimation for new data without compromising the estimation capability for original data. Extensive experiments demonstrate the significance of continual causal effect estimation and the effectiveness of our method.
['Sheng Li', 'Stephen Rathbun', 'Ruopeng Li', 'Zhixuan Chu']
2023-03-03
null
null
null
null
['marketing', 'selection-bias']
['miscellaneous', 'natural-language-processing']
[ 2.97210962e-01 -1.88267112e-01 -8.05284023e-01 -4.02953833e-01 -4.84209120e-01 -1.30173579e-01 6.67692363e-01 3.60231936e-01 -2.53734529e-01 1.11394989e+00 8.74992430e-01 -4.16593283e-01 -6.13912880e-01 -1.00049293e+00 -7.78315783e-01 -5.70466936e-01 -4.04212743e-01 8.37957934e-02 -1.48962140e-01 4.70475517e-02 1.63864136e-01 1.75371662e-01 -1.50994098e+00 6.62151352e-02 1.02270484e+00 6.75107360e-01 5.50204597e-04 1.59316733e-01 3.64262313e-02 7.96277344e-01 -3.20970267e-01 -8.99101943e-02 -1.61432549e-02 -1.51059568e-01 -4.72244948e-01 -4.23466861e-01 1.68566760e-02 -5.14106810e-01 -5.12322068e-01 5.81341326e-01 6.83193624e-01 -7.03502148e-02 5.87592185e-01 -1.47196639e+00 -1.06493986e+00 8.65241885e-01 -8.82235944e-01 3.09193462e-01 4.31801051e-01 -6.70246407e-02 8.90310585e-01 -6.86880708e-01 3.76711935e-01 1.52833831e+00 4.83539224e-01 1.92554355e-01 -1.01623940e+00 -1.14959300e+00 5.18783331e-01 2.70562291e-01 -9.21110094e-01 -1.66112214e-01 6.58432126e-01 -3.10554713e-01 5.26781559e-01 3.25550109e-01 6.15389466e-01 1.36054921e+00 1.83037266e-01 7.82061934e-01 1.06708694e+00 -3.32299709e-01 2.39669397e-01 -2.06894040e-01 4.01887819e-02 2.78359979e-01 4.74257410e-01 7.97420561e-01 -3.60839665e-01 -5.88178515e-01 7.57628024e-01 7.16957867e-01 -1.40815958e-01 -3.53405386e-01 -1.24283314e+00 1.05462003e+00 2.89180577e-01 -1.84098128e-02 -7.03429997e-01 1.74090654e-01 3.84272903e-01 4.90702450e-01 5.51325083e-01 2.16362104e-01 -8.19575548e-01 8.09072983e-03 -4.61236537e-01 4.34967667e-01 6.20180845e-01 8.95888090e-01 4.20067012e-01 -9.70323682e-02 -1.09394848e-01 7.91184008e-01 1.18179776e-01 9.24270391e-01 6.03673756e-01 -5.33009887e-01 3.99638504e-01 8.48778367e-01 1.92006603e-01 -1.11179185e+00 -5.95848203e-01 -9.57457349e-02 -1.09890425e+00 -3.52695018e-01 1.83093697e-01 -4.38348979e-01 -6.64228857e-01 1.93479943e+00 7.77400076e-01 3.91402900e-01 -2.23048970e-01 7.33610034e-01 5.91136634e-01 5.92819571e-01 3.15698117e-01 -7.90968716e-01 9.91563082e-01 -2.07935706e-01 -8.26002419e-01 2.52903998e-01 5.60639203e-01 -5.08557200e-01 1.03516197e+00 2.30104730e-01 -5.88239908e-01 -2.93423891e-01 -8.14667165e-01 3.13747495e-01 -3.73033673e-01 -4.21353906e-01 1.34231710e+00 6.60652995e-01 -2.62401551e-01 4.57891107e-01 -4.39332664e-01 -1.17063932e-01 5.68959057e-01 5.61173975e-01 -4.00198966e-01 -3.93619955e-01 -1.63335836e+00 3.35695773e-01 1.03013448e-01 -1.33808851e-01 -8.83304775e-01 -1.34608233e+00 -6.08003736e-01 9.49013382e-02 9.00998235e-01 -9.31190670e-01 9.80981529e-01 -6.78817272e-01 -1.10390568e+00 -1.31473169e-02 3.58718820e-03 -2.81986177e-01 3.66931796e-01 -2.69897580e-01 -9.13794458e-01 -4.49316174e-01 1.62412986e-01 4.40827478e-03 8.00673485e-01 -1.03500986e+00 -1.07134831e+00 -7.34740853e-01 1.78540930e-01 9.41216201e-02 -4.43229586e-01 1.17917717e-01 1.12301752e-01 -7.79127419e-01 -2.29225591e-01 -7.77331054e-01 -5.33716619e-01 -4.47295278e-01 -1.18864372e-01 -4.94131029e-01 9.14204001e-01 -3.84562701e-01 1.50888407e+00 -2.14766502e+00 -4.46786135e-02 1.69949576e-01 3.25120538e-01 -2.46944174e-01 -1.09780200e-01 5.48480272e-01 -4.35701489e-01 4.16970164e-01 -1.35394990e-01 3.66883337e-01 -2.74287373e-01 1.84025921e-04 -5.18869519e-01 6.04339898e-01 -2.40548067e-02 6.79428875e-01 -1.09742069e+00 -5.68002820e-01 4.14050043e-01 1.05420657e-01 -8.43829036e-01 1.68042704e-01 -1.86816510e-02 5.21684945e-01 -7.86866963e-01 5.30653834e-01 6.69582844e-01 -1.91504925e-01 4.20940518e-01 2.07800567e-01 -2.80885488e-01 2.86872059e-01 -1.39471376e+00 1.50093031e+00 -8.00897539e-01 -1.05053946e-01 -4.36208248e-01 -1.20343721e+00 5.82783461e-01 4.06629175e-01 1.02695715e+00 -9.05540645e-01 -7.43054375e-02 3.94791774e-02 7.33576417e-02 -6.40160382e-01 6.80843368e-02 -3.04437727e-01 -4.59796488e-01 5.66498160e-01 -1.92362174e-01 4.23288196e-01 -2.12319940e-02 1.51108190e-01 1.14069486e+00 -2.29905769e-01 7.88533568e-01 2.12771893e-02 1.29963040e-01 -2.27385163e-01 7.79083610e-01 7.83460140e-01 9.06208232e-02 3.26132566e-01 5.80559134e-01 -5.96330285e-01 -7.45656371e-01 -1.00440383e+00 -2.48816162e-01 1.16875899e+00 -4.93886024e-02 -2.37405956e-01 -1.68481052e-01 -9.88607645e-01 4.08305943e-01 6.84145510e-01 -9.43232417e-01 -4.41615194e-01 -6.51561260e-01 -1.23911738e+00 6.58042654e-02 5.35443783e-01 2.27271304e-01 -8.86638224e-01 -2.72970706e-01 1.80405498e-01 -1.31098017e-01 -3.19106936e-01 -4.26714003e-01 -1.45275891e-01 -8.75468254e-01 -1.15279472e+00 -3.52815986e-01 -1.80821165e-01 2.91756123e-01 2.41639033e-01 7.96954632e-01 -1.21527694e-01 -2.64674008e-01 8.82173777e-02 -2.53554612e-01 -7.33799279e-01 -1.84351519e-01 -1.72152564e-01 2.99832433e-01 2.36961469e-02 3.26963007e-01 -8.20264935e-01 -8.24847698e-01 2.82092243e-01 -9.10330594e-01 -3.58501166e-01 8.49352062e-01 1.00611198e+00 4.08815920e-01 1.48857862e-01 1.21715260e+00 -1.25369489e+00 6.31031811e-01 -1.13053727e+00 -5.66164136e-01 5.10725603e-02 -1.03574479e+00 1.19933613e-01 6.76029265e-01 -6.67218626e-01 -1.41325366e+00 -3.06521952e-01 8.93780589e-02 -2.33143404e-01 -1.50291741e-01 8.48296642e-01 -4.48592514e-01 6.01673901e-01 6.15851104e-01 -2.68242657e-01 1.76474184e-01 -3.97604287e-01 6.47335768e-01 8.72400105e-01 1.15630277e-01 -3.52194130e-01 4.72998947e-01 5.31093061e-01 9.21196789e-02 -4.33433592e-01 -6.11061335e-01 -4.28499430e-01 -3.34102243e-01 1.50082335e-01 2.73730189e-01 -8.74743223e-01 -1.00808787e+00 1.39099568e-01 -7.66701281e-01 1.10400125e-01 -4.42129731e-01 8.39775622e-01 -4.24240768e-01 4.80995812e-02 -1.49371952e-01 -6.86226666e-01 -9.69040915e-02 -7.31749892e-01 8.38748395e-01 -1.07988924e-01 -2.42027938e-01 -9.91734266e-01 2.18893722e-01 1.04177132e-01 5.88180050e-02 3.72479856e-01 1.27618694e+00 -4.50240552e-01 -3.60685170e-01 -4.91801053e-01 -2.59528011e-01 -1.89276457e-01 5.91863036e-01 -1.76852837e-01 -6.12095833e-01 -1.46139085e-01 -1.66562662e-01 -1.35191873e-01 7.29502141e-01 8.41846406e-01 1.56988776e+00 -6.69153810e-01 -6.71233237e-01 2.12644756e-01 1.16048777e+00 4.00821567e-01 4.07769948e-01 -8.27279612e-02 6.72075152e-01 7.85997510e-01 8.71003270e-01 9.11364436e-01 4.35049653e-01 4.97606695e-01 6.20435238e-01 -2.53059357e-01 4.64809872e-02 -5.81051707e-01 -1.08792726e-02 3.47794443e-01 -2.98553467e-01 -2.99605615e-02 -5.33411145e-01 6.59895897e-01 -2.02974033e+00 -1.23049057e+00 -2.50650108e-01 2.59573126e+00 9.43116784e-01 -1.81443512e-01 3.92794788e-01 4.06384766e-02 6.98257446e-01 -4.31287400e-02 -7.52812266e-01 -9.36772078e-02 8.99960324e-02 1.60878077e-02 7.57181823e-01 6.24420829e-02 -1.08857024e+00 4.68025148e-01 6.52110434e+00 7.68454015e-01 -9.82734799e-01 3.80262911e-01 4.59058493e-01 -4.67276275e-01 -6.70565367e-01 4.75430414e-02 -5.09010017e-01 6.77935719e-01 1.00184691e+00 -4.91775602e-01 2.32127428e-01 7.52629638e-01 6.34296894e-01 1.37287125e-01 -1.14130223e+00 7.63686121e-01 -4.42773581e-01 -1.38734138e+00 1.45000085e-01 3.68920594e-01 8.78762484e-01 -1.71079010e-01 1.81469768e-01 5.04171371e-01 7.74569035e-01 -9.38071430e-01 3.17407340e-01 3.35798502e-01 9.06268537e-01 -9.23172116e-01 7.52716601e-01 2.33479485e-01 -6.38496876e-01 -8.13373983e-01 -3.03754747e-01 -4.85447943e-01 1.30854517e-01 1.02693033e+00 -7.33158290e-01 8.20565820e-01 7.62523472e-01 8.13504815e-01 -2.19097823e-01 7.45421112e-01 7.28788823e-02 8.81203771e-01 -2.16507837e-01 -1.74240306e-01 -1.97333917e-01 1.43405065e-01 3.06232423e-01 6.39939904e-01 3.92574757e-01 9.49664339e-02 2.00013652e-01 3.61583471e-01 -2.08686635e-01 3.32312673e-01 -9.37312663e-01 1.07686147e-01 5.24122357e-01 7.42685556e-01 -6.32057339e-02 -2.76186585e-01 -8.57841134e-01 1.99954167e-01 1.43202871e-01 2.66087472e-01 -9.57489967e-01 1.40806288e-01 5.91310620e-01 3.76491785e-01 -1.87023759e-01 2.19701111e-01 -2.79332846e-01 -1.03874910e+00 -3.06359142e-01 -1.03277946e+00 9.64630127e-01 -1.28929973e-01 -1.47397888e+00 -3.82247359e-01 4.82722610e-01 -1.13110650e+00 -3.39199901e-01 -1.71850979e-01 -3.52614433e-01 5.99172771e-01 -1.17867041e+00 -1.11616540e+00 1.76424876e-01 7.85401642e-01 6.31202221e-01 -1.09831408e-01 7.44362295e-01 5.82360327e-01 -6.21152937e-01 3.50888520e-01 2.32200280e-01 -2.73699075e-01 8.87334883e-01 -1.07522523e+00 -2.66327299e-02 3.97347927e-01 -2.31847525e-01 8.19845974e-01 6.10290051e-01 -9.81502235e-01 -1.55679750e+00 -1.11653256e+00 7.59555757e-01 -3.98644537e-01 7.99219489e-01 -2.00173810e-01 -5.34377456e-01 5.75078130e-01 -1.19655855e-01 8.52821395e-03 8.50643992e-01 1.03769588e+00 -4.24612403e-01 -4.62164640e-01 -9.78139937e-01 7.65422881e-01 1.35170424e+00 5.57184480e-02 -6.59506738e-01 3.53921235e-01 1.04100335e+00 2.73262504e-02 -9.19798076e-01 6.73807979e-01 7.83166528e-01 -5.27326286e-01 1.03926146e+00 -1.24928844e+00 7.06557393e-01 5.46109937e-02 -3.61868367e-02 -1.47655845e+00 -5.46192884e-01 -3.55927199e-01 -1.37286827e-01 1.08358824e+00 4.60392356e-01 -8.15885603e-01 3.40817511e-01 5.50051332e-01 3.69512774e-02 -5.24066269e-01 -8.42316270e-01 -5.21423876e-01 1.31515592e-01 -5.32779455e-01 1.32857597e+00 1.24142134e+00 9.09285471e-02 4.48926717e-01 -8.77516329e-01 3.27430844e-01 5.79054534e-01 6.80315614e-01 8.07185411e-01 -1.42838717e+00 -2.31892973e-01 -3.28535661e-02 -9.97984633e-02 -6.04203105e-01 -2.85197273e-02 -5.72156668e-01 -3.80269349e-01 -1.34610784e+00 5.29873669e-01 -7.25802302e-01 -7.75846660e-01 4.23428178e-01 -4.55893159e-01 -3.83961856e-01 -3.37864161e-01 7.88084716e-02 -2.81380981e-01 6.16309941e-01 1.33595574e+00 -1.78635776e-01 -3.36362064e-01 2.48285636e-01 -9.94966090e-01 6.28417969e-01 6.37403429e-01 -7.54966915e-01 -8.20495486e-01 -9.98322293e-02 3.45446050e-01 3.70066106e-01 3.93744797e-01 -3.02885711e-01 -1.83208689e-01 -7.40269959e-01 3.66041273e-01 -3.87708575e-01 -2.66967922e-01 -9.40216839e-01 3.00499260e-01 4.40733880e-01 -3.37982565e-01 -9.71892700e-02 -5.30396923e-02 1.11902308e+00 -1.72706977e-01 2.52985328e-01 1.26724452e-01 3.01686395e-02 -7.61209965e-01 6.51759982e-01 -4.13658097e-02 -6.58579171e-02 1.04450786e+00 3.05798233e-01 -3.16835761e-01 -3.61756057e-01 -5.01802087e-01 3.82484496e-01 -9.18012857e-02 9.05164659e-01 5.43357253e-01 -1.41527712e+00 -8.28246832e-01 2.76244104e-01 1.87658429e-01 -1.77482411e-01 6.83636189e-01 1.02142572e+00 5.51482022e-01 4.22317803e-01 3.74046937e-02 -1.87748358e-01 -9.99029338e-01 1.19068396e+00 -4.05971706e-01 -4.42688614e-01 -4.42937702e-01 2.37503052e-01 6.05734408e-01 -5.51077783e-01 -2.03510582e-01 -2.19807222e-01 -3.31619203e-01 7.69366547e-02 6.02173448e-01 6.09050810e-01 -1.25056401e-01 1.42541975e-01 -2.18719944e-01 -9.86147299e-02 -1.55407652e-01 1.54274359e-01 1.49139845e+00 -2.08773836e-01 -8.62833187e-02 7.71852434e-01 1.03599870e+00 1.93581924e-01 -9.67281938e-01 -2.57865712e-02 -1.31825522e-01 -7.15502501e-01 3.72109190e-02 -8.44902933e-01 -8.78056943e-01 5.19779325e-01 5.89403570e-01 4.43943501e-01 1.19073665e+00 6.64649233e-02 3.74256432e-01 1.13043293e-01 5.34307361e-01 -1.07747614e+00 -2.00996935e-01 -6.35932535e-02 1.01900387e+00 -1.37875307e+00 1.39009908e-01 -4.03847635e-01 -3.44577223e-01 3.01497966e-01 3.06304693e-01 2.00688522e-02 1.05644572e+00 1.96976334e-01 -4.34517294e-01 -6.89704865e-02 -9.85674202e-01 9.00769681e-02 -5.78770153e-02 6.55411839e-01 5.53078949e-01 3.87501627e-01 -6.97795689e-01 7.39304841e-01 3.15023176e-02 3.76468956e-01 3.26160878e-01 6.27099037e-01 -2.88408548e-02 -1.07537794e+00 -4.44048464e-01 1.02220690e+00 -6.45810723e-01 -2.67859101e-01 -5.56249404e-03 1.13399148e+00 1.68487355e-01 1.10525858e+00 4.43035737e-02 -1.26909539e-01 5.99199533e-01 -1.35956377e-01 1.71987623e-01 -4.67859298e-01 1.63798640e-03 1.28397373e-02 2.10678741e-01 -5.76210618e-01 -4.29519802e-01 -9.64645267e-01 -1.11153805e+00 -5.15020549e-01 -4.50096756e-01 1.49572521e-01 5.32922685e-01 8.89123797e-01 4.88272756e-01 7.37318099e-01 1.08079326e+00 -1.23075061e-01 -8.17025244e-01 -1.05013430e+00 -6.14074826e-01 4.37288314e-01 3.38336438e-01 -1.10981345e+00 -2.49833345e-01 -4.73994203e-02]
[8.04596996307373, 5.3937668800354]
ad30dbc8-4638-44f6-8d37-8550269edf89
learning-pose-invariant-3d-object
2004.01347
null
https://arxiv.org/abs/2004.01347v2
https://arxiv.org/pdf/2004.01347v2.pdf
Learning Pose-invariant 3D Object Reconstruction from Single-view Images
Learning to reconstruct 3D shapes using 2D images is an active research topic, with benefits of not requiring expensive 3D data. However, most work in this direction requires multi-view images for each object instance as training supervision, which oftentimes does not apply in practice. In this paper, we relax the common multi-view assumption and explore a more challenging yet more realistic setup of learning 3D shape from only single-view images. The major difficulty lies in insufficient constraints that can be provided by single view images, which leads to the problem of pose entanglement in learned shape space. As a result, reconstructed shapes vary along input pose and have poor accuracy. We address this problem by taking a novel domain adaptation perspective, and propose an effective adversarial domain confusion method to learn pose-disentangled compact shape space. Experiments on single-view reconstruction show effectiveness in solving pose entanglement, and the proposed method achieves on-par reconstruction accuracy with state-of-the-art with higher efficiency.
['Tieniu Tan', 'Jing Dong', 'Bo Peng', 'Wei Wang']
2020-04-03
null
null
null
null
['3d-object-reconstruction']
['computer-vision']
[ 8.41463730e-02 -5.82131669e-02 -5.95894866e-02 -1.80097774e-01 -8.79142642e-01 -9.36588407e-01 4.64154184e-01 -4.01077420e-01 -1.08515799e-01 5.27448416e-01 1.74170479e-01 -5.35510108e-02 -7.64547512e-02 -7.08631158e-01 -8.96456122e-01 -8.81875515e-01 5.68474531e-01 7.46713758e-01 -5.14887720e-02 -9.97261703e-02 9.95263737e-03 5.41133881e-01 -9.85184073e-01 9.36534926e-02 5.09595275e-01 7.06534922e-01 1.87012702e-01 3.04845363e-01 8.81496817e-02 5.81833199e-02 -1.92803532e-01 -6.57604098e-01 6.22727752e-01 -2.90739805e-01 -6.28128111e-01 4.32509035e-01 6.54902279e-01 -5.59122622e-01 -3.85661572e-01 1.16256225e+00 5.51203728e-01 -2.46668518e-01 6.70109332e-01 -1.03009629e+00 -7.26254880e-01 1.36474863e-01 -7.88400054e-01 -8.62509161e-02 3.17951500e-01 -1.53025582e-01 1.03139317e+00 -1.14267743e+00 7.83720553e-01 1.09718335e+00 4.58966315e-01 6.41087532e-01 -1.47130406e+00 -5.83684802e-01 7.00638071e-02 -1.41156852e-01 -1.26378250e+00 -3.32392007e-01 1.14968729e+00 -4.22297895e-01 5.39188504e-01 1.72373146e-01 5.98298967e-01 1.34907210e+00 -7.64692575e-02 7.76810706e-01 1.42050672e+00 -6.18743524e-02 4.89548035e-02 7.70809948e-02 -3.55434716e-01 6.31285429e-01 5.40851712e-01 8.27553570e-02 -3.40153456e-01 -2.30454132e-01 1.13185513e+00 2.25517884e-01 -3.59277159e-01 -1.14291477e+00 -1.31067872e+00 6.54897451e-01 3.76248360e-01 7.10132867e-02 -1.40443563e-01 -1.72540814e-01 1.55094042e-01 3.92377824e-01 6.05993867e-01 3.15974087e-01 -3.79676491e-01 2.58498434e-02 -5.78013241e-01 4.01315033e-01 6.28593206e-01 1.00538278e+00 5.31371176e-01 4.61262576e-02 5.56836426e-01 6.78673148e-01 2.49473169e-01 8.42603385e-01 -1.07945435e-01 -9.21592772e-01 7.99009204e-01 4.12441045e-01 9.93621871e-02 -9.98567164e-01 -1.93149686e-01 -5.60502827e-01 -9.72379625e-01 2.99855471e-01 6.81200445e-01 1.73579052e-01 -6.15119457e-01 1.78173041e+00 5.21126807e-01 3.23274285e-02 9.61835086e-02 1.22964931e+00 5.55072427e-01 3.37014467e-01 -5.93421042e-01 -2.32274070e-01 1.27853906e+00 -7.75821745e-01 -4.27294642e-01 -1.59877226e-01 1.03868268e-01 -8.39803159e-01 8.68110538e-01 5.75449049e-01 -1.15708458e+00 -2.93107778e-01 -1.08660078e+00 -4.11652811e-02 3.54596339e-02 -1.09446533e-01 5.89994073e-01 6.51777267e-01 -4.87281978e-01 4.31343734e-01 -8.04617524e-01 -2.42116064e-01 4.80144322e-01 2.53085285e-01 -8.40690553e-01 -5.22669256e-01 -6.69942081e-01 8.19027245e-01 3.76287848e-03 -5.95099032e-02 -8.20144296e-01 -8.58786941e-01 -8.66632402e-01 -3.12655121e-01 7.10315228e-01 -1.03462064e+00 9.18757141e-01 -4.12015170e-01 -1.46109843e+00 1.06568193e+00 8.21015686e-02 1.11288242e-01 6.71747446e-01 -2.77749091e-01 -1.27380043e-01 1.87586486e-01 -1.48200974e-01 2.87289888e-01 1.01564837e+00 -1.81078720e+00 1.25558391e-01 -1.02641916e+00 4.25947130e-01 4.73174095e-01 -1.06703609e-01 -4.56135809e-01 -3.28144729e-01 -5.67725897e-01 6.13829494e-01 -1.19889474e+00 -6.50365055e-02 2.13361919e-01 -3.29076499e-01 1.72373742e-01 8.51259530e-01 -5.59215248e-01 4.49258059e-01 -2.11716747e+00 6.89136267e-01 -6.47996068e-02 3.59751076e-01 8.65053236e-02 2.71346211e-03 4.77724135e-01 -1.08722202e-01 7.79751465e-02 -2.28639781e-01 -6.00422084e-01 -1.25245959e-01 4.42925751e-01 -5.78458428e-01 7.88396478e-01 5.33800535e-02 8.23502123e-01 -8.73641133e-01 -2.64544278e-01 1.54954508e-01 4.64975536e-01 -8.87315750e-01 2.54966348e-01 -6.40505701e-02 1.10529590e+00 -6.06239319e-01 5.02785981e-01 1.16478705e+00 -4.29910690e-01 1.24744102e-01 -4.07671243e-01 1.39999598e-01 9.90361348e-02 -1.19164979e+00 2.27567267e+00 -5.22925913e-01 -1.58286456e-03 3.33795875e-01 -1.18062043e+00 7.85163641e-01 3.64454776e-01 5.23724079e-01 -2.54004508e-01 -7.33425915e-02 2.79362887e-01 -4.27695476e-02 -5.48163891e-01 1.14577807e-01 -7.51235485e-01 -1.46141335e-01 5.36206126e-01 2.05246843e-02 -5.51896155e-01 -5.53101659e-01 -3.89501341e-02 7.18570232e-01 5.70620835e-01 3.78516436e-01 1.75035987e-02 4.15774018e-01 -4.08186227e-01 5.55400848e-01 2.32591808e-01 1.11020133e-02 9.74099517e-01 4.18086499e-01 -4.39894497e-01 -1.37060058e+00 -1.38240087e+00 -1.99828118e-01 3.61486107e-01 4.03162360e-01 -1.44889385e-01 -4.61998552e-01 -8.88269663e-01 1.61247939e-01 3.98944348e-01 -4.10675138e-01 5.36267757e-02 -6.78183615e-01 -5.10712445e-01 3.91303301e-01 4.21570510e-01 3.98392320e-01 -4.93940830e-01 -4.46311116e-01 -2.71280140e-01 -2.77069390e-01 -1.45622373e+00 -5.03100812e-01 -3.14443946e-01 -1.17527843e+00 -9.65152085e-01 -9.69249129e-01 -5.27009785e-01 9.63467658e-01 6.55006826e-01 9.44580853e-01 -3.68479043e-01 -3.57097536e-02 5.45545876e-01 -1.39691561e-01 1.19176507e-02 -3.68336380e-01 -1.49191916e-01 2.07745627e-01 1.30127370e-01 -5.33995517e-02 -1.10342479e+00 -6.61280870e-01 4.02037561e-01 -9.73373950e-01 2.84059286e-01 6.54598534e-01 1.05238700e+00 6.83515131e-01 -2.39923656e-01 5.57440996e-01 -9.15339053e-01 1.36813492e-01 -2.74015099e-01 -5.59016168e-01 1.40718728e-01 -4.76909816e-01 8.65002945e-02 8.60679865e-01 -3.94191146e-01 -1.04218245e+00 2.45799929e-01 -5.50186187e-02 -9.50871050e-01 -2.26847023e-01 1.87459156e-01 -6.41937494e-01 -2.04165190e-01 4.05269086e-01 4.06964511e-01 3.11483711e-01 -6.56439483e-01 3.29600483e-01 3.41970980e-01 2.30346873e-01 -7.42794812e-01 1.14106905e+00 9.27059650e-01 3.56938839e-01 -6.44908369e-01 -9.95893478e-01 -3.42712492e-01 -7.91719794e-01 -4.61582877e-02 6.85524225e-01 -1.16494644e+00 -6.23565853e-01 3.64329547e-01 -1.12096548e+00 3.02008182e-01 -1.28884748e-01 5.19853234e-01 -8.23710322e-01 7.53140450e-01 -2.96407223e-01 -5.86282969e-01 -2.87786368e-02 -1.27860177e+00 1.34214127e+00 -2.06107244e-01 2.42060110e-01 -8.57117355e-01 -1.85598526e-02 8.38219345e-01 1.40840217e-01 4.90938872e-01 9.09326792e-01 -3.73293340e-01 -9.26147759e-01 -2.48890501e-02 -1.45336062e-01 3.30506116e-01 8.49074200e-02 -7.68899918e-01 -9.94708776e-01 -5.96251369e-01 4.28619981e-01 -5.72662830e-01 6.06415689e-01 5.52973375e-02 1.14873064e+00 -7.81565011e-02 -1.47047788e-01 7.58760452e-01 1.48269928e+00 -2.64918685e-01 4.95686889e-01 -3.26500207e-01 8.76934767e-01 6.06596291e-01 4.88049477e-01 3.87920916e-01 4.22705263e-01 9.57801402e-01 7.10598826e-01 1.92637205e-01 -6.08370006e-02 -5.13739288e-01 2.33052358e-01 1.09412384e+00 -3.72987419e-01 -8.54744241e-02 -7.06635177e-01 4.33465600e-01 -1.58593714e+00 -9.65568364e-01 6.15194887e-02 2.33368611e+00 6.17083430e-01 -1.54468656e-01 2.40005720e-02 1.28724545e-01 3.99161160e-01 3.38865489e-01 -6.99213564e-01 1.50871426e-01 -2.45126579e-02 -1.14461118e-02 3.37934852e-01 3.56468081e-01 -8.94078493e-01 5.76297343e-01 5.18758154e+00 6.78540766e-01 -1.12876666e+00 3.03792149e-01 2.76839465e-01 -7.07945302e-02 -7.06696630e-01 1.24645405e-01 -4.59411621e-01 1.28475666e-01 4.20861803e-02 5.03185652e-02 6.21318579e-01 7.29049146e-01 -2.64230639e-01 1.85055211e-01 -1.31135082e+00 1.43317854e+00 4.59993154e-01 -9.66323316e-01 8.69688168e-02 5.05355120e-01 7.67713249e-01 -2.09520802e-01 2.93355405e-01 -5.49051119e-03 -1.89172626e-01 -8.99272084e-01 5.65866470e-01 3.14733177e-01 1.08273053e+00 -6.30710065e-01 3.49961877e-01 7.89255798e-01 -9.55640495e-01 1.94024712e-01 -4.78804886e-01 7.34419748e-02 3.03910941e-01 5.80918849e-01 -5.90889156e-01 1.03075588e+00 3.73835623e-01 7.94563115e-01 -5.11227511e-02 7.42942214e-01 -1.04498202e-02 1.91949576e-01 -3.26756239e-01 3.14805925e-01 -1.86449096e-01 -3.84021699e-01 9.44692135e-01 5.11609614e-01 5.20231843e-01 3.83214682e-01 2.49516621e-01 9.97690678e-01 -8.07432011e-02 -1.74494147e-01 -1.21565723e+00 1.32321954e-01 1.49667606e-01 1.17137134e+00 -5.03831387e-01 1.08146042e-01 -6.15885258e-01 1.26926208e+00 3.19914818e-01 2.05837652e-01 -7.58780539e-01 5.09517372e-01 6.52263582e-01 1.84211776e-01 4.45774585e-01 -5.99633515e-01 -3.79869759e-01 -1.77034569e+00 3.47624660e-01 -8.73308003e-01 4.46781218e-02 -5.42225957e-01 -1.64500940e+00 2.77532160e-01 1.25384584e-01 -1.72199297e+00 7.80740427e-03 -6.97369337e-01 -1.16134636e-01 7.25211680e-01 -1.34855783e+00 -1.45064938e+00 -2.51896411e-01 6.31460786e-01 4.72933948e-01 -1.16202228e-01 1.01024950e+00 3.76492321e-01 -1.37290761e-01 6.13677859e-01 2.47007385e-02 -1.43948764e-01 7.91348159e-01 -1.20907915e+00 2.39128232e-01 4.90202606e-01 4.03696835e-01 6.12787426e-01 4.76857513e-01 -4.63268459e-01 -2.12614417e+00 -7.82616019e-01 4.82042670e-01 -7.55235434e-01 3.14617932e-01 -6.19385779e-01 -7.62002647e-01 5.71477175e-01 3.27811427e-02 4.70454216e-01 7.08939254e-01 9.78300069e-03 -7.67541587e-01 3.94406468e-02 -1.31612420e+00 4.44371879e-01 1.54850745e+00 -6.60000026e-01 -5.99954784e-01 1.41874954e-01 6.91540301e-01 -7.80036151e-01 -9.54826832e-01 4.32594419e-01 5.78020990e-01 -9.09649432e-01 1.32725108e+00 -6.19045734e-01 5.60760140e-01 -3.27433169e-01 -4.75573212e-01 -1.36458480e+00 -5.63580319e-02 -4.68078762e-01 -1.63554236e-01 1.00767601e+00 9.56521705e-02 -7.25263298e-01 8.12055528e-01 3.80412728e-01 -7.77641591e-03 -9.00208592e-01 -1.15279222e+00 -9.41181600e-01 3.55648369e-01 -1.67329803e-01 4.31770712e-01 1.05032980e+00 -2.78780103e-01 5.22477686e-01 -6.37053967e-01 4.39985216e-01 9.24905777e-01 7.55569518e-01 9.83986139e-01 -1.20837128e+00 -6.65979862e-01 -3.71604003e-02 -4.23571229e-01 -1.46475661e+00 1.22838102e-01 -1.14462960e+00 -3.89929861e-01 -1.15078282e+00 5.51133871e-01 -4.54559326e-01 1.18860491e-01 1.40377626e-01 1.45027325e-01 3.33187640e-01 4.25362289e-01 3.15217137e-01 -4.27898586e-01 8.88774991e-01 1.91081214e+00 2.37989146e-02 4.13204283e-01 4.32119593e-02 -7.19475865e-01 7.23302901e-01 3.86920959e-01 -3.84068161e-01 -6.11646831e-01 -7.05710053e-01 4.11810666e-01 4.84614968e-01 7.03231633e-01 -5.93240738e-01 -5.64505719e-02 -1.63409501e-01 3.33689868e-01 -5.63018143e-01 7.75957763e-01 -1.26391435e+00 3.58599335e-01 1.49348199e-01 9.82952416e-02 1.92139614e-02 -2.84936633e-02 9.94428098e-01 -9.58757699e-02 -8.67728963e-02 7.55713344e-01 -2.76908040e-01 -1.32090956e-01 5.46501338e-01 5.22742927e-01 2.55415231e-01 9.64944363e-01 -1.20224692e-01 -1.73655346e-01 -4.44184870e-01 -7.93019056e-01 -1.42093658e-01 9.26881552e-01 5.15939713e-01 7.57218242e-01 -1.66798782e+00 -7.89020777e-01 4.80880976e-01 2.54590869e-01 3.33507866e-01 3.45714182e-01 8.47620547e-01 -2.26273298e-01 2.16386110e-01 -1.25762939e-01 -8.51139069e-01 -1.14954841e+00 7.02431202e-01 1.94253057e-01 -3.48897994e-01 -8.20359409e-01 5.43377697e-01 6.69992626e-01 -8.62340152e-01 -1.71088874e-01 3.46864238e-02 1.10416733e-01 -2.10203603e-01 1.59863889e-01 1.10964172e-01 2.25865562e-02 -6.84923410e-01 -2.09645480e-01 1.04814160e+00 6.47062585e-02 -2.73365825e-01 1.48009586e+00 -6.98871538e-02 2.89187115e-02 4.61091727e-01 1.41812432e+00 3.58386219e-01 -1.33691525e+00 -4.08282071e-01 -5.33522844e-01 -8.70052814e-01 -2.79498130e-01 -5.72763026e-01 -1.14870238e+00 1.13180268e+00 3.97760034e-01 -8.73365346e-03 1.00215924e+00 2.48334408e-01 1.01971757e+00 2.90526807e-01 8.79094541e-01 -5.70869029e-01 3.02610517e-01 4.57641900e-01 1.28381586e+00 -1.37313974e+00 8.72506276e-02 -7.14836597e-01 -5.11309624e-01 9.78651047e-01 6.32053256e-01 -3.87905002e-01 7.40562618e-01 9.15405005e-02 -2.30359092e-01 -2.78578222e-01 -4.03699756e-01 1.70068502e-01 3.06908488e-01 4.25884336e-01 7.73048028e-02 1.08441502e-01 -7.22935423e-02 5.82134008e-01 -5.93400560e-02 -3.19933206e-01 3.29006314e-01 6.28449082e-01 1.52142122e-01 -1.46859038e+00 -4.07831311e-01 1.40491605e-01 -5.49745560e-01 2.31915012e-01 -3.09147596e-01 7.36474156e-01 1.19702071e-01 4.33767051e-01 -2.09605798e-01 -3.26605946e-01 4.27941173e-01 4.18624133e-02 1.18757594e+00 -6.23387456e-01 -1.49169669e-01 1.98283136e-01 -1.50703356e-01 -3.91417474e-01 -5.12432754e-01 -9.20524180e-01 -9.57060695e-01 -2.38150299e-01 -3.59643728e-01 -2.31260866e-01 5.87546051e-01 7.87074924e-01 4.39628989e-01 5.79430498e-02 8.72741997e-01 -9.15155828e-01 -1.12967181e+00 -6.24254167e-01 -5.29441118e-01 8.00936341e-01 5.37743568e-01 -9.65351820e-01 -3.51808995e-01 -9.19206142e-02]
[8.510246276855469, -3.103480577468872]
ee9edb43-85a1-4028-8978-5356f880ea0f
multilingual-sequence-to-sequence-speech
1810.03459
null
http://arxiv.org/abs/1810.03459v1
http://arxiv.org/pdf/1810.03459v1.pdf
Multilingual sequence-to-sequence speech recognition: architecture, transfer learning, and language modeling
Sequence-to-sequence (seq2seq) approach for low-resource ASR is a relatively new direction in speech research. The approach benefits by performing model training without using lexicon and alignments. However, this poses a new problem of requiring more data compared to conventional DNN-HMM systems. In this work, we attempt to use data from 10 BABEL languages to build a multi-lingual seq2seq model as a prior model, and then port them towards 4 other BABEL languages using transfer learning approach. We also explore different architectures for improving the prior multilingual seq2seq model. The paper also discusses the effect of integrating a recurrent neural network language model (RNNLM) with a seq2seq model during decoding. Experimental results show that the transfer learning approach from the multilingual model shows substantial gains over monolingual models across all 4 BABEL languages. Incorporating an RNNLM also brings significant improvements in terms of %WER, and achieves recognition performance comparable to the models trained with twice more training data.
['Shinji Watanabe', 'Matthew Wiesner', 'Murali Karthick Baskar', 'Sri Harish Mallidi', 'Takaaki Hori', 'Jaejin Cho', 'Ruizhi Li', 'Nelson Yalta', 'Martin Karafiat']
2018-10-04
null
null
null
null
['sequence-to-sequence-speech-recognition']
['speech']
[ 2.92407181e-02 1.13157727e-01 -6.79011643e-02 -5.50872922e-01 -1.55632353e+00 -6.82674229e-01 5.23407280e-01 -4.77241516e-01 -6.54422939e-01 9.43786383e-01 6.22767806e-01 -6.80576801e-01 6.85495675e-01 -2.07684398e-01 -6.95642710e-01 -5.15560448e-01 2.45280534e-01 7.37841964e-01 5.30466512e-02 -5.71188569e-01 -7.26793781e-02 3.09974402e-01 -7.52037227e-01 3.89765561e-01 6.34319305e-01 1.39726534e-01 6.27276063e-01 9.01767910e-01 -1.09525241e-01 1.05878067e+00 -8.37549865e-01 -3.75264466e-01 1.69701979e-01 -6.50502503e-01 -7.38954186e-01 -3.19644421e-01 5.87993801e-01 -9.36400965e-02 -4.34998721e-01 8.28228414e-01 8.95340502e-01 2.46367112e-01 1.42311752e-01 -2.84892261e-01 -5.30117810e-01 1.07609963e+00 -1.40073195e-01 4.56013829e-01 5.56857944e-01 -1.97143685e-02 1.04431093e+00 -8.76970768e-01 6.85140193e-01 1.49614465e+00 7.40051687e-01 7.23628521e-01 -1.06589508e+00 -6.02820158e-01 1.41051747e-02 1.76749930e-01 -1.36482799e+00 -1.00782156e+00 3.35462540e-01 -8.50484520e-02 1.73200965e+00 1.80217460e-01 3.05896372e-01 1.34985733e+00 8.58597050e-04 8.92223060e-01 1.19450641e+00 -8.40842068e-01 -1.62573561e-01 2.34351739e-01 -8.25900733e-02 3.15607816e-01 -4.03801084e-01 1.12765618e-01 -6.36946797e-01 2.02317908e-01 6.97943389e-01 -6.45134330e-01 3.42258923e-02 3.81171703e-01 -1.26802385e+00 7.13351429e-01 -1.41160741e-01 5.27037442e-01 -2.14674458e-01 1.12928770e-01 6.71602726e-01 5.60508370e-01 4.94667798e-01 4.10944790e-01 -7.41450906e-01 -5.66530049e-01 -1.10016501e+00 -1.94405600e-01 1.00689089e+00 1.15874493e+00 5.62014341e-01 7.52811491e-01 -6.54527023e-02 1.61517203e+00 3.70743543e-01 9.63310778e-01 6.24669790e-01 -5.79444230e-01 8.63287807e-01 -1.30226299e-01 -4.70535129e-01 -1.51886359e-01 6.97116032e-02 -3.64691377e-01 -3.03269655e-01 -3.28018546e-01 1.42105550e-01 -3.48458052e-01 -1.20732772e+00 1.64827132e+00 -1.89809695e-01 6.70270994e-02 5.97905934e-01 5.69952190e-01 7.74931848e-01 1.25446951e+00 1.87341943e-01 -2.01855391e-01 1.06756699e+00 -1.30484080e+00 -9.28209424e-01 -4.43203658e-01 9.21982467e-01 -1.24543619e+00 9.34851646e-01 3.11492622e-01 -1.25627208e+00 -6.06786191e-01 -7.74406791e-01 -2.34264880e-01 -3.25005770e-01 2.85560876e-01 1.28549337e-01 8.75958085e-01 -1.39687634e+00 1.00143984e-01 -8.71932328e-01 -7.17847228e-01 -2.83926129e-01 3.51851404e-01 -3.90581131e-01 -1.88899189e-01 -1.38767672e+00 1.40765500e+00 5.47986269e-01 2.62474343e-02 -1.02135694e+00 -3.70480269e-01 -1.03176355e+00 -1.44741938e-01 -1.14298314e-01 7.20971301e-02 1.62439620e+00 -9.27228093e-01 -2.10457325e+00 6.39030933e-01 -3.58732790e-01 -4.06610548e-01 1.49268940e-01 -3.73848587e-01 -6.23663187e-01 -3.73339057e-01 -1.87776983e-01 6.75491035e-01 2.96464056e-01 -9.12235141e-01 -5.61470568e-01 9.20261294e-02 -3.36894751e-01 4.58495200e-01 1.14752427e-01 6.60520375e-01 -5.64592302e-01 -7.85271823e-01 -3.70688677e-01 -1.11846340e+00 -3.34279835e-01 -1.20342898e+00 -4.15959060e-02 -2.29967251e-01 4.90132481e-01 -1.31964612e+00 1.34947991e+00 -1.92947364e+00 1.35815203e-01 4.57530655e-02 -7.41995156e-01 8.13846350e-01 -5.26292443e-01 8.40189278e-01 -2.49771476e-02 -2.40940135e-02 -1.01245716e-01 -3.82643014e-01 -3.73288423e-01 6.83051944e-01 -1.89188257e-01 5.53415120e-02 1.76221743e-01 8.96543562e-01 -7.64908373e-01 -1.75475150e-01 2.82743931e-01 6.94183350e-01 -4.51088518e-01 2.85032779e-01 4.18302305e-02 7.52756536e-01 8.41036662e-02 4.92074221e-01 2.96106786e-01 5.49781442e-01 5.69152117e-01 2.65148222e-01 -4.04864788e-01 1.21192348e+00 -6.67456865e-01 1.95170510e+00 -9.44984853e-01 7.95651615e-01 -5.94061241e-02 -9.50479031e-01 1.23377192e+00 8.01135480e-01 -1.38544187e-01 -8.63604009e-01 4.39042822e-02 7.68602014e-01 5.26480913e-01 -3.42773020e-01 5.38744152e-01 -4.10097301e-01 -2.63829976e-01 1.42588690e-01 6.11572981e-01 -2.72447437e-01 5.48184849e-02 -2.16278061e-01 9.75379109e-01 2.65589327e-01 3.55899483e-01 -2.46260867e-01 7.17784464e-01 -2.96050739e-02 5.90354800e-01 6.08867764e-01 1.27304360e-01 5.02145648e-01 -3.00718043e-02 -1.84061542e-01 -1.33871627e+00 -8.73334646e-01 3.90451699e-02 1.35307336e+00 -5.82862914e-01 -2.72635758e-01 -8.56006742e-01 -4.42733109e-01 -4.75709110e-01 1.10745239e+00 8.18093717e-02 3.41392010e-01 -1.31550920e+00 -6.24927342e-01 1.23298120e+00 5.94474435e-01 2.12975889e-01 -1.33100200e+00 3.01887989e-01 5.88581979e-01 -3.93647194e-01 -1.40330935e+00 -5.55913866e-01 4.15007889e-01 -7.29722798e-01 -1.78563967e-01 -7.34724939e-01 -1.16483915e+00 1.43031463e-01 -2.07536265e-01 9.28294480e-01 -3.47169787e-01 1.44371331e-01 -1.37250274e-02 -6.19330883e-01 -3.68436575e-01 -1.15791643e+00 5.54870248e-01 1.34612933e-01 -3.56983006e-01 6.92340255e-01 -2.62581438e-01 2.78874069e-01 1.21950403e-01 -4.72551644e-01 -3.14251721e-01 8.10104311e-01 8.82144690e-01 3.92665356e-01 -7.15908885e-01 9.03349221e-01 -8.30688775e-01 4.61406201e-01 -3.19009095e-01 -4.35844243e-01 2.65267819e-01 -2.09312066e-01 1.27903581e-01 6.29260421e-01 -2.65786082e-01 -1.35492897e+00 1.42758861e-01 -1.01198041e+00 -1.26640856e-01 -3.10438693e-01 6.98815167e-01 -3.24851960e-01 1.82499439e-01 3.62213790e-01 3.10694247e-01 2.52120998e-02 -8.78032863e-01 4.02542830e-01 1.19607830e+00 3.79176825e-01 -5.32957494e-01 3.84099871e-01 -3.45670164e-01 -6.22510970e-01 -1.26912189e+00 -6.36027038e-01 -7.38502920e-01 -8.68333757e-01 -4.81640138e-02 8.47702563e-01 -1.22177613e+00 -1.31062925e-01 4.71730560e-01 -1.45962405e+00 -5.65830946e-01 -1.08383588e-01 1.00617850e+00 -5.49966812e-01 2.86652833e-01 -1.07976210e+00 -7.22534299e-01 -2.11037576e-01 -1.30142808e+00 8.51664484e-01 -1.92243919e-01 -3.30730796e-01 -1.30556941e+00 5.98938704e-01 4.77781713e-01 5.77424288e-01 -5.91930568e-01 6.46157146e-01 -1.14284527e+00 -4.59211558e-01 -7.40884244e-02 1.88215598e-01 8.94883990e-01 8.06965455e-02 -4.04922605e-01 -1.09578967e+00 -4.63521659e-01 -1.59780085e-01 -3.61138463e-01 6.03611708e-01 1.85509026e-01 3.17244470e-01 -3.26373816e-01 7.76986852e-02 5.02830744e-01 1.23728359e+00 7.33854592e-01 8.73976707e-01 2.13909313e-01 8.45271885e-01 5.04919410e-01 3.42740715e-01 -2.55670756e-01 3.33709538e-01 7.76252389e-01 -3.55277002e-01 -1.01895913e-01 -4.92357612e-01 -4.47370648e-01 1.16132915e+00 2.20572591e+00 -1.14905737e-01 -4.82024997e-01 -1.30850112e+00 7.85207748e-01 -1.59188616e+00 -8.87672305e-01 -1.03335127e-01 2.16213655e+00 1.11238182e+00 -2.75552332e-01 -4.38092798e-02 -4.08881575e-01 7.09344268e-01 1.60890192e-01 7.12407753e-02 -1.18069756e+00 -2.89102018e-01 6.12401426e-01 7.67602980e-01 1.06739759e+00 -6.85362577e-01 1.74738133e+00 7.06539297e+00 1.08747959e+00 -1.36649346e+00 5.10619283e-01 1.83874995e-01 3.31434421e-02 -1.78579450e-01 1.62137330e-01 -1.38402700e+00 1.69894725e-01 1.82162178e+00 1.68499008e-01 5.77500284e-01 6.32294118e-01 2.57994682e-01 1.92213893e-01 -1.07020009e+00 7.83749044e-01 4.58588302e-01 -7.84144461e-01 1.48417890e-01 -4.48931083e-02 7.55091667e-01 8.55344296e-01 -2.82110929e-01 6.51688159e-01 7.39513576e-01 -1.18725121e+00 4.98204410e-01 1.90943316e-01 1.05682504e+00 -8.45258713e-01 1.00355995e+00 3.27462703e-01 -1.03018296e+00 4.27201211e-01 -4.39061075e-01 -3.16253975e-02 5.44498920e-01 -6.04877546e-02 -1.38180912e+00 6.15625858e-01 2.88179755e-01 7.41599798e-01 -1.47519574e-01 8.56491029e-01 -4.59417284e-01 1.38170779e+00 -2.56450266e-01 -1.63777545e-01 5.29899657e-01 -1.18667789e-01 6.71477914e-01 2.14426827e+00 4.47985888e-01 -2.34201998e-01 1.95355222e-01 8.08035135e-02 3.97446714e-02 5.89435101e-01 -6.54021025e-01 -1.85976058e-01 4.55434144e-01 7.63909638e-01 -2.52524972e-01 -3.72698873e-01 -7.60767937e-01 1.02333045e+00 3.68177176e-01 3.77191007e-01 -4.53217894e-01 -4.56974834e-01 5.42786002e-01 -1.77881792e-01 4.69838172e-01 -5.93297899e-01 3.76734883e-02 -1.11295807e+00 -2.84992158e-01 -1.47446764e+00 -1.89133845e-02 -5.43713629e-01 -1.20274162e+00 1.10259449e+00 -1.85234010e-01 -8.67312551e-01 -6.47283852e-01 -7.34206319e-01 -2.78458297e-01 1.40964174e+00 -1.69639957e+00 -1.34825528e+00 5.63004792e-01 2.26821885e-01 1.12298107e+00 -5.91396630e-01 1.03556001e+00 5.58834374e-01 -3.83461177e-01 7.45308638e-01 2.64961421e-01 4.86802906e-01 9.14349377e-01 -1.11837423e+00 8.75753939e-01 8.42340291e-01 3.84938866e-01 6.68533862e-01 3.77586842e-01 -7.19547629e-01 -1.12680244e+00 -9.99727547e-01 1.52434897e+00 -7.13926792e-01 8.07878017e-01 -5.50459564e-01 -9.71901655e-01 1.25257623e+00 9.17444587e-01 -4.38943177e-01 8.60352755e-01 3.94775897e-01 -1.66811764e-01 5.36894724e-02 -4.96094644e-01 4.59922761e-01 8.46026480e-01 -1.00362337e+00 -1.03262317e+00 -3.87822487e-03 7.40981400e-01 -4.78697479e-01 -9.60154533e-01 2.74137169e-01 5.50218999e-01 -3.71476144e-01 5.80587447e-01 -6.07057273e-01 8.05925485e-03 -1.50064588e-01 -5.52802563e-01 -1.77501309e+00 -1.29865274e-01 -7.70030081e-01 4.91698444e-01 1.36843085e+00 9.76369739e-01 -6.12054229e-01 2.96189696e-01 -1.38322741e-01 -6.11984551e-01 -1.78608894e-01 -1.13765347e+00 -1.21667552e+00 4.29684758e-01 -6.11199677e-01 3.83011609e-01 9.91992950e-01 6.21685907e-02 7.94369340e-01 -6.55563891e-01 1.70758724e-01 6.12627231e-02 -7.22301126e-01 6.30300820e-01 -6.20325923e-01 -4.37651187e-01 -1.21416740e-01 -5.17517507e-01 -1.42983115e+00 3.75494540e-01 -1.23289597e+00 5.65872014e-01 -1.41623604e+00 -5.48597388e-02 -5.30797362e-01 -3.04121017e-01 6.28101349e-01 -2.46244855e-02 5.44093698e-02 2.84334034e-01 6.70037121e-02 -2.29723558e-01 4.41025972e-01 8.27951550e-01 2.50128329e-01 -2.35757783e-01 -1.96668506e-01 -9.23955888e-02 5.31501174e-01 7.86442578e-01 -6.28098369e-01 -1.49954453e-01 -8.10417831e-01 -5.52608706e-02 2.99533784e-01 -2.85595953e-01 -8.59012187e-01 2.49357998e-01 2.38592416e-01 -6.08132258e-02 -6.12413883e-01 3.47355723e-01 -4.75146323e-01 -1.45723224e-02 2.16680244e-01 -3.40085834e-01 3.36846054e-01 6.07612193e-01 4.34835777e-02 -6.57465219e-01 -3.97855967e-01 7.71423101e-01 -2.22672269e-01 -7.02038825e-01 -2.71883368e-01 -9.87951756e-01 1.78959399e-01 4.92788613e-01 -3.41699868e-02 -9.91362799e-03 -3.44738275e-01 -9.23950732e-01 -4.64297086e-02 8.84734765e-02 6.92175090e-01 2.19312623e-01 -1.11327720e+00 -1.15019298e+00 4.04975623e-01 -4.27811965e-02 -4.70743030e-01 -1.66843265e-01 6.25701845e-01 -6.25724554e-01 1.00943255e+00 -1.32999271e-01 -5.73123932e-01 -1.38485038e+00 7.58940130e-02 3.81410331e-01 -4.06926632e-01 -1.86544478e-01 1.01452875e+00 -4.51287478e-02 -1.27195048e+00 2.19891652e-01 -1.38639569e-01 -1.57732934e-01 -3.25805619e-02 2.59897649e-01 3.96582544e-01 3.34622562e-01 -1.15654099e+00 -4.27585542e-01 3.94122690e-01 -4.45735067e-01 -7.37713456e-01 1.31815529e+00 -1.68789297e-01 2.28708368e-02 7.99475789e-01 1.11568487e+00 5.41562140e-01 -7.46880054e-01 -3.57983440e-01 3.29545110e-01 6.13796525e-02 -7.23411143e-02 -1.08061230e+00 -6.50639474e-01 1.13348591e+00 2.11823776e-01 -3.23674053e-01 6.81993127e-01 8.42353795e-03 9.48295057e-01 6.29316509e-01 3.68900359e-01 -1.26459873e+00 -4.17082965e-01 1.42766011e+00 8.08602452e-01 -1.02002037e+00 -6.35069847e-01 -2.04358667e-01 -9.00015354e-01 1.09019744e+00 4.73881334e-01 -3.21531370e-02 4.48764175e-01 5.77852070e-01 8.04063141e-01 2.64146000e-01 -7.56230414e-01 -2.83143491e-01 2.02319369e-01 5.22008479e-01 1.10341620e+00 2.73866564e-01 -3.38482529e-01 1.35667279e-01 -5.22608638e-01 -1.83455005e-01 4.28635359e-01 7.88285434e-01 -4.51252043e-01 -1.79703724e+00 -2.21762910e-01 3.90451029e-02 -8.30822289e-01 -8.80832672e-01 -2.48592615e-01 7.20333934e-01 -1.62670076e-01 8.23394716e-01 9.73023921e-02 -2.26644263e-01 3.81560653e-01 5.15407860e-01 3.69972676e-01 -1.10977829e+00 -8.31813633e-01 5.25196970e-01 6.62409127e-01 -2.98942238e-01 -3.49438667e-01 -9.29170430e-01 -9.51946557e-01 2.62044519e-02 -4.98323828e-01 4.19804186e-01 9.14370775e-01 1.01172161e+00 6.74716607e-02 4.73627239e-01 4.53255564e-01 -5.40088177e-01 -4.19450343e-01 -1.37753642e+00 -2.99002230e-01 -3.02830428e-01 3.49597573e-01 2.39791218e-02 -1.98175013e-01 3.13344747e-01]
[14.348320007324219, 7.009493350982666]
5881450c-196d-417f-9b5a-2b6778deeaa8
video-instance-segmentation-using-inter-frame
2106.03299
null
https://arxiv.org/abs/2106.03299v1
https://arxiv.org/pdf/2106.03299v1.pdf
Video Instance Segmentation using Inter-Frame Communication Transformers
We propose a novel end-to-end solution for video instance segmentation (VIS) based on transformers. Recently, the per-clip pipeline shows superior performance over per-frame methods leveraging richer information from multiple frames. However, previous per-clip models require heavy computation and memory usage to achieve frame-to-frame communications, limiting practicality. In this work, we propose Inter-frame Communication Transformers (IFC), which significantly reduces the overhead for information-passing between frames by efficiently encoding the context within the input clip. Specifically, we propose to utilize concise memory tokens as a mean of conveying information as well as summarizing each frame scene. The features of each frame are enriched and correlated with other frames through exchange of information between the precisely encoded memory tokens. We validate our method on the latest benchmark sets and achieved the state-of-the-art performance (AP 44.6 on YouTube-VIS 2019 val set using the offline inference) while having a considerably fast runtime (89.4 FPS). Our method can also be applied to near-online inference for processing a video in real-time with only a small delay. The code will be made available.
['Seon Joo Kim', 'Seoung Wug Oh', 'Miran Heo', 'Sukjun Hwang']
2021-06-07
null
http://proceedings.neurips.cc/paper/2021/hash/6f2688a5fce7d48c8d19762b88c32c3b-Abstract.html
http://proceedings.neurips.cc/paper/2021/file/6f2688a5fce7d48c8d19762b88c32c3b-Paper.pdf
neurips-2021-12
['video-instance-segmentation']
['computer-vision']
[ 3.51556152e-01 -1.81749761e-01 -2.89742589e-01 -4.51504827e-01 -1.00396478e+00 -4.91645694e-01 3.70312512e-01 1.98924959e-01 -5.56081355e-01 5.50844729e-01 2.44432613e-02 -2.15655133e-01 1.80959001e-01 -7.72697151e-01 -9.98572230e-01 -4.27128673e-01 -2.44789764e-01 2.53857493e-01 9.26232100e-01 2.59687990e-01 8.39920342e-02 3.48622173e-01 -1.62218797e+00 8.39027762e-01 4.35677201e-01 1.36993229e+00 4.26864415e-01 1.03811371e+00 -2.63016701e-01 1.08069587e+00 -5.97935677e-01 -5.25232077e-01 1.82901248e-01 -3.98977220e-01 -9.15537536e-01 2.06949770e-01 7.32815444e-01 -8.18593204e-01 -4.05159771e-01 6.64740980e-01 3.28920633e-01 6.53439984e-02 -1.50742993e-01 -1.02574408e+00 1.65561274e-01 8.59483063e-01 -5.86410880e-01 4.95717883e-01 5.05698144e-01 7.74689540e-02 9.70772028e-01 -7.95835197e-01 8.12360883e-01 1.16108596e+00 3.91668767e-01 3.17948848e-01 -8.53636861e-01 -4.94102210e-01 4.15751576e-01 5.50691366e-01 -1.14998519e+00 -7.30330110e-01 4.23440248e-01 -2.15868518e-01 1.08808470e+00 4.65719789e-01 1.05344594e+00 6.46519721e-01 1.04898199e-01 1.20853245e+00 5.56260228e-01 -9.04545113e-02 1.77065626e-01 -3.72874916e-01 7.48228356e-02 8.31655860e-01 -3.05308312e-01 -1.46342441e-01 -1.03472304e+00 1.02807887e-01 6.74589932e-01 3.49407867e-02 -3.45364064e-01 1.64900526e-01 -1.42871070e+00 4.42713737e-01 2.83183217e-01 -6.56913072e-02 -4.54247743e-01 5.69044650e-01 8.27370822e-01 1.93529949e-01 6.54017627e-01 -2.50804633e-01 -5.01899064e-01 -8.14330518e-01 -1.43677461e+00 2.85296619e-01 8.40118170e-01 1.16407394e+00 6.40396953e-01 -1.63474724e-01 -5.82059324e-01 5.45082211e-01 1.51512548e-01 3.69005710e-01 3.00603472e-02 -1.50639367e+00 6.11556351e-01 1.10328913e-01 -9.89968479e-02 -9.53437924e-01 -1.01832293e-01 -1.09151192e-01 -5.41280568e-01 -1.00317508e-01 3.08887869e-01 -1.37616262e-01 -6.93720877e-01 1.29171896e+00 4.44327563e-01 7.69006014e-01 -2.07639828e-01 1.05917525e+00 8.82661462e-01 9.40949142e-01 8.42822567e-02 -3.25290293e-01 1.59581101e+00 -1.37715256e+00 -7.03764915e-01 -4.13943492e-02 4.47031170e-01 -9.22549069e-01 6.58884645e-01 4.94476289e-01 -1.64183283e+00 -6.19955599e-01 -7.43978620e-01 -3.42804581e-01 5.76431416e-02 -4.76783924e-02 7.15846896e-01 4.14679915e-01 -1.11798811e+00 6.26811326e-01 -1.31378889e+00 -1.25098303e-01 6.75755501e-01 4.46946532e-01 -4.21176888e-02 6.22118125e-03 -7.88126886e-01 8.83054584e-02 3.45164925e-01 9.07086302e-03 -9.83804047e-01 -1.06918120e+00 -7.54012942e-01 2.44901717e-01 7.01782584e-01 -7.68119156e-01 1.48468363e+00 -1.12509501e+00 -1.83087730e+00 4.60906982e-01 -5.81146300e-01 -7.98072577e-01 6.28648400e-01 -5.63772559e-01 -4.22762036e-02 7.07849383e-01 -6.78168312e-02 1.05267704e+00 8.40332866e-01 -8.21682572e-01 -1.18119991e+00 -3.12390346e-02 5.54672539e-01 2.44410988e-02 -2.04919785e-01 3.09148103e-01 -1.29481936e+00 -5.75350344e-01 -1.70434758e-01 -7.17539012e-01 7.14536384e-02 4.33144569e-01 -2.75857031e-01 -4.51847427e-02 1.14711213e+00 -5.08244574e-01 1.31555641e+00 -2.30895281e+00 1.71062350e-02 -1.75768152e-01 3.40402067e-01 4.63817954e-01 1.68536663e-01 1.53277114e-01 3.76611561e-01 -7.48808756e-02 -1.44678906e-01 -7.87807763e-01 -1.54574394e-01 3.52054387e-01 -3.89698505e-01 3.17603678e-01 1.88985094e-01 7.52262533e-01 -1.02293301e+00 -9.25287783e-01 5.23624897e-01 6.75275564e-01 -9.23458159e-01 2.91378051e-01 -3.32964838e-01 1.96887299e-01 -3.39283824e-01 5.82507730e-01 7.14466155e-01 -2.87806630e-01 1.14009477e-01 -4.25032228e-01 -3.25460494e-01 3.09314579e-01 -1.02393425e+00 1.93124402e+00 -4.45674598e-01 9.66616571e-01 1.89460412e-01 -7.61520267e-01 3.97685945e-01 3.99950534e-01 6.42804205e-01 -5.52576959e-01 9.87057015e-02 -7.37354681e-02 -4.39640254e-01 -3.57541382e-01 8.08381796e-01 5.13425887e-01 2.20617354e-01 2.11588040e-01 8.69163685e-03 1.03111334e-01 7.84781814e-01 4.08136398e-01 1.09485674e+00 3.24682683e-01 7.81091768e-03 -9.80099961e-02 4.82113391e-01 -5.31984232e-02 7.44719326e-01 6.89579308e-01 -2.09961474e-01 5.24297297e-01 6.45997345e-01 -3.90941828e-01 -8.28441978e-01 -9.29297566e-01 -6.47423044e-02 1.22057676e+00 3.47977519e-01 -1.08482468e+00 -1.04923666e+00 -5.18153250e-01 -2.53600478e-01 3.63237947e-01 -2.36850917e-01 4.45576012e-01 -7.67640054e-01 -2.63593882e-01 4.95251656e-01 7.51798630e-01 7.48387635e-01 -7.07717538e-01 -1.25829399e+00 4.82576549e-01 -2.92736530e-01 -1.68481672e+00 -6.03232145e-01 -2.52092928e-01 -8.33129108e-01 -9.71902013e-01 -6.39926016e-01 -5.17077148e-01 3.79557788e-01 3.56863439e-01 1.22231662e+00 1.78644523e-01 -2.62225151e-01 4.17391002e-01 -4.31279361e-01 5.76610714e-02 -1.82081258e-03 -2.33997181e-02 -5.54801285e-01 7.04949573e-02 -4.73462231e-03 -3.15290600e-01 -8.82473528e-01 3.97051036e-01 -8.82324576e-01 7.50713706e-01 4.83041927e-02 6.44470155e-01 9.82881665e-01 -1.66623563e-01 3.78146879e-02 -1.02000415e+00 -1.03201695e-01 -3.98705095e-01 -7.42118597e-01 4.82563190e-02 1.42036220e-02 -2.94914633e-01 7.37320840e-01 -1.48245290e-01 -1.20967662e+00 2.29777604e-01 -2.38410816e-01 -4.64959532e-01 2.07229648e-02 2.60151595e-01 8.14198181e-02 1.16164878e-01 -7.14194402e-02 2.22095549e-02 -3.02158743e-01 -3.70324671e-01 4.07084137e-01 3.95651072e-01 8.29700828e-01 -8.84108603e-01 2.40293220e-01 7.83089221e-01 4.47633043e-02 -6.74403965e-01 -8.28103900e-01 -4.85095352e-01 -4.82334077e-01 -4.29653794e-01 8.71334374e-01 -1.12127495e+00 -1.13911247e+00 4.30301547e-01 -1.43483222e+00 -4.65299666e-01 -1.87740326e-01 3.93059134e-01 -6.18584812e-01 4.47155446e-01 -1.07506740e+00 -4.68311012e-01 -4.16924357e-01 -1.53520048e+00 1.40385008e+00 2.44775504e-01 -5.82779497e-02 -7.75047183e-01 -3.85381281e-01 3.18814933e-01 3.66353601e-01 1.44343391e-01 2.73102194e-01 -6.14931025e-02 -1.14370656e+00 1.65868729e-01 -5.08436084e-01 6.12840168e-02 -1.75293624e-01 5.22095978e-01 -1.03357160e+00 -2.09152699e-01 -2.85038680e-01 -4.93023545e-02 9.75830078e-01 4.72389817e-01 1.71412921e+00 -1.13858216e-01 -2.71175683e-01 9.34379220e-01 1.39729261e+00 1.83238834e-01 6.39960885e-01 1.95914656e-01 7.64288187e-01 1.64670721e-01 8.18204522e-01 8.29482853e-01 5.34818351e-01 8.11933756e-01 3.61195087e-01 -9.70584899e-02 -3.47990900e-01 -6.64491132e-02 4.24687654e-01 8.46654177e-01 -1.96128711e-01 -5.75646698e-01 -6.34449065e-01 5.45185626e-01 -2.07203937e+00 -1.06116259e+00 -3.25635493e-01 1.98191452e+00 7.84738660e-01 2.94371456e-01 1.13163389e-01 3.04134190e-02 5.38987339e-01 4.34717685e-01 -2.90890157e-01 -3.53076875e-01 5.85814565e-02 3.31273437e-01 6.16344154e-01 5.59882045e-01 -1.16826940e+00 1.08444870e+00 6.16139841e+00 9.99392211e-01 -1.08063865e+00 1.56337872e-01 7.79738307e-01 -4.16872114e-01 -3.84392254e-02 1.04665138e-01 -9.32943344e-01 6.92963004e-01 1.17092812e+00 -1.17322601e-01 4.67384160e-01 7.06374764e-01 4.35334146e-01 -5.49444377e-01 -1.23344755e+00 1.17713583e+00 -1.14486918e-01 -1.88311160e+00 7.29406029e-02 -2.61508912e-01 5.35346210e-01 -4.55858698e-03 -2.18380272e-01 -5.04419655e-02 -2.21851721e-01 -4.27750647e-01 1.05131340e+00 4.50165242e-01 8.84207368e-01 -7.54037917e-01 5.04429638e-01 -5.07391542e-02 -1.73150206e+00 2.37138435e-01 -2.41486013e-01 -1.65598452e-01 5.99267066e-01 8.43674242e-01 -4.86360937e-01 6.44893467e-01 8.48995268e-01 1.09323990e+00 -3.96500587e-01 9.59319949e-01 -3.72862145e-02 8.18726361e-01 -4.99709606e-01 3.00878584e-01 3.42810661e-01 1.01720653e-01 4.05499905e-01 1.71794963e+00 2.20120087e-01 1.35480836e-01 4.45110440e-01 5.32833338e-01 -1.93218917e-01 -1.72712609e-01 -2.50518434e-02 6.51916713e-02 4.92387503e-01 1.14821172e+00 -1.09594727e+00 -9.10822690e-01 -7.04934657e-01 1.19901454e+00 2.42424030e-02 2.59541929e-01 -1.30435610e+00 -3.62511814e-01 8.15046549e-01 2.25632451e-02 6.53021097e-01 -3.08960289e-01 -1.39426082e-01 -1.03104198e+00 1.29246622e-01 -5.64497650e-01 3.32506716e-01 -5.34111738e-01 -6.97860897e-01 5.35042644e-01 4.55652885e-02 -1.04691780e+00 -1.51448458e-01 -4.08883721e-01 -3.17142308e-01 3.28709155e-01 -1.73879015e+00 -8.13492715e-01 -5.71896732e-01 7.78169036e-01 9.68530297e-01 2.58989066e-01 6.23946846e-01 7.94886410e-01 -5.72388053e-01 5.71431100e-01 -1.02751918e-01 1.51126936e-01 6.80661023e-01 -1.10143733e+00 5.73148668e-01 9.59805310e-01 8.18196163e-02 1.89791337e-01 4.43424642e-01 -3.83177698e-01 -1.87732363e+00 -1.04028940e+00 6.56110644e-01 3.37801725e-02 5.72105467e-01 -3.27037036e-01 -6.72861338e-01 6.91198289e-01 2.25330055e-01 4.73158270e-01 5.11036038e-01 -2.53868401e-01 -1.37999192e-01 -3.59033316e-01 -8.76207292e-01 4.75879967e-01 1.19156396e+00 -5.01196861e-01 -8.75188187e-02 2.38222420e-01 1.06563449e+00 -1.03462565e+00 -1.03714538e+00 1.31811574e-01 5.06670654e-01 -1.21901393e+00 8.80708754e-01 -4.53131050e-02 6.82288587e-01 -5.18496633e-01 -2.24483281e-01 -6.02398515e-01 2.49212161e-02 -1.05224478e+00 -4.29118842e-01 1.30527651e+00 1.64761227e-02 -2.43026167e-01 7.96251059e-01 5.95312119e-01 -2.21227393e-01 -8.56248617e-01 -9.11973178e-01 -4.83459026e-01 -7.52088428e-01 -9.06810462e-01 6.64496601e-01 4.11058396e-01 -3.10546141e-02 1.40442979e-02 -2.75801539e-01 9.59710106e-02 6.37558818e-01 2.14132831e-01 8.79460931e-01 -6.04507804e-01 -5.02621055e-01 -2.58150607e-01 -4.81667459e-01 -1.77052343e+00 1.32627919e-01 -5.72852552e-01 9.28120464e-02 -1.30322087e+00 3.18850249e-01 -2.42186129e-01 -4.12589945e-02 3.75310361e-01 -1.40113413e-01 3.36325049e-01 7.90219903e-01 6.20334931e-02 -1.23314416e+00 2.59768099e-01 1.18704987e+00 -2.10313164e-02 1.39975995e-01 -1.52586743e-01 -1.35834605e-01 7.39627600e-01 4.63538557e-01 -3.90940636e-01 -3.84242266e-01 -8.80745232e-01 -4.66332287e-02 4.76233035e-01 5.10229528e-01 -1.15532887e+00 5.16570508e-01 5.19472398e-02 1.58529446e-01 -8.94602120e-01 7.25196242e-01 -9.71281826e-01 2.26194322e-01 3.16586912e-01 -2.02535883e-01 6.15574718e-02 3.00386757e-01 5.23504436e-01 -4.87694740e-01 5.14990240e-02 5.67018688e-01 6.71641156e-02 -1.03655767e+00 5.84932327e-01 -3.71534675e-01 1.76474005e-01 1.08886671e+00 -2.14180887e-01 -4.49786246e-01 -2.26141080e-01 -5.28181911e-01 3.16813856e-01 4.16409671e-01 1.16008930e-01 6.33975208e-01 -1.00565946e+00 -6.39740586e-01 9.37813967e-02 -2.64356166e-01 1.05926640e-01 4.95173246e-01 8.38167071e-01 -9.11946654e-01 3.49581778e-01 -5.63027151e-02 -1.03446317e+00 -1.54590833e+00 2.85998672e-01 4.00648825e-02 -1.64137334e-01 -9.60871756e-01 8.03340733e-01 1.43767685e-01 5.67008734e-01 3.80346924e-01 -6.18261099e-01 2.88762867e-01 7.32307732e-02 9.29922700e-01 5.73380888e-01 -6.22269996e-02 -4.76506829e-01 -3.29132080e-01 5.99132419e-01 -1.69805750e-01 -4.74205427e-02 1.21599746e+00 -1.97197273e-01 -1.48870900e-01 2.48279825e-01 1.36727524e+00 -1.37858331e-01 -1.84171891e+00 -2.34262720e-01 -2.48932019e-01 -9.71412599e-01 2.54856080e-01 -4.54436034e-01 -1.57027817e+00 8.62761438e-01 3.97240520e-01 -1.41720045e-02 1.37834883e+00 -9.19012576e-02 1.36048996e+00 5.88380694e-02 5.49358726e-01 -1.03397572e+00 -2.82014966e-01 4.80441540e-01 2.76352882e-01 -9.47658539e-01 1.38566211e-01 -8.48829210e-01 -3.98197234e-01 1.37122679e+00 3.22299153e-01 -2.40852423e-02 6.62451088e-01 8.02868724e-01 -2.63352007e-01 -4.95756557e-03 -1.09315574e+00 -6.17555305e-02 8.29279050e-02 2.97297776e-01 5.67631066e-01 1.77300707e-01 -3.15603197e-01 3.00978571e-01 7.84589201e-02 3.66164267e-01 3.79003465e-01 9.96678948e-01 -3.04978698e-01 -1.03210926e+00 -2.04738006e-01 1.80615798e-01 -7.62185395e-01 -1.60296217e-01 1.51496559e-01 5.13450086e-01 6.56565279e-02 1.02276647e+00 5.20676792e-01 -1.38953954e-01 8.46605673e-02 -3.38809699e-01 4.40162390e-01 -2.82804668e-01 -8.09249759e-01 3.13844591e-01 2.88431942e-01 -1.32750726e+00 -7.67901599e-01 -5.75235784e-01 -1.53988302e+00 -8.04455936e-01 1.36763617e-01 -1.46958262e-01 5.65039575e-01 8.34259689e-01 6.54367626e-01 8.98568213e-01 4.00714248e-01 -1.20203209e+00 2.67372042e-01 -3.44874442e-01 -1.64459258e-01 2.86953241e-01 3.09247077e-01 -3.24005455e-01 1.42672602e-02 5.52070558e-01]
[9.105510711669922, -0.08536838740110397]
238987f7-46bf-4d9b-9ca6-a46419c5cc3d
typeface-completion-with-generative
1811.03762
null
http://arxiv.org/abs/1811.03762v2
http://arxiv.org/pdf/1811.03762v2.pdf
Typeface Completion with Generative Adversarial Networks
The mood of a text and the intention of the writer can be reflected in the typeface. However, in designing a typeface, it is difficult to keep the style of various characters consistent, especially for languages with lots of morphological variations such as Chinese. In this paper, we propose a Typeface Completion Network (TCN) which takes one character as an input, and automatically completes the entire set of characters in the same style as the input characters. Unlike existing models proposed for image-to-image translation, TCN embeds a character image into two separate vectors representing typeface and content. Combined with a reconstruction loss from the latent space, and with other various losses, TCN overcomes the inherent difficulty in designing a typeface. Also, compared to previous image-to-image translation models, TCN generates high quality character images of the same typeface with a much smaller number of model parameters. We validate our proposed model on the Chinese and English character datasets, which is paired data, and the CelebA dataset, which is unpaired data. In these datasets, TCN outperforms recently proposed state-of-the-art models for image-to-image translation. The source code of our model is available at https://github.com/yongqyu/TCN.
['Yookyung Koh', 'Junhyun Lee', 'Jinhyuk Lee', 'Inyeop Lee', 'Jaewoo Kang', 'Yonggyu Park']
2018-11-09
null
null
null
null
['font-style-transfer', 'typeface-completion']
['computer-vision', 'computer-vision']
[ 3.74144644e-01 -3.12137753e-01 -1.20322891e-01 -4.30758357e-01 -3.98253649e-01 -7.65614510e-01 5.78727067e-01 -5.15917838e-01 -4.06087160e-01 4.33964401e-01 2.80581146e-01 -1.66705817e-01 6.11692250e-01 -6.71130836e-01 -9.46105957e-01 -5.70002556e-01 9.99584496e-01 4.58821595e-01 -3.53217542e-01 -1.13608450e-01 2.60655940e-01 1.42151907e-01 -1.10986066e+00 5.67732930e-01 9.61948931e-01 9.24766958e-01 5.29100299e-01 4.86279994e-01 -2.87320763e-01 6.77714169e-01 -4.07823950e-01 -9.23101544e-01 2.22964242e-01 -6.41574621e-01 -5.04010379e-01 4.82681900e-01 7.77549565e-01 -5.39647818e-01 -5.83852470e-01 1.29834175e+00 4.98563021e-01 -2.89502352e-01 7.28258610e-01 -1.22283638e+00 -1.50738883e+00 5.28769910e-01 -5.59015512e-01 -6.59829199e-01 1.99202165e-01 9.24605876e-02 7.66116679e-01 -1.33112180e+00 7.66550779e-01 1.42318213e+00 4.94854808e-01 8.02267909e-01 -1.23019397e+00 -7.43981361e-01 -1.83836445e-02 1.57413095e-01 -1.44148433e+00 -5.99122226e-01 7.15672135e-01 -3.53203833e-01 3.82402420e-01 2.19199941e-01 7.06209362e-01 1.43365920e+00 2.03588996e-02 1.06512499e+00 1.14074194e+00 -5.60051560e-01 -2.08844304e-01 2.57719398e-01 -3.20583999e-01 6.45726383e-01 1.03002891e-01 -1.80555433e-01 -4.85206008e-01 1.06420793e-01 1.08252895e+00 3.88514362e-02 -1.79167300e-01 -2.32357502e-01 -1.47901940e+00 6.68027103e-01 2.50089139e-01 -1.13003887e-01 -1.62746742e-01 2.06291318e-01 3.29872340e-01 2.17717543e-01 3.97539020e-01 -8.45094305e-03 -4.00346480e-02 -2.25144327e-01 -6.86267197e-01 1.40646189e-01 5.84398031e-01 1.51946771e+00 6.71939969e-01 2.40883946e-01 -2.80221313e-01 1.15590334e+00 2.24753693e-01 1.03047514e+00 4.02583063e-01 -7.56243467e-01 7.71909416e-01 3.96294832e-01 1.56812623e-01 -9.72215414e-01 2.50781238e-01 -2.05366373e-01 -1.15889966e+00 -4.99923117e-02 1.96206808e-01 -1.31197512e-01 -8.77450705e-01 1.75030661e+00 -3.94022986e-02 -9.53579023e-02 -4.16852385e-02 9.74221051e-01 8.55790615e-01 8.51226985e-01 -4.28315490e-01 7.49946311e-02 1.47024751e+00 -1.26945591e+00 -8.70372415e-01 -3.64985675e-01 8.19911361e-02 -1.36338484e+00 1.51173675e+00 2.91622281e-01 -1.08202803e+00 -6.71763241e-01 -8.38588893e-01 -4.10208374e-01 1.10355757e-01 7.48750925e-01 3.69833499e-01 4.96836871e-01 -9.25404191e-01 1.81446925e-01 -4.09619242e-01 -2.75548995e-01 4.45331901e-01 -1.61584001e-02 -5.03528059e-01 -3.21238697e-01 -9.18940723e-01 7.22429156e-01 -2.32568782e-04 3.64025831e-01 -7.52319396e-01 -4.60391015e-01 -7.25693405e-01 -1.10834181e-01 1.73215672e-01 -8.43592525e-01 1.30287766e+00 -1.32781291e+00 -1.71022320e+00 8.15999985e-01 -4.81656402e-01 1.62817925e-01 9.49531317e-01 -2.49992341e-01 -3.52460653e-01 3.11781615e-02 1.87099844e-01 8.50637078e-01 1.23290718e+00 -1.37834239e+00 -3.66123527e-01 -1.27031833e-01 -2.82063246e-01 2.72909075e-01 -5.71198523e-01 -1.98620725e-02 -1.14099371e+00 -9.44451332e-01 4.91536520e-02 -1.10745251e+00 2.18283951e-01 4.80398566e-01 -6.23147190e-01 1.91935420e-01 6.79316700e-01 -8.01939726e-01 9.59554732e-01 -2.21371126e+00 4.31995571e-01 -1.04893349e-01 9.39377397e-02 3.17182019e-02 -5.43127239e-01 3.81104052e-01 -9.67617519e-03 9.39982571e-03 -3.02552491e-01 -6.79860771e-01 1.11257024e-01 2.89612144e-01 -3.78559560e-01 3.67851049e-01 1.15227714e-01 1.09861267e+00 -5.75356007e-01 -4.38451678e-01 -2.19951436e-01 6.05617881e-01 -5.89468241e-01 2.76438445e-01 -1.33807078e-01 2.76865363e-01 -2.21738786e-01 5.41979849e-01 9.39190567e-01 -2.77692586e-01 1.67860642e-01 -4.08071369e-01 -9.90130082e-02 1.88352056e-02 -9.61459756e-01 1.75074983e+00 -5.14433086e-01 7.55751848e-01 -9.78496596e-02 -5.31275809e-01 9.63467240e-01 3.38955045e-01 1.23129776e-02 -8.44730735e-01 7.19605014e-02 3.52055699e-01 -9.25721079e-02 -4.15445387e-01 6.89731598e-01 -6.43996447e-02 -3.70973721e-02 5.00596285e-01 -2.20620856e-01 -2.36254364e-01 2.22116351e-01 2.04187706e-01 4.81661707e-01 3.27243805e-01 -2.10577071e-01 1.84281114e-02 4.49310720e-01 -1.29323944e-01 8.24012399e-01 6.49931431e-01 1.34505332e-01 1.08019853e+00 5.42901397e-01 -3.38589638e-01 -1.69773638e+00 -9.93660510e-01 -5.26200645e-02 5.94260693e-01 2.31462538e-01 -3.32159430e-01 -9.37696159e-01 -3.40350151e-01 -1.49588913e-01 5.11356711e-01 -5.32877684e-01 4.55253161e-02 -5.86302519e-01 -4.51880902e-01 7.75820553e-01 2.79531986e-01 8.88046324e-01 -1.08401966e+00 9.75095779e-02 1.27188072e-01 -7.43551791e-01 -1.31436718e+00 -1.29259408e+00 -5.88834584e-01 -6.96538627e-01 -6.36520267e-01 -1.08614802e+00 -1.18462622e+00 1.25567520e+00 3.84816200e-01 9.49723125e-01 6.70650974e-02 -6.25182241e-02 2.19105445e-02 -4.66645271e-01 -1.79273680e-01 -6.63536787e-01 -1.29926100e-01 7.67117217e-02 3.98333639e-01 -2.32473039e-03 -2.28338018e-01 -5.43060899e-01 3.39707047e-01 -1.09764874e+00 7.78750002e-01 7.25286841e-01 1.26112401e+00 6.26388073e-01 -1.73590198e-01 2.66893990e-02 -1.04119802e+00 5.65787673e-01 -1.60309330e-01 -5.03469229e-01 3.59467536e-01 -5.24510622e-01 -6.07866682e-02 9.51580703e-01 -7.43499041e-01 -1.13509285e+00 -3.18553075e-02 -8.18658546e-02 -6.10130548e-01 1.40146017e-01 3.67044240e-01 -4.84918505e-01 2.03563049e-01 2.58784652e-01 7.18831062e-01 4.18297946e-01 -6.56947017e-01 3.88587624e-01 8.48297358e-01 6.60497904e-01 -6.92033172e-01 1.10296774e+00 3.53092700e-01 -3.26057613e-01 -7.61766732e-01 -4.80204791e-01 2.34320946e-02 -5.82511842e-01 -1.72329042e-03 7.21423149e-01 -1.08921051e+00 -4.61012751e-01 1.23343015e+00 -1.33821154e+00 -3.51412654e-01 4.09763567e-02 3.17009211e-01 -6.36235058e-01 6.31344914e-01 -9.71184254e-01 -3.23932648e-01 -3.82882982e-01 -1.31537199e+00 1.00114739e+00 2.03452721e-01 3.67292874e-02 -8.14534426e-01 -2.99559206e-01 4.91807461e-01 4.06027794e-01 -2.37018615e-01 1.08304513e+00 1.75176203e-01 -5.46883404e-01 -1.55578762e-01 -4.52626169e-01 6.05777740e-01 3.43471497e-01 1.30643785e-01 -5.55367291e-01 -3.20120782e-01 -1.48090497e-01 -3.90256941e-01 7.37980306e-01 1.39551058e-01 1.15186834e+00 -7.03244209e-01 1.74691722e-01 9.85995770e-01 1.37696099e+00 7.06503540e-02 1.05542862e+00 3.33058894e-01 1.07338560e+00 3.07697684e-01 4.77210432e-01 4.90852326e-01 4.91585672e-01 7.44426548e-01 1.04144931e-01 -3.90612334e-01 -2.94704646e-01 -7.03441441e-01 7.20754683e-01 1.19260108e+00 1.11925520e-01 -4.23475504e-01 -5.41879952e-01 2.78354377e-01 -1.78617251e+00 -9.88920152e-01 -2.05672190e-01 2.06046844e+00 1.11615169e+00 -1.95189059e-01 -1.22627549e-01 -2.71123439e-01 9.15744781e-01 1.27439186e-01 -5.95184267e-01 -4.13386196e-01 -6.11692369e-01 -1.58808991e-01 4.96771812e-01 5.09745896e-01 -9.26152706e-01 1.20365334e+00 5.55983973e+00 1.03000700e+00 -1.23763525e+00 5.45259155e-02 7.60153830e-01 1.57784428e-02 -6.91874623e-01 2.47897044e-01 -6.47087753e-01 7.12750494e-01 3.06039095e-01 -7.31419623e-02 8.46086383e-01 5.52609444e-01 4.26676661e-01 2.85523206e-01 -9.30296242e-01 1.18333244e+00 4.81908679e-01 -1.42933631e+00 5.08724988e-01 2.65748724e-02 7.17379332e-01 -3.00670743e-01 4.23624009e-01 -5.57456119e-03 -4.37651314e-02 -9.92341101e-01 1.40979576e+00 4.57449228e-01 1.43530965e+00 -5.41067243e-01 3.84038031e-01 1.91191316e-01 -9.56127644e-01 1.51641130e-01 -7.14842916e-01 1.46693617e-01 8.24970156e-02 4.20685619e-01 -4.65658188e-01 4.44809198e-01 4.26914036e-01 9.27553892e-01 -6.62182868e-01 6.93234205e-01 -4.29926217e-01 5.09835720e-01 -1.25964759e-02 1.83907449e-02 1.28824711e-01 -7.26284444e-01 3.84692729e-01 9.98700857e-01 5.77992678e-01 -1.22396372e-01 -1.01954257e-03 1.32371318e+00 -4.18763310e-01 1.53444454e-01 -3.90760362e-01 -2.84604669e-01 6.41010344e-01 1.29317164e+00 -2.55177498e-01 -5.36609709e-01 -5.09631157e-01 1.64903545e+00 2.60093540e-01 5.07385135e-01 -8.58872414e-01 -4.19211864e-01 5.28340340e-01 3.90110463e-02 2.74489701e-01 -2.09336713e-01 -4.00826901e-01 -1.65036786e+00 3.40389907e-01 -1.38988948e+00 -1.76256806e-01 -1.02505255e+00 -1.29603934e+00 7.20487118e-01 -3.12509328e-01 -1.65755033e+00 9.63324308e-02 -6.00129068e-01 -4.95147705e-01 1.05801177e+00 -1.25111222e+00 -1.60865188e+00 -2.94602543e-01 5.57594299e-01 5.56313515e-01 -4.02226001e-01 6.50657713e-01 4.34790134e-01 -7.78703392e-01 1.06645560e+00 4.41845924e-01 5.87570369e-01 1.03291702e+00 -9.01542246e-01 7.56975353e-01 1.05880892e+00 -3.67635232e-03 7.93767154e-01 3.81774902e-01 -7.35016763e-01 -1.77570665e+00 -1.12523675e+00 9.46676791e-01 -1.97297499e-01 4.48283970e-01 -5.65613925e-01 -6.68191016e-01 6.19529068e-01 4.16250497e-01 -3.82099956e-01 4.44188833e-01 -3.59621853e-01 -6.93546832e-01 -5.73704019e-03 -8.14169288e-01 9.93784070e-01 1.00894678e+00 -5.81852376e-01 -2.44815007e-01 3.00782919e-01 6.11723244e-01 -5.53903878e-01 -6.56802118e-01 -1.59053668e-01 8.04407179e-01 -7.20044494e-01 7.61931956e-01 -2.63372809e-01 1.06564093e+00 -3.84557873e-01 -2.92156249e-01 -1.25528860e+00 -5.48437953e-01 -5.98705292e-01 4.10258800e-01 1.40669727e+00 4.14170146e-01 -5.26564837e-01 6.63757801e-01 5.03774643e-01 -1.18201621e-01 -4.57463324e-01 -6.91028178e-01 -7.18744457e-01 2.36463100e-01 -9.97362807e-02 7.37500370e-01 8.04512918e-01 -4.88615334e-01 3.95969898e-01 -1.03812087e+00 -1.70317993e-01 7.63323367e-01 3.32887441e-01 9.36380982e-01 -5.88568807e-01 -3.81054074e-01 -4.17134494e-01 -5.02367280e-02 -1.35570121e+00 2.69204825e-01 -9.48600888e-01 6.13699928e-02 -1.42608941e+00 6.07235610e-01 -4.83610749e-01 2.91347921e-01 5.99067092e-01 -2.64646143e-01 5.29567897e-01 5.48807025e-01 5.09762406e-01 -5.43053783e-02 8.19085360e-01 1.82471657e+00 -4.49338913e-01 2.79042721e-01 -2.94068992e-01 -7.76187181e-01 4.87627357e-01 6.82619333e-01 -3.84959608e-01 -2.88368493e-01 -1.05020738e+00 3.43892932e-01 2.78874561e-02 2.93042690e-01 -4.60522413e-01 1.12262547e-01 -2.60194570e-01 6.30604506e-01 -4.25788790e-01 3.81583005e-01 -5.59387207e-01 3.62373888e-01 4.40939367e-01 -3.35926026e-01 3.47977728e-01 -1.01303987e-01 3.51081431e-01 -3.12518835e-01 -3.18530768e-01 7.77132869e-01 -1.28710344e-01 -6.03260398e-01 5.47978640e-01 -3.06108415e-01 -2.04964112e-02 4.55257773e-01 -3.59252512e-01 -5.12775004e-01 -6.16259277e-01 -1.73550963e-01 1.55491650e-03 1.05801845e+00 7.03727424e-01 8.65681946e-01 -1.80631983e+00 -1.00857246e+00 4.59417343e-01 2.12992638e-01 -1.05505414e-01 3.87930304e-01 6.98638678e-01 -8.54075313e-01 7.42736459e-02 -4.37192529e-01 -4.33207393e-01 -1.22773528e+00 3.55156034e-01 1.78230867e-01 2.36949280e-01 -7.13104248e-01 6.69598401e-01 3.81982833e-01 -6.44187570e-01 2.27883901e-03 7.06349909e-02 1.29678398e-01 -5.15817963e-02 4.79209930e-01 -7.46750683e-02 -2.93921709e-01 -8.77494752e-01 -6.50167763e-02 8.19060504e-01 -2.79430211e-01 -4.27048594e-01 1.18025804e+00 -1.98437274e-01 -4.91194874e-01 2.64164805e-01 1.39250529e+00 1.86932385e-01 -1.31990111e+00 -4.39880818e-01 -6.38485789e-01 -8.09137404e-01 -3.03535372e-01 -6.15859509e-01 -1.15360737e+00 8.86711299e-01 4.40665454e-01 -6.61041975e-01 1.07976246e+00 -4.43749249e-01 1.04391849e+00 2.32174501e-01 2.43243501e-01 -1.18527675e+00 2.07123876e-01 6.88220739e-01 1.07630098e+00 -1.19754207e+00 -1.45781800e-01 -3.27084750e-01 -1.10230708e+00 1.05062819e+00 5.00821412e-01 -4.97665489e-03 2.04504311e-01 1.46808416e-01 3.99292886e-01 3.57161850e-01 -7.63255954e-01 2.07825586e-01 1.87436670e-01 5.05767763e-01 4.21542257e-01 2.85221487e-01 -2.20303282e-01 4.40002292e-01 -3.30029756e-01 -2.23256089e-02 8.81077647e-01 6.78488672e-01 1.02147125e-01 -1.61035824e+00 -4.69094455e-01 3.06553274e-01 -1.89315036e-01 -4.91431236e-01 -4.07589942e-01 3.33123028e-01 1.98778473e-02 7.98023164e-01 1.49675786e-01 -6.01927578e-01 2.61196971e-01 -1.33814171e-01 5.26583016e-01 -4.28973854e-01 -3.38822216e-01 2.89260000e-01 -8.77329963e-04 -2.25788236e-01 -7.27228001e-02 -6.06278658e-01 -9.19002652e-01 -6.81656659e-01 -9.35166925e-02 -1.44332364e-01 6.25337481e-01 4.82132405e-01 3.57405394e-01 2.01982230e-01 8.93153906e-01 -6.86658084e-01 -6.20744228e-01 -1.01280653e+00 -6.47570252e-01 8.59992862e-01 4.14484628e-02 -2.82591343e-01 -1.17140889e-01 4.27764267e-01]
[11.532158851623535, -0.21959125995635986]
74faf6b6-a452-4b33-867a-e5d0ba16a78e
a-template-based-abstractive-meeting
null
null
https://aclanthology.org/W14-4407
https://aclanthology.org/W14-4407.pdf
A Template-based Abstractive Meeting Summarization: Leveraging Summary and Source Text Relationships
null
['Giuseppe Carenini', 'Yashar Mehdad', 'Tatsuro Oya', 'Raymond Ng']
2014-06-01
null
null
null
ws-2014-6
['meeting-summarization']
['natural-language-processing']
[-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01 -8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01 -2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00 -3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01 -9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01 7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01 7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00 -1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01 3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01 9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01 5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00 -5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01 1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00 7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01 -1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02 -1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01 1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00 1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01 3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01 8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01 9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01 -9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01 -1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01 -2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01 -8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00 1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01 8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00 -6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01 -6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01 3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01 4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02 4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01 1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01 9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01 -1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01 -7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00 -1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02 1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01 -1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01 -1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01 -4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01 -1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01 6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01 -1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00 -7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01 -1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01 3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01 -1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01 1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01 3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00 -2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01 2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01 -1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01 4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01 2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00 1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01 -3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00 7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01 3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01 -2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01 7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01 -2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01 6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00 7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00 -3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01 -6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00 3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01 1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01 -5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01 -5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01 -2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01 -1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01 5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01 -2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01 -4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01 5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01 -6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00 1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01 8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02 -6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01 -1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01 1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01 8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03 3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01 8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01 -1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01 6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01 -9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01 -1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00 -5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02 -5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01 1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01 -4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01 1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01 6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01 5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01 1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01 1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01 1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01 1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00 -8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01 -1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01 6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01 4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00 -1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00 -7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00 2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01 -4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02 1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01 3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01 9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01 7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01 6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01 1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01 -1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00 3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01 9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01 -4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01 4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00 2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01 5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01 2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01 -2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01 -6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01 -1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01 -5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01 -1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00 -6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01 -1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01 1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02 1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01 5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01 -4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01 -1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01 6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01 7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01 1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01 1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01 8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01 8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00 -4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01 -5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02 5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01 -2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00 -3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01 6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01 5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00 3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01 -8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00 -8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01 3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01 -3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05 -1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01 8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02 6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01 5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00 1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01 2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02 -1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01 -4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02 9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01 -8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02 7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01 -3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01 -1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01 -1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01 -2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01 1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03 6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01 -4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01 9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01 8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01 1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01 -1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01 8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01 5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01 9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01 -4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01 1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01 -9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00 5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01 -7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00 -6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01 -5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01 -5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01 4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01 -9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00 -8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00 -5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01 -2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00 -3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02 2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01]
[-7.264395713806152, 3.7835240364074707]
f07fb436-8404-40ee-9eae-6cd14fab04eb
deep-reinforcement-learning-in-quantitative
2106.00123
null
https://arxiv.org/abs/2106.00123v1
https://arxiv.org/pdf/2106.00123v1.pdf
Deep Reinforcement Learning in Quantitative Algorithmic Trading: A Review
Algorithmic stock trading has become a staple in today's financial market, the majority of trades being now fully automated. Deep Reinforcement Learning (DRL) agents proved to be to a force to be reckon with in many complex games like Chess and Go. We can look at the stock market historical price series and movements as a complex imperfect information environment in which we try to maximize return - profit and minimize risk. This paper reviews the progress made so far with deep reinforcement learning in the subdomain of AI in finance, more precisely, automated low-frequency quantitative stock trading. Many of the reviewed studies had only proof-of-concept ideals with experiments conducted in unrealistic settings and no real-time trading applications. For the majority of the works, despite all showing statistically significant improvements in performance compared to established baseline strategies, no decent profitability level was obtained. Furthermore, there is a lack of experimental testing in real-time, online trading platforms and a lack of meaningful comparisons between agents built on different types of DRL or human traders. We conclude that DRL in stock trading has showed huge applicability potential rivalling professional traders under strong assumptions, but the research is still in the very early stages of development.
['Tidor-Vlad Pricope']
2021-05-31
null
null
null
null
['algorithmic-trading']
['time-series']
[-8.46947789e-01 -1.77269638e-01 -1.37180984e-01 -1.66006405e-02 -4.04544741e-01 -7.44520783e-01 7.55499601e-01 -9.78438333e-02 -7.38642633e-01 1.16233385e+00 -3.15709859e-01 -4.32963729e-01 -3.42220873e-01 -1.03982544e+00 -6.09413087e-01 -6.34968042e-01 -6.26918912e-01 1.01861537e+00 3.35824698e-01 -9.14291441e-01 6.49538994e-01 2.42058381e-01 -1.31794739e+00 4.81787417e-03 2.10853979e-01 1.51330018e+00 -3.32916141e-01 4.73017633e-01 -3.93669337e-01 1.41185844e+00 -9.97791409e-01 -7.54288316e-01 9.57430840e-01 -5.04386425e-01 -2.97655195e-01 -2.78949022e-01 -2.37400115e-01 -6.76397681e-01 -4.71435674e-03 1.05832529e+00 5.69816351e-01 -3.87620479e-01 2.35911980e-01 -1.39732730e+00 -5.82263589e-01 8.95168424e-01 -5.73283017e-01 5.60696781e-01 8.09409190e-03 4.49190795e-01 1.28330481e+00 -4.53412563e-01 2.25234538e-01 9.64408696e-01 6.38504148e-01 1.47006616e-01 -8.60393167e-01 -9.78283405e-01 -2.08542272e-01 5.53031489e-02 -3.98023307e-01 1.07312880e-01 6.62850797e-01 -3.66302162e-01 1.09688807e+00 -4.49305326e-02 1.23878884e+00 8.05534065e-01 5.57930052e-01 7.91119754e-01 1.54638600e+00 -2.18529060e-01 6.40998542e-01 7.72219822e-02 -2.90742457e-01 2.09442496e-01 6.78823709e-01 1.09073150e+00 -4.64515567e-01 -1.56855404e-01 1.04218102e+00 -1.64115429e-01 4.20052886e-01 -4.11469311e-01 -1.10873401e+00 1.46136355e+00 2.44611308e-01 6.13503635e-01 -6.87399268e-01 3.11773896e-01 5.58473527e-01 1.23507810e+00 4.00613129e-01 9.08068538e-01 -6.25372052e-01 -5.82078397e-01 -1.08657026e+00 9.02470589e-01 1.39357412e+00 3.51444095e-01 2.94350117e-01 7.79688835e-01 3.38455409e-01 1.42728493e-01 1.47421271e-01 4.35030013e-01 9.89083588e-01 -1.01173806e+00 2.98455358e-01 4.25829262e-01 4.02042985e-01 -8.48296523e-01 -5.93568683e-01 -6.21029556e-01 -5.48159897e-01 1.07215500e+00 8.51977348e-01 -5.83021343e-01 -3.50403279e-01 1.22193277e+00 -7.15932623e-02 1.42355949e-01 2.97170788e-01 8.12267423e-01 -3.99349406e-02 5.57777047e-01 -4.88616377e-01 -3.02101612e-01 1.00860918e+00 -7.38281131e-01 -6.17083669e-01 -8.58056322e-02 1.65152699e-01 -6.79526627e-01 6.29836857e-01 8.19279373e-01 -1.22552133e+00 -3.33429843e-01 -1.16820431e+00 6.67521775e-01 -6.49747312e-01 -7.44123280e-01 9.54568326e-01 8.77705157e-01 -1.08534253e+00 9.45709944e-01 -7.00852811e-01 5.61536133e-01 3.26928914e-01 5.71899593e-01 1.74212188e-01 8.19988310e-01 -1.71519411e+00 1.09987926e+00 4.77357179e-01 -1.80263240e-02 -7.33105183e-01 -7.09800899e-01 -3.96082669e-01 2.54095662e-02 6.82249844e-01 -1.85201898e-01 1.70097256e+00 -1.23967695e+00 -1.83668876e+00 6.47833705e-01 1.05316961e+00 -1.57765102e+00 1.35062516e+00 -2.98549920e-01 -1.68395147e-01 -2.58739382e-01 -8.25574473e-02 2.92171746e-01 6.86179757e-01 -7.57961631e-01 -1.01090026e+00 -2.25063786e-01 1.16736360e-01 3.84872630e-02 2.38206074e-01 -8.46565291e-02 7.19773173e-01 -1.14477122e+00 -3.91940475e-01 -6.72936559e-01 -2.73950875e-01 -4.85690057e-01 3.55626702e-01 -2.63616949e-01 3.51678640e-01 -4.29578394e-01 9.14214611e-01 -1.55509150e+00 -2.26300448e-01 2.32116595e-01 9.55636129e-02 3.17833453e-01 2.22640827e-01 8.12137365e-01 3.41456896e-03 3.26159783e-02 -5.60387261e-02 3.00333142e-01 5.41829944e-01 1.45138934e-01 -6.48293853e-01 3.56818825e-01 4.94992994e-02 1.25361466e+00 -1.00537527e+00 -8.07940029e-03 2.38061145e-01 -2.44940594e-01 -2.49728471e-01 1.85418338e-01 -6.33135796e-01 -1.69510812e-01 -4.90137368e-01 6.13026977e-01 3.50412518e-01 -1.48239080e-02 -5.72593249e-02 5.03985763e-01 -4.85077709e-01 1.47211984e-01 -1.47731864e+00 9.37513888e-01 -6.30900860e-02 6.01618946e-01 -1.64603889e-01 -1.24114275e+00 9.58477139e-01 3.35153282e-01 7.51836717e-01 -1.36573446e+00 3.58130842e-01 8.62519681e-01 5.58093131e-01 6.73094019e-02 3.31282467e-01 -7.17539251e-01 -9.38806757e-02 1.00321734e+00 -4.45259474e-02 -2.65753865e-01 4.37178075e-01 -4.41246212e-01 9.21911061e-01 1.82307541e-01 4.44403440e-01 -3.48423272e-01 1.50227711e-01 2.96714842e-01 2.72110611e-01 8.55651021e-01 -4.17723060e-01 9.45131257e-02 8.96288633e-01 -8.40507746e-01 -1.17363000e+00 -9.16723430e-01 8.12635720e-02 7.97840416e-01 -1.32950559e-01 2.73805350e-01 -6.76897049e-01 -3.11938018e-01 5.92162848e-01 5.42664111e-01 -7.43696392e-01 1.40266865e-01 -5.77533603e-01 -9.47048604e-01 5.34119546e-01 3.85358185e-01 8.79419446e-01 -1.84157658e+00 -1.32639694e+00 7.40608156e-01 7.97823548e-01 -6.03970587e-01 5.29360734e-02 3.84343088e-01 -8.35487425e-01 -1.27116764e+00 -1.05043268e+00 -5.75835824e-01 -4.06958491e-01 -2.94924438e-01 1.48001647e+00 -1.31759703e-01 -1.20812766e-01 8.65831748e-02 -3.62968266e-01 -1.04707301e+00 -4.60700959e-01 -7.25445673e-02 -3.84561345e-02 -2.28263110e-01 5.69367349e-01 -4.14749950e-01 -7.18887329e-01 2.79818594e-01 -8.78499746e-01 -5.22922873e-01 8.11252236e-01 1.04591954e+00 1.20840728e-01 3.14805657e-01 1.10268807e+00 -9.18928683e-01 1.00867498e+00 -5.37602067e-01 -1.39751279e+00 2.01487448e-02 -9.33848023e-01 2.08826393e-01 5.87926745e-01 -3.41845125e-01 -5.72938085e-01 -5.48435450e-01 -9.92745981e-02 -9.86034274e-02 3.44346642e-01 5.89390457e-01 6.38713777e-01 -8.27668514e-03 3.51754218e-01 3.77138168e-01 4.43345308e-01 -2.16603041e-01 -1.23715207e-01 2.41708085e-01 1.76174209e-01 -3.34706992e-01 7.97507823e-01 1.94124117e-01 -7.89906010e-02 -3.96376312e-01 -4.28088069e-01 5.13838083e-02 -3.08358729e-01 -9.25771818e-02 4.94402379e-01 -5.34085393e-01 -1.22947323e+00 1.05089533e+00 -4.90512073e-01 -6.78303301e-01 -7.03146577e-01 4.31344628e-01 -9.39129233e-01 -1.03643835e-01 -8.69521618e-01 -1.07454610e+00 -2.09024519e-01 -9.73806858e-01 2.92146832e-01 2.62090087e-01 8.99669230e-02 -1.18875349e+00 6.40926301e-01 2.94134170e-02 7.94801176e-01 5.16812503e-01 4.27778184e-01 -1.15057600e+00 -5.20889163e-01 -3.79097134e-01 1.57099694e-01 5.08121312e-01 1.46145836e-01 -3.27712089e-01 -6.38319969e-01 -2.56596357e-01 5.13911068e-01 -6.23634040e-01 6.31957412e-01 4.11931127e-01 1.56632677e-01 -2.44495034e-01 6.00052297e-01 1.31418586e-01 1.44853401e+00 9.08244550e-01 5.34363091e-01 1.09675980e+00 -1.35334864e-01 6.39202535e-01 8.39862645e-01 6.85738921e-01 1.51771167e-03 3.03097636e-01 5.21857262e-01 2.48473763e-01 4.58998471e-01 -1.53962731e-01 5.88419378e-01 4.65318024e-01 -9.95985344e-02 4.82520126e-02 -8.36200595e-01 1.95353165e-01 -1.77359724e+00 -1.36641479e+00 4.65173960e-01 1.98981202e+00 8.14198673e-01 8.98824692e-01 7.42782235e-01 2.30917484e-01 4.00417536e-01 2.57887572e-01 -8.99214327e-01 -4.44265425e-01 -3.08505148e-01 4.49988067e-01 7.68716335e-01 3.39633673e-01 -9.93289709e-01 7.92618632e-01 6.42134857e+00 6.26538634e-01 -1.14012086e+00 -2.93139130e-01 9.12240267e-01 -9.41600055e-02 -8.92460644e-02 -1.73570171e-01 -4.11963493e-01 6.81490958e-01 1.04003215e+00 -5.05176663e-01 6.26498818e-01 8.33283186e-01 9.41633135e-02 -1.38281032e-01 -7.96262562e-01 8.92388523e-01 -5.70028722e-01 -1.60454857e+00 -1.88793004e-01 4.81894016e-01 6.61922812e-01 1.27549469e-01 3.12157124e-01 7.36692369e-01 8.24766576e-01 -1.04569697e+00 1.02717531e+00 4.97740895e-01 -2.18415037e-02 -1.03136420e+00 1.19861436e+00 3.22665751e-01 -7.43037641e-01 -3.00635248e-01 -3.61560732e-01 -4.52990979e-01 -3.15780602e-02 2.22026572e-01 -6.35223985e-01 3.67593229e-01 5.53451180e-01 4.94989276e-01 -1.17321074e-01 8.33818376e-01 1.27611592e-01 5.72462201e-01 -4.43630517e-01 -7.14815199e-01 9.54592943e-01 -5.94929457e-01 1.37621701e-01 7.45438635e-01 3.28002423e-01 -3.36505286e-02 7.55657107e-02 7.93442786e-01 7.56932721e-02 2.96587758e-02 -6.26920879e-01 -3.99640709e-01 8.12189803e-02 6.88473701e-01 -9.12258089e-01 -2.00637385e-01 -6.62539721e-01 5.56432307e-01 -9.04810652e-02 -9.25649628e-02 -7.53919005e-01 -1.81252018e-01 5.23875415e-01 2.20508620e-01 4.32959437e-01 -1.40668362e-01 -2.20181182e-01 -9.22719955e-01 7.19122514e-02 -1.19237173e+00 5.53048253e-01 -2.24108532e-01 -1.56194830e+00 4.00111645e-01 -1.58187956e-01 -1.23054588e+00 -9.35542285e-01 -1.04781425e+00 -4.54463482e-01 5.70860028e-01 -1.65938747e+00 -3.26034009e-01 5.16968310e-01 4.09573525e-01 5.92872202e-01 -1.03473508e+00 4.91216034e-01 -5.88128008e-02 1.09154321e-02 2.62152791e-01 5.27792335e-01 4.35609072e-01 2.52921492e-01 -1.71380675e+00 6.34912372e-01 2.14347512e-01 4.01583999e-01 4.42231558e-02 6.87437475e-01 -6.95218265e-01 -1.25529206e+00 -2.79721081e-01 2.93383211e-01 -8.93084407e-02 1.47028708e+00 -1.02035552e-01 -7.12078750e-01 4.05531019e-01 6.35658681e-01 -2.96258599e-01 3.31623942e-01 -3.16918999e-01 -2.31225118e-02 -2.64015377e-01 -1.06325877e+00 4.33458626e-01 2.54365474e-01 -2.65417453e-02 -9.43294644e-01 -3.77023295e-02 3.84715438e-01 -3.11816186e-01 -6.60589516e-01 6.06302656e-02 7.88099825e-01 -1.60572410e+00 8.02550137e-01 -5.74405551e-01 2.74997354e-01 1.61286637e-01 1.38126299e-01 -1.37272429e+00 1.33707285e-01 -1.01300919e+00 -1.18063919e-01 8.17961097e-01 3.97588789e-01 -1.06058860e+00 1.21362007e+00 3.84058058e-01 2.75056034e-01 -7.17861354e-01 -1.09249830e+00 -1.04049563e+00 6.07573211e-01 -2.25696474e-01 6.42089486e-01 8.17612886e-01 -5.95161170e-02 -7.87654817e-02 -4.58067656e-01 -5.86793959e-01 7.33490884e-01 3.69372100e-01 5.33889174e-01 -1.14332569e+00 -6.22905850e-01 -1.07825577e+00 -3.92300278e-01 -2.99557567e-01 -7.79286996e-02 -3.68800074e-01 -3.34473908e-01 -1.00940204e+00 -4.55265313e-01 -2.90627450e-01 -7.22286046e-01 8.21141079e-02 3.32837582e-01 6.29325733e-02 4.19075370e-01 2.13301867e-01 -3.15121353e-01 3.52134526e-01 1.25297785e+00 -3.00521284e-01 -3.08089972e-01 4.55076337e-01 -5.15223026e-01 6.41022623e-01 1.23220038e+00 -2.85408616e-01 -3.85504633e-01 1.96050629e-01 8.25352192e-01 3.24282318e-01 1.75902799e-01 -8.99040163e-01 1.70252025e-01 -3.44151467e-01 4.04032856e-01 -4.73925710e-01 -6.06328063e-02 -7.80356824e-01 4.10411246e-02 1.04252410e+00 -1.94583729e-01 7.83226848e-01 1.77968040e-01 2.90954947e-01 -7.09580064e-01 -3.71515214e-01 8.13312411e-01 -6.39670908e-01 -8.02866638e-01 1.03231303e-01 -2.77655363e-01 5.61679542e-01 1.31886208e+00 -2.51571387e-01 -3.91156077e-02 -6.42337680e-01 -3.80987585e-01 3.76134127e-01 1.02258891e-01 3.86981994e-01 3.69117290e-01 -1.13565540e+00 -9.43461239e-01 2.15153135e-02 -5.32107353e-01 -4.37199533e-01 -1.88684791e-01 3.25373501e-01 -1.19876349e+00 5.48317671e-01 -7.76250005e-01 4.89197969e-02 -3.37266743e-01 6.57309115e-01 8.19514453e-01 -8.67403865e-01 -6.43557608e-01 4.19949412e-01 -2.41332084e-01 -6.63350150e-02 3.14598769e-01 -4.71060276e-01 -4.17833701e-02 6.14623725e-01 6.59211218e-01 4.25223798e-01 1.56890586e-01 -8.56822431e-02 -4.12904471e-02 3.42051566e-01 2.10837997e-03 -7.00979948e-01 1.74661613e+00 4.96237397e-01 3.28908831e-01 7.27590501e-01 7.29489446e-01 -2.08724633e-01 -1.53059554e+00 1.24147899e-01 7.03395367e-01 -2.39384755e-01 -2.52596170e-01 -8.71475816e-01 -1.37254441e+00 7.03878105e-01 6.58912241e-01 9.25957024e-01 7.27425873e-01 -4.69513655e-01 8.64420533e-01 7.01799452e-01 8.36534083e-01 -1.42916882e+00 1.04315750e-01 5.06263673e-01 8.81120026e-01 -1.41269398e+00 -1.09205790e-01 7.32659936e-01 -8.70848954e-01 1.26957309e+00 1.66615710e-01 -1.06747615e+00 1.06324089e+00 7.40084946e-01 4.01148796e-01 -2.51793027e-01 -7.71361053e-01 -1.20684676e-01 -2.11617157e-01 2.88234740e-01 2.37982690e-01 -6.92036152e-02 -2.98291743e-01 5.77015340e-01 -7.11670637e-01 7.88747072e-02 5.11819005e-01 1.10489845e+00 -6.82757378e-01 -1.20415843e+00 -3.50178242e-01 4.82205272e-01 -8.88247013e-01 5.02499081e-02 -4.41223502e-01 1.65036583e+00 -2.88807750e-01 5.35517395e-01 1.98763028e-01 -3.54677588e-02 5.02814233e-01 1.74698085e-02 3.14141631e-01 -1.14394121e-01 -1.30944681e+00 1.29923090e-01 -3.06397587e-01 -4.43244249e-01 -4.01142657e-01 -8.47355187e-01 -1.14500749e+00 -5.71339428e-01 6.77807629e-02 4.21177626e-01 4.23718840e-01 7.50234008e-01 -2.48013467e-01 2.28903577e-01 7.61304677e-01 -7.90641785e-01 -1.45612144e+00 -7.50044882e-01 -1.23414636e+00 2.28040531e-01 5.19405484e-01 -7.83576965e-01 -4.49234813e-01 -5.27138591e-01]
[4.4298834800720215, 3.9193644523620605]
896683e2-e0f8-48b1-be6a-a4ff0da185fe
sample-level-deep-convolutional-neural
1703.01789
null
http://arxiv.org/abs/1703.01789v2
http://arxiv.org/pdf/1703.01789v2.pdf
Sample-level Deep Convolutional Neural Networks for Music Auto-tagging Using Raw Waveforms
Recently, the end-to-end approach that learns hierarchical representations from raw data using deep convolutional neural networks has been successfully explored in the image, text and speech domains. This approach was applied to musical signals as well but has been not fully explored yet. To this end, we propose sample-level deep convolutional neural networks which learn representations from very small grains of waveforms (e.g. 2 or 3 samples) beyond typical frame-level input representations. Our experiments show how deep architectures with sample-level filters improve the accuracy in music auto-tagging and they provide results comparable to previous state-of-the-art performances for the Magnatagatune dataset and Million Song Dataset. In addition, we visualize filters learned in a sample-level DCNN in each layer to identify hierarchically learned features and show that they are sensitive to log-scaled frequency along layer, such as mel-frequency spectrogram that is widely used in music classification systems.
['Keunhyoung Luke Kim', 'Jiyoung Park', 'Juhan Nam', 'Jongpil Lee']
2017-03-06
null
null
null
null
['music-auto-tagging', 'music-classification']
['music', 'music']
[ 2.56276459e-01 -1.82645142e-01 1.61896840e-01 -1.93978310e-01 -8.35762918e-01 -7.90034711e-01 5.02135336e-01 5.46691306e-02 -2.64202386e-01 3.16291541e-01 5.46866953e-01 2.79087752e-01 -2.56386399e-01 -7.33708084e-01 -7.87889957e-01 -4.86199349e-01 -6.20678842e-01 2.15391517e-01 2.09537745e-01 -2.66791940e-01 2.53138453e-01 3.02938610e-01 -1.77350128e+00 1.05677426e+00 2.09579527e-01 1.32465339e+00 -2.49624718e-02 1.14153028e+00 1.04580380e-01 8.95241916e-01 -9.40708101e-01 -3.59828062e-02 3.21185589e-01 -5.80692947e-01 -7.27529824e-01 -2.46083781e-01 8.38165760e-01 -2.21915379e-01 -4.44881767e-01 7.64634132e-01 8.39852631e-01 1.43842757e-01 5.79284966e-01 -5.83267033e-01 -5.43552101e-01 1.43287241e+00 -2.91467816e-01 4.51332927e-01 3.42090577e-02 -2.06966680e-02 1.35941267e+00 -7.97811568e-01 2.76228726e-01 1.23653138e+00 1.15865874e+00 1.75018907e-01 -1.34811056e+00 -8.66244137e-01 -3.84014130e-01 3.85646433e-01 -1.15064144e+00 -3.83480400e-01 8.76252234e-01 -6.54558420e-01 1.06861579e+00 5.02580814e-02 6.70125186e-01 1.10351586e+00 3.58913541e-02 8.40694189e-01 8.09764087e-01 -4.62795496e-01 -9.97728389e-03 -6.27581596e-01 -1.37368351e-01 3.07615638e-01 -3.03369194e-01 2.44791746e-01 -1.07670510e+00 1.03104867e-01 1.14297700e+00 -3.99898916e-01 -1.17149152e-01 3.40453982e-02 -1.37943494e+00 7.78867424e-01 4.90925074e-01 7.19408810e-01 -2.81529635e-01 8.29400122e-01 8.45897019e-01 4.48519140e-01 2.56695241e-01 9.57882106e-01 -6.12371981e-01 -5.46261966e-01 -1.51411116e+00 3.10734719e-01 5.11456490e-01 3.16393048e-01 3.51806909e-01 8.87554944e-01 -3.79387379e-01 9.88232136e-01 -3.15354258e-01 3.28570493e-02 5.58734655e-01 -1.00826204e+00 1.49687335e-01 1.44557402e-01 -3.13456357e-01 -7.21777499e-01 -6.09743655e-01 -1.12515116e+00 -8.38716507e-01 3.98191452e-01 5.80137730e-01 8.35753307e-02 -7.55403936e-01 1.60222185e+00 -3.18970770e-01 7.78928041e-01 -9.25958678e-02 9.95329201e-01 9.15858567e-01 4.55096632e-01 -2.54873306e-01 3.51533264e-01 1.42522717e+00 -7.81712532e-01 -5.84042847e-01 1.81867063e-01 7.72089362e-02 -1.00179803e+00 1.26464069e+00 1.00763834e+00 -1.41159821e+00 -1.31382382e+00 -1.36060750e+00 -1.45367727e-01 -2.48084381e-01 5.99506795e-01 6.98911130e-01 4.66857821e-01 -8.35769951e-01 1.45069659e+00 -6.94655180e-01 6.42305613e-02 5.98959684e-01 4.22030300e-01 4.43005599e-02 7.15497971e-01 -1.44832039e+00 3.72070312e-01 5.60332954e-01 -2.57698417e-01 -1.37658548e+00 -1.15349317e+00 -5.55700779e-01 6.04812443e-01 -2.19393834e-01 -3.50633711e-01 1.55990088e+00 -9.32131052e-01 -1.82031786e+00 6.17334127e-01 5.74004591e-01 -1.13253105e+00 -4.89725778e-03 -6.14556611e-01 -5.82763851e-01 3.32243294e-01 -3.51899773e-01 7.57810533e-01 1.14553893e+00 -7.35117435e-01 -5.29651463e-01 8.48617181e-02 3.30259323e-01 -1.82124391e-01 -4.24614757e-01 -6.82702065e-02 2.02265337e-01 -1.29662812e+00 -1.28951415e-01 -6.00516737e-01 2.70659596e-01 -4.49369997e-01 -9.05331001e-02 -1.23845123e-01 5.57533920e-01 -5.91368377e-01 1.36742306e+00 -2.38647366e+00 2.13231310e-01 -1.81087419e-01 -1.67177275e-01 1.37672246e-01 -2.76788622e-01 5.14085054e-01 -3.07018667e-01 -6.30204985e-03 -1.34432301e-01 -9.28048864e-02 2.99139172e-01 -2.44715989e-01 -6.56957209e-01 1.64687768e-01 4.36575741e-01 8.52755725e-01 -6.45126522e-01 1.75239667e-01 2.79284686e-01 5.57624876e-01 -7.52549589e-01 8.35916400e-02 -2.92561859e-01 4.96454328e-01 3.21351200e-01 4.09515381e-01 3.03424865e-01 -6.51543215e-02 -7.62212723e-02 -5.78407049e-01 -1.83527663e-01 9.23490584e-01 -9.73256290e-01 2.21940422e+00 -4.52248573e-01 1.12838209e+00 -7.59871528e-02 -1.10071683e+00 9.75382864e-01 5.31636834e-01 5.21918356e-01 -5.49585164e-01 1.96290508e-01 2.17681214e-01 4.91102338e-01 2.90015060e-02 5.65280735e-01 -4.01524305e-01 -3.88684720e-01 2.03106761e-01 8.54640007e-01 -3.58193278e-01 9.92789045e-02 -1.72114089e-01 9.38674867e-01 3.07457596e-01 1.79173827e-01 -2.57603288e-01 2.82391101e-01 -1.81399941e-01 3.38154793e-01 8.54741395e-01 2.76446313e-01 9.88226891e-01 3.31259459e-01 -5.43561280e-01 -1.17345798e+00 -1.09759212e+00 -3.10352176e-01 1.57764280e+00 -4.78012949e-01 -9.19842422e-01 -6.78781211e-01 -4.98038381e-02 9.50721428e-02 4.00614500e-01 -6.58049583e-01 -1.99260458e-01 -6.51407480e-01 -3.50647002e-01 1.24958396e+00 8.43985379e-01 3.56761724e-01 -1.26313365e+00 -7.72297204e-01 6.69238091e-01 2.67440885e-01 -9.77511644e-01 -1.21528991e-01 6.82529211e-01 -8.57559681e-01 -8.58888447e-01 -5.66949189e-01 -5.80895126e-01 -4.87622589e-01 -4.13201243e-01 1.56086540e+00 -3.28345537e-01 -4.99806046e-01 1.26255393e-01 -5.66939235e-01 -6.01379156e-01 -1.81219578e-01 3.74070972e-01 1.76256657e-01 -5.09610735e-02 2.51513392e-01 -1.16196978e+00 -6.44047678e-01 6.16744952e-03 -8.42448890e-01 -1.65131167e-01 5.11033714e-01 8.71746063e-01 4.20574874e-01 4.93213683e-02 9.08337295e-01 -6.06556356e-01 6.54375792e-01 -8.53354558e-02 -3.25801164e-01 -3.67100924e-01 7.21957088e-02 -3.19119915e-02 8.71535122e-01 -6.91076577e-01 -3.37010473e-01 8.44065547e-02 -4.62336034e-01 -5.56562006e-01 -2.80337840e-01 4.81924564e-01 4.77614045e-01 1.42316088e-01 9.77800310e-01 9.06275287e-02 -3.93553883e-01 -7.36269176e-01 5.07875800e-01 5.19317448e-01 1.20143044e+00 -6.15269721e-01 7.89019287e-01 3.83575052e-01 -7.16786385e-02 -6.86338603e-01 -1.00709701e+00 -3.23565215e-01 -8.50329816e-01 -1.85655877e-01 9.04554904e-01 -1.15155399e+00 -8.19707692e-01 3.20465654e-01 -8.38583767e-01 -3.80240649e-01 -8.21011782e-01 7.37937391e-01 -9.96531665e-01 -3.13984342e-02 -9.58314836e-01 -7.61716783e-01 -3.48000675e-01 -6.87125504e-01 1.25916135e+00 1.81805804e-01 -5.18960655e-01 -6.70245945e-01 1.34524301e-01 -2.18651578e-01 5.83428919e-01 4.24475342e-01 1.00641668e+00 -4.80423778e-01 -3.48851413e-01 1.97967723e-01 1.71488225e-01 4.87009525e-01 -1.53174430e-01 -9.41069797e-02 -1.48503077e+00 -2.78280586e-01 -2.18423888e-01 -7.98321247e-01 1.36226165e+00 6.41467869e-01 1.45443666e+00 8.08149055e-02 4.36059356e-01 8.23909581e-01 9.45222616e-01 2.25104094e-02 7.16097414e-01 2.78333545e-01 3.82847637e-01 2.22541884e-01 1.71563312e-01 6.70688808e-01 -3.18145603e-01 6.83073521e-01 4.01246309e-01 -7.92719051e-02 -7.02755451e-01 -1.80806354e-01 3.86899322e-01 1.09502494e+00 -2.13636473e-01 2.71657944e-01 -5.37453890e-01 6.02195919e-01 -1.58921814e+00 -1.20221674e+00 6.39846250e-02 1.88899136e+00 9.69270051e-01 3.81593674e-01 3.70452285e-01 8.29786539e-01 3.66518587e-01 3.15146089e-01 -5.07692635e-01 -5.12686014e-01 -2.76427597e-01 1.03925943e+00 9.80997831e-03 -4.90332842e-02 -1.41800308e+00 8.38765085e-01 6.86604166e+00 1.11316037e+00 -1.29493642e+00 1.31894499e-01 1.83075950e-01 -5.06215870e-01 -1.67630594e-02 -3.03708255e-01 -4.50379610e-01 1.71837747e-01 1.22595263e+00 2.93303847e-01 6.31821752e-01 7.27133274e-01 -8.32094848e-02 4.95993942e-01 -1.29765940e+00 1.18621719e+00 -1.86517417e-01 -1.77580166e+00 -6.52332976e-02 -1.46337464e-01 7.86037445e-01 6.96846172e-02 2.90911555e-01 7.52234757e-01 1.22119002e-01 -1.43545449e+00 1.07120049e+00 6.15091980e-01 1.00985968e+00 -1.09382725e+00 4.57002550e-01 -4.59702723e-02 -1.68019104e+00 -2.52702713e-01 -6.00192964e-01 -3.21199149e-01 2.52302010e-02 5.29977858e-01 -8.37450922e-01 4.88403648e-01 9.82207954e-01 9.03388977e-01 -4.62774903e-01 1.01035535e+00 -1.24145700e-02 1.18879509e+00 -2.32492819e-01 4.16544914e-01 4.23341483e-01 3.23781699e-01 3.20468903e-01 1.48025990e+00 5.23052216e-01 -2.34533310e-01 4.76960726e-02 8.18643272e-01 -2.94138789e-01 -1.20646276e-01 -1.82748660e-01 -5.57630956e-01 2.11793423e-01 1.27718842e+00 -5.38884163e-01 -3.05432886e-01 -1.18649863e-01 7.50704229e-01 2.85959333e-01 8.03730711e-02 -6.66720569e-01 -6.00088000e-01 7.98361778e-01 1.10001355e-01 7.39755154e-01 -3.32719684e-01 -4.54986095e-01 -8.49668503e-01 -5.41729391e-01 -9.24823701e-01 3.12605232e-01 -7.49672711e-01 -1.40733874e+00 6.50623620e-01 -5.00092447e-01 -1.62674391e+00 -6.09614551e-01 -7.79092312e-01 -7.64973819e-01 6.42171741e-01 -1.13151515e+00 -9.11635101e-01 -1.47784697e-02 5.48175335e-01 6.88903332e-01 -6.13132060e-01 1.26633847e+00 4.50502515e-01 2.58522630e-01 6.41202986e-01 5.34544401e-02 4.54124928e-01 6.57239974e-01 -1.49064291e+00 6.43600047e-01 4.31437969e-01 1.02607381e+00 5.57053387e-01 4.91183043e-01 -1.78433284e-01 -1.01526034e+00 -8.62223327e-01 3.15937161e-01 -2.10993156e-01 8.12056363e-01 -6.89497292e-01 -8.60013485e-01 1.98117808e-01 5.74977517e-01 5.91665395e-02 9.76232350e-01 4.68327165e-01 -6.81741476e-01 -2.75329411e-01 -5.42272866e-01 1.71058536e-01 1.00626659e+00 -9.47739601e-01 -8.43316734e-01 -7.56816864e-02 6.92961693e-01 -4.54215288e-01 -1.19140422e+00 6.94764316e-01 9.54648077e-01 -1.09734023e+00 1.19338179e+00 -8.03745031e-01 5.47001481e-01 -4.82870430e-01 -2.18339756e-01 -1.43272626e+00 -6.43801570e-01 -7.02122390e-01 -4.07892913e-01 1.05703437e+00 1.94714129e-01 3.69729191e-01 6.13464296e-01 -8.48844051e-01 -4.55696821e-01 -6.26303196e-01 -9.77623761e-01 -7.67297268e-01 2.30565473e-01 -5.81124127e-01 6.02929771e-01 9.06221330e-01 5.15727839e-03 4.09887314e-01 -6.08799875e-01 -5.37640713e-02 3.01360160e-01 5.19110799e-01 6.78354323e-01 -1.65089130e+00 -7.05353439e-01 -7.24959850e-01 -6.52973711e-01 -9.10786629e-01 -4.65492718e-02 -1.04346704e+00 -1.11516058e-01 -1.21596396e+00 -2.95077950e-01 5.70736341e-02 -7.64911890e-01 2.79586881e-01 2.57388473e-01 8.31284821e-01 4.82599884e-01 -6.36345670e-02 -3.09111327e-01 4.57651049e-01 9.14631665e-01 -3.12159508e-01 8.19256380e-02 -2.36088455e-01 -4.64929730e-01 8.50506306e-01 8.99607182e-01 -2.88737237e-01 -1.57909319e-01 -3.50056797e-01 2.37335995e-01 -1.22073263e-01 3.27446043e-01 -1.74515712e+00 9.97862592e-03 5.44780433e-01 9.27163422e-01 -9.89633739e-01 6.28469646e-01 -5.02174854e-01 1.17163934e-01 3.42020005e-01 -7.63621509e-01 -2.02048063e-01 3.84036988e-01 3.20140004e-01 -6.72624111e-01 -1.76974699e-01 9.24454510e-01 -2.27268502e-01 -6.55813217e-01 -8.08145180e-02 -3.82450342e-01 4.08155955e-02 1.78894684e-01 -5.08922674e-02 -7.13316947e-02 -5.11783063e-01 -1.08756769e+00 -3.56475681e-01 -2.56672263e-01 5.74389160e-01 3.14265460e-01 -1.79235601e+00 -1.00308883e+00 1.57662317e-01 -7.70347416e-02 -4.15263891e-01 2.80490637e-01 5.78578770e-01 -3.99584502e-01 3.09318930e-01 -5.76176584e-01 -8.40641916e-01 -9.87520456e-01 2.23968342e-01 1.89294457e-01 -2.15515375e-01 -6.78333759e-01 1.07039905e+00 1.03762150e-01 -2.52288580e-01 5.12045443e-01 -8.75882447e-01 -4.53691006e-01 4.09528881e-01 7.08866179e-01 1.36010155e-01 1.09827459e-01 -4.69580173e-01 -1.78280398e-01 7.83181012e-01 3.25554222e-01 -1.60683677e-01 1.69710910e+00 3.90399009e-01 2.31348336e-01 9.24108028e-01 1.03270638e+00 4.59589846e-02 -1.39530814e+00 -4.30615731e-02 1.23222314e-01 -1.38948485e-01 8.90973806e-02 -8.76293480e-01 -1.11206138e+00 1.48452890e+00 6.87601089e-01 5.34424961e-01 1.25360215e+00 -1.40288845e-01 7.63474941e-01 3.75455469e-01 2.14025378e-01 -1.21337950e+00 5.12851655e-01 9.07271564e-01 1.10343552e+00 -5.14082015e-01 -2.09821105e-01 1.68718591e-01 -3.87342602e-01 1.65582275e+00 2.09241286e-01 -7.81137466e-01 5.53124607e-01 7.09707320e-01 -1.25292525e-01 -8.56835395e-05 -6.18141413e-01 -5.67131341e-01 7.18861580e-01 3.89465004e-01 9.15609598e-01 5.60687818e-02 1.19330967e-02 1.13644195e+00 -9.74432409e-01 -8.02138820e-02 3.51210028e-01 4.29720402e-01 -6.38684511e-01 -1.03014231e+00 -4.22435760e-01 3.58423144e-01 -1.03029013e+00 -3.51552844e-01 -4.17277187e-01 5.38737833e-01 5.11482537e-01 7.14120686e-01 3.31118286e-01 -7.26808250e-01 3.57600778e-01 3.92091841e-01 7.15104580e-01 -6.86041355e-01 -1.34832191e+00 6.22004747e-01 1.27264991e-01 -3.81715149e-01 -5.59966981e-01 -3.18597227e-01 -1.42716599e+00 1.91451907e-01 -8.34861174e-02 1.17958091e-01 5.20697415e-01 4.55258250e-01 1.68972537e-01 1.37829626e+00 4.03782696e-01 -1.51129389e+00 -4.44566369e-01 -1.45813310e+00 -8.04140091e-01 4.11893219e-01 4.25514847e-01 -6.15226746e-01 -1.18717231e-01 3.44317794e-01]
[15.723793029785156, 5.231079578399658]
21423684-46c4-4e62-bfc2-15fe93a65304
renderme-360-a-large-digital-asset-library
2305.13353
null
https://arxiv.org/abs/2305.13353v1
https://arxiv.org/pdf/2305.13353v1.pdf
RenderMe-360: A Large Digital Asset Library and Benchmarks Towards High-fidelity Head Avatars
Synthesizing high-fidelity head avatars is a central problem for computer vision and graphics. While head avatar synthesis algorithms have advanced rapidly, the best ones still face great obstacles in real-world scenarios. One of the vital causes is inadequate datasets -- 1) current public datasets can only support researchers to explore high-fidelity head avatars in one or two task directions; 2) these datasets usually contain digital head assets with limited data volume, and narrow distribution over different attributes. In this paper, we present RenderMe-360, a comprehensive 4D human head dataset to drive advance in head avatar research. It contains massive data assets, with 243+ million complete head frames, and over 800k video sequences from 500 different identities captured by synchronized multi-view cameras at 30 FPS. It is a large-scale digital library for head avatars with three key attributes: 1) High Fidelity: all subjects are captured by 60 synchronized, high-resolution 2K cameras in 360 degrees. 2) High Diversity: The collected subjects vary from different ages, eras, ethnicities, and cultures, providing abundant materials with distinctive styles in appearance and geometry. Moreover, each subject is asked to perform various motions, such as expressions and head rotations, which further extend the richness of assets. 3) Rich Annotations: we provide annotations with different granularities: cameras' parameters, matting, scan, 2D/3D facial landmarks, FLAME fitting, and text description. Based on the dataset, we build a comprehensive benchmark for head avatar research, with 16 state-of-the-art methods performed on five main tasks: novel view synthesis, novel expression synthesis, hair rendering, hair editing, and talking head generation. Our experiments uncover the strengths and weaknesses of current methods. RenderMe-360 opens the door for future exploration in head avatars.
['Kwan-Yee Lin', 'Dahua Lin', 'Wayne Wu', 'Chen Qian', 'Chen Change Loy', 'Ziwei Liu', 'Bo Dai', 'Lei Yang', 'Shengqi Liu', 'Siming Fan', 'Yuxin Wang', 'Wei Cheng', 'Huiwen Luo', 'Jingtan Piao', 'Long Zhuo', 'Dongwei Pan']
2023-05-22
null
null
null
null
['talking-head-generation', 'image-matting', 'novel-view-synthesis']
['computer-vision', 'computer-vision', 'computer-vision']
[-2.30720818e-01 7.04564378e-02 5.78910261e-02 -3.34797800e-01 -6.50724590e-01 -3.22396100e-01 4.82034266e-01 -7.97964573e-01 -6.59677610e-02 5.38955271e-01 7.08531797e-01 5.26252389e-01 5.29268682e-01 -3.18959534e-01 -4.84456956e-01 -7.83475757e-01 2.15150341e-01 6.04081869e-01 4.85396432e-03 -5.34263551e-01 -2.70773798e-01 6.47161961e-01 -1.85999405e+00 -1.40909478e-01 2.69392192e-01 8.57483566e-01 -2.91928530e-01 6.93344831e-01 4.51339960e-01 6.45707369e-01 -6.43976450e-01 -9.59903121e-01 2.29233652e-01 -3.56415361e-01 -5.83150029e-01 3.97518814e-01 7.12568045e-01 -6.69452608e-01 -6.07607424e-01 7.90605187e-01 1.08573902e+00 8.49338174e-02 5.14077663e-01 -1.68525541e+00 -6.64598227e-01 3.17151427e-01 -8.23928297e-01 -5.19824862e-01 1.09137237e+00 6.45153463e-01 7.58948863e-01 -1.13712788e+00 8.51750433e-01 1.35060382e+00 7.81879306e-01 1.18062413e+00 -9.03571427e-01 -8.80632043e-01 -1.16447724e-01 4.82883044e-02 -1.77896333e+00 -1.02429914e+00 6.59817219e-01 -4.22172010e-01 5.87771297e-01 4.01707977e-01 1.28530490e+00 1.79476094e+00 -3.41645271e-01 8.83697689e-01 9.73694801e-01 2.80812290e-02 -1.97542533e-02 -1.95548907e-01 -3.16575885e-01 9.19414222e-01 -1.48623183e-01 -8.80125910e-02 -8.65470648e-01 -1.97364181e-01 1.03093982e+00 -2.01828614e-01 -6.14116073e-01 -2.54633129e-01 -1.35647798e+00 7.50689864e-01 1.84109323e-02 -3.49309057e-01 -1.11274064e-01 -1.57435909e-01 5.57856202e-01 1.60170265e-03 1.55370265e-01 6.33736700e-02 -1.31175324e-01 -3.03819269e-01 -7.01888263e-01 8.40143919e-01 9.16909039e-01 1.58720744e+00 4.31773216e-01 2.73472577e-01 -1.12498783e-01 1.01361597e+00 2.88426131e-01 8.70887578e-01 3.03549379e-01 -1.09555817e+00 2.62861371e-01 2.46600449e-01 -3.29908490e-01 -8.69037926e-01 -6.34647906e-01 2.87278175e-01 -1.13416600e+00 2.34434947e-01 4.08386081e-01 -1.18841618e-01 -5.96635580e-01 1.77182889e+00 7.73234129e-01 5.99437058e-02 -2.98944235e-01 1.24210930e+00 1.59731364e+00 4.04317677e-01 -2.60196626e-01 -3.47786725e-01 1.69544911e+00 -1.16708088e+00 -9.25564647e-01 1.38103560e-01 2.94560283e-01 -7.65919507e-01 1.35334349e+00 5.45306802e-01 -1.37024570e+00 -1.89298972e-01 -6.45433068e-01 -4.77680236e-01 1.13243870e-01 -1.86172366e-01 5.51307440e-01 7.62905478e-01 -1.03518236e+00 -5.99618889e-02 -2.22306788e-01 -4.49486524e-01 3.84033293e-01 4.26650405e-01 -8.46693635e-01 1.60944257e-02 -8.22658896e-01 5.61486125e-01 -3.14185739e-01 -5.20426482e-02 -9.03629184e-01 -7.88515210e-01 -9.62780237e-01 -4.10722822e-01 4.52841848e-01 -1.09154928e+00 1.46320081e+00 -6.16905689e-01 -1.97313023e+00 1.34410727e+00 -5.45738917e-03 1.97269365e-01 9.95047092e-01 -1.34313136e-01 -3.54914546e-01 -1.46582305e-01 2.67734826e-02 7.62928426e-01 1.01677573e+00 -1.13150311e+00 -3.70634437e-01 -7.58751810e-01 -2.99771726e-01 3.14339399e-01 -7.56914020e-02 4.60785121e-01 -9.60007429e-01 -9.33763266e-01 -2.01658458e-01 -1.23363817e+00 1.81035027e-01 1.99851409e-01 -5.34657896e-01 -5.62854484e-02 9.58898485e-01 -7.07987070e-01 1.09341311e+00 -1.99760425e+00 4.13741082e-01 -1.46718323e-01 7.49185324e-01 -9.10405740e-02 2.83084989e-01 -5.43073975e-02 6.68458417e-02 -1.24213159e-01 -6.48157820e-02 -7.38641381e-01 1.70680642e-01 1.39781252e-01 -6.99083209e-02 6.04668975e-01 -4.73249286e-01 9.25679922e-01 -6.31429076e-01 -8.02212179e-01 3.68155763e-02 7.60963559e-01 -6.60244823e-01 4.24182475e-01 1.01010151e-01 7.47583151e-01 -1.22069523e-01 1.03797626e+00 6.73590958e-01 1.02456771e-01 -1.53378382e-01 -3.81304175e-01 4.75191660e-02 -2.35751018e-01 -1.20110118e+00 1.86445713e+00 -8.47664922e-02 7.36210167e-01 3.17905277e-01 8.31269175e-02 8.02598596e-01 5.67039967e-01 5.02631247e-01 -4.89582688e-01 3.27784747e-01 -6.17946237e-02 -4.86910343e-01 -7.73466647e-01 7.21980810e-01 -5.29859848e-02 -3.24496150e-01 3.97559941e-01 4.45110612e-02 -2.87644416e-01 -1.20770045e-01 2.71972641e-02 7.49652922e-01 -6.94122165e-03 2.63165981e-01 1.05414897e-01 2.35377237e-01 -5.82321763e-01 7.60232031e-01 1.74584806e-01 -4.12520826e-01 1.34936011e+00 4.13021475e-01 -6.39739096e-01 -1.36521780e+00 -1.01150393e+00 -3.81990080e-03 1.45101130e+00 -1.40371889e-01 -5.96726894e-01 -1.11395526e+00 -2.64519840e-01 -2.62424350e-01 1.56272903e-01 -7.45063901e-01 1.97067887e-01 -8.00412476e-01 -6.87000394e-01 1.10330057e+00 5.72046816e-01 5.15284836e-01 -1.07576752e+00 -5.83836734e-01 -2.05880284e-01 -4.04892832e-01 -1.39497709e+00 -9.33178425e-01 -6.40168786e-01 -2.86256731e-01 -8.81874442e-01 -1.23989069e+00 -6.24289334e-01 4.70252484e-01 2.25367680e-01 1.33083308e+00 -1.18637839e-02 -4.26291913e-01 4.21226680e-01 -2.82856584e-01 -3.54351670e-01 -2.06865534e-01 1.51911061e-02 5.99347353e-01 1.08434632e-01 -6.94407523e-02 -6.60722911e-01 -4.95831072e-01 5.68216383e-01 -4.85715032e-01 3.69422644e-01 1.73214674e-01 7.54656732e-01 4.40089047e-01 -7.29949534e-01 1.88921794e-01 -7.18848407e-01 5.85682571e-01 -2.68351644e-01 -3.10414046e-01 1.95865050e-01 -1.92593619e-01 -4.05054122e-01 4.65451360e-01 -5.63078463e-01 -1.12218177e+00 3.09926327e-02 -4.12767857e-01 -6.78673267e-01 -3.54931980e-01 -3.33772302e-01 -7.92315841e-01 -3.61568034e-02 6.06294394e-01 1.70650214e-01 2.03703582e-01 -4.12298441e-01 4.69701320e-01 5.34515202e-01 1.08968580e+00 -8.05089355e-01 6.34610176e-01 4.06989962e-01 -4.12288420e-02 -1.09925020e+00 -2.47888029e-01 -6.82158545e-02 -7.58026838e-01 -5.78253686e-01 1.02119350e+00 -1.01697052e+00 -1.36143243e+00 1.10313392e+00 -1.12751162e+00 -3.32569629e-01 -1.69609144e-01 1.87715411e-01 -6.70567214e-01 2.40780964e-01 -7.79712319e-01 -6.54517531e-01 -5.26882172e-01 -1.39116573e+00 1.47706711e+00 3.12901318e-01 -3.99065465e-01 -5.57498753e-01 -1.41440658e-03 7.61837721e-01 -4.77419496e-02 4.93074745e-01 4.64397043e-01 -2.46886648e-02 -2.54390270e-01 4.96100262e-02 -2.65096053e-02 -2.93341756e-01 -1.34109244e-01 4.96933997e-01 -1.32352316e+00 -2.50067621e-01 -4.09204066e-01 -5.67686856e-01 1.14852391e-01 3.00831169e-01 1.01987839e+00 -6.63828135e-01 1.94879789e-02 1.22543621e+00 4.98410523e-01 -1.24882512e-01 6.88923240e-01 -7.67975580e-03 1.35260284e+00 7.57845938e-01 2.08805725e-01 1.06169069e+00 9.01552737e-01 1.18759024e+00 3.26025188e-01 -8.84744450e-02 -2.08427534e-01 -4.16921526e-01 4.63686794e-01 1.10872614e+00 -7.46985555e-01 3.28115635e-02 -7.13971376e-01 2.14519322e-01 -1.65493536e+00 -1.01130331e+00 -2.34384432e-01 2.11380315e+00 7.96868384e-01 -4.11105782e-01 1.05391645e+00 7.42145926e-02 6.04516566e-01 2.02667758e-01 -6.43401682e-01 -1.15714461e-01 -4.74918276e-01 -8.33057761e-02 1.69549048e-01 2.01043651e-01 -7.59175003e-01 9.55496728e-01 6.19831228e+00 6.94681764e-01 -1.03966618e+00 3.96992452e-02 4.65398401e-01 -5.30135512e-01 -2.26344302e-01 -5.04232287e-01 -9.55072641e-01 2.70805418e-01 3.60916555e-01 -9.03810561e-02 5.50807416e-01 8.97160292e-01 4.49623391e-02 3.13725650e-01 -1.20742559e+00 1.66979253e+00 6.48035347e-01 -1.24323988e+00 1.09153323e-01 2.41233543e-01 6.51281238e-01 -2.50029832e-01 2.68457025e-01 1.31256729e-01 1.32540375e-01 -1.29893839e+00 1.16960406e+00 5.35382509e-01 1.38146377e+00 -6.75986290e-01 2.84909248e-01 1.40075848e-01 -1.33396709e+00 2.70262957e-01 -5.56408912e-02 1.07007906e-01 3.98419857e-01 -1.47407264e-01 -5.98844588e-01 1.01766407e-01 1.09523010e+00 4.90359038e-01 -5.81429005e-01 6.82045043e-01 -6.77178651e-02 1.36177212e-01 -3.18210423e-01 1.73853245e-02 -3.69479954e-01 -2.45027393e-01 6.09698653e-01 1.15965319e+00 2.29242697e-01 4.59678143e-01 -1.43914238e-01 5.48468053e-01 -2.76390374e-01 2.29804203e-01 -8.09254110e-01 4.68249947e-01 5.07413805e-01 1.28477931e+00 -3.81554395e-01 -1.34538770e-01 -5.38993359e-01 9.67511177e-01 7.83752650e-02 1.89747170e-01 -1.05611897e+00 2.08388995e-02 1.07720053e+00 3.48778695e-01 -2.42174894e-01 -1.55790046e-01 -2.39736810e-01 -1.38476503e+00 -3.47749516e-02 -1.37613058e+00 3.07200193e-01 -1.14060998e+00 -1.20580029e+00 7.33432412e-01 -3.05113476e-02 -1.09068716e+00 -3.78007442e-01 -3.48275959e-01 -2.81912595e-01 4.89395589e-01 -5.76411188e-01 -1.82831311e+00 -8.92377555e-01 1.19524825e+00 7.81180382e-01 -4.26867187e-01 8.52096260e-01 4.72174287e-01 -8.99318695e-01 1.22604680e+00 -5.10352254e-01 3.78647506e-01 9.32407677e-01 -8.10645580e-01 7.53184497e-01 2.11081043e-01 6.79980591e-02 3.47938508e-01 6.96350276e-01 -3.19407225e-01 -1.79379869e+00 -7.47583985e-01 5.43997943e-01 -6.85125113e-01 2.28431642e-01 -7.88422287e-01 -8.09756398e-01 9.03512299e-01 -2.65769158e-02 2.01801777e-01 7.51325130e-01 1.29167410e-02 -5.62269568e-01 -7.01899156e-02 -1.06992912e+00 9.90095794e-01 1.52347732e+00 -4.55440134e-01 -1.97153881e-01 7.03196004e-02 5.98861635e-01 -9.44918036e-01 -1.02094030e+00 3.02135557e-01 1.19191968e+00 -1.25858927e+00 8.94845188e-01 -5.39100766e-01 2.81657457e-01 -1.45262584e-01 -1.99804470e-01 -1.01988351e+00 -1.57852352e-01 -1.23628819e+00 -2.01946393e-01 1.39580250e+00 6.94468692e-02 -2.51689404e-01 9.28887963e-01 1.11737180e+00 -1.63026199e-01 -7.16116250e-01 -6.91513121e-01 -2.91905969e-01 -1.59136847e-01 -4.45499748e-01 1.25302505e+00 9.99532759e-01 -1.00036420e-01 4.86198962e-01 -9.62797642e-01 -2.78854609e-01 7.96399832e-01 -2.73402989e-01 1.69660056e+00 -1.26452458e+00 -1.03465803e-01 -5.39726496e-01 -5.74967444e-01 -1.13582087e+00 3.49925041e-01 -4.02675301e-01 -2.84485847e-01 -8.47974956e-01 4.04909730e-01 -2.49258474e-01 8.52607548e-01 5.12203574e-01 7.61821866e-02 4.62947607e-01 4.12452996e-01 3.68508667e-01 -4.39942896e-01 7.32528090e-01 1.45161283e+00 1.54221103e-01 -7.06686452e-02 9.80738699e-02 -4.78444874e-01 1.04135001e+00 2.17972726e-01 -1.24421287e-02 -1.97565615e-01 -4.51978326e-01 2.91425437e-01 4.73109066e-01 4.73391175e-01 -8.54837656e-01 2.83403277e-01 -1.85481668e-01 3.38567466e-01 -3.17343324e-01 7.13657379e-01 -4.62803602e-01 5.92528880e-01 -1.77684426e-01 2.28636228e-02 4.82224435e-01 -2.30089813e-01 1.82239786e-01 1.30730599e-01 3.90756369e-01 7.69505441e-01 -1.40113592e-01 -6.66325927e-01 8.26605618e-01 -1.59961849e-01 4.58467990e-01 9.43144917e-01 -4.43051696e-01 -1.70451030e-01 -8.78346503e-01 -7.83950448e-01 -7.83779323e-02 9.59675848e-01 6.31857932e-01 7.71812856e-01 -1.64484668e+00 -1.01504946e+00 5.59780359e-01 3.83160263e-01 2.59637415e-01 4.25802708e-01 7.74197996e-01 -6.63862884e-01 -2.87901163e-01 -5.07462621e-01 -7.32923090e-01 -1.71310139e+00 3.71493787e-01 1.88871473e-01 4.87317801e-01 -9.77981865e-01 9.38003719e-01 5.70768714e-01 -5.05025744e-01 3.69930267e-01 2.82962099e-02 -8.61646682e-02 2.35314205e-01 6.44955814e-01 6.86790586e-01 -7.11561218e-02 -1.56331801e+00 -8.71060938e-02 8.14818025e-01 2.13287085e-01 -1.88058630e-01 1.14012194e+00 -2.91940123e-01 5.60343526e-02 3.70373338e-01 1.19247472e+00 6.73924163e-02 -1.36886311e+00 -9.92608294e-02 -6.71314001e-01 -5.67210972e-01 -4.73366886e-01 -2.41336063e-01 -1.45282388e+00 7.99886942e-01 2.78517216e-01 -3.84495258e-01 1.08751082e+00 2.16454908e-01 1.18624270e+00 7.40003437e-02 6.44921839e-01 -1.02021909e+00 1.37877107e-01 5.09575844e-01 1.14295208e+00 -1.25527036e+00 -5.34415320e-02 -3.69106859e-01 -1.12990868e+00 8.86424243e-01 7.86010563e-01 4.90138382e-01 3.75045538e-01 5.58019757e-01 2.07869276e-01 -2.42202148e-01 -5.78121901e-01 1.08595140e-01 1.17499292e-01 9.35945690e-01 3.80542576e-01 3.24252963e-01 2.92729944e-01 8.72612476e-01 -1.07222939e+00 -2.93566912e-01 5.38306355e-01 4.18723106e-01 1.21185362e-01 -6.75944924e-01 -7.45596886e-01 4.66575753e-03 -3.05298299e-01 2.64115721e-01 -5.88752687e-01 8.63129556e-01 -2.82574468e-03 6.60124481e-01 -1.81838945e-01 -6.33285284e-01 7.10131884e-01 -1.54400483e-01 7.34237373e-01 -1.32771477e-01 -6.29973292e-01 8.26720670e-02 5.71986437e-02 -4.80500489e-01 -8.00770745e-02 -8.54929984e-01 -1.03302372e+00 -1.14466739e+00 -4.79058400e-02 -4.12034333e-01 4.34063643e-01 5.78104436e-01 1.32585362e-01 7.63204694e-02 6.41410410e-01 -1.34746683e+00 -1.53425574e-01 -7.85807073e-01 -7.66733527e-01 7.84257829e-01 2.91885674e-01 -8.00129950e-01 -1.04921728e-01 4.67558771e-01]
[12.894146919250488, -0.42454051971435547]
401269a8-4b42-44d8-9be6-70b7b6fa83e2
data-assemble-leveraging-multiple-datasets
2109.12265
null
https://arxiv.org/abs/2109.12265v4
https://arxiv.org/pdf/2109.12265v4.pdf
Label-Assemble: Leveraging Multiple Datasets with Partial Labels
The success of deep learning relies heavily on large labeled datasets, but we often only have access to several small datasets associated with partial labels. To address this problem, we propose a new initiative, "Label-Assemble", that aims to unleash the full potential of partial labels from an assembly of public datasets. We discovered that learning from negative examples facilitates both computer-aided disease diagnosis and detection. This discovery will be particularly crucial in novel disease diagnosis, where positive examples are hard to collect, yet negative examples are relatively easier to assemble. For example, assembling existing labels from NIH ChestX-ray14 (available since 2017) significantly improves the accuracy of COVID-19 diagnosis from 96.3% to 99.3%. In addition to diagnosis, assembling labels can also improve disease detection, e.g., the detection of pancreatic ductal adenocarcinoma (PDAC) can greatly benefit from leveraging the labels of Cysts and PanNets (two other types of pancreatic abnormalities), increasing sensitivity from 52.1% to 84.0% while maintaining a high specificity of 98.0%.
['Elliot K. Fishman', 'Yongyi Lu', 'Zengle Zhu', 'Bowen Li', 'Zongwei Zhou', 'Alan L. Yuille', 'Mintong Kang']
2021-09-25
null
null
null
null
['covid-19-detection']
['medical']
[ 9.12310034e-02 3.36681038e-01 -5.26480615e-01 -3.77757221e-01 -1.31156468e+00 -8.37715268e-01 2.72626907e-01 6.37832224e-01 -4.13601816e-01 8.40863526e-01 1.46082550e-01 -5.85964799e-01 2.80361064e-02 -8.12130809e-01 -5.98951817e-01 -7.37015247e-01 -1.06093064e-01 6.55511081e-01 -3.27807277e-01 4.49936092e-01 -3.54044914e-01 3.36513340e-01 -9.75375652e-01 4.97676462e-01 8.73830259e-01 7.42675245e-01 9.59575996e-02 5.13357997e-01 -1.25624448e-01 6.34229183e-01 -4.24566686e-01 -2.01589346e-01 1.08258739e-01 -1.45491093e-01 -6.71466768e-01 -1.19516850e-01 3.14325571e-01 -6.14033818e-01 1.93293571e-01 9.10032928e-01 3.93403679e-01 -6.67273521e-01 7.54550993e-01 -1.01390421e+00 -5.35946667e-01 6.40833497e-01 -6.60102010e-01 -1.91038683e-01 -1.53360233e-01 4.47981536e-01 1.21171498e+00 -4.57996637e-01 9.33859706e-01 6.90405071e-01 1.03792012e+00 6.40289843e-01 -1.25877607e+00 -9.05012548e-01 -3.31147730e-01 -1.96130112e-01 -1.16471207e+00 -1.71761841e-01 1.00417905e-01 -5.76604187e-01 7.54266322e-01 3.29996794e-01 9.47512209e-01 9.38430488e-01 -1.32183641e-01 7.32440174e-01 1.03602982e+00 -1.58596799e-01 -1.08167186e-01 1.45405561e-01 5.33353090e-02 8.11412275e-01 7.05174863e-01 5.11738993e-02 3.14583145e-02 -2.28881523e-01 4.73596036e-01 5.07594168e-01 -1.64016694e-01 -2.23442718e-01 -1.44301927e+00 7.09859848e-01 6.76244855e-01 1.47119418e-01 -1.42222926e-01 -1.40100360e-01 4.85483974e-01 5.27625866e-02 2.22050503e-01 8.33334804e-01 -6.22201443e-01 2.28829175e-01 -6.49918199e-01 -8.62167403e-02 7.55828023e-01 7.54247963e-01 6.65864408e-01 -4.67625618e-01 2.07030028e-01 9.92613375e-01 2.39013314e-01 5.98747432e-01 4.47726309e-01 -7.92233884e-01 1.43679723e-01 1.01526904e+00 4.84633707e-02 -3.92951220e-01 -1.19887328e+00 -7.33668923e-01 -1.00232327e+00 2.86805071e-02 6.77322388e-01 -3.59637529e-01 -1.04621089e+00 1.77357101e+00 3.24126989e-01 6.78862853e-04 1.13971822e-01 7.05352128e-01 1.06428206e+00 2.15734988e-01 3.79538506e-01 5.84626310e-02 1.46253765e+00 -7.04278111e-01 -3.44763607e-01 -3.54234278e-02 1.49197900e+00 -4.87576574e-01 7.68566608e-01 4.54798430e-01 -5.27067006e-01 7.35065416e-02 -8.70393336e-01 1.22560315e-01 -4.40355778e-01 2.91411340e-01 8.77020061e-01 5.01650512e-01 -9.50094581e-01 7.40840435e-02 -9.67396855e-01 -5.38865030e-01 9.53064084e-01 4.29655373e-01 -6.81936145e-01 -4.10443693e-01 -8.15788269e-01 8.32331479e-01 2.75467664e-01 -3.08197767e-01 -1.05232275e+00 -1.11599910e+00 -6.51977360e-01 -2.58105360e-02 4.46853369e-01 -8.44715655e-01 1.24085784e+00 -6.51360095e-01 -6.00980103e-01 1.20708871e+00 1.01241946e-01 -3.62407744e-01 4.32468563e-01 1.14505038e-01 -3.14459264e-01 9.30435732e-02 1.82072863e-01 8.98617387e-01 1.12330616e-01 -9.92452800e-01 -9.91381586e-01 -5.08818150e-01 -1.52360439e-01 -7.32161999e-02 -3.68973941e-01 -2.80741304e-01 -2.58023769e-01 -4.44492579e-01 -7.50312433e-02 -1.10374701e+00 -5.24242520e-01 3.50193024e-01 -4.72291648e-01 -3.20965946e-01 6.65691793e-01 -7.20646858e-01 6.91704214e-01 -2.10727668e+00 -2.52613395e-01 1.15022898e-01 9.27540958e-01 3.87927860e-01 8.08413401e-02 -1.33056238e-01 3.60104255e-02 5.44051290e-01 -7.92211145e-02 3.44175175e-02 -2.61626989e-01 1.11926220e-01 3.02821875e-01 4.52563614e-01 5.99181712e-01 1.07593000e+00 -1.06124687e+00 -4.87235010e-01 1.80743322e-01 2.81793267e-01 -7.35477865e-01 -5.09504154e-02 -2.03505412e-01 4.39776450e-01 -2.58254379e-01 1.05067146e+00 3.26392710e-01 -1.05152833e+00 5.46164811e-01 -8.87695607e-03 1.54089004e-01 2.62838155e-01 -7.29507029e-01 1.30482590e+00 -2.76613444e-01 4.69078392e-01 2.26243705e-01 -7.84286916e-01 7.36836851e-01 2.14129612e-01 8.42629731e-01 -4.18297589e-01 -5.62544651e-02 3.89495105e-01 4.52434242e-01 -5.38001239e-01 -1.25918463e-01 -3.64559233e-01 1.00508565e-02 5.02937496e-01 -7.50410557e-03 4.80714180e-02 1.49061203e-01 2.10251704e-01 1.47823799e+00 -3.61040562e-01 5.79823136e-01 -1.72499448e-01 7.12975487e-02 5.74721038e-01 8.47294986e-01 6.49245918e-01 -4.06887203e-01 4.31585938e-01 6.72424734e-01 -4.59006459e-01 -1.07922018e+00 -9.88888443e-01 -5.84846199e-01 7.74160922e-01 -4.38260496e-01 -4.14483070e-01 -1.63856849e-01 -1.01449990e+00 3.92530590e-01 2.61211634e-01 -7.01470077e-01 -7.25908950e-02 -2.58191139e-01 -1.09833336e+00 7.46929824e-01 5.29000401e-01 1.03908658e-01 -5.77075660e-01 -2.72770166e-01 1.22562990e-01 -9.39286128e-02 -8.17321658e-01 1.09016672e-01 5.97970843e-01 -8.19520950e-01 -1.50830841e+00 -9.34395492e-01 -9.55212474e-01 7.54467845e-01 -1.68774985e-02 1.09866822e+00 2.58602172e-01 -6.67137265e-01 -2.24990379e-02 -3.47134262e-01 -6.20942414e-01 -7.50144839e-01 3.77424240e-01 5.75545337e-03 -4.83786345e-01 4.45438236e-01 -1.01070583e-01 -5.03855765e-01 1.93136841e-01 -7.00150192e-01 2.90579528e-01 1.01723611e+00 9.26665306e-01 6.96372569e-01 -2.56901294e-01 1.08508372e+00 -1.33758485e+00 1.52670487e-03 -8.70847285e-01 -3.22664440e-01 2.29859978e-01 -7.58645713e-01 -1.91902205e-01 5.74942052e-01 -4.35197115e-01 -7.24626243e-01 1.98504373e-01 -2.19273210e-01 -8.24407116e-02 -2.42539972e-01 5.39368987e-01 2.58781463e-01 1.83692425e-01 8.33757699e-01 -2.91042745e-01 3.23204100e-01 -3.47885549e-01 7.91833922e-02 7.31099069e-01 3.94540519e-01 -2.32957959e-01 2.80127764e-01 4.89632875e-01 4.78436835e-02 -3.43631208e-01 -9.80097950e-01 -6.94483340e-01 -2.20707446e-01 -2.13263463e-02 8.62692297e-01 -1.01589382e+00 -6.75862849e-01 3.77184153e-01 -4.08967435e-01 -5.46942234e-01 -2.40807742e-01 7.00491250e-01 1.83810126e-02 1.51351923e-02 -7.17921793e-01 -1.73896402e-01 -4.98032570e-01 -1.21165884e+00 9.71365929e-01 1.37145251e-01 -5.06474793e-01 -9.71244633e-01 -4.97489534e-02 2.47981042e-01 4.40032154e-01 3.51687491e-01 1.25075853e+00 -1.10493314e+00 -4.36109602e-01 -4.25650537e-01 -5.64419329e-01 2.47024894e-01 3.81572396e-01 2.58606933e-02 -8.86070669e-01 -2.18114987e-01 -4.94257420e-01 -5.77036202e-01 9.93581653e-01 3.63133848e-01 1.03441107e+00 2.39028595e-02 -8.66944194e-01 6.96421444e-01 1.23395419e+00 2.95242697e-01 8.70180875e-02 3.21245164e-01 6.65499032e-01 4.90598381e-01 4.36058432e-01 4.45929319e-01 3.89982373e-01 2.82043964e-01 5.14291108e-01 -4.56360966e-01 -3.80263537e-01 -8.38511586e-02 -2.01143906e-01 4.39808905e-01 3.81258070e-01 1.81035362e-02 -1.50212562e+00 6.37832761e-01 -1.20904219e+00 -3.35907787e-01 -4.06505853e-01 1.99694192e+00 1.10082579e+00 9.47578773e-02 -1.17965795e-01 -2.37745792e-01 7.43545234e-01 -3.64928633e-01 -8.74392629e-01 2.43150741e-01 -1.26913160e-01 2.92235725e-02 5.60119212e-01 9.85063761e-02 -1.11668766e+00 4.94330406e-01 6.63039303e+00 3.89767587e-01 -1.31137264e+00 1.21135376e-01 9.56521690e-01 -2.64001995e-01 -2.13643819e-01 -2.39797726e-01 -9.31534886e-01 4.82055008e-01 8.67428899e-01 5.66439442e-02 -4.79535237e-02 9.31239128e-01 -1.66467875e-01 -1.72579259e-01 -1.30320680e+00 9.10679042e-01 -1.01998694e-01 -1.53414226e+00 -2.47138739e-01 4.91666734e-01 8.77353311e-01 5.30842841e-01 2.20008213e-02 4.76263821e-01 6.32314265e-01 -1.05649626e+00 8.30193087e-02 3.02959412e-01 1.37470305e+00 -5.20752728e-01 1.19255698e+00 3.09962690e-01 -6.29588127e-01 -1.70003071e-01 -4.70508747e-02 2.72217453e-01 4.58663777e-02 8.69665265e-01 -1.70857751e+00 -1.08366773e-01 7.18152881e-01 8.41593564e-01 -6.42456591e-01 1.17270553e+00 -1.44242167e-01 7.64603913e-01 -5.54413378e-01 -3.80118489e-02 1.36128679e-01 3.07051837e-01 7.85697177e-02 1.13538766e+00 2.42950588e-01 7.97301605e-02 2.11179748e-01 5.97051740e-01 -5.74102759e-01 1.26792222e-01 -5.24200797e-01 -3.41006130e-01 4.35228676e-01 1.63036501e+00 -5.73275864e-01 -5.53600013e-01 -5.40409446e-01 2.23448724e-01 3.45210999e-01 -1.20153271e-01 -7.16002345e-01 -1.54762059e-01 4.20306951e-01 -7.17587024e-02 -1.16614170e-01 3.35048616e-01 -4.27337825e-01 -1.02353513e+00 -3.86499822e-01 -9.24403191e-01 7.67882288e-01 -5.95748365e-01 -1.45698488e+00 -1.38678113e-02 -6.40430510e-01 -1.18168390e+00 -2.63369918e-01 -7.75186002e-01 -4.27849703e-02 7.38997757e-01 -1.38124681e+00 -1.27159202e+00 -4.10112858e-01 1.04900323e-01 5.66858910e-02 8.79203435e-03 1.02148700e+00 4.22707081e-01 -5.51088452e-01 7.36368716e-01 3.85566920e-01 3.09571207e-01 1.29506207e+00 -1.34605157e+00 -2.75416560e-02 7.40861818e-02 -3.18754733e-01 5.04214525e-01 1.03529558e-01 -6.49365246e-01 -1.23730063e+00 -1.40410638e+00 6.71124458e-01 -7.12520719e-01 6.77697837e-01 4.19053435e-02 -7.80439436e-01 9.96569812e-01 -3.94296169e-01 1.08539276e-01 1.33555877e+00 4.07469511e-01 -6.68971717e-01 -2.32330322e-01 -1.48561740e+00 3.94250005e-01 7.00884640e-01 -3.02537769e-01 -2.07863301e-01 5.17785966e-01 6.12342358e-01 -3.11110944e-01 -1.20537066e+00 7.23316014e-01 7.83255994e-01 -5.70691943e-01 8.25237930e-01 -7.15618670e-01 5.94323456e-01 -8.26998428e-02 -1.42291903e-01 -1.28490388e+00 -3.56345564e-01 1.09671038e-02 1.11296549e-01 1.01327550e+00 8.44389260e-01 -8.90945435e-01 9.58017766e-01 7.29431272e-01 -2.68089950e-01 -8.51456344e-01 -4.73436832e-01 -4.48944867e-01 2.28870258e-01 -4.11366701e-01 5.06872296e-01 1.41839874e+00 1.46004081e-01 8.29788074e-02 2.27540229e-02 4.89576273e-02 3.92924696e-01 -7.84773454e-02 7.80990183e-01 -1.42467177e+00 -3.20129246e-01 -3.78121436e-01 -3.50060880e-01 -4.65270966e-01 -2.42953777e-01 -1.47452819e+00 -2.98540115e-01 -1.70239425e+00 9.22195435e-01 -1.05645502e+00 -5.18895984e-01 9.50151384e-01 -2.90720373e-01 5.00086486e-01 6.38789982e-02 3.97815675e-01 -5.94019771e-01 -2.43139312e-01 1.23568153e+00 -1.98182896e-01 -3.53697874e-02 -9.76288170e-02 -1.11388791e+00 8.54474068e-01 9.11446631e-01 -5.75708926e-01 1.20912500e-01 -3.43908370e-01 2.66969174e-01 1.14654541e-01 2.73128062e-01 -7.37221360e-01 -2.91711986e-02 -9.43776816e-02 6.94420040e-01 -7.02201664e-01 5.70802279e-02 -6.30584538e-01 3.04873317e-01 9.39888358e-01 -4.31363910e-01 -3.72326702e-01 2.13874608e-01 5.46661019e-01 3.82658429e-02 -1.35716096e-01 8.02245557e-01 -3.94021988e-01 -5.78618586e-01 1.51271850e-01 -2.91246414e-01 7.93301463e-02 1.09850001e+00 2.97243267e-01 -9.46489453e-01 -6.71850070e-02 -8.02598953e-01 4.22803253e-01 5.44146538e-01 1.83672637e-01 6.85104579e-02 -1.12004519e+00 -8.23324382e-01 2.53255635e-01 4.65234280e-01 2.75946110e-01 2.62158096e-01 1.19796121e+00 -6.17887199e-01 6.06554806e-01 -7.57389590e-02 -9.29566264e-01 -1.32670009e+00 4.97926265e-01 2.57295698e-01 -5.32452583e-01 -5.64246774e-01 9.61377978e-01 4.71897990e-01 -6.89918816e-01 3.48697394e-01 -4.30479854e-01 -7.52338171e-02 1.67253777e-01 5.21111369e-01 2.57281631e-01 4.82077524e-02 -1.48399368e-01 -3.09214264e-01 7.07599446e-02 -5.11590123e-01 3.63960207e-01 1.42312562e+00 3.97752583e-01 -2.32358411e-01 1.67230621e-01 1.20645082e+00 4.72274423e-02 -8.90785336e-01 -2.30403930e-01 -7.21348301e-02 -1.09091863e-01 -8.83932710e-02 -1.41744399e+00 -1.10528922e+00 7.42053092e-01 7.11375535e-01 7.48002678e-02 9.01839852e-01 3.58071178e-01 8.24535549e-01 4.72511917e-01 4.13899273e-01 -5.70817947e-01 -4.77090813e-02 1.85373515e-01 2.27948755e-01 -1.68394411e+00 -2.37958768e-04 -2.00718954e-01 -2.98013419e-01 8.99399877e-01 6.13381386e-01 2.92441636e-01 3.84856284e-01 5.04292309e-01 1.82974234e-01 -2.04663634e-01 -9.39627349e-01 -1.25277713e-01 -7.66131282e-02 5.71741104e-01 5.07562876e-01 7.05238879e-01 -2.56756097e-01 7.84851611e-01 4.60206941e-02 1.08260460e-01 4.52454418e-01 7.15960622e-01 -4.51584071e-01 -1.07826829e+00 -2.96636969e-01 1.49064612e+00 -7.89396286e-01 -1.69418335e-01 -5.57311118e-01 8.79167974e-01 3.47745895e-01 6.13917053e-01 1.06657520e-01 -2.15401888e-01 -5.11401482e-02 1.45236477e-01 -3.44566479e-02 -8.12611878e-01 -4.30118322e-01 1.13815978e-01 4.33928967e-01 -8.63390043e-02 -2.55620182e-01 -6.89281940e-01 -1.41948974e+00 -1.20991863e-01 -3.74749243e-01 -1.23164073e-01 6.74603760e-01 5.93410313e-01 4.54805583e-01 4.72298682e-01 1.84411451e-01 -4.49621305e-02 -5.75411677e-01 -9.54241455e-01 -5.64935625e-01 2.92139769e-01 4.93007034e-01 -5.32614768e-01 -4.34536725e-01 1.26544863e-01]
[15.073539733886719, -2.85795521736145]
710b1ec5-6422-4383-b06e-82354dc0b1ee
enhancing-dynamic-mode-decomposition-workflow
2208.07767
null
https://arxiv.org/abs/2208.07767v1
https://arxiv.org/pdf/2208.07767v1.pdf
Enhancing Dynamic Mode Decomposition Workflow with In-Situ Visualization and Data Compression
Modern computational science and engineering applications are being improved by the advances in scientific machine learning. Data-driven methods such as Dynamic Mode Decomposition (DMD) can extract coherent structures from spatio-temporal data generated from dynamical systems and infer different scenarios for said systems. The spatio-temporal data comes as snapshots containing spatial information for each time instant. In modern engineering applications, the generation of high-dimensional snapshots can be time and/or resource-demanding. In the present study, we consider two strategies for enhancing DMD workflow in large numerical simulations: (i) snapshots compression to relieve disk pressure; (ii) the use of in situ visualization images to reconstruct the dynamics (or part of) in runtime. We evaluate our approaches with two 3D fluid dynamics simulations and consider DMD to reconstruct the solutions. Results reveal that snapshot compression considerably reduces the required disk space. We have observed that lossy compression reduces storage by almost $50\%$ with low relative errors in the signal reconstructions and other quantities of interest. We also extend our analysis to data generated on-the-fly, using in-situ visualization tools to generate image files of our state vectors during runtime. On large simulations, the generation of snapshots may be slow enough to use batch algorithms for inference. Streaming DMD takes advantage of the incremental SVD algorithm and updates the modes with the arrival of each new snapshot. We use streaming DMD to reconstruct the dynamics from in-situ generated images. We show that this process is efficient, and the reconstructed dynamics are accurate.
['Alvaro L. G. A. Coutinho', 'José J. Camata', 'Malú Grave', 'Gabriel F. Barros']
2022-08-16
null
null
null
null
['data-compression']
['time-series']
[ 5.11500090e-02 -4.93370682e-01 5.52846134e-01 2.59981185e-01 -4.13405985e-01 -6.55845344e-01 6.67651057e-01 1.54551640e-01 -3.94067585e-01 7.37398207e-01 -6.51628152e-02 -4.80827510e-01 -3.74262959e-01 -6.84679210e-01 -5.95506549e-01 -9.52811360e-01 -6.62668347e-01 6.17240965e-01 1.44953832e-01 8.61041155e-03 3.74079227e-01 9.20294225e-01 -1.79918623e+00 2.87463009e-01 5.20356417e-01 7.89531052e-01 3.26729119e-01 1.30739677e+00 -1.50929347e-01 5.92764974e-01 -4.69489485e-01 5.81565559e-01 2.98323989e-01 -4.91398215e-01 -5.02047539e-01 3.14260572e-02 -1.05075464e-01 -4.79700983e-01 -3.70483607e-01 5.88352919e-01 7.13338017e-01 3.56247276e-01 4.71760869e-01 -6.46731615e-01 3.27162564e-01 1.00068294e-01 -5.90477169e-01 5.53571165e-01 3.75876814e-01 6.87542498e-01 2.13670537e-01 -9.85697210e-01 9.04526532e-01 1.05898821e+00 6.31638706e-01 1.33323148e-01 -1.62044084e+00 -2.21311867e-01 -3.35417628e-01 2.13395342e-01 -1.14844060e+00 -7.01049924e-01 9.34229255e-01 -9.37872887e-01 9.45730507e-01 6.93132520e-01 9.05629456e-01 6.10503256e-01 2.86901444e-01 9.24319625e-02 1.18297660e+00 -4.74863350e-01 6.81081116e-01 -3.33545446e-01 -2.08031207e-01 4.14751351e-01 1.55585110e-01 5.45330465e-01 -6.70460522e-01 -5.27814031e-01 8.86269331e-01 -8.62464383e-02 -3.99843544e-01 -1.66780293e-01 -1.47314107e+00 4.32116210e-01 -2.31424913e-01 8.92121345e-02 -5.51928937e-01 3.13663572e-01 4.58480626e-01 4.60263431e-01 7.19144225e-01 6.13874197e-01 -3.13340902e-01 -5.68955421e-01 -1.32933128e+00 4.99843478e-01 8.20476592e-01 2.00787202e-01 5.42513072e-01 2.36660168e-01 2.84946591e-01 3.75950783e-01 1.72271915e-02 7.68343508e-01 4.54473108e-01 -1.58933413e+00 1.25929788e-01 1.06165163e-01 3.60283941e-01 -9.49541867e-01 -3.13359141e-01 -1.27149761e-01 -1.04882467e+00 5.55251598e-01 4.83260244e-01 -3.97252530e-01 -5.80541253e-01 1.27088988e+00 7.43161976e-01 4.91940737e-01 1.63974892e-02 9.03225839e-01 3.23352516e-01 1.07735646e+00 -5.69600821e-01 -9.16001022e-01 7.70004749e-01 -3.11259747e-01 -7.30816841e-01 3.52553278e-01 5.13429940e-01 -8.34402621e-01 7.81189382e-01 5.08786738e-01 -1.29504120e+00 -4.69148129e-01 -9.59438622e-01 5.50200582e-01 2.74030734e-02 -1.88160628e-01 1.44593641e-01 -2.91146822e-02 -9.19547021e-01 1.36675346e+00 -1.56250167e+00 3.17261629e-02 -1.77245975e-01 5.55162318e-02 -1.91655811e-02 2.88322002e-01 -6.88678980e-01 4.78486776e-01 -9.42078158e-02 6.84624314e-02 -9.67824101e-01 -1.18212235e+00 -4.27724212e-01 4.23076823e-02 1.36208683e-01 -6.89913273e-01 1.09825826e+00 -6.21673346e-01 -1.61079812e+00 4.62504268e-01 -3.85819376e-01 -1.24556705e-01 8.00166130e-01 1.45790786e-01 -9.94377285e-02 5.54877460e-01 -1.52679309e-01 -2.02439457e-01 8.66999686e-01 -1.35604668e+00 -1.10087879e-01 -2.01834679e-01 -4.97339040e-01 -3.69331650e-02 5.56902355e-03 -3.41600895e-01 -2.06767581e-02 -4.21545506e-01 2.22133875e-01 -1.05137241e+00 -4.26648080e-01 1.34440392e-01 -2.22089052e-01 5.69075525e-01 1.00943851e+00 -8.07173908e-01 1.32497096e+00 -1.92218435e+00 4.57705796e-01 1.27238885e-01 3.46476227e-01 2.55700320e-01 3.52799773e-01 9.97111082e-01 -2.55048007e-01 -1.24587789e-01 -4.97848153e-01 -4.14640933e-01 -4.31228489e-01 1.40888855e-01 -7.56550908e-01 5.75729311e-01 -2.27200091e-01 3.02784204e-01 -6.92085922e-01 -4.08415496e-01 3.96522582e-01 3.12925458e-01 -5.72186828e-01 4.72308069e-01 -2.69912124e-01 1.02171886e+00 -2.11168930e-01 1.50177792e-01 6.64594054e-01 -3.61330152e-01 4.93444264e-01 -1.39836445e-01 -7.96087861e-01 1.76227003e-01 -1.54010820e+00 1.38257539e+00 -5.87534189e-01 7.11899102e-01 5.78255832e-01 -1.30156159e+00 5.22398353e-01 3.70155573e-01 8.76588941e-01 -5.70696354e-01 -2.20903248e-01 2.05108926e-01 -3.69977788e-03 -9.04997766e-01 3.54803264e-01 -1.50914401e-01 2.74054408e-01 8.60225260e-01 -3.29515755e-01 -3.37476075e-01 3.06443483e-01 2.94538349e-01 1.27906847e+00 2.25745723e-01 4.06582877e-02 -4.89208966e-01 2.30769619e-01 3.45076412e-01 2.52362102e-01 4.25171494e-01 3.22698951e-01 4.52919930e-01 5.85817814e-01 -5.08206725e-01 -1.47508824e+00 -9.73372579e-01 -9.28612277e-02 4.37539876e-01 -4.95049767e-02 -5.73650181e-01 -5.62436104e-01 3.23380262e-01 2.10240439e-01 4.02612537e-01 -4.34452027e-01 1.41560391e-01 -1.06234789e+00 -9.19953287e-01 1.12427890e-01 1.48074582e-01 -1.35237624e-05 -8.79144967e-01 -1.19972789e+00 4.24297184e-01 3.36209908e-02 -7.07767487e-01 4.79291528e-02 -9.95244607e-02 -1.36405385e+00 -1.06406915e+00 -4.82914180e-01 -1.49207134e-02 6.36051416e-01 2.09162205e-01 9.45442915e-01 1.52517214e-01 -6.57268465e-01 4.40886080e-01 6.56322250e-03 5.13815433e-02 -5.46644270e-01 -5.28814197e-01 5.03296018e-01 -1.17787853e-01 -5.62726676e-01 -1.24566329e+00 -7.18825758e-01 1.12710580e-01 -9.26281393e-01 3.28523070e-01 -4.89586666e-02 6.58621490e-01 8.00948918e-01 2.89230626e-02 1.12501502e-01 -6.60182655e-01 5.81509948e-01 -6.75881445e-01 -9.12036777e-01 -2.70745754e-01 -6.05559886e-01 2.57995397e-01 9.74714518e-01 -5.84186316e-01 -9.54400897e-01 -6.14156201e-03 1.35065541e-01 -1.00355923e+00 7.09629953e-02 8.25094223e-01 4.48157042e-01 3.08635235e-01 7.29599476e-01 4.62650001e-01 3.91320169e-01 -8.69635165e-01 3.00838854e-02 4.22238618e-01 3.39302033e-01 -9.27785814e-01 4.90760267e-01 7.90150285e-01 4.90375370e-01 -1.49737775e+00 -6.06985427e-02 -1.67740971e-01 -6.51312590e-01 -5.88700294e-01 3.60288024e-01 -5.71107864e-01 -9.61141229e-01 4.91149038e-01 -1.00327790e+00 -6.68801606e-01 -5.36807597e-01 5.82104862e-01 -6.75940037e-01 4.85710472e-01 -7.40395844e-01 -8.60495389e-01 -1.81526005e-01 -1.03250504e+00 9.35204327e-01 -1.26361012e-01 -3.10524374e-01 -8.81502151e-01 7.55023003e-01 -2.55503893e-01 5.03449976e-01 7.88432121e-01 7.43852794e-01 1.60259917e-01 -6.53005958e-01 7.31225088e-02 3.17941487e-01 -3.12879890e-01 3.53451557e-02 5.52148581e-01 -8.38740826e-01 -4.17929322e-01 3.10077667e-01 2.06298679e-01 6.02471888e-01 7.04234719e-01 1.20746791e+00 -5.87620020e-01 -5.60660899e-01 7.49110460e-01 1.43839240e+00 1.32343054e-01 4.14765179e-01 -2.01896608e-01 5.62970579e-01 6.95086479e-01 4.10611033e-01 8.94495606e-01 -2.24418312e-01 6.82430267e-01 1.00020379e-01 1.22090138e-01 -9.70246121e-02 7.91427940e-02 3.26959670e-01 1.28493106e+00 -4.63106662e-01 2.45657433e-02 -1.11893725e+00 6.31187260e-01 -1.81395280e+00 -1.31268883e+00 -4.44171667e-01 2.38647985e+00 8.79989982e-01 -5.65116182e-02 8.17887560e-02 2.39794686e-01 5.18468022e-01 1.64903402e-01 -7.88210094e-01 -3.29634070e-01 2.10789949e-01 2.68259376e-01 1.81842119e-01 7.92576373e-01 -5.13141513e-01 2.38588318e-01 6.19352293e+00 4.33484167e-01 -1.74564815e+00 1.35278732e-01 3.57526064e-01 -7.12784290e-01 -2.02698573e-01 2.49184091e-02 -2.16851741e-01 8.95750165e-01 1.56199527e+00 -4.43378508e-01 5.31503379e-01 6.20338380e-01 1.02168822e+00 -4.70545709e-01 -9.35119212e-01 9.70399737e-01 -4.28002477e-01 -1.99630964e+00 -2.87723750e-01 3.25586855e-01 4.21084702e-01 -1.23895202e-02 -2.69454211e-01 -4.51742232e-01 1.09902762e-01 -7.98062444e-01 6.25611365e-01 1.08424771e+00 1.03683424e+00 -6.35264397e-01 7.02045038e-02 7.99942732e-01 -1.33693635e+00 2.59705395e-01 -1.27351999e-01 -4.22500193e-01 6.83914125e-01 1.16771638e+00 -4.17936921e-01 3.02176297e-01 6.41314089e-01 7.27985382e-01 -1.64629713e-01 6.96919680e-01 5.51464140e-01 9.91362214e-01 -7.41861999e-01 8.45230594e-02 -2.02040941e-01 -6.42814755e-01 1.06376302e+00 9.73504186e-01 7.31470346e-01 4.02804345e-01 5.36837950e-02 1.05977273e+00 5.42765915e-01 -5.89361131e-01 -7.56007612e-01 -1.06215827e-01 4.46359217e-01 1.09222448e+00 -7.26115406e-01 -4.99775916e-01 4.82759401e-02 6.10402107e-01 -1.89016178e-01 3.93571496e-01 -5.00647187e-01 -2.31329888e-01 9.29018855e-01 7.23793685e-01 3.74233544e-01 -1.02932394e+00 -1.84453771e-01 -1.14924002e+00 -2.64595468e-02 -5.70590556e-01 1.16271734e-01 -8.43847632e-01 -8.62720728e-01 3.14993441e-01 3.57347280e-01 -1.32389724e+00 -5.84058702e-01 -3.97697181e-01 -7.64867067e-01 8.38537216e-01 -8.09071541e-01 -2.64453888e-01 -1.80333227e-01 3.35071683e-01 3.81385982e-01 1.67826921e-01 6.45400822e-01 2.86538363e-01 -5.04923403e-01 -3.91933531e-01 8.01442385e-01 -2.64604479e-01 2.96488583e-01 -1.15531051e+00 4.34974283e-01 8.57719600e-01 -2.63719112e-01 5.87523520e-01 1.33132350e+00 -8.69871020e-01 -1.82130194e+00 -5.38623750e-01 3.77444774e-01 -2.18961880e-01 6.49882197e-01 -1.28281415e-01 -1.19449055e+00 2.44228482e-01 3.12341210e-02 2.16567039e-01 4.64257061e-01 -4.19036716e-01 2.66929418e-01 -7.66410232e-02 -9.80912328e-01 3.90779465e-01 8.47900093e-01 -4.84115899e-01 -1.77905321e-01 2.30229244e-01 2.89069206e-01 -4.54387605e-01 -9.17079985e-01 2.00475365e-01 5.06501734e-01 -1.03081656e+00 9.59991932e-01 -6.08054876e-01 7.30450630e-01 -5.68994761e-01 3.65941599e-03 -1.33199394e+00 5.72477169e-02 -8.77916873e-01 -7.11456895e-01 7.73959398e-01 1.01386872e-03 -5.35443425e-01 4.24885571e-01 4.46070105e-01 -1.82253141e-02 -7.99760461e-01 -1.02874792e+00 -5.84900796e-01 2.69919224e-02 -5.45990109e-01 2.02797890e-01 1.02308941e+00 1.68308049e-01 -5.06280400e-02 -1.41121358e-01 3.11425447e-01 8.83182049e-01 6.70183837e-01 8.20419133e-01 -1.13186955e+00 -7.17618763e-01 -1.36705458e-01 9.35854837e-02 -8.82640779e-01 -2.33979255e-01 -3.32741171e-01 -9.96501893e-02 -1.09022212e+00 -1.04475327e-01 -4.00822550e-01 4.79482323e-01 -2.21479207e-01 7.10139647e-02 -6.16302788e-02 1.11982405e-01 6.92176521e-01 8.88096616e-02 4.16115373e-01 1.08212638e+00 2.53217578e-01 -3.17590654e-01 -1.20299183e-01 3.03081691e-01 4.96445149e-01 5.49670160e-01 -3.99014950e-01 -2.80181646e-01 -2.09715441e-01 3.14219743e-01 7.77119935e-01 5.06594718e-01 -1.02653897e+00 2.04017729e-01 -3.34414393e-01 3.12601805e-01 -6.33598924e-01 4.46377277e-01 -4.81259584e-01 7.11537600e-01 7.50778437e-01 -1.38246566e-01 3.87436956e-01 4.96209234e-01 5.37898719e-01 -3.90474871e-02 1.50381356e-01 9.60472405e-01 -4.34140891e-01 -1.14095025e-01 8.44330806e-03 -9.27273691e-01 -2.59719919e-02 6.98076725e-01 -9.36188251e-02 -1.01149686e-01 -4.91751879e-01 -9.57404017e-01 -1.76866148e-02 6.43960893e-01 -3.21635932e-01 4.34833884e-01 -1.09051740e+00 -5.67965746e-01 3.56924474e-01 -6.19127393e-01 1.81620479e-01 5.90261400e-01 9.30091202e-01 -1.17289293e+00 3.70765291e-02 -1.28136232e-01 -9.72287595e-01 -1.27431417e+00 5.33251345e-01 4.94577348e-01 -2.97615230e-01 -8.74348283e-01 4.37750399e-01 -1.54230371e-01 -8.76908898e-02 -3.72301936e-01 -2.88299471e-01 2.86181718e-01 1.72854379e-01 7.11576641e-01 9.01419044e-01 1.96766227e-01 -3.83058161e-01 -5.13010062e-02 7.81832278e-01 4.97097164e-01 -6.17050231e-01 1.72823989e+00 -1.40074179e-01 -1.95326746e-01 7.52870142e-01 1.00881481e+00 2.12121442e-01 -1.66474390e+00 1.01631589e-01 -2.67034590e-01 -4.43429261e-01 1.80617273e-01 -3.18717986e-01 -1.01888466e+00 1.06837726e+00 4.44997966e-01 4.79705215e-01 1.05443931e+00 -2.61462688e-01 9.11792636e-01 2.58685589e-01 3.52499992e-01 -1.00759470e+00 -1.17465004e-01 2.73334503e-01 8.57587337e-01 -5.18906713e-01 3.87912571e-01 -1.96893439e-01 -3.54524655e-03 1.41505063e+00 1.97853774e-01 -2.24871039e-01 9.19463217e-01 8.19783807e-01 -5.48697039e-02 -3.14414710e-01 -1.11398900e+00 3.44818175e-01 -1.45477936e-01 8.37103054e-02 2.04791203e-01 -1.14131637e-01 -2.37026706e-01 -1.04231454e-01 8.26587528e-03 -5.72927296e-02 7.80969679e-01 1.28169024e+00 -3.52520883e-01 -9.41957176e-01 -7.49670863e-01 4.34563160e-01 -1.12392262e-01 2.85172969e-01 -9.38152745e-02 4.72660542e-01 -3.10701519e-01 5.41177094e-01 3.76158774e-01 -1.96136504e-01 1.98491737e-01 1.24933802e-01 5.23876429e-01 -3.01522672e-01 -2.09412858e-01 2.00278699e-01 -4.25570691e-03 -7.41874814e-01 -3.32717329e-01 -1.01080549e+00 -1.34361720e+00 -8.32504690e-01 1.50870696e-01 2.72577673e-01 7.29737103e-01 8.60502064e-01 7.94766188e-01 6.65595472e-01 6.08482659e-01 -1.65043056e+00 -2.50523597e-01 -8.36046278e-01 -5.09954333e-01 2.35640422e-01 6.36276722e-01 -5.62550187e-01 -8.07802081e-01 5.37510216e-01]
[6.520654678344727, 3.4390180110931396]
533a3e79-9ea8-4019-ac85-861aa26e8ba2
twitch-plays-pokemon-machine-learns-twitch
1902.06208
null
http://arxiv.org/abs/1902.06208v1
http://arxiv.org/pdf/1902.06208v1.pdf
Twitch Plays Pokemon, Machine Learns Twitch: Unsupervised Context-Aware Anomaly Detection for Identifying Trolls in Streaming Data
With the increasing importance of online communities, discussion forums, and customer reviews, Internet "trolls" have proliferated thereby making it difficult for information seekers to find relevant and correct information. In this paper, we consider the problem of detecting and identifying Internet trolls, almost all of which are human agents. Identifying a human agent among a human population presents significant challenges compared to detecting automated spam or computerized robots. To learn a troll's behavior, we use contextual anomaly detection to profile each chat user. Using clustering and distance-based methods, we use contextual data such as the group's current goal, the current time, and the username to classify each point as an anomaly. A user whose features significantly differ from the norm will be classified as a troll. We collected 38 million data points from the viral Internet fad, Twitch Plays Pokemon. Using clustering and distance-based methods, we develop heuristics for identifying trolls. Using MapReduce techniques for preprocessing and user profiling, we are able to classify trolls based on 10 features extracted from a user's lifetime history.
['Albert Haque']
2019-02-17
null
null
null
null
['contextual-anomaly-detection']
['miscellaneous']
[-1.43541634e-01 -5.50316930e-01 -3.39547843e-02 -1.27965525e-01 -1.81271106e-01 -6.58533037e-01 7.57953167e-01 8.76492977e-01 -5.34901977e-01 5.31913161e-01 -4.64868546e-02 -4.73562330e-01 -1.84890240e-01 -6.35067403e-01 -1.20790012e-01 -4.59545642e-01 -2.16637775e-01 7.99666345e-01 3.28769952e-01 -2.68601239e-01 7.94550776e-01 3.99632782e-01 -1.27897060e+00 3.10555935e-01 8.85547996e-01 6.36800706e-01 -8.72279704e-02 9.09190953e-01 -3.50846440e-01 1.08696961e+00 -1.15565920e+00 -2.48736545e-01 1.89586222e-01 -5.92952371e-01 -8.31307948e-01 1.44020647e-01 3.08929205e-01 -2.21735418e-01 -1.57345861e-01 9.41873372e-01 1.44433886e-01 2.16727152e-01 7.02656269e-01 -1.54923570e+00 -9.46595371e-02 1.78837150e-01 -7.58067191e-01 8.95882308e-01 7.28350461e-01 -1.22917645e-01 1.09732032e+00 -2.82852769e-01 8.73126626e-01 1.22442842e+00 8.09870005e-01 3.54299575e-01 -1.15108681e+00 -5.88715851e-01 1.23934094e-02 4.15933818e-01 -1.16831529e+00 -1.66060165e-01 6.25351369e-01 -8.63548994e-01 6.02718592e-01 2.68365771e-01 6.56395376e-01 1.07633996e+00 1.23517156e-01 6.19046390e-01 6.52265966e-01 -4.61861372e-01 3.91058415e-01 2.90068448e-01 5.37462533e-01 6.96680725e-01 1.24529637e-01 -6.22601271e-01 -4.27586883e-01 -1.07230532e+00 1.49475336e-01 3.79071623e-01 1.93236470e-01 4.44029421e-02 -8.59554827e-01 1.16018856e+00 7.82685727e-02 6.43839121e-01 -4.88024056e-01 -2.52933174e-01 4.93498623e-01 6.37701392e-01 6.97866082e-01 6.67368710e-01 -3.45607221e-01 -5.27950883e-01 -5.93300819e-01 3.01656008e-01 1.25502145e+00 4.44373310e-01 1.09983265e+00 -5.32254040e-01 3.71229380e-01 9.24314797e-01 4.40084040e-02 1.14742130e-01 6.42673552e-01 -9.52508628e-01 2.23180711e-01 1.22767758e+00 1.76360354e-01 -1.59512591e+00 -5.05703330e-01 -1.85192972e-01 -4.24919873e-01 -2.17463449e-01 7.72119999e-01 -3.80830318e-01 -4.76251513e-01 1.19963062e+00 4.06681985e-01 1.22154936e-01 -4.42709208e-01 4.31434363e-01 3.90641689e-02 5.68431854e-01 -1.38419867e-01 -4.41684783e-01 1.27136254e+00 -3.17026883e-01 -5.58554769e-01 -1.34445161e-01 1.03220820e+00 -5.56138754e-01 7.80532300e-01 3.95248413e-01 -2.69967914e-01 1.02591097e-01 -5.93041420e-01 4.52547282e-01 -6.39142811e-01 -7.59096265e-01 6.15892112e-01 8.25761199e-01 -6.92546248e-01 5.07505655e-01 -7.01338470e-01 -1.04789329e+00 2.37496600e-01 1.91794485e-01 -1.36057183e-01 7.52808824e-02 -9.42370057e-01 6.30835414e-01 3.26802097e-02 -5.83512306e-01 -2.55951136e-01 -5.23636520e-01 -4.28007096e-01 -2.74882704e-01 3.96400660e-01 -2.47633100e-01 1.20069563e+00 -1.01622272e+00 -8.26305985e-01 7.55313516e-01 -3.77773315e-01 -5.03360689e-01 4.32430744e-01 1.44695446e-01 -6.25661075e-01 3.03307548e-02 4.07215416e-01 -2.89795995e-01 8.41462672e-01 -8.15144062e-01 -1.04280066e+00 -6.74666882e-01 -2.35371038e-01 -4.37813587e-02 -6.09921157e-01 3.76000047e-01 -1.89633388e-02 -1.36164337e-01 2.79466454e-02 -7.96078324e-01 -2.50775158e-01 -8.23246956e-01 -5.69829822e-01 -7.86733031e-01 1.24480367e+00 -6.91292405e-01 1.45383859e+00 -1.91256618e+00 -2.84030259e-01 7.62055755e-01 7.64722407e-01 1.05759837e-01 2.33779326e-01 6.50576830e-01 4.93263721e-01 4.80484754e-01 1.59010246e-01 -1.41972721e-01 -1.48258463e-01 9.51237231e-02 1.54939473e-01 6.24615312e-01 -3.04031760e-01 3.29187363e-01 -1.07004106e+00 -4.71751362e-01 -1.03550255e-01 -5.44375274e-03 -6.25716269e-01 2.12401882e-01 -2.55849719e-01 5.45594633e-01 -7.57301569e-01 5.97587585e-01 4.60437685e-02 -3.71231824e-01 2.49421746e-01 5.81299365e-01 -1.55768365e-01 2.56564558e-01 -6.89410269e-01 8.70748758e-01 -3.10462564e-01 9.79952753e-01 3.00254852e-01 -5.53311884e-01 9.50424612e-01 9.73824635e-02 7.67617464e-01 -6.63063824e-01 2.50402570e-01 2.30735421e-01 1.88492179e-01 -6.23834312e-01 3.87727410e-01 3.88870955e-01 -1.78018272e-01 1.00556564e+00 -3.60754192e-01 5.70094883e-01 5.94049811e-01 5.66279113e-01 1.95627391e+00 -7.76091814e-01 4.01063085e-01 -7.74343163e-02 5.39507151e-01 1.43383265e-01 6.60179794e-01 9.91525173e-01 -5.54046333e-01 -2.54191235e-02 1.01722181e+00 -7.75492430e-01 -1.15144551e+00 -7.45040238e-01 2.99873680e-01 1.58622396e+00 -1.31109238e-01 -7.42854714e-01 -7.70966232e-01 -8.49118292e-01 1.57771066e-01 5.43815136e-01 -4.59598750e-01 2.01765731e-01 -7.19372153e-01 -7.52237380e-01 2.86735773e-01 -4.72721636e-01 4.52459812e-01 -1.01080620e+00 -3.83230031e-01 4.35582757e-01 -3.85561347e-01 -8.83376539e-01 -4.74019915e-01 -1.01851828e-01 -5.08613944e-01 -1.41428924e+00 -1.71729356e-01 -5.03243685e-01 6.27580464e-01 2.73316592e-01 1.02644217e+00 5.80226958e-01 -5.82326770e-01 4.59513217e-01 -5.48066676e-01 -4.65656161e-01 -7.12370336e-01 5.33191085e-01 3.88756067e-01 3.00356269e-01 9.37005043e-01 -8.44966233e-01 -5.30779183e-01 5.72327733e-01 -4.50712949e-01 -7.12695479e-01 9.32466090e-02 2.75625348e-01 -4.21634018e-01 2.96118289e-01 6.20611250e-01 -1.34426534e+00 1.17369974e+00 -1.15781546e+00 -1.90399140e-01 -7.82681480e-02 -8.12032640e-01 -3.79825920e-01 6.62155628e-01 -3.80223572e-01 -6.12863302e-01 -2.31658574e-02 1.45982236e-01 8.85784924e-02 -5.38718045e-01 1.32924899e-01 1.73241645e-01 2.28498131e-01 1.10109770e+00 8.94458673e-04 2.15099826e-01 -6.94038391e-01 -1.08810067e-01 1.15395319e+00 1.75995186e-01 -2.57825911e-01 7.69055903e-01 3.09564501e-01 -5.77359378e-01 -1.47558284e+00 -7.35534906e-01 -1.39787447e+00 -5.19729257e-01 -4.68957543e-01 6.08916700e-01 -1.85896590e-01 -1.25651193e+00 4.68421012e-01 -1.13582361e+00 -6.36453256e-02 3.47152323e-01 3.90254520e-02 -7.51477256e-02 5.92916369e-01 -7.11211503e-01 -9.91482854e-01 -2.02195287e-01 -5.30655861e-01 3.53888959e-01 1.88644737e-01 -9.58748937e-01 -1.13260365e+00 5.27407110e-01 5.88708997e-01 4.69206572e-01 2.58777529e-01 7.83206761e-01 -1.56384921e+00 -2.17112571e-01 -7.18201399e-01 -1.60801597e-02 -1.86850373e-02 4.04789358e-01 -1.15126997e-01 -5.60369611e-01 -1.90871865e-01 8.48022848e-02 -3.11175715e-02 1.42810404e-01 -9.82071534e-02 7.57311642e-01 -8.61549556e-01 -5.86278141e-01 5.73037080e-02 8.53711605e-01 4.85442311e-01 2.33979985e-01 6.94974661e-01 7.28896976e-01 6.31493270e-01 1.77798390e-01 7.50675023e-01 2.97438115e-01 3.67722034e-01 1.96546286e-01 4.53823686e-01 7.32010484e-01 -1.74663380e-01 3.15068215e-01 5.57999313e-01 -6.69347048e-02 -2.28583902e-01 -1.23602664e+00 2.93325245e-01 -1.97257543e+00 -1.20588791e+00 -2.94111162e-01 1.90749109e+00 4.47403222e-01 1.10638767e-01 8.75065327e-01 2.36597046e-01 1.15292203e+00 -2.41727345e-02 -5.84412277e-01 -4.84970570e-01 3.47166896e-01 -3.45240533e-01 5.90861261e-01 4.84621525e-01 -9.96485233e-01 6.59803510e-01 5.71449804e+00 4.77120519e-01 -7.13109374e-01 1.30681798e-01 7.87985682e-01 1.01543978e-01 2.47326091e-01 -1.69624016e-01 -6.62733793e-01 7.35348821e-01 1.13404107e+00 -1.89988285e-01 7.57137179e-01 8.17180455e-01 4.50920165e-01 -3.66064787e-01 -1.00683236e+00 9.48054790e-01 3.32221329e-01 -9.61189806e-01 -4.02901888e-01 4.73411918e-01 6.21153712e-01 4.75459062e-02 -2.68294156e-01 2.53317416e-01 5.47085404e-01 -7.38888741e-01 -6.44870475e-02 3.06310475e-01 -1.04113564e-01 -8.22563827e-01 6.59847677e-01 8.53516400e-01 -7.26074398e-01 -3.43507171e-01 1.05218487e-02 -3.99563313e-01 -1.28955811e-01 6.81096554e-01 -1.43690491e+00 -1.27079576e-01 6.15815639e-01 7.64530063e-01 -7.19482541e-01 1.09668875e+00 2.78274924e-01 7.45558023e-01 -5.36046088e-01 -5.14181376e-01 1.69267654e-01 -3.30799758e-01 8.48204315e-01 1.05664635e+00 4.95476983e-02 -1.71888575e-01 3.29247117e-01 4.47004944e-01 -1.26203015e-01 3.01278591e-01 -8.15788925e-01 -3.49642128e-01 5.99147081e-01 1.30717468e+00 -8.45208168e-01 -1.91977650e-01 -1.82829097e-01 1.05493724e+00 2.09074169e-01 1.51068836e-01 -3.44545275e-01 -6.62192762e-01 8.78377557e-01 5.41053832e-01 -2.89747298e-01 -3.02423000e-01 -1.49426181e-02 -9.29639578e-01 -1.71918973e-01 -1.03549016e+00 6.78719759e-01 -1.42678190e-02 -1.66755009e+00 4.71456498e-01 -5.05561173e-01 -7.64565468e-01 -8.11811328e-01 -4.41308469e-01 -9.35500860e-01 4.72556889e-01 -5.47902584e-01 -4.04043972e-01 -2.57751852e-01 7.23146260e-01 4.35373127e-01 -4.07388598e-01 5.28516650e-01 3.18120927e-01 -6.02489829e-01 2.81963408e-01 2.11049229e-01 5.59665442e-01 5.62712908e-01 -1.13699961e+00 3.43518943e-01 4.48250920e-01 8.42126533e-02 7.28519082e-01 8.98724318e-01 -9.70995188e-01 -1.18346381e+00 -7.60331988e-01 1.09893394e+00 -1.05362189e+00 1.27424729e+00 -5.60167372e-01 -8.75061989e-01 7.57918894e-01 -9.10702944e-02 -4.33223516e-01 5.92049778e-01 5.89754462e-01 -3.03601831e-01 1.25838993e-02 -1.18806601e+00 5.41704774e-01 9.42541420e-01 -5.70163906e-01 -4.47923064e-01 8.28697622e-01 1.79223984e-01 3.11454564e-01 -4.77788478e-01 -4.19319928e-01 2.76354820e-01 -1.09326804e+00 4.55941290e-01 -7.12672710e-01 -2.09248960e-01 4.33221199e-02 2.91308433e-01 -1.32183385e+00 -1.91153035e-01 -1.15205848e+00 -1.14695348e-01 1.14954185e+00 3.99125695e-01 -8.12257469e-01 1.07237887e+00 7.43532836e-01 5.00480592e-01 -1.97405830e-01 -8.78285110e-01 -7.11190462e-01 -3.29313457e-01 -1.63090765e-01 2.67706722e-01 1.22677648e+00 4.76006895e-01 7.51503944e-01 -4.28570420e-01 -1.36538491e-01 7.86328793e-01 -4.44260240e-01 1.07945108e+00 -1.82687092e+00 2.14612670e-02 -4.82411891e-01 -6.70114338e-01 -5.56366444e-01 1.05340496e-01 -7.15968907e-01 -1.15768639e-02 -1.10900402e+00 2.85980284e-01 -4.52176988e-01 1.65976807e-02 1.17173187e-01 2.68741697e-01 3.72908413e-02 -1.22937687e-01 5.47208130e-01 -1.01248586e+00 -1.88822702e-01 4.45426285e-01 -1.88103933e-02 -7.20044315e-01 4.28168476e-01 -3.71233702e-01 1.04460251e+00 1.05869961e+00 -4.96688604e-01 1.09940860e-02 2.73167372e-01 6.66541100e-01 -1.58485949e-01 4.29183505e-02 -1.04844511e+00 4.97176588e-01 -1.19823486e-01 1.35169074e-01 -4.25978541e-01 1.07877374e-01 -8.03983331e-01 -2.88937598e-01 6.04423463e-01 -3.65636110e-01 4.17717963e-01 -5.02289474e-01 9.59352732e-01 1.32954851e-01 -2.30002016e-01 6.16500199e-01 -2.67860025e-01 -4.53054786e-01 3.00977796e-01 -1.23129642e+00 1.77062973e-01 1.11598301e+00 1.59139987e-02 -3.89924228e-01 -7.62748122e-01 -5.09511828e-01 4.09339130e-01 5.70216775e-01 4.31881845e-01 2.42789149e-01 -6.27754211e-01 -6.67155623e-01 1.31456032e-02 3.22822966e-02 -5.51989079e-01 -6.68224469e-02 7.98003495e-01 -5.87063849e-01 1.04565069e-01 -7.94160292e-02 -5.42826056e-01 -1.48626304e+00 3.67308766e-01 2.14249089e-01 -1.60153031e-01 -4.68406022e-01 2.43512705e-01 -4.85282332e-01 -4.66694951e-01 3.61964911e-01 3.98416132e-01 -2.44547933e-01 4.42651242e-01 8.67040992e-01 9.50914085e-01 5.03757596e-02 -5.44154406e-01 -4.72450584e-01 -1.28814459e-01 -4.72741216e-01 6.89247474e-02 1.15903318e+00 -2.05164552e-01 -5.32984972e-01 8.73966575e-01 1.29876697e+00 6.63829073e-02 -4.49370146e-01 -3.11567575e-01 8.58305275e-01 -6.87727392e-01 -5.01791894e-01 -3.92041504e-01 -4.54215199e-01 3.72860312e-01 3.32425356e-01 1.26924646e+00 4.12710756e-01 1.84516475e-01 1.03128636e+00 8.59901309e-01 2.79638439e-01 -1.28684378e+00 2.45500714e-01 9.40803409e-01 2.51932919e-01 -1.26517689e+00 -1.86317295e-01 -1.34691283e-01 -4.31005776e-01 9.31481183e-01 6.93813801e-01 -1.08116701e-01 7.16508090e-01 -1.40776306e-01 1.06246933e-01 -2.43770823e-01 -7.60238767e-01 1.12288877e-01 -1.95142567e-01 4.09708261e-01 1.64838463e-01 2.87678577e-02 -2.46507287e-01 -2.60518976e-02 -2.80636460e-01 -5.07370889e-01 7.59966373e-01 9.25959289e-01 -9.40273166e-01 -9.45526361e-01 -5.34081936e-01 1.17003000e+00 -7.31085718e-01 2.17211068e-01 -9.61996973e-01 5.67288458e-01 -1.42146766e-01 1.28467882e+00 4.44174886e-01 -6.06186390e-01 9.38137174e-02 4.16712344e-01 -2.40857989e-01 -6.21300519e-01 -7.73250937e-01 -3.26440781e-01 4.17722404e-01 -3.02373439e-01 -7.85010308e-02 -9.10678327e-01 -1.03232384e+00 -1.07333195e+00 -4.23126072e-02 5.75931966e-01 8.34575176e-01 1.16834116e+00 3.88087481e-01 -1.79449275e-01 1.14045191e+00 -5.26254177e-01 -1.83914617e-01 -1.06406009e+00 -5.80599606e-01 7.17412710e-01 1.85276866e-01 -3.61667842e-01 -7.73206353e-01 -2.78969944e-01]
[8.255522727966309, 10.19342041015625]
01014767-6b73-4efc-ad8e-865d7715ba39
multi-density-sketch-to-image-translation
2006.10649
null
https://arxiv.org/abs/2006.10649v1
https://arxiv.org/pdf/2006.10649v1.pdf
Multi-Density Sketch-to-Image Translation Network
Sketch-to-image (S2I) translation plays an important role in image synthesis and manipulation tasks, such as photo editing and colorization. Some specific S2I translation including sketch-to-photo and sketch-to-painting can be used as powerful tools in the art design industry. However, previous methods only support S2I translation with a single level of density, which gives less flexibility to users for controlling the input sketches. In this work, we propose the first multi-level density sketch-to-image translation framework, which allows the input sketch to cover a wide range from rough object outlines to micro structures. Moreover, to tackle the problem of noncontinuous representation of multi-level density input sketches, we project the density level into a continuous latent space, which can then be linearly controlled by a parameter. This allows users to conveniently control the densities of input sketches and generation of images. Moreover, our method has been successfully verified on various datasets for different applications including face editing, multi-modal sketch-to-photo translation, and anime colorization, providing coarse-to-fine levels of controls to these applications.
['Zhifeng Tan', 'Sam Kwong', 'Jing Liao', 'Jialu Huang']
2020-06-18
null
null
null
null
['sketch-to-image-translation']
['computer-vision']
[ 3.34124148e-01 -2.36323029e-01 -1.27070099e-01 -1.38949275e-01 -3.16443443e-01 -6.50281608e-01 8.40589464e-01 -5.49122691e-01 8.12292695e-02 6.24551892e-01 -1.93060189e-01 -7.06067532e-02 -1.21017814e-01 -1.06048024e+00 -6.29138291e-01 -6.65901601e-01 5.76360464e-01 6.40775919e-01 1.15864091e-01 -9.42252055e-02 1.35560080e-01 8.47122431e-01 -1.60362148e+00 2.04073191e-01 7.45279312e-01 7.87216842e-01 2.01184839e-01 5.44075608e-01 -6.53223038e-01 9.95006561e-02 -5.15446484e-01 -4.73756462e-01 1.83364183e-01 -4.30175036e-01 5.14224097e-02 2.70795435e-01 5.41694403e-01 -2.50383109e-01 -8.05617422e-02 1.14394677e+00 3.80375594e-01 -6.20143823e-02 1.08621180e+00 -1.48201263e+00 -9.30759668e-01 1.72019243e-01 -9.00797665e-01 -6.08188391e-01 2.80284971e-01 5.88861108e-02 5.81119299e-01 -1.04877341e+00 7.21072197e-01 1.82893753e+00 2.68580407e-01 6.24963760e-01 -1.40113425e+00 -9.14560199e-01 3.17107104e-02 -2.80344933e-01 -1.49789798e+00 -1.21881664e-01 1.06147242e+00 -5.24694562e-01 1.15057617e-01 3.82325262e-01 8.43955040e-01 8.80412638e-01 -2.15258956e-01 7.72549272e-01 1.16455412e+00 -4.21314865e-01 2.03522220e-01 3.36903453e-01 -6.31518364e-01 6.56435966e-01 -4.81120162e-02 -2.69774169e-01 -4.42927629e-01 -1.73470244e-01 1.73271954e+00 1.95203394e-01 -3.72908898e-02 -2.22668678e-01 -1.32340336e+00 7.55354166e-01 1.67277113e-01 2.09922239e-01 -1.02543674e-01 2.43122950e-01 3.20264474e-02 2.28498220e-01 3.35455418e-01 2.82385796e-01 -7.59911463e-02 -1.13575861e-01 -9.13774252e-01 4.07783657e-01 4.69193906e-01 1.20829594e+00 8.64353716e-01 1.66585892e-02 -4.92743701e-01 1.16138685e+00 2.43632689e-01 8.40960801e-01 1.10265262e-01 -9.66221631e-01 4.99608785e-01 6.01813138e-01 3.55922461e-01 -9.57655668e-01 1.95311353e-01 2.01746657e-01 -1.33050489e+00 5.76058149e-01 3.21060568e-01 8.52111727e-02 -8.82623553e-01 1.68298221e+00 3.79031539e-01 1.16953235e-02 -3.56135547e-01 8.15469742e-01 4.70347315e-01 9.50370252e-01 -6.46143034e-02 -1.67497128e-01 1.46542382e+00 -6.55627251e-01 -7.80568600e-01 7.63052553e-02 -1.03558376e-01 -9.79623556e-01 1.77138889e+00 3.99792552e-01 -1.20451581e+00 -5.09760737e-01 -7.23467171e-01 -1.40170082e-01 -1.59811422e-01 6.35647357e-01 4.57976460e-01 5.57613909e-01 -9.46807742e-01 3.10839981e-01 -4.66157377e-01 -2.12764040e-01 4.77011591e-01 1.82790220e-01 -4.39648271e-01 -1.12390831e-01 -9.63533700e-01 4.78885800e-01 1.11191608e-01 -4.11802670e-03 -3.59191477e-01 -7.51128852e-01 -6.70735478e-01 6.36994690e-02 2.63046175e-01 -8.55001926e-01 6.85702860e-01 -7.58822441e-01 -2.07335567e+00 7.98250139e-01 -3.65235209e-02 4.17093158e-01 9.11020756e-01 5.72453812e-03 1.13003835e-01 -8.35109055e-02 -1.06695294e-01 9.19740081e-01 1.46055591e+00 -1.27110553e+00 -2.06524119e-01 -2.54485279e-01 1.12652086e-01 2.98335016e-01 -4.85733747e-01 2.19112588e-03 -8.65416765e-01 -9.49760139e-01 6.40040869e-03 -8.97972286e-01 2.13312984e-01 8.43199193e-01 -3.30963761e-01 -2.90173918e-01 1.25584006e+00 -3.28921527e-01 9.77415144e-01 -2.26791596e+00 5.59571207e-01 1.63126856e-01 -3.82701829e-02 1.06979549e-01 -2.52486259e-01 3.48130316e-01 2.63443589e-01 1.21190310e-01 -2.68796176e-01 -6.63627028e-01 1.68425635e-01 2.86563247e-01 -1.99475870e-01 8.39270055e-02 3.82486850e-01 8.33811939e-01 -7.16200471e-01 -7.49659598e-01 4.63540494e-01 7.60503829e-01 -5.40629923e-01 4.40948218e-01 -3.89607638e-01 5.27358353e-01 -4.78387922e-01 6.31076396e-01 8.94781649e-01 8.63998383e-03 5.10303900e-02 -3.31071526e-01 -9.54258591e-02 -5.04287302e-01 -1.26475716e+00 1.71232367e+00 -8.44538629e-01 3.82312089e-01 3.87258470e-01 -3.46479595e-01 1.22441351e+00 1.06738850e-01 2.20537588e-01 -1.07451260e-01 -1.12643331e-01 1.16211623e-01 -3.54615957e-01 -4.90554832e-02 3.98090035e-01 -3.82743061e-01 -8.07380304e-02 4.97691154e-01 -3.51844221e-01 -7.61385381e-01 2.13754818e-01 1.47139337e-02 2.75012493e-01 1.17128395e-01 -5.84303439e-02 -1.80523708e-01 5.12310088e-01 -5.82982540e-01 2.01729015e-01 2.30854899e-01 5.42328358e-01 9.48523283e-01 7.41233289e-01 -2.28816241e-01 -1.36879528e+00 -1.14622748e+00 -7.74153918e-02 7.59425521e-01 1.36692539e-01 -1.99078005e-02 -8.10536504e-01 -2.92623639e-01 1.85000360e-01 4.94877487e-01 -5.49217105e-01 1.65371254e-01 -4.38418001e-01 -3.04665923e-01 3.56821626e-01 4.72848624e-01 3.64055991e-01 -1.30835748e+00 -3.28727573e-01 1.83186345e-02 1.31833836e-01 -9.70377445e-01 -1.06340587e+00 -5.72112262e-01 -7.94559717e-01 -7.40141153e-01 -1.37821448e+00 -7.37671852e-01 1.01990581e+00 1.59326538e-01 8.53090405e-01 7.92589709e-02 -5.13718247e-01 3.27134162e-01 -2.11329758e-02 -2.04339847e-01 -5.41492522e-01 2.26586498e-02 -9.14967880e-02 3.70741546e-01 -4.00125086e-01 -8.79270673e-01 -6.11480117e-01 5.24966896e-01 -1.30594838e+00 5.62749088e-01 5.50844491e-01 8.23245585e-01 6.12051964e-01 -1.33985415e-01 3.94616663e-01 -8.46656561e-01 8.07852387e-01 4.67016920e-02 -8.35940361e-01 5.24449646e-01 -1.26545087e-01 2.31993884e-01 6.65187359e-01 -1.00111461e+00 -1.06618071e+00 5.61071411e-02 -5.08442745e-02 -9.38689053e-01 1.60939165e-03 4.61112298e-02 -5.70783317e-01 -1.70599781e-02 1.50577605e-01 1.78948835e-01 2.31270507e-01 -4.35485512e-01 9.23263431e-01 5.60075343e-01 4.34632659e-01 -9.29451287e-01 9.97500896e-01 3.46676648e-01 1.81017563e-01 -1.00370932e+00 -2.10361436e-01 1.58836424e-01 -6.77316189e-01 -1.87096268e-01 8.31314027e-01 -5.05537152e-01 -7.21439421e-01 5.89264750e-01 -1.28584170e+00 -4.46867913e-01 -3.00693989e-01 1.91351045e-02 -5.53256929e-01 1.80420712e-01 -6.57786965e-01 -8.40749562e-01 -3.59547138e-01 -1.17543972e+00 1.50111365e+00 2.45772764e-01 -3.25037949e-02 -8.26000750e-01 -2.14842543e-01 -1.24011844e-01 5.25993466e-01 3.02687943e-01 1.28325427e+00 5.87343812e-01 -7.51638949e-01 -6.29749373e-02 -4.16587889e-01 1.84074268e-01 3.46756905e-01 4.33773667e-01 -6.14818037e-01 -1.76602304e-01 -4.63470429e-01 -3.54942471e-01 4.36079264e-01 2.80188143e-01 1.36913931e+00 -3.92040879e-01 -1.84303179e-01 8.06418717e-01 1.18575764e+00 6.35468811e-02 9.08921659e-01 -1.88764811e-01 8.99530292e-01 3.69191885e-01 4.70687985e-01 5.13911486e-01 1.10402688e-01 9.94747221e-01 5.99124692e-02 -2.79115796e-01 -2.65570939e-01 -6.63964093e-01 3.96461785e-03 6.51560843e-01 -9.99371707e-02 -5.36683500e-02 -3.38418514e-01 1.51734397e-01 -1.58061481e+00 -8.27448547e-01 2.66791880e-01 2.20882392e+00 9.23894644e-01 -1.23297013e-01 1.43539980e-01 -5.09210117e-02 9.41449821e-01 9.55768377e-02 -5.90104342e-01 -2.22383812e-01 1.37917832e-01 1.04627751e-01 1.09313622e-01 5.27370751e-01 -6.63112104e-01 9.97052312e-01 5.90078783e+00 1.35959983e+00 -1.28416741e+00 -2.77256630e-02 6.45919383e-01 -1.30487550e-02 -8.19422543e-01 -1.73138708e-01 -6.93364024e-01 6.41972721e-01 -2.59502847e-02 -6.88163936e-02 6.69536412e-01 7.90984988e-01 5.66691607e-02 1.13768466e-01 -9.81787026e-01 1.48900378e+00 -2.64304280e-01 -1.37272656e+00 5.68607628e-01 1.32888958e-01 8.08157384e-01 -8.94920409e-01 3.52432400e-01 7.69843906e-02 -1.32104263e-01 -9.20096874e-01 7.46630847e-01 7.17922509e-01 1.80837286e+00 -7.69975364e-01 4.19317260e-02 3.83360773e-01 -1.38099551e+00 2.13661820e-01 -4.55119491e-01 2.23809600e-01 3.10183167e-01 4.75579411e-01 -4.32643652e-01 2.38397107e-01 1.71314523e-01 3.60062182e-01 -1.27092287e-01 4.99405593e-01 -1.57868743e-01 -1.89758930e-02 -5.19502819e-01 -1.44554079e-01 -1.76171690e-01 -8.66087377e-01 1.31492659e-01 1.11703265e+00 7.97994256e-01 1.40303299e-01 1.59211963e-01 1.34480119e+00 -2.52303004e-01 9.18882564e-02 -7.31100857e-01 -2.70996928e-01 6.87977195e-01 1.31885290e+00 -8.10900211e-01 -4.22643811e-01 -9.59874243e-02 1.36012328e+00 1.96126819e-01 3.33840907e-01 -8.09239030e-01 -4.54920709e-01 7.29567289e-01 4.62608784e-01 7.45688602e-02 -5.15857339e-01 -2.46784270e-01 -1.19460797e+00 -6.91288412e-02 -7.21184373e-01 -2.95280248e-01 -9.62151825e-01 -1.25619221e+00 4.88675326e-01 2.51588404e-01 -1.15056992e+00 -1.37122229e-01 -5.82081199e-01 -7.47258127e-01 1.05444598e+00 -1.13404071e+00 -1.48679268e+00 -4.63018894e-01 6.81322873e-01 6.14474595e-01 -1.67388394e-01 6.94639981e-01 4.72965688e-01 -3.15689057e-01 6.71458244e-01 -1.91129651e-02 -6.03733398e-02 6.95154309e-01 -1.00812900e+00 5.41710854e-01 3.71036381e-01 2.45855644e-01 6.14510238e-01 2.50560880e-01 -5.45629084e-01 -1.59139121e+00 -9.05353367e-01 2.46216848e-01 -3.01470011e-01 2.98974007e-01 -5.46407998e-01 -7.55420923e-01 1.94598436e-01 -1.24487281e-01 -1.60069726e-02 4.79458310e-02 -2.84386337e-01 -1.26613110e-01 -1.44769982e-01 -1.17641103e+00 7.79163063e-01 1.02035308e+00 -6.28489316e-01 1.23515702e-03 2.77684093e-01 4.04684901e-01 -5.21916568e-01 -8.26809287e-01 9.56969559e-02 8.63161922e-01 -7.73218274e-01 1.14131343e+00 -4.26360629e-02 4.30227309e-01 -5.48462093e-01 8.01396519e-02 -1.12063742e+00 -3.47804785e-01 -7.46186852e-01 7.29885846e-02 1.43285763e+00 4.71534394e-02 -3.50612015e-01 7.57343054e-01 6.60407484e-01 2.66715735e-01 -6.59231842e-01 -7.70680070e-01 -5.64853489e-01 -9.39539745e-02 -1.96992829e-01 9.20477748e-01 7.88661897e-01 -5.08693159e-01 2.16948465e-02 -7.40048289e-01 -1.33909032e-01 5.86786747e-01 2.58043349e-01 1.17881322e+00 -1.15973115e+00 -3.10630947e-01 -6.95838630e-01 -2.40245461e-01 -1.30592072e+00 3.01352683e-02 -6.96815550e-01 -2.30137169e-01 -1.48163319e+00 1.57203123e-01 -7.90091753e-01 3.04105371e-01 2.43945628e-01 -1.05314329e-01 4.94251817e-01 4.94459301e-01 3.25967968e-01 1.26245916e-01 8.27180266e-01 1.80111563e+00 -2.08898276e-01 -3.27509552e-01 7.79130235e-02 -4.19331998e-01 6.33345068e-01 4.54188704e-01 -2.49853805e-01 -6.39132857e-01 -3.49799663e-01 7.37143978e-02 2.32821479e-01 2.12074772e-01 -7.43742585e-01 -1.42625570e-01 -6.17874801e-01 3.32135320e-01 -4.55449313e-01 6.39730215e-01 -6.70298994e-01 5.44278324e-01 1.33132920e-01 -3.10800672e-01 1.72880646e-02 -1.82641819e-02 3.57307971e-01 -1.37819216e-01 -1.38373673e-01 9.75157022e-01 -1.78629756e-01 -1.94814265e-01 7.25446284e-01 1.25936195e-01 -8.28422830e-02 9.38139558e-01 -1.03133805e-01 6.58998340e-02 -5.77672839e-01 -5.22281528e-01 -1.51823670e-01 7.99277425e-01 4.58646238e-01 8.19723666e-01 -1.83192897e+00 -6.71726584e-01 7.24686742e-01 3.16690132e-02 1.47518381e-01 2.83641964e-01 4.19102371e-01 -6.59959912e-01 1.41033512e-02 -3.43586385e-01 -8.16707492e-01 -1.25616181e+00 3.96038413e-01 3.93794011e-03 1.10538125e-01 -8.25707972e-01 6.32921934e-01 6.67962492e-01 -2.87746072e-01 1.23805583e-01 -5.49066424e-01 2.08214745e-01 -1.61517952e-02 5.59569240e-01 1.63417310e-01 -4.40876722e-01 -3.01215291e-01 -3.59847434e-02 1.15747261e+00 2.66472071e-01 -3.62587690e-01 1.04917181e+00 1.52081877e-01 -2.00402036e-01 5.18702030e-01 1.08811522e+00 8.27478245e-02 -1.68412447e+00 8.01508352e-02 -6.29218102e-01 -9.67165828e-01 -2.98157394e-01 -3.80008638e-01 -1.08296752e+00 1.28749597e+00 3.78650963e-01 -6.97231591e-02 8.42951596e-01 -1.17173918e-01 6.98520422e-01 1.41937047e-01 6.16311729e-01 -7.67340839e-01 3.65058184e-01 4.78557348e-02 1.32544029e+00 -8.06451797e-01 -2.17796955e-02 -3.93527091e-01 -7.87223399e-01 1.19171095e+00 4.75714654e-01 -9.41223651e-02 5.86096108e-01 4.65846211e-01 -1.10151812e-01 1.29035741e-01 -3.80921602e-01 3.09543520e-01 5.82389355e-01 4.97699678e-01 3.51949543e-01 3.00282329e-01 -9.09872949e-02 6.89929277e-02 2.07413714e-02 2.27152437e-01 3.03396553e-01 4.65827525e-01 -1.83002174e-01 -1.51893437e+00 -6.00378692e-01 3.43605787e-01 1.34829670e-01 6.21547215e-02 -1.18922889e-01 8.05600286e-01 1.48409396e-01 3.12306076e-01 6.39731139e-02 -7.25196749e-02 3.44140887e-01 1.32177202e-02 8.05179656e-01 -5.52039862e-01 -1.87524632e-02 2.97942728e-01 -4.62415516e-01 -1.69361323e-01 -1.82079315e-01 -3.40344876e-01 -8.40501726e-01 -2.93385834e-01 -1.89171553e-01 -5.46455905e-02 6.87967420e-01 4.95690912e-01 2.46357262e-01 3.55089456e-01 4.80896920e-01 -1.31075501e+00 -3.20579201e-01 -9.87407744e-01 -9.45412517e-01 6.51792586e-01 -7.27786049e-02 -8.89088809e-01 -1.53472170e-01 2.06103727e-01]
[12.09615707397461, -0.3913973271846771]
76b665dc-6849-4818-9c5c-143262b76126
pixel-objectness-learning-to-segment-generic
1808.04702
null
http://arxiv.org/abs/1808.04702v2
http://arxiv.org/pdf/1808.04702v2.pdf
Pixel Objectness: Learning to Segment Generic Objects Automatically in Images and Videos
We propose an end-to-end learning framework for segmenting generic objects in both images and videos. Given a novel image or video, our approach produces a pixel-level mask for all "object-like" regions---even for object categories never seen during training. We formulate the task as a structured prediction problem of assigning an object/background label to each pixel, implemented using a deep fully convolutional network. When applied to a video, our model further incorporates a motion stream, and the network learns to combine both appearance and motion and attempts to extract all prominent objects whether they are moving or not. Beyond the core model, a second contribution of our approach is how it leverages varying strengths of training annotations. Pixel-level annotations are quite difficult to obtain, yet crucial for training a deep network approach for segmentation. Thus we propose ways to exploit weakly labeled data for learning dense foreground segmentation. For images, we show the value in mixing object category examples with image-level labels together with relatively few images with boundary-level annotations. For video, we show how to bootstrap weakly annotated videos together with the network trained for image segmentation. Through experiments on multiple challenging image and video segmentation benchmarks, our method offers consistently strong results and improves the state-of-the-art for fully automatic segmentation of generic (unseen) objects. In addition, we demonstrate how our approach benefits image retrieval and image retargeting, both of which flourish when given our high-quality foreground maps. Code, models, and videos are at:http://vision.cs.utexas.edu/projects/pixelobjectness/
['Kristen Grauman', 'Suyog Dutt Jain', 'Bo Xiong']
2018-08-11
null
null
null
null
['image-retargeting', 'foreground-segmentation']
['computer-vision', 'computer-vision']
[ 6.64671004e-01 1.64740726e-01 -3.61649156e-01 -3.03100109e-01 -1.12143505e+00 -9.26706612e-01 4.79913831e-01 -2.45273158e-01 -3.82705629e-01 3.99025917e-01 -1.07828021e-01 -2.20670536e-01 4.55935866e-01 -4.58279401e-01 -1.29932284e+00 -7.10806310e-01 -1.11745141e-01 3.74908388e-01 7.33724177e-01 1.91880777e-01 1.20655164e-01 4.34615999e-01 -1.44203985e+00 5.86147726e-01 3.97955149e-01 9.79523540e-01 3.24287474e-01 9.87925589e-01 -2.11995076e-02 9.48998749e-01 -3.03390771e-01 -2.88562447e-01 6.42227650e-01 -2.95677334e-01 -1.26740801e+00 7.36546218e-01 9.72478330e-01 -7.19276488e-01 -3.08548331e-01 9.54780936e-01 -4.74628359e-02 1.38223037e-01 5.66949904e-01 -1.26662934e+00 -3.69913399e-01 5.57508826e-01 -7.92327225e-01 4.09642428e-01 8.04340392e-02 6.79702520e-01 8.58322203e-01 -8.57166231e-01 8.55517566e-01 9.88913238e-01 6.58560455e-01 6.46498978e-01 -1.35860848e+00 -2.83749163e-01 5.46664476e-01 -4.74534556e-02 -1.14737570e+00 -6.41835570e-01 6.27975941e-01 -7.09526002e-01 6.26010299e-01 1.27761856e-01 5.04363060e-01 1.04942250e+00 -2.72977889e-01 1.29046988e+00 7.01729536e-01 -1.36133105e-01 1.68355107e-01 -1.28138205e-02 2.20158637e-01 8.12422574e-01 4.96523194e-02 -1.28350794e-01 -2.08932728e-01 1.20717056e-01 8.29087436e-01 8.83095786e-02 -3.15982193e-01 -6.44025743e-01 -1.34979081e+00 4.53133255e-01 3.83983761e-01 1.52866632e-01 -2.21280083e-01 5.86587489e-01 2.70277381e-01 -1.00537144e-01 4.86644983e-01 1.49703816e-01 -7.51280010e-01 5.01844101e-03 -1.34237313e+00 1.27626792e-01 6.42443001e-01 1.00192583e+00 9.57724333e-01 -3.78935114e-02 -2.83563435e-01 5.64548254e-01 -2.68786470e-03 3.76073837e-01 4.39314991e-02 -1.60579455e+00 1.45468757e-01 3.39597046e-01 2.55585641e-01 -7.00873077e-01 -2.13448033e-01 -3.72292757e-01 -3.74876678e-01 2.39677772e-01 7.65492976e-01 -1.51337147e-01 -1.43284035e+00 1.80613792e+00 4.52421367e-01 5.32054365e-01 -6.29927311e-03 9.73761082e-01 6.34592831e-01 7.01879978e-01 1.89676389e-01 8.66353065e-02 1.30475450e+00 -1.42360485e+00 -2.24784762e-01 -6.33771420e-01 6.17979288e-01 -6.11268044e-01 1.02925742e+00 4.16908324e-01 -1.42316008e+00 -6.06710613e-01 -6.40431404e-01 -2.14417174e-01 -1.96413770e-01 4.79330029e-03 5.76564968e-01 3.95902216e-01 -1.26548839e+00 6.53295219e-01 -1.05977762e+00 -4.63687241e-01 8.66345823e-01 3.30234736e-01 -2.98318088e-01 -2.52123803e-01 -6.34872317e-01 4.16101664e-01 4.79728639e-01 -1.31634563e-01 -1.45032036e+00 -7.15105057e-01 -8.25357437e-01 -1.26277089e-01 5.39742112e-01 -6.99874580e-01 1.35509086e+00 -1.80829883e+00 -9.39482093e-01 1.04314983e+00 -2.64929265e-01 -4.64933306e-01 6.66481137e-01 -1.88538551e-01 -1.38672087e-02 7.35741436e-01 3.87980580e-01 1.44341266e+00 1.11819017e+00 -1.59844077e+00 -1.04047024e+00 -3.09236385e-02 2.66849428e-01 7.03537539e-02 -4.50944714e-02 4.64636507e-03 -1.01320636e+00 -6.52266800e-01 -3.80471125e-02 -8.98158312e-01 -3.24599952e-01 2.54495174e-01 -4.42194372e-01 3.26872133e-02 1.23421323e+00 -8.23998749e-01 7.23479211e-01 -2.20171809e+00 1.25511169e-01 -4.44027409e-03 1.30986169e-01 1.13998912e-01 -3.32995534e-01 -1.54636145e-01 1.62651092e-02 2.52088428e-01 -6.42351627e-01 -4.27862376e-01 -2.08494186e-01 3.29524487e-01 -3.34220082e-01 4.87394482e-01 5.81601381e-01 1.14080012e+00 -1.00287414e+00 -5.13454080e-01 2.40788147e-01 4.29017514e-01 -6.87143505e-01 1.47859216e-01 -6.70476377e-01 5.10339499e-01 -1.66317999e-01 9.92952406e-01 5.88497281e-01 -5.49474657e-01 8.77792016e-02 -2.73819566e-01 2.01943099e-01 -1.69287249e-01 -1.18083608e+00 1.73667538e+00 -3.23435701e-02 6.98724329e-01 4.87708747e-01 -9.74442959e-01 1.62872642e-01 3.76176052e-02 5.32196939e-01 -2.55414695e-01 4.84434469e-03 1.46883950e-01 -2.26466566e-01 -6.27099216e-01 4.90239203e-01 2.31305435e-01 6.18168339e-02 3.44679475e-01 2.60382980e-01 -6.13037050e-02 4.62903708e-01 4.70311165e-01 1.19748747e+00 6.25512540e-01 -2.59884089e-01 -2.56316870e-01 2.16206074e-01 2.81645000e-01 5.53501368e-01 8.47225487e-01 -2.84844369e-01 9.79146361e-01 4.51887786e-01 -3.98921937e-01 -1.09659541e+00 -1.13383985e+00 -1.01886518e-01 1.39158463e+00 3.79764885e-01 -6.61254227e-02 -1.03756654e+00 -9.63028252e-01 1.55827496e-02 3.28716695e-01 -6.86356962e-01 1.46704957e-01 -7.32916057e-01 -4.41350043e-01 4.56211179e-01 7.26238251e-01 3.71094644e-01 -1.09068966e+00 -5.51273227e-01 1.54318810e-01 -3.19118232e-01 -1.41772437e+00 -7.06301153e-01 3.98502141e-01 -8.15624118e-01 -1.18054831e+00 -8.53336811e-01 -1.06176043e+00 8.32358479e-01 5.54334164e-01 1.28835452e+00 3.72829020e-01 -4.26311165e-01 7.41430283e-01 -1.99780732e-01 1.04250714e-01 -3.94916326e-01 2.19296217e-02 -3.41378719e-01 2.26493716e-01 7.46379271e-02 -3.58057499e-01 -8.56459200e-01 2.92778313e-01 -1.18091857e+00 1.25759780e-01 5.41333020e-01 5.53597689e-01 6.64215088e-01 -1.94048926e-01 1.97221071e-01 -1.07630849e+00 -2.88896173e-01 -5.01808405e-01 -5.36033213e-01 1.42326117e-01 2.68225074e-02 -1.70058623e-01 2.78962910e-01 -4.41436201e-01 -7.53229678e-01 4.79484290e-01 -1.71727352e-02 -6.74421370e-01 -5.04570782e-01 9.39942989e-03 -1.76526502e-01 -9.84437019e-02 5.35414100e-01 1.33176997e-01 -1.05794974e-01 -3.80071014e-01 6.72657073e-01 3.63615543e-01 1.01410592e+00 -8.08126807e-01 7.51194179e-01 8.41542363e-01 -4.23973650e-01 -7.16236234e-01 -1.04587770e+00 -6.71560287e-01 -7.92549133e-01 -1.79113194e-01 1.24689448e+00 -1.16500413e+00 -2.21065447e-01 4.07895535e-01 -1.11238074e+00 -9.96221542e-01 -5.07154703e-01 2.52057649e-02 -7.13218927e-01 4.70942706e-01 -8.71724904e-01 -4.76235956e-01 -1.84706692e-02 -1.43424249e+00 1.36447728e+00 2.17293799e-01 -7.10673705e-02 -9.11813319e-01 -4.06622618e-01 6.45391464e-01 1.66048110e-01 3.69507819e-01 6.29181743e-01 -5.47165871e-01 -1.25318480e+00 1.30367875e-01 -4.42741930e-01 5.16680479e-01 -1.12374745e-01 3.14801991e-01 -1.21073878e+00 -3.35960537e-01 -3.47857773e-01 -4.36228931e-01 1.27600241e+00 4.78156090e-01 1.50810826e+00 -3.26638728e-01 -5.82488716e-01 8.73661101e-01 1.34239781e+00 -5.41491061e-02 4.16439116e-01 2.16231421e-01 1.11629748e+00 5.42946100e-01 5.64287484e-01 6.67894930e-02 2.40512460e-01 4.22833711e-01 5.29428661e-01 -4.68371540e-01 -4.05819267e-01 2.23964620e-02 4.98810142e-01 1.93360180e-01 1.61060557e-01 -2.91321367e-01 -8.97030532e-01 9.71236467e-01 -1.96331429e+00 -1.03187799e+00 -1.61005333e-01 1.88372934e+00 9.40087616e-01 3.12235415e-01 3.88699025e-01 -3.36108565e-01 7.39392102e-01 1.03237815e-01 -8.25505674e-01 5.17260320e-02 -2.07014561e-01 1.67081773e-01 7.58820534e-01 6.25185132e-01 -1.61175668e+00 1.26966560e+00 5.96085787e+00 8.08600605e-01 -1.03522635e+00 2.35078812e-01 1.15698874e+00 -2.19625831e-01 -2.46147126e-01 1.09253436e-01 -7.11894095e-01 4.72199380e-01 7.46315420e-01 3.84822488e-01 3.58490318e-01 8.42621505e-01 1.11744098e-01 -1.70572281e-01 -1.30985868e+00 6.29070759e-01 4.26677056e-03 -1.45990133e+00 1.94436125e-02 4.19620536e-02 1.18636894e+00 3.62296700e-01 8.88741016e-02 1.74432397e-01 3.65490496e-01 -8.99682760e-01 1.07858169e+00 1.78127050e-01 6.31010771e-01 -4.46654439e-01 4.21002477e-01 1.39752835e-01 -1.09550869e+00 -7.02426061e-02 -1.78862199e-01 1.74655065e-01 1.54847160e-01 3.88497800e-01 -5.97202539e-01 2.06392452e-01 8.01742256e-01 8.75933588e-01 -7.63030231e-01 9.94308174e-01 -1.55560270e-01 7.89678991e-01 -4.29879785e-01 5.76333106e-01 5.76034069e-01 1.14241475e-02 2.96990633e-01 1.48397136e+00 1.04563870e-02 -5.77552710e-03 6.13905609e-01 8.98042977e-01 -2.77239203e-01 -2.64501035e-01 -5.40207505e-01 3.28069590e-02 2.29614913e-01 1.51240134e+00 -1.28946555e+00 -6.60480559e-01 -3.44206154e-01 1.25800908e+00 2.05156967e-01 7.38939762e-01 -9.22358394e-01 1.87661834e-02 6.77680969e-01 2.49026522e-01 7.59399593e-01 -1.24290407e-01 -2.07139224e-01 -1.16255295e+00 -7.00837225e-02 -8.93097401e-01 3.72694314e-01 -9.28503811e-01 -1.14057398e+00 2.60632843e-01 -4.63911891e-02 -9.29957271e-01 -1.88723549e-01 -6.79856598e-01 -5.75036526e-01 3.98307115e-01 -1.43210328e+00 -1.32122040e+00 -4.11578059e-01 5.21637797e-01 7.95976937e-01 3.38259071e-01 2.04149306e-01 3.38583022e-01 -5.23124576e-01 2.38662809e-01 -3.95210907e-02 5.50516963e-01 6.42403126e-01 -1.36160588e+00 5.43489516e-01 1.19592679e+00 3.66137147e-01 3.27075094e-01 5.38365304e-01 -5.40316701e-01 -1.21638131e+00 -1.54719353e+00 2.63016224e-01 -8.50754201e-01 6.11027837e-01 -4.73588437e-01 -9.35776174e-01 9.98330712e-01 3.22325885e-01 4.94713128e-01 2.82137007e-01 -2.91965216e-01 -2.73897707e-01 1.74054056e-01 -9.73068118e-01 6.28040433e-01 1.20758057e+00 -4.14344490e-01 -3.98586273e-01 7.27265775e-01 1.01256537e+00 -4.79791194e-01 -5.75655460e-01 4.22413826e-01 3.05829853e-01 -9.57908392e-01 1.19043827e+00 -6.37624323e-01 5.15518248e-01 -6.17940247e-01 -2.50530213e-01 -7.15594649e-01 -1.24768518e-01 -5.43593049e-01 -1.67462870e-01 1.19729412e+00 3.44989091e-01 -8.56718346e-02 1.13888097e+00 7.35115349e-01 -2.22020060e-01 -7.05306888e-01 -4.71434355e-01 -6.48318291e-01 3.81698795e-02 -5.57983518e-01 4.54644971e-02 9.03016627e-01 -7.42532313e-01 8.27893391e-02 -1.73175365e-01 3.30914855e-01 7.21216142e-01 2.09468603e-01 9.46113169e-01 -7.07478464e-01 -5.64441562e-01 -4.96282935e-01 -3.24365318e-01 -1.28815472e+00 2.28228495e-01 -9.16483939e-01 2.75274456e-01 -1.55111206e+00 3.43538821e-01 -3.32371920e-01 -2.54011512e-01 7.64179647e-01 -3.38606685e-01 8.34106624e-01 3.34778100e-01 2.43668392e-01 -1.03185678e+00 -6.88355267e-02 1.11595511e+00 -3.69524062e-01 -1.47100508e-01 -1.65504009e-01 -5.86894035e-01 9.25451398e-01 6.29821658e-01 -4.62674230e-01 -3.18883121e-01 -6.43734276e-01 -3.59959185e-01 -1.16313949e-01 9.09852743e-01 -9.80562091e-01 1.14391916e-01 -1.02327272e-01 6.32650375e-01 -5.93453705e-01 3.80917847e-01 -7.67936587e-01 2.10597627e-02 3.50097984e-01 -2.81028450e-01 -2.88238466e-01 3.54241252e-01 6.84387088e-01 -1.48458239e-02 -2.28632152e-01 9.67298806e-01 -4.24627990e-01 -1.23959708e+00 4.34122741e-01 -2.67630965e-01 4.19020355e-01 1.15724719e+00 -4.21792895e-01 -3.21297824e-01 -1.63337708e-01 -9.33229566e-01 3.39879960e-01 8.96515012e-01 3.58738214e-01 3.71707559e-01 -8.67053926e-01 -5.15838623e-01 1.73198104e-01 5.61533682e-02 3.49648416e-01 1.74191087e-01 8.82951915e-01 -7.56070673e-01 -4.62264940e-02 -2.12051403e-02 -1.15084147e+00 -1.10537910e+00 6.49849415e-01 3.87024164e-01 2.03134269e-01 -6.59325719e-01 1.16461885e+00 7.41419256e-01 -1.41700327e-01 4.61662024e-01 -5.90022445e-01 4.25407022e-01 -6.40746728e-02 4.32939351e-01 -9.17949006e-02 -1.00859135e-01 -6.01452589e-01 -3.48369688e-01 5.67561626e-01 -1.93999305e-01 -9.80899408e-02 1.23839891e+00 -2.16748133e-01 -5.37490547e-02 3.69868606e-01 1.41192162e+00 -1.45577997e-01 -2.04268265e+00 -1.33652747e-01 7.54655078e-02 -4.25882727e-01 -8.43849182e-02 -8.12828898e-01 -1.29509056e+00 8.85512173e-01 4.82258350e-01 -1.48011474e-02 1.01613247e+00 2.58434802e-01 9.37159300e-01 2.58861512e-01 2.31363103e-01 -9.43198919e-01 3.38115185e-01 3.20102513e-01 2.39382684e-01 -1.44625616e+00 -2.05090225e-01 -3.24742526e-01 -5.29223621e-01 9.68546331e-01 6.08671308e-01 -2.13536173e-01 3.60546887e-01 4.72996950e-01 2.66750306e-01 4.14851867e-02 -5.72658598e-01 -4.64982837e-01 2.44789407e-01 6.54568315e-01 1.69755518e-01 -2.53418028e-01 3.38057458e-01 2.75919825e-01 3.67298573e-01 -8.61997977e-02 5.68587124e-01 1.04610014e+00 -6.63823545e-01 -9.26295996e-01 -3.23126018e-01 4.00837988e-01 -6.87126994e-01 -1.71127707e-01 -3.55156302e-01 8.50745678e-01 2.86898315e-01 8.09392571e-01 2.16553986e-01 -6.09028637e-02 -1.51020736e-01 4.90240641e-02 4.68963712e-01 -7.02814281e-01 -5.07243037e-01 3.64709467e-01 -4.58799787e-02 -8.25127780e-01 -6.42425656e-01 -7.48573959e-01 -1.46577895e+00 -5.87854832e-02 -4.84471321e-02 -3.81130129e-02 4.40943301e-01 8.34130943e-01 3.62486154e-01 5.54135025e-01 3.27975839e-01 -1.36438668e+00 -7.24612847e-02 -4.08821642e-01 -4.04799998e-01 7.13959754e-01 5.96353352e-01 -3.58638167e-01 -3.83496165e-01 8.28467846e-01]
[9.222951889038086, -0.0640270933508873]
5910f8ad-21c0-44a2-8611-ecfc1f407085
fairgen-towards-fair-graph-generation
2303.17743
null
https://arxiv.org/abs/2303.17743v1
https://arxiv.org/pdf/2303.17743v1.pdf
FairGen: Towards Fair Graph Generation
There have been tremendous efforts over the past decades dedicated to the generation of realistic graphs in a variety of domains, ranging from social networks to computer networks, from gene regulatory networks to online transaction networks. Despite the remarkable success, the vast majority of these works are unsupervised in nature and are typically trained to minimize the expected graph reconstruction loss, which would result in the representation disparity issue in the generated graphs, i.e., the protected groups (often minorities) contribute less to the objective and thus suffer from systematically higher errors. In this paper, we aim to tailor graph generation to downstream mining tasks by leveraging label information and user-preferred parity constraint. In particular, we start from the investigation of representation disparity in the context of graph generative models. To mitigate the disparity, we propose a fairness-aware graph generative model named FairGen. Our model jointly trains a label-informed graph generation module and a fair representation learning module by progressively learning the behaviors of the protected and unprotected groups, from the `easy' concepts to the `hard' ones. In addition, we propose a generic context sampling strategy for graph generative models, which is proven to be capable of fairly capturing the contextual information of each group with a high probability. Experimental results on seven real-world data sets, including web-based graphs, demonstrate that FairGen (1) obtains performance on par with state-of-the-art graph generative models across six network properties, (2) mitigates the representation disparity issues in the generated graphs, and (3) substantially boosts the model performance by up to 17% in downstream tasks via data augmentation.
['Jingrui He', 'Yada Zhu', 'Jiejun Xu', 'Hanghang Tong', 'Dawei Zhou', 'Lecheng Zheng']
2023-03-30
null
null
null
null
['graph-reconstruction']
['graphs']
[ 4.65368241e-01 6.32919371e-01 -5.28243780e-01 -2.53998160e-01 -3.61210495e-01 -3.08319092e-01 6.53221846e-01 2.32460067e-01 9.06184018e-02 8.71408999e-01 1.08811162e-01 -5.35931766e-01 -1.48715973e-01 -1.32830143e+00 -6.21866107e-01 -6.61460876e-01 -2.28245586e-01 5.87457120e-01 -8.29683021e-02 -2.13196903e-01 -1.90219413e-02 3.40203643e-02 -1.12134850e+00 -1.86759859e-01 1.34510064e+00 7.41336286e-01 -8.22222978e-02 1.12496637e-01 6.84327856e-02 7.55062401e-01 -4.15601224e-01 -9.70971525e-01 2.50208586e-01 -6.34482265e-01 -6.24831259e-01 3.48570108e-01 1.14010803e-01 7.31608318e-03 -4.57934737e-01 1.23168886e+00 4.48445737e-01 8.36449638e-02 7.58325994e-01 -1.43914807e+00 -8.60471964e-01 1.08923137e+00 -7.52342761e-01 -2.71679014e-01 -6.10547327e-03 8.78586397e-02 1.45547295e+00 -4.06967670e-01 7.26664960e-01 1.37154841e+00 5.20550609e-01 5.36526322e-01 -1.45310700e+00 -7.52949357e-01 4.23486650e-01 -1.02208383e-01 -1.48927987e+00 -1.59673154e-01 1.00060928e+00 -3.89296293e-01 4.40244019e-01 2.21710071e-01 4.89121944e-01 1.23699713e+00 1.06876746e-01 4.79013413e-01 1.09327269e+00 -2.30016172e-01 2.47363105e-01 -1.27854705e-01 -3.87570374e-02 8.52570057e-01 5.55302620e-01 5.42051755e-02 -2.56596684e-01 -3.15487117e-01 6.45272017e-01 1.14767395e-01 -2.81303614e-01 -4.27151084e-01 -7.01844633e-01 1.05107677e+00 6.16136074e-01 2.48632231e-03 -2.02142239e-01 9.64771956e-02 2.48530746e-01 8.00419450e-02 7.18035042e-01 2.09665537e-01 -1.04670800e-01 4.97796863e-01 -6.06496394e-01 2.71112740e-01 8.24894726e-01 1.26288199e+00 8.32918048e-01 -5.72916418e-02 -4.72775668e-01 8.08460295e-01 5.42144895e-01 1.85837910e-01 1.33362720e-02 -5.03848851e-01 7.39749789e-01 8.90116453e-01 -2.74930984e-01 -1.17979598e+00 -1.90050110e-01 -8.21376979e-01 -1.24934697e+00 -3.59593391e-01 4.04271573e-01 -2.52836794e-01 -9.87737179e-01 2.21291137e+00 3.39434236e-01 1.03444472e-01 -2.81174093e-01 5.94213188e-01 4.70680088e-01 5.40735185e-01 3.46620709e-01 -3.48034024e-01 1.25872171e+00 -8.82013083e-01 -5.02652347e-01 -4.22589689e-01 5.51140845e-01 -4.68768865e-01 8.05303991e-01 1.35392934e-01 -8.29567552e-01 -3.15787345e-01 -9.17038202e-01 2.05459505e-01 -1.44682437e-01 -2.26973340e-01 9.18336272e-01 8.26551259e-01 -9.50349867e-01 6.93116546e-01 -4.75480437e-01 -2.12133884e-01 7.02367067e-01 1.02783531e-01 -1.71703219e-01 -3.24863344e-01 -1.29249859e+00 3.95125002e-01 3.82736236e-01 2.50243419e-03 -9.00757134e-01 -6.11770928e-01 -8.96300137e-01 3.53590250e-01 8.88077497e-01 -9.83926296e-01 6.55798376e-01 -8.24360073e-01 -1.22699594e+00 5.51398396e-01 9.20130163e-02 -3.38818014e-01 5.69518507e-01 2.62047380e-01 -3.36343199e-01 -2.01243952e-01 1.10982448e-01 4.09723490e-01 6.91063762e-01 -1.39314854e+00 -3.75706911e-01 -4.89574969e-01 3.49003412e-02 1.14267737e-01 -4.55216348e-01 -3.24713141e-01 -6.01290107e-01 -9.72334266e-01 -1.73254192e-01 -1.11619186e+00 -5.27773917e-01 -1.99529901e-01 -8.68439913e-01 -3.07416201e-01 3.69348615e-01 -4.30810481e-01 1.51632476e+00 -1.85313070e+00 2.53535897e-01 6.16955400e-01 5.62152982e-01 1.55986771e-01 -1.46057487e-01 6.36465669e-01 1.39447749e-02 3.62642884e-01 -3.23905826e-01 -3.65220129e-01 1.05854839e-01 3.62301946e-01 -2.77633846e-01 3.35575253e-01 2.27785856e-01 8.66652548e-01 -1.08747578e+00 -3.89297545e-01 -2.17951193e-01 2.03333020e-01 -8.12278092e-01 2.60594040e-01 -4.47425246e-01 3.90945584e-01 -5.92966318e-01 5.62768281e-01 7.19081402e-01 -5.82390070e-01 8.91867518e-01 6.72406107e-02 4.58466649e-01 2.16114774e-01 -9.09904242e-01 1.27701569e+00 -2.74529606e-01 -1.06785506e-01 -3.37173380e-02 -1.04522359e+00 1.03708982e+00 -2.05974635e-02 2.86012381e-01 -5.18777430e-01 1.08271807e-01 1.99602288e-03 2.27899656e-01 -1.75686516e-02 3.12146306e-01 -1.63533330e-01 -1.95179641e-01 5.71598232e-01 -5.85576938e-03 2.40085050e-01 3.47465247e-01 5.34639299e-01 9.86262143e-01 -5.58276102e-02 3.26444507e-01 -2.78564274e-01 3.69118929e-01 -4.74601269e-01 7.85135925e-01 7.08896995e-01 -6.32994482e-03 3.95874292e-01 1.05691016e+00 -6.60542846e-02 -8.09216797e-01 -8.99769425e-01 2.33594283e-01 1.07333553e+00 1.96820274e-01 -5.75177312e-01 -7.28586555e-01 -9.41404939e-01 1.26167655e-01 6.10092223e-01 -6.76718593e-01 -5.25744081e-01 -2.73274392e-01 -1.10408175e+00 3.85912001e-01 3.60572010e-01 3.58585149e-01 -7.81790435e-01 3.85549694e-01 2.16852546e-01 -1.21715486e-01 -1.11621952e+00 -7.44594932e-01 -1.45067796e-01 -9.05342102e-01 -1.13460004e+00 -4.19019878e-01 -6.07250810e-01 1.05405235e+00 1.65722087e-01 1.13535011e+00 3.18955362e-01 -5.57174981e-02 -1.38667330e-01 -4.00935978e-01 -2.60256231e-01 -5.47700286e-01 2.96413302e-01 -2.51161605e-01 2.74722695e-01 -1.06433667e-01 -8.74223530e-01 -6.01585805e-01 3.72707129e-01 -1.01313150e+00 1.31246969e-01 7.01556444e-01 9.30860579e-01 6.33487463e-01 1.84210196e-01 7.76272058e-01 -1.67876804e+00 8.58109236e-01 -7.88615465e-01 -4.69135851e-01 3.35141897e-01 -1.27153635e+00 1.06061205e-01 8.60005140e-01 -2.92522430e-01 -8.85201156e-01 -3.74348402e-01 -7.24188238e-02 -1.36682078e-01 3.03832918e-01 6.32831275e-01 -5.33703446e-01 7.17612654e-02 5.54443240e-01 1.18264481e-01 1.41537353e-01 -2.99004197e-01 5.03806710e-01 2.75748521e-01 5.92858568e-02 -7.33374894e-01 9.31853473e-01 2.96687067e-01 3.23943615e-01 -4.28153396e-01 -8.56084526e-01 -9.47114825e-02 3.65732238e-02 -1.32194325e-01 4.32615459e-01 -8.29902411e-01 -4.97167408e-01 5.12595057e-01 -7.27095783e-01 -2.86881119e-01 -1.00182608e-01 7.58861899e-02 -2.61676878e-01 6.58718288e-01 -6.49726212e-01 -8.16625357e-01 -4.95624512e-01 -1.08894348e+00 9.48745787e-01 2.99174428e-01 8.59760642e-02 -1.08641827e+00 -1.11104168e-01 4.18790251e-01 2.66337782e-01 5.30312121e-01 1.43222320e+00 -6.75873280e-01 -8.06842327e-01 1.60527881e-02 -4.15199399e-01 2.55020887e-01 3.31685513e-01 -1.22902229e-01 -7.20450699e-01 -4.03818667e-01 -5.56755960e-01 -1.82378605e-01 9.37940657e-01 1.70574084e-01 1.33184850e+00 -5.26552737e-01 -5.37480772e-01 5.11761963e-01 1.31350136e+00 -2.83891428e-02 7.85270691e-01 -3.86411250e-01 9.56741214e-01 7.22236097e-01 3.23202819e-01 4.03515279e-01 7.13855445e-01 6.35753274e-01 6.37297988e-01 -1.07985213e-01 -1.02487020e-01 -8.74308288e-01 1.28551900e-01 7.98133671e-01 -2.06119880e-01 -7.38549590e-01 -5.54898500e-01 4.67947632e-01 -2.05896473e+00 -6.76598608e-01 -2.49878336e-02 2.15146422e+00 8.59704971e-01 1.85699418e-01 2.62113243e-01 -2.04175204e-01 9.43871915e-01 3.68648469e-01 -4.46754396e-01 -8.42285752e-02 6.92401677e-02 2.29089096e-01 4.18743014e-01 3.96337569e-01 -7.77336359e-01 9.29068089e-01 5.52928972e+00 1.06179500e+00 -6.63577795e-01 -8.21941644e-02 1.04635966e+00 3.37646812e-01 -7.11569428e-01 3.53202522e-01 -6.67767465e-01 7.22696543e-01 8.23211372e-01 -5.13018191e-01 5.87866783e-01 8.21504653e-01 -3.58187072e-02 4.16523606e-01 -9.86661375e-01 5.56701243e-01 -9.59387198e-02 -1.18760753e+00 4.89513397e-01 5.39094031e-01 9.25988793e-01 -2.75610656e-01 -4.72881459e-03 5.08522451e-01 6.26248777e-01 -1.02338874e+00 4.36473608e-01 5.45529306e-01 7.39363134e-01 -1.04587758e+00 6.07267141e-01 4.63790894e-01 -1.10246682e+00 -8.43201652e-02 -4.04075891e-01 1.10709861e-01 4.67872284e-02 9.83789027e-01 -9.01409268e-01 9.80546296e-01 1.88456118e-01 5.71474195e-01 -4.99644428e-01 7.40502238e-01 -3.90290231e-01 7.44016230e-01 7.87729695e-02 -2.87359599e-02 6.45508990e-02 -5.23409605e-01 3.35987657e-01 8.38361382e-01 2.74362743e-01 -5.65671548e-02 5.14358461e-01 1.01333928e+00 -6.94800258e-01 2.40885600e-01 -6.65508747e-01 -3.16328794e-01 6.17836952e-01 1.30781078e+00 -6.86540723e-01 -1.11382537e-01 -1.87827587e-01 5.92167139e-01 6.19065762e-01 3.66944611e-01 -8.61084938e-01 -4.03324038e-01 5.82206905e-01 2.61076897e-01 1.48830548e-01 8.68839025e-02 -6.85989037e-02 -1.03802621e+00 -2.10297197e-01 -9.52982783e-01 6.71073318e-01 -2.83899128e-01 -1.69982672e+00 5.27944505e-01 -8.13543722e-02 -8.28029990e-01 -1.90944970e-01 -3.32446873e-01 -7.29223251e-01 8.73639286e-01 -1.51492023e+00 -1.22344840e+00 -1.81415781e-01 3.68081301e-01 3.02637611e-02 9.16518085e-03 5.78494132e-01 4.91463423e-01 -6.67027116e-01 8.73095691e-01 -1.74733177e-01 1.47902176e-01 5.43933094e-01 -1.14147842e+00 5.15395701e-01 8.46743703e-01 -1.52067393e-02 7.36260116e-01 4.35706556e-01 -8.93185198e-01 -1.25182950e+00 -1.51764178e+00 8.28483999e-01 -1.29611447e-01 6.26651108e-01 -6.43395364e-01 -8.85341048e-01 5.98686039e-01 -2.35235006e-01 -4.98158038e-02 8.22457135e-01 2.64198273e-01 -4.93621260e-01 -1.90857515e-01 -1.14873683e+00 9.01674390e-01 1.57113063e+00 -3.18184942e-01 1.27365932e-01 4.90799099e-01 8.71696472e-01 -2.15238050e-01 -9.49312568e-01 4.09561574e-01 2.05029920e-01 -8.49490106e-01 8.86871636e-01 -7.75740981e-01 5.98313749e-01 -1.28305092e-01 1.14485621e-01 -1.40301216e+00 -4.97381181e-01 -8.52663398e-01 -2.28621036e-01 1.59558928e+00 4.85798508e-01 -8.81821454e-01 8.93939018e-01 4.34488267e-01 5.01183905e-02 -9.43627238e-01 -7.46407866e-01 -5.97819924e-01 -5.24189835e-03 -3.86954322e-02 9.39813018e-01 8.99191678e-01 -1.79051697e-01 6.12535119e-01 -6.91779852e-01 8.26632157e-02 8.78945231e-01 4.72508609e-01 7.72079408e-01 -1.33736217e+00 -5.38910866e-01 -6.41983747e-01 -3.20879251e-01 -9.82401550e-01 2.90269285e-01 -1.34145141e+00 -1.85084566e-01 -1.51517987e+00 4.62801307e-01 -6.80284560e-01 -5.98896518e-02 5.14356911e-01 -6.22346163e-01 5.84403239e-02 2.38119550e-02 -5.37442192e-02 -5.01097143e-01 7.04776704e-01 1.49395728e+00 -1.16499364e-01 2.49415170e-02 2.59831488e-01 -1.53386998e+00 4.52648699e-01 6.04879916e-01 -4.40492451e-01 -8.58450413e-01 -1.13571018e-01 4.74933833e-01 4.19337936e-02 2.96484709e-01 -3.15285951e-01 -1.22463167e-01 -2.71381348e-01 -3.27032804e-02 2.42195446e-02 -1.89185098e-01 -6.60554588e-01 3.39734793e-01 4.12828535e-01 -4.27411556e-01 -3.09629023e-01 -3.38891119e-01 1.07482183e+00 1.28789589e-01 -4.44983914e-02 6.81048393e-01 -4.07408811e-02 -2.68493086e-01 7.95893788e-01 2.11564228e-01 4.00624514e-01 8.64575326e-01 1.84888631e-01 -6.74706638e-01 -5.15119731e-01 -5.19768953e-01 4.67139482e-01 4.28888917e-01 3.63256752e-01 3.91076982e-01 -1.27970862e+00 -7.74975836e-01 1.53649479e-01 2.96190977e-01 9.15030763e-02 2.90194511e-01 6.19134903e-01 -1.24351598e-01 -1.57718416e-02 1.98969662e-01 -2.45003775e-01 -8.25825095e-01 5.17878056e-01 2.24218182e-02 -8.60129178e-01 -4.47214663e-01 7.65182137e-01 4.13881451e-01 -4.72025543e-01 3.84737551e-02 -3.66644599e-02 -1.10594720e-01 -1.00778960e-01 8.09225440e-02 4.33504432e-01 -1.75507993e-01 -4.30729330e-01 -9.58547667e-02 1.13671198e-01 -2.55972832e-01 5.26224554e-01 1.26486576e+00 4.36873771e-02 -1.77043647e-01 -1.75365075e-01 9.41845834e-01 2.00347856e-01 -1.21840084e+00 -3.39320272e-01 -3.34499888e-02 -5.10198355e-01 -2.43363038e-01 -6.30043626e-01 -1.36460948e+00 5.92844009e-01 -5.76270446e-02 5.03429830e-01 1.03631341e+00 9.29536298e-02 8.17970216e-01 -1.10183224e-01 6.40215933e-01 -8.90274823e-01 -6.23844229e-02 1.84250668e-01 5.02960026e-01 -1.05138016e+00 1.64712846e-01 -9.79437053e-01 -7.44152367e-01 5.99456012e-01 5.88345289e-01 -1.16866693e-01 5.83667159e-01 -1.22726560e-01 -5.09731293e-01 -2.51878649e-01 -8.44374359e-01 -9.74026695e-02 3.72767866e-01 7.77328074e-01 3.48111153e-01 4.02731806e-01 -4.37942177e-01 7.76628017e-01 -8.90651122e-02 -2.21501499e-01 3.62409860e-01 3.95785123e-01 -1.91583052e-01 -1.43319309e+00 1.66922912e-01 6.99132144e-01 -3.74938875e-01 -1.08030677e-01 -6.05463266e-01 6.55888736e-01 1.58490494e-01 8.82581413e-01 -3.16661179e-01 -3.64560664e-01 2.79129714e-01 -2.34348774e-01 3.50923896e-01 -7.64482856e-01 -5.38806200e-01 5.60616665e-02 3.53522658e-01 -4.14456815e-01 -1.27297476e-01 -2.98572421e-01 -9.66475666e-01 -5.35267770e-01 -4.16003019e-01 2.44374782e-01 1.73183993e-01 6.44557834e-01 6.15605772e-01 7.26416111e-01 8.33973110e-01 -4.32917684e-01 -8.33112359e-01 -7.79050291e-01 -8.88335049e-01 5.76624095e-01 -3.08833659e-01 -6.26179934e-01 -4.56397235e-01 -3.44919056e-01]
[7.385289669036865, 6.2834062576293945]
f8a60459-6878-480a-98b9-115532f19e21
videberta-a-powerful-pre-trained-language
2301.10439
null
https://arxiv.org/abs/2301.10439v2
https://arxiv.org/pdf/2301.10439v2.pdf
ViDeBERTa: A powerful pre-trained language model for Vietnamese
This paper presents ViDeBERTa, a new pre-trained monolingual language model for Vietnamese, with three versions - ViDeBERTa_xsmall, ViDeBERTa_base, and ViDeBERTa_large, which are pre-trained on a large-scale corpus of high-quality and diverse Vietnamese texts using DeBERTa architecture. Although many successful pre-trained language models based on Transformer have been widely proposed for the English language, there are still few pre-trained models for Vietnamese, a low-resource language, that perform good results on downstream tasks, especially Question answering. We fine-tune and evaluate our model on three important natural language downstream tasks, Part-of-speech tagging, Named-entity recognition, and Question answering. The empirical results demonstrate that ViDeBERTa with far fewer parameters surpasses the previous state-of-the-art models on multiple Vietnamese-specific natural language understanding tasks. Notably, ViDeBERTa_base with 86M parameters, which is only about 23% of PhoBERT_large with 370M parameters, still performs the same or better results than the previous state-of-the-art model. Our ViDeBERTa models are available at: https://github.com/HySonLab/ViDeBERTa.
['Tu Vu', 'Truong Son Hy', 'Anh Nguyen', 'Nhut Huy Pham', 'Cong Dao Tran']
2023-01-25
null
null
null
null
['part-of-speech-tagging']
['natural-language-processing']
[-6.36127591e-01 8.53169486e-02 -1.89329222e-01 -6.05990648e-01 -1.38584375e+00 -8.14109266e-01 4.19254303e-01 1.06609657e-01 -9.03919876e-01 8.33166540e-01 4.36252862e-01 -8.81034672e-01 4.21010554e-01 -7.02205360e-01 -6.17060065e-01 -1.57392144e-01 1.07107766e-01 8.18022966e-01 3.21811199e-01 -8.01540732e-01 -2.05569267e-01 4.30056229e-02 -8.37902904e-01 5.20332634e-01 1.23589051e+00 2.63324767e-01 1.93114251e-01 7.63217568e-01 -3.28011185e-01 7.91025102e-01 -6.00864947e-01 -9.05716181e-01 -1.06642924e-01 -2.38883361e-01 -1.30345511e+00 -5.15934408e-01 2.58071303e-01 -4.20920551e-01 -3.92902911e-01 5.83634198e-01 4.65789407e-01 -1.04003206e-01 3.65660012e-01 -1.09231615e+00 -1.01614726e+00 9.78626668e-01 -9.67392772e-02 3.76736283e-01 3.43745083e-01 1.99226081e-01 1.16810226e+00 -1.18703651e+00 8.14490139e-01 1.39190567e+00 6.17385328e-01 6.61068201e-01 -7.95800388e-01 -8.36399734e-01 1.74029216e-01 3.58711630e-01 -1.52664101e+00 -5.98838627e-01 2.01429635e-01 -1.02630891e-01 1.58101940e+00 4.36035506e-02 2.30533332e-01 1.30789328e+00 2.46014699e-01 1.22525227e+00 1.02114451e+00 -3.83688539e-01 -2.86980063e-01 8.85893330e-02 3.14857692e-01 7.59739578e-01 -1.39548868e-01 -1.77217841e-01 -5.05034924e-01 -5.51695637e-02 2.61921346e-01 -3.97793829e-01 -2.68247455e-01 4.72645402e-01 -1.39694452e+00 9.50176179e-01 2.04829916e-01 5.31403303e-01 -1.68930143e-01 -2.08830804e-01 6.42193437e-01 5.49155474e-01 5.57146966e-01 3.32104117e-01 -1.09040725e+00 -4.34439868e-01 -4.89446133e-01 1.62416354e-01 1.27738440e+00 1.30017507e+00 5.80495596e-01 6.68243878e-03 -1.83776483e-01 9.87498343e-01 3.29769164e-01 7.33036816e-01 3.25628757e-01 -7.81714261e-01 1.00138450e+00 4.49852616e-01 -1.02659844e-01 -3.89767647e-01 -3.71402264e-01 -1.33846313e-01 -7.01030076e-01 -6.39374793e-01 7.45223522e-01 -4.56705838e-01 -9.74968493e-01 1.74575949e+00 2.79420674e-01 -3.51588041e-01 5.55680454e-01 5.66850781e-01 1.17241585e+00 1.44614840e+00 4.09910560e-01 1.64627478e-01 1.52731693e+00 -1.49399602e+00 -8.61870468e-01 -5.18502772e-01 1.00269496e+00 -9.48253870e-01 1.27924097e+00 1.65122837e-01 -9.21369195e-01 -6.40569329e-01 -7.93913603e-01 -7.63859749e-01 -9.03488457e-01 2.23116249e-01 6.22212350e-01 6.32637858e-01 -9.71529365e-01 3.13869901e-02 -7.10246265e-01 -7.23193944e-01 -2.06477359e-01 -7.53964335e-02 -4.44254577e-01 -4.14177060e-01 -1.67619455e+00 1.07315123e+00 6.97012007e-01 1.74091622e-01 -1.08060873e+00 -8.16294491e-01 -1.14136147e+00 3.75534147e-02 5.64798355e-01 -4.43111926e-01 1.60114169e+00 -2.49392346e-01 -1.56807816e+00 9.83323872e-01 -4.59737629e-01 -2.44865820e-01 9.56942514e-02 -5.97238481e-01 -6.69482827e-01 -1.91164762e-01 2.54984409e-01 6.83747411e-01 1.67154104e-01 -9.66448784e-01 -6.29368544e-01 -2.20794678e-01 2.16468900e-01 1.13873869e-01 -1.48994640e-01 4.17312384e-01 -7.10005343e-01 -4.60199326e-01 -4.98055607e-01 -6.16403461e-01 -1.65721819e-01 -4.76841390e-01 -3.88197124e-01 -8.33587527e-01 6.93710983e-01 -1.21362996e+00 1.49392438e+00 -1.90178335e+00 -2.71681219e-01 -2.82485247e-01 -1.12838574e-01 7.01650858e-01 -7.14562833e-01 1.06449425e+00 9.95056853e-02 3.95049185e-01 -2.84507811e-01 -2.91221231e-01 9.52434689e-02 4.82814938e-01 -2.74118066e-01 2.24029392e-01 2.90332705e-01 1.16107130e+00 -1.10907316e+00 -5.67343354e-01 -5.22021018e-02 3.61050785e-01 -5.31470358e-01 6.23016119e-01 -2.12597921e-01 2.87543446e-01 -5.20311058e-01 7.46793807e-01 5.90999544e-01 -1.25366181e-01 4.31010872e-01 2.33958527e-01 -4.05421793e-01 9.01404381e-01 -4.61465240e-01 2.00373745e+00 -7.25526512e-01 4.64097172e-01 3.09611171e-01 -6.60093844e-01 8.17012250e-01 6.26166165e-01 1.00910645e-02 -7.95157075e-01 6.42471164e-02 6.03100300e-01 1.48438200e-01 -6.44695222e-01 7.31142759e-01 1.86429903e-01 -4.33402866e-01 2.16494173e-01 4.53004211e-01 -2.05763578e-01 4.74390715e-01 4.55475897e-01 1.04726470e+00 2.91711628e-01 6.80592775e-01 -3.62051547e-01 7.25885153e-01 4.16177452e-01 6.30279183e-01 6.17493689e-01 -3.77821892e-01 4.29775298e-01 2.89090157e-01 -8.35001543e-02 -1.01288235e+00 -1.09154379e+00 -8.17196444e-02 1.63443792e+00 -1.53220758e-01 -7.48910785e-01 -8.40319276e-01 -9.64503467e-01 -2.57141560e-01 1.05269444e+00 -2.63048559e-01 2.62615532e-01 -9.77081537e-01 -5.80622137e-01 1.21256948e+00 5.11032224e-01 7.35567927e-01 -1.22528481e+00 1.62631199e-01 3.76568258e-01 -6.81352437e-01 -1.29803455e+00 -7.55255580e-01 -1.19219003e-02 -4.03464198e-01 -8.83041978e-01 -7.12541938e-01 -1.15359449e+00 5.65957464e-03 -8.99480954e-02 1.56242573e+00 1.01079009e-01 2.30652973e-01 1.69834793e-01 -6.33538723e-01 -3.42339665e-01 -6.68053448e-01 6.71932578e-01 -4.53345299e-01 -4.70569283e-01 6.43787801e-01 -1.57543674e-01 -2.58084685e-01 1.34168580e-01 -7.46393323e-01 -2.47955080e-02 5.34354091e-01 9.53830719e-01 3.26500416e-01 -4.83699024e-01 7.99223483e-01 -1.21341097e+00 5.28441012e-01 -8.29569221e-01 -4.02420580e-01 6.74766302e-01 -3.05770814e-01 -2.77148206e-02 9.64314282e-01 -1.87137917e-01 -1.49541342e+00 -4.25815821e-01 -1.15863335e+00 2.31498465e-01 -4.56962466e-01 8.65844965e-01 -4.51233715e-01 5.19048810e-01 4.46313620e-01 1.65701270e-01 -4.60875660e-01 -8.08592916e-01 7.92118073e-01 9.76084650e-01 5.86753011e-01 -6.04493678e-01 7.11913705e-01 8.52098465e-02 -8.01892519e-01 -1.10209024e+00 -1.04996097e+00 -1.01674497e+00 -8.39110434e-01 2.68148005e-01 1.10387862e+00 -1.10233212e+00 -6.08270109e-01 6.98741496e-01 -1.56868792e+00 -7.32953250e-01 8.11566263e-02 1.91898704e-01 -3.86888683e-02 3.01600784e-01 -1.20280540e+00 -6.07657492e-01 -5.68127275e-01 -8.46817493e-01 1.06705546e+00 6.52105734e-02 -3.60350125e-02 -1.31217968e+00 1.86009794e-01 7.49584615e-01 4.18889970e-01 -3.67900491e-01 1.29890895e+00 -1.07497287e+00 -3.27522814e-01 1.68581933e-01 -1.85422853e-01 4.02476370e-01 -2.47146085e-01 -1.53427795e-01 -7.36772954e-01 -2.98029095e-01 -2.53220171e-01 -7.67800510e-01 7.23367393e-01 -6.17191568e-02 6.88686073e-01 -4.13908869e-01 -2.13712886e-01 4.92815971e-01 1.18950963e+00 3.89925957e-01 5.99589288e-01 4.48706716e-01 6.21686220e-01 6.28247678e-01 7.71847308e-01 4.56346497e-02 1.38602602e+00 3.27511907e-01 1.31710917e-01 -3.72513324e-01 -1.39452741e-01 -6.23304665e-01 5.91254354e-01 1.74591589e+00 1.63139552e-01 -7.94057369e-01 -1.31338346e+00 8.56789708e-01 -1.69710600e+00 -6.19898200e-01 -4.02709156e-01 1.73097467e+00 1.10227776e+00 -2.74443656e-01 -5.84432110e-02 -6.93420172e-01 3.94066215e-01 4.13103878e-01 -3.53975505e-01 -5.41605532e-01 -1.73398226e-01 3.80626053e-01 2.88363039e-01 6.54331207e-01 -1.10794866e+00 1.57663083e+00 6.08104372e+00 1.07735789e+00 -8.18738163e-01 6.45818770e-01 5.33601701e-01 5.85176945e-01 -3.93274575e-01 3.05993408e-01 -1.22024667e+00 2.79031415e-02 1.45051122e+00 -1.94722310e-01 1.91268772e-01 8.53010833e-01 5.64709976e-02 1.43213019e-01 -9.62334991e-01 5.40302575e-01 1.80013686e-01 -1.09333539e+00 4.10331264e-02 -2.18797669e-01 5.47676623e-01 6.47854090e-01 -3.34986895e-01 1.16860437e+00 6.10204577e-01 -8.81832957e-01 7.47523844e-01 3.55534256e-02 6.73295796e-01 -6.57487631e-01 9.51513410e-01 7.25146890e-01 -1.23913789e+00 2.57870525e-01 -4.92152154e-01 1.97527424e-01 6.78686202e-01 1.52444854e-01 -7.28081703e-01 8.14059913e-01 7.06221819e-01 6.41164660e-01 -6.00567222e-01 6.25167608e-01 -6.60706580e-01 1.34071863e+00 -2.05229327e-01 -2.56593496e-01 5.95760286e-01 -1.63740024e-01 3.50879282e-01 1.65549374e+00 2.68989921e-01 4.21389967e-01 4.33114886e-01 6.56591654e-01 -3.50845516e-01 5.14240563e-01 -3.29489857e-01 -3.50590169e-01 5.54750800e-01 1.08998144e+00 -1.58650786e-01 -6.71987057e-01 -8.80040586e-01 1.07057333e+00 7.05429494e-01 5.16289949e-01 -7.99933136e-01 -6.04231119e-01 5.22461057e-01 -7.51834810e-02 1.01227716e-01 -5.95506966e-01 2.50575542e-01 -1.63582456e+00 -3.39026272e-01 -1.31999755e+00 7.33447313e-01 -6.11553311e-01 -1.48998773e+00 9.64685559e-01 -8.95207822e-02 -5.85126042e-01 -4.16340202e-01 -8.83032918e-01 -4.78367448e-01 8.93763781e-01 -1.77932692e+00 -1.56096137e+00 1.42903462e-01 7.14746535e-01 1.03178215e+00 -1.71960339e-01 1.06219828e+00 4.83722776e-01 -7.38178968e-01 6.48725927e-01 2.30037570e-01 6.87408686e-01 9.09722745e-01 -1.12171781e+00 8.63957405e-01 9.75409806e-01 1.04197629e-01 7.67389834e-01 1.47144079e-01 -6.43975258e-01 -1.45049608e+00 -1.02815235e+00 1.85729718e+00 -5.21559894e-01 1.02640533e+00 -7.66010165e-01 -1.24779916e+00 1.06465018e+00 8.76125336e-01 -3.71808976e-01 7.07688391e-01 5.12527227e-01 -4.77919072e-01 5.89166358e-02 -8.11885297e-01 4.72051442e-01 1.05213308e+00 -7.73678958e-01 -8.72723401e-01 4.07743663e-01 9.81177449e-01 -3.35352361e-01 -1.18111789e+00 3.13299239e-01 2.39579514e-01 -7.01754391e-01 6.00250781e-01 -8.70059609e-01 2.18593314e-01 9.24812406e-02 -1.24885246e-01 -1.37162399e+00 -2.36325651e-01 -6.02345884e-01 3.01246345e-01 1.63504255e+00 1.01175690e+00 -8.04483533e-01 2.80128896e-01 2.53815800e-01 -5.00777066e-01 -6.03680611e-01 -9.49247539e-01 -9.28042948e-01 7.79942155e-01 -4.31201041e-01 6.01379514e-01 1.11919475e+00 -2.60021165e-02 9.26989794e-01 -1.30282238e-01 9.99155715e-02 2.38073543e-01 -6.86818287e-02 6.83496892e-01 -5.44649303e-01 -1.65016174e-01 -2.92758998e-02 2.99784780e-01 -1.59866214e+00 5.33143222e-01 -1.13617837e+00 3.70212823e-01 -1.69015384e+00 1.95942193e-01 -5.08609176e-01 2.07931265e-01 8.87099445e-01 -3.48053813e-01 -1.35164157e-01 2.46781826e-01 -2.28632353e-02 -5.46553791e-01 7.71324456e-01 1.07988787e+00 -9.09402147e-02 3.28706205e-03 -3.22151482e-01 -4.83554512e-01 6.77427828e-01 6.86882555e-01 -5.03892362e-01 -1.08041793e-01 -1.09751451e+00 -3.01373731e-02 1.75476924e-01 -1.88234240e-01 -4.60345685e-01 1.33866325e-01 -7.84418359e-02 -2.25060582e-02 -6.77816033e-01 2.71977246e-01 -1.93085462e-01 -3.97815704e-01 4.27465022e-01 -1.85936585e-01 5.77024519e-01 1.99169546e-01 -9.74165574e-02 -5.54670155e-01 -2.79406279e-01 4.20286417e-01 -2.76901782e-01 -1.20789349e+00 4.11390722e-01 -8.16626430e-01 7.00215936e-01 5.50309181e-01 4.52269018e-01 -7.63238549e-01 -5.94683766e-01 -3.87247533e-01 5.28500795e-01 -2.35182673e-01 7.85770178e-01 4.46037620e-01 -8.81934822e-01 -1.17739105e+00 -3.49649414e-02 2.95135885e-01 -2.34195456e-01 1.95914596e-01 5.79241097e-01 -7.08955765e-01 1.05967033e+00 2.56840080e-01 -1.22673608e-01 -9.61287200e-01 3.42183053e-01 8.72320831e-02 -8.03501248e-01 -1.59161508e-01 9.57673609e-01 1.79660425e-01 -1.32448137e+00 -6.51208013e-02 -3.31009597e-01 -2.01938570e-01 -2.15614691e-01 3.51707280e-01 3.66847932e-01 -9.55148861e-02 -9.17595088e-01 -5.65105617e-01 1.07617773e-01 -1.92817926e-01 -1.98422000e-01 1.14937687e+00 -3.15964103e-01 -1.97328508e-01 3.15849990e-01 1.29910803e+00 2.27905512e-01 -6.48324370e-01 -1.99717879e-01 1.88376755e-01 -2.91655846e-02 -3.25110972e-01 -1.04400384e+00 -6.98010325e-01 1.08465397e+00 -1.69601273e-02 -8.49266574e-02 8.14050794e-01 3.19804013e-01 1.22902632e+00 7.81854868e-01 5.86799443e-01 -1.02617764e+00 -1.44817203e-01 1.35968935e+00 1.00120389e+00 -1.44796705e+00 -5.18562138e-01 -5.63070536e-01 -7.84191191e-01 8.08819175e-01 9.21179354e-01 2.87781805e-01 7.54631817e-01 2.05411956e-01 7.47535467e-01 -3.61076510e-03 -9.37138796e-01 -4.46001559e-01 2.83262670e-01 5.49217105e-01 9.00539637e-01 1.62221000e-01 -5.26901245e-01 7.23270416e-01 -5.57752669e-01 -2.78724164e-01 2.64994115e-01 8.33371520e-01 -2.07327709e-01 -1.35642552e+00 -2.53167655e-02 -1.14035606e-02 -7.56944180e-01 -6.48237228e-01 -2.62026727e-01 1.44005549e+00 -6.96450025e-02 1.38101935e+00 -1.63141549e-01 -1.48636326e-01 5.59970856e-01 1.72192007e-01 7.70035386e-02 -8.63599598e-01 -8.30571055e-01 -2.00248342e-02 7.50802994e-01 -5.20775497e-01 -1.60222813e-01 -3.89344394e-01 -1.38697946e+00 -4.42750514e-01 -2.77889699e-01 5.53085446e-01 5.03174841e-01 1.09240448e+00 2.37888023e-01 -1.48559418e-02 1.88259616e-01 -1.42890647e-01 -4.95505720e-01 -1.27609646e+00 -3.69228452e-01 2.38548681e-01 5.01701608e-02 1.76833812e-02 -1.35360762e-01 -1.59191974e-02]
[10.768633842468262, 9.569822311401367]
38f83262-79fa-4cfb-bcb4-4b66be0e1180
occdepth-a-depth-aware-method-for-3d-semantic
2302.13540
null
https://arxiv.org/abs/2302.13540v1
https://arxiv.org/pdf/2302.13540v1.pdf
OccDepth: A Depth-Aware Method for 3D Semantic Scene Completion
3D Semantic Scene Completion (SSC) can provide dense geometric and semantic scene representations, which can be applied in the field of autonomous driving and robotic systems. It is challenging to estimate the complete geometry and semantics of a scene solely from visual images, and accurate depth information is crucial for restoring 3D geometry. In this paper, we propose the first stereo SSC method named OccDepth, which fully exploits implicit depth information from stereo images (or RGBD images) to help the recovery of 3D geometric structures. The Stereo Soft Feature Assignment (Stereo-SFA) module is proposed to better fuse 3D depth-aware features by implicitly learning the correlation between stereo images. In particular, when the input are RGBD image, a virtual stereo images can be generated through original RGB image and depth map. Besides, the Occupancy Aware Depth (OAD) module is used to obtain geometry-aware 3D features by knowledge distillation using pre-trained depth models. In addition, a reformed TartanAir benchmark, named SemanticTartanAir, is provided in this paper for further testing our OccDepth method on SSC task. Compared with the state-of-the-art RGB-inferred SSC method, extensive experiments on SemanticKITTI show that our OccDepth method achieves superior performance with improving +4.82% mIoU, of which +2.49% mIoU comes from stereo images and +2.33% mIoU comes from our proposed depth-aware method. Our code and trained models are available at https://github.com/megvii-research/OccDepth.
['Shuchang Zhou', 'Chen Hu', 'Weixin Xu', 'Zheng Gong', 'Mingrui Chen', 'Weizhou Liu', 'Ruihang Miao']
2023-02-27
null
null
null
null
['3d-semantic-scene-completion']
['computer-vision']
[ 2.21940964e-01 1.60087422e-01 -4.33300734e-02 -5.49664199e-01 -6.68012679e-01 -4.64671999e-01 5.98930836e-01 -1.59057498e-01 -3.48375201e-01 3.49754900e-01 2.23357901e-01 -2.05271974e-01 1.86633363e-01 -1.04889405e+00 -9.16200042e-01 -5.61803877e-01 5.06303549e-01 4.94402945e-01 4.50152159e-01 -4.10836875e-01 4.23056751e-01 4.72250581e-01 -1.86122000e+00 9.84594822e-02 9.20710266e-01 1.20293367e+00 6.44055843e-01 4.58274662e-01 -3.26301396e-01 7.30690181e-01 1.16116544e-02 6.94414973e-02 4.22658563e-01 -6.54339716e-02 -7.59080887e-01 1.13597468e-01 5.11515737e-01 -6.47152305e-01 -6.55178845e-01 9.72555101e-01 2.63146162e-01 2.98217744e-01 4.27638203e-01 -1.10112321e+00 -2.17613265e-01 -1.19210608e-01 -5.91445982e-01 -8.84334221e-02 4.76404130e-01 2.46808767e-01 5.87983191e-01 -9.88625050e-01 4.63536203e-01 1.25486219e+00 2.00190082e-01 3.15356731e-01 -7.41076529e-01 -7.76485801e-01 1.78401530e-01 4.44194555e-01 -1.39969826e+00 -2.56426483e-01 9.49750900e-01 -2.87123263e-01 9.19026852e-01 1.58971041e-01 7.59996891e-01 7.03084290e-01 -1.01475671e-01 8.02708566e-01 1.19371796e+00 -1.29740521e-01 2.92548984e-01 -1.04664989e-01 -1.27662525e-01 8.70385468e-01 5.64648621e-02 3.68051291e-01 -6.76250219e-01 3.48616093e-01 9.83944058e-01 2.90519565e-01 -2.33890653e-01 -4.72727269e-01 -1.21193087e+00 6.26518607e-01 9.61518109e-01 -2.13010758e-01 -1.08138330e-01 8.68885368e-02 3.75578180e-02 -7.16849864e-02 4.18872416e-01 1.86068460e-01 -4.12509918e-01 -1.66475624e-01 -5.61150968e-01 2.20274612e-01 2.64664650e-01 1.15115964e+00 1.44960272e+00 -1.25978123e-02 1.76255733e-01 6.91929877e-01 3.63399059e-01 8.46614718e-01 3.14061254e-01 -1.39362848e+00 7.04955995e-01 9.56008554e-01 -4.33254056e-02 -8.76449943e-01 -4.38267320e-01 -1.78243324e-01 -6.60853088e-01 1.82758391e-01 1.39243528e-01 4.85796243e-01 -1.07066309e+00 1.24092793e+00 5.42232931e-01 3.93521965e-01 2.53685504e-01 1.19734752e+00 1.07304251e+00 6.28237188e-01 -2.81983078e-01 3.10064435e-01 1.02625203e+00 -1.01811182e+00 -1.96584612e-01 -7.07421303e-01 6.89351976e-01 -6.37704909e-01 1.11985743e+00 2.06069246e-01 -6.60766721e-01 -5.18930197e-01 -1.08973002e+00 -6.79062724e-01 -3.86567563e-01 -3.27967964e-02 7.25793600e-01 1.78402796e-01 -8.53490353e-01 1.91368878e-01 -9.15117264e-01 -1.69450685e-01 5.00040293e-01 7.26907328e-02 -5.48876405e-01 -6.85738206e-01 -9.48699772e-01 6.38751268e-01 5.04925132e-01 8.51931050e-02 -1.10095084e+00 -7.24442899e-01 -1.31153440e+00 -3.30930501e-01 5.25072753e-01 -6.84848428e-01 1.18450844e+00 -5.45890510e-01 -1.39511132e+00 9.50018883e-01 -4.52179700e-01 -9.11497772e-02 4.22614962e-01 -2.95651197e-01 8.23558420e-02 4.21775579e-01 3.14929217e-01 8.98884892e-01 5.14402986e-01 -1.40876877e+00 -6.91137969e-01 -7.41406500e-01 4.47468311e-01 5.67835748e-01 1.41879961e-01 -7.04499960e-01 -8.84208858e-01 -1.50065586e-01 7.17503965e-01 -7.30549574e-01 -2.46323690e-01 1.67834640e-01 -4.67893630e-01 7.82288536e-02 7.22544074e-01 -6.45241141e-01 5.44635057e-01 -2.08994246e+00 2.30100140e-01 -1.85316522e-02 2.31878921e-01 7.76248053e-02 -9.45398435e-02 -2.40581613e-02 3.06104451e-01 -2.52761781e-01 -5.39889276e-01 -6.44060373e-01 -1.48089975e-01 3.74430060e-01 -2.81880319e-01 4.28691715e-01 1.14254825e-01 9.08905804e-01 -9.76903677e-01 -3.86461705e-01 9.23384845e-01 6.38850272e-01 -6.65235162e-01 2.56481797e-01 -3.12628627e-01 7.42273092e-01 -7.68367231e-01 7.82783687e-01 1.10782385e+00 -2.63796672e-02 -1.52108580e-01 -3.09562951e-01 -2.12764323e-01 3.45681012e-01 -8.25271428e-01 2.44320083e+00 -5.51804245e-01 3.75037313e-01 -2.73987800e-01 -7.20226645e-01 9.35849428e-01 -2.38914445e-01 2.62308747e-01 -1.33279836e+00 2.92719603e-01 1.63524702e-01 -7.01062679e-01 -2.87139267e-01 6.70512080e-01 2.56625190e-02 -2.37643674e-01 2.45202351e-02 -1.84232011e-01 -8.16725254e-01 -3.10209960e-01 3.33332628e-01 8.51075530e-01 5.64041018e-01 -4.89060814e-03 9.13700908e-02 6.54934824e-01 3.28238875e-01 6.14807487e-01 1.96987376e-01 -3.68464664e-02 1.00744760e+00 7.63856694e-02 -3.09976667e-01 -1.01945651e+00 -1.16481709e+00 -1.36192739e-02 3.68967116e-01 9.80182767e-01 -3.14355314e-01 -5.63592196e-01 -4.46815759e-01 2.97103096e-02 7.54368305e-01 -4.75940287e-01 -3.38214219e-01 -3.73797745e-01 -2.28787452e-01 1.65035382e-01 6.27774417e-01 1.02876890e+00 -6.59397542e-01 -7.49042273e-01 -1.19445354e-01 -4.94657815e-01 -1.48259366e+00 -2.58481413e-01 -1.46617785e-01 -1.00063121e+00 -1.19255614e+00 -3.67263883e-01 -4.87221807e-01 6.06896937e-01 9.27935958e-01 7.25160718e-01 -1.92144141e-02 -1.84998825e-01 1.45528391e-01 -4.08812732e-01 -1.16090447e-01 3.08500491e-02 -2.78663468e-02 -2.21527308e-01 -1.38125852e-01 2.89146483e-01 -5.52714050e-01 -9.06252384e-01 3.75213116e-01 -8.51461053e-01 8.37893903e-01 5.29925108e-01 4.41007167e-01 1.02137649e+00 -2.10761696e-01 -1.31762937e-01 -6.94611728e-01 -4.40770835e-01 -3.80163491e-01 -7.29211390e-01 -2.32025951e-01 -4.40570682e-01 1.48545235e-01 3.89991045e-01 3.14268470e-01 -1.30786180e+00 2.72421181e-01 -2.83370227e-01 -7.63642251e-01 -2.92069793e-01 2.67696798e-01 -4.84508932e-01 3.12953605e-03 3.53076041e-01 3.90285313e-01 -5.01741953e-02 -5.71247101e-01 3.70689243e-01 7.31374621e-01 7.68273413e-01 -4.00057465e-01 6.94640577e-01 1.02054739e+00 7.11436197e-02 -7.10211754e-01 -1.14481664e+00 -7.25528479e-01 -6.70987904e-01 -1.80188194e-01 8.07042539e-01 -1.43427753e+00 -4.27291125e-01 6.76328659e-01 -8.94294381e-01 -6.15828931e-01 2.16018707e-02 5.10756075e-01 -8.19826186e-01 4.48143333e-01 -2.79865652e-01 -4.93941426e-01 -9.70458910e-02 -1.23532712e+00 1.65216446e+00 3.15490007e-01 2.83532917e-01 -7.02971995e-01 -2.55414307e-01 9.36784506e-01 2.48845294e-02 3.34179312e-01 5.52296758e-01 3.36227357e-01 -1.07875514e+00 6.56630322e-02 -5.90042889e-01 3.02112818e-01 8.38795528e-02 -4.57923055e-01 -1.30670738e+00 -2.26717093e-03 -1.57398820e-01 -2.85050750e-01 9.42850769e-01 1.13607220e-01 1.33441317e+00 2.00694621e-01 -1.46932632e-01 1.21036196e+00 1.56133068e+00 -4.07043323e-02 8.04585874e-01 5.31587601e-01 1.21964991e+00 5.43861270e-01 1.00708497e+00 4.81507003e-01 1.11439669e+00 7.15784490e-01 9.72210348e-01 -8.35254192e-02 -4.28236127e-01 -6.59729481e-01 2.70294428e-01 7.19804466e-01 -7.62751326e-02 1.29125714e-01 -9.14232314e-01 4.10096914e-01 -1.84576118e+00 -4.90848958e-01 -2.95806348e-01 2.18218923e+00 5.73775947e-01 1.13234363e-01 -3.73883039e-01 2.10980237e-01 3.55156928e-01 1.82897866e-01 -8.85585368e-01 4.00462970e-02 -2.22787127e-01 1.38958707e-01 7.48614132e-01 8.24784994e-01 -8.08988810e-01 1.30441737e+00 4.09635639e+00 7.97577024e-01 -1.06522059e+00 9.46604535e-02 4.87715840e-01 -1.62369832e-01 -5.29845715e-01 2.35318780e-01 -6.85844183e-01 2.43488505e-01 4.37277049e-01 9.59302485e-03 4.28189844e-01 7.95036018e-01 3.53484094e-01 -6.13237441e-01 -8.04048300e-01 1.41886771e+00 1.58211350e-01 -1.23868299e+00 9.32144672e-02 1.63540527e-01 8.28599334e-01 3.56769413e-01 -1.40467897e-01 1.29014015e-01 1.44992754e-01 -8.01641285e-01 1.03417766e+00 6.24804199e-01 1.09991801e+00 -8.31479490e-01 7.02515841e-01 4.29968238e-01 -1.34280550e+00 1.13246650e-01 -4.28099453e-01 -2.58818984e-01 1.31940424e-01 7.06594765e-01 -5.86057484e-01 9.61215913e-01 9.56254184e-01 1.25624287e+00 -6.06572866e-01 8.34317446e-01 -5.70898354e-01 1.39143586e-01 -4.25248981e-01 4.27014589e-01 2.61598945e-01 -2.40107879e-01 2.42316544e-01 5.35196781e-01 3.98468494e-01 2.14940995e-01 1.27719164e-01 8.85059714e-01 1.27764106e-01 -2.98783123e-01 -5.63443899e-01 3.49485129e-01 4.55673873e-01 1.26834238e+00 -5.46784699e-01 -3.06427181e-01 -3.19270998e-01 1.17323232e+00 2.54513502e-01 3.38392526e-01 -7.80989647e-01 -1.75737366e-01 8.13584685e-01 1.39720380e-01 1.19891182e-01 -5.13709664e-01 -5.41659296e-01 -1.32309532e+00 1.29481778e-01 -2.73766458e-01 3.80116589e-02 -1.30354965e+00 -6.63869679e-01 4.69066620e-01 4.92054373e-02 -1.32916272e+00 -5.08381240e-02 -5.58742583e-01 -1.75024211e-01 9.54507232e-01 -2.05546880e+00 -1.11282277e+00 -1.18724036e+00 6.81023180e-01 6.26124501e-01 3.00668031e-01 4.63368118e-01 7.30190501e-02 -3.64466906e-01 1.05216734e-01 -1.20991953e-01 -2.32016534e-01 4.62034047e-01 -1.08110595e+00 4.57113892e-01 7.09909260e-01 -2.04817459e-01 3.77875865e-02 3.72379929e-01 -5.09691119e-01 -1.68086267e+00 -1.50835621e+00 6.46670640e-01 -4.96048063e-01 1.22438557e-01 -2.91529149e-01 -7.43349850e-01 4.77157027e-01 -4.83144045e-01 1.40750691e-01 7.59280324e-02 -4.83813435e-01 -4.11150604e-01 -1.97006583e-01 -1.06795001e+00 4.99555707e-01 1.65948820e+00 -8.02991807e-01 -4.69681054e-01 1.46214917e-01 1.02490246e+00 -8.49720597e-01 -5.88134408e-01 6.87050879e-01 4.56260949e-01 -1.38334560e+00 1.02998328e+00 2.50105709e-01 6.16408527e-01 -7.12012231e-01 -6.39179111e-01 -1.05199158e+00 1.66080892e-01 3.99536490e-02 -3.23740393e-02 7.79639184e-01 3.08119580e-02 -6.30666792e-01 8.86008263e-01 4.30858672e-01 -6.68763518e-01 -5.60958743e-01 -8.91300917e-01 -5.42909503e-01 -2.30570003e-01 -9.36651051e-01 8.28746259e-01 6.77108288e-01 -4.10865456e-01 1.87138215e-01 9.54167247e-02 3.24431658e-01 6.84467256e-01 4.27321345e-01 1.00866115e+00 -9.74748015e-01 -9.42491964e-02 -2.46819481e-01 -6.85002387e-01 -1.50391686e+00 1.08665846e-01 -1.02580750e+00 1.24129727e-01 -1.80065131e+00 1.16660155e-01 -5.95744371e-01 -2.30391119e-02 5.04717469e-01 -1.85751473e-03 4.10842091e-01 9.93593335e-02 1.26682103e-01 -5.31365931e-01 1.15620577e+00 1.54395390e+00 -1.80438608e-01 -8.11654553e-02 -3.69705677e-01 -6.06130362e-01 7.40404963e-01 8.41354907e-01 -1.58271864e-01 -6.47231877e-01 -7.39751577e-01 1.23022139e-01 7.26809725e-02 7.50569463e-01 -1.06298506e+00 1.02958888e-01 -2.47077703e-01 3.13931078e-01 -8.97607386e-01 8.18642676e-01 -6.44828141e-01 -1.82921067e-02 1.81774497e-01 2.23705083e-01 -3.45248520e-01 2.50020623e-01 5.42058527e-01 -3.57272923e-01 1.21714436e-01 4.94160891e-01 -2.58869082e-01 -1.33551121e+00 6.08480215e-01 1.47889569e-01 -5.85094914e-02 9.09962416e-01 -4.64345485e-01 -3.37904036e-01 -3.18679035e-01 -3.36995393e-01 4.55575913e-01 9.16895568e-01 6.10349000e-01 1.11737084e+00 -1.32393396e+00 -3.33689809e-01 5.29268920e-01 6.08489454e-01 1.07968342e+00 6.48031533e-01 6.95759177e-01 -8.83040071e-01 3.94165456e-01 -1.25359252e-01 -9.10792232e-01 -8.98073852e-01 2.20861062e-01 2.68073410e-01 3.31050158e-01 -8.09627950e-01 7.54900932e-01 6.74799383e-01 -7.25973785e-01 9.25819203e-03 -4.82362926e-01 9.07648653e-02 -4.78767663e-01 4.81026351e-01 3.45897347e-01 2.52429038e-01 -9.41674292e-01 -3.74834239e-01 9.23553109e-01 1.56656548e-01 -1.31605804e-01 1.23378026e+00 -4.65788960e-01 4.09889827e-03 2.72007316e-01 1.36435938e+00 -3.15804780e-01 -1.76248395e+00 -3.70936692e-01 -4.70190972e-01 -8.26018512e-01 4.85027403e-01 -5.07529438e-01 -1.21084881e+00 1.28799951e+00 5.11683702e-01 -5.96183479e-01 1.18095946e+00 1.76144689e-01 8.93325925e-01 1.89409956e-01 8.55022848e-01 -7.82770395e-01 9.67415795e-02 6.78471506e-01 9.28936124e-01 -1.39202654e+00 -9.17378962e-02 -7.88245559e-01 -6.34095013e-01 9.30533707e-01 8.80929470e-01 -5.05929925e-02 5.28135061e-01 -2.41348401e-01 -1.19244561e-01 -2.32283458e-01 -3.48145664e-01 -4.60672259e-01 1.85983196e-01 6.01731360e-01 -1.09438427e-01 1.35099426e-01 4.12877202e-01 3.74214739e-01 -4.65870380e-01 -4.07094546e-02 4.18471456e-01 9.65216637e-01 -5.36465168e-01 -8.62438619e-01 -2.12474212e-01 1.48340106e-01 4.79563206e-01 -8.36947039e-02 -2.30484739e-01 4.76567686e-01 2.81355739e-01 9.78880882e-01 2.25314617e-01 -7.47388184e-01 3.92218739e-01 -3.25761408e-01 6.52256668e-01 -7.30723083e-01 2.57680506e-01 -1.61933586e-01 -4.18239683e-02 -1.15800214e+00 -4.50718552e-01 -5.69387436e-01 -1.78433096e+00 -3.56615335e-01 -4.78210710e-02 -3.00928056e-01 9.00673270e-01 1.01171005e+00 3.78368556e-01 4.48292404e-01 7.83920765e-01 -1.20933640e+00 2.09654212e-01 -7.09682941e-01 -5.32929301e-01 3.23598325e-01 3.84292036e-01 -1.02895236e+00 -4.34168071e-01 -1.30177855e-01]
[8.562618255615234, -2.752880096435547]
2ed13589-eda7-4e82-8501-9d874ce6fc8c
hub-at-semeval-2021-task-7-fusion-of-albert
null
null
https://aclanthology.org/2021.semeval-1.160
https://aclanthology.org/2021.semeval-1.160.pdf
hub at SemEval-2021 Task 7: Fusion of ALBERT and Word Frequency Information Detecting and Rating Humor and Offense
This paper introduces the system description of the hub team, which explains the related work and experimental results of our team{'}s participation in SemEval 2021 Task 7: HaHackathon: Detecting and Rating Humor and Offense. We successfully submitted the test set prediction results of the two subtasks in the task. The goal of the task is to perform humor detection, grade evaluation, and offensive evaluation on each English text data in the data set. Tasks can be divided into two types of subtasks. One is a text classification task, and the other is a text regression task. What we need to do is to use our method to detect the humor and offensive information of the sentence as accurately as possible. The methods used in the results submitted by our team are mainly composed of ALBERT, CNN, and Tf-Idf algorithms. The result evaluation indicators submitted by the classification task are F1 score and Accuracy. The result evaluation index of the regression task submission is the RMSE. The final scores of the prediction results of the two subtask test sets submitted by our team are task1a 0.921 (F1), task1a 0.9364 (Accuracy), task1b 0.6288 (RMSE), task1c 0.5333 (F1), task1c 0.0.5591 (Accuracy), and task2 0.5027 (RMSE) respectively.
['Yang Bai', 'Bo Huang']
2021-08-01
null
null
null
semeval-2021
['humor-detection']
['natural-language-processing']
[-3.84212494e-01 -6.69100285e-02 1.50011033e-01 -7.91206583e-02 -4.35212821e-01 -4.47421491e-01 5.93672812e-01 2.44356513e-01 -2.87403435e-01 7.37862825e-01 5.99350572e-01 -8.48187581e-02 1.01982757e-01 -6.02629006e-01 -1.72410414e-01 -4.19582725e-01 2.97681034e-01 2.79404402e-01 9.45252329e-02 -7.33273089e-01 9.76457298e-01 -9.12084803e-03 -1.33226550e+00 9.51974809e-01 1.00212884e+00 1.11672115e+00 -1.36807740e-01 1.02044344e+00 1.47922888e-01 1.78687310e+00 -9.21163559e-01 -5.88942528e-01 -1.63441747e-01 -5.85069537e-01 -1.24963725e+00 -2.33147457e-01 1.16733387e-01 -8.39497894e-02 -2.12474182e-01 1.06676841e+00 5.59383273e-01 3.91758621e-01 7.50288844e-01 -1.29852700e+00 -5.91294587e-01 6.67956233e-01 -3.40863109e-01 2.02182040e-01 5.96316755e-01 1.53855300e-02 9.89837766e-01 -1.28262234e+00 5.02053618e-01 8.93023670e-01 7.57200181e-01 4.88702476e-01 -5.53443909e-01 -5.87954223e-01 -7.06751883e-01 6.44511819e-01 -1.09079909e+00 -2.24364251e-01 6.09044373e-01 -9.90010381e-01 1.03114152e+00 3.57276887e-01 3.27484220e-01 1.08055270e+00 3.70985121e-01 9.22489882e-01 1.22639608e+00 -3.05749148e-01 9.92683768e-02 5.51632106e-01 5.75103343e-01 7.21036136e-01 -8.65599737e-02 -2.97496974e-01 -7.44090617e-01 6.42277226e-02 1.41138554e-01 -3.46210212e-01 -3.28986436e-01 7.37426043e-01 -1.00978684e+00 1.09065378e+00 4.50207531e-01 6.09839737e-01 -3.67311031e-01 -3.37599248e-01 8.26633930e-01 5.03591597e-01 5.05458653e-01 7.78167903e-01 -1.73767656e-01 -3.90620381e-01 -1.05354202e+00 5.42154729e-01 1.19784617e+00 8.64766836e-01 1.02455862e-01 -6.95047602e-02 -5.91297448e-01 1.09864497e+00 -1.17576085e-01 4.46458250e-01 9.11203325e-01 -7.03695476e-01 6.37201369e-01 7.55850136e-01 1.71878755e-01 -1.45679200e+00 -7.38626003e-01 -6.03917897e-01 -1.06673872e+00 7.24478662e-02 3.68281841e-01 -7.93810785e-02 -5.70587695e-01 1.09117353e+00 -3.72538060e-01 -5.58436453e-01 -1.01237401e-01 9.51919794e-01 1.51408911e+00 8.24472427e-01 -9.60892066e-03 -3.29135716e-01 1.29905844e+00 -1.44078088e+00 -8.29748273e-01 7.44573399e-02 9.92224813e-01 -1.23366559e+00 1.22324598e+00 6.98598921e-01 -1.24068248e+00 -6.52250588e-01 -1.10985398e+00 -1.46897137e-01 -5.45085251e-01 3.00920218e-01 -1.07944883e-01 3.93967628e-01 -7.45591581e-01 6.21079445e-01 6.23685196e-02 -3.51540506e-01 1.06981531e-01 -1.83843430e-02 -3.40930015e-01 2.28094757e-01 -1.46308112e+00 1.40984952e+00 3.79412115e-01 -2.11829633e-01 -9.05204892e-01 -4.75317329e-01 -3.52310449e-01 2.26481527e-01 -1.90280512e-01 -3.10099453e-01 1.42650878e+00 -8.46780539e-01 -1.07143033e+00 1.06967711e+00 2.38878295e-01 -4.26484853e-01 6.08173847e-01 -2.45063365e-01 -4.24144536e-01 -1.75539345e-01 3.40450287e-01 1.12774866e-02 3.90836298e-01 -1.05516350e+00 -8.57503891e-01 -3.66358340e-01 -3.30112547e-01 1.45696715e-01 -7.02631056e-01 4.46019232e-01 1.73688814e-01 -4.40924287e-01 -3.67591321e-01 -6.27955973e-01 3.20812792e-01 -9.06071842e-01 -5.84008992e-01 -5.01285970e-01 6.08749211e-01 -1.12217224e+00 1.93328428e+00 -1.79606628e+00 8.15443695e-03 -2.53454763e-02 4.75057065e-01 4.09995377e-01 2.31839478e-01 5.85842788e-01 -1.71716809e-01 2.51880854e-01 5.51385470e-02 -5.98646738e-02 6.61511421e-02 -5.94733238e-01 -3.88638526e-01 2.30963275e-01 -3.07356536e-01 6.63440406e-01 -8.31276119e-01 -4.47831780e-01 -7.79088438e-02 -1.09165102e-01 -2.04931915e-01 5.91225982e-01 2.98828036e-01 1.30303483e-02 -2.78875291e-01 5.16194105e-01 2.38038927e-01 -1.55799374e-01 -3.77438784e-01 -1.85434103e-01 -2.92542875e-01 5.10191143e-01 -6.30859494e-01 8.11467826e-01 -2.94450969e-01 9.78031754e-01 -2.63798624e-01 -5.97395539e-01 1.40843940e+00 3.68673056e-01 2.52287030e-01 -7.92798877e-01 3.86930466e-01 4.04618263e-01 -1.85281541e-02 -8.57275009e-01 8.18797588e-01 -4.12026852e-01 -3.04049253e-01 4.12431359e-01 -3.84868123e-02 -2.03223109e-01 4.58207875e-01 3.55664343e-01 1.19048059e+00 -3.01179171e-01 5.23207307e-01 -4.99460191e-01 8.84304166e-01 3.37914288e-01 2.19619602e-01 6.87141240e-01 -4.52844232e-01 5.38316369e-01 7.91949809e-01 -7.49575913e-01 -1.35779321e+00 -3.50002348e-01 -5.95885627e-02 1.27346814e+00 -3.02545816e-01 -5.87787271e-01 -6.59653902e-01 -7.26401925e-01 -1.80646077e-01 1.19084787e+00 -8.20403337e-01 -2.25718975e-01 -3.40509057e-01 -8.01517963e-01 6.74361825e-01 4.42854851e-01 8.07437599e-01 -1.28565943e+00 -6.09526515e-01 -3.77126448e-02 -7.45427489e-01 -8.29550922e-01 -2.77161866e-01 1.84019655e-01 -5.25364518e-01 -1.13402152e+00 -3.76311392e-01 -5.74995279e-01 7.99401402e-02 1.34718388e-01 1.35906303e+00 5.05588293e-01 3.60397287e-02 -1.06295548e-01 -6.99446738e-01 -3.38648260e-01 -4.11252260e-01 1.57670528e-01 -1.02673039e-01 -3.07837754e-01 5.20371318e-01 -1.49924457e-01 -3.64937156e-01 4.53800350e-01 -4.80794936e-01 1.51997387e-01 1.69653505e-01 1.08789098e+00 -2.21110493e-01 6.63891137e-02 5.24974585e-01 -8.61941636e-01 1.15493786e+00 -7.05589950e-01 -5.29315956e-02 3.02480552e-02 -8.22159469e-01 -6.18551254e-01 9.12553668e-01 -1.16918005e-01 -8.36158395e-01 -3.22068095e-01 -3.80098447e-03 -4.11820710e-02 -8.35457072e-03 6.91843033e-01 2.44191840e-01 2.89632112e-01 1.30478132e+00 1.07908383e-01 -2.91346252e-01 -3.28632534e-01 -1.92211986e-01 1.30508292e+00 6.49866402e-01 -2.23877460e-01 6.30172908e-01 -2.81467289e-01 -1.74354956e-01 -6.26884937e-01 -1.39194679e+00 -8.01705897e-01 -6.03702724e-01 -6.25696659e-01 9.07827079e-01 -7.60419428e-01 -1.00548398e+00 5.38607061e-01 -1.41074455e+00 -1.35676041e-01 1.08513057e-01 2.72687405e-01 -5.32338202e-01 1.70281693e-01 -8.18198681e-01 -1.04036450e+00 -1.07242656e+00 -7.37598836e-01 4.48330820e-01 2.12643087e-01 -7.30974197e-01 -8.66905749e-01 2.76996970e-01 1.07085252e+00 3.88444752e-01 2.50391483e-01 9.92408216e-01 -1.34678018e+00 4.41527903e-01 -5.35774291e-01 -2.81621188e-01 5.55356801e-01 -5.13027608e-01 1.03157826e-01 -1.13484848e+00 -4.14498486e-02 2.11728975e-01 -7.85300851e-01 8.93481553e-01 -2.91658659e-03 1.00898325e+00 -4.93980855e-01 2.93332905e-01 -4.00779657e-02 1.09917819e+00 2.50031739e-01 9.75702643e-01 7.08647013e-01 6.15701020e-01 7.02486515e-01 8.01356077e-01 6.83145761e-01 3.61402094e-01 5.85174441e-01 3.42669755e-01 1.99679613e-01 -7.49618709e-02 -3.53144169e-01 6.63791776e-01 1.10401523e+00 -3.38635802e-01 -1.20301247e-01 -1.32227826e+00 4.86313730e-01 -2.09866977e+00 -1.33762205e+00 -1.15229189e+00 2.11471963e+00 6.43535137e-01 1.79894626e-01 5.00867128e-01 3.89265746e-01 6.94233894e-01 -5.37690967e-02 9.55312178e-02 -9.07651842e-01 -9.23322067e-02 -1.68324485e-01 -9.62151363e-02 5.60558379e-01 -1.12307870e+00 8.48929465e-01 5.85204935e+00 8.25743616e-01 -7.06736326e-01 1.75656945e-01 7.04272032e-01 -1.86046973e-01 1.07644349e-01 -3.28369349e-01 -7.36782789e-01 7.07353890e-01 1.19153202e+00 -3.58087152e-01 2.91955799e-01 9.88249719e-01 2.63891160e-01 -2.72246003e-01 -8.37521315e-01 9.79256392e-01 6.27591312e-01 -9.64214206e-01 -1.04036540e-01 -3.20289046e-01 8.14964652e-01 -2.03581348e-01 -1.31566808e-01 1.03630936e+00 1.23011120e-01 -1.40787399e+00 7.50240684e-01 6.60761952e-01 2.51080394e-01 -8.03494871e-01 1.44862294e+00 7.36736953e-01 -5.76447546e-01 -4.13441449e-01 -5.20894289e-01 -4.49719965e-01 -3.53917897e-01 8.32453728e-01 -8.32491517e-01 1.48238078e-01 9.11674738e-01 6.10322416e-01 -7.67107487e-01 1.10235524e+00 -4.84503239e-01 6.35243297e-01 4.71655190e-01 -6.87400103e-01 7.16576651e-02 1.47666961e-01 5.23689687e-01 1.61059904e+00 1.84580222e-01 8.57304037e-02 1.26422554e-01 7.82542109e-01 -2.67052412e-01 5.82850635e-01 -4.36630666e-01 9.76146460e-02 3.98745805e-01 1.60792804e+00 -3.28083694e-01 -5.33246636e-01 1.89781874e-01 7.15492249e-01 4.17636514e-01 -1.39566883e-01 -7.87973762e-01 -8.98245633e-01 -8.81862342e-02 1.32277489e-01 -2.70826429e-01 2.89440900e-01 -1.03150582e+00 -9.24525619e-01 -2.02559337e-01 -1.00894868e+00 5.84554851e-01 -1.17255330e+00 -1.42907000e+00 7.55271554e-01 -2.70635784e-01 -1.05938613e+00 8.20908137e-03 -7.60516405e-01 -9.00809467e-01 1.08225143e+00 -8.50402892e-01 -1.01520336e+00 -7.74168670e-01 6.16070092e-01 6.17778420e-01 -5.95801353e-01 5.83215237e-01 2.80268252e-01 -5.23519218e-01 4.18293566e-01 -4.56683226e-02 2.60810465e-01 9.56825972e-01 -1.31809485e+00 -3.33622009e-01 4.36386466e-01 -6.02806985e-01 2.95937479e-01 9.76579964e-01 -6.66357279e-01 -6.54073715e-01 -7.81451643e-01 1.82263470e+00 -7.86599636e-01 9.02547598e-01 6.03986792e-02 -9.65252995e-01 1.25512928e-01 3.26310337e-01 -6.48760200e-01 6.42345369e-01 2.63497651e-01 -4.47111696e-01 6.84345737e-02 -1.10634136e+00 1.48509338e-01 3.07704210e-01 -4.58968252e-01 -6.12626433e-01 8.17567110e-01 2.05256239e-01 -3.50502849e-01 -1.00889957e+00 1.73298046e-01 6.59530878e-01 -1.15247846e+00 3.39946985e-01 -1.01783085e+00 1.72332633e+00 -1.07416064e-01 -2.64823675e-01 -1.23433709e+00 -7.22967088e-01 -1.92871422e-01 2.04588417e-02 1.13089836e+00 6.46047056e-01 -3.17262076e-02 4.21042949e-01 5.39299846e-01 -3.30107868e-01 -6.93032324e-01 -6.24767303e-01 -5.07609487e-01 5.16793966e-01 -1.63617194e-01 1.51366722e-02 1.27424824e+00 7.48150229e-01 9.78528142e-01 -6.48390472e-01 -5.40868819e-01 2.66431630e-01 1.31442189e-01 7.13432729e-01 -1.33229959e+00 7.03616142e-02 -8.75256658e-01 -2.60435730e-01 -4.48848009e-01 -2.87519721e-03 -1.00699556e+00 1.35498822e-01 -1.46338534e+00 8.88480783e-01 2.51709968e-01 -2.79601127e-01 7.25487888e-01 -2.39842042e-01 3.27648491e-01 4.09575760e-01 5.40166497e-01 -5.76648414e-01 4.02100444e-01 1.09728611e+00 -1.42208621e-01 2.82552093e-02 1.11904450e-01 -6.98527515e-01 6.26482129e-01 1.08877552e+00 -4.08669323e-01 -5.64753339e-02 1.09471187e-01 5.31536281e-01 1.13754891e-01 3.27777505e-01 -9.51823711e-01 3.59677792e-01 -1.30716756e-01 6.34890378e-01 -7.08918512e-01 -3.10302917e-02 -3.35406601e-01 -3.48555297e-01 6.01676583e-01 -5.43699741e-01 1.43276259e-01 -2.07310289e-01 -2.06838652e-01 -2.77664065e-01 -6.80238008e-01 1.01701236e+00 -2.57188648e-01 -2.97842830e-01 -3.85209292e-01 -5.31985164e-01 1.16102479e-01 7.79315352e-01 6.33275285e-02 -1.00015390e+00 -7.81515956e-01 -7.93280482e-01 1.36246040e-01 -4.39974610e-05 4.80375767e-01 6.89219415e-01 -1.34940922e+00 -1.24576497e+00 -3.88518810e-01 1.53301761e-01 -8.11612964e-01 1.00180447e-01 1.32727683e+00 -4.58410800e-01 5.75271130e-01 -5.30356169e-01 -1.33611793e-02 -1.42852020e+00 3.53483617e-01 3.59137267e-01 -5.83305359e-01 -1.02612793e-01 6.54334128e-01 -2.11793825e-01 -4.69079018e-01 1.11217797e-01 5.43751657e-01 -8.81305397e-01 4.18956935e-01 7.66377687e-01 1.07621217e+00 3.79733890e-01 -8.12979519e-01 -1.47664458e-01 6.06390759e-02 -1.63996324e-01 6.88289478e-02 1.25636017e+00 3.14592153e-01 -5.80415130e-01 6.07185006e-01 1.04516113e+00 -1.49976864e-01 -1.92662291e-02 1.83082163e-01 2.20767558e-01 -2.89632946e-01 2.10336223e-01 -1.46090066e+00 -5.43941677e-01 1.09238076e+00 2.94053584e-01 6.75255060e-01 9.11166310e-01 -4.06882703e-01 7.06461906e-01 4.21707422e-01 1.00055270e-01 -1.60640526e+00 3.65924090e-01 1.35742497e+00 1.42705142e+00 -1.18612731e+00 1.53428214e-02 -6.96119666e-02 -1.08823860e+00 1.48232758e+00 8.79307628e-01 7.09978193e-02 2.90009737e-01 -2.05066115e-01 -1.00894153e-01 -3.54979813e-01 -1.03182662e+00 1.27808332e-01 6.91297948e-01 9.10217538e-02 1.05783951e+00 2.44234696e-01 -9.45501447e-01 1.12687135e+00 -7.64464736e-01 -3.29842567e-02 7.91842937e-01 4.09851611e-01 -1.04182637e+00 -2.18878925e-01 -4.76145416e-01 5.06638110e-01 -4.89004999e-01 -1.66070908e-01 -1.10343933e+00 6.36377811e-01 -9.29271206e-02 1.38540542e+00 -4.65862244e-01 -1.29593420e+00 6.70708358e-01 2.27341369e-01 -5.29282726e-02 -3.91529888e-01 -1.36010122e+00 -3.22202027e-01 5.91543019e-01 -2.96168894e-01 1.47268027e-01 -2.63941407e-01 -1.07937992e+00 -9.94379342e-01 -2.61494458e-01 4.71633822e-01 6.17888451e-01 8.17175865e-01 -5.97012974e-02 4.25620019e-01 1.03716707e+00 -4.25439090e-01 -8.01036596e-01 -1.52108741e+00 -5.92514873e-01 6.37426436e-01 -6.49051070e-02 -4.04464632e-01 -5.60134828e-01 5.39372377e-02]
[8.862120628356934, 11.072988510131836]
76404b7d-420d-43cb-9af6-dc4a8260de55
mamadroid2-0-the-holes-of-control-flow-graphs
2202.13922
null
https://arxiv.org/abs/2202.13922v1
https://arxiv.org/pdf/2202.13922v1.pdf
MaMaDroid2.0 -- The Holes of Control Flow Graphs
Android malware is a continuously expanding threat to billions of mobile users around the globe. Detection systems are updated constantly to address these threats. However, a backlash takes the form of evasion attacks, in which an adversary changes malicious samples such that those samples will be misclassified as benign. This paper fully inspects a well-known Android malware detection system, MaMaDroid, which analyzes the control flow graph of the application. Changes to the portion of benign samples in the train set and models are considered to see their effect on the classifier. The changes in the ratio between benign and malicious samples have a clear effect on each one of the models, resulting in a decrease of more than 40% in their detection rate. Moreover, adopted ML models are implemented as well, including 5-NN, Decision Tree, and Adaboost. Exploration of the six models reveals a typical behavior in different cases, of tree-based models and distance-based models. Moreover, three novel attacks that manipulate the CFG and their detection rates are described for each one of the targeted models. The attacks decrease the detection rate of most of the models to 0%, with regards to different ratios of benign to malicious apps. As a result, a new version of MaMaDroid is engineered. This model fuses the CFG of the app and static analysis of features of the app. This improved model is proved to be robust against evasion attacks targeting both CFG-based models and static analysis models, achieving a detection rate of more than 90% against each one of the attacks.
['Amit Dvir', 'Enrico Mariconti', 'Chen Hajaj', 'Harel Berger']
2022-02-28
null
null
null
null
['android-malware-detection']
['miscellaneous']
[ 1.46281824e-01 3.73980477e-02 -4.14164603e-01 4.36938629e-02 -1.65941179e-01 -9.85628903e-01 7.91835427e-01 -1.58493258e-02 -1.78197369e-01 4.46978837e-01 -4.11840200e-01 -8.35111499e-01 1.02507034e-02 -9.62204099e-01 -7.81661332e-01 -5.10718882e-01 -2.51097202e-01 5.63659891e-02 8.21786106e-01 -2.75331408e-01 4.35191363e-01 6.10481620e-01 -1.75737906e+00 4.66959000e-01 6.41556323e-01 8.45061362e-01 -4.45006222e-01 8.31028223e-01 3.68046276e-02 2.50616342e-01 -1.07753408e+00 -6.57674849e-01 3.34674686e-01 4.87569273e-02 -4.79144037e-01 -4.91533399e-01 8.47633108e-02 -3.51084441e-01 -1.54242367e-02 1.34764814e+00 5.65022677e-02 -5.59378803e-01 5.55673420e-01 -1.52188897e+00 -9.79975313e-02 5.29213011e-01 -6.12366617e-01 1.60558775e-01 6.63070381e-01 3.37844908e-01 4.63657945e-01 -2.49173671e-01 3.89846742e-01 1.17700076e+00 5.98742247e-01 5.48496604e-01 -1.12210310e+00 -7.62019217e-01 -6.15296848e-02 6.51541725e-02 -1.11355913e+00 -1.35549411e-01 5.88086009e-01 -5.46306729e-01 7.43592918e-01 8.11250925e-01 7.71360457e-01 1.41703629e+00 8.13191712e-01 1.10835172e-01 1.32713342e+00 -2.66146749e-01 5.41571796e-01 5.96706450e-01 4.66640979e-01 3.60483646e-01 8.23093951e-01 1.86168864e-01 -2.40455847e-03 -8.43387425e-01 -1.27054229e-01 1.20329075e-01 -2.33773217e-02 -1.81534350e-01 -3.22515428e-01 8.17307115e-01 3.20117138e-02 5.26363075e-01 -2.69863922e-02 -1.39750034e-01 6.51086926e-01 -6.80613741e-02 2.65900970e-01 4.71851856e-01 -6.72116220e-01 -4.07800764e-01 -5.69488287e-01 1.44623548e-01 9.50380921e-01 4.44910914e-01 7.02304184e-01 8.33805799e-02 -2.40545068e-02 2.81647414e-01 3.64222825e-01 6.94588721e-01 7.96203136e-01 -3.11560154e-01 9.91530046e-02 1.24272251e+00 -2.41667107e-01 -1.47546613e+00 -9.36629847e-02 -4.40315932e-01 -2.46530339e-01 4.90989715e-01 3.06998849e-01 -7.19197839e-02 -7.25125074e-01 1.51901615e+00 5.49392283e-01 1.81622267e-01 -1.80188909e-01 3.17413062e-02 2.10863084e-01 4.08101767e-01 7.25026010e-03 -3.45452279e-01 1.44738078e+00 -2.85283506e-01 -5.03623724e-01 -1.21578135e-01 8.08246434e-01 -4.99942660e-01 1.25605571e+00 4.60109442e-01 -5.56959093e-01 -4.23573285e-01 -1.37394083e+00 7.11997330e-01 -9.98459697e-01 -2.54584521e-01 1.31130978e-01 1.72173357e+00 -7.68920600e-01 4.43258882e-01 -7.61499703e-01 -1.73510805e-01 3.34831953e-01 6.66602373e-01 -9.71252248e-02 2.40491927e-01 -9.89026785e-01 5.71814716e-01 2.34460145e-01 -2.13465333e-01 -9.98812020e-01 -6.22077167e-01 -5.12529314e-01 -6.89425915e-02 4.57963198e-01 -8.77899304e-03 9.32325125e-01 -8.99968386e-01 -1.40309930e+00 7.19700575e-01 -5.43546043e-02 -5.86357832e-01 6.47818983e-01 -1.79258570e-01 -8.02807450e-01 -2.54683346e-01 -4.48186807e-02 -1.70207530e-01 1.28827477e+00 -1.23041010e+00 -4.81671542e-01 -5.88921130e-01 2.77369976e-01 -6.29107475e-01 -6.14195049e-01 -6.03528507e-02 -1.10800326e-01 -3.35827887e-01 -6.09092236e-01 -1.18581486e+00 9.48624983e-02 -6.65540516e-01 -6.78180218e-01 3.00723165e-01 1.60361862e+00 -7.27607012e-01 1.69470537e+00 -2.21486616e+00 -3.17011833e-01 5.72994411e-01 2.78490990e-01 9.03689981e-01 1.94001406e-01 2.40717500e-01 7.66306370e-02 6.57267153e-01 -3.45557660e-01 1.12351477e-02 -2.55498946e-01 2.04684868e-01 -4.23486084e-01 3.46967936e-01 -1.29097641e-01 5.60161114e-01 -5.75578868e-01 1.15329824e-01 1.15627564e-01 5.04090667e-01 -6.52711391e-01 -4.91535245e-03 -2.52767146e-01 1.09095313e-01 -5.61434090e-01 5.47950327e-01 9.23020005e-01 3.10270727e-01 4.89023209e-01 7.76914954e-02 -1.26466167e-03 3.13436657e-01 -7.83376575e-01 4.39222544e-01 -4.79179680e-01 2.10493788e-01 -1.12046026e-01 -5.31124294e-01 9.16356981e-01 -1.08595610e-01 1.94792762e-01 -3.82697225e-01 3.60391885e-01 3.23597580e-01 4.89611715e-01 -4.53379780e-01 2.57798165e-01 6.49010420e-01 -7.92472959e-02 4.41590607e-01 -4.35460806e-01 2.70732403e-01 8.05089157e-03 6.87536150e-02 1.43861902e+00 -1.23301759e-01 6.02875054e-01 -3.43592972e-01 1.04678273e+00 -1.81799993e-01 2.00781375e-01 6.13320887e-01 -2.47248828e-01 -1.64991647e-01 8.76084208e-01 -1.32838696e-01 -4.01380807e-01 -9.78283226e-01 1.05953805e-01 9.45320010e-01 2.87564211e-02 -6.88690782e-01 -1.36225545e+00 -1.35490751e+00 8.57889056e-02 8.72742295e-01 -9.46911633e-01 -8.94357800e-01 -5.92335582e-01 -7.78679967e-01 9.43698525e-01 -1.72186106e-01 7.57119477e-01 -7.85242677e-01 -9.67786729e-01 -2.58552372e-01 4.03492838e-01 -9.64237034e-01 -1.03161134e-01 2.30468884e-02 -7.59916067e-01 -1.65413940e+00 1.60791844e-01 -1.48509651e-01 3.86445135e-01 1.11842252e-01 5.26558816e-01 3.93998474e-01 -2.87212640e-01 3.61524850e-01 -5.02511561e-01 -4.87615258e-01 -1.29777229e+00 2.36517638e-01 1.57492951e-01 4.02092904e-01 4.51005220e-01 -4.12751317e-01 -1.51873589e-01 5.32911658e-01 -9.48392451e-01 -9.36060786e-01 3.39280337e-01 1.63355380e-01 1.40018776e-01 2.74250150e-01 4.00575370e-01 -1.12880743e+00 8.51041377e-01 -6.61441088e-01 -6.37356639e-01 5.59515022e-02 -8.87075067e-01 -1.26492739e-01 9.07122791e-01 -1.05185008e+00 -7.27626204e-01 -1.20420292e-01 -3.11569542e-01 -1.29751667e-01 -1.87504441e-01 7.78755769e-02 -7.54980803e-01 -3.00999641e-01 9.15104628e-01 2.00007856e-01 2.80896842e-01 -2.84594417e-01 -1.03795230e-02 7.61651576e-01 3.32541317e-02 -8.80380049e-02 1.08186483e+00 4.45120871e-01 -4.04410437e-02 -9.22477841e-01 -1.99677661e-01 -6.93619177e-02 -3.07439536e-01 -2.92079985e-01 6.52927935e-01 -8.04039687e-02 -8.61536443e-01 8.02391171e-01 -9.08286512e-01 -8.77919495e-02 7.24686682e-02 3.14734019e-02 6.85634464e-02 5.33055246e-01 -3.06706816e-01 -7.81572104e-01 -2.51623750e-01 -1.67905056e+00 7.31309652e-01 1.03953771e-01 -3.21914315e-01 -1.00752485e+00 2.47642826e-02 1.28161445e-01 5.46653271e-01 2.94334859e-01 1.11995900e+00 -1.33997869e+00 -2.54198872e-02 -6.95856690e-01 2.85937488e-01 5.42766988e-01 5.00199556e-01 5.78355193e-01 -1.23801148e+00 -3.43312442e-01 5.09380460e-01 5.14079273e-01 2.89727002e-01 7.89527223e-02 1.03878117e+00 -7.11357057e-01 -7.14542091e-01 1.75532028e-01 1.08932126e+00 9.33238924e-01 9.00920510e-01 3.63540858e-01 5.11518657e-01 3.75108629e-01 5.44669926e-01 1.45003974e-01 -2.16407940e-01 9.99804199e-01 9.78372753e-01 3.87486368e-01 2.63752639e-01 -2.21638814e-01 9.35314298e-01 1.70766741e-01 1.95824355e-01 5.37684038e-02 -7.41007090e-01 -1.49999335e-01 -1.25391579e+00 -8.80815446e-01 -3.41864973e-01 2.65381122e+00 4.42360580e-01 7.08423018e-01 4.41673636e-01 6.24820173e-01 8.07243764e-01 2.76103348e-01 -4.55319315e-01 -1.00094771e+00 4.17113572e-01 2.27635577e-01 5.48963487e-01 6.28078043e-01 -9.57668364e-01 7.99695015e-01 6.04754448e+00 1.00937748e+00 -1.52581692e+00 2.60644615e-01 5.65088332e-01 3.32497239e-01 -1.55494362e-01 1.01662263e-01 -9.33756053e-01 8.94791842e-01 1.18737543e+00 -6.13922700e-02 4.35267508e-01 1.25552452e+00 2.02491209e-01 -2.66837269e-01 -7.20449269e-01 6.62223876e-01 2.04994708e-01 -1.01516378e+00 1.74685404e-01 7.09065259e-01 2.04002261e-01 -4.34371471e-01 1.79499790e-01 4.47981983e-01 4.15977240e-02 -8.72190535e-01 4.38864231e-01 1.66515246e-01 6.01203501e-01 -8.59155238e-01 7.66662300e-01 4.02470261e-01 -8.92086387e-01 -5.50196290e-01 8.56979787e-02 -2.18596250e-01 -2.99357146e-01 5.89109361e-01 -1.12614083e+00 2.60031104e-01 7.84677625e-01 2.92126536e-01 -1.18221974e+00 4.68846947e-01 -8.70086700e-02 1.08142853e+00 -1.08500652e-01 -3.26814890e-01 -1.92965478e-01 -1.09136023e-01 8.25554013e-01 9.17853057e-01 1.10356137e-01 -6.53271973e-01 -1.97997153e-01 7.53301442e-01 2.64986187e-01 -6.64225500e-03 -1.00884295e+00 7.12677538e-02 5.52585185e-01 1.31686080e+00 -5.34030199e-01 -2.21555650e-01 2.02712696e-02 5.80383003e-01 -1.82235524e-01 3.18137519e-02 -1.13417149e+00 -1.42310306e-01 8.55747521e-01 6.81980073e-01 1.20569997e-01 4.79901955e-02 -2.48373926e-01 -5.45793414e-01 1.42537862e-01 -1.42265165e+00 1.11520037e-01 -1.66290328e-01 -8.19679618e-01 6.53100371e-01 2.15941161e-01 -1.12901485e+00 -4.51190650e-01 -7.38963723e-01 -7.64721692e-01 4.94808078e-01 -6.45647407e-01 -9.01717424e-01 -1.57679304e-01 5.44294298e-01 2.05305040e-01 -4.56149518e-01 6.70599878e-01 2.00000882e-01 -6.52676404e-01 9.15645838e-01 -3.00822705e-01 -1.09830163e-01 2.17240542e-01 -7.96403050e-01 4.61545259e-01 9.64563608e-01 -1.21647410e-01 1.02352512e+00 7.68266916e-01 -1.07751513e+00 -1.37863934e+00 -1.16175568e+00 2.94995368e-01 -5.76184988e-01 8.00506473e-01 -6.05081856e-01 -9.83173549e-01 5.91847777e-01 -1.91434547e-01 -2.47432858e-01 4.79419976e-01 -2.17401162e-01 -6.97873116e-01 -1.95348099e-01 -1.57045186e+00 8.04829419e-01 6.98630631e-01 -3.78313363e-01 -6.42450973e-02 1.18229426e-02 7.69669592e-01 -1.97966094e-03 -6.23973250e-01 6.19817495e-01 6.55197144e-01 -1.48598969e+00 8.35547328e-01 -4.74035650e-01 -4.69578356e-02 -2.58662671e-01 -2.06020206e-01 -8.64453614e-01 2.64755070e-01 -6.32985353e-01 -6.30328655e-01 1.28157103e+00 4.65824842e-01 -1.20032287e+00 6.52682483e-01 9.68632288e-04 1.68231517e-01 -9.29814219e-01 -1.04086006e+00 -9.39700544e-01 -4.45139483e-02 -5.92513680e-01 6.53524816e-01 7.20153213e-01 -2.40568653e-01 2.21443295e-01 -9.99683887e-02 1.01162560e-01 1.71937555e-01 -6.28864706e-01 1.14741862e+00 -1.15933204e+00 -5.35844028e-01 -4.22258437e-01 -6.78334594e-01 -2.94794977e-01 -5.60832098e-02 -6.03321075e-01 -6.75041437e-01 -5.41797876e-01 -4.09406377e-03 -2.37689316e-01 3.57396662e-01 4.53489482e-01 3.97298597e-02 3.26801717e-01 3.51321325e-02 1.20674491e-01 1.50341406e-01 -1.77192651e-02 4.38709378e-01 -1.85781986e-01 -5.92310309e-01 6.70034945e-01 -4.95148569e-01 9.71746087e-01 1.03296304e+00 -6.13988340e-01 -5.23441076e-01 5.12662888e-01 2.78811246e-01 -5.21283746e-01 3.89185995e-01 -1.08661544e+00 -4.62938517e-01 8.13490823e-02 6.18139505e-02 -2.39499539e-01 2.50417054e-01 -1.09310830e+00 3.39078546e-01 1.18342328e+00 4.76285368e-02 3.43280286e-01 4.01878715e-01 5.17366707e-01 1.79657340e-01 -3.34426820e-01 8.66368890e-01 1.82813212e-01 -3.14834028e-01 -1.38509437e-01 -6.50805771e-01 -2.85199046e-01 1.63441622e+00 -7.18961298e-01 -6.48588717e-01 -1.29088327e-01 -4.88822997e-01 -5.84446251e-01 5.04812896e-01 6.20897055e-01 2.43920162e-01 -7.48426974e-01 -5.32064103e-02 4.76137608e-01 -2.81255413e-03 -7.38719881e-01 -2.39184228e-04 8.10127914e-01 -3.80559385e-01 5.32606095e-02 -2.39715457e-01 -6.32510126e-01 -1.98477662e+00 1.01806128e+00 6.08110964e-01 -4.86151427e-01 -4.47732210e-02 2.49596220e-02 -2.00736567e-01 -5.43569207e-01 -1.82924271e-02 -1.72386259e-01 -3.47201914e-01 -9.54250842e-02 5.93874812e-01 6.84776783e-01 2.28633419e-01 -7.25220978e-01 -6.72130287e-01 4.73044038e-01 -1.24833308e-01 2.25814193e-01 6.20691240e-01 3.86419982e-01 -4.19884533e-01 3.75004828e-01 1.20448685e+00 1.05846107e+00 -6.61561489e-01 6.35275304e-01 1.55168846e-01 -4.85636801e-01 -6.47380531e-01 -9.45003569e-01 -8.23015392e-01 6.27873003e-01 8.57067823e-01 8.83537710e-01 1.03924286e+00 -2.52964377e-01 4.38885987e-01 4.75532040e-02 5.18649995e-01 -4.65112835e-01 1.09215051e-01 3.45621616e-01 5.23770690e-01 -7.84843445e-01 -2.59696338e-02 -6.83974206e-01 -2.49059245e-01 8.53068948e-01 6.80743337e-01 -1.73384711e-01 8.56455505e-01 4.95165229e-01 -2.17582002e-01 -1.84389204e-02 -2.95405895e-01 4.23103124e-01 2.00568616e-01 9.44761038e-01 -1.24395363e-01 2.20805600e-01 -6.29710197e-01 6.50506139e-01 -2.35522151e-01 -3.82996917e-01 6.92071497e-01 7.67377913e-01 -3.73098999e-01 -1.23008966e+00 -6.11878157e-01 5.00425041e-01 -6.00060225e-01 2.17876017e-01 -9.22092557e-01 1.17854798e+00 4.05803561e-01 1.15096843e+00 -2.68285930e-01 -1.15870512e+00 2.16771215e-01 8.26412514e-02 -7.46704713e-02 -5.35012782e-01 -1.13951349e+00 -3.30005825e-01 1.03496805e-01 -5.41234553e-01 1.57874048e-01 -4.94717240e-01 -1.07006109e+00 -3.83918613e-01 -2.33736157e-01 8.32466185e-02 7.74251461e-01 9.32108402e-01 6.02553785e-01 4.41861898e-01 8.52427602e-01 -5.95560193e-01 -7.35132575e-01 -9.25762773e-01 -2.71001965e-01 2.36538023e-01 9.43146423e-02 -8.22522879e-01 -7.36915410e-01 -3.43407661e-01]
[14.409613609313965, 9.674015998840332]
79684ad9-6d86-4714-a094-087e173032b3
ibiscape-a-simulated-benchmark-for-multi
2206.13455
null
https://arxiv.org/abs/2206.13455v2
https://arxiv.org/pdf/2206.13455v2.pdf
IBISCape: A Simulated Benchmark for multi-modal SLAM Systems Evaluation in Large-scale Dynamic Environments
The development process of high-fidelity SLAM systems depends on their validation upon reliable datasets. Towards this goal, we propose IBISCape, a simulated benchmark that includes data synchronization and acquisition APIs for telemetry from heterogeneous sensors: stereo-RGB/DVS, Depth, IMU, and GPS, along with the ground truth scene segmentation and vehicle ego-motion. Our benchmark is built upon the CARLA simulator, whose back-end is the Unreal Engine rendering a high dynamic scenery simulating the real world. Moreover, we offer 34 multi-modal datasets suitable for autonomous vehicles navigation, including scenarios for scene understanding evaluation like accidents, along with a wide range of frame quality based on a dynamic weather simulation class integrated with our APIs. We also introduce the first calibration targets to CARLA maps to solve the unknown distortion parameters problem of CARLA simulated DVS and RGB cameras. Finally, using IBISCape sequences, we evaluate four ORB-SLAM3 systems (monocular RGB, stereo RGB, Stereo Visual Inertial (SVI), and RGB-D) performance and BASALT Visual-Inertial Odometry (VIO) system on various sequences collected in simulated large-scale dynamic environments. Keywords: benchmark, multi-modal, datasets, Odometry, Calibration, DVS, SLAM
['Samia Bouchafa', 'Désiré Sidibé', 'Fabien Bonardi', 'Abanob Soliman']
2022-06-27
null
null
null
null
['scene-segmentation']
['computer-vision']
[-4.83868927e-01 -4.38285142e-01 3.34950149e-01 -5.89939177e-01 -4.77442861e-01 -8.69347036e-01 7.40432680e-01 -2.78140008e-01 -5.00065625e-01 6.12948656e-01 -2.69977570e-01 -3.61809283e-01 -4.95683812e-02 -8.72247815e-01 -9.32938755e-01 -5.63376665e-01 -1.24068804e-01 9.96509790e-01 4.70201403e-01 -6.28365636e-01 1.56304628e-01 8.50644410e-01 -1.82510507e+00 -6.10230923e-01 7.50819683e-01 1.11284006e+00 2.62782753e-01 7.95082450e-01 2.24129051e-01 4.14299846e-01 -3.38849813e-01 -2.49294966e-01 7.50565410e-01 -1.15889991e-02 -2.65899003e-01 -9.34389904e-02 6.05634391e-01 -4.55424845e-01 -5.13851941e-01 9.35991585e-01 5.64947724e-01 -2.34674662e-03 1.06361337e-01 -1.91775119e+00 2.41937667e-01 -5.30371189e-01 -4.05685157e-02 2.14382280e-02 8.24132502e-01 6.48364782e-01 7.85248056e-02 -6.97717011e-01 1.10940182e+00 1.09359360e+00 9.18134212e-01 -2.08124574e-02 -6.97658360e-01 -5.36018074e-01 -4.91463453e-01 4.37504917e-01 -1.70037258e+00 -3.99750113e-01 2.74418950e-01 -5.10627747e-01 1.02629435e+00 2.90418535e-01 9.19356883e-01 1.11067510e+00 5.17234981e-01 2.62913741e-02 1.02551651e+00 2.27864757e-01 3.85942250e-01 2.47959882e-01 1.77894264e-01 7.17312574e-01 5.93838036e-01 4.42014843e-01 -7.23884583e-01 6.60912320e-02 4.35240805e-01 -1.96800753e-02 -3.76488417e-01 -8.58310878e-01 -1.31248772e+00 3.68578494e-01 3.84106636e-01 -5.14672697e-01 -4.12439674e-01 1.07691407e-01 3.97019416e-01 5.56905925e-01 2.55368985e-02 -7.77481720e-02 -4.59872097e-01 -4.73388433e-01 -5.10196865e-01 4.43371594e-01 6.74517334e-01 1.63564992e+00 1.38283157e+00 3.04643422e-01 4.75825399e-01 7.29186311e-02 7.41924107e-01 1.46042454e+00 5.46263039e-01 -1.24030125e+00 5.53681910e-01 5.18304229e-01 3.30209643e-01 -9.44707334e-01 -8.07830155e-01 -9.66449380e-02 -5.44284880e-01 5.16746402e-01 -1.48794279e-01 -1.32342681e-01 -7.64066815e-01 1.09329069e+00 7.14120269e-01 5.62443674e-01 6.29957020e-01 1.20600736e+00 8.12458038e-01 4.78556931e-01 -5.16453207e-01 4.99711409e-02 1.03250897e+00 -5.50997257e-01 -7.79262960e-01 -3.41343343e-01 9.38296556e-01 -7.55620420e-01 7.55162358e-01 2.68598229e-01 -4.91341263e-01 -6.80637896e-01 -1.40960634e+00 -1.16235964e-01 -4.77242976e-01 -1.30626515e-01 5.19429803e-01 5.59285760e-01 -1.36624932e+00 1.91335842e-01 -8.50508511e-01 -7.39419699e-01 -3.43183458e-01 2.15508446e-01 -6.65500820e-01 -1.24826171e-01 -1.41352546e+00 1.30914962e+00 3.68570983e-01 2.11417988e-01 -1.19527805e+00 -7.74218917e-01 -1.32747626e+00 -6.83867455e-01 1.73104592e-02 -8.98570180e-01 8.07157516e-01 -4.28884625e-01 -1.67180037e+00 9.69230592e-01 -1.38510630e-01 -8.07490528e-01 6.96535885e-01 -2.86158681e-01 -5.66505432e-01 -1.52152613e-01 2.00667977e-01 5.52882493e-01 1.32479787e-01 -1.44225407e+00 -6.70055389e-01 -6.52090609e-01 1.80921778e-02 5.86061954e-01 6.98667884e-01 -3.91549051e-01 -6.18752778e-01 4.07002032e-01 5.77142835e-01 -1.30441201e+00 -2.12014064e-01 -1.66582912e-01 -1.75556958e-01 7.66127527e-01 9.82638001e-01 -4.64176953e-01 3.12200904e-01 -2.35544229e+00 -9.70964208e-02 3.34359527e-01 -2.54241198e-01 -9.23980176e-02 1.42717347e-01 2.19363376e-01 3.56050402e-01 -5.91016531e-01 1.91651851e-01 -5.38979173e-01 1.02029279e-01 7.26072133e-01 -3.34638149e-01 1.09438992e+00 -6.37721479e-01 6.07065856e-01 -7.02230990e-01 -4.19754565e-01 9.48145390e-01 4.53866363e-01 -2.76884854e-01 8.63001496e-02 1.92136735e-01 6.99052572e-01 -2.26084851e-02 6.95915639e-01 1.31184280e+00 3.47620457e-01 -2.03752011e-01 -1.37525752e-01 -5.21018445e-01 2.53807455e-01 -1.79100811e+00 2.22677541e+00 -5.34973741e-01 9.56725061e-01 3.26482117e-01 -2.41893413e-03 9.63572085e-01 -1.03821442e-03 3.68150622e-01 -1.07060599e+00 2.98279047e-01 4.12260026e-01 -5.77035487e-01 -6.00332379e-01 1.14055681e+00 3.40763390e-01 -5.40532656e-02 -3.08247268e-01 -4.57482338e-02 -9.85405982e-01 1.18322656e-01 3.71921778e-01 8.96007717e-01 3.35083574e-01 8.50774646e-02 -1.49398878e-01 5.46822667e-01 5.73614120e-01 7.67165482e-01 3.70926350e-01 -2.42743641e-01 8.70820165e-01 9.43177789e-02 -4.41600204e-01 -1.22544241e+00 -1.20084155e+00 -2.28823245e-01 6.58617094e-02 1.08952701e+00 -2.56788820e-01 -3.09336007e-01 1.24319538e-01 2.62636036e-01 5.00348330e-01 -2.87761927e-01 3.39535251e-02 -1.32013142e-01 -5.45626581e-01 5.68646073e-01 -1.43596277e-01 7.99746454e-01 -2.96875060e-01 -1.01074922e+00 7.82756805e-02 -1.29017338e-01 -1.53481901e+00 2.22553372e-01 -1.13703318e-01 -8.58110428e-01 -1.20949352e+00 -2.17181668e-02 -5.89003190e-02 1.58743486e-01 7.82022297e-01 9.91771221e-01 -3.40961695e-01 4.33545699e-03 7.20117629e-01 -2.95036912e-01 -2.94700712e-01 -3.00672382e-01 -6.00407004e-01 4.56191927e-01 -1.01325497e-01 -5.27254641e-02 -3.69913310e-01 -4.33338553e-01 8.59251142e-01 -7.15881884e-01 3.78324866e-01 -7.51232952e-02 2.77694408e-02 6.36788249e-01 -5.41763365e-01 -5.56698561e-01 -2.53960043e-01 -2.47486338e-01 -5.97931385e-01 -1.45584702e+00 -2.19199941e-01 -3.68695974e-01 -4.34263319e-01 9.88460407e-02 2.35798627e-01 -8.83051813e-01 2.21911043e-01 -9.86313820e-02 -6.32578373e-01 -7.46690556e-02 3.90847594e-01 -3.40819746e-01 -5.00802994e-01 8.70786428e-01 2.86312312e-01 1.46459565e-01 2.00499780e-02 2.31481969e-01 6.38932168e-01 1.01203573e+00 -1.84059933e-01 9.26821887e-01 1.03431427e+00 3.05745900e-01 -9.45092499e-01 5.78350909e-02 -7.84140825e-01 -5.07278740e-01 -5.16952097e-01 7.75998950e-01 -1.51811957e+00 -7.08322346e-01 7.93345690e-01 -1.26958358e+00 -5.27098656e-01 -1.28425598e-01 9.26041424e-01 -7.50704944e-01 3.85261983e-01 -1.28291801e-01 -4.57103938e-01 1.71805415e-02 -1.69148684e+00 1.29641032e+00 3.22400779e-01 1.96252480e-01 -7.99850762e-01 5.50815582e-01 3.26851875e-01 2.90068805e-01 6.72375202e-01 -2.85445631e-01 1.79034248e-01 -1.18393636e+00 -1.87208369e-01 -1.76379383e-02 -5.64938411e-02 -3.25082034e-01 1.77283406e-01 -8.92072260e-01 -3.20899606e-01 -6.83741942e-02 -1.03327267e-01 2.01705962e-01 1.40111655e-01 1.51875168e-01 3.45337957e-01 -1.69775650e-01 1.62732100e+00 1.81767297e+00 1.57062307e-01 9.18441117e-01 9.79924262e-01 8.64320934e-01 8.86883661e-02 1.15628898e+00 6.30580485e-01 1.08227706e+00 9.68269765e-01 1.23879695e+00 -7.73342233e-03 1.14194728e-01 1.85202196e-01 4.46874768e-01 7.07087219e-01 -2.31433198e-01 -9.74205416e-03 -1.12428236e+00 2.96577305e-01 -1.65262485e+00 -5.34919441e-01 -9.89619434e-01 2.48848271e+00 3.13323624e-02 1.18824258e-01 -4.86164987e-01 -1.00448892e-01 3.52418900e-01 1.99579358e-01 -4.44099039e-01 -2.71931469e-01 -5.88096321e-01 -4.73356098e-01 1.43159795e+00 7.19234884e-01 -7.10601568e-01 1.01259589e+00 5.10065842e+00 1.00999631e-01 -1.34136283e+00 3.98919612e-01 -3.86040956e-01 1.89388141e-01 -4.81373847e-01 3.31483334e-01 -1.02958035e+00 4.68272924e-01 1.60327113e+00 -2.01675251e-01 3.34946394e-01 1.09777129e+00 4.80956107e-01 -5.70698380e-01 -5.68735242e-01 1.33326352e+00 7.44601637e-02 -1.61963129e+00 -3.67326587e-01 2.75279075e-01 8.54400516e-01 1.13467443e+00 -3.87673646e-01 1.01936340e-01 5.07245481e-01 -1.85568407e-01 1.20583856e+00 4.33855683e-01 6.53409600e-01 -5.46624482e-01 8.95336330e-01 1.92504987e-01 -1.12010205e+00 3.87127638e-01 -4.77315724e-01 2.65682451e-02 5.64199984e-01 4.22438383e-01 -9.14974868e-01 1.27982974e+00 8.74705315e-01 7.96374917e-01 -6.77007377e-01 1.39043081e+00 -1.66116923e-01 -2.08923429e-01 -6.56897008e-01 4.73685980e-01 3.45524311e-01 -5.09778023e-01 6.27990723e-01 8.32129300e-01 7.57406056e-01 1.00183152e-02 -6.19994663e-02 1.62516579e-01 5.18612444e-01 -2.75658935e-01 -1.09009194e+00 1.08482099e+00 4.97767687e-01 1.01470029e+00 -2.46468857e-01 -5.30210495e-01 -2.79919058e-01 7.18589783e-01 -5.39022088e-01 3.17174673e-01 -1.32107234e+00 -5.66370934e-02 1.37161386e+00 4.87256683e-02 -4.51033026e-01 -8.86124074e-01 -2.35628068e-01 -1.21487176e+00 -6.58756122e-02 -5.22337914e-01 -8.46970081e-02 -1.62700605e+00 1.67764053e-02 6.30870342e-01 9.68642067e-03 -1.88428748e+00 -3.04321855e-01 -4.91880655e-01 1.92645751e-02 8.41442883e-01 -1.70304775e+00 -9.17779684e-01 -1.29665983e+00 1.00548816e+00 2.66355872e-01 -1.26473904e-01 4.48334873e-01 6.48008108e-01 -2.20493093e-01 -2.48923749e-01 5.96005499e-01 -4.91241157e-01 6.44061804e-01 -1.00021207e+00 8.25017810e-01 1.06029069e+00 -1.81708023e-01 1.78238884e-01 1.11158383e+00 -6.76931977e-01 -2.22648811e+00 -1.12649167e+00 4.72461283e-01 -5.00172377e-01 5.51300883e-01 -2.99767315e-01 -6.16874397e-01 1.02392507e+00 -1.00547977e-01 3.96394610e-01 -2.12597013e-01 -4.64738727e-01 7.34140724e-02 -4.87393081e-01 -1.25612950e+00 3.06955397e-01 8.74776125e-01 -4.95094746e-01 -9.25295725e-02 4.41816062e-01 7.40754724e-01 -1.51911318e+00 -7.74167597e-01 5.92615187e-01 4.83425945e-01 -1.59145451e+00 1.00072169e+00 4.06333029e-01 -3.62006873e-01 -9.47967887e-01 -5.79119563e-01 -1.23831546e+00 3.76141012e-01 -4.43977803e-01 3.33349735e-01 8.87949347e-01 2.11261516e-03 -1.01454079e+00 5.99561512e-01 4.88142043e-01 -7.79033124e-01 4.01012301e-01 -1.35633624e+00 -9.85040009e-01 -1.00445807e+00 -1.03933978e+00 8.75073433e-01 7.86100388e-01 -7.07915127e-01 -2.40812317e-01 -3.01136374e-01 1.03211713e+00 7.02166200e-01 -2.23291010e-01 1.82415891e+00 -9.76650774e-01 1.47811264e-01 1.55176252e-01 -1.42111897e+00 -8.40979397e-01 -1.54829875e-01 -3.66787404e-01 1.14432618e-01 -1.43634176e+00 -6.56170547e-01 -5.24347484e-01 4.09675688e-01 -2.49658823e-01 5.76507688e-01 1.57458857e-01 3.22479419e-02 3.95472407e-01 -7.11849332e-01 5.62917829e-01 7.96259701e-01 8.85722637e-02 -7.35173076e-02 -2.29432762e-01 5.20915627e-01 6.86877012e-01 3.20485026e-01 -3.86187553e-01 -4.33256835e-01 -8.43839288e-01 5.60991108e-01 5.30415773e-01 7.38371015e-01 -1.73969662e+00 4.50215489e-01 -1.48938626e-01 -8.57043713e-02 -1.12584496e+00 7.06278026e-01 -1.10843062e+00 1.03365028e+00 5.34547687e-01 7.30933607e-01 5.00089407e-01 3.63301158e-01 6.74782619e-02 -3.98858070e-01 1.21864758e-01 6.99983239e-01 1.15744017e-01 -1.60161853e+00 4.52977747e-01 -1.91345304e-01 -1.76541284e-01 1.19673526e+00 -6.32333934e-01 -5.60523689e-01 -2.68978685e-01 -2.37529889e-01 3.75883490e-01 1.20708907e+00 4.33399171e-01 6.48966312e-01 -1.42299652e+00 -2.98112243e-01 7.21174002e-01 5.12395024e-01 5.02529740e-01 5.39608955e-01 8.37775826e-01 -1.61467612e+00 4.97539729e-01 -5.03428936e-01 -1.30069613e+00 -9.84217405e-01 3.22142810e-01 5.83458364e-01 4.77775335e-01 -4.94164050e-01 3.04024965e-01 -1.78387791e-01 -8.72715056e-01 -3.38585265e-02 -6.99634612e-01 2.90193528e-01 -2.19554037e-01 3.21252823e-01 5.21167278e-01 5.39833367e-01 -1.27825069e+00 -7.38847077e-01 8.48029375e-01 9.23530400e-01 -3.41466188e-01 8.81788075e-01 -8.73570621e-01 8.39999467e-02 4.57821637e-01 1.26723802e+00 -1.43194214e-01 -1.48043692e+00 1.22286133e-01 -1.75237581e-01 -7.12319374e-01 -7.09254388e-03 -1.69721887e-01 -9.58841980e-01 4.92575228e-01 1.11078465e+00 -1.33997366e-01 7.22293139e-01 -4.59865093e-01 4.20205206e-01 4.92379606e-01 1.23078024e+00 -8.35202277e-01 -7.42820323e-01 1.05986178e+00 7.29225159e-01 -1.49879658e+00 9.13226604e-03 -1.63651139e-01 -7.92008460e-01 9.72265959e-01 4.88190860e-01 -9.27114561e-02 3.74708623e-01 2.79320806e-01 6.48853481e-01 -1.85741574e-01 -3.46374720e-01 -2.91312963e-01 -4.16122019e-01 7.07958460e-01 -4.09227341e-01 -5.89548238e-02 2.71357566e-01 -2.88319200e-01 -4.82469767e-01 2.50732657e-02 9.92488086e-01 9.95178699e-01 -3.50802153e-01 -4.10900295e-01 -9.68756497e-01 -3.85946900e-01 4.18989033e-01 2.50054449e-01 3.50940675e-01 1.23758674e+00 3.76764745e-01 6.53233826e-01 2.23248601e-01 -5.46409190e-01 7.40761757e-01 -5.17144263e-01 3.28672200e-01 -4.85975482e-02 -4.66909289e-01 -3.13769609e-01 2.63676494e-01 -1.20336151e+00 -1.93779707e-01 -8.79721940e-01 -1.34586430e+00 -8.21159780e-01 1.63089320e-01 3.96469943e-02 1.75479114e+00 8.34352553e-01 4.09129947e-01 1.82098910e-01 6.85400128e-01 -1.27495837e+00 1.24134548e-01 -6.15926266e-01 -6.34207487e-01 2.28961855e-01 5.43730915e-01 -7.17607737e-01 -4.11314309e-01 -7.85194561e-02]
[7.393765449523926, -2.151695728302002]
5d61fbb3-3b2b-4eae-9c91-8210517124d3
saibersoc-synthetic-attack-injection-to
2010.08453
null
https://arxiv.org/abs/2010.08453v1
https://arxiv.org/pdf/2010.08453v1.pdf
SAIBERSOC: Synthetic Attack Injection to Benchmark and Evaluate the Performance of Security Operation Centers
In this paper we introduce SAIBERSOC, a tool and methodology enabling security researchers and operators to evaluate the performance of deployed and operational Security Operation Centers (SOCs) (or any other security monitoring infrastructure). The methodology relies on the MITRE ATT&CK Framework to define a procedure to generate and automatically inject synthetic attacks in an operational SOC to evaluate any output metric of interest (e.g., detection accuracy, time-to-investigation, etc.). To evaluate the effectiveness of the proposed methodology, we devise an experiment with $n=124$ students playing the role of SOC analysts. The experiment relies on a real SOC infrastructure and assigns students to either a BADSOC or a GOODSOC experimental condition. Our results show that the proposed methodology is effective in identifying variations in SOC performance caused by (minimal) changes in SOC configuration. We release the SAIBERSOC tool implementation as free and open source software.
['Luca Allodi', 'Ganduulga Gankhuyag', 'Michele Campobasso', 'Martin Rosso']
2020-10-16
null
null
null
null
['cyber-attack-investigation']
['miscellaneous']
[-7.41657522e-03 -3.77746046e-01 2.41264120e-01 -1.61212876e-01 -4.32150990e-01 -9.26944613e-01 2.10673407e-01 3.04965436e-01 -1.64073557e-01 8.93846810e-01 -6.91950321e-01 -7.76885152e-01 -9.77348909e-03 -7.32134223e-01 -4.71286267e-01 -4.03785735e-01 -3.57055783e-01 2.02646717e-01 7.64746785e-01 -2.79608607e-01 5.93810439e-01 7.71385312e-01 -1.52887702e+00 -9.54825282e-02 4.59522009e-01 8.56256425e-01 -3.88658255e-01 8.43977392e-01 6.92206621e-01 2.83705592e-01 -1.32032585e+00 -7.61965811e-02 3.39260966e-01 3.86645794e-02 -4.32539016e-01 -2.64936715e-01 -2.26765692e-01 3.51650678e-02 2.06299603e-01 1.21068335e+00 6.20692790e-01 -1.94399536e-01 1.40389889e-01 -1.69298637e+00 5.21934032e-01 7.63243794e-01 -3.16558480e-01 4.95312750e-01 5.07904828e-01 2.33520657e-01 5.86834550e-01 -4.23048407e-01 4.05115217e-01 8.86662185e-01 3.86261016e-01 -2.33858973e-01 -1.48833823e+00 -1.08380115e+00 -2.23713413e-01 -2.11396411e-01 -1.61510432e+00 -2.83315867e-01 7.76407838e-01 -3.16113949e-01 7.38168001e-01 4.51804459e-01 4.56638157e-01 1.01769590e+00 7.61262059e-01 -6.01899400e-02 1.23042238e+00 -6.32924795e-01 7.30676770e-01 8.66423845e-01 6.47190809e-01 3.99175376e-01 7.91330755e-01 2.79704183e-01 -2.59990007e-01 -4.70491946e-01 4.54730183e-01 -4.38922375e-01 2.28641197e-01 -2.38582954e-01 -1.00529826e+00 2.89526194e-01 -1.73930570e-01 5.16164780e-01 -1.87308267e-02 5.04587770e-01 5.72582960e-01 3.82344902e-01 -2.63936371e-01 5.61889648e-01 -4.34614986e-01 -5.18272996e-01 -8.30143750e-01 2.65516311e-01 7.85627425e-01 8.52307141e-01 3.01934332e-01 4.20692116e-01 3.80058080e-01 -1.49333343e-01 2.37009406e-01 3.69225800e-01 1.56830758e-01 -3.65234226e-01 1.33321807e-01 4.34157521e-01 3.92551184e-01 -9.49879885e-01 -2.78702319e-01 -5.97379327e-01 2.58472227e-02 2.62648523e-01 8.38001668e-02 -5.17503679e-01 -3.23858291e-01 1.37791371e+00 -1.47981979e-02 2.75255203e-01 -3.30727398e-02 3.70933235e-01 -1.22373728e-02 3.23102653e-01 -1.70106083e-01 -4.62297052e-02 1.30227447e+00 -2.20538810e-01 -5.40873230e-01 3.54265839e-01 3.05015802e-01 -9.44564760e-01 9.87115204e-01 8.43460321e-01 -7.99860597e-01 -5.99002838e-01 -1.75600564e+00 1.27176845e+00 -8.21978390e-01 2.12829426e-01 4.22736257e-01 1.79012883e+00 -9.36573029e-01 4.23356950e-01 -9.05596316e-01 -2.86122024e-01 -2.83045292e-01 6.50742710e-01 2.57521778e-01 3.96484524e-01 -1.23963416e+00 5.31947255e-01 5.33137202e-01 -2.48074204e-01 -1.57108164e+00 -6.59829915e-01 -4.07185346e-01 6.07388839e-02 3.38647634e-01 6.16323091e-02 9.00788009e-01 -6.60768628e-01 -1.33964431e+00 3.41817915e-01 7.40274668e-01 -4.87825274e-01 1.66639879e-01 7.84368888e-02 -1.06887197e+00 -1.34287372e-01 -2.01806158e-01 8.48854631e-02 7.53857136e-01 -1.22861934e+00 -4.62220877e-01 -9.74310413e-02 5.25698602e-01 -7.88892210e-01 -2.06937537e-01 4.32675123e-01 5.05694330e-01 -4.88269776e-01 -3.09685111e-01 -1.04390955e+00 -1.69237033e-01 -1.02144766e+00 -6.82536483e-01 6.38430834e-01 9.43256557e-01 -1.95560113e-01 1.37395358e+00 -1.97070444e+00 -5.83312571e-01 9.83285487e-01 -3.01258832e-01 1.64205298e-01 4.09291387e-01 6.48880005e-01 -4.74480778e-01 1.67387411e-01 -6.19903719e-03 2.01504454e-01 1.51863113e-01 -3.30526829e-01 -2.87566841e-01 4.42382008e-01 -8.23725313e-02 -6.18172288e-02 -6.35476530e-01 -8.54171738e-02 3.45673829e-01 2.15904176e-01 -3.31626803e-01 -6.56435564e-02 -2.60051284e-02 1.81675941e-01 -4.32971150e-01 1.17730439e+00 5.68286359e-01 2.61769295e-01 5.57977974e-01 -5.56042455e-02 -4.54921126e-01 7.09888563e-02 -1.64523196e+00 9.78020668e-01 -5.47547102e-01 5.52725017e-01 -2.19560504e-01 -7.27893531e-01 1.06730390e+00 5.31102359e-01 1.07455738e-01 -1.55014664e-01 7.00557292e-01 4.00417238e-01 1.92677215e-01 1.47571862e-01 5.53705633e-01 1.40997857e-01 -7.49893129e-01 8.41260791e-01 3.90061326e-02 -1.85435936e-02 1.91915423e-01 2.83345133e-01 1.37073290e+00 -3.39798898e-01 1.39815688e-01 -7.85794318e-01 1.12103832e+00 -5.80565929e-02 2.02809259e-01 5.36346138e-01 -4.53765213e-01 -4.35898244e-01 9.79517996e-01 -8.45451578e-02 -9.02523696e-01 -1.31871092e+00 -3.15391533e-02 5.66681743e-01 1.24413356e-01 -4.65748191e-01 -9.29924786e-01 -8.17934752e-01 -2.03010663e-01 1.00878894e+00 -1.68579727e-01 -3.90046746e-01 -7.88876414e-02 -7.82285869e-01 8.11007440e-01 2.12993309e-01 3.60256106e-01 -7.84236491e-01 -8.98202360e-01 1.76654145e-01 5.89573681e-01 -1.28973067e+00 -2.53269941e-01 2.24475518e-01 -5.23670971e-01 -9.92142618e-01 2.14744642e-01 -2.90719926e-01 8.69875491e-01 -9.74221677e-02 9.27511275e-01 1.02415435e-01 -7.28050828e-01 4.43801314e-01 -3.01100820e-01 -4.20405328e-01 -6.29620373e-01 -2.65958603e-03 3.74162167e-01 1.16951689e-01 1.46074891e-01 -5.94492137e-01 -3.23051810e-01 7.03595102e-01 -8.84187937e-01 -7.47440457e-01 1.86372012e-01 3.66623789e-01 -4.24331203e-02 1.01607871e+00 6.20559335e-01 -8.72557938e-01 9.80957031e-01 -2.91069001e-01 -1.43482697e+00 8.89738947e-02 -7.76402295e-01 2.93169729e-02 7.08868504e-01 -1.13331787e-01 -4.88000721e-01 7.20393509e-02 9.14295763e-02 5.31560369e-02 -3.12845170e-01 4.19965297e-01 -6.13306701e-01 -5.41828394e-01 4.58345950e-01 -9.23137292e-02 -4.24967468e-01 -4.77582812e-02 -3.64804685e-01 5.93171239e-01 3.00493896e-01 -9.33764458e-01 1.03133428e+00 9.76726338e-02 5.98881580e-02 -6.31197274e-01 -1.23776913e-01 -4.26229350e-02 -2.38176852e-01 -6.46763027e-01 1.93125591e-01 -6.95349693e-01 -1.12997472e+00 2.93962419e-01 -6.38634086e-01 1.33377397e-02 1.52598739e-01 2.63752520e-01 -1.11686312e-01 1.15605645e-01 -2.14432076e-01 -9.97635365e-01 -1.20874912e-01 -1.52225888e+00 5.84154785e-01 3.10507983e-01 -2.06013486e-01 -8.06207180e-01 8.00834075e-02 3.59388664e-02 3.08990806e-01 4.92587537e-01 6.67983770e-01 -6.48300350e-01 -7.23403931e-01 -7.93787003e-01 1.70864359e-01 5.77038765e-01 -2.20857114e-01 6.76523447e-01 -8.28564644e-01 -6.45116568e-01 -2.93908179e-01 5.75419329e-02 -2.80359030e-01 -8.71108994e-02 9.50922430e-01 2.38596007e-01 -7.80987144e-02 -7.31272176e-02 1.82498646e+00 7.07031965e-01 6.84332550e-01 3.05133432e-01 -2.01883852e-01 2.92435765e-01 9.94566262e-01 6.45312488e-01 -3.72285396e-01 9.84995306e-01 4.38003451e-01 2.82140732e-01 6.88440979e-01 -2.80850846e-02 9.85805750e-01 3.90818059e-01 1.59184173e-01 -9.60237831e-02 -1.06533325e+00 3.17832738e-01 -1.10397685e+00 -5.76919734e-01 -4.24366556e-02 2.50205112e+00 2.85161912e-01 1.17341888e+00 4.40457076e-01 9.14744139e-01 8.25493813e-01 -3.29077035e-01 6.36294037e-02 -8.68141055e-01 5.82953513e-01 7.88495421e-01 8.53911936e-01 4.94280517e-01 -7.39157915e-01 7.57965147e-01 5.99125290e+00 7.41783977e-01 -1.20714009e+00 9.92833599e-02 2.93474704e-01 2.02203378e-01 7.40025565e-02 3.65163058e-01 -1.01582980e+00 6.24876082e-01 1.70540226e+00 -3.99864078e-01 9.50438678e-02 9.06610191e-01 4.21101242e-01 -3.06187302e-01 -9.05443311e-01 4.13073033e-01 -1.15500771e-01 -1.10999310e+00 -3.43757927e-01 9.76870358e-02 4.80401754e-01 -7.68561482e-01 4.41464502e-03 3.91555548e-01 4.40800220e-01 -6.98913276e-01 7.83632994e-01 2.21456513e-01 7.53855169e-01 -1.41350663e+00 1.23572493e+00 -9.06076934e-03 -1.25830352e+00 -1.21426592e-02 2.70635843e-01 -7.06477314e-02 -4.41510715e-02 4.12550896e-01 -1.12927544e+00 6.38845503e-01 3.67258668e-01 -9.91284475e-02 -9.36472058e-01 8.81281555e-01 -1.78816527e-01 7.22880304e-01 -2.31244013e-01 -2.12840080e-01 -1.82944201e-02 2.33839735e-01 4.23541844e-01 1.00638688e+00 3.79974514e-01 -3.95325184e-01 9.21378508e-02 8.04878294e-01 4.72650796e-01 -3.59341145e-01 -3.26644063e-01 -2.16980353e-01 7.43803799e-01 1.25420678e+00 -1.25484908e+00 1.17429793e-02 6.53003603e-02 7.48955235e-02 -8.99615467e-01 1.16872594e-01 -1.29549515e+00 -1.05207193e+00 5.81147254e-01 4.13378060e-01 6.26413748e-02 -3.73937339e-01 -3.40982169e-01 -6.37863517e-01 -2.27357328e-01 -9.86564159e-01 8.27562734e-02 -5.57053328e-01 -4.99565482e-01 6.06206894e-01 2.44836569e-01 -1.47220647e+00 -7.02316090e-02 -6.15060508e-01 -6.86310887e-01 4.88636374e-01 -6.18144989e-01 -7.43595362e-01 -2.13873476e-01 5.90050280e-01 6.41910657e-02 -5.69126666e-01 5.64754128e-01 5.69469631e-01 -9.38432097e-01 9.38102841e-01 -3.46905619e-01 -1.37229577e-01 4.24320728e-01 -1.03170300e+00 1.77498922e-01 1.32482874e+00 -3.64572644e-01 7.70563960e-01 1.36306798e+00 -6.16743267e-01 -1.24787760e+00 -6.11586452e-01 3.32956642e-01 -2.59555519e-01 1.14116013e+00 -8.60748589e-01 1.67060774e-02 5.40252984e-01 9.71319824e-02 -1.74052924e-01 7.10542917e-01 -2.65059501e-01 -1.28151756e-02 -5.49945951e-01 -1.52238941e+00 4.99895394e-01 1.09600618e-01 -4.08453315e-01 -1.36485836e-02 -5.61950617e-02 6.21154368e-01 -1.14136286e-01 -9.67157125e-01 2.19826281e-01 5.09051740e-01 -1.29220176e+00 9.27703857e-01 -2.34430328e-01 -1.91446215e-01 -7.08866715e-01 -3.67584378e-01 -8.21483374e-01 5.47962844e-01 -8.81958306e-01 2.24576309e-01 1.25305212e+00 6.69013262e-01 -7.74999142e-01 7.91177988e-01 3.58852118e-01 -8.22239295e-02 -3.37405771e-01 -7.86034584e-01 -8.40378702e-01 -5.61680257e-01 -6.83494866e-01 8.04815292e-01 7.94828057e-01 1.90400437e-01 -1.88541468e-02 6.35102484e-03 7.25499272e-01 6.82029128e-01 -4.46462989e-01 8.66385221e-01 -1.00386107e+00 -5.07902980e-01 3.46633680e-02 -9.72474694e-01 2.26103783e-01 -5.68322949e-02 -1.90276250e-01 -2.09388077e-01 -2.22243860e-01 -2.62188762e-01 -4.80219543e-01 -7.47867942e-01 1.73222840e-01 4.39495325e-01 7.37282485e-02 4.67565209e-02 -4.95087743e-01 -4.48228151e-01 -1.70591533e-01 2.17728049e-01 1.96204811e-01 -1.03717454e-01 5.22406757e-01 -2.21726522e-01 4.23884094e-01 8.71698737e-01 -7.26786256e-01 -4.77103323e-01 7.08857834e-01 3.53044242e-01 3.58095795e-01 6.25707388e-01 -1.75732100e+00 -1.04359547e-02 5.78812771e-02 4.09764946e-02 -6.91712260e-01 -2.83332355e-02 -1.32997942e+00 5.85891724e-01 1.01750398e+00 1.91964507e-02 5.38743854e-01 4.20012981e-01 1.32113695e-01 -7.62071535e-02 -4.26394880e-01 7.17412472e-01 3.05820167e-01 -3.84132177e-01 -2.99149632e-01 -7.48379290e-01 -4.95571971e-01 1.69855237e+00 -1.06925115e-01 -4.66300279e-01 -1.02690153e-01 -7.02494144e-01 -7.25851208e-02 5.30221999e-01 1.79571897e-01 4.44373459e-01 -1.05056512e+00 1.39768850e-02 5.96807897e-01 1.04008421e-01 -1.01375628e+00 -4.18747170e-03 6.82438672e-01 -9.86603737e-01 6.74496770e-01 -5.99785447e-01 -3.29761565e-01 -1.44951296e+00 3.58312339e-01 2.86258310e-01 -6.20324552e-01 1.91262230e-01 4.20455515e-01 -7.56123781e-01 -3.66523772e-01 3.06216389e-01 -2.21609548e-01 1.62863955e-01 -2.13180110e-01 3.42696279e-01 4.61866885e-01 5.48446655e-01 6.56818748e-02 -6.75127327e-01 -4.39132713e-02 6.28202707e-02 -5.37391901e-01 9.15614426e-01 3.16371828e-01 2.56879628e-02 5.19576728e-01 6.24904692e-01 5.23359716e-01 -5.84759057e-01 5.30002832e-01 3.70871693e-01 -4.64596599e-01 5.48543334e-02 -7.45663822e-01 -9.58976686e-01 5.63511789e-01 9.85106826e-01 4.97350603e-01 1.11649013e+00 -6.86429083e-01 5.63753664e-01 1.00038581e-01 1.07957077e+00 -1.03366971e+00 1.72192231e-01 1.13548949e-01 4.66111191e-02 -5.17095983e-01 1.37096003e-01 -3.91695142e-01 -2.42087141e-01 1.09393656e+00 5.82801759e-01 -3.13860834e-01 1.10574019e+00 8.85603905e-01 -2.52501220e-01 -2.68738568e-01 -8.20518970e-01 3.61923784e-01 -4.75400209e-01 5.74574590e-01 2.55991876e-01 3.78213882e-01 -4.69340980e-01 6.30617261e-01 -3.55604440e-01 4.05909084e-02 1.32444489e+00 1.20466948e+00 -3.96067500e-01 -1.48194742e+00 -8.59573305e-01 1.09329812e-01 -4.21454370e-01 2.99539894e-01 -4.30885673e-01 1.11359251e+00 3.72519463e-01 1.05850565e+00 -2.62668371e-01 -9.79972959e-01 4.55182284e-01 -9.95372832e-02 1.18125878e-01 -6.55522227e-01 -9.70240712e-01 -2.56149054e-01 3.31062734e-01 -5.87581813e-01 1.13852106e-01 -8.20788205e-01 -8.90668750e-01 -6.01073205e-01 -2.93998182e-01 4.82937783e-01 9.92093146e-01 5.01773596e-01 1.15359925e-01 1.11379123e+00 1.11365449e+00 -4.26398128e-01 -3.27968776e-01 -5.74091077e-01 -9.50503767e-01 -3.82423162e-01 -1.66118085e-01 -9.68405426e-01 -5.94092131e-01 -2.90211767e-01]
[5.4200921058654785, 7.253251075744629]
5db2e9a4-a691-47d3-9283-71a606e838ba
complex-mixer-for-medmnist-classification
2304.10054
null
https://arxiv.org/abs/2304.10054v1
https://arxiv.org/pdf/2304.10054v1.pdf
Complex Mixer for MedMNIST Classification Decathlon
With the development of the medical image field, researchers seek to develop a class of datasets to block the need for medical knowledge, such as \text{MedMNIST} (v2). MedMNIST (v2) includes a large number of small-sized (28 $\times$ 28 or 28 $\times$ 28 $\times$ 28) medical samples and the corresponding expert annotations (class label). The existing baseline model (Google AutoML Vision, ResNet-50+3D) can reach an average accuracy of over 70\% on MedMNIST (v2) datasets, which is comparable to the performance of expert decision-making. Nevertheless, we note that there are two insurmountable obstacles to modeling on MedMNIST (v2): 1) the raw images are cropped to low scales may cause effective recognition information to be dropped and the classifier to have difficulty in tracing accurate decision boundaries; 2) the labelers' subjective insight may cause many uncertainties in the label space. To address these issues, we develop a Complex Mixer (C-Mixer) with a pre-training framework to alleviate the problem of insufficient information and uncertainty in the label space by introducing an incentive imaginary matrix and a self-supervised scheme with random masking. Our method (incentive learning and self-supervised learning with masking) shows surprising potential on both the standard MedMNIST (v2) dataset, the customized weakly supervised datasets, and other image enhancement tasks.
['Xiuyi Jia', 'Zhuoran Zheng']
2023-04-20
null
null
null
null
['image-enhancement', 'automl']
['computer-vision', 'methodology']
[ 4.08999026e-01 5.52135825e-01 -2.38996267e-01 -5.55382609e-01 -9.64692056e-01 -2.98955232e-01 2.10511521e-01 -1.52166691e-02 -5.44929862e-01 6.28365695e-01 8.83966908e-02 -2.81694680e-01 -2.42414102e-01 -5.22681713e-01 -2.94175595e-01 -5.24300158e-01 1.85834363e-01 3.58684599e-01 4.94452864e-02 -1.37041077e-01 -1.14863262e-01 -5.03314324e-02 -1.46416366e+00 3.24837238e-01 1.10961282e+00 1.23030388e+00 3.88945311e-01 3.71765584e-01 1.80309415e-01 1.20779896e+00 -6.05730534e-01 -5.41538656e-01 5.71446717e-01 -3.13443065e-01 -8.87674689e-01 2.69814789e-01 3.56157124e-01 -3.72469515e-01 -1.28550693e-01 1.23707354e+00 6.81107700e-01 -3.60551812e-02 7.88762748e-01 -1.15946531e+00 -8.93726707e-01 5.43762505e-01 -8.28811228e-01 1.12491153e-01 -1.31215200e-01 3.80155534e-01 8.39000285e-01 -8.55768681e-01 7.62432098e-01 9.60120380e-01 1.06313264e+00 6.35523319e-01 -1.11131454e+00 -8.34037423e-01 -2.75118183e-02 8.96254182e-02 -1.51366401e+00 -3.22450697e-01 4.65195298e-01 -7.18701541e-01 5.26463270e-01 3.38831723e-01 4.48581815e-01 1.11873710e+00 1.08849049e-01 7.22546756e-01 1.56327999e+00 -3.55479032e-01 2.93686390e-01 5.68247020e-01 2.31641099e-01 8.44950736e-01 -2.76962183e-02 3.98662448e-01 -3.34257931e-01 -5.43172285e-02 6.79355860e-01 5.32645918e-02 -2.19198063e-01 -3.66126932e-02 -1.10563803e+00 8.09442103e-01 6.31034017e-01 2.48440221e-01 -3.72374415e-01 -1.19905673e-01 2.11077645e-01 3.15582871e-01 5.60162425e-01 6.72262132e-01 -5.26011944e-01 1.79211244e-01 -1.18632030e+00 -1.58134967e-01 4.20478225e-01 8.28147292e-01 7.62032926e-01 5.78562450e-03 -2.81882644e-01 1.10266972e+00 1.93146437e-01 4.29181337e-01 5.66910207e-01 -1.06418228e+00 1.09415777e-01 7.60598004e-01 -1.30127016e-02 -9.15919602e-01 -6.77719593e-01 -8.67102087e-01 -1.09882081e+00 5.08696735e-01 4.08720076e-01 -3.59450489e-01 -1.36874557e+00 1.64749372e+00 1.37395725e-01 -7.53068998e-02 5.52794673e-02 8.37198913e-01 1.19800615e+00 2.71564513e-01 2.44392142e-01 -6.95190858e-03 1.37010241e+00 -1.02653801e+00 -8.12596202e-01 -4.04192954e-01 7.29483902e-01 -6.73918664e-01 1.13687575e+00 3.66856903e-01 -9.88766909e-01 -7.51718104e-01 -9.73942935e-01 1.66568354e-01 -3.92949611e-01 4.00725573e-01 6.53830826e-01 9.04743850e-01 -1.27673209e+00 5.98986566e-01 -5.93776464e-01 -1.82400439e-02 7.79925406e-01 3.73844385e-01 -2.91996032e-01 -3.51727635e-01 -1.24266315e+00 1.04042745e+00 1.70957357e-01 6.13041669e-02 -1.01577818e+00 -8.68614733e-01 -9.71796274e-01 -4.36887741e-01 4.53420639e-01 -5.81128418e-01 9.32965815e-01 -1.31446302e+00 -9.35127079e-01 1.33771801e+00 4.17505234e-01 -3.80985528e-01 8.66475105e-01 1.26031801e-01 -5.35175443e-01 1.04877651e-01 3.32115173e-01 1.16424942e+00 9.22460079e-01 -1.35655904e+00 -7.26502061e-01 -3.59971106e-01 -5.51829301e-02 3.60453963e-01 -3.35520118e-01 -1.40320882e-01 -4.23843741e-01 -1.01252878e+00 1.03311270e-01 -1.02098465e+00 -5.49367547e-01 2.27250382e-02 -4.72135931e-01 1.35610372e-01 4.09606516e-01 -8.45655739e-01 1.03664839e+00 -2.30700135e+00 -4.49845970e-01 2.10906550e-01 6.04689538e-01 1.50034979e-01 -1.27943620e-01 -3.91344219e-01 -2.51805902e-01 2.88898349e-01 -4.03561711e-01 -2.09939137e-01 -2.78883159e-01 2.72543937e-01 1.65951908e-01 3.47838104e-01 -3.88912013e-04 9.29712951e-01 -8.26518893e-01 -6.69412136e-01 1.37743816e-01 3.21433812e-01 -5.08104920e-01 -2.34710258e-02 1.46684706e-01 4.85407501e-01 -2.59126365e-01 1.06821382e+00 7.58109689e-01 -7.53943741e-01 -7.25411177e-02 -3.21373999e-01 3.06662858e-01 -2.37756029e-01 -1.32249546e+00 1.53448951e+00 -2.18462944e-01 4.54034805e-01 2.88571388e-01 -9.27755415e-01 6.30957544e-01 2.85347700e-01 9.19595301e-01 -6.66402936e-01 1.33083552e-01 1.38068616e-01 3.68779935e-02 -6.23205483e-01 2.65808821e-01 -3.50686133e-01 1.07910715e-01 4.10756707e-01 1.26810133e-01 7.03350380e-02 -2.39780933e-01 9.96876284e-02 1.38960755e+00 -1.99033529e-01 4.10167500e-02 -4.17355120e-01 3.77478488e-02 2.57441998e-01 8.09534132e-01 9.83723819e-01 -5.23525000e-01 8.66382003e-01 1.09641172e-01 -2.75286227e-01 -7.72822201e-01 -9.22784567e-01 -4.44847614e-01 1.08848405e+00 1.08603992e-01 -1.00156151e-01 -8.55091214e-01 -9.86586034e-01 -5.56064956e-02 4.85735655e-01 -9.75592196e-01 -2.04006657e-01 -7.43689090e-02 -1.32765734e+00 6.11615717e-01 7.75110304e-01 7.61213362e-01 -1.06074464e+00 -4.62174475e-01 1.66113108e-01 -3.31243902e-01 -1.03552854e+00 -4.40642893e-01 4.38991219e-01 -7.22632825e-01 -1.14335132e+00 -8.57016981e-01 -7.80248284e-01 1.01562786e+00 -2.21785121e-02 1.31575251e+00 1.76201418e-01 -4.45174575e-01 3.67921263e-01 -3.40341628e-01 -5.74616909e-01 -5.37747085e-01 -8.14393163e-02 -1.36118203e-01 -9.90383178e-02 2.92374521e-01 -1.58431962e-01 -8.96260619e-01 7.32774973e-01 -8.71282101e-01 3.02308023e-01 7.39704072e-01 1.14148712e+00 6.89866245e-01 2.29452327e-01 7.24824190e-01 -1.26321793e+00 3.44989866e-01 -3.15738529e-01 -3.00232857e-01 3.59481066e-01 -1.12603986e+00 -2.85124630e-01 7.34462962e-02 -5.53877890e-01 -1.07899249e+00 1.55839503e-01 -3.13816190e-01 -2.73358285e-01 -8.11147876e-03 4.32672352e-01 8.02204832e-02 -9.08294469e-02 1.21296728e+00 -1.95355430e-01 5.12502491e-02 -4.12978172e-01 2.17471197e-01 7.89751887e-01 7.21543550e-01 -2.35177949e-01 6.71712935e-01 6.12455845e-01 -4.15909052e-01 -4.33058172e-01 -1.07749736e+00 -3.60129744e-01 -3.60648811e-01 -1.83787823e-01 1.00290895e+00 -1.32608402e+00 -1.71452522e-01 4.14222628e-01 -5.09508371e-01 -6.30084395e-01 -8.17268133e-01 5.26178956e-01 -3.11095774e-01 1.64275110e-01 -8.07777226e-01 -5.50573170e-01 -4.37202096e-01 -1.36642683e+00 8.57410371e-01 1.40620232e-01 -3.73034984e-01 -8.76590252e-01 -4.26706791e-01 9.33753312e-01 4.41592902e-01 2.86642969e-01 8.29280019e-01 -5.99169791e-01 -3.11101705e-01 -2.03349754e-01 -4.72196072e-01 8.10165703e-01 1.84545696e-01 -5.01036048e-01 -1.16902733e+00 -2.24048242e-01 2.53792644e-01 -5.41093707e-01 9.10518825e-01 6.78344965e-01 1.23977232e+00 5.23175336e-02 -2.92862505e-01 6.18847668e-01 1.24482477e+00 2.72552907e-01 7.43363619e-01 2.09527805e-01 5.94139934e-01 5.76610327e-01 6.94449604e-01 2.81401932e-01 5.70318282e-01 3.67423266e-01 3.53529811e-01 -8.62824678e-01 -4.32450503e-01 -2.96187494e-02 1.11906111e-01 6.14033520e-01 -9.66852382e-02 4.10494544e-02 -1.05264318e+00 5.27030110e-01 -1.60256076e+00 -4.71626341e-01 3.01176887e-02 1.82034075e+00 1.03265822e+00 1.19785450e-01 -2.46497750e-01 1.39538720e-01 8.02218974e-01 -1.33117795e-01 -7.65439868e-01 2.12521434e-01 -2.39753217e-01 6.67902455e-02 6.78860068e-01 2.89570093e-01 -1.23793769e+00 6.52361929e-01 7.17733669e+00 1.13722456e+00 -8.54438245e-01 4.73151088e-01 1.33300900e+00 1.23156488e-01 -1.40757039e-01 -1.82414532e-01 -6.91827536e-01 4.96468961e-01 6.00610971e-01 3.46511751e-01 1.78599447e-01 9.51086402e-01 -4.10623439e-02 -2.36262903e-01 -9.79154885e-01 1.33936930e+00 4.67246622e-02 -1.39479077e+00 -3.97444874e-01 9.51120406e-02 9.94351804e-01 2.20608950e-01 3.29661250e-01 5.04074931e-01 7.20073044e-01 -1.19678581e+00 4.61366415e-01 2.22510785e-01 1.35319245e+00 -2.91336507e-01 9.38087523e-01 3.46767008e-01 -6.50863469e-01 -2.39008188e-01 -2.19472110e-01 2.43715152e-01 -1.61549404e-01 8.42290640e-01 -8.84948134e-01 3.20961654e-01 1.03233838e+00 6.39184594e-01 -8.48188400e-01 6.27996683e-01 -4.30591591e-02 5.81632078e-01 -1.55563772e-01 4.65152830e-01 1.19260296e-01 1.62236020e-01 1.68412641e-01 1.10236752e+00 1.65746480e-01 2.26932958e-01 1.89317182e-01 7.02215075e-01 -3.36869836e-01 8.23055953e-02 -2.61047930e-01 3.46571863e-01 1.21191647e-02 1.37675369e+00 -9.70186770e-01 -4.36284751e-01 -4.08124506e-01 9.05340135e-01 -1.14789732e-01 3.64665508e-01 -7.85149574e-01 2.64329594e-02 1.41289771e-01 3.34194511e-01 -1.31388664e-01 4.97172892e-01 -6.82934463e-01 -1.08306336e+00 -2.03886896e-01 -1.22571695e+00 6.81757748e-01 -9.74222243e-01 -1.59241152e+00 7.79266536e-01 -2.89059162e-01 -1.25110865e+00 3.15544605e-02 -6.80204809e-01 6.75901100e-02 5.66242158e-01 -1.45228934e+00 -1.11163521e+00 -4.74574804e-01 7.88012326e-01 3.90426338e-01 -3.64056528e-01 8.74643803e-01 6.87049985e-01 -3.68403524e-01 7.41492569e-01 4.57312390e-02 3.85186464e-01 1.05055201e+00 -1.36382771e+00 -4.27171960e-02 3.54715109e-01 -8.33229423e-02 2.00401351e-01 4.30197597e-01 -6.71855927e-01 -6.41584694e-01 -1.15296900e+00 4.60943460e-01 -7.84041166e-01 2.17269942e-01 -1.49753034e-01 -7.58070707e-01 6.32163405e-01 -5.19984821e-03 2.41153643e-01 1.05257487e+00 -1.59868021e-02 -9.73891690e-02 -2.13437572e-01 -1.66657186e+00 5.18076599e-01 1.13458347e+00 -4.02913213e-01 -4.01635796e-01 5.25960982e-01 5.46962023e-01 -5.27654529e-01 -1.06631112e+00 8.37912858e-01 2.95728326e-01 -8.12862694e-01 9.24138367e-01 -2.45667696e-01 3.47977281e-01 -8.28643218e-02 -2.21190900e-01 -1.28029287e+00 -3.22232068e-01 -4.65589672e-01 1.31088182e-01 1.09190726e+00 6.12669885e-01 -4.78796333e-01 9.66634870e-01 1.05124462e+00 6.96392078e-03 -8.31821740e-01 -8.11658859e-01 -5.88599205e-01 -9.09461230e-02 -6.72853470e-01 3.32283854e-01 1.39084160e+00 -2.85726070e-01 1.56336740e-01 -4.73044127e-01 -9.94931161e-02 5.60109615e-01 -2.77243346e-01 4.26458359e-01 -1.24865746e+00 -3.70461076e-01 -2.25175485e-01 -2.78878182e-01 -7.91210532e-01 -2.69823730e-01 -8.97675276e-01 3.88805345e-02 -1.50242627e+00 5.45022428e-01 -8.73174429e-01 -6.87339723e-01 7.74270415e-01 -1.94946766e-01 6.04821324e-01 -3.01660001e-02 3.39190036e-01 -5.52614450e-01 1.09789781e-01 1.33603144e+00 -4.01289165e-01 -6.93144724e-02 -4.18901406e-02 -1.29056835e+00 1.11490715e+00 4.36449885e-01 -6.11829221e-01 -4.54623401e-01 -3.20590407e-01 1.97550103e-01 1.42936796e-01 4.21187192e-01 -1.01897323e+00 6.59953505e-02 -9.82891489e-03 6.93575799e-01 -5.37808061e-01 2.24787220e-01 -9.75628793e-01 2.04604119e-01 4.92765814e-01 -5.28756917e-01 -2.27555912e-02 3.92271020e-02 4.51370299e-01 -1.21026680e-01 -2.87411958e-01 9.77472365e-01 -3.37799489e-01 -7.27752149e-01 3.18000227e-01 -2.11538658e-01 1.59538195e-01 9.62702692e-01 -1.78269848e-01 -3.66001308e-01 -3.93108487e-01 -1.11088979e+00 4.35110837e-01 3.84107113e-01 3.04513931e-01 5.88360846e-01 -1.11219740e+00 -7.73603857e-01 1.34560257e-01 1.86244458e-01 4.32722643e-02 6.18225276e-01 8.91649485e-01 -3.34650248e-01 -1.75150812e-01 -1.24715567e-01 -7.07507312e-01 -1.07397497e+00 5.24857163e-01 5.92216969e-01 -5.84762752e-01 -6.37969077e-01 9.53664601e-01 3.71500045e-01 -5.96544027e-01 3.22006166e-01 -8.54838938e-02 -1.59660012e-01 2.00954571e-01 4.39993560e-01 3.87925953e-01 4.72729690e-02 -5.48139572e-01 -3.22880864e-01 3.69378090e-01 -2.93009669e-01 -5.08345291e-02 1.28687632e+00 -1.91242039e-01 1.95670754e-01 -7.88175780e-03 1.01871133e+00 -2.77344465e-01 -1.27870822e+00 -3.94493520e-01 -3.62118781e-02 -2.28187338e-01 2.61945307e-01 -1.31693542e+00 -1.33957207e+00 5.56659818e-01 1.34647751e+00 4.90596751e-03 1.33175361e+00 9.50341206e-03 6.35314107e-01 1.02818429e-01 8.21856931e-02 -1.67195928e+00 3.22382092e-01 -7.09944312e-03 6.76701486e-01 -1.83812201e+00 1.07917026e-01 -3.86792183e-01 -1.11633289e+00 4.81920868e-01 6.45809174e-01 2.10565716e-01 1.04346466e+00 3.36002439e-01 6.96223378e-01 -4.58017021e-01 -3.70995343e-01 -1.92174450e-01 3.54514509e-01 7.85960257e-01 1.90629765e-01 9.15514678e-02 -8.87630060e-02 9.30848062e-01 -1.21409789e-01 2.20217139e-01 2.67520905e-01 7.42980182e-01 -1.15649946e-01 -8.45746696e-01 -4.69413012e-01 8.52833629e-01 -8.32751930e-01 -2.46896937e-01 5.55530563e-02 6.75304592e-01 7.08858788e-01 1.06832242e+00 -2.77878821e-01 -5.01006544e-01 2.49035567e-01 -1.03579454e-01 2.90511120e-02 -6.28414094e-01 -7.04591036e-01 2.27056548e-01 -1.56491250e-03 -3.11264127e-01 -5.51473022e-01 -3.60842258e-01 -1.17030585e+00 8.89757648e-02 -4.34896290e-01 -1.97403982e-01 5.30444264e-01 8.21717739e-01 2.34839931e-01 7.51646698e-01 4.88255590e-01 -3.54857475e-01 -5.66583991e-01 -9.46080089e-01 -8.47946167e-01 7.68440425e-01 6.75544888e-02 -6.21740103e-01 -2.36580253e-01 3.18537027e-01]
[14.858917236328125, -2.1711230278015137]
8ca034cb-c88e-43b3-8701-2e73378b763d
human-in-the-loop-automatic-program-repair
1912.07758
null
https://arxiv.org/abs/1912.07758v1
https://arxiv.org/pdf/1912.07758v1.pdf
Human-In-The-Loop Automatic Program Repair
We introduce Learn2fix, the first human-in-the-loop, semi-automatic repair technique when no bug oracle--except for the user who is reporting the bug--is available. Our approach negotiates with the user the condition under which the bug is observed. Only when a budget of queries to the user is exhausted, it attempts to repair the bug. A query can be thought of as the following question: "When executing this alternative test input, the program produces the following output; is the bug observed"? Through systematic queries, Learn2fix trains an automatic bug oracle that becomes increasingly more accurate in predicting the user's response. Our key challenge is to maximize the oracle's accuracy in predicting which tests are bug-exposing given a small budget of queries. From the alternative tests that were labeled by the user, test-driven automatic repair produces the patch. Our experiments demonstrate that Learn2fix learns a sufficiently accurate automatic oracle with a reasonably low labeling effort (lt. 20 queries). Given Learn2fix's test suite, the GenProg test-driven repair tool produces a higher-quality patch (i.e., passing a larger proportion of validation tests) than using manual test suites provided with the repair benchmark.
['Van-Thuan Pham', 'Marcel Böhme', 'Charaka Geethal']
2019-12-16
null
null
null
null
['program-repair', 'program-repair']
['computer-code', 'reasoning']
[-2.07965195e-01 4.75277364e-01 -3.08982521e-01 -3.89424562e-01 -1.70272052e+00 -9.21289802e-01 -4.50853735e-01 1.85807467e-01 2.31908023e-01 7.71106660e-01 -3.62834483e-01 -8.02664101e-01 9.44878608e-02 -9.01256561e-01 -9.15603817e-01 -1.69199914e-01 -1.64806396e-01 5.67351162e-01 3.96937102e-01 1.82358935e-01 3.22644651e-01 -2.97202557e-01 -1.41566312e+00 1.75074473e-01 1.02878916e+00 7.10209787e-01 1.19379349e-01 1.09029686e+00 3.54565084e-01 8.79671156e-01 -1.17188263e+00 -3.62851024e-01 1.37324467e-01 -6.48365617e-01 -1.14175403e+00 1.30008146e-01 2.87720203e-01 -4.86489177e-01 3.24873328e-01 1.31991708e+00 7.07344711e-03 -3.60742897e-01 -6.73713237e-02 -1.24955881e+00 -4.27359343e-01 5.79608619e-01 -2.02965457e-02 2.25465968e-01 9.20428574e-01 7.37198532e-01 1.31547058e+00 -6.67320848e-01 7.26392329e-01 6.87396824e-01 7.90775120e-01 3.40013206e-01 -1.38415051e+00 -1.82799011e-01 -1.61508694e-01 -2.92439610e-01 -1.37939465e+00 -4.90034707e-02 2.19591454e-01 -5.55704832e-01 1.34857929e+00 5.89212358e-01 3.71826321e-01 7.47934639e-01 6.26887202e-01 2.78834552e-01 7.94428706e-01 -3.53606135e-01 5.38879871e-01 1.44930765e-01 3.88045967e-01 1.12415004e+00 2.89424300e-01 1.34720132e-01 -3.06703925e-01 -8.77386391e-01 3.29300463e-01 -2.15343967e-01 -3.58535528e-01 1.74175918e-01 -8.25742960e-01 6.29294217e-01 2.12781038e-02 1.46348909e-01 -1.48476928e-01 3.65485817e-01 2.83004940e-01 1.00487494e+00 3.02872062e-01 1.19870436e+00 -9.05240774e-01 -5.77909470e-01 -9.03665960e-01 4.03498381e-01 1.18003607e+00 9.64176774e-01 1.01206100e+00 5.13100997e-02 -4.22458984e-02 2.96551883e-01 2.64250994e-01 3.96206021e-01 3.32733870e-01 -9.06825721e-01 3.64856303e-01 1.07707357e+00 4.54417855e-01 -5.23356020e-01 1.22351445e-01 -7.42654741e-01 2.24184200e-01 4.47195500e-01 2.39629135e-01 -3.07350606e-01 -7.14367092e-01 1.47418380e+00 3.51259172e-01 -1.57975972e-01 -1.64587945e-01 7.80754030e-01 1.53654620e-01 4.17065293e-01 -4.59660590e-01 -2.67245203e-01 1.13581979e+00 -8.70940030e-01 -3.42905104e-01 -4.23356473e-01 1.29421747e+00 -7.44748354e-01 1.32927060e+00 7.69468784e-01 -1.04860735e+00 -3.00960839e-01 -1.23903978e+00 5.25718570e-01 1.95624024e-01 8.78078267e-02 5.11178255e-01 5.25997996e-01 -1.19238555e+00 6.02221668e-01 -9.49543715e-01 -1.16530612e-01 -1.42974824e-01 2.60871261e-01 -4.61470604e-01 -3.53788078e-01 -5.54561019e-01 6.68949366e-01 -1.96470646e-03 -1.75560102e-01 -1.55557764e+00 -4.47677851e-01 -1.01549792e+00 1.71000198e-01 8.73214066e-01 -4.38196093e-01 1.98139691e+00 -9.23192024e-01 -6.60401940e-01 4.38765109e-01 -2.04232842e-01 -9.82214287e-02 2.79820710e-01 -2.56312162e-01 -1.99730724e-01 -1.88409433e-01 7.53351092e-01 4.69894931e-02 7.49731064e-01 -9.68283832e-01 -8.10408533e-01 -1.71312526e-01 4.33521152e-01 -5.45236588e-01 1.94582835e-01 5.46441339e-02 -4.14501250e-01 -1.18105717e-01 1.11082517e-01 -9.13729072e-01 -5.29163936e-03 -4.83013690e-01 -6.52174473e-01 -3.21390688e-01 4.99377012e-01 -5.72787941e-01 1.81420708e+00 -2.22797751e+00 1.63034853e-02 3.01197916e-01 3.28983486e-01 -2.11924717e-01 -2.76615262e-01 4.65871900e-01 -2.63151705e-01 4.93404418e-01 -2.28267521e-01 9.83261541e-02 4.49073426e-02 1.42504916e-01 -4.30381507e-01 3.10136735e-01 5.06135821e-01 5.91065526e-01 -9.96072948e-01 -1.99443758e-01 -7.24241614e-01 -5.32888830e-01 -1.04925919e+00 7.59678125e-01 -9.07646298e-01 2.13774778e-02 -5.55139065e-01 1.20666981e+00 2.33551160e-01 -3.91979188e-01 -5.75141534e-02 5.43224990e-01 -1.67781450e-02 5.22487462e-01 -9.75023448e-01 1.19591177e+00 -7.02171475e-02 3.29331785e-01 -1.86668277e-01 -3.14983904e-01 7.88281977e-01 4.52289551e-01 -2.98172623e-01 -1.91923037e-01 -4.28412199e-01 6.59035206e-01 9.72093195e-02 -9.76736486e-01 1.49684444e-01 2.67760754e-01 -4.92236674e-01 9.51695263e-01 2.14953020e-01 -2.28812605e-01 4.05295104e-01 9.68941897e-02 2.23243833e+00 8.69704336e-02 2.62516052e-01 3.75844687e-02 9.30483788e-02 5.42116404e-01 8.62622797e-01 1.07469773e+00 1.81004748e-01 4.89939362e-01 1.24117887e+00 -4.90491092e-01 -8.15342784e-01 -7.62678921e-01 1.78296611e-01 9.54646945e-01 -4.73991215e-01 -8.11424732e-01 -1.06724548e+00 -1.33507478e+00 1.07946523e-01 7.66562760e-01 -6.55361950e-01 -2.22839206e-01 -2.21455514e-01 -6.80993870e-02 5.41946471e-01 2.82342702e-01 6.33421987e-02 -9.93678987e-01 -5.64244986e-01 2.93721795e-01 -1.39796734e-01 -1.21809594e-01 -9.76079047e-01 4.39867198e-01 -6.97082520e-01 -1.64579237e+00 3.37529093e-01 -6.05249405e-01 1.02167630e+00 -3.38476934e-02 1.33664644e+00 1.08085465e+00 -4.29729074e-01 4.74273741e-01 -4.70800221e-01 1.81381285e-01 -7.33104527e-01 -9.96198133e-02 -3.66039246e-01 -5.19825041e-01 3.07205349e-01 -3.25632662e-01 -1.06945604e-01 4.49298412e-01 -7.80779481e-01 -6.26612723e-01 4.65173125e-01 1.08224654e+00 5.30844629e-01 3.57340515e-01 5.26769638e-01 -1.16563535e+00 7.92006254e-01 -7.52704322e-01 -8.79606247e-01 2.93771744e-01 -7.61913002e-01 2.56483048e-01 4.20507044e-01 -4.47264135e-01 -4.23044592e-01 -1.49101317e-01 -1.73086211e-01 -2.53205359e-01 -7.99859315e-02 1.10083878e+00 -1.06263503e-01 9.01389401e-03 1.08828962e+00 7.65304267e-02 -2.56101370e-01 -3.73948276e-01 -4.39701080e-01 4.68100458e-01 5.53115308e-01 -8.36077988e-01 7.54001677e-01 -6.79975450e-01 -5.47228396e-01 7.85707533e-02 -8.46477807e-01 -2.92058140e-01 1.21455908e-01 -1.12344734e-01 4.52678591e-01 -5.66614985e-01 -6.52384758e-01 2.33230755e-01 -1.17386925e+00 -5.43560684e-01 -1.81395829e-01 1.10191004e-02 -3.79873872e-01 -7.14162961e-02 -5.87115526e-01 -7.82640278e-01 -7.55803287e-02 -1.64203656e+00 9.55439627e-01 3.37583609e-02 -7.45923579e-01 -5.96823514e-01 4.23949659e-01 2.21049711e-01 2.54117608e-01 2.73402542e-01 1.37711561e+00 -1.06367922e+00 -1.07051277e+00 -7.82168925e-01 3.43337983e-01 6.13413274e-01 8.35597888e-02 1.75000593e-01 -6.41651392e-01 -3.52914929e-01 2.46589810e-01 -5.76814353e-01 -3.83450128e-02 -2.23543122e-01 8.58664811e-01 -6.79844499e-01 -2.12811768e-01 1.50275618e-01 1.51851618e+00 1.88406557e-01 4.17794973e-01 2.20662519e-01 2.06989244e-01 2.77986169e-01 9.62758482e-01 2.70954341e-01 1.58831194e-01 1.76324695e-01 6.61316633e-01 3.49352062e-01 4.77543682e-01 -4.30593401e-01 6.05957389e-01 5.50293684e-01 4.93090719e-01 -2.58855343e-01 -1.25941348e+00 6.54156387e-01 -1.79543459e+00 -6.19115889e-01 -7.03321099e-02 2.45815206e+00 1.14532542e+00 6.11855984e-01 -1.19099937e-01 8.62708464e-02 3.37629288e-01 -4.46571678e-01 -7.76939213e-01 -3.53992105e-01 4.93166834e-01 2.78087586e-01 -7.98705891e-02 8.28260839e-01 -6.70281529e-01 5.87162971e-01 6.36983633e+00 3.86618048e-01 -9.45468962e-01 1.28481641e-01 5.05189300e-01 1.29850626e-01 -7.21195996e-01 5.32455623e-01 -6.81879997e-01 4.02694345e-01 1.16463339e+00 -1.76903993e-01 5.62380254e-01 1.39329839e+00 -1.08164832e-01 -5.61393559e-01 -1.72921908e+00 1.60616636e-01 1.25830054e-01 -1.14127147e+00 -5.57263672e-01 1.74134627e-01 4.95980948e-01 -1.45561874e-01 -2.12351009e-01 7.91135311e-01 5.02104759e-01 -1.04280388e+00 8.44481230e-01 5.25362074e-01 6.22014225e-01 -7.16946483e-01 1.02521253e+00 8.07336569e-01 -6.84177399e-01 -2.70849347e-01 -1.48487672e-01 -1.51256904e-01 -3.39890331e-01 6.41726136e-01 -1.32944298e+00 2.21568838e-01 6.73329830e-01 5.12688346e-02 -9.03417647e-01 1.23368108e+00 -5.61587751e-01 1.14545274e+00 1.90939456e-02 6.07805653e-03 -5.60489744e-02 2.40512267e-01 5.74422002e-01 9.41246629e-01 5.05617499e-01 -5.53408228e-02 5.55876732e-01 1.15257823e+00 5.46399429e-02 -3.33494246e-01 -5.61140835e-01 -3.58108908e-01 6.44986808e-01 9.76552367e-01 -2.48693123e-01 -2.58402437e-01 -2.11674109e-01 5.88233411e-01 5.04919469e-01 3.85869384e-01 -5.03436327e-01 -6.58395886e-01 4.59472120e-01 4.31148946e-01 2.64828414e-01 4.84473817e-02 -1.13253385e-01 -7.65836060e-01 5.30650795e-01 -1.56171143e+00 3.51041824e-01 -1.15957141e+00 -9.91598368e-01 7.83671260e-01 -2.09479690e-01 -1.08886385e+00 -8.11503947e-01 -3.69506657e-01 -8.27168167e-01 9.11190510e-01 -7.45068252e-01 -5.27398229e-01 -3.37875783e-02 -1.04198568e-01 5.34756601e-01 2.76246909e-02 1.07220960e+00 -4.02567200e-02 -4.43743944e-01 7.52680659e-01 -7.55107462e-01 -1.76844031e-01 6.72825038e-01 -1.58829999e+00 2.99105197e-01 1.04125333e+00 -2.24329486e-01 9.66882110e-01 1.01682281e+00 -1.15490699e+00 -1.84021878e+00 -1.13936591e+00 1.10668874e+00 -8.93579543e-01 8.27429116e-01 -2.59287208e-01 -1.39680314e+00 1.10933542e+00 -2.03498583e-02 -1.48980813e-02 7.14144886e-01 1.31928787e-01 -4.61585850e-01 3.79115380e-02 -1.30849445e+00 2.98825592e-01 4.02315944e-01 -8.13275456e-01 -7.28032708e-01 5.87252259e-01 1.08135951e+00 -5.74325562e-01 -8.46370578e-01 1.21830560e-01 -3.81865501e-02 -8.27877462e-01 -4.10069413e-02 -6.93924725e-01 3.43783140e-01 -7.04196215e-01 -1.18691444e-01 -1.26996279e+00 -1.09141290e-01 -8.30974042e-01 -2.81267278e-02 9.60629463e-01 8.28444421e-01 -8.01392078e-01 5.07397473e-01 8.07685137e-01 -3.94837856e-01 -1.11511517e+00 -7.54034042e-01 -4.92342353e-01 -5.60858369e-01 -6.63826287e-01 6.85909867e-01 6.76566243e-01 3.91982019e-01 -6.52278066e-02 4.05027978e-02 6.99682653e-01 1.90775260e-01 3.59132625e-02 9.58612442e-01 -1.00146830e+00 -9.95922804e-01 2.81227916e-01 -3.83704871e-01 -8.07903945e-01 3.40813287e-02 -6.94943905e-01 5.74745178e-01 -7.35483110e-01 2.72666246e-01 -2.38239691e-01 -4.38262038e-02 1.08116722e+00 -4.26966429e-01 -1.87629372e-01 -5.20603180e-01 7.15244487e-02 -7.77444065e-01 -2.77198941e-01 7.84842670e-01 -6.20807335e-02 3.20563689e-02 2.10113660e-01 -7.05977321e-01 4.44676727e-01 4.91327524e-01 -9.59388256e-01 -3.44952285e-01 -4.07160878e-01 8.56922805e-01 8.51238608e-01 3.96263719e-01 -8.52188945e-01 5.12672722e-01 -5.66235520e-02 -1.01494566e-01 -2.65537292e-01 -4.42399383e-01 -3.96329492e-01 4.79748040e-01 6.06250703e-01 -3.57724547e-01 7.22962499e-01 6.02225773e-02 3.68002236e-01 -3.61956656e-01 -9.59437966e-01 1.74753830e-01 -2.35816017e-01 -5.73558211e-02 3.04919910e-02 -6.38698041e-01 1.37937024e-01 8.13464701e-01 -3.97573449e-02 -5.59101760e-01 -1.24261536e-01 -6.55139744e-01 4.30667073e-01 8.44355762e-01 1.17167912e-01 5.51072955e-01 -9.38333690e-01 -4.70926881e-01 4.89273936e-01 5.21537125e-01 1.56728178e-02 -3.11256766e-01 6.34437740e-01 -3.29257667e-01 1.85153022e-01 5.54583907e-01 -7.42297709e-01 -1.02079213e+00 3.03482533e-01 3.98555934e-01 -2.99826354e-01 -1.88877597e-01 8.95314157e-01 -2.32184082e-01 -5.94182014e-01 1.56070158e-01 -6.15776360e-01 6.07394695e-01 -5.53765237e-01 5.25628448e-01 -3.03669162e-02 4.22267109e-01 2.99566567e-01 -2.17151612e-01 -1.73285186e-01 -1.94644555e-02 -1.32461429e-01 1.36312890e+00 5.94995320e-01 -5.58249116e-01 6.64140642e-01 8.14243913e-01 4.75481719e-01 -1.20315754e+00 1.25856072e-01 3.67429495e-01 -7.95099258e-01 -2.26385891e-01 -1.20679474e+00 -6.06799543e-01 2.58580357e-01 1.53338447e-01 5.81848919e-01 8.72088075e-01 1.96155205e-01 2.88792104e-01 7.05549777e-01 1.06700587e+00 -5.75070381e-01 3.91187131e-01 3.61184150e-01 8.77231419e-01 -1.01526034e+00 -3.96815300e-01 -1.50256127e-01 -2.30286807e-01 1.03189003e+00 1.13129675e+00 -1.99996769e-01 -4.25365642e-02 5.96728086e-01 -1.63723871e-01 -3.75540882e-01 -1.45891011e+00 4.80826348e-01 -1.75451990e-02 3.25242966e-01 3.44129384e-01 1.32285535e-01 7.12974966e-02 9.85399723e-01 -3.67459953e-01 1.23170568e-04 7.98332930e-01 1.33997881e+00 -9.20335352e-01 -1.02065146e+00 -5.83060324e-01 6.23278201e-01 -3.24424326e-01 -4.74559050e-03 -4.58826929e-01 7.67159283e-01 2.12263972e-01 1.01371753e+00 -1.95576563e-01 -6.07498646e-01 3.74294430e-01 2.68014222e-01 1.60750002e-01 -1.45875740e+00 -8.32873821e-01 -4.65999683e-03 4.67351198e-01 -8.41542363e-01 5.95185101e-01 -5.71544349e-01 -1.13392568e+00 4.46014181e-02 -6.35285974e-01 7.80670583e-01 2.90975243e-01 1.00922441e+00 2.85668343e-01 4.33110982e-01 7.75469303e-01 -1.93224754e-02 -1.00501561e+00 -9.81218815e-01 -2.10180148e-01 -1.00143641e-01 6.30828619e-01 -3.78810078e-01 -7.69731283e-01 8.67169797e-02]
[7.626348972320557, 7.71376371383667]
182e93bc-377e-41bc-bfcc-8d5c0058be25
functional-constrained-optimization-for-risk
2210.05108
null
https://arxiv.org/abs/2210.05108v1
https://arxiv.org/pdf/2210.05108v1.pdf
Functional Constrained Optimization for Risk Aversion and Sparsity Control
Risk and sparsity requirements often need to be enforced simultaneously in many applications, e.g., in portfolio optimization, assortment planning, and treatment planning. Properly balancing these potentially conflicting requirements entails the formulation of functional constrained optimization with either convex or nonconvex objectives. In this paper, we focus on projection-free methods that can generate a sparse trajectory for solving these challenging functional constrained optimization problems. Specifically, for the convex setting, we propose a Level Conditional Gradient (LCG) method, which leverages a level-set framework to update the approximation of the optimal value and an inner conditional gradient oracle (CGO) for solving mini-max subproblems. We show that the method achieves $\mathcal{O}\big(\frac{1}{\epsilon^2}\log\frac{1}{\epsilon}\big)$ iteration complexity for solving both smooth and nonsmooth cases without dependency on a possibly large size of optimal dual Lagrange multiplier. For the nonconvex setting, we introduce the Level Inexact Proximal Point (IPP-LCG) method and the Direct Nonconvex Conditional Gradient (DNCG) method. The first approach taps into the advantage of LCG by transforming the problem into a series of convex subproblems and exhibits an $\mathcal{O}\big(\frac{1}{\epsilon^3}\log\frac{1}{\epsilon}\big)$ iteration complexity for finding an ($\epsilon,\epsilon$)-KKT point. The DNCG is the first single-loop projection-free method, with iteration complexity bounded by $\mathcal{O}\big(1/\epsilon^4\big)$ for computing a so-called $\epsilon$-Wolfe point. We demonstrate the effectiveness of LCG, IPP-LCG and DNCG by devising formulations and conducting numerical experiments on two risk averse sparse optimization applications: a portfolio selection problem with and without cardinality requirement, and a radiation therapy planning problem in healthcare.
['H. Edwin Romeijn', 'Guanghui Lan', 'Yi Cheng']
2022-10-11
null
null
null
null
['portfolio-optimization']
['time-series']
[ 2.79180139e-01 3.67043912e-01 -7.31087625e-02 1.04995638e-01 -1.24699116e+00 -3.49446088e-01 -1.31920278e-01 3.59903485e-01 -5.21683276e-01 9.63151395e-01 1.32790193e-01 -7.12032318e-01 -8.81724656e-01 -6.81177855e-01 -7.81874418e-01 -9.40349162e-01 -4.07360196e-01 3.32143217e-01 -3.83507341e-01 -1.63458720e-01 2.84379095e-01 3.04540306e-01 -1.00258970e+00 -1.12926893e-01 1.24811590e+00 1.52695549e+00 8.16063136e-02 3.39434206e-01 3.02006304e-01 4.13588136e-01 -2.98567880e-02 -2.22297803e-01 5.87710023e-01 -4.67866153e-01 -4.49135214e-01 2.57090122e-01 6.32786378e-02 -1.06342547e-02 1.79563612e-01 1.26771188e+00 5.36339521e-01 3.16631913e-01 6.85355902e-01 -1.01597238e+00 3.89795452e-02 1.34616926e-01 -8.85881603e-01 7.77287185e-02 2.63777912e-01 1.18341260e-01 8.60675991e-01 -1.09080863e+00 2.66895920e-01 6.64008081e-01 8.52813125e-01 4.55378890e-02 -1.00526655e+00 -5.10955334e-01 3.55455458e-01 -5.33807933e-01 -1.34023428e+00 -5.88635392e-02 4.10261691e-01 -7.88269997e-01 5.49921513e-01 6.80982471e-01 5.40707111e-01 1.32434800e-01 2.88152188e-01 4.87700582e-01 1.19092321e+00 -4.08112347e-01 4.13070738e-01 1.05890214e-01 -9.51685309e-02 8.00060153e-01 2.59889901e-01 2.56170958e-01 -1.74957484e-01 -5.84765911e-01 7.86080241e-01 6.62143379e-02 -7.15409398e-01 7.19802978e-04 -9.20190096e-01 1.21957004e+00 2.32358292e-01 2.74446905e-02 -5.30264139e-01 2.56575108e-01 -1.65764596e-02 4.51072529e-02 5.70101202e-01 4.35503185e-01 -2.24039972e-01 -1.04811944e-01 -9.83226359e-01 3.31336230e-01 8.01613212e-01 1.08801126e+00 3.52680713e-01 1.33634014e-02 -3.34692061e-01 6.73051596e-01 2.63061017e-01 5.78762114e-01 -1.01070121e-01 -9.85249579e-01 7.92381525e-01 4.44817215e-01 3.73540223e-01 -9.23454523e-01 -4.50220615e-01 -5.81655860e-01 -8.51237833e-01 2.20810488e-01 5.35875499e-01 -5.73089123e-01 -6.04473710e-01 1.63022053e+00 6.25448406e-01 -1.80280223e-01 -3.39120477e-01 9.43165898e-01 1.37393892e-01 7.69892752e-01 -1.96612164e-01 -9.63866591e-01 1.39234090e+00 -7.16968060e-01 -2.10592136e-01 -1.55905634e-01 6.27326787e-01 -8.28891754e-01 1.05596268e+00 4.64782238e-01 -1.57147014e+00 1.11496575e-01 -8.50663424e-01 4.41414207e-01 3.64338666e-01 -8.18539411e-02 5.87153971e-01 7.56328702e-01 -7.57354379e-01 6.41111195e-01 -6.95067227e-01 4.37316179e-01 4.63333935e-01 6.06603920e-01 -1.37867555e-01 -2.82096028e-01 -6.23713493e-01 4.52792495e-01 1.76176473e-01 2.81252503e-01 -6.74862266e-01 -1.21427190e+00 -7.66034663e-01 1.57959178e-01 8.63303244e-01 -5.05340219e-01 7.66878784e-01 -6.49077237e-01 -1.14078748e+00 5.01716971e-01 7.70955533e-02 -8.26711506e-02 7.34854698e-01 1.38702709e-02 1.94044977e-01 1.34939358e-01 2.47966468e-01 -9.94097814e-03 5.61796367e-01 -1.01468360e+00 -5.86331367e-01 -5.13949871e-01 8.06770921e-02 4.48747247e-01 -3.24799210e-01 4.42371927e-02 -2.82874316e-01 -8.82862926e-01 3.11234206e-01 -1.03270769e+00 -6.01201355e-01 -8.01320001e-02 -3.42833906e-01 1.44067407e-01 1.40221372e-01 -8.01280737e-01 1.35971749e+00 -2.00307989e+00 3.70151103e-01 7.08991170e-01 3.23851630e-02 5.88485086e-03 4.44560766e-01 3.97886097e-01 -9.31918919e-02 4.46126498e-02 -7.37372637e-01 -3.55412602e-01 -6.34691045e-02 8.09390619e-02 -5.39620593e-02 7.97171593e-01 -2.83687502e-01 4.91762966e-01 -8.75318587e-01 -2.11330637e-01 -1.66584358e-01 3.12810987e-01 -8.78786623e-01 -1.31252900e-01 -2.54686940e-02 5.85880220e-01 -8.38416159e-01 7.25173056e-01 8.25735927e-01 -2.69441217e-01 2.03049645e-01 -5.78083210e-02 -3.97246003e-01 -1.83402866e-01 -1.67925429e+00 1.47640657e+00 -5.00270247e-01 -2.13833228e-01 7.54726291e-01 -1.19189024e+00 4.23878640e-01 2.35544220e-01 1.02123487e+00 -3.53381366e-01 1.29408896e-01 5.01146734e-01 -5.47877312e-01 -9.46011841e-02 1.44522354e-01 -9.76977825e-01 -1.06572486e-01 4.54967320e-01 -4.27064568e-01 -1.59182310e-01 1.33995906e-01 3.32847759e-02 1.19543540e+00 -1.49446622e-01 2.64160424e-01 -8.00000787e-01 6.15110278e-01 -9.17559788e-02 1.00572979e+00 6.31489217e-01 5.28044403e-02 6.24789774e-01 1.06932926e+00 -1.31197020e-01 -7.49055684e-01 -7.88754284e-01 -5.91113389e-01 8.52440774e-01 -3.87037406e-03 -1.06758706e-01 -6.34978771e-01 -6.15557194e-01 1.05806001e-01 7.37453759e-01 -4.88485038e-01 1.46203876e-01 -7.10554957e-01 -1.29247093e+00 6.73199072e-02 5.02542496e-01 1.34605661e-01 -6.95813358e-01 -5.68656087e-01 3.29764187e-01 6.21028095e-02 -7.63633132e-01 -9.69655275e-01 3.27843755e-01 -8.21423054e-01 -8.51406813e-01 -9.79973495e-01 -3.69676799e-01 1.21403766e+00 -1.91652402e-01 7.84992635e-01 -3.08460146e-02 -2.44947195e-01 5.59372306e-01 -1.99604854e-01 -4.60073054e-01 9.04680640e-02 -3.09992641e-01 1.21314853e-01 1.46143049e-01 -4.73705679e-01 -5.42892575e-01 -8.63182008e-01 3.03199947e-01 -9.37560737e-01 -2.38388311e-03 3.30767930e-01 1.06825769e+00 1.11463809e+00 -7.53210206e-03 4.22964334e-01 -9.59853649e-01 6.36544704e-01 -4.74548072e-01 -1.28281164e+00 7.41068199e-02 -7.94949532e-01 1.97850522e-02 6.54698610e-01 -2.41384074e-01 -8.10029805e-01 1.36643603e-01 -4.86698896e-02 -5.95338941e-01 6.27399862e-01 9.57198560e-01 3.78219262e-02 -3.33044589e-01 4.34876561e-01 1.34774461e-01 -2.01243266e-01 -4.38291550e-01 8.57489109e-02 1.55703381e-01 3.90257001e-01 -9.12644029e-01 6.49684370e-01 5.64702809e-01 4.15850490e-01 -5.06090522e-01 -9.65997577e-01 -3.93907428e-01 4.88948748e-02 -9.37906951e-02 6.82180524e-01 -6.17571175e-01 -1.11626136e+00 -1.54520467e-01 -5.05133808e-01 -2.91578174e-01 -7.82971144e-01 6.84162319e-01 -7.93812454e-01 4.70284522e-01 -3.04378748e-01 -9.94833648e-01 -5.41159511e-01 -1.29109466e+00 7.95791149e-01 5.83958142e-02 5.14319986e-02 -9.77593124e-01 -8.67502019e-02 5.93298733e-01 3.31238478e-01 7.36621559e-01 9.04703915e-01 -1.28044710e-01 -5.14822125e-01 -4.73158360e-01 -1.99608207e-01 4.95907634e-01 -1.94690317e-01 -7.09882617e-01 -2.58044809e-01 -7.59072423e-01 6.14771128e-01 -1.09966889e-01 4.42832559e-01 6.87360048e-01 1.22978175e+00 -9.58669066e-01 -2.95729786e-01 1.01345384e+00 1.72107899e+00 2.34472051e-01 4.91662711e-01 -9.89550054e-02 5.53019226e-01 4.10606891e-01 6.77976727e-01 1.06931114e+00 1.19460486e-01 4.96188015e-01 4.96374577e-01 -1.43423498e-01 3.33984852e-01 1.73399761e-01 8.20805728e-02 5.19612789e-01 -2.19752312e-01 1.25098450e-03 -8.70586395e-01 6.68433487e-01 -1.77958512e+00 -4.78437483e-01 -5.56061864e-02 2.58951998e+00 9.42452312e-01 4.99998294e-02 -9.75168645e-02 2.58775614e-02 5.12862921e-01 -1.29161432e-01 -5.01169741e-01 -4.63321179e-01 2.30949700e-01 7.14303851e-01 7.67185330e-01 5.89941025e-01 -7.89633989e-01 2.43926957e-01 3.74768543e+00 1.11657095e+00 -8.34095359e-01 1.29108995e-01 8.27243388e-01 -5.50777197e-01 -4.30790991e-01 2.90912300e-01 -6.87928021e-01 6.98068142e-01 5.78895271e-01 -3.27583641e-01 4.57297534e-01 9.11758721e-01 3.29247445e-01 -4.54713404e-01 -9.65903759e-01 8.99699032e-01 -9.16080624e-02 -1.47322154e+00 -6.44320190e-01 5.28949320e-01 1.09349847e+00 -3.73536825e-01 2.72631377e-01 1.55585175e-02 1.52247533e-01 -1.17515266e+00 6.47361517e-01 1.48633286e-01 1.05336297e+00 -8.83220255e-01 5.16491413e-01 3.30867559e-01 -1.22309637e+00 -4.43477005e-01 -4.17362303e-02 1.07089244e-01 5.97801149e-01 1.07236457e+00 -3.82056862e-01 7.83981442e-01 6.91598237e-01 1.10203899e-01 5.70957363e-01 9.91355419e-01 -1.80453025e-02 2.35775679e-01 -6.30527198e-01 4.00674284e-01 3.75148535e-01 -6.67149127e-01 8.74340653e-01 9.02510941e-01 5.72695911e-01 8.46650362e-01 5.57533264e-01 8.17795813e-01 -9.25579146e-02 3.80676359e-01 -9.13778320e-02 1.41858593e-01 1.81580842e-01 1.10400689e+00 -7.27906108e-01 -4.45387624e-02 -3.32679629e-01 4.37588513e-01 1.08871289e-01 3.29522192e-01 -9.05679226e-01 -2.76921004e-01 5.42462647e-01 4.49029684e-01 4.17676479e-01 -1.92130640e-01 -6.79668665e-01 -1.06919992e+00 5.39040864e-01 -7.85855174e-01 7.75427699e-01 -1.21954761e-01 -1.15575826e+00 3.64584833e-01 2.13438183e-01 -1.13281834e+00 -6.01736046e-02 -5.08299768e-01 -5.26943088e-01 1.10186458e+00 -1.28440928e+00 -6.65079951e-01 -2.20762402e-01 7.21508741e-01 -3.53090675e-03 2.58886982e-02 4.92635369e-01 5.15772700e-01 -5.38129330e-01 5.64892113e-01 3.06244999e-01 -3.04197669e-01 4.84231412e-02 -9.63449776e-01 -6.86096907e-01 6.99785829e-01 -6.49901390e-01 3.70924979e-01 5.76138616e-01 -6.25858366e-01 -1.54559577e+00 -9.24643338e-01 6.67096794e-01 5.93933696e-03 4.56545800e-01 -6.15728050e-02 -5.02752125e-01 6.18467033e-01 -3.05127680e-01 2.21889809e-01 5.93830824e-01 -3.09763104e-01 4.23508346e-01 -2.05622211e-01 -1.45924902e+00 4.66957271e-01 8.05756629e-01 -6.17475063e-02 4.99081351e-02 9.49480176e-01 4.42467570e-01 -8.61083567e-01 -1.41729391e+00 6.64875388e-01 1.81456521e-01 -7.86745250e-01 9.23188806e-01 -3.49356920e-01 3.42033893e-01 -1.55648157e-01 -3.41338515e-01 -8.02346230e-01 5.24154343e-02 -1.22442210e+00 -5.21859974e-02 6.44950867e-01 6.39925301e-01 -8.40740383e-01 9.26523924e-01 1.14607716e+00 -5.78265607e-01 -1.55169713e+00 -1.44159222e+00 -6.77770436e-01 4.63403195e-01 -3.76196831e-01 2.50336006e-02 9.28583205e-01 8.58580247e-02 -4.24874932e-01 -4.24348474e-01 1.94865227e-01 6.32670999e-01 -1.21728495e-01 2.26642489e-01 -6.27559662e-01 -9.41585124e-01 -2.52729833e-01 9.79551449e-02 -6.49814546e-01 -5.57051480e-01 -8.66768718e-01 -4.30815341e-03 -1.37400603e+00 1.71360329e-01 -1.13278019e+00 -1.70334607e-01 5.32531679e-01 -1.59018725e-01 -2.25536540e-01 2.25904644e-01 -2.23065726e-02 -5.14048822e-02 5.13889670e-01 1.21673262e+00 -1.51424995e-03 -4.57167655e-01 1.31053075e-01 -9.54522491e-01 8.60203445e-01 3.13905269e-01 -6.48721457e-01 -5.65181315e-01 -3.71440470e-01 6.93376243e-01 8.37411761e-01 1.77524120e-01 -6.71997070e-01 2.02365458e-01 -5.53501248e-01 -5.31097464e-02 -3.30590457e-01 3.95750910e-01 -5.98097682e-01 3.29833001e-01 5.16490579e-01 3.23910378e-02 1.65852115e-01 1.04197562e-01 4.63481218e-01 4.60696258e-02 -6.14891887e-01 9.92157400e-01 -2.69138455e-01 2.50146121e-01 4.79471207e-01 5.48003335e-03 3.38179201e-01 1.28248239e+00 -2.31067270e-01 7.85473660e-02 -3.16904485e-01 -8.87581408e-01 5.39254189e-01 1.66021541e-01 -3.89684916e-01 5.21912098e-01 -1.16981697e+00 -8.00851703e-01 6.77752867e-02 -4.28861618e-01 4.98138875e-01 4.57847267e-01 1.46880448e+00 -5.46977222e-01 3.91416371e-01 4.61972773e-01 -4.19044226e-01 -6.43756151e-01 4.42469388e-01 4.51775998e-01 -7.71418512e-01 -4.75234926e-01 1.21908128e+00 3.22672278e-01 -1.41693890e-01 9.12995487e-02 -2.77175605e-01 4.03066903e-01 -3.80981108e-03 1.89637378e-01 8.40891063e-01 2.89445490e-01 -2.71705270e-01 -3.81875098e-01 4.67923671e-01 -1.53546408e-02 -3.01250160e-01 1.41471052e+00 1.51925325e-01 -3.53005409e-01 -3.01773340e-01 1.34706855e+00 1.34634644e-01 -1.40587854e+00 1.84026048e-01 -2.31958568e-01 -5.25239944e-01 1.78291813e-01 -6.23439789e-01 -1.22499740e+00 4.41957057e-01 4.71608758e-01 -8.70054513e-02 1.36194682e+00 -2.39213228e-01 8.27713311e-01 -1.56900823e-01 4.36345488e-01 -1.36285985e+00 4.27182987e-02 2.98588097e-01 1.09803784e+00 -9.36505973e-01 5.39775670e-01 -5.62112212e-01 -6.96884632e-01 8.50838244e-01 1.98488891e-01 -2.44342402e-01 1.00634658e+00 1.97969288e-01 -4.64221179e-01 -3.21989387e-01 -1.79173335e-01 3.03327709e-01 4.36736435e-01 -2.22488791e-01 3.22132081e-01 2.43259460e-01 -9.24756825e-01 6.80137873e-01 -1.10766970e-01 -1.32915661e-01 3.24227989e-01 1.37946212e+00 -5.92359267e-02 -1.08425331e+00 -5.04070282e-01 6.60153329e-01 -6.81355476e-01 -2.53947020e-01 3.95414591e-01 6.31903708e-01 2.23064974e-01 7.84681261e-01 -3.20935577e-01 3.65005672e-01 3.59089732e-01 -1.56551301e-01 4.90426719e-01 -4.99821037e-01 -6.40551329e-01 3.67642939e-01 1.41968280e-01 -6.09889746e-01 2.03511007e-02 -7.14079380e-01 -1.43328488e+00 -6.81983680e-02 -3.57030481e-01 3.50020021e-01 5.71634054e-01 9.49867010e-01 2.11085439e-01 3.06132555e-01 8.60919952e-01 -7.97206759e-01 -8.61173391e-01 -4.67353106e-01 -7.12756097e-01 1.55908674e-01 6.47808835e-02 -5.96040606e-01 -5.30747533e-01 -3.63260359e-01]
[6.493074417114258, 4.518100261688232]
c73022dc-308a-4595-a823-f86354eebc7f
why-do-deepfake-detectors-fail
2302.13156
null
https://arxiv.org/abs/2302.13156v1
https://arxiv.org/pdf/2302.13156v1.pdf
Why Do Deepfake Detectors Fail?
Recent rapid advancements in deepfake technology have allowed the creation of highly realistic fake media, such as video, image, and audio. These materials pose significant challenges to human authentication, such as impersonation, misinformation, or even a threat to national security. To keep pace with these rapid advancements, several deepfake detection algorithms have been proposed, leading to an ongoing arms race between deepfake creators and deepfake detectors. Nevertheless, these detectors are often unreliable and frequently fail to detect deepfakes. This study highlights the challenges they face in detecting deepfakes, including (1) the pre-processing pipeline of artifacts and (2) the fact that generators of new, unseen deepfake samples have not been considered when building the defense models. Our work sheds light on the need for further research and development in this field to create more robust and reliable detectors.
['Simon Woo', 'Kristen Moore', 'Alsharif Abuadbba', 'Shahroz Tariq', 'Binh Le']
2023-02-25
null
null
null
null
['face-swapping']
['computer-vision']
[-1.21050151e-02 -3.45133960e-01 9.76540223e-02 -1.51508898e-02 -5.26259959e-01 -7.51679301e-01 9.24045205e-01 2.96008676e-01 -2.88504511e-01 5.02888381e-01 2.86120445e-01 -3.93854171e-01 3.59601587e-01 -6.60806775e-01 -3.92433912e-01 -3.64777178e-01 4.31224629e-02 -1.22936293e-01 5.45953929e-01 -1.99819244e-02 5.18899143e-01 5.25154471e-01 -1.44672453e+00 3.98320168e-01 4.11710501e-01 8.43915284e-01 -3.61273021e-01 7.47443676e-01 1.49726078e-01 5.97046018e-01 -1.14377999e+00 -7.59723902e-01 2.12921515e-01 -4.06680971e-01 -5.25310993e-01 -2.43262112e-01 7.07545578e-01 -8.94468009e-01 -6.88345611e-01 1.13156486e+00 6.46200001e-01 -2.92395532e-01 3.27477008e-01 -1.41404903e+00 -5.84306061e-01 3.33793193e-01 -7.16499209e-01 5.62868774e-01 3.13804597e-01 3.34081173e-01 4.10417587e-01 -1.00960946e+00 3.85151803e-01 1.34387159e+00 9.58006680e-01 5.64181507e-01 -8.77341270e-01 -1.16005301e+00 -3.71281028e-01 1.85344324e-01 -1.51618493e+00 -7.60854125e-01 5.03967524e-01 -6.12708151e-01 7.54252613e-01 2.63574645e-02 6.07868969e-01 1.55044568e+00 2.80091435e-01 7.07468569e-01 1.04345930e+00 -3.70123714e-01 6.79142475e-02 2.19871253e-01 2.49863356e-01 6.04178011e-01 9.31592762e-01 3.27681452e-01 -7.92864680e-01 -5.51544607e-01 8.64924252e-01 -2.95898795e-01 -1.14076205e-01 9.20387506e-02 -9.66845930e-01 8.45416069e-01 1.27839837e-02 5.00095427e-01 -8.81496146e-02 1.94294393e-01 6.45315826e-01 3.03952485e-01 1.77653015e-01 5.55607617e-01 1.17959722e-03 -4.66772705e-01 -1.11916435e+00 3.33353519e-01 4.78562772e-01 4.28030133e-01 4.84155685e-01 2.10129008e-01 4.18340750e-02 5.40692568e-01 3.82334232e-01 3.37200463e-01 3.74451190e-01 -4.23311234e-01 5.40940344e-01 3.74505490e-01 3.36878687e-01 -1.71725643e+00 -8.83419737e-02 -3.81977141e-01 -4.08023804e-01 2.25164697e-01 7.22810507e-01 -5.04265651e-02 -8.03808689e-01 1.34607065e+00 1.78058401e-01 5.65334082e-01 -3.52346510e-01 8.29391241e-01 5.28674841e-01 2.43441939e-01 -3.09612472e-02 4.87058282e-01 1.39686739e+00 -4.71275866e-01 -7.15552270e-01 -3.67487490e-01 6.24232531e-01 -1.06268919e+00 9.81407881e-01 7.65147746e-01 -7.83746600e-01 -4.19375867e-01 -1.36992633e+00 1.86719939e-01 -4.28903610e-01 -1.20859250e-01 6.95949495e-01 1.48098445e+00 -6.87400103e-01 4.12627012e-01 -6.70482218e-01 -2.31470466e-01 7.82460332e-01 1.86836123e-01 -4.57011908e-01 -1.62331477e-01 -1.34327734e+00 9.18501019e-01 1.10439874e-01 2.82862276e-01 -1.31080127e+00 -4.12347466e-01 -4.86671150e-01 -1.79317370e-01 2.05262631e-01 -2.66306937e-01 1.00867999e+00 -7.47392833e-01 -9.32284296e-01 1.15438616e+00 5.21990545e-02 -3.88958484e-01 8.01057220e-01 -4.71229106e-01 -8.00012052e-01 -2.36594770e-02 3.51064205e-02 1.28605202e-01 1.27030265e+00 -1.03173363e+00 -5.08651376e-01 -3.19423050e-01 -2.05586329e-01 -4.08839881e-01 -6.14590883e-01 4.28143650e-01 -6.75696880e-02 -9.20804918e-01 -1.24708496e-01 -8.09525192e-01 2.43095621e-01 -3.99747528e-02 -5.17948151e-01 9.03058574e-02 1.23513329e+00 -7.85972238e-01 1.41241920e+00 -2.31019163e+00 -6.38581812e-01 8.35376754e-02 6.19863093e-01 8.95746827e-01 -1.11899361e-01 4.50806618e-01 1.42024413e-01 5.32980621e-01 2.80828476e-01 -3.05915833e-01 -2.68672764e-01 -1.78719640e-01 -4.94043708e-01 8.03746402e-01 2.40928605e-01 8.25819671e-01 -1.13128209e+00 -1.03490259e-02 1.01547219e-01 3.33680183e-01 -3.47556561e-01 -1.53488107e-02 3.63461256e-01 2.98554450e-01 -3.35800648e-01 7.84297824e-01 1.01405323e+00 2.19449010e-02 -2.30575845e-01 7.54168555e-02 -1.98256478e-01 6.03345037e-01 -1.05238378e+00 1.15989935e+00 2.20054295e-03 1.11147630e+00 2.34764889e-01 -6.52796149e-01 8.30822766e-01 2.05404580e-01 4.91310731e-02 -5.38866043e-01 5.57953894e-01 4.80558008e-01 8.47496316e-02 -4.24844027e-01 9.30994987e-01 -1.24017909e-01 1.78099319e-03 6.37677193e-01 -9.66657475e-02 2.28312790e-01 -2.53776252e-01 4.17734206e-01 1.32659996e+00 -4.14673179e-01 -1.26649350e-01 -1.40464783e-01 2.78735876e-01 -1.03652984e-01 3.11676234e-01 1.04212403e+00 -6.08585477e-01 5.43144286e-01 2.98238754e-01 -3.85392070e-01 -9.58873987e-01 -8.79058480e-01 1.21641029e-02 4.94731456e-01 2.00174481e-01 -5.80208838e-01 -7.15368569e-01 -8.04435611e-01 1.94106802e-01 2.17090935e-01 -4.29438829e-01 -4.83548254e-01 -4.30621386e-01 -6.14034116e-01 1.69006181e+00 3.15357417e-01 6.09800339e-01 -5.94283462e-01 -5.88265896e-01 3.15952092e-01 -3.34544569e-01 -1.28274143e+00 -2.79355735e-01 -2.75782257e-01 -8.03290844e-01 -1.22199810e+00 -5.34672141e-01 -4.69659179e-01 5.03372431e-01 7.76253760e-01 6.78670466e-01 5.79032958e-01 -4.40468699e-01 -1.26152411e-02 -2.81340361e-01 -4.91600394e-01 -5.87464094e-01 -2.85874754e-01 3.29015613e-01 1.11185284e-02 6.21610999e-01 -3.73696466e-03 -5.17908156e-01 5.33002913e-01 -9.44674909e-01 -4.24513906e-01 2.34454349e-01 7.67942667e-01 -1.50513381e-01 4.44265902e-01 7.92925298e-01 -8.00140142e-01 1.00026214e+00 -6.15578532e-01 -5.83789825e-01 -2.07298055e-01 -4.56045955e-01 -1.91302761e-01 2.85854042e-01 -7.97361493e-01 -8.31400931e-01 -6.03765965e-01 -2.28969127e-01 -1.07599035e-01 -1.81447208e-01 4.04504359e-01 -5.43499626e-02 -4.26857203e-01 1.02777624e+00 -8.14852864e-03 -7.08270520e-02 -4.73277688e-01 -2.49477830e-02 1.01515543e+00 5.79660594e-01 -3.29114437e-01 1.00862873e+00 5.86107075e-01 -3.30404878e-01 -1.11601889e+00 -3.82738918e-01 -3.24292213e-01 -1.32006183e-01 -3.30680728e-01 3.26317996e-01 -9.53574121e-01 -3.85301411e-01 1.39105725e+00 -1.21586859e+00 -9.18884724e-02 3.81761938e-01 2.35543534e-01 3.98364335e-01 9.96933401e-01 -8.87853503e-01 -9.00906622e-01 -2.97158472e-02 -1.06333292e+00 7.39835680e-01 1.70491621e-01 -6.61737502e-01 -8.12663138e-01 -5.16961608e-03 7.87466347e-01 5.29647768e-01 1.60295486e-01 5.61867535e-01 -4.23339427e-01 -5.19577265e-01 -7.50167131e-01 -3.54648441e-01 4.85435039e-01 2.44013831e-01 1.42742544e-01 -1.28186333e+00 -3.81054610e-01 -2.16312259e-02 -3.96796733e-01 5.83297074e-01 -1.41030148e-01 8.37717116e-01 -1.91290483e-01 -2.38279164e-01 2.90967703e-01 9.16293323e-01 2.02975690e-01 9.69998360e-01 5.13529360e-01 5.86100996e-01 4.90990400e-01 4.48261172e-01 6.08569443e-01 2.58312523e-01 6.17151022e-01 5.04151046e-01 1.12479277e-01 -1.94451332e-01 -5.19782007e-01 3.96363050e-01 3.67766172e-01 2.57528394e-01 -4.47401464e-01 -9.70517397e-01 6.00243807e-01 -1.37827396e+00 -1.07985127e+00 -6.84405982e-01 2.31980777e+00 3.39236200e-01 3.57453674e-01 1.20156057e-01 6.59092367e-01 7.84001291e-01 6.94381148e-02 -2.45882422e-01 -4.56015348e-01 -2.17307881e-01 1.89291999e-01 4.79569972e-01 2.88562208e-01 -1.10818303e+00 1.12866044e+00 6.79591846e+00 6.01794779e-01 -1.41602159e+00 1.11485250e-01 2.90291876e-01 2.34397992e-01 -1.20888539e-01 -1.00708254e-01 -9.18786228e-01 8.38509202e-01 7.59718537e-01 7.19575211e-02 2.31953025e-01 4.25435990e-01 3.80554378e-01 -3.02082241e-01 -7.25568712e-01 1.13483644e+00 2.30350658e-01 -1.42064011e+00 -2.36953378e-01 3.96810144e-01 4.07792717e-01 -8.02506134e-02 1.70070156e-01 8.22848976e-02 3.13317418e-01 -9.20374036e-01 9.27021444e-01 -1.45170093e-01 6.17327034e-01 -5.64012349e-01 9.03550982e-01 3.15436423e-01 -8.44365656e-01 7.05409199e-02 -2.12314546e-01 -3.94113481e-01 9.50781330e-02 6.49389505e-01 -9.53796387e-01 -2.67472147e-04 6.32028043e-01 4.95239079e-01 -5.22631824e-01 1.13895071e+00 -3.83641005e-01 8.30944657e-01 -2.47616187e-01 8.13497156e-02 1.82131961e-01 4.84035939e-01 3.46177399e-01 1.20394397e+00 3.87846798e-01 -3.37057501e-01 -1.60354957e-01 6.01423740e-01 -6.98964521e-02 -4.16767687e-01 -6.63637042e-01 -6.07098579e-01 7.27926552e-01 1.03386986e+00 -8.54572177e-01 -1.80256009e-01 -4.61971045e-01 1.10020387e+00 -1.01639993e-01 -7.01960083e-03 -8.91783535e-01 -3.18220019e-01 1.13415730e+00 5.00940084e-01 -1.18920229e-01 -5.50601423e-01 -5.13090134e-01 -1.36653388e+00 -1.86961904e-01 -1.20776987e+00 3.26830626e-01 -4.12279457e-01 -1.37165892e+00 3.16002190e-01 -3.57519746e-01 -1.08266187e+00 6.41854405e-02 -5.71098864e-01 -5.65343857e-01 7.58719623e-01 -1.23685968e+00 -8.71006787e-01 -4.37591463e-01 5.30015647e-01 1.88932776e-01 -3.23722512e-01 5.73705077e-01 7.42719829e-01 -4.87742335e-01 8.37015688e-01 -3.09226990e-01 4.29729760e-01 8.05021226e-01 -4.34611052e-01 9.46730316e-01 1.26339483e+00 1.74446315e-01 8.83204281e-01 6.09503925e-01 -9.64634418e-01 -1.39137924e+00 -6.17354929e-01 8.81176233e-01 -8.45424652e-01 9.71782267e-01 -6.42235518e-01 -1.03595054e+00 2.68561602e-01 -2.61383832e-01 -1.61236331e-01 7.79414833e-01 3.54312547e-02 -7.19324529e-01 2.94753134e-01 -1.35932779e+00 4.65543628e-01 6.77675724e-01 -8.97909522e-01 -4.31642890e-01 -2.72914708e-01 1.95694603e-02 -1.95638508e-01 -2.40130901e-01 9.81054083e-02 8.22711706e-01 -1.04893458e+00 9.35983777e-01 -4.53149676e-01 2.44370371e-01 -2.93996215e-01 3.22894603e-01 -9.99441683e-01 -2.27117553e-01 -6.60832524e-01 -3.59252632e-01 1.31270194e+00 -5.83768077e-02 -6.45825863e-01 1.09243786e+00 5.68074942e-01 5.10972925e-02 -1.97120249e-01 -9.22332942e-01 -9.40093338e-01 -6.63733184e-02 -6.82369232e-01 5.06341100e-01 1.31481385e+00 -1.23275921e-01 3.57068330e-02 -9.40008938e-01 3.35261822e-01 6.25164151e-01 -7.12277949e-01 1.01961243e+00 -1.32536662e+00 -1.43925831e-01 -4.17489499e-01 -8.74598980e-01 -1.00225103e+00 -3.48847687e-01 -4.51717615e-01 -2.21003354e-01 -1.03376269e+00 1.07938774e-01 -5.03871262e-01 -1.05562717e-01 4.24919009e-01 1.76044516e-02 8.15966964e-01 -6.97678104e-02 2.16640159e-01 -2.40342263e-02 1.49122924e-01 9.14624333e-01 -1.33191720e-01 1.50417492e-01 -2.22190648e-01 -8.87722552e-01 7.52372682e-01 8.05863440e-01 -7.53548384e-01 -2.01760933e-01 -5.46529591e-01 4.07974154e-01 -3.33237529e-01 6.10111475e-01 -1.02881587e+00 1.10220080e-02 7.73839280e-02 4.13848698e-01 -3.20160419e-01 2.93248475e-01 -5.36650896e-01 -1.05507642e-01 6.08623087e-01 2.08674937e-01 2.09406748e-01 3.94250542e-01 3.84830177e-01 -2.32005313e-01 -3.05412322e-01 8.05807412e-01 5.00254072e-02 -6.87435865e-01 -4.00715433e-02 -9.78479445e-01 9.36639458e-02 8.78785849e-01 -6.08590841e-01 -7.74659634e-01 -4.43979383e-01 -1.03337795e-01 -2.34924838e-01 7.22159863e-01 7.41474569e-01 7.79776931e-01 -1.03601241e+00 -5.17513931e-01 5.66085279e-01 8.94878879e-02 -5.89465320e-01 2.17651010e-01 5.32291532e-01 -7.41826892e-01 1.01372175e-01 -3.16058755e-01 -2.06858531e-01 -1.56925344e+00 1.83665261e-01 7.75598660e-02 7.69353881e-02 -5.03254831e-01 1.02430761e+00 -1.14034362e-01 1.65050194e-01 2.59731919e-01 -3.50512415e-02 1.26082465e-01 1.70432821e-01 9.81462955e-01 7.20650315e-01 2.55163461e-01 -8.08645368e-01 -6.31564260e-01 -1.76141068e-01 -2.50579655e-01 1.15491124e-03 8.20277750e-01 6.47200039e-03 5.61406612e-02 4.24173921e-02 8.47558081e-01 5.23855448e-01 -1.05393779e+00 5.91736734e-02 3.18790525e-01 -1.05672848e+00 1.74992248e-01 -6.74441934e-01 -8.75766993e-01 1.12166190e+00 5.57605267e-01 3.46612543e-01 6.59957170e-01 -1.79026932e-01 1.18457627e+00 -7.07378313e-02 7.05741823e-01 -8.25122416e-01 4.94337469e-01 6.11109197e-01 3.13615650e-01 -1.07682133e+00 -7.20919818e-02 -2.17807025e-01 -2.12670296e-01 1.01645756e+00 5.02590775e-01 8.79876025e-04 4.33880955e-01 5.32215118e-01 2.72307634e-01 -1.08442008e-01 -3.91729534e-01 2.69872338e-01 -3.59767191e-02 7.36143470e-01 4.88907605e-01 -5.57667110e-03 -3.63787621e-01 5.06035209e-01 -1.20009243e-01 1.42056897e-01 8.65563571e-01 9.50506270e-01 -2.39680603e-01 -1.35846972e+00 -7.26136744e-01 4.51260835e-01 -8.36086690e-01 -3.48932929e-02 -8.67604256e-01 5.73247969e-01 2.18333811e-01 1.26574540e+00 -2.93218523e-01 -9.43707049e-01 5.35223261e-02 -2.32995704e-01 3.91260505e-01 -5.86075306e-01 -7.37047672e-01 -2.10261002e-01 3.27831298e-01 -3.92343193e-01 1.73843265e-01 -6.76456928e-01 -8.83951604e-01 -8.64008904e-01 -5.96230984e-01 -3.11235785e-02 7.80950785e-01 9.25650001e-01 4.46453601e-01 -4.01189774e-02 1.92880824e-01 -7.89916813e-01 -4.54813004e-01 -7.80961394e-01 -5.11029899e-01 4.19005722e-01 4.14733231e-01 -8.38693917e-01 -4.49874878e-01 -3.43303770e-01]
[12.561349868774414, 1.1561734676361084]
258344d8-508d-4620-8ec8-767b7ef1d07f
mdm-molecular-diffusion-model-for-3d-molecule
2209.05710
null
https://arxiv.org/abs/2209.05710v1
https://arxiv.org/pdf/2209.05710v1.pdf
MDM: Molecular Diffusion Model for 3D Molecule Generation
Molecule generation, especially generating 3D molecular geometries from scratch (i.e., 3D \textit{de novo} generation), has become a fundamental task in drug designs. Existing diffusion-based 3D molecule generation methods could suffer from unsatisfactory performances, especially when generating large molecules. At the same time, the generated molecules lack enough diversity. This paper proposes a novel diffusion model to address those two challenges. First, interatomic relations are not in molecules' 3D point cloud representations. Thus, it is difficult for existing generative models to capture the potential interatomic forces and abundant local constraints. To tackle this challenge, we propose to augment the potential interatomic forces and further involve dual equivariant encoders to encode interatomic forces of different strengths. Second, existing diffusion-based models essentially shift elements in geometry along the gradient of data density. Such a process lacks enough exploration in the intermediate steps of the Langevin dynamics. To address this issue, we introduce a distributional controlling variable in each diffusion/reverse step to enforce thorough explorations and further improve generation diversity. Extensive experiments on multiple benchmarks demonstrate that the proposed model significantly outperforms existing methods for both unconditional and conditional generation tasks. We also conduct case studies to help understand the physicochemical properties of the generated molecules.
['Ka-Chun Wong', 'Tingyang Xu', 'Hengtong Zhang', 'Lei Huang']
2022-09-13
null
null
null
null
['3d-molecule-generation']
['medical']
[ 2.16055095e-01 -1.49328172e-01 -2.43905276e-01 -1.10951148e-01 -7.31886506e-01 -6.79073215e-01 7.62137651e-01 2.97079265e-01 -6.14871830e-02 1.33918357e+00 1.94998264e-01 -4.23163414e-01 -6.85706362e-03 -1.17483985e+00 -8.73961806e-01 -1.03783774e+00 2.14181006e-01 5.02484322e-01 -5.79522774e-02 -3.55727077e-01 4.80057240e-01 5.44234753e-01 -1.09801173e+00 9.88282412e-02 1.45096409e+00 3.80595863e-01 2.22581521e-01 2.29840994e-01 -3.07502866e-01 2.88317740e-01 -6.75576925e-01 -3.32720399e-01 2.40222201e-01 -7.51363635e-01 -4.66394931e-01 -1.61415815e-01 8.38340968e-02 -1.68981344e-01 -1.85411304e-01 1.10138726e+00 8.96392584e-01 4.04366970e-01 1.03369570e+00 -7.96355128e-01 -1.03288007e+00 5.64494252e-01 -6.28248334e-01 1.31072141e-02 3.05089772e-01 5.42318821e-01 7.49699652e-01 -1.02824450e+00 7.44808435e-01 1.21656346e+00 4.38271761e-01 7.79754996e-01 -1.37085867e+00 -8.15380096e-01 2.62100220e-01 -3.42937827e-01 -1.48399425e+00 -2.36964852e-01 9.43595052e-01 -5.77768445e-01 9.38570678e-01 1.70208544e-01 6.01137996e-01 1.35623264e+00 4.38808382e-01 5.04209280e-01 7.57286429e-01 4.93686795e-02 5.46729922e-01 -2.79575270e-02 -3.34634542e-01 5.42017937e-01 5.45475721e-01 1.64992481e-01 -5.55020928e-01 -4.58137214e-01 9.34829056e-01 1.95159078e-01 -1.91045463e-01 -3.56308460e-01 -1.21402979e+00 1.12681937e+00 4.87768739e-01 1.11627683e-01 -4.41044867e-01 6.66370541e-02 1.72737449e-01 -9.80029777e-02 4.95897144e-01 7.25727320e-01 -1.96549520e-01 -1.26061887e-01 -7.09110498e-01 7.81571805e-01 5.90719938e-01 9.89850998e-01 6.64051950e-01 8.44651684e-02 -4.34635878e-01 5.52906752e-01 2.58914888e-01 3.35364640e-01 2.53474712e-01 -3.38595957e-01 7.38041639e-01 5.31036496e-01 9.56209153e-02 -9.80369747e-01 -9.74565297e-02 -4.08966094e-01 -1.30999458e+00 -1.84238646e-02 9.44253802e-02 -3.54445875e-01 -1.15775383e+00 1.64429677e+00 5.34651875e-01 1.35002017e-01 1.62200570e-01 7.48119473e-01 7.44350672e-01 9.90271688e-01 3.21162224e-01 -4.14218962e-01 7.32650578e-01 -7.81532705e-01 -6.42249227e-01 2.11525083e-01 5.99354148e-01 -7.18056679e-01 7.59748101e-01 1.20421171e-01 -1.21892142e+00 -5.71579933e-01 -9.67053175e-01 2.19806358e-02 -2.99690843e-01 -1.10838600e-01 1.03050864e+00 5.03010035e-01 -5.70698023e-01 8.52775931e-01 -8.87138546e-01 3.47173810e-01 6.93634629e-01 4.61314350e-01 -1.33939862e-01 3.10148112e-02 -1.38604569e+00 4.63357925e-01 4.94671345e-01 8.89486670e-02 -9.84893799e-01 -9.10425961e-01 -8.28104436e-01 -2.22234219e-01 1.59411788e-01 -1.15864587e+00 8.26267123e-01 -3.67803782e-01 -1.64518046e+00 1.09963238e-01 -2.88707554e-01 -2.67887533e-01 6.59411669e-01 3.68830375e-02 3.28055117e-03 -3.18754554e-01 4.72948924e-02 7.31156468e-01 5.73625803e-01 -1.20686817e+00 -2.38130301e-01 -3.15743715e-01 1.04122004e-03 4.93885398e-01 -5.05528450e-02 -7.94894695e-01 -2.46890783e-01 -9.49596822e-01 -6.59156824e-03 -1.05031252e+00 -9.05408144e-01 -2.71700203e-01 -7.50587165e-01 -3.12333822e-01 2.93292403e-01 -6.24227785e-02 1.28581035e+00 -1.72606421e+00 6.69031382e-01 3.22459459e-01 1.86923742e-01 1.98737949e-01 -9.12394673e-02 5.36847174e-01 -1.01078212e-01 5.34357309e-01 -4.81962800e-01 -2.67507464e-01 -1.70901805e-01 2.69411840e-02 -2.93507904e-01 6.18780628e-02 3.76573145e-01 9.64948654e-01 -1.12091148e+00 -2.40241587e-01 4.13822830e-02 7.88963616e-01 -1.06935930e+00 1.39501104e-02 -6.57081425e-01 8.22579026e-01 -9.83766496e-01 4.88087267e-01 8.53559375e-01 -2.11676672e-01 -3.79890949e-03 -1.56967372e-01 -1.37704656e-01 3.32903326e-01 -9.92978334e-01 2.12719178e+00 -2.12236702e-01 -1.83860973e-01 -7.04807580e-01 -6.18447542e-01 1.09656060e+00 1.71864331e-01 5.00825703e-01 -4.56078678e-01 -1.73709273e-01 3.46407264e-01 1.42960340e-01 -8.92810524e-02 5.26005149e-01 -5.82737803e-01 1.28902376e-01 2.34167829e-01 -3.20669979e-01 -5.18187463e-01 1.96452349e-01 1.71903312e-01 6.73338294e-01 2.66378582e-01 4.32896502e-02 -1.12562574e-01 5.28276980e-01 -5.92636317e-02 6.66260064e-01 5.70164382e-01 2.45547950e-01 6.54488921e-01 5.84320545e-01 -3.96319866e-01 -1.07603431e+00 -1.03980231e+00 -6.57901317e-02 3.21780443e-01 2.28427306e-01 -6.16594553e-01 -5.42667389e-01 -7.36280918e-01 9.56964195e-02 6.55120194e-01 -6.53599501e-01 -4.84831601e-01 -4.83698308e-01 -1.32659650e+00 3.46583247e-01 4.13133949e-01 1.20065548e-01 -9.12862420e-01 -8.62193108e-03 4.73087788e-01 8.26731771e-02 -4.61653203e-01 -6.12323523e-01 7.43654370e-02 -9.37081516e-01 -7.31725574e-01 -9.62047935e-01 -5.41127563e-01 8.11567426e-01 6.99025318e-02 8.79708409e-01 -1.78121865e-01 -2.59240568e-01 -5.44939756e-01 -1.89652592e-01 -4.30773497e-01 -3.70251298e-01 4.05375391e-01 7.28062354e-03 -3.91899824e-01 2.51857072e-01 -6.79143488e-01 -1.00382948e+00 7.91437328e-02 -9.94083107e-01 2.01304898e-01 5.65705419e-01 9.78787422e-01 1.16478097e+00 2.93094754e-01 7.64617682e-01 -9.89059329e-01 9.52973366e-01 -7.79247522e-01 -4.81610477e-01 -9.96171013e-02 -5.76147318e-01 4.69573408e-01 6.62560940e-01 -5.04855633e-01 -9.02054429e-01 8.54657143e-02 -5.06169200e-01 -3.69125426e-01 2.96609849e-02 6.45765603e-01 -3.63779008e-01 1.60376936e-01 6.33870721e-01 4.40928638e-01 -1.51182428e-01 -3.96925896e-01 2.48268813e-01 2.02633232e-01 -1.54382870e-01 -9.08316314e-01 7.91114092e-01 2.85356402e-01 2.62853175e-01 -5.68102896e-01 -6.30908370e-01 4.26085759e-03 -4.04707730e-01 4.35595632e-01 7.91333973e-01 -9.31532860e-01 -6.46306634e-01 3.45944881e-01 -1.25474095e+00 -2.59430081e-01 -3.85694861e-01 4.62746650e-01 -4.05306965e-01 3.81953359e-01 -5.16996026e-01 -6.88612580e-01 -5.14792144e-01 -1.60056996e+00 1.17006230e+00 3.32275659e-01 -9.96567383e-02 -9.38509166e-01 3.77561599e-01 -7.46586919e-03 3.16930443e-01 6.04996800e-01 1.07119989e+00 -2.80354083e-01 -8.23427320e-01 6.60417154e-02 1.75241947e-01 -1.71196740e-02 5.70831358e-01 7.59883374e-02 -4.13352817e-01 -2.08753049e-01 -2.84931183e-01 -1.67092443e-01 9.89405155e-01 4.08986807e-01 1.31159306e+00 -3.18340868e-01 -5.03248155e-01 6.47699356e-01 1.13429284e+00 5.64104557e-01 6.23863876e-01 -1.24529064e-01 9.54168677e-01 2.82839835e-01 4.63880092e-01 6.60457075e-01 1.64659455e-01 6.10033214e-01 2.22645879e-01 -6.60894960e-02 4.89580557e-02 -7.40477681e-01 2.60916293e-01 8.16671908e-01 -2.15526015e-01 -5.68782330e-01 -6.85010672e-01 2.54478097e-01 -1.64487243e+00 -9.46708083e-01 -1.00390293e-01 2.13735580e+00 1.30227470e+00 2.16536418e-01 -1.29458886e-02 -1.25028506e-01 4.74010736e-01 2.07048833e-01 -1.03137136e+00 -2.10250944e-01 -1.57802776e-01 4.22487855e-01 3.14861238e-01 6.40782654e-01 -7.14907050e-01 9.90320265e-01 5.78111172e+00 1.03997660e+00 -1.07608986e+00 -2.82984406e-01 9.07498777e-01 -2.31224954e-01 -1.05326366e+00 2.20014043e-02 -1.13618231e+00 8.22260439e-01 5.15553713e-01 -1.59920007e-01 1.99982971e-01 6.09662175e-01 4.06683445e-01 2.67985731e-01 -1.02632284e+00 8.95936906e-01 -1.02016382e-01 -1.81835794e+00 7.50918627e-01 3.05748641e-01 1.12496853e+00 -3.28785896e-01 2.57687569e-01 1.32404387e-01 3.53060424e-01 -1.29817235e+00 4.03005898e-01 5.90200365e-01 8.31090212e-01 -1.16622591e+00 3.99305284e-01 3.22407961e-01 -1.06508636e+00 4.75440711e-01 -5.26046872e-01 2.57015109e-01 3.70641530e-01 7.62251794e-01 -6.61560416e-01 6.83619678e-01 -4.50864919e-02 8.44997525e-01 -1.42454058e-01 8.36508930e-01 -1.23405106e-01 1.76840544e-01 -2.54861683e-01 -1.98129833e-01 3.80338043e-01 -6.23127937e-01 5.72387815e-01 7.98034906e-01 6.12340689e-01 2.00420946e-01 1.65227234e-01 1.34047747e+00 -2.71061361e-01 8.92971456e-02 -8.12187076e-01 -2.44250029e-01 4.96680737e-01 6.86529994e-01 -4.16272402e-01 -1.17701858e-01 -6.60559162e-05 1.07924175e+00 1.34199768e-01 5.16114533e-01 -9.86474752e-01 -3.67723882e-01 8.95326018e-01 1.52226865e-01 1.18274413e-01 -5.61518788e-01 -9.13088843e-02 -1.18353796e+00 -1.77668780e-01 -9.73380983e-01 1.06162883e-01 -3.09528679e-01 -1.33759665e+00 5.42411327e-01 -2.37626463e-01 -9.37222064e-01 -5.94687387e-02 -2.60039091e-01 -5.78687608e-01 1.20997596e+00 -1.53765416e+00 -7.82791793e-01 -1.38778901e-02 4.42223996e-01 6.32547736e-01 2.55680904e-02 7.25379825e-01 3.83623689e-01 -6.85621619e-01 6.19743943e-01 1.08611003e-01 -4.27982450e-01 6.15985870e-01 -1.20816553e+00 7.21778631e-01 4.33619082e-01 -1.15761809e-01 1.11042953e+00 4.70508754e-01 -1.15310097e+00 -1.48059440e+00 -1.20354772e+00 5.53549111e-01 -4.56596643e-01 3.06835771e-01 -4.46051598e-01 -9.14082766e-01 1.28939375e-01 -1.67966083e-01 -3.21435869e-01 8.94154251e-01 -6.91276863e-02 -3.33665870e-02 2.84620047e-01 -9.62637305e-01 7.66251445e-01 1.38049817e+00 -2.55881310e-01 -1.29093021e-01 7.00172126e-01 1.00169826e+00 -6.21157885e-01 -8.87926102e-01 5.21769226e-01 2.15642333e-01 -6.84673429e-01 1.20432568e+00 -7.67980397e-01 7.02442050e-01 -4.54947531e-01 7.15431422e-02 -1.42650306e+00 -2.01684773e-01 -1.02182269e+00 -2.92454749e-01 1.08604932e+00 6.87517405e-01 -5.26167512e-01 1.02245748e+00 4.89656299e-01 -1.21661223e-01 -1.14463353e+00 -7.41069555e-01 -6.18533313e-01 5.74062109e-01 2.28105783e-02 9.66855228e-01 8.19492221e-01 -3.17595065e-01 6.19230032e-01 -3.87725979e-01 -4.70986664e-02 3.76095355e-01 2.52714783e-01 7.76142776e-01 -8.64352107e-01 -3.46519560e-01 -5.19108415e-01 -8.74951333e-02 -1.40970492e+00 -3.88136581e-02 -9.82976556e-01 -1.58069909e-01 -1.60331154e+00 2.49490663e-01 -1.00423217e+00 -1.68909982e-01 8.39738101e-02 -5.73608577e-01 -1.60731673e-01 -1.12188071e-01 2.39352539e-01 -1.84051454e-01 1.24525058e+00 1.84625220e+00 -2.34589159e-01 -6.37251019e-01 1.62979010e-02 -8.80625248e-01 2.93205261e-01 7.59673655e-01 -3.78809988e-01 -7.99526691e-01 -3.76798898e-01 4.90171075e-01 1.19179681e-01 9.75638703e-02 -8.03241313e-01 1.18257463e-01 -5.65155149e-01 4.53602135e-01 -7.51210690e-01 3.14010262e-01 -2.83771873e-01 3.57214630e-01 4.89182472e-01 -2.78939158e-01 -6.51081651e-03 1.15384102e-01 8.40214550e-01 -1.30315781e-01 4.80479747e-02 6.48839414e-01 -1.85732409e-01 2.10360754e-02 9.89407778e-01 -1.38457730e-01 3.01323347e-02 1.04884648e+00 -1.63330078e-01 1.23273740e-02 -4.44803871e-02 -4.97542977e-01 2.30612189e-01 6.53623402e-01 3.73261452e-01 7.86053002e-01 -1.45352304e+00 -7.14380503e-01 2.80322760e-01 -1.62156262e-02 7.87733316e-01 4.05655682e-01 4.19983089e-01 -5.51916361e-01 4.41033721e-01 8.64848271e-02 -3.67939413e-01 -7.27677107e-01 6.26597345e-01 3.88069153e-01 -3.30199867e-01 -3.39542627e-01 1.02614725e+00 5.54722369e-01 -3.06612343e-01 -9.25525129e-02 -3.48155856e-01 2.37184167e-02 7.19279945e-02 3.64401400e-01 7.65748322e-03 -8.31044987e-02 -3.01573277e-01 -2.13981628e-01 5.73910356e-01 -4.19063210e-01 2.04188824e-01 1.29753947e+00 2.43868321e-01 2.01299265e-01 1.39582545e-01 1.08037388e+00 2.10761398e-01 -1.36996567e+00 1.72773138e-01 -4.46153164e-01 -4.80979711e-01 -2.18321234e-01 -5.41582346e-01 -9.16764140e-01 9.84471798e-01 3.21812332e-01 -2.05500826e-01 6.43064022e-01 -2.58206606e-01 1.11436105e+00 3.40915710e-01 2.99081981e-01 -7.13602424e-01 1.74617767e-01 3.72012675e-01 7.95409322e-01 -1.10217667e+00 1.63139701e-01 -5.29056132e-01 -6.37582421e-01 8.21346283e-01 6.89584374e-01 7.33741447e-02 4.43723053e-01 -4.32425141e-02 -4.78763521e-01 -2.92762280e-01 -7.00267613e-01 1.23572230e-01 2.35627577e-01 5.29944062e-01 7.18344510e-01 2.07763892e-02 -5.47240973e-01 4.11667168e-01 -4.54449728e-02 -6.45511895e-02 1.79038107e-01 9.47556973e-01 -1.25069603e-01 -1.62280583e+00 4.85238992e-02 3.55081141e-01 -3.27472448e-01 -4.48375821e-01 -5.09006560e-01 4.71687794e-01 3.60809058e-01 5.32097042e-01 -2.30769962e-01 -1.83238178e-01 3.84885043e-01 -2.27507383e-01 5.08784652e-01 -7.44923770e-01 -3.90626311e-01 1.48074090e-01 -3.10878038e-01 -1.68598056e-01 -2.18125105e-01 -5.49034119e-01 -1.41327000e+00 -3.96050572e-01 -4.69436526e-01 6.45839751e-01 4.57917392e-01 4.16726589e-01 7.64731884e-01 6.78611338e-01 6.86179698e-01 -7.70878315e-01 -6.46710753e-01 -5.97798884e-01 -2.97395408e-01 3.50155830e-01 1.90680921e-01 -8.09872866e-01 -1.01245776e-01 -1.50249958e-01]
[5.011490821838379, 5.718114376068115]
2233a86a-7b5e-45f3-814d-aebd03545a1d
personalized-predictive-asr-for-latency
2305.13794
null
https://arxiv.org/abs/2305.13794v1
https://arxiv.org/pdf/2305.13794v1.pdf
Personalized Predictive ASR for Latency Reduction in Voice Assistants
Streaming Automatic Speech Recognition (ASR) in voice assistants can utilize prefetching to partially hide the latency of response generation. Prefetching involves passing a preliminary ASR hypothesis to downstream systems in order to prefetch and cache a response. If the final ASR hypothesis after endpoint detection matches the preliminary one, the cached response can be delivered to the user, thus saving latency. In this paper, we extend this idea by introducing predictive automatic speech recognition, where we predict the full utterance from a partially observed utterance, and prefetch the response based on the predicted utterance. We introduce two personalization approaches and investigate the tradeoff between potential latency gains from successful predictions and the cost increase from failed predictions. We evaluate our methods on an internal voice assistant dataset as well as the public SLURP dataset.
['Ariya Rastrow', 'Mohammed Hethnawi', 'Maarten Van Segbroeck', 'Di He', 'Andreas Schwarz']
2023-05-23
null
null
null
null
['response-generation']
['natural-language-processing']
[ 5.29392481e-01 5.04917562e-01 -1.18374281e-01 -4.51013714e-01 -1.29672492e+00 -4.39092636e-01 2.15262234e-01 1.30358115e-01 -5.71868956e-01 4.76774722e-01 7.13018596e-01 -5.31808794e-01 2.49727473e-01 -2.62311816e-01 -2.74769634e-01 -5.15370667e-01 -2.26767778e-01 5.42937398e-01 5.88641286e-01 -2.61867996e-02 8.78031552e-02 6.60027444e-01 -1.43073177e+00 8.08880389e-01 3.97853196e-01 8.00660312e-01 6.16481960e-01 1.41706479e+00 -1.47764564e-01 8.85145068e-01 -7.43340909e-01 1.87088773e-01 -1.27865180e-01 -2.88376629e-01 -1.00067449e+00 9.96599272e-02 -3.12754363e-01 -7.99633384e-01 -6.78590417e-01 4.62980777e-01 6.81425750e-01 4.75660443e-01 -2.56409980e-02 -1.09298325e+00 1.26836091e-01 8.96755397e-01 -1.89488202e-01 5.96750438e-01 8.52462411e-01 1.34772569e-01 1.06786430e+00 -6.81843698e-01 4.27026898e-01 1.14293647e+00 3.33444029e-01 9.00567234e-01 -1.17644596e+00 -2.89005518e-01 1.38775229e-01 1.17634758e-01 -1.22176063e+00 -1.42706418e+00 3.23718190e-01 3.71096916e-02 1.57507575e+00 6.40565276e-01 5.44684678e-02 9.58786845e-01 -2.64885813e-01 9.97428656e-01 5.75664341e-01 -4.72473621e-01 5.25674701e-01 -1.60538241e-01 3.79517794e-01 3.10148239e-01 -7.45709479e-01 1.06991380e-01 -1.06035125e+00 -7.47037053e-01 1.93754524e-01 -2.79925257e-01 -4.55538958e-01 6.87765241e-01 -1.05230272e+00 3.34415823e-01 -3.39017570e-01 -1.38642982e-01 -8.69112611e-01 -1.88348189e-01 4.53466415e-01 5.14879465e-01 4.66357499e-01 -1.97147280e-02 -5.61242044e-01 -7.69937456e-01 -1.23846805e+00 1.09224834e-01 1.19018388e+00 1.09016395e+00 5.17544568e-01 -1.72701050e-02 -3.82566869e-01 9.98321414e-01 2.22388521e-01 4.42245543e-01 7.72269189e-01 -9.59896266e-01 5.83964050e-01 -8.12493414e-02 3.85162413e-01 -1.89033598e-01 -3.42292607e-01 3.41485143e-01 -2.33170941e-01 -3.30842018e-01 2.10381135e-01 -4.49529022e-01 -6.19690418e-01 1.26284015e+00 3.28345090e-01 3.61214697e-01 3.17734063e-01 1.02699602e+00 5.71027756e-01 1.12869799e+00 -8.50343406e-02 -7.90254474e-01 1.02366281e+00 -8.79157126e-01 -5.56437194e-01 -1.91015348e-01 7.98183024e-01 -1.07138443e+00 9.09327865e-01 3.07368606e-01 -1.25674927e+00 -2.88263172e-01 -6.01855040e-01 -4.99373637e-02 5.78985751e-01 1.26864925e-01 -4.73172776e-02 2.46469215e-01 -1.37611580e+00 5.56935728e-01 -1.23951983e+00 -4.76260930e-01 -3.99337918e-01 5.27889788e-01 -1.16127662e-01 3.24463993e-01 -7.88279414e-01 1.50155798e-01 -2.18461454e-03 -2.47582063e-01 -6.02962792e-01 -4.02811199e-01 -3.02685648e-01 4.57244575e-01 3.54240626e-01 -2.89568931e-01 2.13182783e+00 -6.45473182e-01 -1.97967219e+00 3.47194403e-01 -9.12314177e-01 -6.82526588e-01 1.77498743e-01 -1.87515125e-01 -4.77706850e-01 9.78366211e-02 -3.11155707e-01 4.77261722e-01 7.58111894e-01 -5.22133887e-01 -1.03288317e+00 -2.17284679e-01 -3.35649937e-01 2.42727607e-01 -6.45023212e-02 2.43474424e-01 -2.49761373e-01 -3.62400301e-02 3.04097086e-01 -1.05415523e+00 -9.23014898e-03 -7.57804155e-01 -3.10517222e-01 -4.66957510e-01 6.86101675e-01 -7.84635961e-01 1.41221356e+00 -2.61902499e+00 -1.17844783e-01 -3.02751418e-02 -5.65997092e-03 1.70330808e-01 -3.06471378e-01 5.56542456e-01 1.30643502e-01 -1.49620607e-01 2.12829247e-01 -4.11190718e-01 -1.88257337e-01 3.27215135e-01 -9.55983698e-01 1.16769262e-01 3.03823445e-02 3.59144211e-01 -7.62055635e-01 -2.13758007e-01 -1.73493609e-01 5.10054715e-02 -6.86415076e-01 8.57206881e-01 -2.62641221e-01 1.01916559e-01 -4.44146127e-01 2.41589859e-01 2.54516304e-01 5.61852530e-02 4.02972430e-01 2.86457479e-01 -3.61559778e-01 1.40917957e+00 -9.18746114e-01 1.08109176e+00 -4.81452793e-01 6.60803735e-01 5.71392775e-01 -5.41634738e-01 8.72561395e-01 8.15614164e-01 3.09477746e-01 -4.30285960e-01 -3.55888963e-01 1.09496325e-01 -5.97787164e-02 -4.69075650e-01 9.12596524e-01 1.33512586e-01 1.93105146e-01 6.55420005e-01 -4.16300058e-01 3.94357443e-01 -5.08759260e-01 3.23216230e-01 1.58467257e+00 -1.74175724e-01 1.80661812e-01 2.68721521e-01 4.97858554e-01 -3.04692350e-02 5.08770943e-01 8.59865963e-01 -4.02989507e-01 3.79440516e-01 6.05339170e-01 -6.99243098e-02 -1.09454417e+00 -7.81681478e-01 4.61250603e-01 1.65683544e+00 -3.32444400e-01 -5.63068986e-01 -7.83539414e-01 -6.58416390e-01 -1.37607977e-01 7.89975405e-01 2.14098111e-01 2.83793598e-01 -7.78742731e-01 2.61263456e-02 6.39008105e-01 4.54424500e-01 -2.22795188e-01 -1.16544783e+00 -5.26862502e-01 6.11821771e-01 -3.91968876e-01 -1.36854541e+00 -8.15699279e-01 1.79802030e-01 -8.83707106e-01 -3.43525052e-01 -3.47917289e-01 -5.01131833e-01 1.22575916e-01 7.93719590e-01 6.34520411e-01 6.68343306e-02 2.97112405e-01 3.43586564e-01 -5.53710878e-01 2.71985084e-01 -1.18824387e+00 2.52463043e-01 3.90399009e-01 -1.23937884e-02 3.67064685e-01 -4.75742161e-01 -3.18011284e-01 2.52786726e-01 -5.14302671e-01 1.66914269e-01 3.52275431e-01 8.60968232e-01 5.59941709e-01 -4.58630353e-01 7.94120073e-01 -5.98330200e-01 7.25202680e-01 -6.27465308e-01 -4.61789399e-01 6.55436814e-02 -4.31730598e-01 2.63852209e-01 8.16957176e-01 -4.87876564e-01 -1.13244307e+00 2.88160980e-01 -6.54627144e-01 -3.68764251e-01 -4.45712537e-01 2.61765808e-01 -7.21538737e-02 6.30405128e-01 3.71732503e-01 5.23614347e-01 -2.06806157e-02 -7.16213882e-01 3.45004767e-01 1.43241465e+00 5.80288112e-01 -3.21990043e-01 -4.82297409e-03 -1.25880420e-01 -6.39194965e-01 -1.41118324e+00 -3.49962860e-02 -9.00365889e-01 -2.14269102e-01 -4.84100394e-02 4.13848788e-01 -6.90706372e-01 -9.36146677e-01 1.80713572e-02 -1.49532878e+00 -4.30590779e-01 -2.27327332e-01 5.24341881e-01 -7.24796057e-01 5.72315216e-01 -8.55326712e-01 -1.35003400e+00 -5.08279026e-01 -1.17433524e+00 1.11378944e+00 8.75568110e-03 -7.61550307e-01 -1.46018952e-01 -1.17036991e-01 1.43505573e-01 2.97810197e-01 -1.00615406e+00 6.90111578e-01 -1.34924185e+00 -5.11311293e-01 -6.15223050e-02 -1.66503176e-01 -7.54484981e-02 -3.11951041e-02 -1.44975871e-01 -1.12744606e+00 -2.16492295e-01 -2.24956479e-02 -3.04450803e-02 5.65359890e-01 7.08513185e-02 7.30884016e-01 -8.68351281e-01 -4.13711369e-01 2.01548517e-01 6.07220531e-01 5.54163873e-01 4.02589083e-01 -8.52853432e-02 2.23209888e-01 5.61255038e-01 6.54837728e-01 9.22343910e-01 1.71430528e-01 8.51039112e-01 -1.96219996e-01 6.47210658e-01 -7.08848760e-02 -3.82764697e-01 1.00518036e+00 1.24545848e+00 3.04374456e-01 -5.96282065e-01 -7.33625591e-01 3.65005434e-01 -1.81621778e+00 -9.13539886e-01 1.04930490e-01 2.38402557e+00 8.71800482e-01 1.06622435e-01 3.88924986e-01 1.72575846e-01 6.00837111e-01 2.07694933e-01 -4.00151461e-01 -8.07048798e-01 3.40873569e-01 2.37155244e-01 4.18643504e-01 1.00126529e+00 -5.17205596e-01 1.11001933e+00 6.35609198e+00 5.88325262e-01 -1.30518746e+00 2.38141522e-01 4.62461948e-01 -3.77420545e-01 -2.87997335e-01 -8.28251895e-03 -1.09978080e+00 3.69814306e-01 1.82763886e+00 -3.20141405e-01 7.90905476e-01 9.62670982e-01 8.15847933e-01 -8.58214125e-02 -1.33080113e+00 7.82879770e-01 -3.14502567e-01 -1.07540655e+00 -2.69409150e-01 1.26033816e-02 -1.20749488e-01 3.99465054e-01 -2.87895322e-01 2.60704488e-01 1.21837616e-01 -3.93708557e-01 3.64751458e-01 3.29721987e-01 6.33388281e-01 -5.84743083e-01 3.90548199e-01 6.44202054e-01 -8.88416409e-01 3.27849127e-02 -1.75543398e-01 -2.49388576e-01 3.69591266e-01 6.50389194e-02 -1.69290316e+00 -6.77297190e-02 3.75834733e-01 -1.63762242e-01 1.48390710e-01 5.49844027e-01 1.32917970e-01 1.38620806e+00 -5.20143688e-01 -2.68671513e-01 5.37707806e-02 2.37685874e-01 9.43626761e-01 1.44529426e+00 5.36489367e-01 7.25592971e-01 2.22583652e-01 3.72959614e-01 1.15011781e-01 3.40273827e-01 -3.08589876e-01 -1.50470451e-01 1.03129113e+00 1.00642979e+00 -4.09110159e-01 -6.13440275e-01 -4.91720378e-01 1.33911633e+00 2.91143566e-01 3.77599418e-01 -4.14424598e-01 -1.96560860e-01 8.29777658e-01 2.12019145e-01 2.47216538e-01 -3.66552085e-01 2.12426167e-02 -7.97140419e-01 5.23698842e-03 -9.12159204e-01 2.15255618e-01 -7.95082867e-01 -7.34261870e-01 8.56588900e-01 -4.55220312e-01 -7.21033633e-01 -9.49897885e-01 -2.70591229e-02 -5.18418968e-01 1.07311940e+00 -1.12909412e+00 -3.72483581e-01 1.53412342e-01 2.18211144e-01 1.06894433e+00 -1.08792447e-01 1.05929840e+00 1.23240426e-01 -4.50090796e-01 8.00964475e-01 -3.42651084e-02 -3.16114604e-01 7.12519109e-01 -8.95211458e-01 8.06848288e-01 7.52713859e-01 1.19560668e-02 5.73934138e-01 8.67584586e-01 -6.64314389e-01 -1.59428906e+00 -6.68843210e-01 1.48598385e+00 4.20449153e-02 7.47955024e-01 -6.85497448e-02 -1.33151710e+00 6.06041074e-01 8.45279843e-02 -4.56483424e-01 6.86196506e-01 5.08298874e-02 -4.49662060e-02 -8.12139958e-02 -7.49453068e-01 5.76311767e-01 7.20844865e-01 -7.28531480e-01 -4.85923827e-01 1.22510158e-01 1.16651595e+00 -3.54512513e-01 -6.65496826e-01 -1.66394144e-01 6.15072250e-01 -7.69173503e-01 3.45719397e-01 -5.91800272e-01 8.86366740e-02 5.41092679e-02 -4.05289263e-01 -9.67695534e-01 -3.04624587e-01 -1.38513458e+00 -4.76734847e-01 1.39313269e+00 6.04724348e-01 -3.70729029e-01 9.44373190e-01 1.15364540e+00 -3.91148090e-01 -5.18638551e-01 -1.16206622e+00 -5.67118883e-01 -7.17131555e-01 -6.25603914e-01 7.89972663e-01 1.23125665e-01 5.75280428e-01 4.68446016e-01 -4.44167793e-01 5.65504491e-01 5.94413094e-02 -1.94503859e-01 7.69805014e-01 -4.77989107e-01 -6.67162716e-01 -1.05586164e-01 -2.21173055e-02 -1.90682447e+00 2.36783326e-01 -7.08497405e-01 4.88686144e-01 -8.73543203e-01 -1.59340128e-01 -3.57540339e-01 -1.14557203e-02 4.22208786e-01 -1.12597607e-01 -5.43337286e-01 1.29298776e-01 5.23458540e-01 -4.65522438e-01 2.45687112e-01 5.27371407e-01 2.95580804e-01 -8.93387139e-01 5.34799874e-01 -1.35942012e-01 5.00318766e-01 7.34609365e-01 -4.92533594e-01 -2.83251554e-01 -2.31706083e-01 -3.83420527e-01 1.11904538e+00 -8.91041085e-02 -5.95756590e-01 5.94458282e-01 -2.60636181e-01 -1.55098304e-01 -7.53806829e-01 4.81830418e-01 -4.84855503e-01 -1.83348030e-01 1.93789452e-01 -8.97613168e-01 2.05491692e-01 4.80585322e-02 5.74551463e-01 9.47162062e-02 -2.27685794e-01 4.01583940e-01 3.49380016e-01 -6.45517051e-01 1.79303110e-01 -1.15201354e+00 -2.94205517e-01 3.63700807e-01 3.16715799e-02 -6.13227822e-02 -7.81755626e-01 -9.82598841e-01 9.41689871e-03 2.51474142e-01 4.02071148e-01 8.64027083e-01 -7.35774696e-01 -5.39908350e-01 5.46569884e-01 -4.99293171e-02 -4.10197765e-01 2.48182863e-01 6.90263391e-01 -2.17072114e-01 5.31787157e-01 5.59114575e-01 -4.98659492e-01 -1.72131515e+00 5.51190794e-01 -1.85164828e-02 1.14540845e-01 -8.57943356e-01 7.54846036e-01 -6.88211694e-02 1.15169659e-01 5.39513946e-01 -4.05461162e-01 5.57926781e-02 -2.89837092e-01 9.25576627e-01 6.26822829e-01 1.40023336e-01 -5.51167250e-01 -3.42781514e-01 -5.29740989e-01 -3.34069133e-01 -8.14365804e-01 1.02055526e+00 -6.56796396e-01 6.42497689e-02 4.09908950e-01 1.03180587e+00 2.93833107e-01 -1.16288590e+00 -4.48140085e-01 3.55736911e-01 -3.27840447e-01 1.21750049e-01 -5.69725990e-01 -5.06160975e-01 5.42176127e-01 2.71294057e-01 5.91321051e-01 9.92189229e-01 1.43095359e-01 1.44587946e+00 5.49717307e-01 2.67330050e-01 -9.48831916e-01 -3.17034125e-01 7.07006752e-01 5.95796585e-01 -7.27557898e-01 -5.41532338e-01 -2.75730163e-01 -8.43508363e-01 1.17755938e+00 3.67813796e-01 3.60362798e-01 3.46198261e-01 7.12848485e-01 7.99094886e-02 4.89993930e-01 -1.48499036e+00 -1.80040430e-02 -3.83406542e-02 4.50612485e-01 7.71652162e-01 4.30586219e-01 -3.94159764e-01 8.00574422e-01 -3.82647336e-01 8.83419961e-02 7.66231298e-01 8.04571092e-01 -7.94224501e-01 -1.19180799e+00 -2.82757044e-01 3.78290474e-01 -5.14092028e-01 -2.19512120e-01 -4.70293671e-01 -1.60113215e-01 -6.77160323e-01 1.47711003e+00 3.34694386e-01 -7.06196308e-01 3.50149125e-01 5.40436208e-01 1.36514669e-02 -7.91213989e-01 -4.16861773e-01 5.67976236e-01 6.69918299e-01 -5.61393380e-01 3.17062467e-01 -8.29655468e-01 -1.68236196e+00 -5.25110126e-01 -3.01221967e-01 4.53447253e-01 5.07187247e-01 9.32436764e-01 8.33519518e-01 2.40612775e-01 9.68080461e-01 -6.37930691e-01 -1.00555480e+00 -9.78715122e-01 -4.44137871e-01 -1.27326384e-01 5.37457466e-01 1.99565306e-01 -3.60853106e-01 6.33582100e-02]
[14.447023391723633, 6.8845014572143555]
6616c3ab-472a-42b6-b6d5-50be62fbaa49
a-method-for-expressing-and-displaying-the
1904.11786
null
https://arxiv.org/abs/1904.11786v1
https://arxiv.org/pdf/1904.11786v1.pdf
A Method for Expressing and Displaying the Vehicle Behavior Distribution in Maintenance Work Zones
Maintenance work zones on the road network have impacts on the normal travelling of vehicles, which increase the risk of traffic accidents. The traffic characteristic analysis in maintenance work zones is a basis for maintenance work zone related research such as layout design, traffic control and safety assessment. Due to the difficulty in vehicle microscopic behaviour data acquisition, traditional traffic characteristic analysis mainly focuses on macroscopic characteristics. With the development of data acquisition technology, it becomes much easier to obtain a large amount of microscopic behaviour data nowadays, which lays a good foundation for analysing the traffic characteristics from a new point of view. This paper puts forward a method for expressing and displaying the vehicle behaviour distribution in maintenance work zones. Using portable vehicle microscopic behaviour data acquisition devices, lots of data can be obtained. Based on this data, an endpoint detection technology is used to automatically extract the segments in behaviour data with violent fluctuations, which are segments where vehicles take behaviours such as acceleration or turning. Using the support vector machine classification method, the specific types of behaviours of the segments extracted can be identified, and together with a data combination method, a total of ten types of behaviours can be identified. Then the kernel density analysis is used to cluster different types of behaviours of all passing vehicles to show the distribution on maps. By this method, how vehicles travel through maintenance work zones, and how different vehicle behaviours distribute in maintenance work zones can be displayed intuitively on maps, which is a novel traffic characteristic and can shed light to maintenance work zone related researches such as safety assessment and design method.
['Ping Wang', 'Saravanan Gurupackiam', 'Zhepu Xu', 'Qun Yang']
2019-04-25
null
null
null
null
['layout-design']
['computer-vision']
[-1.66472316e-01 -6.88054323e-01 -1.79675385e-01 -1.21775486e-01 1.13931052e-01 -2.36993685e-01 6.16719723e-01 3.88535947e-01 -1.12729199e-01 3.87731910e-01 -1.50939137e-01 -7.60698557e-01 -7.80668259e-01 -1.25183511e+00 -1.09313942e-01 -1.20920599e+00 -1.46185532e-01 3.85225147e-01 6.80315316e-01 -5.08347750e-01 3.64837676e-01 9.43828166e-01 -1.93424666e+00 4.19811122e-02 7.49320209e-01 8.43740642e-01 3.47587615e-01 3.96983862e-01 -5.34680426e-01 4.60666895e-01 -6.57909095e-01 -3.25893946e-02 -2.64010429e-01 -2.34913722e-01 -3.10620606e-01 6.09765537e-02 -5.63996375e-01 -7.80982384e-03 -3.31365198e-01 1.05559647e+00 1.43549010e-01 3.54970098e-01 1.07702029e+00 -1.43212712e+00 -2.56941795e-01 -1.18828520e-01 -5.07465839e-01 4.64451343e-01 4.03813235e-02 1.74420297e-01 1.51201129e-01 -1.87158301e-01 3.32307927e-02 1.30029714e+00 3.46207827e-01 5.71645983e-02 -1.13939822e+00 -5.71754694e-01 -3.27146739e-01 7.91378498e-01 -1.50357723e+00 -3.00238132e-02 1.08019257e+00 -7.16194749e-01 5.02340972e-01 5.84961832e-01 8.36625457e-01 5.25448561e-01 6.50046587e-01 4.88681287e-01 1.02883244e+00 -3.27209197e-03 6.77314028e-02 5.35116017e-01 3.76417100e-01 1.81133553e-01 2.24879771e-01 9.80533585e-02 3.76164496e-01 1.70519426e-01 3.87935072e-01 3.16492796e-01 5.02320305e-02 -1.03062116e-01 -6.36690259e-01 7.10535586e-01 3.09578180e-01 6.60926878e-01 -1.77632585e-01 -2.53770918e-01 6.51204646e-01 2.09605768e-01 4.64615881e-01 -2.74068475e-01 -2.29492381e-01 -3.84412557e-01 -6.82131410e-01 2.96726465e-01 4.07977343e-01 5.03812909e-01 1.16977072e+00 -2.40486249e-01 9.48802605e-02 7.91966975e-01 2.12932229e-01 1.00874674e+00 2.02910051e-01 -6.54913247e-01 2.42643327e-01 1.07977152e+00 -3.31099719e-01 -1.34043479e+00 -5.29197216e-01 9.30130407e-02 -8.81594419e-01 3.36557418e-01 3.16699773e-01 1.71634629e-01 -4.80489492e-01 9.89077508e-01 4.42604274e-01 -1.56749427e-01 -1.13870144e-01 5.80617428e-01 7.83921480e-01 1.04664266e+00 6.48079887e-02 -2.14710116e-01 1.48409235e+00 -9.66303647e-02 -9.73010004e-01 5.55373132e-01 9.33493555e-01 -4.70879614e-01 7.90314555e-01 1.50231615e-01 -4.89176959e-01 -5.97327113e-01 -6.54268444e-01 5.89472950e-01 -8.33555400e-01 -2.52610117e-01 4.46423084e-01 7.61685073e-01 -6.72962487e-01 2.72246033e-01 -7.62636185e-01 -3.35797489e-01 3.56792748e-01 1.90642580e-01 -2.77190894e-01 1.27769187e-01 -1.21523607e+00 1.06474209e+00 3.06918055e-01 1.31895870e-01 -4.49166059e-01 -6.17174625e-01 -8.02154541e-01 -4.69483249e-02 1.52230367e-01 -2.53984313e-02 6.73394442e-01 -4.17638063e-01 -8.92119586e-01 4.30394739e-01 -2.74910927e-01 6.86474051e-03 2.73055583e-01 6.88131273e-01 -1.05580413e+00 2.36883797e-02 2.51266927e-01 -2.15592355e-01 2.88897216e-01 -1.21283484e+00 -8.93149555e-01 -3.23863775e-01 -2.61809289e-01 -3.11358362e-01 -2.35473737e-01 2.31321082e-01 -2.50525564e-01 4.61126678e-02 -4.01248932e-01 -7.34107077e-01 3.35488617e-02 -7.27837324e-01 -2.64806122e-01 -8.61231267e-01 1.56495070e+00 -5.16843081e-01 1.55752528e+00 -2.33987474e+00 -3.40725809e-01 9.65549290e-01 2.87179261e-01 3.78924698e-01 4.49748099e-01 6.56805813e-01 2.38945261e-01 -9.23027378e-03 -3.11895758e-01 2.16224775e-01 -1.00435585e-01 2.89182872e-01 1.86485648e-01 6.03795946e-01 -6.57111406e-04 5.07701576e-01 -8.31055999e-01 -7.07113445e-01 8.86583626e-01 4.66771871e-01 3.88277918e-02 -6.75537735e-02 2.99088240e-01 4.66004968e-01 -7.63367474e-01 4.82220083e-01 1.03387713e+00 4.80027437e-01 -3.99200886e-01 8.25523362e-02 -6.34813011e-01 -2.48225436e-01 -8.75069261e-01 5.32271206e-01 -5.47740161e-01 9.50281858e-01 -3.51238400e-02 -1.23558402e+00 1.36091197e+00 1.30349725e-01 4.85820860e-01 -1.10796976e+00 3.82247388e-01 1.54158160e-01 2.25628372e-02 -1.05028760e+00 1.14732906e-01 -4.08146679e-02 -2.43349552e-01 2.03534961e-01 -5.34593940e-01 -3.28427255e-02 5.77821553e-01 -3.13526690e-02 8.97217393e-01 -5.87510109e-01 -2.77993917e-01 -5.58645427e-01 8.92060220e-01 5.61962016e-02 1.91519186e-01 -1.22291772e-02 -7.88034350e-02 -2.44920582e-01 7.32368648e-01 -6.31267726e-01 -9.13193762e-01 -1.11519802e+00 -6.40951276e-01 5.71486354e-01 6.48709118e-01 -9.63501111e-02 -7.30663598e-01 -2.09223941e-01 2.63241202e-01 6.47006571e-01 -6.56800151e-01 -5.65199792e-01 -5.59880257e-01 -7.50111103e-01 2.74412036e-01 2.69797415e-01 7.72938132e-01 -1.31541979e+00 -3.96137804e-01 5.23947217e-02 4.24560644e-02 -5.25457978e-01 5.97090423e-02 -3.40764344e-01 -7.04453528e-01 -1.13501132e+00 -5.09484231e-01 -6.98143959e-01 6.17127597e-01 6.83435261e-01 5.54680169e-01 4.17100936e-01 -2.57030874e-01 -1.22611376e-03 -2.34205678e-01 -5.06490707e-01 -7.65358269e-01 8.09366778e-02 8.58408436e-02 3.62530828e-01 7.88654447e-01 -4.88948017e-01 -5.26366591e-01 8.40506673e-01 -7.65038967e-01 -2.58442193e-01 4.48573112e-01 9.70501453e-02 3.70046079e-01 1.03113627e+00 5.63878536e-01 -3.59614968e-01 7.97846258e-01 -9.31955218e-01 -5.86746097e-01 -7.54484162e-02 -5.41361749e-01 -1.76478505e-01 7.96199620e-01 -2.18697801e-01 -1.16170895e+00 -6.85348630e-01 -7.78002366e-02 -1.88245729e-01 -7.29554057e-01 3.10689300e-01 -5.99523604e-01 2.28435159e-01 3.78887892e-01 4.19175655e-01 4.72587377e-01 -5.27919769e-01 -1.18805535e-01 1.09592688e+00 2.89009750e-01 -1.41967341e-01 8.04220796e-01 5.06909132e-01 2.86854357e-01 -1.31376648e+00 9.33447480e-02 -7.85174549e-01 -4.44903970e-01 -8.66951764e-01 1.10565543e+00 -6.80020899e-02 -1.28034878e+00 4.98448431e-01 -8.54344428e-01 -1.33975536e-01 3.73319583e-03 6.30060315e-01 -3.36124122e-01 3.07452351e-01 -3.10616493e-01 -1.20056570e+00 2.91813046e-01 -1.15707505e+00 7.49041557e-01 4.96755511e-01 -9.01969597e-02 -1.42701244e+00 1.21453010e-01 1.61295116e-01 5.28023958e-01 2.29393929e-01 1.19571149e+00 -1.86737970e-01 -4.22336787e-01 -5.47914803e-01 -2.93915689e-01 2.73035705e-01 3.03333849e-01 3.86989355e-01 -5.41106999e-01 7.85270706e-02 2.97874515e-03 6.61755204e-01 6.41203105e-01 5.40824175e-01 1.13005042e+00 -5.10685444e-02 -8.20298433e-01 4.32387412e-01 1.12412584e+00 8.75558555e-01 1.14145136e+00 6.11091971e-01 6.50301993e-01 1.25984800e+00 5.31394482e-01 5.97848520e-02 2.92746872e-01 8.00348461e-01 4.35000569e-01 -3.11067313e-01 1.92892194e-01 5.59346788e-02 2.11374685e-01 6.32431626e-01 -5.92584729e-01 7.76455039e-03 -8.89896572e-01 6.23399138e-01 -1.73259640e+00 -1.62177813e+00 -9.56160486e-01 2.15834641e+00 2.38705680e-01 1.19139761e-01 5.50252795e-01 6.20220780e-01 1.07919848e+00 -4.22690399e-02 -2.97430307e-02 -8.25001240e-01 2.06037879e-01 -5.15984356e-01 5.06095469e-01 3.28457534e-01 -7.52677560e-01 2.56223828e-01 5.41355371e+00 1.42234385e+00 -1.10667396e+00 -1.05987526e-01 3.54908496e-01 1.27847686e-01 -3.87639433e-01 -8.49295557e-02 -7.54089773e-01 1.10757971e+00 1.16434503e+00 -2.42116570e-01 1.76804379e-01 5.15156507e-01 7.96562612e-01 -5.78558147e-01 -3.94590706e-01 1.04181814e+00 -3.13669294e-01 -1.12456870e+00 -1.06089093e-01 6.47660077e-01 3.35355312e-01 -3.68788630e-01 -2.23372012e-01 2.14535117e-01 -2.01409161e-01 -8.35289478e-01 4.72814858e-01 8.34747910e-01 6.00668132e-01 -1.22702849e+00 1.05713511e+00 5.23059368e-01 -1.51480162e+00 -1.48699239e-01 -3.73823673e-01 -2.13609263e-01 6.39599144e-01 7.86727607e-01 -5.23410022e-01 6.35737181e-01 7.72102654e-01 6.32903636e-01 -5.02108812e-01 1.16478372e+00 2.05415964e-01 7.27352440e-01 -2.87209809e-01 -5.55165768e-01 1.90080062e-01 -6.80813849e-01 5.05922437e-01 1.29026628e+00 3.17708701e-01 -3.47585917e-01 -3.51459086e-01 9.11382377e-01 6.96787536e-01 8.09583515e-02 -1.03077078e+00 3.09936255e-01 3.37048233e-01 1.36901331e+00 -1.03913784e+00 -2.44988844e-01 -3.59916329e-01 1.52212977e-01 -3.58004510e-01 2.52082914e-01 -9.27262545e-01 -8.64027500e-01 7.07612216e-01 7.53128886e-01 -1.62610728e-02 -3.05243850e-01 -1.94071949e-01 -3.87205273e-01 3.67848971e-03 4.10796329e-02 -1.05732400e-02 -3.01863283e-01 -1.13425386e+00 1.69642657e-01 7.11485624e-01 -1.31676149e+00 8.16084370e-02 -5.61668098e-01 -1.27656293e+00 7.87495613e-01 -1.07433641e+00 -5.93334079e-01 -3.12721133e-01 8.05704892e-01 1.94778040e-01 -2.37443671e-01 3.50053191e-01 5.30582726e-01 -7.76815236e-01 2.06682354e-01 5.88330507e-01 1.27491474e-01 -1.13223851e-01 -8.35993648e-01 3.96632142e-02 3.05863291e-01 -3.89483452e-01 3.72375727e-01 5.89031875e-01 -5.81985891e-01 -1.00522840e+00 -8.81578326e-01 9.81300533e-01 -5.50035298e-01 7.06451714e-01 -4.04296815e-01 -1.17075884e+00 -7.14493692e-02 -1.93607435e-01 -3.13339591e-01 5.60734332e-01 -8.04019421e-02 5.52332938e-01 -5.07400811e-01 -9.55514133e-01 5.93974769e-01 5.39821446e-01 -4.79398131e-01 -4.96135771e-01 7.50382915e-02 2.95866579e-01 3.63976449e-01 -7.31200039e-01 1.16487488e-01 5.60940087e-01 -1.08869004e+00 7.49008358e-01 -2.21826777e-01 1.04578540e-01 -5.90347171e-01 3.17252517e-01 -1.05906868e+00 -4.29238170e-01 -2.03844979e-01 3.63369733e-01 1.47470641e+00 3.22226346e-01 -9.56435978e-01 3.08810830e-01 3.13351333e-01 -2.23581612e-01 -7.68469274e-01 -1.13215995e+00 -9.95610178e-01 -1.05834961e-01 -6.53545558e-01 8.83583844e-01 4.76997286e-01 2.86607500e-02 7.58917928e-02 2.59042345e-02 -1.14551246e-01 5.13398588e-01 -1.89437509e-01 8.70553970e-01 -1.43720722e+00 4.23402548e-01 -7.56182611e-01 -1.16705024e+00 -5.12968361e-01 6.11227825e-02 -7.29633510e-01 -2.43014887e-01 -1.81499767e+00 1.39222741e-02 -5.84975719e-01 -1.80904508e-01 -1.60964057e-01 1.77444056e-01 1.04270555e-01 -2.04547450e-01 3.75312775e-01 -2.96427369e-01 5.19139349e-01 1.30369329e+00 -2.01846838e-01 -3.45886379e-01 4.00245100e-01 -3.52307469e-01 5.69596469e-01 9.04331028e-01 -2.14507625e-01 -5.36388874e-01 1.60364643e-01 9.14731473e-02 -6.06922060e-03 5.43338656e-01 -1.08281541e+00 3.43943899e-03 -4.01933044e-01 -1.48212910e-02 -7.84012437e-01 -4.38113920e-02 -1.14057398e+00 4.50678974e-01 4.52184975e-01 2.19848111e-01 -2.98893917e-02 1.67100236e-01 4.93409157e-01 -2.08249241e-01 -6.77646846e-02 5.84489286e-01 3.59491289e-01 -8.01223874e-01 1.76229045e-01 -1.13409662e+00 -3.91197592e-01 1.64164567e+00 -8.35921466e-01 -2.55894214e-01 -1.90724969e-01 -4.78089690e-01 3.75236273e-01 4.38065976e-01 2.62432754e-01 3.89275461e-01 -1.68471646e+00 -3.69153827e-01 5.48339844e-01 1.87073782e-01 -9.92208347e-02 9.01323497e-01 1.39788711e+00 -5.49362004e-01 3.26790810e-01 -3.36227149e-01 -8.37557018e-01 -1.14587903e+00 7.43204057e-01 2.66927123e-01 1.32590890e-01 -6.74395502e-01 6.65498376e-02 3.19650859e-01 -9.69812125e-02 -3.89784247e-01 -2.09467635e-01 -8.76626849e-01 2.61353970e-01 7.54889131e-01 1.15186918e+00 1.44535020e-01 -1.16962850e+00 -5.14940083e-01 1.04437566e+00 3.13779742e-01 2.90754706e-01 7.97763705e-01 -4.15276349e-01 -1.96438462e-01 7.12663352e-01 1.55178726e+00 6.52374774e-02 -1.07886469e+00 2.93971419e-01 -9.20660719e-02 -5.23172379e-01 -1.15472704e-01 -1.29589871e-01 -1.01607394e+00 1.14465678e+00 4.87735450e-01 1.20087385e+00 1.04594374e+00 4.74718750e-01 9.12146628e-01 -7.15423971e-02 4.36121881e-01 -1.23778975e+00 -5.77861369e-01 3.56092900e-01 5.30408382e-01 -1.04356062e+00 -5.12326956e-01 -3.55640411e-01 -4.68784243e-01 1.20431805e+00 2.25741833e-01 -1.01442724e-01 9.64129210e-01 4.00206983e-01 -9.35551897e-02 -4.62628275e-01 -2.71184266e-01 -3.79714400e-01 1.33238941e-01 8.65955949e-01 -6.15959428e-02 4.07105207e-01 -4.06033605e-01 3.48628879e-01 -2.48116568e-01 -3.38163733e-01 1.68150544e-01 6.45379424e-01 -9.31405723e-01 -9.05546308e-01 -6.45367444e-01 7.18911767e-01 -3.53813954e-02 5.20894229e-01 4.19764258e-02 9.08466339e-01 4.46906000e-01 1.32368374e+00 5.11037111e-01 -7.77568638e-01 5.57485044e-01 -1.72617108e-01 4.78378534e-02 2.02902555e-02 -1.83593649e-02 -3.51630330e-01 1.16577270e-02 -3.00451726e-01 -3.40916455e-01 -4.36737448e-01 -1.48597479e+00 -1.14882052e+00 -2.89579511e-01 6.37568414e-01 6.95867062e-01 1.12760782e+00 3.39682549e-02 5.98394156e-01 9.51252759e-01 -8.26330662e-01 2.83283889e-01 -8.17029476e-01 -1.02616262e+00 6.31042957e-01 3.05416554e-01 -1.19366622e+00 -6.52483106e-01 -1.58351451e-01]
[5.898136615753174, 1.2763071060180664]
9ebf0d61-8748-49b5-8d68-33ffd03304c8
sina-bert-a-pre-trained-language-model-for-1
null
null
https://openreview.net/forum?id=YSPukpxgWsU
https://openreview.net/pdf?id=YSPukpxgWsU
SINA-BERT: A Pre-Trained Language Model for Analysis of Medical Texts in Persian
We have released SINA-BERT, a language model pre-trained on BERT to address the lack of a high-quality Persian language model in the medical domain. SINA-BERT utilizes pre-training on a large-scale corpus of medical contents including formal and informal texts collected from various online resources in order to improve the performance on health-care related tasks. We employ SINA-BERT to complete following representative tasks: categorization of medical questions, medical sentiment analysis, medical named entity recognition, and medical question retrieval. For each task, we have developed Persian annotated data sets for training and evaluation and learnt a representation for the data of each task especially complex and long medical questions. With the same architecture being used in each task, SINA-BERT outperforms BERT-based models that were previously made available in the Persian language.
['Anonymous']
2021-05-16
null
null
null
acl-arr-may-2021-5
['medical-named-entity-recognition']
['natural-language-processing']
[-5.91218509e-02 6.55010164e-01 -2.76730537e-01 -4.52622294e-01 -1.32229555e+00 -4.18208420e-01 2.01677740e-01 6.51595473e-01 -1.13259459e+00 8.91147554e-01 5.65408111e-01 -7.10644603e-01 -2.04474851e-01 -4.32769865e-01 -1.26747340e-01 -1.04633853e-01 -2.83432566e-02 1.32784343e+00 1.37384906e-01 -3.25478703e-01 -9.54840109e-02 4.13369872e-02 -6.87936172e-02 8.03871214e-01 1.03353810e+00 5.02973676e-01 2.93779671e-01 8.12152445e-01 -1.46676779e-01 1.30122566e+00 -6.38870656e-01 -9.30250585e-01 -1.91218555e-01 -2.16304883e-01 -1.47263968e+00 -3.01504761e-01 -2.78178066e-01 1.27923638e-01 -7.15524107e-02 5.19980490e-01 6.67365909e-01 -3.22432458e-01 9.24890339e-01 -5.74367225e-01 -6.75850153e-01 9.44910765e-01 -7.73533508e-02 3.65756750e-01 3.90274882e-01 -1.75773993e-01 1.08258271e+00 -4.07597899e-01 1.04208231e+00 1.34931731e+00 7.88159013e-01 1.06640875e+00 -7.31313765e-01 -3.91453534e-01 -2.91687489e-01 7.41643533e-02 -1.23473465e+00 -1.55850992e-01 4.69990343e-01 -3.28922927e-01 1.13931513e+00 2.38023683e-01 3.29377621e-01 1.28252089e+00 9.28852975e-01 1.18539572e+00 7.95096219e-01 -3.82694274e-01 4.46821302e-02 1.50622100e-01 6.41912520e-01 7.36934185e-01 2.20989421e-01 -4.79885697e-01 -2.02982143e-01 -4.72309768e-01 1.99510157e-01 -2.90687859e-01 -6.84723333e-02 4.24493134e-01 -1.33830214e+00 9.23198938e-01 4.86382335e-01 8.15267801e-01 -6.21744633e-01 -3.84238809e-01 7.64869750e-01 1.43036887e-01 5.49067020e-01 9.83707964e-01 -1.26385140e+00 -6.77910969e-02 -7.09079564e-01 1.13252448e-02 1.13562310e+00 9.51775968e-01 7.33056441e-02 -4.96892750e-01 -4.15326029e-01 8.38434577e-01 2.63232350e-01 6.57465816e-01 9.03221607e-01 -6.03627264e-01 6.33449137e-01 8.11491609e-01 2.14791205e-02 -8.16288650e-01 -1.01741970e+00 -2.21099943e-01 -8.58266652e-01 -9.74547207e-01 2.89657295e-01 -3.90699387e-01 -9.87445652e-01 1.48764122e+00 1.92414507e-01 -2.49260545e-01 7.67871261e-01 1.94898397e-01 1.58125389e+00 4.71325070e-01 7.05014348e-01 -1.08646952e-01 1.86189067e+00 -1.06216931e+00 -8.69441688e-01 -5.66769600e-01 1.05892372e+00 -8.24828744e-01 6.27750576e-01 2.67632842e-01 -8.19982946e-01 -1.93350211e-01 -5.78888178e-01 -3.03183317e-01 -4.12108570e-01 4.09500599e-01 4.23994273e-01 3.93294275e-01 -1.01242471e+00 2.91412085e-01 -1.09610856e+00 -6.65808976e-01 2.34368488e-01 2.26575837e-01 -5.05202889e-01 -2.72084504e-01 -1.27969968e+00 1.14875734e+00 6.50123715e-01 -5.99002577e-02 -6.00382864e-01 -5.70681930e-01 -1.25379455e+00 -3.61543745e-01 1.08138010e-01 -9.63336945e-01 1.57764685e+00 -7.10348845e-01 -9.54086542e-01 1.44207621e+00 -4.40464281e-02 -7.40871072e-01 1.22827008e-01 -2.61329770e-01 -7.82535195e-01 2.54300117e-01 4.60475266e-01 7.37423480e-01 3.94813061e-01 -7.91121900e-01 -3.34706396e-01 -3.45915824e-01 -2.22697496e-01 7.33676478e-02 -2.61575636e-02 2.12789699e-01 -5.88464499e-01 -6.68392360e-01 -3.59268129e-01 -9.34585929e-01 -7.35887945e-01 -6.91604376e-01 -5.71769834e-01 -4.73780900e-01 5.74076846e-02 -1.09880114e+00 1.25144005e+00 -2.24795699e+00 -2.70478755e-01 -1.77416265e-01 2.47604236e-01 4.14640993e-01 -5.34917712e-01 5.52234113e-01 -8.87904987e-02 2.01804221e-01 -2.48640701e-01 -3.63312334e-01 -3.91944855e-01 8.09754193e-01 -5.94765171e-02 1.50899291e-01 4.39319313e-01 1.08064055e+00 -1.03777814e+00 -1.14004254e+00 -2.37558782e-01 2.50355661e-01 -7.15555549e-01 4.55752373e-01 -1.44814253e-01 4.04150277e-01 -8.48158121e-01 5.68106711e-01 3.00704271e-01 -5.02186179e-01 3.15867990e-01 6.93465695e-02 4.05939102e-01 9.53816891e-01 -4.48762327e-01 1.73178864e+00 -4.93748456e-01 3.62752168e-03 2.12718584e-02 -7.83414721e-01 5.76874375e-01 6.35794759e-01 7.89903879e-01 -6.43839777e-01 2.33975187e-01 3.81875187e-01 1.68767691e-01 -8.50623071e-01 5.06657183e-01 -3.66444468e-01 -3.85384083e-01 1.39505357e-01 3.60387474e-01 -4.41666134e-02 3.85486275e-01 5.80866158e-01 1.42005265e+00 -3.18735927e-01 8.71066630e-01 -5.59089065e-01 8.64900291e-01 5.70396841e-01 7.25402415e-01 5.52257776e-01 -2.37351060e-01 5.11253238e-01 3.17473829e-01 -4.34060752e-01 -4.30818617e-01 -7.07442582e-01 -5.85145175e-01 1.07573104e+00 -3.93616796e-01 -9.59609926e-01 -6.51637077e-01 -1.36069167e+00 -2.45869800e-01 8.64130557e-01 -7.43170261e-01 1.29664198e-01 -8.62635732e-01 -9.71420705e-01 8.31772089e-01 4.19646293e-01 3.54315266e-02 -1.54344809e+00 -7.33100057e-01 5.27207851e-01 -4.85345572e-01 -1.33185184e+00 -6.30874395e-01 3.06517184e-01 -6.32316291e-01 -1.51096845e+00 -7.28132904e-01 -1.11869192e+00 5.84986567e-01 -5.96872985e-01 1.65973508e+00 -2.07050309e-01 -5.19388855e-01 6.27212942e-01 -6.02134645e-01 -1.02421832e+00 -7.69546449e-01 3.65525126e-01 -3.84998530e-01 -7.06561446e-01 7.46646523e-01 1.23693019e-01 -5.55575311e-01 -7.62714073e-02 -9.63212848e-01 -4.80826236e-02 7.38266528e-01 9.66118276e-01 2.64424205e-01 -5.19411683e-01 6.78956211e-01 -1.43362784e+00 7.00248718e-01 -6.26475453e-01 1.23664886e-01 2.93970287e-01 -3.38688076e-01 1.42440379e-01 3.60727996e-01 -1.82221219e-01 -7.91549921e-01 -3.30243915e-01 -9.56784964e-01 4.57467943e-01 -7.44441077e-02 1.03875113e+00 2.27534562e-01 5.70281267e-01 9.26404297e-01 -9.18688402e-02 -2.99675435e-01 -6.57019198e-01 2.57067323e-01 9.82194483e-01 4.59813893e-01 -3.52840215e-01 7.34817162e-02 6.78165909e-03 -3.87958139e-01 -8.55493665e-01 -1.39554834e+00 -1.00873089e+00 -5.27857721e-01 6.11150086e-01 1.36429119e+00 -9.14242387e-01 -3.29495877e-01 1.59634322e-01 -1.38448489e+00 -3.45259994e-01 -3.22617143e-01 5.00724673e-01 -1.94155112e-01 3.17685127e-01 -1.33174384e+00 -5.75864255e-01 -1.07996964e+00 -7.93920875e-01 1.22064185e+00 -1.30879581e-01 -6.99124992e-01 -1.34417987e+00 6.47114635e-01 5.23118019e-01 6.04395010e-02 -1.94651037e-01 1.45094061e+00 -1.31841171e+00 4.64152813e-01 -1.12769075e-01 -4.31045555e-02 2.83638388e-01 3.14726770e-01 -4.90409464e-01 -5.28871119e-01 -2.40150541e-01 2.22972006e-01 -6.49193585e-01 7.84014404e-01 3.72053087e-01 9.01054800e-01 -5.70446730e-01 -4.48101968e-01 2.60913134e-01 1.03321922e+00 3.05697560e-01 3.10689151e-01 3.11793059e-01 4.05010730e-01 5.22405863e-01 6.70859158e-01 2.60625571e-01 1.01228893e+00 -2.57261301e-04 -7.53730536e-02 -2.52300143e-01 1.43452987e-01 2.98262341e-04 2.20170990e-01 1.34999466e+00 2.76326150e-01 -2.07754821e-01 -1.58332264e+00 8.21828127e-01 -1.65891802e+00 -2.99513310e-01 6.88948259e-02 1.57864296e+00 1.49632001e+00 -8.02115072e-03 -1.57863170e-01 -3.73119861e-01 1.54899042e-02 -1.61705166e-01 -3.01144540e-01 -2.92346120e-01 9.85092893e-02 4.00419354e-01 3.75026494e-01 3.82070005e-01 -1.35294735e+00 1.00873458e+00 6.76478100e+00 5.72837889e-01 -1.03723657e+00 2.27881446e-01 6.94216788e-01 5.37818789e-01 -1.45018429e-01 -5.69690883e-01 -7.16525555e-01 8.03148840e-03 1.33663607e+00 -7.79731870e-02 -2.83558846e-01 8.41176152e-01 -1.55904710e-01 -1.15021151e-02 -1.20333362e+00 1.02326429e+00 4.17061418e-01 -1.11328566e+00 2.22464398e-01 -2.33192727e-01 5.16447008e-01 6.18933737e-01 -3.32404017e-01 7.29119301e-01 5.88539660e-01 -1.18818283e+00 1.98193491e-01 1.63395166e-01 7.27536500e-01 -4.29499567e-01 1.39502573e+00 6.95636213e-01 -7.85970032e-01 6.20774850e-02 -3.62726063e-01 5.60328901e-01 1.12793781e-01 4.82230514e-01 -1.36609817e+00 9.87986982e-01 4.93878067e-01 9.83146071e-01 -9.40637887e-01 7.86678731e-01 -2.40572393e-01 8.46605957e-01 -2.06470639e-02 -1.04517555e-02 5.62581003e-01 1.45493820e-01 2.94885516e-01 1.75552702e+00 -2.03566551e-02 3.17078531e-01 4.04641032e-01 3.13981622e-01 -8.79841223e-02 7.09684134e-01 -4.65662718e-01 -4.80366498e-01 -1.23064697e-01 1.33292282e+00 -6.50198877e-01 -5.26414096e-01 -2.49099284e-01 8.71139884e-01 2.30613813e-01 6.82884827e-02 -3.98280531e-01 -2.08598990e-02 1.98457222e-02 -2.36125737e-02 -7.41772503e-02 -8.07541888e-03 -1.19447328e-01 -1.28420651e+00 -5.49897552e-01 -1.29850030e+00 1.20780647e+00 -5.74851871e-01 -1.56405199e+00 1.31631327e+00 -1.62313089e-01 -9.10036564e-01 -7.33224988e-01 -1.09726512e+00 -9.84406248e-02 5.77279985e-01 -1.51161742e+00 -1.42978597e+00 4.67732757e-01 9.74357367e-01 6.25064015e-01 -2.73663044e-01 1.44384921e+00 3.10889542e-01 -5.33967197e-01 3.55634451e-01 -1.31710455e-01 7.10420310e-01 1.36242521e+00 -1.40968800e+00 2.21373379e-01 3.66546750e-01 2.03238085e-01 8.63758981e-01 3.66931647e-01 -8.71601582e-01 -1.02577364e+00 -1.13250744e+00 1.71901631e+00 -8.96982849e-01 6.56700194e-01 -1.07892178e-01 -7.44178355e-01 9.46695089e-01 4.13311511e-01 -4.12965387e-01 1.31067586e+00 2.97716856e-01 -9.11109671e-02 1.78856775e-01 -1.23672760e+00 3.09003472e-01 4.07662600e-01 -4.62261140e-01 -1.33125913e+00 6.05156004e-01 6.82128668e-01 -4.52107936e-01 -8.61971915e-01 5.54569244e-01 -1.89894110e-01 -8.82917568e-02 8.07337463e-01 -1.23580039e+00 6.61369920e-01 2.27017984e-01 7.27062449e-02 -1.30018532e+00 -2.15850294e-01 -4.09333795e-01 5.02063394e-01 7.02028692e-01 8.99922311e-01 -5.41303635e-01 3.77189994e-01 5.44009328e-01 -1.97974712e-01 -8.73752773e-01 -9.14710939e-01 -1.72833651e-01 4.04645324e-01 -4.20474589e-01 -4.97109722e-04 1.03032541e+00 3.66921604e-01 1.01984680e+00 1.68996025e-02 -1.41170487e-01 9.91875082e-02 -3.99608770e-03 2.76334494e-01 -1.09951091e+00 -2.75821030e-01 1.48418561e-01 -1.03861466e-01 -6.65568054e-01 3.31790030e-01 -1.13488340e+00 3.36498886e-01 -2.13683319e+00 4.60911036e-01 -4.34834480e-01 -3.53477955e-01 1.01588964e+00 -5.46592772e-01 5.49099669e-02 -6.66494668e-03 1.86666459e-01 -8.54466140e-01 2.93263763e-01 1.07439113e+00 -3.14418525e-01 -8.23600814e-02 -1.10307358e-01 -1.01283145e+00 1.07386518e+00 6.50990963e-01 -8.97998095e-01 -1.71562597e-01 -4.81360108e-01 3.28081161e-01 2.83611000e-01 -3.55123281e-01 -6.47068918e-01 -1.40268832e-01 -9.78955626e-02 2.01101959e-01 -5.93953073e-01 1.40355453e-01 -6.59652114e-01 -5.60943663e-01 8.76977742e-01 -4.91449058e-01 3.13881725e-01 3.23399901e-01 2.19478324e-01 -3.14865410e-01 -2.76620775e-01 7.00997591e-01 -4.74951863e-01 -4.91779923e-01 2.27854103e-01 -6.93297327e-01 6.32909834e-01 6.15147889e-01 7.64136970e-01 -2.36979529e-01 -3.89712416e-02 -8.52419019e-01 5.43750942e-01 -2.08599642e-01 3.91329408e-01 4.08724278e-01 -6.87480330e-01 -1.03435779e+00 -1.99715823e-01 3.46820235e-01 1.82624105e-02 2.82783419e-01 8.36605251e-01 -8.94950211e-01 9.85419095e-01 2.97252694e-03 -3.53117079e-01 -1.31254852e+00 7.73376286e-01 1.15336075e-01 -1.31894541e+00 -5.89653492e-01 6.96192443e-01 2.71322697e-01 -9.32089448e-01 4.06535827e-02 -6.00868464e-01 -7.82897532e-01 -9.15095285e-02 5.92722237e-01 -2.91545242e-01 2.25804150e-01 -6.27890825e-01 -7.46686459e-01 5.39733144e-03 -1.92003459e-01 -1.42376527e-01 1.48296201e+00 7.72394985e-02 -3.91839623e-01 4.08009440e-01 8.78705144e-01 1.50697067e-01 -7.56049231e-02 -2.42590830e-01 4.89399284e-01 5.35030365e-01 -4.30730820e-01 -1.36021602e+00 -5.26504934e-01 6.76372111e-01 9.43712592e-02 -3.26821834e-01 9.45142448e-01 3.36137742e-01 9.05998707e-01 8.81129920e-01 2.62930959e-01 -9.67590690e-01 7.16478452e-02 1.02920485e+00 9.44737494e-01 -1.19092011e+00 -2.28510499e-01 -3.84103775e-01 -1.12258422e+00 8.03103089e-01 5.67193091e-01 8.37184340e-02 9.42753136e-01 2.81471938e-01 7.26572216e-01 -3.59317720e-01 -8.32288980e-01 -6.06081076e-03 6.95770264e-01 3.51491392e-01 9.73462820e-01 2.36382842e-01 -8.39414299e-01 1.24768043e+00 -3.42663616e-01 9.04105008e-02 3.42237264e-01 1.05934143e+00 1.66570753e-01 -1.40928280e+00 1.33625802e-03 4.58065093e-01 -1.25991571e+00 -4.78203028e-01 -5.98201096e-01 6.69474840e-01 1.04856946e-01 9.44302022e-01 -3.38624507e-01 6.07574768e-02 3.13119471e-01 1.41555190e-01 1.66877553e-01 -1.27112901e+00 -9.82415736e-01 2.37400189e-01 7.17490613e-01 -3.77215952e-01 -5.92588305e-01 -2.81067938e-01 -1.45475030e+00 5.06056786e-01 1.87417701e-01 7.57477701e-01 3.17576826e-01 1.11860025e+00 3.36069733e-01 6.86024666e-01 -6.28266931e-02 2.00703800e-01 -5.83583236e-01 -1.21458626e+00 -4.53988850e-01 5.53092539e-01 2.07091078e-01 1.37353912e-01 2.23132893e-01 2.66344077e-03]
[8.68275260925293, 8.765933990478516]
04d8bb3c-5d96-4f06-90c1-97a418c2a000
a-deep-learning-based-gpr-forward-solver-for
2207.06527
null
https://arxiv.org/abs/2207.06527v1
https://arxiv.org/pdf/2207.06527v1.pdf
A Deep Learning-Based GPR Forward Solver for Predicting B-Scans of Subsurface Objects
The forward full-wave modeling of ground-penetrating radar (GPR) facilitates the understanding and interpretation of GPR data. Traditional forward solvers require excessive computational resources, especially when their repetitive executions are needed in signal processing and/or machine learning algorithms for GPR data inversion. To alleviate the computational burden, a deep learning-based 2D GPR forward solver is proposed to predict the GPR B-scans of subsurface objects buried in the heterogeneous soil. The proposed solver is constructed as a bimodal encoder-decoder neural network. Two encoders followed by an adaptive feature fusion module are designed to extract informative features from the subsurface permittivity and conductivity maps. The decoder subsequently constructs the B-scans from the fused feature representations. To enhance the network's generalization capability, transfer learning is employed to fine-tune the network for new scenarios vastly different from those in training set. Numerical results show that the proposed solver achieves a mean relative error of 1.28%. For predicting the B-scan of one subsurface object, the proposed solver requires 12 milliseconds, which is 22,500x less than the time required by a classical physics-based solver.
['Abdulkadir C. Yucel', 'Mohamed Lokman Mohd Yusof', 'Genevieve Ow', 'Jiwei Qian', 'Hai-Han Sun', 'Yee Hui Lee', 'Qiqi Dai']
2022-07-13
null
null
null
null
['gpr', 'gpr']
['computer-vision', 'miscellaneous']
[ 4.89680260e-01 3.17729525e-02 8.21297228e-01 -5.19575715e-01 -1.17621601e+00 2.84298211e-01 -1.23723492e-01 -6.36712974e-03 -1.62127331e-01 7.78345108e-01 -1.79942608e-01 -5.49673319e-01 -3.24078113e-01 -1.15063071e+00 -7.65364408e-01 -1.00367308e+00 -5.30842185e-01 4.23244029e-01 -4.22738679e-02 -2.34299451e-01 3.66179734e-01 5.51134646e-01 -1.36567998e+00 3.69438201e-01 9.75673974e-01 1.64669061e+00 6.67284191e-01 6.55606270e-01 8.63945708e-02 8.24806035e-01 1.18753286e-02 1.23265207e-01 5.15284650e-02 -1.59291849e-01 -5.81353784e-01 -3.81282657e-01 -2.49262467e-01 -5.52175224e-01 -2.93938845e-01 8.27605367e-01 8.71068001e-01 9.81486663e-02 6.69184983e-01 -6.14429891e-01 -2.69290864e-01 5.59474051e-01 -9.02544796e-01 1.29200697e-01 3.37424248e-01 -2.68496245e-01 2.95206219e-01 -1.06853783e+00 -2.18078017e-01 8.64140749e-01 1.29722357e+00 4.16840054e-02 -8.23940933e-01 -8.24517429e-01 -3.33655030e-01 1.31025985e-01 -1.33444643e+00 -4.95153517e-01 8.66510153e-01 -4.27092493e-01 1.02071667e+00 2.33942375e-01 7.83665657e-01 7.28308678e-01 5.44140756e-01 3.76458168e-01 9.11972165e-01 -3.85737926e-01 3.26358587e-01 -1.41906202e-01 1.62522212e-01 5.70604265e-01 6.00759804e-01 2.98223257e-01 -3.26640010e-01 -3.06912899e-01 7.47773409e-01 -9.43736956e-02 -4.25073862e-01 -7.70946406e-03 -5.48966289e-01 9.61089551e-01 3.91780674e-01 -1.16568372e-01 -1.03212297e+00 1.06366403e-01 4.14420128e-01 9.50363129e-02 5.39586186e-01 2.97722846e-01 -6.44120991e-01 5.28514087e-02 -1.15707493e+00 4.09373581e-01 8.93115699e-01 6.91988409e-01 8.72594059e-01 5.07360995e-01 4.39901769e-01 5.68904102e-01 6.29519165e-01 9.36839879e-01 3.34891856e-01 -5.25695503e-01 3.83089989e-01 1.95364490e-01 2.27914840e-01 -1.14334476e+00 -5.46739697e-01 -6.17383897e-01 -1.01421642e+00 -1.93909094e-01 -2.76391327e-01 -6.45822167e-01 -8.57162416e-01 1.04620171e+00 4.27977055e-01 5.30659378e-01 3.53733480e-01 8.63948762e-01 9.16188657e-01 1.04937291e+00 -1.14730015e-01 -1.46929830e-01 1.08416533e+00 -4.11286443e-01 -3.19952041e-01 -6.22095406e-01 7.98141420e-01 -6.42927170e-01 2.97875315e-01 4.37020093e-01 -1.09509397e+00 -2.99321562e-01 -1.18559229e+00 4.18210596e-01 2.24361330e-01 1.06461450e-01 7.64736593e-01 4.83981431e-01 -7.92291641e-01 5.08145332e-01 -1.07614160e+00 2.30504066e-01 4.31449622e-01 2.45997965e-01 -8.68224725e-02 -2.20577613e-01 -1.33452213e+00 9.20383811e-01 2.66337514e-01 8.26236784e-01 -8.97209346e-01 -1.10537255e+00 -1.00219297e+00 1.20492369e-01 -3.17123264e-01 -5.41453063e-01 1.15790844e+00 -4.79562908e-01 -1.64436841e+00 3.40097964e-01 6.76629692e-02 -5.20247579e-01 2.21789420e-01 -3.79051298e-01 -5.20254195e-01 2.66362607e-01 2.23011449e-01 -1.13888323e-01 8.68795931e-01 -1.32735538e+00 -5.53513885e-01 -2.74228752e-01 -5.17719150e-01 1.42781690e-01 2.14235306e-01 -3.41481954e-01 2.56090730e-01 -2.51904249e-01 8.79961133e-01 -3.94024432e-01 -5.25377929e-01 -3.47051561e-01 -2.10142121e-01 7.97813296e-01 7.58586705e-01 -1.19232476e+00 5.95970094e-01 -1.97761512e+00 -4.39144343e-01 5.71659029e-01 -4.46544588e-02 -2.87633557e-02 2.04838127e-01 4.11892593e-01 -2.97473669e-01 -6.83415890e-01 -5.43338180e-01 4.79200259e-02 -4.20443416e-01 -1.79989100e-01 -4.35481369e-01 7.82439470e-01 1.25440210e-01 4.35366839e-01 -5.76069772e-01 -8.32193941e-02 8.61787982e-03 6.50932968e-01 -7.47767150e-01 2.95162052e-01 9.10786986e-02 6.79071724e-01 -9.92692471e-01 5.83803177e-01 1.56067121e+00 -2.04128534e-01 1.52803719e-01 -3.46701622e-01 -1.70455799e-01 2.58553773e-01 -1.29360747e+00 1.36628032e+00 -1.02490175e+00 2.59213477e-01 4.80169594e-01 -1.77122998e+00 1.38817811e+00 3.10222387e-01 4.81908262e-01 -9.42911446e-01 2.79188633e-01 4.66561794e-01 -1.42074332e-01 -7.76513875e-01 4.77991313e-01 -6.18445516e-01 -8.37437902e-03 3.05636585e-01 -3.08049768e-01 -4.31687623e-01 -5.76358497e-01 -3.56587559e-01 1.16542399e+00 7.19410330e-02 7.10554123e-02 -3.82685542e-01 5.45587599e-01 -7.13923853e-03 5.27808070e-01 5.49741447e-01 6.37397408e-01 2.84951538e-01 -8.65218937e-02 -5.56467652e-01 -6.26823783e-01 -9.73353386e-01 -4.35722560e-01 6.29071236e-01 2.47473255e-01 3.82173717e-01 -1.95275009e-01 3.66841197e-01 4.38928194e-02 6.92726076e-01 -4.41342771e-01 -4.10862535e-01 -6.09938741e-01 -1.22929478e+00 5.65843999e-01 6.55480385e-01 7.92352617e-01 -8.52012813e-01 -1.09616554e+00 6.18647158e-01 -2.69446552e-01 -9.58961427e-01 5.95236599e-01 5.46244144e-01 -1.17154121e+00 -8.05672824e-01 -4.78467464e-01 -7.81111240e-01 6.13244057e-01 7.30758756e-02 6.77070022e-01 -1.05453387e-01 -3.76119852e-01 -3.78008117e-03 -5.84925830e-01 -3.84484202e-01 -1.69778645e-01 -3.58587205e-01 -1.82160050e-01 7.44902156e-03 6.36235103e-02 -8.55720222e-01 -5.90529501e-01 -9.97774582e-03 -4.60585982e-01 2.22810417e-01 7.86978662e-01 1.08991778e+00 3.28211576e-01 3.13888878e-01 7.70376801e-01 -5.33963025e-01 3.42182249e-01 -7.90648401e-01 -7.87757874e-01 -7.06565157e-02 -1.94764473e-02 2.05879658e-02 4.34037000e-01 -1.55626982e-01 -1.68404424e+00 4.56018373e-02 -5.07838249e-01 2.32453287e-01 1.98633716e-01 1.19210792e+00 -9.86434817e-02 -5.20379424e-01 5.49708068e-01 5.20004213e-01 -3.01097006e-01 -6.40633762e-01 -1.56214446e-01 7.36689925e-01 5.56893229e-01 -7.06507802e-01 4.50063109e-01 2.06191614e-01 7.83958957e-02 -1.26054418e+00 -6.91471815e-01 -3.19159478e-01 2.22266302e-03 -1.11913234e-01 4.50609386e-01 -1.24645782e+00 -6.61442757e-01 6.38907850e-01 -1.12474453e+00 -2.62691081e-01 1.03572235e-01 9.69777584e-01 -5.53410888e-01 2.10439682e-01 -6.31775439e-01 -9.58563209e-01 -8.36360693e-01 -9.94781613e-01 1.01901472e+00 1.95934162e-01 -6.15988225e-02 -7.39279151e-01 -6.04193378e-03 1.75475866e-01 5.05453527e-01 2.89882213e-01 8.73651445e-01 -2.92195857e-01 -2.53213555e-01 -5.31525850e-01 -4.50057656e-01 1.24173969e-01 -5.85467517e-02 -5.12207091e-01 -1.10595608e+00 -3.32512498e-01 6.93027854e-01 -3.10266823e-01 7.50844479e-01 9.54887867e-01 1.15394187e+00 -1.95410907e-01 -6.74421906e-01 1.06063247e+00 1.74964643e+00 4.72866416e-01 7.32400835e-01 2.78339058e-01 3.25920194e-01 1.94570586e-01 6.59173727e-01 1.11705995e+00 1.84720576e-01 -3.70448641e-02 5.89170635e-01 -3.75444964e-02 6.14140868e-01 3.90236005e-02 7.69684240e-02 7.95164704e-01 -1.49523497e-01 5.91390990e-02 -1.10499811e+00 4.15283412e-01 -1.31366718e+00 -7.67361522e-01 -2.57165730e-01 1.88133824e+00 5.96712053e-01 4.35156822e-02 -7.68159330e-01 3.69380027e-01 5.30700564e-01 -1.74200356e-01 -3.69352639e-01 -3.34413290e-01 2.80465841e-01 8.09074223e-01 6.15680099e-01 5.55717468e-01 -7.74084508e-01 3.48206371e-01 5.76151133e+00 3.70112926e-01 -1.51973963e+00 -1.17051169e-01 2.43105769e-01 3.11863303e-01 -3.14811856e-01 -1.12372741e-01 -5.44881761e-01 2.42042944e-01 1.12021112e+00 8.23787227e-02 5.71653321e-02 8.61123323e-01 3.08501035e-01 -4.22941267e-01 -7.68233836e-01 1.08651936e+00 -2.30306014e-01 -1.40480423e+00 -1.96993560e-01 -3.06182951e-01 4.66672242e-01 4.04346436e-02 -1.49645984e-01 2.93126762e-01 2.22579181e-01 -8.30832541e-01 6.60180151e-01 7.98857272e-01 8.01038742e-01 -8.07395279e-01 9.94238138e-01 4.67030138e-01 -1.13347137e+00 -2.48814270e-01 -4.73201901e-01 -3.73470664e-01 4.89466131e-01 1.16417730e+00 -8.49875808e-01 8.73640060e-01 9.11197603e-01 4.70862865e-01 2.07502037e-01 1.01640522e+00 2.82850623e-01 7.19603300e-01 -4.84164327e-01 2.62745589e-01 2.74382234e-01 -2.11439416e-01 3.79896700e-01 1.08358264e+00 1.12628508e+00 5.29180348e-01 -1.36148948e-02 7.04904199e-01 3.41125816e-01 -1.90117359e-01 -4.43870008e-01 1.83141083e-01 5.34059525e-01 1.14363039e+00 -3.24276984e-01 -1.35372072e-01 -5.68342395e-02 5.09341717e-01 -2.69873828e-01 3.02864164e-01 -1.04866266e+00 -6.60256565e-01 3.30283642e-01 4.41072017e-01 5.48835278e-01 -5.43974526e-02 -5.37871242e-01 -6.33058071e-01 -1.66148260e-01 -4.82924134e-01 -1.78591117e-01 -1.02023995e+00 -1.10813200e+00 7.45700061e-01 -6.98490664e-02 -1.08275235e+00 -1.97344676e-01 -5.32552302e-01 -7.15785205e-01 1.25838041e+00 -1.62946939e+00 -1.03184903e+00 -7.87966251e-01 3.49596381e-01 -7.40672275e-02 -3.33719030e-02 1.01447082e+00 5.82495451e-01 -2.72291005e-01 3.18866521e-02 2.92539001e-01 -7.90030286e-02 1.27023250e-01 -4.76146221e-01 3.60193640e-01 6.79370046e-01 -9.70512390e-01 2.71150440e-01 1.02077055e+00 -8.64535332e-01 -1.66647267e+00 -1.11281407e+00 5.45667827e-01 6.76841140e-01 5.16907632e-01 -3.95887978e-02 -1.03740609e+00 6.50879920e-01 -4.10221249e-01 2.10912928e-01 4.72199142e-01 -2.44631156e-01 2.80041486e-01 -2.33650640e-01 -1.35639751e+00 5.63939698e-02 5.35616398e-01 -2.20971331e-01 -5.54003894e-01 1.01050541e-01 4.20224428e-01 -7.22532868e-01 -7.24675655e-01 6.66954219e-01 5.25823057e-01 -7.67285228e-01 1.07777691e+00 -1.33509085e-01 5.69242358e-01 8.90481919e-02 -5.40387630e-01 -1.37496018e+00 -2.89137483e-01 -2.53452510e-01 1.34225711e-01 5.24631023e-01 2.78688729e-01 -1.01084101e+00 8.82298708e-01 1.89269543e-01 -5.68850994e-01 -1.00654829e+00 -9.64972854e-01 -3.67102414e-01 -7.69153833e-02 -7.33988643e-01 7.21504927e-01 6.30351245e-01 -1.36854544e-01 -3.15579996e-02 -1.86649591e-01 8.53969514e-01 9.20124769e-01 2.88706005e-01 2.50469118e-01 -1.37597382e+00 -3.33290428e-01 2.75805384e-01 -2.23482013e-01 -1.08423305e+00 -5.65101318e-02 -7.59222925e-01 6.12997234e-01 -1.63951123e+00 -1.09157272e-01 -1.04741251e+00 -1.12612005e-02 2.85460949e-01 2.24257752e-01 -4.07269076e-02 -6.56394303e-01 -2.84256518e-01 2.96575129e-01 7.93623805e-01 1.09808564e+00 -5.12605719e-02 -2.13240430e-01 2.32899755e-01 -5.52294970e-01 9.18606162e-01 7.26368785e-01 -5.86957216e-01 -2.87150323e-01 -6.62199914e-01 4.74487841e-01 9.13770378e-01 5.96367955e-01 -1.25173306e+00 2.64099538e-01 4.26497832e-02 6.81346953e-01 -8.98611963e-01 6.24921262e-01 -8.09389591e-01 3.60379100e-01 7.33465016e-01 2.01866925e-01 -1.68467402e-01 4.72164303e-01 3.39661121e-01 -2.73622155e-01 -3.49197865e-01 8.58936787e-01 -1.01376556e-01 -5.00763118e-01 3.34453225e-01 -6.62446439e-01 -1.09324418e-01 6.65413857e-01 -4.26633775e-01 2.67838180e-01 -2.17344031e-01 -6.63726270e-01 -9.60537046e-02 -2.49216676e-01 -5.10347545e-01 1.15159059e+00 -1.03834367e+00 -9.05056953e-01 6.14560306e-01 -3.42220068e-01 3.66771936e-01 9.60291147e-01 9.58972633e-01 -1.01393008e+00 1.86828941e-01 -3.29052687e-01 -5.21190405e-01 -6.44963086e-01 -1.67992070e-01 6.04812086e-01 -3.16571265e-01 -1.02173364e+00 1.12175238e+00 -2.14318242e-02 -3.48203599e-01 -3.72288853e-01 -4.90227073e-01 -3.10078729e-02 -9.77230668e-02 5.08063912e-01 6.24632657e-01 5.00058174e-01 -3.19113970e-01 -4.41175938e-01 4.60557729e-01 1.87763176e-03 3.27407606e-02 2.04114914e+00 6.12206906e-02 -1.39534578e-01 -4.94244583e-02 1.26149571e+00 -4.54526335e-01 -1.14693892e+00 -1.89212725e-01 -2.84532666e-01 -1.68803126e-01 6.11094117e-01 -5.99020004e-01 -1.09066343e+00 9.36637282e-01 5.17412603e-01 -2.71801859e-01 1.32707751e+00 -5.39878964e-01 1.08879662e+00 6.01587594e-01 5.67532659e-01 -7.15506613e-01 -2.65919507e-01 7.31550634e-01 8.57848167e-01 -7.95327187e-01 1.32959604e-01 -3.01138401e-01 -3.26679438e-01 1.21688676e+00 2.29457751e-01 -3.68931592e-01 1.08348358e+00 1.03462100e+00 -2.24769324e-01 -3.59629989e-01 -3.63606453e-01 7.03703463e-01 -2.62901992e-01 6.59236550e-01 2.36312732e-01 -3.87753844e-02 2.37792701e-01 1.23965025e+00 -3.44594896e-01 3.94100368e-01 4.50254649e-01 1.18433595e+00 -7.63272524e-01 -2.50330150e-01 -5.91623068e-01 7.77725875e-01 -2.49733433e-01 -3.08548301e-01 8.19424808e-01 3.71483564e-01 -9.89754125e-02 6.74557149e-01 2.07698837e-01 -2.25023687e-01 9.24013332e-02 -2.89060742e-01 6.32593572e-01 -4.49299455e-01 -3.25098149e-02 -1.59165815e-01 1.98512912e-01 -3.35811436e-01 -6.59156144e-02 -5.30028462e-01 -1.68198550e+00 -2.37300038e-01 -5.36172450e-01 4.14477617e-01 6.79719925e-01 1.02695847e+00 -2.29245238e-02 7.31355906e-01 6.62003636e-01 -1.28455591e+00 -7.82486022e-01 -9.80607450e-01 -1.12705421e+00 -5.35499513e-01 4.72896606e-01 -9.97740746e-01 -3.83973897e-01 -1.08383581e-01]
[6.85938835144043, 1.87955904006958]
5dbc4c4f-1a3e-4912-86e7-72ab9bf53c85
multi-temporal-and-multi-source-remote
2012.04469
null
https://arxiv.org/abs/2012.04469v1
https://arxiv.org/pdf/2012.04469v1.pdf
Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization
Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corresponding band to be matched between the images. An alternative builds upon \emph{manifold alignment}. Manifold alignment performs a multidimensional relative normalization of the data prior to product generation that can cope with data of different dimensionality (e.g. different number of bands) and possibly unpaired examples. Aligning data distributions is an appealing strategy, since it allows to provide data spaces that are more similar to each other, regardless of the subsequent use of the transformed data. In this paper, we study a methodology that aligns data from different domains in a nonlinear way through {\em kernelization}. We introduce the Kernel Manifold Alignment (KEMA) method, which provides a flexible and discriminative projection map, exploits only a few labeled samples (or semantic ties) in each domain, and reduces to solving a generalized eigenvalue problem. We successfully test KEMA in multi-temporal and multi-source very high resolution classification tasks, as well as on the task of making a model invariant to shadowing for hyperspectral imaging.
['Gustau Camps-Valls', 'Diego Marcos', 'Devis Tuia']
2020-12-07
null
null
null
null
['remote-sensing-image-classification']
['miscellaneous']
[ 6.26152754e-01 -5.08795500e-01 1.50544196e-01 -1.93517968e-01 -5.10501802e-01 -7.09989786e-01 6.58516347e-01 2.10752890e-01 -5.27732313e-01 5.71899533e-01 -2.13387519e-01 1.21456925e-02 -6.59846902e-01 -8.55355561e-01 -4.87824529e-01 -1.12019575e+00 1.55325219e-01 5.51621377e-01 2.08049398e-02 -1.50423631e-01 4.50526550e-02 8.54198992e-01 -1.78144705e+00 -1.17246643e-01 9.57781732e-01 6.68629408e-01 5.64340770e-01 4.48844761e-01 -1.09451413e-01 2.93190721e-02 -2.58991420e-01 -2.55143754e-02 4.57399428e-01 -5.08600414e-01 -5.52011728e-01 5.55404305e-01 5.24451554e-01 2.95053363e-01 1.55671299e-01 1.41290975e+00 2.26625279e-01 3.53098303e-01 1.11187398e+00 -1.12579989e+00 -3.34339082e-01 7.26926252e-02 -6.34911954e-01 -2.03830808e-01 1.12373363e-02 -2.60359973e-01 5.17490923e-01 -6.96964085e-01 4.63097930e-01 8.84965658e-01 5.62822700e-01 2.01036245e-01 -1.90615511e+00 -2.17859969e-01 -1.68739736e-01 2.90559947e-01 -1.47527492e+00 -2.85396963e-01 7.42286384e-01 -7.96192050e-01 3.11794370e-01 5.05722702e-01 5.34968436e-01 8.11289668e-01 -2.55841017e-01 -3.25447060e-02 1.43578994e+00 -5.86700439e-01 2.13812605e-01 3.68644148e-01 -2.88238693e-02 1.26256779e-01 2.60894686e-01 -1.86305568e-01 -3.90400559e-01 -1.12818897e-01 3.16593587e-01 7.60674402e-02 -7.11173534e-01 -7.82146871e-01 -1.23537791e+00 9.29377258e-01 3.04264724e-01 6.56809568e-01 -5.48911750e-01 -6.21674418e-01 -1.44086018e-01 3.20946962e-01 2.58789867e-01 5.76081872e-01 -2.87087619e-01 4.45845902e-01 -1.00630164e+00 1.22232698e-02 6.70704484e-01 5.47798634e-01 1.35277402e+00 -1.72910199e-01 2.38420129e-01 8.98420334e-01 2.00754538e-01 9.44801211e-01 5.85759223e-01 -5.01584828e-01 2.91607559e-01 4.63298291e-01 1.10737592e-01 -1.19632638e+00 -5.61537564e-01 -3.00306052e-01 -1.25871670e+00 4.97232139e-01 5.56285620e-01 2.05452248e-01 -7.33129859e-01 1.79193115e+00 4.36407149e-01 1.55262142e-01 4.10843551e-01 8.10001910e-01 2.37545773e-01 6.62283361e-01 -1.65083185e-01 -5.17946005e-01 1.13276386e+00 -4.55847383e-01 -4.17111099e-01 -1.98684931e-01 5.04960418e-01 -1.00442016e+00 8.72104704e-01 5.13337255e-01 -5.00880837e-01 -5.95530391e-01 -1.04488552e+00 2.98892736e-01 -7.37664044e-01 8.42115879e-02 1.16937393e-02 6.47504807e-01 -7.85529554e-01 8.22296143e-01 -4.51762259e-01 -6.16126060e-01 2.99276356e-02 1.84141397e-01 -7.72283196e-01 -1.51669309e-01 -7.45133042e-01 1.06764698e+00 6.59319162e-01 7.96271414e-02 -2.33027562e-01 -5.20143270e-01 -7.40181565e-01 -1.18748680e-01 3.12278330e-01 -3.71895105e-01 3.54370922e-01 -1.28156924e+00 -1.25946581e+00 7.90127873e-01 3.44456993e-02 -1.91746294e-01 3.86271685e-01 1.35851940e-02 -6.97031677e-01 -1.28954917e-01 1.57386512e-02 2.48637021e-01 1.39605057e+00 -1.30146396e+00 -3.64072442e-01 -6.10020339e-01 -4.70347166e-01 2.64723092e-01 -5.05053461e-01 -2.10221469e-01 -2.48493790e-03 -4.10159349e-01 5.21944642e-01 -1.05092144e+00 -1.05474472e-01 -1.61654338e-01 -3.20625633e-01 5.46635687e-01 8.20307016e-01 -7.50944436e-01 6.61205411e-01 -2.34025669e+00 7.35759139e-01 6.71709418e-01 -2.12050900e-01 2.92318642e-01 -2.84410000e-01 3.11399013e-01 -5.07042050e-01 -6.19996749e-02 -8.35607529e-01 -1.92321584e-01 -1.11196533e-01 2.49789208e-01 -1.51838943e-01 6.99418128e-01 7.78042600e-02 1.78512812e-01 -5.75394750e-01 -2.75284320e-01 4.58792657e-01 5.18673003e-01 -4.57710633e-03 3.15010399e-01 1.72183122e-02 8.50167751e-01 -4.98925075e-02 1.95943251e-01 1.00865102e+00 1.30175371e-02 1.10918410e-01 -6.71510696e-01 -3.68875623e-01 -4.56182778e-01 -1.75154376e+00 1.75216377e+00 -4.23970342e-01 3.29175174e-01 1.69147789e-01 -1.37766194e+00 1.07579386e+00 1.62496001e-01 6.71665072e-01 -4.84158188e-01 -3.61498073e-02 4.40356314e-01 -2.03182414e-01 -5.58813155e-01 3.64199311e-01 -3.38156104e-01 3.25423002e-01 1.77327633e-01 5.99629655e-02 -4.62660611e-01 1.85136557e-01 -4.92003828e-01 5.49915850e-01 1.92888007e-02 3.96973848e-01 -2.81638533e-01 7.73904562e-01 -6.95240125e-02 3.52209806e-01 5.13858616e-01 3.84991586e-01 7.27370560e-01 4.93883565e-02 -2.03231156e-01 -1.14164090e+00 -1.09041882e+00 -5.18982947e-01 5.74027658e-01 1.57347262e-01 1.33117929e-01 -4.76124227e-01 -3.82907718e-01 -1.29509106e-01 6.38665557e-01 -4.36002791e-01 -5.75559214e-02 -1.33816004e-01 -1.19718993e+00 1.68298692e-01 -1.59374461e-01 6.11523211e-01 -5.47318816e-01 -5.77468753e-01 2.11862445e-01 -2.17578128e-01 -1.07406473e+00 7.29544610e-02 2.96523899e-01 -9.02738810e-01 -1.08971417e+00 -7.22126007e-01 -3.56541991e-01 6.06896162e-01 4.25418794e-01 7.97504365e-01 -4.81717527e-01 -3.07433397e-01 4.52011377e-01 -4.54448462e-01 -2.50063986e-01 -5.76927841e-01 -7.17364997e-02 1.72806159e-01 7.02398121e-01 1.47557616e-01 -7.68846571e-01 -9.31793749e-02 4.91625011e-01 -1.45637572e+00 -2.73885317e-02 6.76214039e-01 9.18172777e-01 6.89534843e-01 2.89516211e-01 1.21949010e-01 -6.92875564e-01 2.27407366e-01 -4.34629470e-01 -7.87684143e-01 5.32152057e-01 -5.15425444e-01 1.90209195e-01 6.14848554e-01 -4.78283018e-01 -9.25164044e-01 4.97473449e-01 1.93585023e-01 -3.62733215e-01 -5.66317439e-01 6.30023539e-01 -4.17022318e-01 -3.86310875e-01 1.05742717e+00 2.72387773e-01 3.17840070e-01 -5.68656623e-01 4.28045213e-01 5.88237524e-01 4.60563749e-01 -3.24537098e-01 1.28264987e+00 5.26621640e-01 4.53344464e-01 -1.40730572e+00 -4.28017467e-01 -5.95603347e-01 -1.14833570e+00 -1.73638776e-01 1.04395068e+00 -6.38599634e-01 1.84477551e-03 5.83975077e-01 -8.35463047e-01 -9.34598446e-02 -4.22329217e-01 8.83404970e-01 -3.28750789e-01 6.14077330e-01 2.19384417e-01 -6.06182754e-01 1.38358265e-01 -1.01592171e+00 6.91295028e-01 2.55568743e-01 1.18080996e-01 -1.09831429e+00 3.21671903e-01 1.25677720e-01 4.14837688e-01 3.08637202e-01 8.71548474e-01 -5.02655149e-01 -2.67382324e-01 -7.57672265e-02 -1.60867199e-01 7.23506868e-01 5.17908096e-01 2.38058902e-03 -1.08467698e+00 -4.91377264e-01 3.40280801e-01 1.31225437e-01 7.27396488e-01 3.50304455e-01 8.45357239e-01 -1.49151787e-01 -1.68697655e-01 7.13211894e-01 1.72788453e+00 -7.95224756e-02 5.87866902e-01 4.03075278e-01 7.87546396e-01 1.03518927e+00 5.95530689e-01 2.11238950e-01 -1.26311496e-01 9.73069906e-01 5.68942726e-01 -3.83563995e-01 3.62373978e-01 4.52411801e-01 2.12035999e-01 4.80220973e-01 -3.09955776e-01 -4.23151106e-02 -7.75489450e-01 3.28133017e-01 -1.83936381e+00 -9.53497052e-01 -4.62402523e-01 2.83357120e+00 3.54337722e-01 -5.20468712e-01 5.60182743e-02 2.83856690e-01 8.34348142e-01 4.49646078e-02 -3.69853467e-01 6.31873682e-02 -6.34452760e-01 3.34614187e-01 6.48930848e-01 4.82093334e-01 -1.28598893e+00 3.94741833e-01 4.84605932e+00 6.68857217e-01 -1.29098666e+00 1.22921519e-01 1.66119173e-01 3.59064639e-01 -2.14946344e-01 1.84815541e-01 -2.88453221e-01 3.31582099e-01 7.08770275e-01 -3.24998498e-02 6.13715291e-01 4.35729563e-01 -5.34493849e-02 -3.09261709e-01 -1.00547767e+00 1.26599550e+00 3.31913173e-01 -9.01199520e-01 -5.28415926e-02 2.23518744e-01 6.52878046e-01 -8.50757062e-02 8.96636248e-02 -2.86177367e-01 -2.23681346e-01 -9.22683537e-01 4.71976817e-01 8.61080050e-01 4.96229768e-01 -4.64088053e-01 7.00353265e-01 4.39692944e-01 -1.08588922e+00 4.94280457e-02 -5.10992050e-01 2.11234525e-01 5.57770841e-02 7.32864916e-01 -5.94515085e-01 1.15087962e+00 5.63982785e-01 6.47335172e-01 -6.37979031e-01 1.04836953e+00 1.15215257e-01 1.21579273e-02 -4.90611225e-01 3.72427702e-01 -1.74871042e-01 -9.26224053e-01 6.84410274e-01 9.51875746e-01 1.02010655e+00 -1.65056318e-01 1.76816449e-01 8.92964840e-01 4.45580482e-01 5.22886515e-01 -9.00648594e-01 2.05009595e-01 1.63636640e-01 1.43047094e+00 -6.49976552e-01 -6.72546998e-02 -5.07094383e-01 1.18315029e+00 -3.09993718e-02 4.73023772e-01 -5.97659826e-01 3.13629769e-02 6.06634915e-01 6.01220131e-02 6.96726516e-02 -4.03367698e-01 1.32255554e-01 -1.22503364e+00 5.29153310e-02 -7.25531757e-01 4.78647739e-01 -7.91637361e-01 -1.46204293e+00 5.52700102e-01 2.00869128e-01 -1.67140257e+00 -1.31136134e-01 -7.48109877e-01 -2.36156210e-01 1.23775280e+00 -1.66699708e+00 -1.13551164e+00 -5.53155720e-01 9.80572760e-01 -5.64021990e-02 -9.65455696e-02 1.11853445e+00 3.57508898e-01 -3.50280911e-01 -7.51939565e-02 4.36546803e-01 -2.71117836e-01 8.69602919e-01 -1.18571985e+00 -5.44347346e-01 1.10437250e+00 3.70438427e-01 1.44521356e-01 7.14574933e-01 -3.02805901e-01 -1.19426525e+00 -1.17289352e+00 4.63194847e-01 -3.20392335e-03 6.34474456e-01 9.86788422e-02 -1.29194856e+00 3.61061186e-01 -5.99357393e-03 -9.86810252e-02 8.97500396e-01 -1.17227577e-01 -3.47847611e-01 -4.56606269e-01 -1.07826495e+00 3.18308949e-01 5.10427058e-01 -6.30460858e-01 -3.64001840e-01 4.42368031e-01 -3.87478992e-02 -4.93834056e-02 -1.01843297e+00 4.64323729e-01 2.34145865e-01 -1.12207603e+00 9.66979802e-01 -3.00355047e-01 -1.43722847e-01 -7.45873451e-01 -5.29460847e-01 -1.60734332e+00 -3.29349577e-01 -2.07991049e-01 5.20208359e-01 1.29130721e+00 3.62914890e-01 -8.60748291e-01 2.81257629e-01 4.67308134e-01 5.77486753e-02 2.66883671e-01 -1.06079066e+00 -1.02729285e+00 -8.02904665e-02 -2.80450702e-01 6.13904238e-01 1.32687509e+00 -4.00404602e-01 2.71773905e-01 -4.35080975e-01 7.61026382e-01 7.67039835e-01 4.03026640e-01 9.91481423e-01 -1.65284657e+00 -4.83132601e-01 -5.05521357e-01 -6.01755381e-01 -4.14381415e-01 2.46949330e-01 -9.35874462e-01 8.46611187e-02 -1.06919038e+00 6.02458902e-02 -4.84226465e-01 4.60246615e-02 3.78270686e-01 1.66866496e-01 2.88872272e-01 2.65943408e-01 4.12574828e-01 2.16459960e-01 5.72999179e-01 7.53308356e-01 -3.09836298e-01 -3.89451355e-01 4.58426476e-02 -8.69662240e-02 7.41441250e-01 7.12885797e-01 -3.91458720e-01 -2.32937425e-01 -1.87709644e-01 2.51541406e-01 -1.17183030e-01 6.10289276e-01 -1.45393801e+00 5.52760661e-02 -2.69758493e-01 3.11365128e-01 -2.21255690e-01 3.85204881e-01 -1.36677527e+00 8.95148098e-01 1.41376019e-01 1.62363142e-01 -1.52083084e-01 7.29793236e-02 4.46977735e-01 -3.22366655e-01 -6.15537345e-01 1.04620147e+00 -5.22557236e-02 -6.84557021e-01 2.28136107e-01 -2.34443188e-01 -4.01255757e-01 1.03001809e+00 -2.91969687e-01 -5.55593595e-02 -1.46627173e-01 -9.51526701e-01 -2.60626882e-01 7.54918218e-01 2.01353773e-01 3.13779533e-01 -1.25864756e+00 -8.10325444e-01 3.51769894e-01 4.26296979e-01 1.94012336e-02 5.23016632e-01 1.05272961e+00 -3.15808296e-01 -1.49265930e-01 -3.92497033e-01 -9.64798331e-01 -1.46396339e+00 6.01113617e-01 5.39279342e-01 -3.06649674e-02 -3.31489533e-01 3.81962657e-01 3.57704386e-02 -5.57012260e-01 -3.58675778e-01 -1.82084709e-01 -5.78932822e-01 5.63034952e-01 3.59813571e-01 2.56368548e-01 3.45159829e-01 -1.17030811e+00 -9.06247273e-02 1.15261269e+00 5.35456836e-01 -2.30395287e-01 1.34199488e+00 -1.40028238e-01 -4.07280922e-01 6.82658374e-01 1.09776652e+00 7.13543668e-02 -9.88581717e-01 -5.51916122e-01 -1.22262001e-01 -7.16928482e-01 -2.69965418e-02 -3.01954776e-01 -8.98275852e-01 7.63035059e-01 1.02714789e+00 6.44426584e-01 1.44536102e+00 -1.28871813e-01 -1.06458336e-01 3.74317110e-01 2.05792442e-01 -1.13469946e+00 -1.62355006e-01 3.54473084e-01 9.34380054e-01 -1.19451070e+00 7.50245824e-02 -4.46074486e-01 -4.41221833e-01 1.41155219e+00 1.26444399e-01 2.90699273e-01 7.62375653e-01 -1.83786288e-01 1.31509006e-01 -1.31407380e-01 2.08017915e-01 -5.93599975e-01 4.19445544e-01 8.26588392e-01 -4.12393026e-02 1.97678655e-01 -1.73033580e-01 -1.06242143e-01 -5.77274002e-02 -4.10288781e-01 4.83436972e-01 6.58066690e-01 -2.53227025e-01 -1.43447804e+00 -1.01903248e+00 3.09649080e-01 1.52585983e-01 9.12127793e-02 -2.30354875e-01 7.38740087e-01 3.47767860e-01 8.57270598e-01 5.13956696e-02 -3.80189419e-01 3.99417132e-01 3.34834725e-01 4.78503227e-01 -5.28611720e-01 9.13640484e-02 2.22760737e-01 -2.21781179e-01 -2.85800695e-01 -1.17512703e+00 -1.03801620e+00 -7.60134459e-01 -1.08462296e-01 -5.05129337e-01 4.59028706e-02 9.36785638e-01 1.01056314e+00 7.22565353e-02 2.51962602e-01 8.37545037e-01 -1.15200198e+00 -4.22510356e-01 -8.44583750e-01 -1.16867673e+00 7.47852564e-01 3.27229172e-01 -8.13071191e-01 -5.58406115e-01 3.14715534e-01]
[10.009339332580566, -2.0534842014312744]
7aea6cf4-3478-40e8-bc52-24197bbb939e
infoctm-a-mutual-information-maximization
2304.03544
null
https://arxiv.org/abs/2304.03544v1
https://arxiv.org/pdf/2304.03544v1.pdf
InfoCTM: A Mutual Information Maximization Perspective of Cross-Lingual Topic Modeling
Cross-lingual topic models have been prevalent for cross-lingual text analysis by revealing aligned latent topics. However, most existing methods suffer from producing repetitive topics that hinder further analysis and performance decline caused by low-coverage dictionaries. In this paper, we propose the Cross-lingual Topic Modeling with Mutual Information (InfoCTM). Instead of the direct alignment in previous work, we propose a topic alignment with mutual information method. This works as a regularization to properly align topics and prevent degenerate topic representations of words, which mitigates the repetitive topic issue. To address the low-coverage dictionary issue, we further propose a cross-lingual vocabulary linking method that finds more linked cross-lingual words for topic alignment beyond the translations of a given dictionary. Extensive experiments on English, Chinese, and Japanese datasets demonstrate that our method outperforms state-of-the-art baselines, producing more coherent, diverse, and well-aligned topics and showing better transferability for cross-lingual classification tasks.
['Anh Tuan Luu', 'Liangming Pan', 'Chaoqun Liu', 'Thong Nguyen', 'Xinshuai Dong', 'Xiaobao Wu']
2023-04-07
null
null
null
null
['topic-models']
['natural-language-processing']
[-2.06636727e-01 6.83962703e-02 -7.56937683e-01 -3.45365375e-01 -1.35208189e+00 -5.36896348e-01 6.98496699e-01 1.12451993e-01 -8.82444009e-02 6.09369338e-01 6.41890824e-01 -2.40528062e-01 8.68593380e-02 -5.34731686e-01 -5.42113423e-01 -5.92879951e-01 2.44810939e-01 5.76174557e-01 1.85757577e-01 1.27553968e-02 1.20662615e-01 -6.59567893e-01 -1.07186627e+00 2.33442530e-01 1.34191287e+00 3.08011085e-01 4.59533066e-01 -3.07466894e-01 -6.82987571e-01 -1.50391996e-01 -4.72533792e-01 -6.02880538e-01 -1.95225924e-01 -2.62736320e-01 -6.65081263e-01 1.54156163e-01 5.62731206e-01 1.43554926e-01 8.71044546e-02 1.07152653e+00 2.45613977e-01 -2.41780594e-01 8.40635717e-01 -1.29344392e+00 -5.63876152e-01 1.13825774e+00 -1.03725374e+00 -2.55751759e-01 4.44194749e-02 -5.91114998e-01 1.52242315e+00 -1.08383071e+00 6.47800207e-01 1.38078249e+00 7.65933633e-01 2.23301053e-01 -1.32329094e+00 -1.04362738e+00 6.02985919e-01 -1.20415993e-01 -1.46859443e+00 -1.31148770e-01 9.58692491e-01 -5.46954393e-01 8.13742936e-01 -1.29796997e-01 3.13752890e-01 1.46796966e+00 3.93284082e-01 9.12841439e-01 9.73384917e-01 -5.71325183e-01 -1.16690665e-01 3.47400278e-01 3.66647750e-01 2.95732290e-01 4.50555176e-01 -6.29860818e-01 -8.28457177e-01 -4.50555980e-01 2.36228704e-01 -2.22295329e-01 -2.62883425e-01 -6.14636719e-01 -1.42357051e+00 1.15596557e+00 -1.86441720e-01 5.37799180e-01 -2.57153839e-01 -3.57462496e-01 6.50437176e-01 -2.39822287e-02 1.26471996e+00 4.34353709e-01 -6.47177577e-01 3.32665257e-02 -1.03524208e+00 1.51483193e-01 6.84004843e-01 1.12931526e+00 7.87290812e-01 -1.66184187e-01 -4.97874618e-02 1.10500562e+00 7.02400565e-01 6.10795915e-01 8.05111468e-01 -2.71436781e-01 7.45334446e-01 6.42210841e-01 -3.62491876e-01 -1.07527554e+00 -2.00017035e-01 -5.11331320e-01 -6.04441762e-01 -7.23938823e-01 -4.86346334e-02 -1.48988530e-01 -5.59825122e-01 1.85024869e+00 4.41477448e-01 1.95912411e-03 2.58181542e-01 4.22397226e-01 5.98612428e-01 8.31172287e-01 2.81394690e-01 -4.08250630e-01 1.78795636e+00 -1.03621519e+00 -1.19050896e+00 -4.22989070e-01 9.63582516e-01 -1.26730132e+00 1.22050321e+00 2.25652397e-01 -5.79280376e-01 -3.89396250e-01 -8.77276540e-01 -1.73215851e-01 -4.46604759e-01 2.12341979e-01 5.84975898e-01 5.81253827e-01 -6.42458975e-01 -1.07699580e-01 -8.48884106e-01 -5.49157083e-01 6.57658428e-02 -9.81797948e-02 -3.14842105e-01 -2.74414029e-02 -1.43520594e+00 6.83358371e-01 5.12748241e-01 -5.49471974e-01 -2.74270892e-01 -9.66903508e-01 -9.91265178e-01 -1.89282998e-01 3.87683630e-01 -3.52779388e-01 8.60808730e-01 -4.04869527e-01 -1.03582203e+00 8.47566187e-01 -5.71170032e-01 -3.88882875e-01 -1.44354887e-02 -6.90410793e-01 -3.26438069e-01 -3.28226358e-01 7.21604288e-01 9.17492867e-01 5.71246684e-01 -1.29618371e+00 -6.73531175e-01 -2.58600861e-01 -5.50813615e-01 4.78353888e-01 -8.51463139e-01 7.21834898e-02 -9.12343502e-01 -1.17536545e+00 5.59535563e-01 -9.15094256e-01 9.19713750e-02 -6.05757892e-01 -5.68145931e-01 -7.55430400e-01 1.14801824e+00 -7.30014026e-01 1.47908890e+00 -2.03088856e+00 1.44953579e-01 -2.27602452e-01 -1.47332862e-01 -2.20997676e-01 1.67067915e-01 5.16433716e-01 6.28650859e-02 2.38050535e-01 -2.00016469e-01 -1.01984036e+00 1.64864227e-01 2.89592475e-01 -8.85244310e-01 2.48142958e-01 -3.33597921e-02 5.81358910e-01 -6.88844204e-01 -9.00995731e-01 -1.34943604e-01 6.03211403e-01 -5.03130674e-01 -1.01486608e-01 -3.73999715e-01 2.55052388e-01 -4.09224927e-01 4.27840710e-01 5.02371073e-01 -1.19437590e-01 5.14681876e-01 -3.57113719e-01 -1.17933393e-01 1.10474086e+00 -7.22993314e-01 2.05291629e+00 -4.30125862e-01 7.36955583e-01 -4.76514369e-01 -7.59914160e-01 1.15598500e+00 5.91399372e-01 6.83108032e-01 -4.48069602e-01 -1.03188626e-01 1.96278438e-01 -3.61509293e-01 -1.24271974e-01 9.23126519e-01 -4.98464145e-02 -4.63778168e-01 7.67150044e-01 1.69317618e-01 -6.46461472e-02 1.38041005e-01 3.47143739e-01 2.49281377e-01 3.32151979e-01 2.94742733e-01 -6.66190267e-01 2.24956926e-02 1.44890279e-01 6.82894289e-01 3.86400759e-01 1.13012120e-01 4.97770458e-01 4.35514033e-01 -9.39015970e-02 -1.09721613e+00 -7.88571537e-01 -5.00936985e-01 1.18913269e+00 1.28505781e-01 -1.01874745e+00 -6.48102462e-01 -8.22761476e-01 -1.34715497e-01 8.76574874e-01 -4.02362078e-01 1.28590195e-02 -5.02710700e-01 -1.15363920e+00 5.46249390e-01 1.75248906e-01 3.44399184e-01 -5.20952821e-01 1.21038042e-01 3.60791236e-01 -1.09750640e+00 -1.20712626e+00 -7.37058282e-01 3.58176120e-02 -9.35854912e-01 -5.83579719e-01 -6.47537172e-01 -9.58407402e-01 3.30800384e-01 5.65881371e-01 1.19427669e+00 -7.47765779e-01 1.86775476e-01 3.84015427e-03 -4.45233852e-01 -3.54549497e-01 -6.54762536e-02 6.75372422e-01 1.53983399e-01 -2.11136654e-01 8.86159182e-01 -3.95311922e-01 -2.34999806e-01 5.33253491e-01 -6.24480426e-01 2.21557498e-01 3.81258279e-01 8.01600575e-01 6.96617663e-01 3.47329229e-02 6.62691891e-01 -1.01793540e+00 6.66415334e-01 -6.47012770e-01 -3.80440980e-01 3.27461690e-01 -8.65463436e-01 1.76648498e-01 5.33030257e-02 -5.73138952e-01 -1.20479703e+00 -4.04783159e-01 3.76081735e-01 -9.65316147e-02 -2.58858856e-02 7.31675386e-01 -3.09004366e-01 6.92281306e-01 2.86971390e-01 3.47049862e-01 -3.73818785e-01 -7.59388626e-01 5.37026525e-01 7.42834926e-01 1.71418563e-01 -7.02721834e-01 4.78072435e-01 4.68600929e-01 -6.29901648e-01 -6.20163798e-01 -1.10707319e+00 -8.40347469e-01 -7.26861298e-01 1.28605857e-01 8.85555089e-01 -1.47494781e+00 1.15034923e-01 2.27408245e-01 -1.32527614e+00 7.91857466e-02 1.22766420e-01 7.91868925e-01 -1.59615085e-01 4.20699984e-01 -3.88684154e-01 -5.10764122e-01 -4.09813374e-01 -1.16590285e+00 1.56379890e+00 -2.27212951e-01 -5.95112205e-01 -1.36296654e+00 4.83507454e-01 3.55971098e-01 1.77965283e-01 -2.82536536e-01 1.04855621e+00 -8.43163192e-01 -3.02073151e-01 1.94901034e-01 -7.65973851e-02 -2.54327618e-02 4.67409998e-01 -2.12005273e-01 -8.70557129e-01 -4.22976375e-01 4.95418422e-02 -9.61811766e-02 7.47731745e-01 3.33004683e-01 5.28760433e-01 -3.56088728e-01 -9.24253643e-01 4.17903036e-01 1.10544407e+00 -1.83777083e-02 2.99350470e-01 5.68999410e-01 7.98917115e-01 9.17578161e-01 8.57688308e-01 6.29836172e-02 1.04344118e+00 9.54559326e-01 -1.64579883e-01 -1.75146177e-01 -6.38370812e-02 -4.35894012e-01 4.93597150e-01 1.71922958e+00 6.31511629e-01 -3.84687752e-01 -1.03896308e+00 1.07177210e+00 -1.81195903e+00 -4.89807367e-01 -2.70893514e-01 1.93749285e+00 1.29792917e+00 7.31302723e-02 -5.37567884e-02 -4.11682218e-01 7.94283330e-01 2.18863368e-01 -1.87342957e-01 2.22205687e-02 -4.09274578e-01 -3.69119406e-01 2.85248399e-01 3.76453221e-01 -1.31657684e+00 1.42285168e+00 5.83637905e+00 1.22059727e+00 -9.96680319e-01 5.76079309e-01 4.09324050e-01 1.81417406e-01 -5.79008579e-01 2.57270038e-01 -1.48944366e+00 5.54029405e-01 6.48951054e-01 -2.61848181e-01 -5.23795009e-01 1.12395644e+00 2.17266902e-02 4.99805734e-02 -7.38363683e-01 7.02291727e-01 4.21250910e-01 -9.63578343e-01 2.33781055e-01 4.30550396e-01 1.17615676e+00 1.47317827e-01 2.25824341e-01 3.88698488e-01 4.37401801e-01 -4.48321551e-01 5.25169432e-01 -6.91750348e-02 4.15706873e-01 -6.05756223e-01 6.89286232e-01 1.64886966e-01 -1.17451441e+00 7.55070329e-01 -5.15344024e-01 5.59571683e-01 3.90105754e-01 8.59739482e-01 -9.63515878e-01 7.43200839e-01 6.85825646e-01 9.52658713e-01 -3.47514242e-01 5.84998250e-01 -1.60750762e-01 9.57599938e-01 -3.41365576e-01 1.28113955e-01 3.39838952e-01 -2.19743460e-01 7.01042712e-01 1.36833322e+00 4.10585731e-01 -5.79438984e-01 5.13052344e-01 6.82991207e-01 -4.88442704e-02 6.70995235e-01 -5.89855790e-01 9.94772241e-02 6.13102019e-01 9.60383534e-01 -6.77523375e-01 -4.46132272e-01 -5.94228923e-01 7.97356308e-01 2.39981890e-01 1.43015578e-01 -7.00195670e-01 -4.50718403e-02 7.83487082e-01 -2.29320869e-01 2.38099754e-01 -4.95292366e-01 -5.07451296e-01 -1.48917627e+00 2.19926968e-01 -8.49683821e-01 4.62784648e-01 -3.61805856e-01 -1.55700529e+00 7.51518726e-01 4.01837826e-01 -1.32840562e+00 -1.94498658e-01 -8.95103365e-02 -3.48399252e-01 8.22295964e-01 -1.61827040e+00 -1.58461177e+00 2.83495188e-01 3.22679967e-01 1.14878833e+00 -2.48119876e-01 8.31071675e-01 2.95172662e-01 -5.14211416e-01 6.69317186e-01 3.67727250e-01 -8.87574777e-02 1.43326628e+00 -1.23411798e+00 5.97370744e-01 9.02962327e-01 3.25764686e-01 1.06558895e+00 6.78300738e-01 -1.11495626e+00 -8.30123901e-01 -1.21041763e+00 1.47905838e+00 -4.67478067e-01 1.01257706e+00 -8.38394940e-01 -1.28364086e+00 8.29737425e-01 6.37265503e-01 -8.50118399e-01 1.09327602e+00 7.64228046e-01 -7.70851433e-01 1.55817673e-01 -2.06408292e-01 7.14321733e-01 6.04424298e-01 -6.72858298e-01 -9.45454180e-01 6.14939392e-01 1.16183412e+00 1.45000778e-02 -8.56695116e-01 2.32636958e-01 4.58055973e-01 -2.92502940e-01 7.31723607e-01 -3.20506215e-01 2.16240376e-01 -2.21922666e-01 -2.22365469e-01 -1.34661901e+00 1.03724182e-01 -6.04141414e-01 1.87415928e-01 1.94968069e+00 6.72093809e-01 -5.70780635e-01 5.10224521e-01 5.71704954e-02 -2.45562613e-01 -4.03530657e-01 -8.95333290e-01 -8.91870975e-01 4.52768594e-01 -5.22241116e-01 3.43414307e-01 1.51903713e+00 6.19879007e-01 6.90302730e-01 -5.73506534e-01 2.19975755e-01 7.80061066e-01 4.50346738e-01 7.54754663e-01 -1.13383198e+00 4.05989960e-02 -3.34268093e-01 8.99573937e-02 -1.32546115e+00 4.93791252e-01 -8.64843786e-01 2.36886114e-01 -1.25380659e+00 4.74231988e-01 -7.16120422e-01 8.36023912e-02 4.94294047e-01 -4.23042208e-01 3.19558382e-02 -2.40214273e-01 7.33307958e-01 -7.97946632e-01 8.79548073e-01 7.48026669e-01 1.66163836e-02 -1.76650658e-01 -4.15033311e-01 -6.91039443e-01 6.79235220e-01 8.05051625e-01 -9.00524199e-01 -2.82003075e-01 -6.19481504e-01 1.67823046e-01 -4.29609627e-01 -2.86372095e-01 -5.85317492e-01 3.46973538e-01 1.33135006e-01 -2.40598559e-01 -1.15296078e+00 2.58998543e-01 -5.33948362e-01 -4.82671410e-02 1.15812279e-01 -3.97447407e-01 1.03421867e-01 2.00013801e-01 5.49937844e-01 -5.61052978e-01 3.12500782e-02 2.93434829e-01 1.47810444e-01 -4.19893682e-01 5.21488562e-02 -4.32421654e-01 9.51802284e-02 7.32778668e-01 2.96178728e-01 -5.31360865e-01 -2.10294127e-01 -3.25285733e-01 3.77137214e-01 4.35277909e-01 8.64119411e-01 1.65183786e-02 -1.46329927e+00 -7.84166515e-01 1.06785588e-01 4.84776527e-01 -1.44035583e-02 1.62702069e-01 7.96349466e-01 3.34649950e-01 1.05430889e+00 2.78316885e-01 -8.87565851e-01 -1.19534194e+00 3.93975943e-01 -1.86167553e-01 -6.36367798e-01 -5.45065463e-01 5.60761273e-01 8.06521714e-01 -6.45891845e-01 2.24266186e-01 -3.85831557e-02 -3.04330975e-01 4.32035416e-01 1.59839541e-01 -1.69222683e-01 7.50832334e-02 -8.87324452e-01 -3.04457039e-01 7.97165990e-01 -5.39099991e-01 -2.84185261e-01 1.03071284e+00 -7.99320579e-01 -1.88745961e-01 8.38596284e-01 1.25975835e+00 1.62494421e-01 -9.29788351e-01 -7.71862209e-01 3.92783225e-01 -1.28038824e-01 1.78908587e-01 -4.02816206e-01 -5.67830205e-01 8.69841158e-01 3.06792378e-01 2.65940249e-01 7.35056102e-01 2.64585823e-01 8.80611658e-01 4.57797237e-02 3.18908691e-01 -1.00841975e+00 1.46241542e-02 5.87470174e-01 5.85693181e-01 -1.35371554e+00 2.80256886e-02 -8.92030895e-01 -7.36531973e-01 8.07349861e-01 5.87367833e-01 2.89261043e-01 6.99781954e-01 1.36630563e-02 2.73357064e-01 -3.67859960e-01 -9.30637896e-01 -1.26554325e-01 6.89147055e-01 3.39825273e-01 7.83379972e-01 9.52591822e-02 -6.08657658e-01 5.08236170e-01 -4.52550769e-01 -7.86827385e-01 1.61444061e-02 6.09659910e-01 -3.57506245e-01 -1.51088834e+00 -3.19136530e-01 -8.11608061e-02 -6.87604547e-01 -5.96217453e-01 -1.90481529e-01 9.43447292e-01 1.51008740e-02 9.14887428e-01 3.32689524e-01 -1.04989499e-01 -2.14959085e-01 5.10649264e-01 -1.95540771e-01 -7.49266088e-01 -1.62028879e-01 8.53680909e-01 6.22092746e-02 -1.92345828e-01 -5.59343934e-01 -1.03205001e+00 -6.37215436e-01 2.25592405e-01 -8.58583629e-01 5.07768691e-01 1.02482998e+00 1.10944176e+00 5.53295493e-01 3.59357715e-01 4.18149680e-01 -2.31003776e-01 2.53213886e-02 -1.41524279e+00 -2.45796770e-01 1.95817158e-01 -1.21931002e-01 -8.32084596e-01 -2.38213018e-01 4.00744528e-01]
[10.41346263885498, 7.015490531921387]
895ff113-3012-47bd-9c83-b0e3b2633905
pure-passive-multi-person-identification-via
2104.07177
null
https://arxiv.org/abs/2104.07177v1
https://arxiv.org/pdf/2104.07177v1.pdf
PURE: Passive mUlti-peRson idEntification via Deep Footstep Separation and Recognition
Recently, \textit{passive behavioral biometrics} (e.g., gesture or footstep) have become promising complements to conventional user identification methods (e.g., face or fingerprint) under special situations, yet existing sensing technologies require lengthy measurement traces and cannot identify multiple users at the same time. To this end, we propose \systemname\ as a passive multi-person identification system leveraging deep learning enabled footstep separation and recognition. \systemname\ passively identifies a user by deciphering the unique "footprints" in its footstep. Different from existing gait-enabled recognition systems incurring a long sensing delay to acquire many footsteps, \systemname\ can recognize a person by as few as only one step, substantially cutting the identification latency. To make \systemname\ adaptive to walking pace variations, environmental dynamics, and even unseen targets, we apply an adversarial learning technique to improve its domain generalisability and identification accuracy. Finally, \systemname\ can defend itself against replay attack, enabled by the richness of footstep and spatial awareness. We implement a \systemname\ prototype using commodity hardware and evaluate it in typical indoor settings. Evaluation results demonstrate a cross-domain identification accuracy of over 90\%.
['Jun Luo', 'Hongbo Jiang', 'Liyuan Ye', 'Peng Wang', 'Ruinan Jin', 'Chao Cai']
2021-04-15
null
null
null
null
['person-identification']
['computer-vision']
[ 4.58583593e-01 -5.09715021e-01 -3.36645216e-01 -2.46467769e-01 -6.83602810e-01 -9.06394839e-01 1.94111556e-01 -2.96456337e-01 -4.46187586e-01 8.57805729e-01 -3.79248530e-01 -3.00607532e-01 8.99229497e-02 -7.93873370e-01 -5.23315310e-01 -4.88437831e-01 5.57529293e-02 1.09956965e-01 -5.62145002e-02 -7.25472867e-02 6.17498904e-02 5.32212138e-01 -1.24641585e+00 -3.05918932e-01 6.21465564e-01 1.19946170e+00 -4.97943342e-01 8.29826057e-01 3.42242241e-01 4.78367647e-03 -8.75540495e-01 -2.54641205e-01 4.49631184e-01 -2.03475989e-02 -1.91934958e-01 -5.98604918e-01 8.00007045e-01 -8.08004737e-01 -5.48674226e-01 8.54326367e-01 9.27211881e-01 -2.14050531e-01 2.48133495e-01 -1.38913667e+00 -5.69631815e-01 3.72434229e-01 -6.08392119e-01 2.11299106e-01 9.54808831e-01 3.51220012e-01 4.19205815e-01 -6.30270004e-01 -4.73127179e-02 9.07961786e-01 1.43377185e+00 8.34174037e-01 -1.47497272e+00 -1.31931269e+00 -1.91146359e-01 -3.88612896e-02 -2.14384556e+00 -9.69554543e-01 6.59085393e-01 -1.72901154e-01 7.04404056e-01 4.30207878e-01 1.97796628e-01 1.78153872e+00 -3.10674403e-02 4.59088594e-01 9.18236375e-01 -1.72713056e-01 8.37456658e-02 -1.15832999e-01 3.17851245e-01 5.93011439e-01 7.21817613e-01 3.84032100e-01 -7.54733682e-01 -3.52272093e-01 8.26386571e-01 1.04512364e-01 -3.93096805e-02 3.38178761e-02 -1.15519786e+00 5.91558218e-02 2.77587343e-02 -6.42434284e-02 -2.05070421e-01 4.89123315e-01 3.03337216e-01 2.54503638e-01 -2.88312495e-01 6.02287464e-02 -1.57716200e-01 -6.15753829e-01 -1.07572353e+00 7.43305981e-02 8.21935773e-01 9.31042135e-01 6.79519773e-01 5.45055449e-01 1.42004445e-01 5.77913165e-01 1.79149806e-01 1.48246503e+00 3.58712018e-01 -6.75111294e-01 5.81036031e-01 2.31932953e-01 6.15348935e-01 -1.09467447e+00 -4.64714557e-01 -2.87255585e-01 -1.06885207e+00 -1.20413080e-01 6.90415025e-01 -5.58395147e-01 -6.64304495e-01 1.91038060e+00 9.11173299e-02 7.36352563e-01 -3.96159172e-01 4.31382686e-01 3.16191822e-01 -1.69502705e-01 5.17740920e-02 7.69713521e-02 1.24140871e+00 -5.18932790e-02 -4.46304411e-01 -4.89708126e-01 1.56395346e-01 -3.89783412e-01 1.05087996e+00 3.39188099e-01 -5.65612197e-01 -8.16488862e-01 -1.35390544e+00 6.31578267e-01 -4.86505896e-01 1.79122314e-02 4.61534619e-01 1.93941939e+00 -8.45846057e-01 4.22398686e-01 -1.01044762e+00 -5.10555863e-01 3.32269400e-01 1.03552639e+00 -1.98100775e-01 2.21563756e-01 -1.35368693e+00 4.55115348e-01 -1.01231791e-01 1.40249908e-01 -2.91607797e-01 -6.26784325e-01 -8.53194714e-01 -2.47330353e-01 8.13415051e-02 -4.12094623e-01 9.51588869e-01 -4.34632033e-01 -1.61852777e+00 8.07974756e-01 -3.75976980e-01 -6.49576068e-01 6.14977539e-01 -5.85213721e-01 -1.21659267e+00 -6.25874847e-02 3.12727392e-01 -5.80265485e-02 1.05159986e+00 -8.88071358e-01 -2.66823769e-01 -5.98678231e-01 -3.93275499e-01 -2.31733769e-01 -6.36297047e-01 -1.68647707e-01 -2.44008109e-01 -6.51194513e-01 6.72035441e-02 -1.11401558e+00 2.59977043e-01 -1.75492451e-01 -7.64658570e-01 5.26678085e-01 9.95532930e-01 -6.01630926e-01 1.30370438e+00 -1.97128177e+00 -6.75327599e-01 5.97659826e-01 2.01743558e-01 5.49087644e-01 1.38820842e-01 2.40564495e-01 3.81439745e-01 1.77615657e-01 -6.01675361e-02 -4.46897119e-01 2.07261771e-01 1.33470863e-01 -3.25557947e-01 7.72064567e-01 -3.59327585e-01 8.99059296e-01 -6.57621384e-01 -1.37151852e-01 4.78030503e-01 4.34569985e-01 -1.64760038e-01 -1.38886198e-01 5.56221366e-01 5.06841958e-01 -5.27695596e-01 1.20371807e+00 8.10667157e-01 -2.03620587e-02 3.20120960e-01 -1.43407091e-01 1.79290861e-01 -6.99387044e-02 -1.54713285e+00 1.23354089e+00 -5.30639887e-01 4.42624241e-01 1.00005448e-01 -8.27793539e-01 1.10911953e+00 2.78749794e-01 6.88163042e-01 -8.26581061e-01 1.57611147e-01 2.94815898e-01 -3.59219819e-01 -2.75215149e-01 4.16570127e-01 3.84609640e-01 -6.35043085e-01 6.98482573e-01 -3.29292655e-01 6.96830094e-01 -4.37797934e-01 -3.13108742e-01 1.25866771e+00 5.39377704e-02 3.52101117e-01 9.25202742e-02 4.97437984e-01 -5.03048062e-01 5.27217329e-01 1.47299623e+00 -8.35675657e-01 2.58294463e-01 -5.22459328e-01 -3.12135607e-01 -6.29757881e-01 -1.65505981e+00 -9.12988782e-02 1.09477389e+00 6.07417047e-01 -1.19906388e-01 -6.31620407e-01 -3.48018646e-01 5.88594854e-01 6.31682277e-02 -5.12562692e-01 -3.74923795e-01 -9.64216113e-01 -6.19520664e-01 2.02498698e+00 8.75591815e-01 1.24022496e+00 -4.27951038e-01 -5.54323077e-01 5.22323370e-01 -3.12886566e-01 -1.43517315e+00 -6.52044415e-01 -2.26792768e-01 -2.24636182e-01 -9.58070397e-01 -5.62236607e-01 -3.67537349e-01 -3.90871800e-02 2.76030958e-01 7.43889332e-01 -2.21168697e-02 -4.01519537e-01 7.59233534e-01 1.17996909e-01 -2.24113047e-01 6.63550124e-02 2.25914821e-01 1.24336445e+00 4.23539132e-01 9.42487061e-01 -8.93406272e-01 -8.40815246e-01 6.56509638e-01 -1.01941429e-01 -7.31741548e-01 2.55704015e-01 6.83205485e-01 1.68985471e-01 -1.56131133e-01 7.79602647e-01 -4.62533802e-01 5.51877916e-01 -3.08304489e-01 -2.47983351e-01 2.54860461e-01 -6.80873930e-01 -4.54797417e-01 7.71952212e-01 -7.16691375e-01 -6.42145097e-01 7.11570457e-02 -3.46287936e-01 -1.19690998e-02 -4.89131212e-01 -8.95508528e-02 -4.46225584e-01 -6.97566569e-01 9.09128964e-01 7.82526195e-01 -1.28696069e-01 -4.09159958e-01 1.38720810e-01 9.17379856e-01 1.11867821e+00 -6.92866921e-01 1.09984970e+00 6.15656972e-01 -1.79665789e-01 -1.24775970e+00 -6.85664713e-02 -5.19763589e-01 -6.55807257e-01 -2.68010825e-01 3.90706927e-01 -9.93712187e-01 -1.63354445e+00 1.10244215e+00 -7.03359842e-01 -2.52622098e-01 2.75451958e-01 1.75319910e-01 -3.03765297e-01 6.44777536e-01 -4.60114956e-01 -1.11529374e+00 -4.00898695e-01 -4.82710212e-01 1.19202042e+00 5.21211505e-01 -7.86314726e-01 -7.56548643e-01 -7.08030537e-02 4.12935317e-01 7.31190205e-01 5.42695284e-01 1.59578770e-02 -5.39221466e-01 -2.71907389e-01 -8.55486989e-01 -7.43502602e-02 -2.19043732e-01 4.78527367e-01 -4.38649982e-01 -1.21071863e+00 -6.10733330e-01 -3.74372542e-01 -7.78529644e-02 3.62382591e-01 2.07584649e-01 9.99333322e-01 -3.33500355e-01 -7.15467930e-01 1.02417231e+00 1.22143400e+00 3.69653612e-01 6.08197749e-01 3.40157896e-01 9.53560472e-01 -2.76711851e-01 1.60740346e-01 5.69902718e-01 3.61336440e-01 1.03519952e+00 2.01360341e-02 8.84754211e-02 4.66426350e-02 -3.50938797e-01 4.67263728e-01 -9.80812032e-03 -2.10240081e-01 -2.05575451e-01 -1.01708400e+00 1.73336729e-01 -1.48654985e+00 -1.29103327e+00 3.47642213e-01 2.51073837e+00 4.73574758e-01 3.00050586e-01 5.40882885e-01 4.78033245e-01 9.10501182e-01 1.98549390e-01 -1.03929329e+00 -8.07079449e-02 -2.50966400e-02 5.02540052e-01 1.26731026e+00 4.95168358e-01 -1.33462751e+00 9.34705198e-01 6.22470331e+00 3.86024892e-01 -1.42334831e+00 -1.30220816e-01 1.60662904e-01 4.19867747e-02 4.99156415e-01 -6.56551778e-01 -1.11924875e+00 7.71328270e-01 1.04169619e+00 3.17323953e-02 4.88269269e-01 7.16081560e-01 2.20778555e-01 4.44963202e-02 -9.61212635e-01 1.49572980e+00 2.14611311e-02 -1.11211812e+00 -3.83323729e-01 2.06701040e-01 6.05925433e-02 -1.21088393e-01 3.37533563e-01 2.77090698e-01 2.60182977e-01 -1.05496120e+00 3.90747309e-01 3.55640531e-01 1.57341361e+00 -4.95367438e-01 3.94971639e-01 2.19003990e-01 -1.86263406e+00 -1.46632507e-01 2.03713864e-01 -2.97224998e-01 2.19770953e-01 1.99184507e-01 -6.64787769e-01 4.27131474e-01 7.40019083e-01 4.13900882e-01 -6.22378826e-01 6.75878406e-01 2.28667602e-01 7.73643255e-01 -7.01699734e-01 -6.00774996e-02 -3.19018245e-01 1.35847345e-01 5.01869321e-01 1.16144836e+00 4.39658225e-01 7.61155263e-02 2.64274240e-01 4.08263505e-01 5.18209394e-03 -5.18185377e-01 -8.34674597e-01 7.54213184e-02 1.29828751e+00 5.03299415e-01 -2.85140514e-01 -5.79849184e-02 -1.04883201e-01 1.41351676e+00 -3.42131615e-01 5.52782714e-01 -8.03626537e-01 -7.58898616e-01 1.19706285e+00 2.57610857e-01 -1.22795887e-01 -5.95647991e-01 -7.39323735e-01 -1.28180575e+00 9.63470265e-02 -7.18409836e-01 1.24742039e-01 2.39508227e-02 -1.05478597e+00 1.48650154e-01 -5.25605261e-01 -1.27256167e+00 -5.21834135e-01 -4.78361458e-01 -5.26735842e-01 9.66815591e-01 -8.97601306e-01 -1.42042303e+00 -5.40056109e-01 1.06712604e+00 -1.41483247e-01 -2.79491544e-01 1.24801433e+00 5.93793929e-01 -7.59159207e-01 1.64327276e+00 4.31195140e-01 8.10476542e-01 8.01750362e-01 -1.08677769e+00 1.02079797e+00 1.05646527e+00 -5.13276011e-02 1.16629505e+00 5.73808849e-01 -8.03368926e-01 -1.79353964e+00 -9.12562430e-01 5.38222194e-01 -6.74294472e-01 4.73409414e-01 -6.46080136e-01 -4.99701053e-01 7.84993589e-01 -5.18511117e-01 3.94729264e-02 1.01212037e+00 2.03514546e-01 -7.71068513e-01 -5.51780820e-01 -1.50376427e+00 7.38023221e-01 1.34047914e+00 -1.10408282e+00 -1.12637520e-01 -3.39739054e-01 6.97937459e-02 -3.10319871e-01 -8.65070641e-01 2.59545147e-01 1.51526439e+00 -8.65902483e-01 1.62327218e+00 -1.59803271e-01 -7.56832421e-01 -2.72300035e-01 -3.28215063e-01 -5.78790665e-01 -1.94216773e-01 -1.10555243e+00 -6.49187982e-01 1.41037548e+00 -8.59741643e-02 -1.10533094e+00 1.32992864e+00 7.75097787e-01 5.74830294e-01 9.88224149e-03 -1.12579787e+00 -1.19892550e+00 -4.29985851e-01 -5.51296055e-01 1.03513408e+00 9.41562831e-01 -1.70780241e-01 -1.35798991e-01 -1.04997635e+00 7.04305053e-01 1.21175885e+00 -1.97882488e-01 1.17486382e+00 -1.23418045e+00 -4.46445823e-01 -2.38775134e-01 -5.60011387e-01 -1.27352691e+00 -1.55589387e-01 -2.60385662e-01 -5.30039780e-02 -5.52443147e-01 -4.67844009e-01 -6.85813069e-01 -4.92667109e-01 5.55323124e-01 3.71149629e-02 9.74258661e-01 -2.24252820e-01 2.09063306e-01 -3.39218736e-01 -6.05757013e-02 3.85171860e-01 -3.55757982e-01 -5.09730041e-01 4.16494399e-01 -7.30256319e-01 6.83550894e-01 9.09909546e-01 6.01656921e-02 -1.71705931e-01 -2.57112920e-01 -2.03158364e-01 1.01092659e-01 6.54797733e-01 -1.64871657e+00 3.76464754e-01 -1.30569085e-01 8.49449992e-01 -1.12095319e-01 6.92604899e-01 -6.71458185e-01 1.09158382e-01 6.07650995e-01 2.11389795e-01 -4.30043181e-03 3.86019439e-01 6.59367383e-01 3.48032892e-01 6.52753770e-01 6.82240546e-01 2.29407698e-01 -1.00695920e+00 4.37769532e-01 -3.72774094e-01 -2.16984764e-01 6.76358521e-01 -1.03514707e+00 -4.25420523e-01 -3.95401508e-01 -6.66785419e-01 -1.08896255e-01 5.12651384e-01 3.96490544e-01 6.24669313e-01 -1.27184939e+00 -1.86881363e-01 7.10752308e-01 1.35647297e-01 -7.75854468e-01 2.91346848e-01 5.38247466e-01 -3.31438512e-01 3.83753538e-01 -3.93052667e-01 -6.00957096e-01 -1.49696922e+00 7.49897538e-03 5.86479306e-01 2.27944270e-01 -4.41782087e-01 6.58227801e-01 -6.40776098e-01 -4.04780626e-01 3.68580312e-01 3.28539580e-01 1.78196132e-01 -2.84102708e-01 8.42545152e-01 4.60043043e-01 -7.18304664e-02 -7.94646859e-01 -9.57408428e-01 9.49282408e-01 6.05326612e-03 -1.80131003e-01 6.21491969e-01 -4.34468746e-01 5.97232401e-01 5.94521277e-02 8.43189776e-01 2.43696272e-01 -1.18206465e+00 -2.31333569e-01 4.35386635e-02 -5.44523180e-01 -6.24206305e-01 -7.17941403e-01 -4.41792548e-01 4.83538926e-01 1.20189297e+00 3.04769784e-01 7.73830593e-01 -6.96076512e-01 1.26145625e+00 6.60436451e-01 9.17547226e-01 -9.34637010e-01 -2.01901391e-01 3.41818810e-01 -4.85987589e-03 -1.25377202e+00 -1.49038851e-01 -3.02671522e-01 -3.91819142e-02 8.00701022e-01 5.20050108e-01 -8.66489261e-02 6.98808432e-01 4.84853297e-01 2.31938586e-01 2.95189530e-01 2.92813689e-01 6.98971599e-02 -2.84035946e-03 1.34785211e+00 1.83904432e-02 3.49321932e-01 1.05019920e-01 7.75472581e-01 -3.59465837e-01 1.83221802e-01 7.89303705e-02 1.00998735e+00 -2.63101310e-01 -1.18609512e+00 -7.54085004e-01 5.39564490e-01 -4.11387503e-01 1.75837651e-01 -3.93217653e-01 6.57898366e-01 1.13024987e-01 1.14287341e+00 -1.75771952e-01 -1.08345592e+00 1.46658272e-01 1.41416103e-01 4.74621087e-01 -1.61182433e-01 -4.47215199e-01 -5.71651638e-01 7.06838146e-02 -8.16366255e-01 -1.28497466e-01 -5.69537878e-01 -8.70468378e-01 -9.96379793e-01 1.23848692e-01 -3.80867720e-01 2.93709695e-01 1.05656803e+00 4.23750877e-01 -6.71832357e-03 6.45627439e-01 -7.95609355e-01 -6.41903639e-01 -4.92186546e-01 -7.15339005e-01 2.23453924e-01 4.26046997e-01 -6.61191106e-01 4.98572513e-02 -7.31426552e-02]
[14.098567008972168, 1.537129521369934]
64dde0a9-327f-4182-bf29-adf1ff066cf9
training-on-polar-image-transformations
null
null
https://ieeexplore.ieee.org/document/9551998
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9551998
Training on Polar Image Transformations Improves Biomedical Image Segmentation
A key step in medical image-based diagnosis is image segmentation. A common use case for medical image segmentation is the identification of single structures of an elliptical shape. Most organs like the heart and kidneys fall into this category, as well as skin lesions, polyps, and other types of abnormalities. Neural networks have dramatically improved medical image segmentation results, but still require large amounts of training data and long training times to converge. In this paper, we propose a general way to improve neural network segmentation performance and data efficiency on medical imaging segmentation tasks where the goal is to segment a single roughly elliptically distributed object. We propose training a neural network on polar transformations of the original dataset, such that the polar origin for the transformation is the center point of the object. This results in a reduction of dimensionality as well as a separation of segmentation and localization tasks, allowing the network to more easily converge. Additionally, we propose two different approaches to obtaining an optimal polar origin: (1) estimation via a segmentation trained on non-polar images and (2) estimation via a model trained to predict the optimal origin. We evaluate our method on the tasks of liver, polyp, skin lesion, and epicardial adipose tissue segmentation. We show that our method produces state-of-the-art results for lesion, liver, and polyp segmentation and performs better than most common neural network architectures for biomedical image segmentation. Additionally, when used as a pre-processing step, our method generally improves data efficiency across datasets and neural network architectures.
['Danilo Babin', 'Marija Habijan', 'Irena Galić', 'Marin Benčević']
2021-09-29
null
null
null
ieee-access-2021-9
['skin-cancer-segmentation', 'liver-segmentation']
['medical', 'medical']
[ 3.59113246e-01 3.17462593e-01 -1.58114687e-01 -3.13132316e-01 -7.46189475e-01 -6.13911510e-01 2.08553299e-01 4.34299588e-01 -5.20654202e-01 1.23281822e-01 -1.74342796e-01 -5.42413235e-01 2.56083190e-01 -6.66648090e-01 -7.19732106e-01 -7.08650172e-01 -5.48695624e-02 8.14500153e-01 2.69508809e-01 3.04062188e-01 -1.02887183e-01 7.28243768e-01 -6.77858829e-01 1.30009860e-01 1.00647819e+00 1.01648390e+00 7.04729035e-02 7.89922893e-01 -8.34765881e-02 1.99879900e-01 -4.20288026e-01 -1.61765292e-01 4.39187199e-01 -5.04676938e-01 -1.10033977e+00 3.37931007e-01 3.07228506e-01 -1.55518740e-01 2.29999796e-01 1.04439771e+00 5.23844838e-01 -1.47068501e-01 8.89674902e-01 -6.41335487e-01 -3.82576406e-01 6.16091788e-01 -7.38639772e-01 2.86407918e-02 -1.81862161e-01 4.08780687e-02 5.61713994e-01 -6.44914567e-01 5.03459692e-01 6.91555142e-01 1.06932342e+00 4.96349454e-01 -1.29097962e+00 -1.18397139e-01 -1.26796797e-01 -3.15755218e-01 -1.23201585e+00 -2.76368856e-01 5.34648776e-01 -5.82603276e-01 5.38343430e-01 2.78195441e-01 8.62859488e-01 2.67127067e-01 1.17627040e-01 9.52888966e-01 7.38406181e-01 -4.73364025e-01 1.78027570e-01 7.79323950e-02 7.69313052e-03 9.08480406e-01 2.41020709e-01 -2.28445143e-01 3.99397433e-01 -8.59063584e-03 1.00751758e+00 -1.37253165e-01 -4.09104109e-01 -5.81903160e-01 -1.24933648e+00 8.14971328e-01 6.18061006e-01 4.24780726e-01 -5.49481988e-01 7.00500533e-02 3.87997925e-01 -2.57444412e-01 4.01363611e-01 6.85965538e-01 -3.85401100e-01 3.85097116e-01 -1.25627851e+00 -1.67271703e-01 9.58913028e-01 4.12715435e-01 4.16066945e-01 -1.03916436e-01 -7.43869096e-02 9.78138685e-01 2.93225169e-01 2.31801271e-01 6.39392853e-01 -8.99592102e-01 1.44291177e-01 6.52013421e-01 -1.04859322e-01 -8.54129195e-01 -8.49848032e-01 -4.90382224e-01 -9.97561216e-01 1.43687353e-01 9.84035850e-01 -4.03453082e-01 -1.46216249e+00 1.42225599e+00 4.92912740e-01 5.26623093e-02 1.03306107e-01 9.61126745e-01 8.82594228e-01 6.41376853e-01 5.11577316e-02 -3.40958647e-02 1.63906896e+00 -1.10017359e+00 -2.22923398e-01 -3.34534109e-01 7.27727234e-01 -8.08418751e-01 6.50670290e-01 3.59090030e-01 -1.31950366e+00 -2.33457953e-01 -7.86977232e-01 -3.55681367e-02 -2.23439172e-01 5.12730896e-01 6.20567143e-01 8.05677891e-01 -1.08806884e+00 5.85778058e-01 -1.12310219e+00 -3.12019259e-01 6.18660152e-01 6.51364028e-01 -2.20709950e-01 1.92437679e-01 -6.19233906e-01 7.84477234e-01 5.50999999e-01 7.70474523e-02 -4.30910945e-01 -9.45142746e-01 -9.57960427e-01 1.16117515e-01 2.24987730e-01 -7.71424353e-01 1.19490182e+00 -1.30655456e+00 -1.41657662e+00 1.23044884e+00 1.50767148e-01 -6.67989075e-01 5.14147818e-01 2.49667391e-01 1.56465769e-01 4.43147123e-01 -8.54888558e-02 1.10962081e+00 6.95969343e-01 -1.23914599e+00 -5.48973858e-01 -2.42497221e-01 -2.95404345e-01 2.61771947e-01 -1.88788455e-02 -8.78939703e-02 -7.65132248e-01 -5.34826696e-01 3.73906821e-01 -1.13765001e+00 -5.85989177e-01 1.96390957e-01 -5.00078499e-01 1.75653510e-02 5.90704381e-01 -1.04029703e+00 7.51295865e-01 -1.93047607e+00 -5.81011409e-03 4.52049404e-01 3.45028162e-01 3.64562809e-01 7.10543431e-03 -3.74525309e-01 -2.41167635e-01 2.73578227e-01 -5.16577303e-01 -1.54544204e-01 -3.42288405e-01 9.54726264e-02 1.76492229e-01 6.14565015e-01 6.56615943e-02 1.05237460e+00 -6.09327078e-01 -6.75872386e-01 2.67673016e-01 4.87841427e-01 -6.47062302e-01 -8.81135091e-02 -1.45466387e-01 6.77324414e-01 -1.99007317e-01 7.14346528e-01 6.17091954e-01 -7.50662684e-01 2.96999186e-01 -4.46969956e-01 6.92418497e-03 -9.91355851e-02 -1.06602561e+00 1.41111588e+00 -4.84680265e-01 5.52212298e-01 3.99175018e-01 -1.22662640e+00 6.31687999e-01 4.85035837e-01 1.13092911e+00 -2.40538418e-01 4.14772660e-01 3.34539831e-01 3.49209666e-01 -5.40650010e-01 7.21700415e-02 -1.90476596e-01 1.80121273e-01 3.98947448e-01 -2.94607989e-02 -2.40931958e-01 5.09200037e-01 -2.43236363e-01 6.31074488e-01 -1.60659134e-01 5.52891791e-01 -3.81237715e-01 5.59865057e-01 2.26188228e-01 4.16622579e-01 5.13157845e-01 -9.88995656e-02 9.23338830e-01 6.05917037e-01 -6.98420048e-01 -1.01902616e+00 -7.71139503e-01 -4.55906034e-01 7.35180676e-01 1.84779838e-01 8.34914073e-02 -1.12499702e+00 -8.75013113e-01 -1.06446296e-01 2.45083392e-01 -5.33352196e-01 3.30203623e-01 -9.24349844e-01 -1.22807848e+00 5.93397558e-01 5.04014373e-01 4.32120770e-01 -9.96103048e-01 -8.96212935e-01 1.19270399e-01 -3.13732773e-01 -1.11040270e+00 -4.82520193e-01 3.53407264e-01 -1.07096040e+00 -1.13660526e+00 -1.18308127e+00 -1.08015668e+00 1.28496873e+00 -1.60518438e-01 1.11415291e+00 2.02275306e-01 -6.07599199e-01 1.85159639e-01 1.26990229e-01 -3.47059399e-01 -5.15034974e-01 1.37653634e-01 -3.87789816e-01 -1.68105707e-01 -1.51606366e-01 -1.76071107e-01 -7.74622917e-01 3.82471263e-01 -8.38499844e-01 1.73362449e-01 7.11547732e-01 8.95858586e-01 7.14832425e-01 -7.51480684e-02 2.36953527e-01 -9.51415002e-01 4.61149454e-01 -3.65071833e-01 -6.37159407e-01 1.93985462e-01 -4.89164859e-01 9.21309590e-02 7.12611318e-01 -5.55189312e-01 -7.28722453e-01 5.65695703e-01 -4.49768126e-01 -3.14278901e-01 -3.89676541e-01 6.80314124e-01 4.38925475e-01 -4.40628618e-01 8.44807804e-01 8.84157643e-02 3.65920216e-01 -3.14108938e-01 2.08182126e-01 4.59333062e-01 5.35359383e-01 -4.32547957e-01 2.94098318e-01 5.49325407e-01 1.71552002e-01 -8.67485523e-01 -4.88242656e-01 -5.39473355e-01 -6.95193172e-01 6.01671785e-02 1.03727126e+00 -5.70667386e-01 -5.81022859e-01 4.24468398e-01 -1.00914943e+00 -4.87609148e-01 -4.75745738e-01 5.30515730e-01 -3.21286500e-01 4.49182332e-01 -7.91266143e-01 -2.78128564e-01 -6.78789079e-01 -1.49018157e+00 9.48865891e-01 4.59167629e-01 -4.65151854e-02 -1.39726329e+00 -7.44315609e-02 2.64888972e-01 3.59616369e-01 4.74739015e-01 1.02847314e+00 -9.32817280e-01 -4.27945882e-01 -2.45295286e-01 -3.13430697e-01 2.84721613e-01 1.10461257e-01 1.29603152e-03 -5.33939242e-01 -2.39372909e-01 -4.94960435e-02 -9.88605842e-02 8.95056009e-01 1.14931667e+00 1.30979407e+00 -2.15092897e-01 -6.61911428e-01 1.03043497e+00 1.21140921e+00 3.35103810e-01 2.13985473e-01 -3.76172774e-02 6.61120594e-01 5.56077361e-01 1.25306234e-01 4.48113978e-02 1.89973533e-01 3.96967769e-01 2.81173646e-01 -8.22410107e-01 -1.72151491e-01 2.67519504e-01 -2.89513379e-01 5.91479778e-01 2.30967682e-02 -1.03202797e-01 -1.37528932e+00 8.29766750e-01 -1.54106188e+00 -3.98913115e-01 -1.22427024e-01 2.05509210e+00 9.34962571e-01 -1.61013827e-01 2.41891876e-01 -1.28288090e-01 6.14086509e-01 -2.54503608e-01 -6.15191758e-01 -2.09656104e-01 3.59305620e-01 2.49729037e-01 7.72947073e-01 5.39531350e-01 -1.57894957e+00 5.75462162e-01 6.73351431e+00 6.07417941e-01 -1.69222462e+00 -1.10093966e-01 1.12166715e+00 3.45946908e-01 2.21322894e-01 -3.44852567e-01 -6.08427882e-01 3.91541034e-01 4.87347037e-01 2.77265340e-01 1.32898450e-01 7.79318571e-01 -1.38729468e-01 -2.33158484e-01 -1.15935826e+00 8.87407303e-01 3.39391753e-02 -1.40524268e+00 -2.05080226e-01 -5.64818494e-02 7.27657676e-01 4.57447395e-02 4.18484397e-02 -8.65395665e-02 1.31998852e-01 -1.21581304e+00 2.84793973e-01 9.28170308e-02 8.27576101e-01 -3.97778302e-01 7.10014105e-01 4.13647950e-01 -9.84951496e-01 9.08064693e-02 -1.12881742e-01 5.68421423e-01 1.14461914e-01 6.48454964e-01 -1.33947062e+00 2.84263104e-01 4.11270589e-01 3.93313438e-01 -4.21426862e-01 1.44959927e+00 -3.46080102e-02 5.65481126e-01 -6.81786060e-01 2.61403203e-01 2.47541010e-01 -3.50255102e-01 4.35150057e-01 1.38214552e+00 2.98090011e-01 2.90931622e-03 4.59460318e-01 9.10434842e-01 -1.63187608e-01 3.01274121e-01 -2.24703103e-01 1.19432703e-01 1.66196339e-02 1.55525148e+00 -1.55927300e+00 -3.99068356e-01 -1.57715932e-01 6.75533593e-01 -6.65258169e-02 2.91197509e-01 -7.89618373e-01 -2.00242132e-01 5.01747653e-02 6.60849810e-02 2.30622500e-01 9.92959663e-02 -6.23633981e-01 -1.00733876e+00 -1.32923678e-01 -8.01082969e-01 4.80912268e-01 -3.31315130e-01 -8.90540719e-01 5.54890513e-01 -6.99499249e-02 -9.18886900e-01 -3.80995929e-01 -8.46413553e-01 -6.09297395e-01 7.91572750e-01 -1.44704700e+00 -1.19563663e+00 -3.79188836e-01 2.39770949e-01 3.98429573e-01 8.23626071e-02 7.68027723e-01 3.88986498e-01 -4.08148408e-01 2.89151073e-01 -2.11243052e-03 6.23332798e-01 5.26224256e-01 -1.50392520e+00 3.33658099e-01 8.08797956e-01 3.48774754e-02 4.89991158e-01 3.69646668e-01 -5.27929962e-01 -8.91703308e-01 -1.00249815e+00 4.27850276e-01 -8.83204192e-02 1.67889029e-01 7.35734031e-02 -6.22411907e-01 6.87225044e-01 7.85155669e-02 3.72548878e-01 5.48365653e-01 -1.23796277e-01 1.92926392e-01 6.04551248e-02 -1.27888298e+00 6.44357383e-01 2.23130360e-01 8.93277302e-02 -3.00865561e-01 6.50781572e-01 2.22475246e-01 -1.08278954e+00 -1.06332350e+00 5.47789037e-01 5.32782435e-01 -7.14163959e-01 1.32808173e+00 -2.04750270e-01 4.95546162e-01 -2.35545501e-01 5.92720985e-01 -1.32254028e+00 -1.36963263e-01 -4.61677998e-01 1.21022284e-01 3.91265333e-01 6.18329704e-01 -5.71169853e-01 1.13813734e+00 6.05016053e-01 -1.57906309e-01 -1.08735335e+00 -6.31152451e-01 -2.91863889e-01 3.14810842e-01 2.16390956e-02 1.80968285e-01 9.44762707e-01 -2.48685569e-01 6.83451667e-02 1.76133052e-01 1.22803278e-01 5.31330049e-01 2.87696600e-01 4.23892885e-01 -1.24271965e+00 -1.97764665e-01 -7.82536685e-01 -1.05927072e-01 -1.31203067e+00 -1.50037751e-01 -1.15177989e+00 1.64653346e-01 -1.78080976e+00 5.90861663e-02 -7.13547111e-01 8.22587684e-02 7.55281687e-01 -1.78060442e-01 4.93605256e-01 6.75972477e-02 1.97162256e-01 -2.24594414e-01 -3.37837785e-01 1.40401590e+00 -1.45332173e-01 -4.58366960e-01 3.76446962e-01 -6.00551665e-01 1.09868550e+00 8.37824464e-01 -4.07140374e-01 -1.40017405e-01 -3.86418879e-01 4.25063260e-02 3.21743637e-01 3.53112429e-01 -9.02301610e-01 4.05232728e-01 1.42601892e-01 7.92863131e-01 -5.04004180e-01 1.54625058e-01 -9.20895398e-01 4.31882143e-02 8.77446771e-01 -2.21088380e-01 -2.37589195e-01 2.11599156e-01 2.45114882e-02 -1.10868894e-01 -6.24306858e-01 1.34120750e+00 -4.98005986e-01 -2.08152682e-01 2.20921904e-01 -3.84437948e-01 1.37294292e-01 1.09873044e+00 -3.68107438e-01 -3.38617079e-02 -1.22900568e-01 -1.05062437e+00 2.93549955e-01 3.25324833e-01 -7.40133375e-02 3.92486334e-01 -9.01671946e-01 -7.09721029e-01 3.17682445e-01 -5.10784328e-01 5.61342835e-01 1.42164612e-02 1.39179230e+00 -1.18305898e+00 4.20163780e-01 -8.53986591e-02 -1.16998422e+00 -1.37264752e+00 2.41224527e-01 9.39087093e-01 -6.11261964e-01 -7.44694650e-01 8.98147464e-01 2.86828697e-01 -6.56083286e-01 1.06825873e-01 -8.48804414e-01 -2.96241730e-01 4.90186587e-02 1.52207211e-01 1.09424159e-01 1.68741152e-01 -5.26768446e-01 -2.79501557e-01 6.86363876e-01 4.45921943e-02 1.63784653e-01 1.10528743e+00 2.38039911e-01 -3.45113248e-01 -1.41961560e-01 1.08189356e+00 -2.83568073e-02 -1.12331998e+00 -1.50648907e-01 -7.91936368e-02 -1.11740798e-01 1.57770038e-01 -9.91341889e-01 -1.50439548e+00 8.25101733e-01 6.24654770e-01 4.92162526e-01 1.09777236e+00 -1.08359382e-01 8.29717398e-01 1.33334503e-01 -2.15277359e-01 -8.79172623e-01 -1.83467463e-01 4.12941813e-01 4.81404036e-01 -1.26833797e+00 1.46497518e-01 -6.24605000e-01 -5.07658720e-01 1.41311824e+00 3.60577166e-01 -1.92709774e-01 6.84612274e-01 5.59251308e-01 3.15924257e-01 -1.32426038e-01 -3.69254611e-02 -4.99472842e-02 7.39168286e-01 4.19469327e-01 4.91528481e-01 1.07219733e-01 -2.20794067e-01 4.15420443e-01 2.38733441e-02 -8.66392702e-02 3.91035080e-01 6.65816724e-01 -3.46664667e-01 -9.45313513e-01 -5.51805317e-01 5.96166551e-01 -1.05284286e+00 -1.22402698e-01 -1.33510798e-01 8.61040533e-01 2.53695101e-01 3.63695920e-01 2.26978377e-01 4.19009537e-01 -6.66031614e-03 3.35688307e-03 4.81330723e-01 -5.98907471e-01 -8.64732563e-01 3.63274664e-01 -1.43308699e-01 -2.82229483e-01 -2.37509012e-01 -5.32930315e-01 -1.59170234e+00 2.74091482e-01 -3.78596336e-01 9.58965495e-02 9.46563542e-01 9.09585714e-01 1.38482407e-01 6.41699910e-01 3.19040626e-01 -9.33500886e-01 -4.46860701e-01 -6.56564772e-01 -2.48938143e-01 4.31770414e-01 3.44933867e-01 -1.06436126e-01 -4.88457493e-02 4.57767248e-01]
[14.557918548583984, -2.590419054031372]
d659d5b7-18ae-4614-a786-b68358bf041b
towards-building-automatic-medical
null
null
https://openreview.net/forum?id=q9uLLvoLUWD
https://openreview.net/pdf?id=q9uLLvoLUWD
Towards Building Automatic Medical Consultation System: Framework, Task and Dataset
In this paper, we propose two frameworks to support automatic medical consultation, namely doctor-patient dialogue understanding and diagnosis-oriented interaction. A new medical dialogue dataset with multi-level fine-grained annotations is introduced and five evaluation tasks are established, including medical named entity recognition, dialogue act classification, symptom recognition, medical report generation and diagnosis-oriented dialogue system. We report a set of benchmark results for each track, which shows the usability of the dataset and sets a baseline for future studies.
['Anonymous']
2021-11-16
null
null
null
acl-arr-november-2021-11
['medical-report-generation', 'dialogue-understanding', 'medical-named-entity-recognition', 'dialogue-act-classification']
['medical', 'natural-language-processing', 'natural-language-processing', 'natural-language-processing']
[ 2.89158911e-01 1.23906219e+00 -3.06823641e-01 -8.58200371e-01 -9.00218189e-01 -3.59281689e-01 7.94262230e-01 6.31508470e-01 -3.70187253e-01 1.21740794e+00 8.78811479e-01 -3.65958482e-01 -1.20018691e-01 -3.78239274e-01 6.48678720e-01 -3.32967669e-01 -3.44899185e-02 1.39966428e+00 8.05226639e-02 -4.01529133e-01 4.27908190e-02 1.12908036e-01 -6.09426081e-01 7.74237692e-01 8.94300938e-01 6.94377005e-01 -5.64946592e-01 1.37723756e+00 -1.39654115e-01 1.51816189e+00 -1.15249193e+00 -6.03834212e-01 -5.66181719e-01 -8.61142933e-01 -1.82693160e+00 3.15556079e-01 -3.47541958e-01 -5.38133323e-01 9.55126286e-02 4.98578221e-01 9.87165391e-01 8.14831257e-02 8.00664425e-01 -8.62535238e-01 -3.55397493e-01 5.54949462e-01 5.25149822e-01 -2.49887351e-02 1.28831851e+00 1.79300249e-01 6.06987059e-01 -2.22364992e-01 1.01272786e+00 1.26775026e+00 5.04778922e-01 1.50571513e+00 -8.15264881e-01 1.51120126e-02 -3.30175817e-01 -2.55035520e-01 -9.27459657e-01 -5.81131876e-01 -4.67674844e-02 -3.97587687e-01 1.28326535e+00 7.31454611e-01 3.97374958e-01 1.25574756e+00 1.74771175e-01 9.33813035e-01 1.12674332e+00 -2.97313005e-01 1.66952074e-01 4.31576163e-01 6.34236455e-01 8.61856520e-01 -4.43264037e-01 -2.23719060e-01 -2.43154749e-01 -7.55278945e-01 5.09403467e-01 -5.03099382e-01 -5.07938385e-01 4.42830265e-01 -1.43149829e+00 9.48539197e-01 -1.93141386e-01 4.48128730e-01 -4.50813830e-01 -6.89679742e-01 1.06322241e+00 3.89183015e-01 6.26798868e-01 7.79629469e-01 -6.59360528e-01 -5.68478107e-01 -3.32083672e-01 4.04008150e-01 2.00661612e+00 8.96054864e-01 -2.85048336e-01 -5.81084847e-01 -1.07970417e+00 9.91781235e-01 1.43421829e-01 1.57928482e-01 6.58325672e-01 -9.52142656e-01 2.24825591e-01 7.57017076e-01 2.78477728e-01 -5.45526683e-01 -1.06779051e+00 4.04648364e-01 -1.05089414e+00 -6.18678093e-01 2.06683367e-01 -6.85030162e-01 -7.08720088e-01 1.10241652e+00 5.70540369e-01 -6.74745068e-02 9.00570691e-01 7.23542452e-01 1.71221483e+00 3.16355348e-01 3.19805562e-01 -6.66822970e-01 1.78250337e+00 -1.23321164e+00 -1.39740479e+00 3.61585379e-01 1.13826787e+00 -6.81785643e-01 3.00031155e-01 2.48341635e-01 -1.36056459e+00 -1.82394654e-01 -1.91227078e-01 -1.08084828e-01 -3.63053352e-01 -5.21035008e-02 7.57846057e-01 6.14388227e-01 -1.09183562e+00 2.33117491e-01 -8.32966328e-01 -6.30326807e-01 -8.88388231e-02 3.13504398e-01 -3.86387259e-01 3.23650092e-01 -1.57970572e+00 1.21566033e+00 6.52126908e-01 -5.20899855e-02 -3.78924280e-01 -5.07507265e-01 -1.10745990e+00 -3.86819839e-01 -4.69283536e-02 -1.20951581e+00 1.91346502e+00 -3.09603602e-01 -1.94699788e+00 1.68137121e+00 1.54419780e-01 -6.81510329e-01 6.28333271e-01 -1.90422777e-03 -7.58781970e-01 4.52501148e-01 -3.63330096e-02 6.28677368e-01 4.52645794e-02 -6.43767536e-01 -8.99749935e-01 -1.91838667e-01 1.71343073e-01 5.32809973e-01 2.55290955e-01 3.96265268e-01 -3.34835500e-01 -4.12886858e-01 -6.27366543e-01 -8.31348419e-01 -6.72274172e-01 -5.60049295e-01 -9.69375849e-01 -7.31516123e-01 9.82107669e-02 -6.04185879e-01 1.56539762e+00 -1.63542700e+00 1.05333559e-01 -1.59054518e-01 6.21620953e-01 3.73971909e-01 2.91399240e-01 6.18800700e-01 -4.96915467e-02 1.40627921e-01 -3.09828162e-01 -3.00774127e-01 -3.48152146e-02 4.23630595e-01 1.02751046e-01 -1.10825881e-01 4.58868861e-01 1.01191926e+00 -1.06674337e+00 -6.85834110e-01 3.69274497e-01 2.76938677e-01 -3.45946431e-01 9.33604658e-01 -2.49172896e-01 9.67582226e-01 -9.36716437e-01 4.65668827e-01 3.98549400e-02 -5.40078998e-01 3.15289646e-01 -9.97952670e-02 1.55382231e-01 7.12779403e-01 -5.31955957e-01 1.69195116e+00 -4.71945673e-01 4.76551205e-02 2.56926149e-01 -4.57748324e-01 6.29486203e-01 1.19028473e+00 6.13926291e-01 -2.31087700e-01 1.78988263e-01 8.74389056e-03 -7.80964866e-02 -1.14529955e+00 4.03226078e-01 -1.48924729e-02 -4.59527135e-01 5.97911477e-01 1.26529917e-01 -3.12155545e-01 2.64568835e-01 2.57682502e-01 1.42923617e+00 -3.35503280e-01 1.15498316e+00 -8.81938264e-02 1.02801013e+00 4.01371688e-01 1.10253524e-02 7.41448343e-01 -5.05730927e-01 2.03070790e-01 3.50040466e-01 -7.16058493e-01 -2.96768844e-01 -7.09511697e-01 -5.47194958e-01 1.01568294e+00 -3.27920824e-01 -6.84071779e-01 -8.27273428e-01 -1.13370609e+00 -3.86904955e-01 7.96000898e-01 -6.89101338e-01 8.86446144e-03 -3.72891158e-01 -8.48455966e-01 1.00372422e+00 2.76036084e-01 5.81919730e-01 -1.41366541e+00 -5.64464867e-01 5.52970111e-01 -5.80712914e-01 -1.28132033e+00 -3.57767254e-01 -5.80099076e-02 -6.19888604e-01 -1.37288725e+00 -7.56275356e-01 -7.50403762e-01 5.82842350e-01 -6.35525703e-01 1.75270140e+00 1.21692866e-01 -5.49273670e-01 9.40541506e-01 -4.80782390e-01 -3.61584753e-01 -1.18515611e+00 7.48634636e-02 -3.37389231e-01 -4.44770038e-01 5.05950868e-01 1.10403806e-01 -7.17846215e-01 2.58068144e-01 -7.96397626e-01 2.05074936e-01 2.49517038e-01 1.27657592e+00 9.17339921e-02 -6.30152285e-01 5.17230272e-01 -1.49015760e+00 1.53431213e+00 -3.15310657e-01 3.20994139e-01 4.14820850e-01 -3.29594910e-01 -4.82302271e-02 1.45003170e-01 9.18775052e-02 -1.45214021e+00 -4.50235745e-03 -8.37657630e-01 5.63456476e-01 -1.01361024e+00 5.29970407e-01 2.43223250e-01 3.25232059e-01 8.61721098e-01 -2.92139873e-02 -6.12757206e-02 -3.33941430e-01 4.44620579e-01 1.14885795e+00 6.05099976e-01 -3.76016498e-01 -1.91119492e-01 2.11069733e-02 -5.42391837e-01 -5.64149499e-01 -1.19205689e+00 -7.19299376e-01 -7.13068187e-01 5.58100231e-02 1.50780201e+00 -6.20915234e-01 -1.04541004e+00 6.00990579e-02 -1.44340062e+00 -3.31637561e-01 -4.59558994e-01 3.93779159e-01 -5.67102611e-01 9.82889757e-02 -1.15973544e+00 -9.56790924e-01 -9.35435772e-01 -9.59710598e-01 1.35833728e+00 1.01278022e-01 -1.04770017e+00 -1.71120358e+00 5.42849600e-01 6.49393618e-01 1.23946927e-01 5.36827683e-01 7.22883999e-01 -1.61183894e+00 4.05053109e-01 -2.58451909e-01 -2.70568654e-02 -6.61941618e-02 5.50399125e-01 -2.79483020e-01 -8.76610100e-01 9.50473621e-02 2.93485492e-01 -8.99779201e-01 4.20321196e-01 1.14138596e-01 8.82456124e-01 -6.64830625e-01 -5.39849401e-01 -3.94543186e-02 4.24249202e-01 5.34167647e-01 4.01926339e-01 -2.55886227e-01 3.81348222e-01 8.90100121e-01 7.64880061e-01 7.54584670e-01 9.62332308e-01 5.31380296e-01 -2.34699205e-01 -4.07827675e-01 2.15158656e-01 5.05573273e-01 -1.79322183e-01 1.10819614e+00 -1.63451135e-01 -4.04530168e-01 -1.20067608e+00 3.74510735e-01 -1.81479037e+00 -6.85649335e-01 -1.23424292e-01 1.58594584e+00 1.75496829e+00 -1.91482425e-01 3.54826838e-01 -1.72170967e-01 3.55388731e-01 -2.22197250e-01 -1.48423731e-01 -7.26112843e-01 4.76492047e-01 3.65513235e-01 -1.32658035e-01 7.68162489e-01 -1.34937251e+00 7.77085960e-01 7.48990679e+00 3.80982161e-01 -6.37080789e-01 1.29971683e-01 9.34266865e-01 5.37141621e-01 2.64579922e-01 -7.81232476e-01 -6.90059364e-01 1.99214164e-02 1.42356265e+00 -1.00510836e-01 -3.55638206e-01 6.37466252e-01 -1.17280670e-02 -1.84484795e-02 -1.50547576e+00 7.47926176e-01 5.11294156e-02 -1.28765917e+00 -1.13154210e-01 -2.88752079e-01 3.19537312e-01 -3.04408163e-01 -5.05367279e-01 4.47827756e-01 8.32320333e-01 -1.07253110e+00 -4.84652102e-01 6.43797398e-01 8.99738073e-01 -3.90843570e-01 1.10795546e+00 2.37101197e-01 -7.21540630e-01 5.10445714e-01 3.09347749e-01 2.24325180e-01 3.88757974e-01 1.44334778e-01 -1.73998785e+00 9.43043828e-01 1.98928177e-01 6.28277004e-01 -3.69668365e-01 7.62654722e-01 -1.93759441e-01 4.97092515e-01 2.84409802e-02 -1.33378934e-02 1.70274585e-01 1.38707072e-01 4.95716244e-01 1.92599630e+00 -4.68766391e-01 8.06608915e-01 7.24762440e-01 4.27845150e-01 4.07527536e-02 4.10773993e-01 -5.51762819e-01 -2.21412539e-01 -9.28268419e-04 1.41080427e+00 -6.08908474e-01 -8.25527489e-01 -2.03724086e-01 1.35009670e+00 -1.15623906e-01 -1.44159198e-01 -5.17256558e-01 -2.19903737e-01 3.49368811e-01 -6.02037251e-01 -5.40322125e-01 5.44506311e-01 5.38602248e-02 -1.15576708e+00 -7.22806931e-01 -1.22815108e+00 9.05404329e-01 -1.41139045e-01 -1.44332981e+00 1.15597630e+00 -9.24465880e-02 -8.94901633e-01 -1.15089476e+00 -4.74029303e-01 -4.66642916e-01 6.14732742e-01 -1.15030229e+00 -8.87498021e-01 -2.42573127e-01 8.06000888e-01 7.49115467e-01 -9.05657411e-02 2.12033057e+00 3.01201969e-01 -5.49114466e-01 5.38602233e-01 -4.49745774e-01 4.90531325e-01 1.14715838e+00 -1.73838961e+00 3.44534874e-01 -4.13484484e-01 -4.23634440e-01 4.99892324e-01 4.91387725e-01 -7.25400686e-01 -7.85130024e-01 -1.04091179e+00 1.28851807e+00 -8.25909793e-01 5.10643244e-01 5.34669012e-02 -8.80350888e-01 3.39126348e-01 5.55986226e-01 -3.71728987e-01 1.42674398e+00 4.20240015e-02 2.69913226e-01 6.12865627e-01 -1.58278012e+00 4.32785124e-01 7.03002989e-01 -4.23750073e-01 -7.26858199e-01 1.10903180e+00 9.49505329e-01 -1.13245046e+00 -1.76728332e+00 5.56569695e-01 3.08550447e-01 -6.86180472e-01 8.00389469e-01 -1.31506693e+00 4.26653504e-01 3.66076231e-01 5.14694095e-01 -1.22137511e+00 8.55024904e-02 -9.82155740e-01 -1.58597663e-01 1.09130096e+00 6.56415105e-01 -4.13123846e-01 3.12451988e-01 1.24957693e+00 -1.85228571e-01 -9.04773474e-01 -6.67497575e-01 1.99447811e-01 -1.88541949e-01 2.68482063e-02 2.05669329e-01 1.40615535e+00 6.92298710e-01 9.75627959e-01 -2.89306551e-01 -1.82731226e-01 -1.02749847e-01 -1.30707040e-01 5.08371174e-01 -1.17165637e+00 -3.10133904e-01 -4.17060882e-01 -2.95998961e-01 -8.99889708e-01 -4.10667621e-02 -6.06849968e-01 1.97434098e-01 -1.87554657e+00 -1.14803864e-02 -7.17309788e-02 1.55691579e-01 6.72910452e-01 -5.95547497e-01 -7.81189352e-02 -2.84427941e-01 9.10798088e-03 -1.18242991e+00 1.63673788e-01 1.30729032e+00 -1.84528813e-01 -5.38815618e-01 4.73503023e-01 -4.54665363e-01 7.07809627e-01 6.38859928e-01 -2.35428825e-01 -1.37425169e-01 1.02343120e-01 -2.45649263e-01 9.70673442e-01 -1.21682093e-01 -4.39741552e-01 1.82060897e-01 -1.45929739e-01 3.84889692e-02 -3.28911752e-01 1.98222294e-01 -4.71538097e-01 -4.88694906e-01 8.10968101e-01 -1.10045910e+00 -1.73832893e-01 2.03860626e-01 2.60216832e-01 -3.58768761e-01 -1.75267026e-01 6.08747542e-01 -3.90707672e-01 -1.81106076e-01 -1.65501572e-02 -8.07673812e-01 4.07000035e-01 9.82637465e-01 3.57339472e-01 -2.44666323e-01 -4.67460990e-01 -1.47021425e+00 7.31633425e-01 -2.75349528e-01 4.01760906e-01 6.61201477e-01 -9.63509440e-01 -1.10646582e+00 -3.30293298e-01 3.92160177e-01 -9.36944559e-02 2.58418590e-01 9.81455922e-01 -5.75298309e-01 9.36603904e-01 3.92936803e-02 -5.01483440e-01 -1.76285315e+00 2.33664513e-01 5.23736238e-01 -1.14386630e+00 -5.81449509e-01 8.79954100e-01 4.21230048e-02 -9.42266941e-01 5.93621492e-01 -4.24397051e-01 -8.27410340e-01 -1.16185084e-01 9.53697801e-01 7.51819685e-02 2.23797709e-02 -4.20606852e-01 -3.50443423e-01 -1.85361668e-01 -4.92565960e-01 2.86816452e-02 7.83694625e-01 -2.88942844e-01 -4.11944032e-01 5.33278525e-01 6.79334342e-01 -4.80430633e-01 -1.29208148e-01 -3.16815495e-01 5.29677451e-01 2.65724182e-01 -3.19485396e-01 -1.65705323e+00 -4.35377300e-01 4.99084473e-01 5.80224097e-01 7.38697350e-01 1.02565885e+00 1.38227642e-01 7.06447840e-01 7.71139085e-01 -1.11348197e-01 -9.47393179e-01 -1.10961244e-01 6.55818582e-01 9.18927431e-01 -1.56526625e+00 -2.92678326e-01 -6.84667110e-01 -1.33946168e+00 1.15273881e+00 6.23711884e-01 4.77765650e-01 5.45782685e-01 4.03905958e-01 5.99266887e-01 -6.86004400e-01 -1.18064892e+00 -2.44133219e-01 5.91888726e-01 6.38169110e-01 1.16354465e+00 9.35561582e-02 -5.63768625e-01 6.46962106e-01 -5.60032949e-02 1.26970485e-01 2.61884302e-01 1.13077486e+00 2.58327629e-02 -1.35382318e+00 -1.81391850e-01 4.20325845e-01 -9.34867382e-01 -1.46419540e-01 -1.24779570e+00 5.61922610e-01 -3.06700468e-01 1.31054854e+00 -1.34809494e-01 -7.98082277e-02 5.86725712e-01 4.69556957e-01 3.74379724e-01 -1.24661779e+00 -1.39825201e+00 1.25049138e-02 1.15209508e+00 -6.13583446e-01 -8.24019909e-01 -8.49852487e-02 -1.53430653e+00 5.57232425e-02 -1.98488355e-01 6.78951442e-01 1.21219546e-01 9.83264327e-01 4.30623621e-01 9.25999165e-01 3.19348931e-01 -4.30082381e-02 -4.52717870e-01 -1.30685568e+00 -1.60503775e-01 5.82628965e-01 4.43877816e-01 -2.76685953e-02 1.98565617e-01 2.79327750e-01]
[12.458284378051758, 8.384528160095215]
eadc501e-77b1-4054-9566-e07d18427e6d
deep-density-ratio-estimation-for-change
1905.09876
null
https://arxiv.org/abs/1905.09876v1
https://arxiv.org/pdf/1905.09876v1.pdf
Deep density ratio estimation for change point detection
In this work, we propose new objective functions to train deep neural network based density ratio estimators and apply it to a change point detection problem. Existing methods use linear combinations of kernels to approximate the density ratio function by solving a convex constrained minimization problem. Approximating the density ratio function using a deep neural network requires defining a suitable objective function to optimize. We formulate and compare objective functions that can be minimized using gradient descent and show that the network can effectively learn to approximate the density ratio function. Using our deep density ratio estimation objective function results in better performance on a seizure detection task than other (kernel and neural network based) density ratio estimation methods and other window-based change point detection algorithms. We also show that the method can still support other neural network architectures, such as convolutional networks.
['Bülent Yener', 'Lara Marcuse', 'Haidar Khan']
2019-05-23
null
null
null
null
['density-ratio-estimation']
['methodology']
[-3.88772994e-01 -4.46647406e-02 -3.39207679e-01 -4.94891524e-01 -9.86519217e-01 -1.80755749e-01 1.94905013e-01 8.93197581e-02 -6.76268220e-01 9.54097092e-01 -7.37236291e-02 -2.40112454e-01 -6.67562932e-02 -7.00945497e-01 -6.00728095e-01 -4.13874090e-01 -4.71608400e-01 6.10554814e-01 4.00020890e-02 1.62530109e-01 6.08294830e-02 5.84255457e-01 -6.60122752e-01 -9.46100205e-02 8.43569160e-01 1.46783388e+00 -7.09772632e-02 6.66793466e-01 2.22910956e-01 9.05882061e-01 -9.81508493e-01 3.42291966e-02 6.45463914e-02 -4.23061579e-01 -5.20498216e-01 -3.66655976e-01 5.42340696e-01 -9.09536362e-01 -5.84840417e-01 1.17072797e+00 6.92829311e-01 2.50837326e-01 1.30943274e+00 -1.28180480e+00 -7.29567111e-01 2.93329120e-01 -4.36820924e-01 9.26101208e-01 1.63372345e-02 -3.68024170e-01 4.65536386e-01 -7.76597440e-01 4.43449430e-02 9.03294384e-01 1.23312974e+00 4.28946435e-01 -1.32544863e+00 -6.94786489e-01 -3.68598223e-01 3.39106381e-01 -1.74812853e+00 -3.36363912e-01 4.87619579e-01 -2.02185884e-01 1.47273803e+00 -1.95380658e-01 8.19040358e-01 7.63728142e-01 2.37390801e-01 9.39331949e-01 6.72242641e-01 -1.75331131e-01 5.13430238e-01 1.10593289e-01 1.14107907e-01 8.68318200e-01 1.87953517e-01 -1.06330719e-02 -1.27613425e-01 -4.59372342e-01 1.17518246e+00 -1.77188944e-02 -6.81754529e-01 -1.54140562e-01 -7.01992273e-01 1.11509943e+00 4.74160165e-01 4.45456684e-01 -1.35619536e-01 6.84552014e-01 2.78899103e-01 2.81887800e-01 9.96333420e-01 3.53847295e-01 -4.11387950e-01 -4.07902420e-01 -1.64261389e+00 1.42064691e-01 1.07338083e+00 5.07580876e-01 7.53649116e-01 3.73252958e-01 -2.70220429e-01 1.15455186e+00 1.18283488e-01 5.08420110e-01 7.54637063e-01 -8.17212343e-01 2.47639250e-02 2.56989747e-01 -4.57398817e-02 -5.29751837e-01 -6.99711978e-01 -3.75588179e-01 -7.77532160e-01 2.34743372e-01 5.46558857e-01 -5.23943543e-01 -9.44667757e-01 1.72229981e+00 -2.27078065e-01 4.49350148e-01 -1.90481007e-01 6.27567887e-01 4.45729733e-01 4.93399322e-01 -3.57856750e-01 -1.68403178e-01 9.41625535e-01 -4.41674352e-01 -6.41526699e-01 -1.82496369e-01 9.02432799e-01 -3.11133415e-01 6.42987967e-01 1.66636109e-01 -1.17405653e+00 1.58291861e-01 -1.24714768e+00 8.21364671e-02 -1.52130201e-01 3.63829345e-01 5.43912411e-01 6.88957334e-01 -1.56755674e+00 8.23011279e-01 -1.29626215e+00 -1.08387358e-01 9.30387676e-01 6.87064767e-01 -9.75554958e-02 2.80715764e-01 -1.07953680e+00 1.22435689e+00 4.13898140e-01 -1.75968423e-01 -1.01046133e+00 -1.20375693e+00 -1.09539819e+00 3.54972780e-01 -4.04829651e-01 -6.11160696e-01 1.50980210e+00 -8.02796006e-01 -1.45121050e+00 6.53890550e-01 -9.12663564e-02 -1.05194521e+00 2.35685065e-01 -1.65070042e-01 4.72373702e-02 4.45854247e-01 -6.32731542e-02 7.38445818e-01 1.02469504e+00 -1.58886030e-01 -5.50431669e-01 1.11529930e-02 -2.81379044e-01 -2.27120649e-02 -5.59291124e-01 3.61362584e-02 1.11757509e-01 -6.31958663e-01 -4.59947854e-01 -3.07398468e-01 1.70189161e-02 2.88422555e-01 -1.11921132e-01 -2.78709739e-01 1.00668275e+00 -8.21017921e-01 1.12645948e+00 -1.73909819e+00 -1.45311326e-01 1.45038128e-01 5.65173924e-01 2.86959112e-01 5.31119332e-02 -2.76319087e-01 -1.49545878e-01 -1.94196597e-01 -6.88810706e-01 -4.03462648e-01 5.39770117e-03 -1.31002918e-01 -1.46759585e-01 9.68743026e-01 3.79497796e-01 1.03884172e+00 -7.35075474e-01 -1.64396703e-01 3.71775150e-01 9.82396424e-01 -7.16593564e-01 3.72292072e-01 1.18529208e-01 -2.58614957e-01 1.25488296e-01 5.22771597e-01 8.42555165e-01 -1.88883334e-01 -1.83535829e-01 -3.89809877e-01 3.81879866e-01 1.90520901e-02 -5.46994567e-01 1.32479823e+00 -6.62389159e-01 1.33834338e+00 -4.52392027e-02 -1.64705181e+00 1.07053518e+00 1.93047300e-01 5.44822454e-01 -4.39467221e-01 4.09384757e-01 3.43863070e-01 -1.02286562e-01 -7.31266141e-02 1.05192820e-02 -5.78596175e-01 7.62468725e-02 5.02029240e-01 7.22815394e-01 -1.46398798e-01 -7.99372494e-02 -1.13158301e-02 1.32869160e+00 -3.69982779e-01 4.68788832e-01 -4.61238891e-01 3.13433930e-02 -4.18923497e-01 1.37207285e-01 7.82073379e-01 -4.00706261e-01 5.67601383e-01 8.81509006e-01 -4.77614433e-01 -9.75541830e-01 -1.37557590e+00 -7.33831525e-01 5.47148585e-01 -2.74532378e-01 -5.98184392e-02 -8.59808445e-01 -6.37405872e-01 1.44732622e-02 5.23018003e-01 -5.99079072e-01 -6.81163788e-01 -4.84621167e-01 -1.46778333e+00 1.05995989e+00 1.00223327e+00 6.59882188e-01 -6.32182360e-01 -3.32545042e-01 3.18806410e-01 8.66888389e-02 -9.69462097e-01 -7.25517988e-01 5.59544861e-01 -9.36882138e-01 -1.03252649e+00 -1.28384829e+00 -8.47902894e-01 5.43701351e-01 -4.36697125e-01 1.07303548e+00 -4.25328016e-01 -4.63422298e-01 5.89214444e-01 1.21712081e-01 -3.32260519e-01 -2.16432288e-01 1.96897730e-01 2.36487418e-01 -2.87681252e-01 7.51076996e-01 -1.00100684e+00 -7.66646147e-01 -1.17104612e-01 -6.62655354e-01 -5.72579861e-01 3.04011852e-01 8.05870175e-01 3.91616076e-01 -1.02051318e-01 9.26831484e-01 -4.19637889e-01 1.27566028e+00 -6.50472641e-01 -8.35792005e-01 5.91853186e-02 -5.08053184e-01 4.27342713e-01 4.76817518e-01 -8.49594891e-01 -5.43063343e-01 -1.22802749e-01 -3.24741542e-01 -8.83734524e-01 1.71925962e-01 4.86612201e-01 3.62683147e-01 -3.29941928e-01 8.87728333e-01 3.25393617e-01 2.84455985e-01 -3.05422634e-01 1.85060188e-01 4.96411264e-01 5.97309768e-01 -8.85149986e-02 4.17385280e-01 3.39803666e-01 -1.49081871e-01 -6.46851540e-01 -8.50200891e-01 -3.21227700e-01 -1.91007584e-01 -3.25064757e-03 6.19512498e-01 -9.21327055e-01 -6.84759259e-01 6.35008216e-01 -1.10458350e+00 -7.23551631e-01 -3.06974679e-01 8.30466092e-01 -8.73840630e-01 4.60431129e-02 -9.04752910e-01 -7.58495867e-01 -7.43679821e-01 -7.35516787e-01 1.08931994e+00 2.34629542e-01 -2.56711036e-01 -1.67346895e+00 4.44844574e-01 -6.13761783e-01 9.47609782e-01 8.76238272e-02 7.75400519e-01 -7.88121819e-01 1.44681358e-03 -4.04533327e-01 -5.88046134e-01 6.71641171e-01 3.92897248e-01 -4.34222668e-01 -8.83087158e-01 -3.36657375e-01 4.03946400e-01 -4.31178063e-01 1.21371233e+00 1.27023828e+00 1.31311059e+00 -4.93449271e-01 -3.65143150e-01 1.33553731e+00 1.24002755e+00 3.70138809e-02 5.76693356e-01 6.20534606e-02 4.53802615e-01 -3.66077632e-01 -3.56523663e-01 4.97051686e-01 2.24306002e-01 3.90233666e-01 8.32635090e-02 -2.48395637e-01 -1.22068658e-01 1.43742502e-01 4.12581325e-01 3.79055768e-01 2.77090192e-01 2.66313076e-01 -8.44132066e-01 4.89694685e-01 -1.77934837e+00 -9.82535005e-01 5.51334143e-01 2.05544496e+00 1.08751762e+00 -3.41738425e-02 5.32781124e-01 -1.49328381e-01 7.47760653e-01 -7.51515999e-02 -8.09036434e-01 -3.31606686e-01 6.70482367e-02 8.27991724e-01 5.24863422e-01 5.68521023e-01 -1.27970576e+00 6.88002467e-01 8.22068024e+00 1.08976352e+00 -1.43515515e+00 2.62771308e-01 8.90204966e-01 -3.99598151e-01 4.01560664e-02 -5.57017803e-01 -6.02305710e-01 4.00702596e-01 1.26073706e+00 -4.81639117e-01 5.41345954e-01 1.02232623e+00 5.45407310e-02 -7.61027485e-02 -1.18139315e+00 1.45240021e+00 1.20632783e-01 -1.55060101e+00 -3.70933443e-01 2.04383377e-02 4.44398046e-01 4.19857740e-01 2.63952613e-01 5.63124418e-01 2.01461136e-01 -1.45420730e+00 3.86254340e-01 5.85295856e-01 9.43638325e-01 -9.01811540e-01 7.87240088e-01 1.51851431e-01 -1.00554311e+00 1.53654575e-01 -7.79926300e-01 -4.38742638e-02 1.32587314e-01 1.05142486e+00 -1.24806237e+00 -4.16947424e-01 5.49389303e-01 7.84070909e-01 -3.23884606e-01 1.59558916e+00 9.28794127e-03 7.86080837e-01 -7.84431577e-01 -1.84402078e-01 1.18405722e-01 -7.89007172e-02 4.59913403e-01 1.36870408e+00 5.47598720e-01 -5.00513852e-01 -3.15804660e-01 1.54202366e+00 -3.98192793e-01 -2.88543195e-01 -5.99186897e-01 -7.54552558e-02 4.04441297e-01 1.29119492e+00 -7.21345365e-01 -2.58308887e-01 -2.76919723e-01 9.86151993e-01 8.67715240e-01 5.09905994e-01 -9.72064435e-01 -7.37599373e-01 8.18639159e-01 1.80941522e-01 3.37118834e-01 -2.68894225e-01 1.31520599e-01 -1.42384410e+00 -1.63305610e-01 -3.37520927e-01 1.73769623e-01 -4.62831050e-01 -1.44117904e+00 6.26651168e-01 4.44428712e-01 -8.81376505e-01 -5.56866229e-01 -8.45020175e-01 -1.14142275e+00 8.54041636e-01 -1.42247927e+00 -4.91730571e-01 1.09193377e-01 6.92393422e-01 2.20810827e-02 -2.86504090e-01 7.81805754e-01 4.37780112e-01 -4.89901513e-01 8.48397434e-01 7.03554973e-02 5.22576094e-01 4.11591828e-01 -1.63349438e+00 2.15964079e-01 5.49786925e-01 8.62387717e-02 4.09984082e-01 2.45773420e-01 -3.54641229e-01 -7.87785113e-01 -1.06793129e+00 2.77525008e-01 -5.95171005e-02 8.48457694e-01 -3.62948477e-01 -9.20045376e-01 6.70860171e-01 8.86960551e-02 5.14179766e-01 6.91103578e-01 5.30200563e-02 -2.31073052e-01 -5.49518093e-02 -1.37867260e+00 -2.07323451e-02 5.34079611e-01 -8.64161491e-01 -6.22297525e-01 4.88225669e-01 2.76046306e-01 -4.66740251e-01 -8.92357409e-01 3.82418931e-01 3.67703855e-01 -6.96399093e-01 8.62581372e-01 -4.96484071e-01 -8.86105001e-02 2.26361975e-01 1.05893031e-01 -1.67641997e+00 -9.73414183e-02 -5.57000637e-01 -9.14217234e-01 5.53251147e-01 3.65290552e-01 -7.93260276e-01 9.75166976e-01 6.74783170e-01 -4.55593541e-02 -1.03443646e+00 -1.26237381e+00 -8.25494945e-01 5.57591736e-01 -5.72568834e-01 2.36902341e-01 6.21614873e-01 4.29456472e-01 1.44998208e-01 -1.22388825e-01 -5.70120364e-02 5.77386737e-01 -4.32521373e-01 1.59495976e-02 -8.60754907e-01 -1.63389280e-01 -7.59196281e-01 -8.42145681e-01 -1.00829291e+00 4.64118242e-01 -1.17885482e+00 -1.43561900e-01 -1.51539552e+00 1.02765493e-01 -1.46822602e-01 -3.88683885e-01 5.49031675e-01 -9.82171223e-02 3.37784320e-01 -2.82258689e-01 -1.33095250e-01 -4.22487795e-01 6.61190569e-01 6.15170240e-01 -3.53850305e-01 -4.04086679e-01 1.75528735e-01 -5.73710859e-01 8.48904848e-01 1.04400635e+00 -6.21826828e-01 -4.35711235e-01 -1.47857532e-01 1.27832443e-01 3.70015725e-02 4.12705988e-01 -1.30587733e+00 3.05409193e-01 2.88394481e-01 9.57302809e-01 -2.55161941e-01 3.68347079e-01 -2.21451342e-01 -5.81703067e-01 3.76283169e-01 -8.41485709e-02 -8.49334896e-02 6.07750952e-01 2.30831221e-01 -2.10098416e-01 -4.85436022e-01 1.12642539e+00 8.90643820e-02 -2.56750613e-01 7.22194910e-01 -7.29386032e-01 4.52534318e-01 7.38495350e-01 -5.56328781e-02 -3.58147234e-01 -7.10887671e-01 -8.65991414e-01 -9.19308513e-02 -1.55339576e-02 -1.55415580e-01 9.99466896e-01 -1.62733531e+00 -7.62718797e-01 5.14377914e-02 -3.47103328e-01 -2.14998335e-01 -2.07388014e-01 1.10661268e+00 -7.61927605e-01 6.04328960e-02 -2.09047332e-01 -7.06747651e-01 -5.08198202e-01 4.86514494e-02 1.30678976e+00 -3.55345041e-01 -6.43462181e-01 1.07758796e+00 1.93891257e-01 -1.44246385e-01 2.35258698e-01 -7.67436445e-01 5.15195280e-02 -6.49469420e-02 9.05412793e-01 3.21963757e-01 1.06799766e-01 -1.26948163e-01 -5.57637215e-01 1.95028111e-01 -1.05180912e-01 -1.57284439e-01 1.48329139e+00 3.60090435e-01 -4.20367680e-02 1.33222610e-01 1.97529590e+00 -6.77488387e-01 -1.23051214e+00 -1.77094620e-02 -1.63517669e-01 3.19070704e-02 7.47200906e-01 -4.94607031e-01 -1.31233871e+00 7.73319900e-01 1.02533555e+00 1.51289165e-01 1.12529898e+00 1.46274686e-01 8.08832765e-01 6.25325799e-01 -7.01799095e-02 -1.03590310e+00 1.38745204e-01 4.92732584e-01 6.11931324e-01 -1.07938910e+00 -7.08411634e-02 3.22840571e-01 -5.00141829e-02 1.35637712e+00 3.91786456e-01 -8.88128400e-01 1.33031523e+00 1.03582621e+00 -1.99399605e-01 -1.62276134e-01 -5.88926673e-01 -1.14721894e-01 5.85990310e-01 1.06773520e+00 4.43208098e-01 -2.97615882e-02 3.54099199e-02 5.75483441e-01 -1.55029178e-01 2.47696266e-01 4.43503886e-01 5.30345857e-01 -6.36059046e-01 -8.00670266e-01 -6.48580268e-02 1.21100247e+00 -6.87407196e-01 -4.94582355e-01 -7.40545690e-02 5.97703576e-01 -2.81401575e-01 3.44094932e-01 6.03858471e-01 -1.91815849e-02 -9.51887667e-02 6.10760599e-02 8.87159824e-01 -5.23472548e-01 -2.23211125e-01 5.00459271e-03 -2.17094183e-01 -4.74586725e-01 -3.38249087e-01 -2.83128083e-01 -1.15098679e+00 -2.57717878e-01 -4.94241446e-01 -3.34672928e-02 2.80078173e-01 1.01201046e+00 7.70449033e-03 4.27830398e-01 2.23409906e-01 -8.91080320e-01 -5.55437505e-01 -1.20630074e+00 -9.59512711e-01 -6.81002736e-02 6.73202097e-01 -7.17697263e-01 -6.26128793e-01 -3.71736228e-01]
[7.699991226196289, 3.715602397918701]
f78e11a0-95f2-4e44-bd62-bd32c3d56933
conservative-q-learning-for-offline
2006.04779
null
https://arxiv.org/abs/2006.04779v3
https://arxiv.org/pdf/2006.04779v3.pdf
Conservative Q-Learning for Offline Reinforcement Learning
Effectively leveraging large, previously collected datasets in reinforcement learning (RL) is a key challenge for large-scale real-world applications. Offline RL algorithms promise to learn effective policies from previously-collected, static datasets without further interaction. However, in practice, offline RL presents a major challenge, and standard off-policy RL methods can fail due to overestimation of values induced by the distributional shift between the dataset and the learned policy, especially when training on complex and multi-modal data distributions. In this paper, we propose conservative Q-learning (CQL), which aims to address these limitations by learning a conservative Q-function such that the expected value of a policy under this Q-function lower-bounds its true value. We theoretically show that CQL produces a lower bound on the value of the current policy and that it can be incorporated into a policy learning procedure with theoretical improvement guarantees. In practice, CQL augments the standard Bellman error objective with a simple Q-value regularizer which is straightforward to implement on top of existing deep Q-learning and actor-critic implementations. On both discrete and continuous control domains, we show that CQL substantially outperforms existing offline RL methods, often learning policies that attain 2-5 times higher final return, especially when learning from complex and multi-modal data distributions.
['Sergey Levine', 'Aurick Zhou', 'George Tucker', 'Aviral Kumar']
2020-06-08
null
http://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
http://proceedings.neurips.cc/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
neurips-2020-12
['dqn-replay-dataset', 'dqn-replay-dataset']
['miscellaneous', 'playing-games']
[-2.53617525e-01 2.18917936e-01 -6.89264178e-01 7.44200274e-02 -1.27622497e+00 -7.09249020e-01 3.94083053e-01 3.21209431e-01 -9.37723100e-01 1.36756361e+00 1.08854480e-01 -5.58168232e-01 -2.21160904e-01 -6.37970030e-01 -9.63645279e-01 -7.44628131e-01 -3.65610808e-01 6.55881405e-01 2.34153755e-02 -2.21459836e-01 1.31685451e-01 2.99485177e-01 -1.31551039e+00 -1.92251652e-01 7.62901664e-01 1.08298039e+00 1.10626675e-01 9.09950376e-01 3.95527110e-02 8.63216996e-01 -9.21028078e-01 -3.07953265e-02 5.40102363e-01 -4.58786607e-01 -4.02314067e-01 -1.75208002e-01 1.70286804e-01 -7.63385355e-01 -8.93441141e-02 9.99531209e-01 7.88305759e-01 5.21083832e-01 2.36749440e-01 -1.21074903e+00 -7.40485936e-02 5.54800153e-01 -3.80991489e-01 1.35154128e-01 1.68909490e-01 7.59986043e-01 1.06328261e+00 -2.50045598e-01 3.24489176e-01 1.51159251e+00 6.09494448e-01 6.79404080e-01 -1.33997536e+00 -5.53423882e-01 5.14124274e-01 -2.76246727e-01 -6.08037412e-01 -2.66296029e-01 4.14274812e-01 -1.20362848e-01 8.49559963e-01 -1.76867321e-01 8.22999477e-01 1.05130422e+00 1.67175576e-01 1.06265450e+00 1.22470677e+00 -1.64977938e-01 7.00258017e-01 -1.74127370e-02 -6.58473909e-01 4.95894581e-01 1.14830144e-01 5.99911034e-01 -3.11303318e-01 -3.67825925e-01 8.82241011e-01 -8.48633870e-02 8.70112330e-03 -6.50955856e-01 -9.21036839e-01 1.01618505e+00 1.59181446e-01 -2.12688476e-01 -6.29315436e-01 7.29267120e-01 6.41472697e-01 5.33566058e-01 3.65210354e-01 6.08004689e-01 -8.09127331e-01 -7.40266919e-01 -6.03906989e-01 7.37580478e-01 7.89663315e-01 6.53641522e-01 6.18541420e-01 4.15161133e-01 -4.92449433e-01 6.65579557e-01 5.22818603e-03 7.82563388e-01 5.59621871e-01 -1.38924623e+00 5.49012721e-01 1.52999416e-01 8.12359214e-01 -3.69381219e-01 -3.20484012e-01 -5.28393209e-01 -1.82388768e-01 5.56853056e-01 8.13371837e-01 -6.98327780e-01 -5.56390464e-01 1.96135330e+00 5.36484063e-01 -1.24368742e-01 1.74806222e-01 8.08773518e-01 -1.77723527e-01 4.99293745e-01 1.29720092e-01 -6.29566133e-01 7.41517007e-01 -7.51896083e-01 -7.25909948e-01 -2.74203777e-01 4.90424305e-01 -2.68559515e-01 1.48714101e+00 5.02714217e-01 -1.30120587e+00 -2.63561964e-01 -7.37658083e-01 4.12275910e-01 2.05732845e-02 -1.99278519e-01 4.45051968e-01 4.71594721e-01 -8.49053741e-01 8.38057101e-01 -8.65788400e-01 1.31678939e-01 6.37545466e-01 5.06529450e-01 2.04351708e-01 1.95638537e-01 -1.09228444e+00 8.90612781e-01 4.10654932e-01 -1.94783226e-01 -1.34609711e+00 -9.62395072e-01 -5.16470790e-01 -7.05482140e-02 1.13861263e+00 -3.19168955e-01 1.98679662e+00 -1.26510549e+00 -2.15283394e+00 1.20833777e-01 2.67731071e-01 -8.22777092e-01 9.99288201e-01 -4.09788042e-01 -2.94317659e-02 7.74954027e-03 -1.06128328e-01 3.70744288e-01 1.14814782e+00 -1.11694193e+00 -8.19741488e-01 -2.38616705e-01 4.04026836e-01 4.90379274e-01 -1.08957104e-01 -4.35125083e-01 5.65833896e-02 -4.00139809e-01 -8.00491810e-01 -8.51634920e-01 -5.68932772e-01 9.15986001e-02 1.56194001e-01 -3.42905998e-01 6.37109280e-01 -2.93128401e-01 1.05943882e+00 -1.87772214e+00 -2.09406883e-01 9.92562845e-02 -7.03815818e-02 5.19543409e-01 -1.29494399e-01 5.52157938e-01 4.55967367e-01 -1.59518838e-01 -1.42782569e-01 -7.05143958e-02 2.59129971e-01 5.38583696e-01 -5.32554865e-01 5.78495443e-01 3.76630761e-02 9.26348865e-01 -1.49011528e+00 -1.09250225e-01 1.27735019e-01 -2.81724222e-02 -7.69900203e-01 4.18220222e-01 -9.00416732e-01 6.14484191e-01 -5.47231734e-01 2.80493438e-01 3.09551567e-01 3.60879265e-02 4.38374102e-01 4.76332068e-01 -7.33081624e-02 1.90366700e-01 -1.12329423e+00 1.44114006e+00 -8.13626051e-01 3.35851133e-01 2.95127809e-01 -1.18511164e+00 7.88200319e-01 1.68449089e-01 8.16863716e-01 -9.90112066e-01 1.01397187e-01 1.77402154e-01 -1.12308234e-01 -3.62143606e-01 3.07453424e-01 -3.61595541e-01 -5.61483577e-02 6.44519985e-01 -6.53298721e-02 -2.11881712e-01 1.40621871e-01 -1.34180143e-01 1.14640617e+00 4.15376365e-01 3.88155252e-01 -1.80440322e-01 1.73127711e-01 -7.78295770e-02 6.53653026e-01 1.07509935e+00 -5.92342317e-01 -1.70854896e-01 1.05373740e+00 -4.00078893e-01 -9.44905818e-01 -1.03087068e+00 1.40426084e-01 1.44215178e+00 -1.41009867e-01 -5.65857515e-02 -4.65140909e-01 -1.10925210e+00 7.16602862e-01 7.43205309e-01 -4.86891896e-01 -3.01922828e-01 -5.74100137e-01 -4.69193161e-01 3.07728887e-01 4.49435234e-01 2.59969294e-01 -1.15949380e+00 -1.06603491e+00 6.58121467e-01 4.26155597e-01 -8.96349788e-01 -5.38401723e-01 2.88907111e-01 -8.94629717e-01 -1.09002614e+00 -5.67490399e-01 -6.25696406e-02 4.51465756e-01 -2.14851931e-01 1.26696229e+00 -3.13750535e-01 6.34681657e-02 7.75400400e-01 5.23942970e-02 -5.65100551e-01 -4.84507680e-01 -1.17835522e-01 1.33918867e-01 -2.16775939e-01 -1.27058417e-01 -2.34502330e-01 -8.29901993e-01 3.06255519e-02 -7.70859361e-01 -5.74955165e-01 4.56810385e-01 1.07902694e+00 5.64574003e-01 -3.05852666e-02 1.06665516e+00 -8.72539699e-01 1.12253952e+00 -5.16973495e-01 -1.27885342e+00 8.91087726e-02 -8.61912072e-01 5.26703238e-01 1.18233490e+00 -8.25544298e-01 -9.59752142e-01 6.67037396e-03 8.10253900e-03 -6.49637580e-01 2.71878868e-01 2.27767363e-01 2.35724673e-01 1.68171838e-01 6.19148493e-01 1.19608909e-01 5.04167140e-01 -2.53787637e-01 5.44522583e-01 3.36725563e-01 3.11566442e-01 -1.23685706e+00 4.77445275e-01 3.02991718e-01 1.11103775e-02 -2.48787522e-01 -1.09016287e+00 -1.49926469e-01 -1.39923751e-01 -3.01493019e-01 1.53203323e-01 -8.78261387e-01 -1.31089008e+00 2.68731616e-03 -5.28875709e-01 -1.18166709e+00 -9.43480015e-01 4.43822861e-01 -1.10725844e+00 -6.88638464e-02 -2.02259794e-01 -1.31537867e+00 -2.48317257e-01 -9.74062800e-01 8.45643163e-01 1.96738437e-01 2.50077844e-01 -1.26587200e+00 4.29455400e-01 -2.03300297e-01 5.28532684e-01 2.60039717e-01 6.16677582e-01 -3.40316117e-01 -8.95391479e-02 1.29687890e-01 1.49134070e-01 5.82149088e-01 -1.38807492e-02 -2.01521233e-01 -7.11486936e-01 -8.56238663e-01 -2.65628964e-01 -9.62552071e-01 5.87452590e-01 5.25392890e-01 1.30741107e+00 -7.45655119e-01 1.80642620e-01 3.14330816e-01 1.48199904e+00 3.37588996e-01 1.44140378e-01 4.42917109e-01 1.89478755e-01 1.97934538e-01 9.95654583e-01 1.21156466e+00 1.60157546e-01 3.90733778e-01 6.23554528e-01 1.77118286e-01 3.40747744e-01 -6.82878017e-01 7.82953382e-01 7.67392814e-02 3.11448514e-01 4.19163518e-02 -6.03023350e-01 4.21092927e-01 -2.14846087e+00 -9.59228933e-01 6.64073586e-01 2.72707772e+00 1.33123803e+00 3.33197176e-01 6.59415662e-01 -3.66037220e-01 1.90859750e-01 6.46133721e-02 -1.51968884e+00 -6.70062006e-01 2.89445341e-01 4.41366434e-01 9.82431948e-01 6.10410213e-01 -8.51238787e-01 9.01018739e-01 7.07807732e+00 8.91550243e-01 -1.14532721e+00 5.75303808e-02 4.97499049e-01 -4.72399145e-01 -2.26815462e-01 -1.25471860e-01 -7.09400415e-01 5.32386959e-01 1.21026909e+00 -4.03450370e-01 8.84541571e-01 1.06956577e+00 6.29483402e-01 -2.69173443e-01 -9.75154817e-01 7.07465291e-01 -5.64548552e-01 -9.86896276e-01 -4.91830528e-01 1.48872554e-01 9.51027870e-01 1.23761386e-01 2.52146959e-01 1.03731942e+00 1.07554889e+00 -8.57038140e-01 6.48136914e-01 3.10394734e-01 8.16884756e-01 -1.14913845e+00 4.38118398e-01 6.56241655e-01 -8.43658984e-01 -6.99844360e-01 -4.46553379e-01 -1.64322704e-01 -2.02622518e-01 3.90423417e-01 -8.40750813e-01 3.03075416e-03 2.01896727e-01 5.58521926e-01 4.57660779e-02 8.28960896e-01 -3.07759613e-01 6.95385575e-01 -3.74863982e-01 -2.59999901e-01 6.10600173e-01 -1.74173594e-01 3.61884952e-01 7.77480960e-01 -1.69757605e-02 -2.94104457e-01 6.58716857e-01 6.67762876e-01 -2.00376689e-01 -3.29289511e-02 -5.27357280e-01 -2.24912420e-01 4.88959521e-01 9.11142051e-01 -1.69862613e-01 -3.60236526e-01 -1.95186853e-01 4.61967021e-01 6.42210364e-01 4.69352514e-01 -9.29826558e-01 -5.06434999e-02 9.43134606e-01 -1.50514871e-01 4.08148348e-01 -3.85369778e-01 2.58837074e-01 -9.30967569e-01 -5.47238141e-02 -1.14102769e+00 4.85729128e-01 -1.08641014e-01 -1.16890562e+00 -1.30484566e-01 3.57220955e-02 -1.16926146e+00 -6.87592506e-01 -4.88533765e-01 -2.47514307e-01 5.29636681e-01 -1.64561772e+00 -3.99090350e-01 3.60459864e-01 6.61440969e-01 5.23277819e-01 -1.31123379e-01 5.45969844e-01 -3.23018804e-02 -4.58216727e-01 6.36204302e-01 7.81380594e-01 -2.08883330e-01 6.86362803e-01 -1.65691841e+00 -7.79855847e-02 2.89815694e-01 -1.92755088e-01 4.08804975e-02 7.25376427e-01 -4.27362710e-01 -1.80870271e+00 -1.01543891e+00 -2.15788960e-01 -2.06146926e-01 9.05818939e-01 -1.91937894e-01 -5.93308330e-01 5.37814975e-01 -2.51039211e-02 5.11806250e-01 1.60749912e-01 1.90380178e-02 -1.52607203e-01 -4.24385190e-01 -1.28649914e+00 4.93017375e-01 6.69577062e-01 -3.58226299e-01 -1.15602426e-01 4.50212270e-01 6.69287860e-01 -6.74282789e-01 -9.57233369e-01 1.27790913e-01 6.01839423e-01 -7.08557844e-01 7.39895523e-01 -1.14337230e+00 9.78677049e-02 1.24099016e-01 1.45183995e-01 -1.81687891e+00 2.23623171e-01 -1.17284548e+00 -6.12809002e-01 5.67463458e-01 1.87560935e-02 -7.81429291e-01 6.96290195e-01 4.56796616e-01 3.07506770e-01 -1.06667328e+00 -1.05150402e+00 -1.08009064e+00 4.72954720e-01 -4.40226972e-01 4.05120254e-01 4.55671787e-01 -1.15434773e-01 1.17538730e-02 -4.60510254e-01 -1.42427802e-01 8.75935853e-01 5.29688373e-02 8.95947695e-01 -6.31581008e-01 -6.86953306e-01 -5.55224419e-01 2.13145629e-01 -1.29093671e+00 4.37798172e-01 -3.91795963e-01 2.51470983e-01 -1.23257148e+00 -2.07961604e-01 -6.88562453e-01 -5.62331855e-01 5.48430383e-01 -1.96056500e-01 -5.09803712e-01 2.64992446e-01 -1.09232865e-01 -8.84494841e-01 1.04705632e+00 1.64448309e+00 1.73008200e-02 -5.76595902e-01 3.53200823e-01 -4.41626966e-01 4.29439753e-01 9.23483372e-01 -5.47607183e-01 -7.23683357e-01 -5.31831197e-02 3.02415997e-01 5.41532397e-01 1.41526356e-01 -7.11862922e-01 -8.73811916e-02 -7.73420274e-01 1.25779390e-01 -2.06194848e-01 2.71317717e-02 -7.13895380e-01 -4.86244023e-01 6.11990273e-01 -7.44131088e-01 -8.06538668e-03 3.18996251e-01 9.66483533e-01 1.84744373e-01 8.11761990e-03 9.39197004e-01 -3.22093248e-01 -3.47040266e-01 5.14180124e-01 -3.34917426e-01 8.27666461e-01 1.05970681e+00 4.18231279e-01 -1.81646392e-01 -6.83069050e-01 -4.19668674e-01 7.28871524e-01 8.76639113e-02 2.42796019e-01 5.09410083e-01 -1.20234609e+00 -5.25890291e-01 2.66732592e-02 -1.97910115e-01 3.18537652e-02 -1.87712684e-01 6.00442231e-01 -2.95621064e-02 1.73958421e-01 -1.43603593e-01 -3.32803160e-01 -6.39472127e-01 5.21842539e-01 6.49474442e-01 -6.94443107e-01 -6.63331747e-01 3.35415363e-01 -1.74809456e-01 -5.11029243e-01 5.87116241e-01 -4.80957419e-01 1.25150368e-01 4.54305187e-02 4.42464203e-01 3.68578464e-01 -1.71148509e-01 7.55203366e-02 9.31018963e-02 7.25850314e-02 1.27839893e-01 -3.91755551e-01 1.26342344e+00 1.10413432e-01 5.00832140e-01 5.93292296e-01 1.03501010e+00 -1.21993788e-01 -2.31701183e+00 -3.79705012e-01 3.12825441e-02 -5.13225019e-01 2.08632335e-01 -9.69806075e-01 -1.04269969e+00 5.79385817e-01 6.67664945e-01 1.01131886e-01 8.80899847e-01 -4.66888726e-01 7.15451896e-01 6.52375400e-01 5.32102287e-01 -1.67438900e+00 3.59474450e-01 4.86815274e-01 6.67076528e-01 -1.28759861e+00 1.72926024e-01 7.83189893e-01 -9.38309968e-01 1.10231555e+00 5.94765663e-01 -3.73300046e-01 4.69403356e-01 2.88237214e-01 2.21982296e-03 2.73416787e-01 -1.27830052e+00 -4.26684231e-01 -2.03075811e-01 4.51011837e-01 -4.42887843e-02 2.92540401e-01 -1.37406126e-01 1.92580312e-01 7.72118717e-02 1.02688499e-01 3.69570971e-01 1.22545350e+00 -6.48722112e-01 -1.21565342e+00 -2.77394414e-01 4.77421492e-01 -5.28060675e-01 3.14667284e-01 1.43104345e-01 8.59454632e-01 -2.15774998e-01 6.55959725e-01 1.19837910e-01 2.25192398e-01 3.82038862e-01 -1.47594362e-01 6.42416298e-01 -2.79023767e-01 -6.50772333e-01 1.13167524e-01 -9.52111837e-03 -1.06450987e+00 -1.18361093e-01 -6.57114685e-01 -1.47486949e+00 -1.92752197e-01 2.66546500e-03 9.27123278e-02 6.18130803e-01 9.53629673e-01 2.92327434e-01 4.05076027e-01 9.92618859e-01 -6.63648605e-01 -1.80328846e+00 -6.91149712e-01 -5.73137641e-01 3.35890919e-01 8.29427600e-01 -8.61867785e-01 -3.62061918e-01 -4.88982469e-01]
[4.077636241912842, 2.2752068042755127]
64e6c4b0-c254-40ba-b2f4-24161f70d0ce
an-image-fusion-scheme-for-single-shot-high
1908.08195
null
https://arxiv.org/abs/1908.08195v1
https://arxiv.org/pdf/1908.08195v1.pdf
An Image Fusion Scheme for Single-Shot High Dynamic Range Imaging with Spatially Varying Exposures
This paper proposes a novel multi-exposure image fusion (MEF) scheme for single-shot high dynamic range imaging with spatially varying exposures (SVE). Single-shot imaging with SVE enables us not only to produce images without color saturation regions from a single-shot image, but also to avoid ghost artifacts in the producing ones. However, the number of exposures is generally limited to two, and moreover it is difficult to decide the optimum exposure values before the photographing. In the proposed scheme, a scene segmentation method is applied to input multi-exposure images, and then the luminance of the input images is adjusted according to both of the number of scenes and the relationship between exposure values and pixel values. The proposed method with the luminance adjustment allows us to improve the above two issues. In this paper, we focus on dual-ISO imaging as one of single-shot imaging. In an experiment, the proposed scheme is demonstrated to be effective for single-shot high dynamic range imaging with SVE, compared with conventional MEF schemes with exposure compensation.
['Sayaka Shiota', 'Hitoshi Kiya', 'Chihiro Go', 'Yuma Kinoshita']
2019-08-22
null
null
null
null
['multi-exposure-image-fusion']
['computer-vision']
[ 8.24337423e-01 -6.60790741e-01 3.86718094e-01 -2.23235071e-01 -2.97935784e-01 -2.42519036e-01 1.82949185e-01 -3.56487334e-01 -6.87768638e-01 5.33869863e-01 -2.02469915e-01 -2.90578101e-02 -2.32972220e-01 -8.52676034e-01 -2.78162360e-01 -9.10106063e-01 5.84159613e-01 -1.54039577e-01 8.02618802e-01 -4.61431108e-02 2.60519534e-01 2.80530006e-01 -1.62927604e+00 -2.03207120e-01 1.12814510e+00 8.09615850e-01 7.77023911e-01 7.00083792e-01 -1.56911299e-01 6.61715984e-01 -6.94830656e-01 2.47268341e-02 4.11677212e-01 -9.52756345e-01 -3.57055217e-01 5.10727763e-01 1.90022007e-01 -6.55873239e-01 -3.16801906e-01 1.32895315e+00 4.95234102e-01 4.27216798e-01 5.24763107e-01 -9.50178266e-01 -5.13457119e-01 1.28124848e-01 -1.09581530e+00 5.14944375e-01 1.45506144e-01 3.80652219e-01 3.55361998e-02 -5.31615436e-01 3.13131094e-01 9.62408006e-01 2.86057949e-01 2.85298526e-01 -1.00970590e+00 -6.49098754e-01 -2.30749592e-01 1.81915522e-01 -1.33158457e+00 -5.22211254e-01 8.88462365e-01 -3.22302788e-01 2.97074229e-01 9.23134163e-02 6.58118129e-01 3.16256851e-01 4.54341680e-01 -6.35890961e-02 1.81210756e+00 -5.10525823e-01 7.87036121e-02 2.23929018e-01 3.04106593e-01 5.14265239e-01 3.63087058e-01 2.44888201e-01 -1.53554261e-01 2.31627166e-01 9.16587532e-01 2.64345974e-01 -7.15766370e-01 1.36702240e-01 -1.21836364e+00 2.29661733e-01 2.61535406e-01 5.44353485e-01 -3.02789539e-01 -3.26904088e-01 -2.62603983e-02 9.70934257e-02 2.36441553e-01 2.43857682e-01 1.12809867e-01 -4.70053144e-02 -9.93458927e-01 -2.37147614e-01 3.84714752e-01 4.65652525e-01 7.48309255e-01 3.66964936e-02 -6.23970516e-02 8.38993013e-01 3.03087533e-01 5.99089682e-01 4.02757555e-01 -7.22196341e-01 2.39761248e-01 1.14426881e-01 3.62551510e-01 -7.78087437e-01 -1.53709382e-01 3.33038680e-02 -7.69421279e-01 5.30493021e-01 5.46228051e-01 -3.17141414e-01 -1.13599634e+00 1.47323525e+00 3.73733670e-01 1.86411232e-01 3.59966218e-01 1.28876567e+00 8.86333764e-01 1.07264113e+00 -4.14535664e-02 -9.69784498e-01 1.35529900e+00 -7.44194090e-01 -1.26276731e+00 -1.85239390e-01 -1.71951219e-01 -1.07070303e+00 1.27519214e+00 4.93711412e-01 -1.18365359e+00 -7.75705516e-01 -1.37103260e+00 9.59090889e-02 -1.74060427e-02 1.96569860e-02 1.14739574e-01 7.71044791e-01 -8.28416288e-01 2.48294562e-01 -4.82696742e-01 -2.91281074e-01 -7.12988228e-02 1.51192591e-01 -6.45133480e-02 -3.01396817e-01 -1.24157369e+00 7.93358982e-01 6.10624611e-01 1.19144686e-01 -4.38103199e-01 -5.35148203e-01 -5.23474693e-01 2.63557024e-02 5.51593006e-01 -2.72233367e-01 9.92102444e-01 -9.36888039e-01 -1.71271479e+00 5.63216984e-01 -1.49305850e-01 6.40938506e-02 3.65076512e-01 8.88230950e-02 -6.45665467e-01 5.20864427e-01 -6.61500990e-02 1.76301077e-01 6.76189721e-01 -1.30027604e+00 -4.67406780e-01 -2.45356232e-01 1.54367596e-01 5.75415075e-01 -8.93530473e-02 3.22902113e-01 -5.28448284e-01 -3.64968404e-02 2.20865011e-01 -4.54467624e-01 -1.24276251e-01 4.66376245e-02 -1.43819228e-01 3.36986005e-01 1.30175924e+00 -5.91165900e-01 1.14384079e+00 -2.28950500e+00 -3.09635729e-01 -2.52860617e-02 -9.61685833e-03 3.92976493e-01 1.54281557e-01 4.08991873e-02 4.60052788e-02 -3.81832719e-01 -5.12177765e-01 1.38789281e-01 -6.96010470e-01 -6.50130026e-03 2.18847245e-02 4.51487929e-01 -2.48757064e-01 4.40364480e-01 -7.00341105e-01 -9.50746536e-01 7.23001480e-01 4.38777953e-01 1.41989589e-01 4.76589411e-01 6.59671053e-02 8.80113959e-01 -1.24461241e-01 3.34086210e-01 1.19267130e+00 -5.78152537e-02 1.84738021e-02 -4.42178220e-01 -5.43497145e-01 -5.67946911e-01 -1.44921899e+00 1.23053503e+00 -4.14432436e-01 3.94942373e-01 6.25202358e-02 -2.74920553e-01 1.00624549e+00 1.52704507e-01 5.52164853e-01 -8.97108614e-01 4.24413621e-01 9.45615023e-02 -4.20987383e-02 -7.51980007e-01 5.58020771e-01 -5.23800433e-01 1.89648092e-01 5.24080694e-01 -3.43147904e-01 -3.43996465e-01 5.38413227e-01 9.41192880e-02 3.35899383e-01 -3.20676416e-02 3.68480802e-01 -9.86320823e-02 8.84438753e-01 -2.58814961e-01 5.63522220e-01 4.21277642e-01 -9.82742831e-02 6.85152292e-01 1.56621978e-01 1.60026014e-01 -1.08388460e+00 -9.31544602e-01 -2.64883727e-01 2.97712624e-01 1.10679412e+00 9.73272696e-02 -7.72510469e-01 -2.52862759e-02 -5.93489230e-01 5.34231782e-01 1.29349651e-02 -7.50469118e-02 -4.69482273e-01 -9.20864582e-01 4.64483425e-02 7.29227364e-02 1.27367961e+00 -8.82823348e-01 -1.00540686e+00 6.90334886e-02 -1.52029261e-01 -1.14562631e+00 -5.94791770e-01 -1.43988088e-01 -6.71864092e-01 -1.19080091e+00 -7.98354089e-01 -6.90864146e-01 6.05065346e-01 8.43496382e-01 4.41412240e-01 -2.16082595e-02 -3.77542734e-01 2.99570076e-02 -3.28853220e-01 2.50393264e-02 -3.41588795e-01 -4.84635979e-01 -1.81992337e-01 3.58233124e-01 6.83934093e-02 -3.46004337e-01 -8.86224687e-01 5.19215286e-01 -1.40065825e+00 3.22390556e-01 5.75329602e-01 6.89503729e-01 5.71198642e-01 3.59723300e-01 3.74221593e-01 -8.72258604e-01 5.30910075e-01 -7.33759953e-03 -9.28804755e-01 4.88591701e-01 -6.76565766e-01 -4.06445831e-01 8.33284795e-01 -4.43863124e-01 -1.83974540e+00 -1.58486024e-01 1.76131818e-02 -3.36122632e-01 -2.85880595e-01 9.38312616e-03 -3.71017665e-01 -4.33847427e-01 3.77503097e-01 4.18328494e-01 1.82672292e-01 -2.45998055e-01 3.29987586e-01 1.06411040e+00 7.85272539e-01 -1.29085645e-01 5.38319409e-01 3.31979096e-01 3.83834764e-02 -9.98779356e-01 -4.95385230e-01 -2.53491431e-01 -5.43001413e-01 -5.49396932e-01 1.27017701e+00 -7.38044024e-01 -7.33732700e-01 8.81439269e-01 -8.12047720e-01 -1.69711798e-01 -6.88749477e-02 8.36055100e-01 -3.66081923e-01 7.04096079e-01 -7.74600923e-01 -8.98577929e-01 -2.78797358e-01 -1.27782941e+00 6.18643105e-01 1.03183544e+00 4.32013482e-01 -7.15992868e-01 -2.55288690e-01 2.92358428e-01 5.16919374e-01 1.33631542e-01 7.35842347e-01 2.20971838e-01 -7.97335088e-01 1.91133872e-01 -4.76533294e-01 3.28835875e-01 2.54671007e-01 7.37969130e-02 -9.23020720e-01 -2.15244725e-01 5.43273866e-01 -6.92008287e-02 5.61033189e-01 6.57437027e-01 1.07278717e+00 2.29256719e-01 -8.34642202e-02 8.87230098e-01 1.93150544e+00 8.83066535e-01 1.08563685e+00 3.76622468e-01 5.02450347e-01 3.81664306e-01 1.19133425e+00 2.60727584e-01 -1.92720234e-01 5.98173141e-01 1.15229495e-01 -6.89437509e-01 -2.55142629e-01 7.18280151e-02 8.80177245e-02 5.62355340e-01 5.05757891e-02 -5.17049551e-01 -4.19881403e-01 2.34438613e-01 -1.32096481e+00 -1.05427849e+00 -7.45715737e-01 2.30382228e+00 6.97331369e-01 -1.22748680e-01 -2.59254247e-01 1.10903583e-01 1.13544548e+00 4.02888000e-01 -4.47487235e-01 -2.60058731e-01 -2.03279540e-01 6.16145171e-02 5.59440553e-01 5.57164848e-01 -8.51300955e-01 4.95822012e-01 6.12584829e+00 7.94906259e-01 -1.48216093e+00 3.97607297e-01 6.27009034e-01 1.83734447e-02 -1.80536851e-01 1.37201041e-01 -5.70938766e-01 1.02221310e+00 5.74644625e-01 -4.29194361e-01 4.19909269e-01 1.37076333e-01 4.14222032e-01 -9.32117045e-01 -4.44022387e-01 1.19169581e+00 2.57997334e-01 -4.92636740e-01 -2.92305231e-01 -1.29874304e-01 8.04225087e-01 -6.65409982e-01 1.19448170e-01 -4.08062279e-01 -4.44959283e-01 -5.97024024e-01 3.68296295e-01 5.58234990e-01 1.18574154e+00 -8.20681155e-01 6.23672843e-01 2.80509055e-01 -1.17212033e+00 -2.25978717e-02 -4.34887499e-01 1.18489869e-01 6.81904435e-01 6.27748370e-01 -2.71142781e-01 6.37257576e-01 4.70972657e-01 3.39857489e-01 -4.83091056e-01 1.10951746e+00 -1.32808149e-01 1.77713543e-01 -2.27476180e-01 1.15893848e-01 7.80101269e-02 -9.14837182e-01 4.15576726e-01 7.89904356e-01 4.77446049e-01 7.14143276e-01 1.72734648e-01 9.45436597e-01 3.30977648e-01 9.19803753e-02 -5.53922415e-01 1.90844357e-01 2.78861105e-01 1.19263458e+00 -9.08510923e-01 -5.38950980e-01 -5.22933006e-01 1.08211112e+00 -4.81591076e-01 5.33553004e-01 -9.50959265e-01 -8.44095290e-01 -1.03471696e-01 2.41023064e-01 4.33331989e-02 -2.06860766e-01 -1.64357916e-01 -1.02298188e+00 -1.16747320e-01 -4.85577792e-01 3.00824612e-01 -1.23731148e+00 -7.60878742e-01 5.80944180e-01 3.51720959e-01 -1.37879372e+00 2.12633282e-01 -1.54944450e-01 -8.24648023e-01 1.13243139e+00 -1.56118512e+00 -7.41392970e-01 -7.47554541e-01 6.33383214e-01 6.23280287e-01 2.33132750e-01 1.61094442e-01 4.66766715e-01 -5.63235283e-01 2.47843057e-01 3.63298416e-01 -3.80830318e-01 8.77608776e-01 -8.06680918e-01 -3.23736578e-01 1.40480661e+00 -4.62492555e-01 4.23211992e-01 6.98242903e-01 -7.16331899e-01 -9.98731852e-01 -6.53498948e-01 1.81331262e-01 2.83165962e-01 4.81281579e-02 1.07655026e-01 -1.02379167e+00 1.97268814e-01 4.81806904e-01 -1.97809607e-01 3.84662837e-01 -7.61945248e-01 4.09195662e-01 -4.28635597e-01 -1.45686197e+00 4.02641684e-01 6.12592220e-01 -2.23517686e-01 -4.74182844e-01 5.18084355e-02 6.97409511e-01 -5.61895192e-01 -8.97729456e-01 5.52329540e-01 5.29591143e-01 -1.20491469e+00 8.10927689e-01 5.64596653e-01 3.45147669e-01 -9.57231879e-01 2.36177996e-01 -1.06207836e+00 -5.04625887e-02 -3.73054951e-01 4.47137177e-01 1.40710378e+00 -9.53924935e-03 -9.36875045e-01 2.80604482e-01 5.42347312e-01 -2.60871649e-02 -4.06239808e-01 -3.86010289e-01 -5.34840345e-01 -6.19502664e-01 3.40447783e-01 4.81006742e-01 6.37303293e-01 -4.80358183e-01 3.66712153e-01 -6.51955843e-01 3.31956148e-01 9.72262919e-01 2.93823034e-01 6.62174582e-01 -8.32757294e-01 -5.81984103e-01 1.78215094e-02 -8.00500140e-02 -1.00526369e+00 -4.52298343e-01 -2.33785331e-01 2.10744664e-01 -1.58056867e+00 5.79104781e-01 -1.78362295e-01 -2.07483530e-01 -2.45709985e-01 -4.79859352e-01 4.56530660e-01 2.85582513e-01 3.73227090e-01 -3.54441196e-01 3.09075356e-01 1.63500559e+00 1.46922827e-01 -3.88203591e-01 -1.14078060e-01 -3.94392192e-01 4.76820946e-01 5.94254434e-01 -1.37693048e-01 -7.21463442e-01 -2.92686135e-01 -4.42989975e-01 5.26198924e-01 2.47651070e-01 -1.17955983e+00 4.25409377e-01 -3.32174659e-01 6.55444324e-01 -7.20669270e-01 3.08882594e-01 -8.92257810e-01 5.46806216e-01 4.86082464e-01 5.27838059e-03 -2.82942474e-01 -8.86952579e-02 5.87297916e-01 -2.33048305e-01 -5.00481844e-01 1.37590134e+00 -2.78339773e-01 -1.07328582e+00 1.29973724e-01 -1.97465241e-01 -3.48522216e-01 1.40793586e+00 -6.50765657e-01 -6.07235253e-01 -2.27665633e-01 -4.91855055e-01 1.24948286e-01 9.75539804e-01 -6.35843575e-02 7.49032557e-01 -1.01933169e+00 -1.70070723e-01 4.26005065e-01 1.32091632e-02 -1.12179354e-01 1.02044320e+00 1.11393821e+00 -9.43464100e-01 -1.21150933e-01 -4.79386598e-01 -5.43338358e-01 -1.63602567e+00 7.50223160e-01 4.19509888e-01 8.67754668e-02 -7.87963986e-01 3.97538751e-01 2.89347857e-01 3.74456555e-01 -8.82992744e-02 1.16806969e-01 -3.33489001e-01 -3.56198788e-01 7.27872014e-01 4.22195554e-01 -3.03792655e-01 -5.88122487e-01 7.25511685e-02 1.24729013e+00 6.87733516e-02 -3.75227213e-01 8.62582266e-01 -6.30304396e-01 -1.14849046e-01 5.86530507e-01 9.93570924e-01 -1.96866170e-02 -1.33910477e+00 5.91604877e-03 -7.17198968e-01 -1.21132386e+00 4.40765023e-02 -6.40385866e-01 -9.25853074e-01 9.48840201e-01 9.19542432e-01 9.85337123e-02 1.64783442e+00 -3.77777904e-01 1.00579584e+00 -1.82448149e-01 4.58121359e-01 -1.00720489e+00 5.41892350e-02 -4.49848138e-02 2.15332881e-01 -1.06207013e+00 1.85912743e-01 -6.92333877e-01 -6.77940488e-01 1.28000963e+00 1.01862109e+00 7.06956908e-02 2.44318962e-01 2.81296223e-01 1.25831366e-01 -1.25350341e-01 -2.82955647e-01 -4.22524631e-01 -7.92931095e-02 4.87667203e-01 1.83867559e-01 -3.71319711e-01 -9.68251884e-01 3.43616940e-02 3.57403070e-01 1.10254765e-01 1.01224458e+00 7.89726198e-01 -7.95487106e-01 -8.58302534e-01 -7.07412779e-01 3.98479670e-01 -5.10102332e-01 2.42022008e-01 -1.33058019e-02 5.90291202e-01 3.86488557e-01 1.24347103e+00 1.25689596e-01 -1.81785211e-01 3.41305703e-01 -2.89562255e-01 5.68895876e-01 -3.88984203e-01 -1.95829421e-01 3.76849562e-01 -2.48964891e-01 -2.36687690e-01 -7.27936566e-01 -3.33174497e-01 -1.21175146e+00 -2.39607409e-01 -5.86582899e-01 2.08822027e-01 6.17004991e-01 6.68848753e-01 -2.30441272e-01 5.91563702e-01 9.59696710e-01 -4.41709399e-01 -1.66271836e-01 -8.59216750e-01 -1.07426608e+00 4.19509381e-01 6.34633750e-02 -5.33093214e-01 -6.09222710e-01 1.15159452e-01]
[10.923429489135742, -2.4970462322235107]
f252d2c9-d12d-45ab-9163-66022d7d37b4
motionbert-unified-pretraining-for-human
2210.06551
null
https://arxiv.org/abs/2210.06551v2
https://arxiv.org/pdf/2210.06551v2.pdf
Learning Human Motion Representations: A Unified Perspective
We present a unified perspective on tackling various human-centric video tasks by learning human motion representations from large-scale and heterogeneous data resources. Specifically, we propose a pretraining stage in which a motion encoder is trained to recover the underlying 3D motion from noisy partial 2D observations. The motion representations acquired in this way incorporate geometric, kinematic, and physical knowledge about human motion, which can be easily transferred to multiple downstream tasks. We implement the motion encoder with a Dual-stream Spatio-temporal Transformer (DSTformer) neural network. It could capture long-range spatio-temporal relationships among the skeletal joints comprehensively and adaptively, exemplified by the lowest 3D pose estimation error so far when trained from scratch. Furthermore, our proposed framework achieves state-of-the-art performance on all three downstream tasks by simply finetuning the pretrained motion encoder with a simple regression head (1-2 layers), which demonstrates the versatility of the learned motion representations.
['Yizhou Wang', 'Wayne Wu', 'Libin Liu', 'Zhaoyang Liu', 'Xiaoxuan Ma', 'Wentao Zhu']
2022-10-12
null
null
null
null
['3d-pose-estimation', 'one-shot-3d-action-recognition', '3d-human-pose-estimation', 'monocular-3d-human-pose-estimation']
['computer-vision', 'computer-vision', 'computer-vision', 'computer-vision']
[-1.60746112e-01 -2.21890919e-02 -4.47039157e-01 -7.45080933e-02 -6.41205609e-01 -3.23659390e-01 6.77882969e-01 -5.70325673e-01 -5.89896977e-01 4.21496749e-01 6.37277126e-01 2.08555788e-01 1.48428366e-01 -5.58168530e-01 -1.02116358e+00 -5.08486390e-01 -7.88415894e-02 3.82127017e-01 3.79674315e-01 -2.18797132e-01 -2.56326180e-02 3.45341742e-01 -1.45032525e+00 1.62233964e-01 3.00608218e-01 8.21815550e-01 3.89408022e-01 9.98593152e-01 3.74444097e-01 1.00174737e+00 -1.66963741e-01 -4.00692746e-02 1.87302127e-01 -3.69821280e-01 -9.18430209e-01 2.15469241e-01 2.73826569e-01 -8.23594928e-01 -1.00940120e+00 5.51850379e-01 4.18054253e-01 4.89310175e-01 5.59448957e-01 -9.21243310e-01 -6.05736792e-01 6.87604249e-02 -5.26803434e-01 2.31263742e-01 5.56903422e-01 4.76901025e-01 9.78564382e-01 -9.50667560e-01 9.84840274e-01 1.35119295e+00 5.00892997e-01 6.82470560e-01 -9.00485396e-01 -2.29340941e-01 3.41897309e-01 3.84068102e-01 -1.21276689e+00 -3.61576408e-01 7.93149889e-01 -5.70979238e-01 1.18098998e+00 -2.65453696e-01 8.06322038e-01 1.57615805e+00 2.56642342e-01 1.16068947e+00 1.88572526e-01 1.23001880e-03 -4.17448394e-02 -8.28414381e-01 -3.08996677e-01 9.67745841e-01 1.32527068e-01 6.31846264e-02 -7.56349206e-01 2.82174438e-01 1.29409480e+00 1.38800591e-01 -2.78255433e-01 -6.81916654e-01 -1.59151042e+00 5.33224046e-01 5.55055857e-01 1.59387395e-01 -4.98001546e-01 7.10757017e-01 4.27450120e-01 8.59593749e-02 2.46024236e-01 3.50964814e-02 -4.63510394e-01 -3.30387980e-01 -9.21115100e-01 3.32349002e-01 2.75123417e-01 9.86732364e-01 6.82751596e-01 2.03289583e-01 -1.95252538e-01 3.77183080e-01 4.33055848e-01 4.74998981e-01 7.15983093e-01 -1.26693797e+00 6.63168967e-01 2.38928065e-01 2.08079487e-01 -8.58019948e-01 -4.38055515e-01 -1.88270822e-01 -7.79204547e-01 -2.96221189e-02 2.99399078e-01 -7.54691958e-02 -1.00250709e+00 1.92765951e+00 4.46628630e-01 5.10223567e-01 -7.46718571e-02 1.21810794e+00 6.46832466e-01 7.23015547e-01 2.51093149e-01 1.60002649e-01 1.20138884e+00 -1.50042844e+00 -5.03086090e-01 -4.07428592e-01 6.44343317e-01 -3.60068768e-01 8.33847880e-01 1.61753828e-03 -1.22710395e+00 -9.60998297e-01 -1.06462836e+00 -6.04418993e-01 1.30639315e-01 1.66957363e-01 3.95402998e-01 -1.01438627e-01 -9.00937557e-01 7.68356144e-01 -1.53433156e+00 -3.22803259e-01 3.11885118e-01 3.53140414e-01 -7.14082062e-01 -2.12250143e-01 -1.03237641e+00 6.88584983e-01 1.91742271e-01 2.49166310e-01 -1.25762129e+00 -4.59892988e-01 -1.27618957e+00 -8.48736688e-02 4.32713598e-01 -1.49161136e+00 1.29349494e+00 -5.67104697e-01 -1.73022187e+00 6.67151213e-01 -4.11149830e-01 -1.43198773e-01 6.35185182e-01 -7.80789316e-01 -9.71455872e-02 5.49394369e-01 2.17965230e-01 8.33862603e-01 1.00691259e+00 -9.26296473e-01 -4.45844144e-01 -3.24322730e-01 -1.90745888e-03 2.35465243e-01 -1.14980057e-01 -3.08028191e-01 -1.01669645e+00 -1.04335845e+00 6.15903474e-02 -1.07373679e+00 -3.51326883e-01 2.80475855e-01 -1.02816530e-01 -4.24459241e-02 7.98817396e-01 -7.34816074e-01 1.07176089e+00 -1.88025510e+00 1.00010121e+00 -2.35651374e-01 1.23505481e-01 2.91701823e-01 -3.56670588e-01 3.50222141e-01 1.56819105e-01 -3.58955801e-01 -9.91138369e-02 -5.86283028e-01 4.11382504e-02 3.59213859e-01 -9.12970379e-02 4.78741735e-01 4.43785459e-01 1.39929080e+00 -1.08759546e+00 -2.60220140e-01 4.10534203e-01 6.89033628e-01 -7.90303588e-01 6.37156367e-01 -2.85940826e-01 8.63431215e-01 -7.73922563e-01 4.70996708e-01 1.21823139e-01 -5.25325000e-01 2.04142734e-01 -1.77215427e-01 2.51804650e-01 2.67558962e-01 -9.02463078e-01 2.73362756e+00 -3.65617156e-01 4.36014146e-01 -9.22298655e-02 -1.01912630e+00 4.97388065e-01 4.37850952e-01 8.08182120e-01 -3.95735115e-01 8.54901001e-02 -2.51378659e-02 -3.91493440e-01 -8.19119930e-01 4.16217357e-01 -4.97836666e-03 -2.30032191e-01 4.76154357e-01 5.13882041e-01 2.53567159e-01 -1.95712417e-01 -1.20778173e-01 1.15472794e+00 1.00770450e+00 3.51462960e-01 1.82347938e-01 6.10306263e-01 -8.26688185e-02 6.01720929e-01 3.99505079e-01 -2.59282112e-01 7.46504664e-01 2.04320431e-01 -6.68170810e-01 -1.19294643e+00 -1.19728398e+00 6.37266815e-01 1.21416688e+00 1.62258461e-01 -4.22159255e-01 -4.87396091e-01 -6.14832044e-01 -2.85653118e-02 -4.61338423e-02 -6.44292235e-01 -3.49320710e-01 -1.14132166e+00 -2.37441629e-01 4.33251143e-01 1.02549767e+00 5.29182374e-01 -9.13539171e-01 -9.58698928e-01 3.50845039e-01 -3.25464457e-01 -1.41493881e+00 -6.97531402e-01 -2.53570527e-01 -1.05671823e+00 -1.06295681e+00 -1.05599320e+00 -8.28138947e-01 3.68444830e-01 4.72106487e-01 9.06389713e-01 -3.06756012e-02 -2.29010135e-01 3.48283201e-01 -3.21631968e-01 4.00123358e-01 -4.82649170e-02 1.93896890e-01 5.51979393e-02 4.63803448e-02 9.57345143e-02 -7.13107169e-01 -9.30709481e-01 2.41353437e-01 -7.26141214e-01 8.95690471e-02 7.39968717e-01 8.70037079e-01 6.09636307e-01 -5.22273600e-01 2.59274900e-01 -4.83993769e-01 -5.69770075e-02 -6.09093785e-01 -1.31702423e-01 3.91439646e-02 1.31935194e-01 4.18914169e-01 4.65831935e-01 -4.82675374e-01 -1.01957440e+00 3.96471828e-01 -1.49634466e-01 -9.87874091e-01 -1.09179683e-01 2.73737788e-01 -2.56361067e-01 2.05800503e-01 2.40492031e-01 2.02608153e-01 2.76813321e-02 -5.96583664e-01 7.51996219e-01 1.54272079e-01 1.11993909e+00 -6.79846048e-01 9.25005138e-01 6.82241142e-01 4.33626547e-02 -5.89484990e-01 -7.89516568e-01 -4.66275424e-01 -1.26120162e+00 -1.16352037e-01 1.24951649e+00 -1.30387390e+00 -6.26809537e-01 5.38186669e-01 -1.21524036e+00 -4.93269533e-01 -1.16978496e-01 7.74601638e-01 -9.89307046e-01 5.08848488e-01 -9.31382835e-01 -3.29618335e-01 -1.81135744e-01 -1.17164087e+00 1.47489047e+00 -1.77394181e-01 -4.05420512e-01 -9.60732222e-01 2.25741476e-01 3.43511909e-01 -1.02563165e-02 5.43122828e-01 6.93876922e-01 -3.93903069e-02 -8.15114379e-01 -5.10274358e-02 1.09769389e-01 7.84146115e-02 1.19217977e-01 -2.47165322e-01 -7.71052659e-01 -4.40887064e-01 -1.52051851e-01 -4.42941874e-01 1.09582210e+00 4.40662295e-01 1.02545595e+00 -1.43233612e-01 -3.61743152e-01 9.44725633e-01 1.01776862e+00 -2.21457511e-01 4.42953408e-01 3.58110845e-01 1.18215811e+00 5.07760406e-01 5.07089972e-01 4.61462885e-01 6.43401027e-01 8.52857411e-01 4.11835343e-01 1.85589790e-01 -2.95575947e-01 -7.22169936e-01 4.96889800e-01 1.01335025e+00 -5.47158957e-01 -6.36347830e-02 -6.79890931e-01 4.86750543e-01 -2.25482893e+00 -1.05661106e+00 3.02960157e-01 1.83417761e+00 3.77483457e-01 7.36136585e-02 2.97075659e-01 -6.00841455e-02 4.73658383e-01 7.07900226e-01 -7.00924039e-01 1.92172751e-01 2.14869857e-01 3.61210816e-02 2.00168326e-01 4.72846091e-01 -1.23521066e+00 1.13286531e+00 6.57126522e+00 3.11802745e-01 -1.06751168e+00 1.28302380e-01 9.09908041e-02 -4.28228825e-01 -2.77357072e-01 -1.74684629e-01 -4.03755695e-01 2.59094119e-01 8.61604035e-01 1.96354650e-02 1.43046305e-01 7.29453444e-01 3.94990325e-01 3.31064701e-01 -1.36339462e+00 9.47863460e-01 -1.04386387e-02 -1.44385982e+00 2.59741664e-01 6.22028783e-02 7.31234729e-01 9.30823162e-02 -1.24132015e-01 2.91977167e-01 2.09111318e-01 -9.10763144e-01 1.00809455e+00 7.01759398e-01 7.71647871e-01 -6.02001846e-01 4.47424889e-01 4.83200461e-01 -1.57807958e+00 -1.59037396e-01 -1.81278139e-01 -1.31506518e-01 6.08646035e-01 1.20588817e-01 -2.17659146e-01 7.80452549e-01 5.79208612e-01 1.28845680e+00 -2.23627731e-01 6.42017007e-01 -4.01017338e-01 1.51365772e-01 -6.62367865e-02 4.30558622e-01 3.99729848e-01 5.98750152e-02 5.13287842e-01 9.89587545e-01 4.57121730e-01 1.82801440e-01 1.76851317e-01 5.63230038e-01 -1.09055266e-01 -3.94537568e-01 -6.11271322e-01 -6.66475296e-03 2.76045799e-01 9.40151572e-01 -2.79231638e-01 -3.78933817e-01 -7.15521216e-01 1.38310206e+00 5.06808579e-01 4.60523665e-01 -8.35989654e-01 1.55091688e-01 1.00684977e+00 -6.64223582e-02 7.60979593e-01 -7.78992951e-01 1.84909493e-01 -1.55440378e+00 1.66774601e-01 -4.84435946e-01 4.36578333e-01 -7.64901102e-01 -9.86378968e-01 4.83944297e-01 4.87734787e-02 -1.39431167e+00 -8.25961292e-01 -8.00730467e-01 -4.67075795e-01 5.24398863e-01 -1.34051418e+00 -1.32983518e+00 -4.26367939e-01 8.23429823e-01 7.51951158e-01 -1.07736684e-01 5.78177035e-01 2.23985970e-01 -5.91187418e-01 3.97891015e-01 -2.60647535e-01 3.38563472e-01 6.39517009e-01 -9.08989370e-01 8.33061516e-01 8.78322721e-01 1.78199813e-01 4.70800966e-01 2.72966921e-01 -5.59858918e-01 -1.71312690e+00 -1.30954885e+00 6.79520130e-01 -6.47155464e-01 6.52361929e-01 -1.57984897e-01 -8.14543605e-01 9.37270045e-01 -1.72031358e-01 5.25714576e-01 3.35019976e-01 -2.95440555e-01 -5.02465665e-01 2.89179325e-01 -5.86966693e-01 5.36647022e-01 1.59631836e+00 -7.56325185e-01 -8.54797840e-01 -8.82987082e-02 8.25903833e-01 -6.02629483e-01 -9.68491912e-01 3.71615469e-01 7.85916567e-01 -6.67729259e-01 1.32354307e+00 -1.08545339e+00 8.33033025e-01 -3.32786143e-01 -2.12515369e-01 -9.66026425e-01 -5.48876405e-01 -7.89531231e-01 -8.38959634e-01 6.18003964e-01 -5.46642393e-02 1.46475926e-01 9.59421873e-01 2.76217431e-01 -2.37835944e-01 -8.44035983e-01 -8.29924166e-01 -6.36090636e-01 4.87731677e-03 -3.71880949e-01 3.99443656e-01 6.66231394e-01 -2.51034528e-01 3.60768884e-01 -7.99758673e-01 2.12955937e-01 4.59914774e-01 1.39122188e-01 1.00642693e+00 -8.00231099e-01 -6.20880306e-01 -1.18362002e-01 -7.37068236e-01 -1.94514012e+00 4.46836859e-01 -6.85954928e-01 1.63446948e-01 -1.44090021e+00 9.48991850e-02 3.17572862e-01 -2.63629168e-01 3.54357809e-01 -3.76849920e-01 1.71647012e-01 3.58723104e-01 5.48714578e-01 -7.00064063e-01 9.55086470e-01 1.67554021e+00 -5.64218462e-02 1.25285005e-02 -1.45384863e-01 -2.62096435e-01 8.49409103e-01 2.32229188e-01 -2.55551428e-01 -5.73129117e-01 -1.02506709e+00 -2.17409253e-01 4.87431884e-01 6.24304593e-01 -1.04486477e+00 3.28339577e-01 -3.05024296e-01 5.52410007e-01 -5.24073839e-01 6.20582759e-01 -5.27509987e-01 1.52899206e-01 4.68468934e-01 -2.75191307e-01 2.90569872e-01 -1.50252745e-01 1.02885604e+00 -2.37033889e-01 3.53552073e-01 4.98507172e-01 -3.74782473e-01 -1.19394231e+00 7.42755234e-01 -3.02226275e-01 1.09583259e-01 9.67299044e-01 -1.86081067e-01 -1.40512027e-02 -3.19121331e-01 -1.01814437e+00 1.40278608e-01 5.14571428e-01 7.37104177e-01 6.73218787e-01 -1.57331002e+00 -4.38074380e-01 2.56991357e-01 5.00000045e-02 4.06184047e-01 3.54077607e-01 7.11637735e-01 -6.32099926e-01 4.74180430e-01 -5.61393321e-01 -8.02262664e-01 -6.98986292e-01 6.63615942e-01 2.10259676e-01 -1.83262005e-01 -1.18271327e+00 7.56699860e-01 2.62297630e-01 -1.11755177e-01 6.40135899e-04 -3.49225909e-01 4.07281239e-03 -2.74107665e-01 4.63304311e-01 4.13295507e-01 -2.13589847e-01 -9.10892487e-01 -4.24030721e-01 9.40764308e-01 2.82885641e-01 -2.36514166e-01 1.44818604e+00 -3.16051960e-01 2.94976234e-01 4.22129095e-01 1.54912961e+00 -4.47737157e-01 -2.05187368e+00 -2.63692290e-01 -9.40691680e-03 -4.55563009e-01 -1.79560483e-01 5.00298589e-02 -1.21489799e+00 1.01410413e+00 2.10006218e-02 -5.96689880e-01 9.26562130e-01 5.52271269e-02 1.16410697e+00 5.94540358e-01 5.45969129e-01 -1.01759648e+00 6.09336734e-01 5.47318459e-01 7.47241437e-01 -1.07983577e+00 -7.25335330e-02 -1.96905240e-01 -7.32689202e-01 1.15359545e+00 6.02218568e-01 -5.22281647e-01 5.91727138e-01 -1.08478919e-01 -1.81397006e-01 -4.30076867e-02 -1.01284492e+00 -2.47620851e-01 5.22409618e-01 5.93786478e-01 3.92712682e-01 -2.64276594e-01 8.70017260e-02 6.14035606e-01 -1.40426746e-02 2.33883426e-01 1.75319314e-01 1.02461302e+00 -4.10803795e-01 -1.10452235e+00 -3.65312323e-02 -2.03968644e-01 -1.33173704e-01 4.71684396e-01 -3.67384292e-02 9.53227520e-01 4.82566375e-03 4.51177984e-01 3.45907919e-02 -6.16023719e-01 3.79571915e-01 8.43133684e-03 6.63456082e-01 -5.68966031e-01 -6.49831668e-02 2.48739421e-01 2.32244991e-02 -1.30868113e+00 -6.61257803e-01 -6.17117703e-01 -1.31378424e+00 -1.81800842e-01 4.16767716e-01 -2.80375957e-01 1.05042286e-01 1.12763023e+00 5.46551645e-01 6.25579655e-01 3.41310650e-01 -1.50680792e+00 -5.72183907e-01 -6.94981277e-01 -2.61485875e-01 7.15242863e-01 5.94615817e-01 -1.01376545e+00 5.44197895e-02 3.56663913e-01]
[7.371423721313477, -0.3036661744117737]
05ef9c0a-b941-4190-a23c-84d81f22c657
3d-human-pose-estimation-in-multi-view
2210.11826
null
https://arxiv.org/abs/2210.11826v1
https://arxiv.org/pdf/2210.11826v1.pdf
3D Human Pose Estimation in Multi-View Operating Room Videos Using Differentiable Camera Projections
3D human pose estimation in multi-view operating room (OR) videos is a relevant asset for person tracking and action recognition. However, the surgical environment makes it challenging to find poses due to sterile clothing, frequent occlusions, and limited public data. Methods specifically designed for the OR are generally based on the fusion of detected poses in multiple camera views. Typically, a 2D pose estimator such as a convolutional neural network (CNN) detects joint locations. Then, the detected joint locations are projected to 3D and fused over all camera views. However, accurate detection in 2D does not guarantee accurate localisation in 3D space. In this work, we propose to directly optimise for localisation in 3D by training 2D CNNs end-to-end based on a 3D loss that is backpropagated through each camera's projection parameters. Using videos from the MVOR dataset, we show that this end-to-end approach outperforms optimisation in 2D space.
['Ivo A. M. J. Broeders', 'Jelmer M. Wolterink', 'Beerend G. A. Gerats']
2022-10-21
null
null
null
null
['3d-human-pose-estimation']
['computer-vision']
[ 2.55496055e-01 1.54525355e-01 -1.36616141e-01 -8.75731930e-02 -1.10704935e+00 -6.49968684e-01 2.28362650e-01 1.79920867e-01 -9.37032223e-01 3.81536186e-01 3.08823317e-01 -9.07847658e-02 -2.08208747e-02 -1.07738636e-01 -8.60899329e-01 -4.92573351e-01 -2.34646454e-01 3.55258822e-01 -1.60839990e-01 3.93368676e-02 -3.33941355e-02 7.71122456e-01 -9.44605827e-01 3.26926075e-02 -7.44137987e-02 1.02514577e+00 1.08339861e-01 1.13289499e+00 6.07201755e-01 3.68393064e-01 -4.40826029e-01 -3.91712606e-01 5.92673302e-01 -2.58561403e-01 -4.30910826e-01 3.29173863e-01 8.58454406e-01 -5.80956638e-01 -4.54011828e-01 9.13536906e-01 9.53811109e-01 -5.32977693e-02 1.05777256e-01 -8.19216669e-01 4.45358574e-01 -2.40704089e-01 -5.08205891e-01 1.16945013e-01 8.59563649e-01 1.59887180e-01 3.15744728e-01 -7.21188724e-01 7.16297448e-01 1.04376209e+00 1.00478542e+00 7.41706491e-01 -8.52391541e-01 -3.11163723e-01 1.05592422e-01 -3.92452061e-01 -1.35965431e+00 -2.05159664e-01 6.57781363e-01 -4.27854121e-01 9.00681555e-01 4.09422249e-01 1.10209239e+00 1.19907618e+00 6.93610907e-01 7.67471790e-01 7.58592546e-01 -2.43596360e-01 -1.20134681e-01 8.78307670e-02 -6.24824047e-01 9.02017772e-01 7.03059286e-02 1.72058985e-01 -6.00067735e-01 -1.16503261e-01 1.20263827e+00 7.70406544e-01 -4.82567757e-01 -9.90482509e-01 -1.42349613e+00 5.75950265e-01 7.06754029e-01 -1.22214094e-01 -6.01027369e-01 3.33829075e-01 3.82082492e-01 -9.53330919e-02 3.10532123e-01 5.39280832e-01 -3.30802679e-01 -3.57918203e-01 -7.03446507e-01 2.67219722e-01 4.72521544e-01 7.86308825e-01 1.01241708e-01 -6.73072875e-01 -1.34751275e-01 3.63452107e-01 4.29007709e-01 2.40602508e-01 3.68821651e-01 -6.74284339e-01 5.56802154e-01 5.84330201e-01 2.33196303e-01 -9.85991478e-01 -1.04627597e+00 -7.45907128e-01 -6.94804788e-01 1.99543267e-01 3.30208004e-01 -3.20760816e-01 -7.71340728e-01 1.51578534e+00 5.75273573e-01 -1.23812437e-01 -7.47596100e-02 1.37451947e+00 6.67147875e-01 -1.14730902e-01 -1.64805502e-01 3.79273556e-02 1.33469367e+00 -9.58284080e-01 -3.44580680e-01 -6.51487708e-01 8.64856064e-01 -7.16426373e-01 3.08517069e-01 5.63068211e-01 -1.20637286e+00 -3.44287962e-01 -8.57966900e-01 1.25220805e-01 -6.78784959e-03 3.27262610e-01 3.56701940e-01 6.82426095e-01 -9.10107017e-01 4.06975269e-01 -1.25836146e+00 -5.34580886e-01 5.08353472e-01 8.19585860e-01 -7.78997481e-01 -2.06593812e-01 -7.81479359e-01 1.13719678e+00 2.80821413e-01 6.22949064e-01 -9.45157886e-01 -3.51127326e-01 -1.17075062e+00 -3.90046239e-01 5.09823561e-01 -9.86135304e-01 1.17251623e+00 -4.68680501e-01 -1.31159186e+00 1.06537175e+00 -3.35696042e-02 -3.36546093e-01 1.16794419e+00 -6.57048225e-01 5.92955276e-02 2.46125191e-01 -1.66785911e-01 6.01035118e-01 5.93949497e-01 -8.13399792e-01 -4.69799310e-01 -8.62217009e-01 1.93603516e-01 7.04729557e-01 -2.44028568e-01 4.44493592e-02 -9.23320293e-01 -4.05965775e-01 2.89267272e-01 -1.21113491e+00 -6.50231421e-01 4.80062246e-01 -4.85592276e-01 3.52845311e-01 3.86027515e-01 -9.44478989e-01 6.47080064e-01 -2.14229846e+00 5.22141457e-01 1.95627928e-01 4.88763124e-01 -1.76838309e-01 3.11628759e-01 7.34367818e-02 -4.65468243e-02 -5.65207303e-01 1.21506795e-01 -8.28027725e-01 -4.15149331e-01 -1.11247092e-01 5.09969473e-01 1.23810828e+00 -1.86666641e-02 7.91421592e-01 -1.10182154e+00 -4.91746694e-01 6.07622445e-01 7.79082894e-01 -5.64236581e-01 2.90805668e-01 3.71053755e-01 9.13073480e-01 -1.26587898e-01 5.59679508e-01 4.60792154e-01 -1.66712254e-01 3.08180988e-01 -1.26471430e-01 9.56994295e-02 -8.88244063e-02 -1.04103529e+00 2.44997573e+00 -6.72451138e-01 3.67008328e-01 2.30062857e-01 -5.81108630e-01 6.52139604e-01 5.02970695e-01 7.84202218e-01 -3.50536764e-01 2.41722807e-01 2.13487566e-01 -1.41903207e-01 -3.61375898e-01 1.95636168e-01 -2.51422852e-01 -2.76956856e-01 -1.91698626e-01 -6.76077157e-02 -5.81228435e-02 -2.96624720e-01 -1.11872898e-02 1.20439219e+00 2.17790946e-01 4.43487734e-01 2.86216140e-01 3.10248554e-01 -1.20954588e-01 2.30764523e-01 5.36853611e-01 -2.33595759e-01 9.92379844e-01 4.68734056e-01 -7.92603314e-01 -9.22368824e-01 -1.03235435e+00 4.44573425e-02 3.27994466e-01 2.35726759e-01 -2.56980509e-01 -4.74919558e-01 -1.01060593e+00 -1.49456589e-02 -1.25411581e-02 -7.53936172e-01 -3.37535441e-01 -7.10506737e-01 -2.99146950e-01 1.71196923e-01 6.64239883e-01 -2.25341809e-03 -5.11630654e-01 -1.31670308e+00 2.57452160e-01 -1.20849416e-01 -1.15269268e+00 -7.16637492e-01 3.10208768e-01 -8.44520032e-01 -1.25072253e+00 -1.32999229e+00 -5.03799915e-01 1.08891547e+00 2.66457856e-01 7.29452193e-01 -2.85519034e-01 -6.06975675e-01 5.97070813e-01 -3.15871872e-02 -3.98810297e-01 3.24912854e-02 3.05647384e-02 1.48783416e-01 -6.84113950e-02 1.77127093e-01 -2.84835938e-02 -9.45427477e-01 3.88083130e-01 -3.53730857e-01 1.36409355e-02 7.22957909e-01 6.94208622e-01 4.97254431e-01 -2.45560661e-01 -2.71493793e-01 -5.39355159e-01 3.09520751e-01 6.54918179e-02 -7.08962440e-01 1.13322727e-01 3.62378769e-02 -3.71751845e-01 1.56649381e-01 -4.16148394e-01 -3.63981545e-01 8.83809865e-01 -2.89350562e-02 -8.34306479e-01 -2.21194506e-01 1.51047885e-01 2.70286594e-02 -3.02172452e-01 6.16510272e-01 1.01751022e-01 3.70770156e-01 -1.48684248e-01 -2.44765311e-01 3.84841263e-01 6.20858073e-01 1.27516529e-02 4.54429626e-01 5.27155995e-01 2.26766005e-01 -5.32936454e-01 -8.40589285e-01 -8.25224876e-01 -8.44330013e-01 -6.07600212e-01 1.10585380e+00 -1.28136992e+00 -9.67816770e-01 1.50448248e-01 -1.25101399e+00 6.64159432e-02 9.29368660e-02 1.10430896e+00 -8.13214540e-01 1.90098614e-01 -1.45345449e-01 -9.41971004e-01 -3.11889887e-01 -1.57673109e+00 1.70066583e+00 2.73642759e-03 -5.25614381e-01 -1.06108451e+00 3.63398977e-02 3.95062596e-01 1.07055590e-01 7.56533206e-01 -1.55430464e-02 -3.45783532e-01 -3.83408338e-01 -1.26927555e+00 1.64643243e-01 2.62206830e-02 8.15746263e-02 -8.57837558e-01 -8.70670199e-01 -7.08926737e-01 -4.66616964e-03 -1.81213304e-01 4.97829348e-01 8.10145140e-01 1.07479668e+00 -1.79470718e-01 -6.32962942e-01 8.19461167e-01 1.15783465e+00 -1.41212374e-01 3.11850578e-01 5.34022570e-01 8.30043852e-01 4.76065755e-01 5.14959097e-01 4.82456475e-01 1.55204490e-01 1.01554310e+00 7.60124564e-01 -3.63773257e-01 2.33158022e-01 -1.30417440e-02 2.51598090e-01 5.55085503e-02 -1.80928811e-01 6.68998808e-02 -8.70102525e-01 3.86420965e-01 -1.73923206e+00 -5.22351623e-01 3.13637942e-01 2.62487054e+00 5.61787128e-01 2.35481456e-01 3.05119991e-01 -1.00561738e-01 5.43809593e-01 -1.53219816e-03 -3.74340415e-01 8.55332837e-02 3.87165099e-01 -2.68746972e-01 9.77138937e-01 3.05618465e-01 -1.40062964e+00 2.30798930e-01 5.28010225e+00 8.04957598e-02 -1.19803655e+00 1.26055926e-01 4.42106187e-01 -8.34702790e-01 4.26881850e-01 -3.94889265e-01 -8.71665716e-01 1.23265758e-01 4.23547000e-01 5.74831247e-01 5.12286881e-03 8.57563198e-01 5.43639474e-02 -1.71160281e-01 -1.30153859e+00 1.35344195e+00 4.80449855e-01 -1.09459651e+00 -6.00936294e-01 4.53817874e-01 4.71031815e-01 -1.37761654e-02 1.86956644e-01 -2.04114243e-01 -1.32419705e-01 -1.06857181e+00 5.39033413e-01 5.91095448e-01 8.03827286e-01 -9.84467864e-01 1.00751078e+00 5.13273776e-01 -7.10619628e-01 -6.37167841e-02 -1.83719024e-01 2.98869729e-01 3.53234887e-01 1.01899348e-01 -1.39878368e+00 4.36047077e-01 6.43176854e-01 7.53131926e-01 -3.69945556e-01 1.40291464e+00 -6.05812855e-02 -3.49677086e-01 -4.01321501e-01 1.08159520e-01 3.02663952e-01 4.25856084e-01 6.71403050e-01 1.05042100e+00 4.17340726e-01 -2.87986755e-01 4.26674724e-01 7.51981959e-02 1.28886238e-01 -2.60189742e-01 -6.90442383e-01 3.63358021e-01 -3.24413687e-01 1.34722936e+00 -6.92820907e-01 1.80033699e-01 -3.69880140e-01 1.23905754e+00 1.05030462e-01 -8.50362852e-02 -7.05973864e-01 -1.13426961e-01 5.10061324e-01 3.56581986e-01 1.28579974e-01 -3.42125416e-01 4.68816161e-02 -9.78291035e-01 2.93499947e-01 -7.59664893e-01 4.66354728e-01 -6.57581627e-01 -6.77463710e-01 5.19850135e-01 -4.06694524e-02 -1.66665030e+00 -4.90901381e-01 -8.30987573e-01 -1.74783528e-01 9.66008067e-01 -1.03943455e+00 -1.01860666e+00 -5.40496290e-01 4.77859467e-01 4.67362404e-01 1.18109137e-01 9.92736340e-01 1.75067961e-01 -4.11052734e-01 7.40975142e-01 -2.65490204e-01 3.03066641e-01 8.62958610e-01 -1.31196284e+00 2.76575208e-01 6.67147577e-01 -1.22115724e-01 6.28582358e-01 7.07175612e-01 -5.58233798e-01 -1.74639988e+00 -9.58629668e-01 6.29210055e-01 -1.07646585e+00 5.95119372e-02 -5.14407396e-01 -1.01948269e-01 7.17139840e-01 -2.67597705e-01 4.87154335e-01 5.81920743e-01 2.26919800e-02 1.40653878e-01 9.68300626e-02 -1.25710487e+00 5.76737463e-01 1.02443826e+00 -2.57558912e-01 -1.31221861e-01 7.06290901e-01 3.16436350e-01 -1.39548719e+00 -9.65145409e-01 2.81294405e-01 8.71060312e-01 -8.18409920e-01 1.20351875e+00 -5.50990939e-01 2.39224941e-01 -7.81179890e-02 -4.95427568e-03 -1.20759737e+00 6.76779374e-02 -7.32702374e-01 8.68847892e-02 -2.63497997e-02 2.92894125e-01 -3.82345349e-01 1.13872576e+00 5.46070397e-01 -1.22891426e-01 -8.39209676e-01 -1.41805780e+00 -6.09156370e-01 -4.39289361e-01 -3.92145097e-01 -6.03986233e-02 3.35090280e-01 4.87310160e-03 -1.02277786e-01 -5.23174465e-01 4.90953296e-01 7.11688042e-01 -1.97006568e-01 1.00994575e+00 -9.69743848e-01 -4.55826968e-01 -1.78470090e-01 -1.03826892e+00 -9.77298141e-01 -4.44204569e-01 -6.60817683e-01 2.09791899e-01 -1.52845812e+00 3.20375741e-01 7.22431391e-02 -1.15936674e-01 1.19069852e-01 -9.87074301e-02 4.14123148e-01 9.95590314e-02 1.17785096e-01 -7.20712423e-01 1.02282898e-03 1.34596848e+00 1.50899634e-01 -1.02849990e-01 3.01448673e-01 -3.76582354e-01 7.42104292e-01 5.67509174e-01 -6.25771165e-01 4.85691875e-02 -4.56062198e-01 4.05867636e-01 3.74706924e-01 8.19364846e-01 -1.13066459e+00 4.08056676e-01 1.99794263e-01 1.01145875e+00 -8.84090245e-01 9.79373991e-01 -1.14048195e+00 6.62211776e-02 8.12568486e-01 -2.90947735e-01 1.29763126e-01 1.47065580e-01 6.42044365e-01 -3.94582041e-02 2.34247535e-01 7.19270110e-01 -5.52174032e-01 -1.74998298e-01 4.01560009e-01 2.26125331e-03 -1.62471816e-01 1.11944413e+00 -5.36219418e-01 4.38207000e-01 -4.31529641e-01 -9.87430453e-01 1.38601333e-01 5.46042800e-01 3.93517822e-01 9.95227873e-01 -1.24031389e+00 -6.28882527e-01 3.52846950e-01 2.29549095e-01 5.18241823e-01 3.73653233e-01 1.46050382e+00 -7.11506069e-01 7.27816522e-01 -3.29253338e-02 -1.03903008e+00 -1.56496346e+00 5.35272896e-01 8.06125224e-01 -3.01056415e-01 -8.16472471e-01 1.03311110e+00 2.99093068e-01 -7.00609744e-01 5.44328690e-01 -9.86786932e-02 5.30175259e-03 -3.34639043e-01 6.48611367e-01 -1.11992650e-01 2.94979513e-01 -5.95016837e-01 -5.89680910e-01 7.05948234e-01 -9.37429294e-02 -1.25701636e-01 1.24142182e+00 5.97140677e-02 3.39869708e-01 3.59132998e-02 1.43209374e+00 -9.58165154e-02 -1.62190735e+00 -8.92794430e-02 -4.74721223e-01 -7.93074727e-01 1.35703236e-01 -5.88317394e-01 -9.94834960e-01 8.38112235e-01 9.04396057e-01 -4.08570260e-01 9.58728969e-01 1.73865736e-01 5.42924881e-01 3.29890192e-01 3.18851441e-01 -8.47110033e-01 1.52934626e-01 9.61388648e-02 9.83839393e-01 -1.29839599e+00 1.72091439e-01 -2.34044224e-01 -5.99733591e-01 1.18926930e+00 6.17045999e-01 9.60896388e-02 4.68705416e-01 1.98642731e-01 2.22696707e-01 -3.88455898e-01 -2.38317043e-01 9.82777774e-02 4.82403487e-01 5.74069858e-01 4.21373069e-01 5.45372330e-02 2.33284384e-01 6.02669567e-02 -1.51493967e-01 -8.73682052e-02 2.46318772e-01 1.34895861e+00 -9.23295096e-02 -6.05832398e-01 -6.43558681e-01 2.58243471e-01 -7.42481530e-01 2.42313445e-01 -2.51358211e-01 6.71928585e-01 1.32238731e-01 6.22461736e-01 1.08430132e-01 -1.70653984e-01 8.35606515e-01 -2.18432412e-01 8.08200121e-01 -7.74399936e-01 -6.40157938e-01 3.70651335e-01 -3.78138013e-02 -9.47785676e-01 -1.53796256e-01 -8.70538890e-01 -8.62564802e-01 2.39009395e-01 -2.01275855e-01 -3.31543446e-01 1.10155129e+00 8.36035609e-01 6.87384009e-02 6.10860825e-01 5.32330513e-01 -1.23347843e+00 -6.25509501e-01 -7.10029304e-01 -2.89534301e-01 1.07017681e-01 6.71641052e-01 -7.56066918e-01 -1.68908089e-01 -2.92077571e-01]
[6.848818302154541, -1.0308849811553955]
d7e3c8b0-5522-4372-aeef-c33adf88789c
dilation-erosion-for-single-frame-supervised
2212.06348
null
https://arxiv.org/abs/2212.06348v1
https://arxiv.org/pdf/2212.06348v1.pdf
Dilation-Erosion for Single-Frame Supervised Temporal Action Localization
To balance the annotation labor and the granularity of supervision, single-frame annotation has been introduced in temporal action localization. It provides a rough temporal location for an action but implicitly overstates the supervision from the annotated-frame during training, leading to the confusion between actions and backgrounds, i.e., action incompleteness and background false positives. To tackle the two challenges, in this work, we present the Snippet Classification model and the Dilation-Erosion module. In the Dilation-Erosion module, we expand the potential action segments with a loose criterion to alleviate the problem of action incompleteness and then remove the background from the potential action segments to alleviate the problem of action incompleteness. Relying on the single-frame annotation and the output of the snippet classification, the Dilation-Erosion module mines pseudo snippet-level ground-truth, hard backgrounds and evident backgrounds, which in turn further trains the Snippet Classification model. It forms a cyclic dependency. Furthermore, we propose a new embedding loss to aggregate the features of action instances with the same label and separate the features of actions from backgrounds. Experiments on THUMOS14 and ActivityNet 1.2 validate the effectiveness of the proposed method. Code has been made publicly available (https://github.com/LingJun123/single-frame-TAL).
['Yan Rui', 'Xiangbo Shu', 'Yang Zhao', 'Fanming Wang', 'Yan Song', 'Bin Wang']
2022-12-13
null
null
null
null
['action-localization']
['computer-vision']
[ 4.89742279e-01 3.08718443e-01 -4.23131764e-01 -2.55317837e-01 -7.67757177e-01 -2.84756958e-01 4.32952374e-01 8.79488215e-02 -4.48508501e-01 7.19758451e-01 2.09692225e-01 1.27745271e-01 2.30693340e-01 -5.64672530e-01 -5.64995944e-01 -9.45587695e-01 3.56899261e-01 -1.66812047e-01 8.49640429e-01 2.17065305e-01 -3.90266664e-02 8.33092928e-02 -1.56303000e+00 6.87797129e-01 6.96249902e-01 1.27319515e+00 1.81299478e-01 2.55406708e-01 -6.45447373e-02 1.17889452e+00 -6.81151092e-01 -5.63630201e-02 2.86467820e-01 -6.59338415e-01 -5.84770441e-01 3.89104217e-01 4.37400967e-01 -4.44728315e-01 -4.34747875e-01 1.04020858e+00 5.57650745e-01 8.41295794e-02 9.27344933e-02 -1.41346002e+00 -8.25814456e-02 4.50852901e-01 -8.56761336e-01 4.57537562e-01 2.35461786e-01 3.24087679e-01 9.38405216e-01 -1.02606535e+00 6.16369307e-01 1.12937593e+00 6.30322933e-01 6.15256965e-01 -8.76078486e-01 -6.20622635e-01 5.83120465e-01 2.80478656e-01 -1.42290092e+00 -3.86063695e-01 7.44152665e-01 -5.35109520e-01 4.84212846e-01 3.93188708e-02 7.56400764e-01 1.18190825e+00 -1.14970552e-02 1.14789879e+00 7.95660675e-01 -2.93622136e-01 2.38190725e-01 -1.32287666e-01 2.56125014e-02 7.22591281e-01 -1.00611411e-01 -1.57747477e-01 -6.80290580e-01 1.43888623e-01 7.97597706e-01 1.44327328e-01 -3.82277936e-01 -1.36179239e-01 -1.19661665e+00 4.46950614e-01 2.00536832e-01 2.90142030e-01 -2.76973963e-01 2.09078386e-01 5.28007746e-01 -2.17101142e-01 4.89611834e-01 -2.44476318e-01 -4.69433010e-01 -1.92022651e-01 -8.79332185e-01 -8.17083120e-02 2.92114973e-01 9.38106775e-01 7.99994588e-01 -9.31560844e-02 -6.21169806e-01 6.40010834e-01 4.08393778e-02 1.02180414e-01 3.17392051e-01 -8.86135399e-01 7.72362173e-01 1.02128768e+00 1.81979388e-01 -7.81738997e-01 -2.87017554e-01 -2.84967154e-01 -4.98237818e-01 2.65637457e-01 6.26948297e-01 -9.09396037e-02 -9.53983545e-01 1.69013524e+00 7.47500896e-01 4.96603370e-01 -2.90082157e-01 9.95617092e-01 6.50643647e-01 3.70555699e-01 2.18703657e-01 -1.69374764e-01 1.36343539e+00 -1.18190539e+00 -9.33984339e-01 -2.94453263e-01 8.18917692e-01 -4.02830005e-01 1.12956178e+00 2.01513395e-01 -9.76463020e-01 -7.77086437e-01 -9.67333674e-01 -4.35516909e-02 -1.75499305e-01 6.69043243e-01 4.62445527e-01 2.25189090e-01 -4.89126682e-01 5.89127898e-01 -1.20047057e+00 -1.83004931e-01 7.65828967e-01 8.70114341e-02 -3.58344555e-01 1.77511036e-01 -1.14856708e+00 6.16470397e-01 6.37052417e-01 3.88737500e-01 -9.72119689e-01 -4.73029554e-01 -8.72597396e-01 -1.56544670e-01 9.41628695e-01 -2.18976170e-01 1.14370668e+00 -1.23376191e+00 -1.18762827e+00 6.12454176e-01 -1.53795421e-01 -3.42442453e-01 7.48521268e-01 -3.08380246e-01 -4.17632967e-01 2.51440644e-01 3.58305305e-01 4.58021909e-01 7.00451553e-01 -1.01718760e+00 -1.20062923e+00 -3.41140628e-01 3.14094901e-01 2.62017846e-01 -1.55785114e-01 -3.96923386e-02 -6.49497092e-01 -6.42634809e-01 2.93820441e-01 -7.48121738e-01 -1.07482873e-01 1.30783811e-01 -4.45302784e-01 -2.59368211e-01 8.37648094e-01 -5.97876608e-01 1.57647276e+00 -2.48714542e+00 -7.27631599e-02 -1.52735144e-01 1.26949355e-01 1.15197890e-01 2.58526485e-02 -3.33882682e-02 -1.49659976e-01 -1.87379755e-02 -2.85300136e-01 -3.50624710e-01 -2.96159118e-01 3.33675563e-01 -1.17679723e-01 5.38251281e-01 4.39533383e-01 5.99535465e-01 -1.16399729e+00 -8.48060369e-01 2.98853993e-01 3.39931011e-01 -3.12169343e-01 -5.65477274e-02 -3.15590858e-01 6.82668686e-01 -7.24481702e-01 9.41442013e-01 4.50698048e-01 -8.45997185e-02 -5.70207648e-02 -4.36017543e-01 -3.34629834e-01 3.17430168e-01 -1.56109726e+00 1.88808525e+00 -1.74642935e-01 2.93315738e-01 2.88395733e-02 -7.99483657e-01 4.80502725e-01 2.69789845e-01 7.78909206e-01 -6.02592945e-01 1.32547677e-01 1.78980991e-01 -1.25625685e-01 -6.29293025e-01 2.20658496e-01 5.60473651e-02 -3.65878791e-02 1.58530846e-01 1.55591622e-01 4.68205601e-01 3.35671008e-01 1.01274796e-01 1.33726215e+00 8.03401470e-01 2.10095942e-01 7.80273825e-02 6.93218648e-01 -6.76030293e-02 1.04455793e+00 5.14841735e-01 -5.32937884e-01 7.77908921e-01 6.65832818e-01 -5.05114436e-01 -5.07825077e-01 -9.58675981e-01 5.35381250e-02 1.15550196e+00 4.57361341e-01 -6.10056579e-01 -8.88922870e-01 -1.20240068e+00 -2.70014107e-01 4.31060970e-01 -8.55312467e-01 -2.05945238e-01 -7.60715663e-01 -6.60929501e-01 5.95769465e-01 8.04861069e-01 6.53636575e-01 -1.20413172e+00 -8.41336787e-01 2.64777988e-01 -4.67773706e-01 -1.26237011e+00 -6.99572861e-01 3.75952750e-01 -6.15576804e-01 -1.23462439e+00 -4.49355394e-01 -4.95646328e-01 7.37004638e-01 3.17631476e-02 7.68025517e-01 1.58595294e-01 -2.11188465e-01 9.17296484e-02 -5.18232644e-01 -3.01269591e-01 -1.32932752e-01 -2.30705649e-01 -1.13396980e-01 3.90687793e-01 3.92685771e-01 -4.52233911e-01 -7.97576368e-01 5.35147309e-01 -8.30907047e-01 1.00804672e-01 4.63771373e-01 6.90195262e-01 1.03506076e+00 3.04729313e-01 4.37544316e-01 -6.61019504e-01 -5.34021631e-02 -2.23804161e-01 -5.21602094e-01 1.98097467e-01 -1.11737363e-01 -2.32566416e-01 3.22566062e-01 -5.93485713e-01 -1.14205098e+00 5.14462888e-01 1.28899291e-01 -5.32664418e-01 -2.24490777e-01 1.92094356e-01 -6.16945803e-01 3.05219054e-01 5.52735329e-01 1.52204022e-01 -3.11740756e-01 -4.82526064e-01 3.42903554e-01 3.75187516e-01 6.69079781e-01 -3.66182387e-01 4.90316868e-01 8.39338899e-01 -2.81309605e-01 -5.53639293e-01 -1.28301668e+00 -6.22334778e-01 -8.32937717e-01 -4.49573070e-01 1.18492377e+00 -9.74027395e-01 -2.83390701e-01 5.28750598e-01 -1.19289994e+00 -3.62035453e-01 -6.93529606e-01 4.09515321e-01 -4.62552994e-01 4.80361432e-01 -4.07702506e-01 -9.03931439e-01 5.81245869e-02 -1.04593694e+00 1.36564589e+00 3.26834828e-01 -1.73265949e-01 -5.42460561e-01 -2.07234263e-01 2.88972795e-01 -3.19368780e-01 4.54203725e-01 4.18956310e-01 -5.32406628e-01 -7.17976213e-01 -2.39661857e-01 -1.21468529e-01 5.29501915e-01 3.07127416e-01 1.86544396e-02 -1.15348315e+00 1.00572973e-01 1.20525360e-01 -2.41309002e-01 1.07512045e+00 3.68516177e-01 1.27039754e+00 -2.07838491e-01 -3.39933574e-01 3.79370511e-01 1.12986803e+00 3.05582345e-01 7.39611506e-01 3.74960154e-01 8.14948559e-01 5.50576985e-01 9.70982254e-01 6.81341708e-01 1.94997877e-01 7.24771559e-01 4.88784522e-01 -1.36563674e-01 -3.50258142e-01 -3.74502331e-01 5.46862841e-01 1.73962101e-01 -1.29645780e-01 -2.25876212e-01 -5.77054143e-01 4.32331324e-01 -2.10318828e+00 -1.10579872e+00 -2.81198800e-01 2.15100121e+00 9.30777550e-01 4.30023521e-01 2.16168121e-01 3.29690009e-01 1.00207245e+00 3.07308674e-01 -5.43244958e-01 2.87746876e-01 -2.20730618e-01 -4.38946448e-02 5.07956505e-01 3.01681966e-01 -1.39736497e+00 9.26461935e-01 4.31830120e+00 1.03192830e+00 -7.61942089e-01 3.53918165e-01 4.80983406e-01 -1.68907240e-01 2.53305167e-01 6.14202991e-02 -1.12400651e+00 7.31799364e-01 1.70631438e-01 2.70976812e-01 8.06791335e-03 8.78618240e-01 5.20707846e-01 -4.50787157e-01 -1.24332190e+00 7.31225193e-01 1.84921119e-02 -9.34668005e-01 -2.74644345e-01 -2.49171212e-01 5.64608753e-01 -1.79043829e-01 -3.29660088e-01 2.52641261e-01 -9.09944400e-02 -4.90211785e-01 1.17731607e+00 3.86514217e-01 6.99644625e-01 -3.76463026e-01 6.87150002e-01 3.36980313e-01 -1.52208078e+00 -2.99455345e-01 -2.38766093e-02 -4.48882245e-02 3.71839643e-01 6.63858294e-01 -4.04413849e-01 6.35295689e-01 6.70743525e-01 9.29202974e-01 -5.56740046e-01 9.87551749e-01 -6.48131669e-01 4.36219990e-01 -3.72720689e-01 4.45209324e-01 1.66536048e-01 -6.97237579e-03 4.84935671e-01 1.09756052e+00 5.73607422e-02 1.10947482e-01 4.90062714e-01 8.49171162e-01 1.96633384e-01 -1.75154552e-01 -2.25837663e-01 -2.87902057e-02 3.24041277e-01 1.21096766e+00 -9.69061673e-01 -3.84276837e-01 -6.38856411e-01 1.11695910e+00 8.32628012e-02 3.70823264e-01 -1.33320045e+00 -2.16869354e-01 3.10521811e-01 3.05862457e-01 3.03594261e-01 1.14739805e-01 -3.48566890e-01 -1.23168409e+00 5.18312812e-01 -6.57820165e-01 6.59898102e-01 -5.84591925e-01 -9.28498685e-01 4.59063590e-01 3.61583680e-02 -1.57614446e+00 2.88239211e-01 -3.37206304e-01 -7.24482715e-01 5.33729076e-01 -1.23886991e+00 -1.00147593e+00 -5.64361811e-01 5.59551358e-01 7.72199929e-01 3.10766757e-01 2.98245788e-01 6.07738554e-01 -9.37169969e-01 3.93563002e-01 -5.73379934e-01 2.75199354e-01 6.02764666e-01 -1.09084761e+00 -5.20466901e-02 1.03756475e+00 5.99591024e-02 2.12317914e-01 4.19318944e-01 -8.87378335e-01 -5.87818146e-01 -1.25158119e+00 7.61342049e-01 -5.90283215e-01 7.32055426e-01 -3.91906023e-01 -8.41371059e-01 6.71922386e-01 -3.06578130e-01 3.34864020e-01 2.92923123e-01 -3.99920851e-01 -7.59124905e-02 -1.92909926e-01 -8.45843077e-01 5.11808813e-01 1.26098335e+00 -4.20823663e-01 -5.92609763e-01 3.86310875e-01 6.22545958e-01 -5.11830211e-01 -5.10157645e-01 5.42887509e-01 4.29329664e-01 -1.01840377e+00 7.57057607e-01 -2.55436569e-01 4.90097046e-01 -7.62440205e-01 2.66182646e-02 -6.24543428e-01 -5.22475764e-02 -4.64090079e-01 -1.97987095e-01 1.47734344e+00 3.25318724e-01 -9.78253409e-02 8.25409412e-01 4.43746358e-01 -4.03322756e-01 -9.05568421e-01 -1.16636884e+00 -8.15622509e-01 -5.63150764e-01 -4.39857870e-01 2.94976532e-01 6.81736529e-01 -1.12750627e-01 2.43247002e-01 -3.34298521e-01 1.82308286e-01 3.77823114e-01 -1.40377760e-01 6.64785087e-01 -8.84390175e-01 -3.51454496e-01 -2.38562331e-01 -3.51265311e-01 -1.10691929e+00 8.42089206e-02 -6.39702737e-01 2.94892579e-01 -1.50523245e+00 1.40475661e-01 -2.07135454e-01 -5.61843276e-01 9.88922477e-01 -3.54915142e-01 1.35873273e-01 3.14213596e-02 8.14112127e-02 -1.03086126e+00 5.92284620e-01 1.25517321e+00 -5.31243607e-02 -3.92781019e-01 1.91089213e-01 -3.37622911e-01 1.15174592e+00 6.74515307e-01 -6.97655082e-01 -4.18920159e-01 -2.60488838e-01 -1.31313995e-01 -1.56144425e-01 6.37090683e-01 -1.11497140e+00 6.14647642e-02 -1.27309874e-01 4.05010730e-01 -6.61446333e-01 3.01904559e-01 -9.84875143e-01 -7.73832425e-02 3.28470200e-01 -2.96664059e-01 -3.50578219e-01 7.90745318e-02 8.12965930e-01 -1.96858943e-01 -3.43496531e-01 8.55493307e-01 -1.93702281e-01 -8.23539793e-01 3.75243723e-01 -9.41859484e-02 1.84220091e-01 1.28431678e+00 -5.11246443e-01 -2.30740607e-01 1.29720882e-01 -9.73541021e-01 4.12702918e-01 4.04269367e-01 3.21904927e-01 3.68039876e-01 -1.38118160e+00 -4.36954260e-01 1.96095169e-01 2.61703193e-01 2.57442206e-01 4.51001614e-01 1.31596541e+00 -1.78077653e-01 -1.35789260e-01 1.47953369e-02 -5.78007877e-01 -1.23472595e+00 3.71532291e-01 4.79805201e-01 -2.22831666e-01 -8.33111227e-01 8.09394836e-01 4.81456429e-01 2.89267361e-01 5.37601829e-01 -5.78838468e-01 -2.46689603e-01 2.75749415e-01 6.09072745e-01 5.43869495e-01 -9.36965123e-02 -6.74120009e-01 -5.81247091e-01 3.88315737e-01 2.37859488e-01 -7.94307701e-03 9.10414755e-01 -1.91986695e-01 4.76594865e-02 5.66547871e-01 8.36282551e-01 -3.28072980e-02 -1.75224555e+00 -9.59771276e-02 5.94286360e-02 -4.76569533e-01 -1.08245589e-01 -6.99901998e-01 -1.10042763e+00 8.51219952e-01 5.71241856e-01 -1.97063945e-02 1.23229563e+00 1.34883672e-01 7.20587075e-01 -5.84717281e-02 2.44942859e-01 -1.46978247e+00 2.77023822e-01 2.91910619e-01 6.17391884e-01 -1.09409940e+00 1.48180919e-02 -5.83748639e-01 -7.56582975e-01 8.64343643e-01 1.03968000e+00 1.49802834e-01 3.19059491e-01 3.90832692e-01 -4.18249965e-02 -8.59664679e-02 -4.22855318e-01 -3.88271928e-01 1.54572055e-02 4.50751781e-01 1.61761001e-01 -2.14858025e-01 -4.71624702e-01 9.84391749e-01 4.88303840e-01 3.21118712e-01 3.56684268e-01 1.13501227e+00 -4.16950405e-01 -8.84144962e-01 -8.68338570e-02 1.51508212e-01 -6.94364429e-01 -1.49231870e-03 -4.03486133e-01 8.17565262e-01 9.39594746e-01 8.70460510e-01 -6.63930923e-02 -4.25412476e-01 5.65961421e-01 1.69327915e-01 3.17284137e-01 -7.20894694e-01 -4.33570951e-01 4.31277901e-01 2.69073248e-01 -8.39408815e-01 -6.81922674e-01 -6.14754915e-01 -1.60419190e+00 5.28970599e-01 -6.70500815e-01 -1.17844999e-01 1.32491782e-01 8.51387739e-01 2.99683928e-01 7.55480230e-01 4.19402242e-01 -7.39931822e-01 -5.29238105e-01 -7.94471622e-01 -6.15277708e-01 4.98877108e-01 2.92642266e-01 -8.93900335e-01 -5.90900242e-01 4.21207249e-01]
[8.48918628692627, 0.6401223540306091]
edd4a0ba-56a7-4c54-bcb0-c904b08ed6b5
modeling-dynamic-heterogeneous-graph-and-node
2305.17417
null
https://arxiv.org/abs/2305.17417v1
https://arxiv.org/pdf/2305.17417v1.pdf
Modeling Dynamic Heterogeneous Graph and Node Importance for Future Citation Prediction
Accurate citation count prediction of newly published papers could help editors and readers rapidly figure out the influential papers in the future. Though many approaches are proposed to predict a paper's future citation, most ignore the dynamic heterogeneous graph structure or node importance in academic networks. To cope with this problem, we propose a Dynamic heterogeneous Graph and Node Importance network (DGNI) learning framework, which fully leverages the dynamic heterogeneous graph and node importance information to predict future citation trends of newly published papers. First, a dynamic heterogeneous network embedding module is provided to capture the dynamic evolutionary trends of the whole academic network. Then, a node importance embedding module is proposed to capture the global consistency relationship to figure out each paper's node importance. Finally, the dynamic evolutionary trend embeddings and node importance embeddings calculated above are combined to jointly predict the future citation counts of each paper, by a log-normal distribution model according to multi-faced paper node representations. Extensive experiments on two large-scale datasets demonstrate that our model significantly improves all indicators compared to the SOTA models.
['Rui Liu', 'Haolong Guo', 'Ting Jiang', 'Chenguang Du', 'Xuehua Ming', 'Fuzhen Zhuang', 'Deqing Wang', 'Hao Geng']
2023-05-27
null
null
null
null
['network-embedding']
['methodology']
[-8.01782072e-01 -6.32921755e-02 -3.75963360e-01 1.41893998e-01 -3.06325871e-03 -5.14885902e-01 6.85143471e-01 4.54688519e-01 -8.80168471e-03 5.94959259e-01 4.18119133e-01 -3.83929938e-01 -5.62924623e-01 -1.08671975e+00 -2.44770810e-01 -6.44769490e-01 -1.30011320e-01 4.30344313e-01 8.10713843e-02 7.43213668e-02 5.16346812e-01 2.96084136e-01 -9.31431890e-01 -8.47260714e-01 1.07515550e+00 5.33993006e-01 1.25411928e-01 7.10856438e-01 -6.74625278e-01 8.02220643e-01 -7.80167282e-01 -4.95836824e-01 -1.24155089e-01 -7.66881853e-02 -3.31866533e-01 -2.39687890e-01 2.07386818e-02 1.34761468e-01 -9.09911752e-01 1.07655907e+00 4.01164472e-01 -2.15076804e-02 8.31836939e-01 -1.43014872e+00 -1.27840316e+00 1.01750350e+00 -9.20549095e-01 6.94616258e-01 -9.45199002e-03 -2.12549996e-02 1.46844530e+00 -5.63367069e-01 9.26230073e-01 1.20656836e+00 5.04371524e-01 -8.87706131e-02 -9.34931874e-01 -6.55102074e-01 7.32263327e-01 5.07104695e-01 -1.16630530e+00 4.61239129e-01 1.42750537e+00 -4.83799607e-01 2.13303283e-01 2.32802525e-01 1.09562027e+00 1.16814148e+00 5.59858620e-01 5.62764585e-01 4.84892488e-01 9.92780030e-02 6.98860809e-02 -9.22460854e-02 5.79308510e-01 4.78459567e-01 7.95809746e-01 -3.44831616e-01 -4.00872082e-01 -3.12803328e-01 4.69524860e-01 4.23273295e-01 -2.34991491e-01 -1.65486619e-01 -1.19304073e+00 6.39401555e-01 7.32728660e-01 7.84828246e-01 -4.46717113e-01 1.60020009e-01 3.17596823e-01 4.56330061e-01 8.88951302e-01 5.58390141e-01 -3.61885428e-01 -8.76367465e-02 -7.23533690e-01 2.59868234e-01 8.13923001e-01 8.02101851e-01 7.38926351e-01 8.04392695e-02 -4.41509843e-01 6.60396755e-01 5.92052042e-01 2.35889822e-01 3.42412233e-01 -7.33957648e-01 1.84501290e-01 1.35232818e+00 -3.01630974e-01 -1.70178115e+00 -2.92053998e-01 -1.14800119e+00 -1.00456846e+00 -3.37364644e-01 -4.73804735e-02 -4.80860770e-02 -3.46544355e-01 1.60775137e+00 2.02577949e-01 7.42426038e-01 -2.13628709e-01 5.97703755e-01 9.87033069e-01 9.58441436e-01 1.23566218e-01 -3.04203421e-01 1.13673079e+00 -1.00973773e+00 -8.47985029e-01 3.55010450e-01 3.13138515e-01 -4.17879164e-01 5.32585502e-01 -1.77756816e-01 -9.03731585e-01 -4.65334326e-01 -8.19852710e-01 1.61711741e-02 -3.61158162e-01 -2.04176471e-01 6.44075572e-01 7.91180581e-02 -1.13964677e+00 5.63653171e-01 -4.26960588e-01 -1.66581288e-01 4.57095265e-01 5.44873476e-02 1.82915643e-01 -1.39478177e-01 -1.39347684e+00 5.28275430e-01 1.73473939e-01 1.08243600e-01 -3.03533286e-01 -1.24443662e+00 -4.55227077e-01 4.97507215e-01 7.22982138e-02 -9.76363719e-01 6.53416216e-01 -4.09809172e-01 -1.05980742e+00 2.08281010e-01 -2.48012617e-01 -1.76343061e-02 5.42679489e-01 2.15839803e-01 -7.05156446e-01 -5.20716347e-02 1.47800267e-01 6.13215081e-02 4.65511799e-01 -1.14353824e+00 -6.44798934e-01 -4.91090536e-01 -1.13298163e-01 6.19298667e-02 -9.26593304e-01 -5.07616222e-01 -9.34966087e-01 -9.72346306e-01 1.02476254e-02 -6.58652008e-01 -3.15513641e-01 -1.74679294e-01 -2.94142097e-01 -9.88012254e-01 9.38368559e-01 -6.42477751e-01 1.83035743e+00 -1.71096277e+00 6.82627439e-01 3.35338056e-01 1.00189030e+00 -1.54673189e-01 -4.03271824e-01 2.27124527e-01 2.96940446e-01 2.87577033e-01 1.84246719e-01 -1.79718077e-01 -1.04868151e-01 -5.55532351e-02 -5.23756705e-02 1.96810171e-01 5.84654585e-02 1.26815307e+00 -1.28575110e+00 -4.19392079e-01 -1.61451902e-02 5.56748331e-01 -1.37128636e-01 2.74048984e-01 -2.16946770e-02 4.60084789e-02 -8.96184146e-01 5.98915398e-01 7.99267769e-01 -5.27681530e-01 4.71577555e-01 -2.57739611e-02 7.06191584e-02 -2.42826909e-01 -8.43395710e-01 1.02635431e+00 -2.20398366e-01 8.11238289e-01 -1.51031896e-01 -9.29448366e-01 1.21976626e+00 -4.24525030e-02 6.93011165e-01 -5.47363043e-01 6.40884936e-02 1.53957263e-01 1.16950653e-01 -2.08039090e-01 4.52327251e-01 5.37337661e-01 4.24963683e-02 6.53088450e-01 -6.74814433e-02 4.86346483e-01 3.38155657e-01 8.36924016e-01 1.35067689e+00 -1.98892668e-01 -1.78962931e-01 -4.24175262e-01 7.27588356e-01 -3.94276053e-01 6.94711149e-01 4.79852796e-01 -1.66448250e-01 1.87340513e-01 1.08282876e+00 -5.70232630e-01 -9.87899482e-01 -1.02728212e+00 1.34737253e-01 8.74508202e-01 3.22277248e-01 -4.95667219e-01 -3.41431022e-01 -5.26653171e-01 5.97425818e-01 2.65124261e-01 -8.25170457e-01 -3.12486947e-01 -4.33815777e-01 -6.92874730e-01 -1.10433206e-01 3.74735922e-01 1.01068057e-02 -8.76626253e-01 3.99191946e-01 3.25158536e-01 1.58754006e-01 -6.12974703e-01 -5.95624566e-01 -4.30308461e-01 -8.77924919e-01 -1.19130981e+00 -1.08441830e+00 -7.26637840e-01 7.14393854e-01 3.34044695e-01 1.15685737e+00 3.67843181e-01 -1.91618741e-01 6.21597707e-01 -2.66886204e-01 -8.11261311e-02 -3.35205980e-02 4.83391136e-01 1.29500121e-01 -6.30340725e-02 4.60498184e-01 -8.47842693e-01 -8.12517881e-01 -1.12434298e-01 -5.49751282e-01 -3.19902033e-01 6.16009474e-01 7.69532442e-01 3.31256390e-01 3.02733332e-01 7.42369235e-01 -9.34860110e-01 1.18461585e+00 -1.16821766e+00 -4.30075794e-01 4.65128750e-01 -1.41717243e+00 1.40483096e-01 6.36107683e-01 -5.06070316e-01 -7.91837335e-01 -9.63330865e-01 3.54589611e-01 -5.52536726e-01 5.58988094e-01 1.01168120e+00 -3.56532596e-02 1.09607212e-01 -1.39249772e-01 3.27954113e-01 -3.02129656e-01 -5.50569952e-01 3.27283651e-01 5.19570649e-01 3.35284144e-01 -3.80685419e-01 1.12796247e+00 -6.16143346e-02 1.54185236e-01 -5.62347233e-01 -4.37790215e-01 -4.59854007e-01 -5.58930516e-01 -3.45684886e-01 3.93102109e-01 -9.37226236e-01 -8.87737870e-01 3.46055061e-01 -1.25004709e+00 4.82823789e-01 9.31720212e-02 3.91612351e-01 3.65666658e-01 4.76747602e-01 -8.19900572e-01 -6.18835986e-01 -5.73392570e-01 -7.31707335e-01 6.27694488e-01 6.57582283e-01 -1.96043644e-02 -1.59272432e+00 4.56756890e-01 8.23286697e-02 4.84123737e-01 2.44547695e-01 1.10320973e+00 -3.67271274e-01 -8.60893846e-01 -3.40925485e-01 -6.70617163e-01 -2.18930870e-01 2.96169162e-01 4.64402109e-01 -3.44555438e-01 -3.42452288e-01 -4.87946272e-01 6.68861449e-01 1.16708887e+00 5.13416588e-01 1.19297874e+00 -4.25453395e-01 -7.60491610e-01 5.34129560e-01 1.18058372e+00 -9.14684460e-02 1.99260056e-01 5.01297116e-01 1.22650731e+00 4.57969010e-01 1.62585810e-01 4.86496836e-01 9.94785726e-01 3.05574447e-01 2.44896188e-01 2.92159289e-01 5.52657805e-02 -3.85171086e-01 -1.97995119e-02 1.72834516e+00 -2.53130823e-01 -4.91972446e-01 -8.67469847e-01 6.65511549e-01 -1.74185073e+00 -9.14227366e-01 -4.57699269e-01 1.54442513e+00 4.25325871e-01 2.93333322e-01 1.73776522e-02 -2.11390257e-01 1.04531610e+00 6.67538464e-01 -8.79524112e-01 -1.88581139e-01 -2.75306344e-01 -3.52176815e-01 2.72998214e-01 3.19363296e-01 -5.74162424e-01 5.11404276e-01 5.53854990e+00 4.78039920e-01 -9.28881168e-01 1.68974232e-02 7.40893900e-01 7.38540664e-02 -1.28809726e+00 1.02497980e-01 -4.82173800e-01 1.00385594e+00 9.20340776e-01 -1.09821045e+00 8.90543535e-02 8.39528680e-01 2.31994875e-02 5.47644138e-01 -4.33530778e-01 9.49256480e-01 -1.84060680e-03 -1.64658010e+00 2.92191923e-01 1.59426451e-01 8.23190570e-01 -4.03325297e-02 8.46030861e-02 4.85913992e-01 5.00514567e-01 -5.18027961e-01 1.45864516e-01 9.12820280e-01 3.77191663e-01 -9.98084486e-01 7.02807188e-01 1.54749349e-01 -1.53569543e+00 -3.17710429e-01 -5.80559731e-01 -1.01066373e-01 -2.89333053e-02 1.05420899e+00 -3.88295919e-01 9.38162088e-01 7.23799348e-01 1.49561715e+00 -9.16878402e-01 9.03710842e-01 -2.38289729e-01 7.29434907e-01 2.45436162e-01 -4.00908917e-01 1.33085176e-01 -6.26251638e-01 7.49992371e-01 9.59093392e-01 4.79468942e-01 -1.77402318e-01 -9.43019837e-02 9.71841574e-01 -7.63738453e-01 1.91791102e-01 -3.77341062e-01 -5.10407686e-01 9.18692172e-01 1.70446229e+00 -6.12845659e-01 -1.84571221e-01 -3.33321959e-01 8.23423862e-01 6.44427776e-01 5.76429307e-01 -4.91469622e-01 -5.75387061e-01 6.89642549e-01 5.01409266e-03 9.98881236e-02 -2.95073569e-01 -2.72196293e-01 -1.37410045e+00 6.47707880e-02 -7.19063878e-02 4.35594976e-01 -5.30955732e-01 -1.70785785e+00 5.83782434e-01 -6.75637364e-01 -9.85307038e-01 2.08834082e-01 -4.38121974e-01 -1.44635499e+00 9.59065080e-01 -1.63780034e+00 -1.21595442e+00 -5.08459866e-01 -5.85745387e-02 3.87920350e-01 -5.74571133e-01 3.64748240e-01 6.50560185e-02 -1.13705122e+00 5.59717119e-01 5.79445839e-01 7.11071938e-02 3.81992131e-01 -1.39163566e+00 6.11298680e-01 6.93922222e-01 1.04036085e-01 7.75102437e-01 3.26869667e-01 -9.56205964e-01 -1.73648024e+00 -1.12538803e+00 1.03400695e+00 -5.27001619e-01 1.24158919e+00 -1.44805431e-01 -1.13994408e+00 3.71799916e-01 2.27801964e-01 1.21107280e-01 5.47972381e-01 6.65477037e-01 -4.07247901e-01 -3.52187753e-01 -5.29453516e-01 7.11833239e-01 1.07367492e+00 -4.05878186e-01 -4.99951392e-01 1.50150627e-01 1.09055185e+00 2.84631878e-01 -1.40960455e+00 2.22029537e-01 6.16867781e-01 -1.92245886e-01 9.07184422e-01 -6.23584867e-01 7.15583801e-01 -1.28053829e-01 4.71958935e-01 -1.52291632e+00 -1.12803936e+00 -4.79729056e-01 -8.96685362e-01 1.59030902e+00 2.05539718e-01 -6.70181274e-01 7.32276022e-01 3.72253954e-01 2.17153937e-01 -8.57678652e-01 -7.45474696e-01 -4.50803220e-01 1.38973758e-01 4.44005430e-02 8.48314762e-01 1.24098516e+00 -1.28949031e-01 4.54952568e-01 -1.98747903e-01 -1.58261105e-01 8.88218045e-01 3.12088847e-01 5.11355937e-01 -2.07392049e+00 1.09418944e-01 -1.07191467e+00 -6.78924441e-01 -5.72907746e-01 6.17609203e-01 -1.14643681e+00 -8.45594764e-01 -1.79390872e+00 5.29801309e-01 -5.73725581e-01 -1.04770875e+00 -2.28754222e-01 -9.62904572e-01 -2.08763272e-01 -1.57830063e-02 5.55716574e-01 -6.96063221e-01 7.48009801e-01 1.32542622e+00 -5.27496278e-01 -1.25312507e-01 -1.79302141e-01 -1.12094176e+00 3.36894989e-01 4.74186063e-01 -3.54974329e-01 -3.50905597e-01 -4.51156765e-01 5.04571915e-01 7.19157048e-03 1.00474939e-01 -7.30212986e-01 6.33403003e-01 -2.07403839e-01 5.94623029e-01 -6.19317651e-01 -4.77769136e-01 -7.10860670e-01 8.95667300e-02 3.79233122e-01 -3.29683006e-01 3.76143813e-01 -1.89689398e-01 1.24872816e+00 -1.63016871e-01 3.26450199e-01 2.07175955e-01 1.86897531e-01 -5.83488882e-01 9.46023464e-01 -8.88930112e-02 -9.68818665e-02 1.01327670e+00 4.72504497e-02 -4.75604624e-01 -1.33094341e-01 -3.80529314e-01 7.95047581e-01 4.21326488e-01 1.12295008e+00 6.18860006e-01 -1.67320514e+00 -9.90468919e-01 -1.67626098e-01 8.91675651e-02 -2.58361429e-01 5.22973180e-01 7.63573050e-01 -2.57149965e-01 1.82319209e-01 -5.27545922e-02 -3.09259027e-01 -8.88523221e-01 6.12752259e-01 -1.86605155e-01 -4.89966333e-01 -6.38652563e-01 7.79342890e-01 -1.53650090e-01 -4.04750288e-01 8.54121074e-02 2.42977798e-01 -7.77287364e-01 5.31919301e-01 4.39318627e-01 7.16307878e-01 -4.21857119e-01 -4.32950348e-01 -3.18082213e-01 6.77468538e-01 -3.07484269e-01 3.98059189e-01 1.71579921e+00 -3.00268561e-01 -6.10868335e-01 7.34712303e-01 1.32304335e+00 5.56602664e-02 -7.82056808e-01 -4.23493415e-01 3.40494275e-01 -4.69272643e-01 3.66349488e-01 -4.16732788e-01 -1.44776177e+00 7.52774715e-01 2.43616343e-01 2.79365867e-01 8.72733533e-01 -7.17763975e-02 8.19096386e-01 2.74286538e-01 5.32704778e-02 -9.76554811e-01 2.13688370e-02 3.64078909e-01 6.42347336e-01 -1.00109696e+00 2.46965170e-01 -6.28977120e-02 -3.15668017e-01 1.35745239e+00 8.02408576e-01 -9.67969745e-02 1.02122772e+00 5.26015880e-03 -1.47787273e-01 -2.55525231e-01 -8.67297173e-01 3.38086128e-01 4.74317163e-01 2.67952502e-01 4.25645441e-01 1.48085043e-01 -5.32482982e-01 6.50976121e-01 1.07145295e-01 -2.17082873e-01 5.33441186e-01 3.59054774e-01 -3.14441234e-01 -1.19181120e+00 2.86309887e-02 9.00240779e-01 -1.98324189e-01 3.84780504e-02 -5.22280335e-01 3.09805304e-01 -2.98749208e-01 4.98380125e-01 3.02162439e-01 -6.62550628e-01 6.20810091e-02 -1.89600512e-01 -3.18035185e-02 -2.94449687e-01 -3.75371873e-01 -2.68979996e-01 -6.13049328e-01 5.51260635e-02 -1.07990511e-01 -5.64301312e-01 -8.25406492e-01 -8.22169125e-01 -2.21047714e-01 4.59266156e-01 4.21493262e-01 4.66569215e-01 7.83275902e-01 1.15269279e+00 1.05127370e+00 -5.70298195e-01 -1.44284949e-01 -1.09533274e+00 -8.90927076e-01 4.34415668e-01 4.12793942e-02 -7.64393091e-01 -6.61949098e-01 -5.59981048e-01]
[7.210330009460449, 6.158230781555176]
09a633c3-3489-4c83-9ba4-590ef2b0fe90
tempcaps-a-capsule-network-based-embedding
null
null
https://aclanthology.org/2022.spnlp-1.3
https://aclanthology.org/2022.spnlp-1.3.pdf
TempCaps: A Capsule Network-based Embedding Model for Temporal Knowledge Graph Completion
Temporal knowledge graphs store the dynamics of entities and relations during a time period. However, typical temporal knowledge graphs often suffer from incomplete dynamics with missing facts in real-world scenarios. Hence, modeling temporal knowledge graphs to complete the missing facts is important. In this paper, we tackle the temporal knowledge graph completion task by proposing TempCaps, which is a Capsule network-based embedding model for Temporal knowledge graph completion. TempCaps models temporal knowledge graphs by introducing a novel dynamic routing aggregator inspired by Capsule Networks. Specifically, TempCaps builds entity embeddings by dynamically routing retrieved temporal relation and neighbor information. Experimental results demonstrate that TempCaps reaches state-of-the-art performance for temporal knowledge graph completion. Additional analysis also shows that TempCaps is efficient.
['Roger Wattenhofer', 'Volker Tresp', 'Matthias Schubert', 'Yunpu Ma', 'Zifeng Ding', 'Zhen Han', 'Zhao Meng', 'Guirong Fu']
null
null
null
null
spnlp-acl-2022-5
['temporal-knowledge-graph-completion']
['knowledge-base']
[-8.24527919e-01 1.43908337e-01 -4.71829534e-01 4.55918461e-02 -7.63683170e-02 -8.92296970e-01 6.15713775e-01 4.28281218e-01 -1.15530729e-01 6.34404361e-01 6.12184286e-01 -6.13228716e-02 -8.13644826e-01 -1.15267515e+00 -7.25865722e-01 -3.56204718e-01 -7.50828922e-01 3.90718013e-01 3.92668366e-01 -1.69207469e-01 -5.79305947e-01 2.53039300e-01 -1.01483274e+00 1.55860648e-01 6.03653371e-01 8.29067111e-01 -1.58057109e-01 3.33344042e-01 -3.02021921e-01 1.34235096e+00 -1.49955183e-01 -7.82934487e-01 1.34515166e-01 1.04512699e-01 -8.99362504e-01 -2.91226625e-01 -1.62523180e-01 -7.10273385e-02 -1.28974009e+00 6.73157513e-01 1.02688499e-01 5.20818770e-01 -1.32447490e-02 -1.51707780e+00 -1.18776655e+00 1.12401748e+00 1.23054639e-01 5.24069965e-01 5.58446109e-01 7.36280829e-02 1.02503979e+00 -8.84832084e-01 1.12934577e+00 9.55665648e-01 8.62023413e-01 1.89473569e-01 -9.77437735e-01 -4.76169407e-01 6.92594886e-01 6.85723364e-01 -1.81358683e+00 -1.29609704e-01 8.58925521e-01 -3.56062263e-01 1.22377610e+00 -9.55446512e-02 1.14074576e+00 1.10409582e+00 8.17167461e-02 6.16197407e-01 5.52997589e-01 2.58726299e-01 6.33070022e-02 -1.00815669e-01 2.70586520e-01 7.86894023e-01 2.64896959e-01 2.44021162e-01 -9.68350410e-01 -9.89305303e-02 7.27072597e-01 3.49544883e-01 -3.54526162e-01 -6.25392616e-01 -1.45585322e+00 5.47392547e-01 8.66966903e-01 5.66353798e-01 -6.45138383e-01 4.94933695e-01 5.01639307e-01 6.19455934e-01 4.37875122e-01 1.88083038e-01 -6.41221583e-01 -9.71028134e-02 -5.14032125e-01 1.21559510e-02 1.07844687e+00 1.38587272e+00 3.55455250e-01 5.53586297e-02 -2.29448173e-02 2.41904035e-01 7.63424933e-02 1.58861816e-01 1.87922761e-01 -6.17816269e-01 4.37621146e-01 9.72036064e-01 1.28876299e-01 -1.21808767e+00 -5.18155515e-01 -5.74053228e-01 -7.10649312e-01 -6.25577152e-01 7.83451349e-02 1.33164957e-01 -8.30923736e-01 1.61496508e+00 5.04126966e-01 8.73955131e-01 2.93691993e-01 6.70413911e-01 1.15274787e+00 7.01892555e-01 -2.21790634e-02 -4.54364985e-01 1.24855244e+00 -1.03666365e+00 -1.16248393e+00 2.65725076e-01 5.33711493e-01 -7.29344413e-02 4.79006708e-01 1.42684933e-02 -7.14449465e-01 -1.02783769e-01 -9.49069917e-01 -3.11813112e-02 -1.03808510e+00 -4.32332873e-01 1.14975786e+00 1.78353801e-01 -9.99895334e-01 7.46811330e-01 -1.31061900e+00 -4.50931281e-01 2.95893580e-01 3.34409326e-01 -6.94132566e-01 -2.91137308e-01 -1.44742692e+00 5.79190433e-01 9.39830363e-01 4.51466918e-01 -1.00058198e+00 -1.15666735e+00 -1.26774931e+00 4.74086814e-02 1.00289404e+00 -9.65195954e-01 8.26584756e-01 1.11479431e-01 -1.05725467e+00 1.64321199e-01 -8.66930932e-02 -5.83593011e-01 3.09697658e-01 -6.74071303e-03 -1.31936491e+00 8.20854530e-02 -1.92341674e-02 -1.24995373e-02 5.64448535e-01 -1.02491713e+00 -2.20695645e-01 -1.37031510e-01 2.48154506e-01 -2.20404550e-01 -6.35716438e-01 -4.76263136e-01 -1.13202870e+00 -7.02259600e-01 2.59191496e-03 -6.40916526e-01 -1.91220164e-01 -2.30457559e-01 -5.16477108e-01 -3.60447079e-01 9.49575484e-01 -7.43924022e-01 1.74827957e+00 -1.94950306e+00 4.13114488e-01 3.98418009e-01 6.51745141e-01 5.90736931e-03 -1.54696822e-01 8.93620849e-01 -1.01454116e-01 1.52849570e-01 1.47135705e-02 -2.34283447e-01 2.61016488e-01 5.81309319e-01 -4.05856550e-01 2.40941346e-01 -1.81091204e-01 1.54622757e+00 -1.36744440e+00 -5.46202898e-01 2.69367158e-01 9.03120756e-01 -1.69606134e-01 -3.04064065e-01 -4.72112060e-01 1.76844597e-01 -6.91166043e-01 8.43935788e-01 3.50095361e-01 -6.70661986e-01 7.43764639e-01 -5.53656876e-01 7.33470097e-02 -2.98822764e-02 -1.10100615e+00 2.27956653e+00 -2.26654306e-01 2.72427976e-01 -4.91519213e-01 -5.19093156e-01 5.15340388e-01 6.41162038e-01 8.89243066e-01 -7.31167555e-01 1.03877641e-01 -3.76666598e-02 -5.22132039e-01 -4.69378322e-01 7.72141397e-01 1.41369462e-01 -2.01690957e-01 2.83547223e-01 3.02089602e-01 4.54338610e-01 4.03716296e-01 8.27708602e-01 1.54824293e+00 1.18617542e-01 2.24389546e-02 1.03793323e-01 2.79403061e-01 1.01813689e-01 8.80552232e-01 2.05591738e-01 -1.85418084e-01 -9.57935303e-02 4.84918326e-01 -9.77396727e-01 -5.83349645e-01 -1.48929560e+00 4.32817817e-01 4.99840230e-01 2.76112556e-01 -1.17162609e+00 3.57075445e-02 -1.11176527e+00 4.02025223e-01 3.51440907e-01 -1.01149130e+00 -3.07263315e-01 -6.16822481e-01 -5.70203722e-01 1.76199779e-01 7.51300335e-01 1.82745621e-01 -8.61145794e-01 1.45275906e-01 4.99045700e-01 -2.55874425e-01 -1.47763562e+00 -6.89642727e-01 -2.37920448e-01 -7.98649251e-01 -1.54412794e+00 -8.04963484e-02 -7.99693465e-01 5.55617869e-01 3.33475232e-01 1.04898846e+00 2.56217495e-02 -1.34283736e-01 8.57200742e-01 -6.81811810e-01 1.37003869e-01 2.32978076e-01 8.90352055e-02 2.75044978e-01 1.15831599e-01 1.95366368e-01 -1.09314001e+00 -6.30123496e-01 1.17504872e-01 -1.12503815e+00 -3.64700019e-01 2.51713306e-01 5.55753767e-01 9.30027306e-01 8.11731935e-01 6.42738879e-01 -7.45005727e-01 5.50650716e-01 -8.07553053e-01 -4.74444091e-01 6.45611346e-01 -6.69058144e-01 2.28027344e-01 6.32636786e-01 -6.41504884e-01 -9.17200506e-01 -1.49413213e-01 7.12766349e-01 -1.10483003e+00 7.57213175e-01 1.21782112e+00 5.37984185e-02 -3.85206789e-02 4.60668832e-01 3.20523232e-01 -3.27018946e-01 -5.08513510e-01 9.18332398e-01 -3.38786155e-01 7.21340477e-01 -4.78247672e-01 1.25097954e+00 8.13063979e-01 -8.10382515e-02 -3.68525118e-01 -9.34233844e-01 -5.12084842e-01 -6.44896626e-01 -1.78302035e-01 6.48865938e-01 -1.17580128e+00 -1.01649654e+00 9.25782472e-02 -8.98148298e-01 -2.40858242e-01 -6.50858164e-01 5.88954628e-01 -1.89630553e-01 1.82873636e-01 -6.70677543e-01 -3.66765469e-01 -3.10724437e-01 -3.20692629e-01 4.62501228e-01 1.06360085e-01 8.50633159e-02 -1.55179703e+00 2.58541971e-01 2.04027995e-01 3.27299774e-01 8.47930491e-01 5.55945635e-01 -5.04403472e-01 -1.28538418e+00 -3.44738662e-01 -7.52417594e-02 -2.81031370e-01 2.29432926e-01 -2.44590908e-01 -3.70560646e-01 -3.70643526e-01 -5.64534247e-01 2.79163644e-02 8.91065359e-01 -5.01439646e-02 7.10164249e-01 -6.03265762e-01 -6.81620598e-01 7.26405203e-01 1.66344225e+00 -5.29171228e-02 3.90893102e-01 1.08600914e-01 1.00617111e+00 2.60008633e-01 5.05820036e-01 5.32002151e-01 1.06207216e+00 4.91661698e-01 3.99063945e-01 5.47808349e-01 -3.34049195e-01 -6.31766558e-01 3.52121651e-01 1.41213715e+00 -4.96480092e-02 -1.83402047e-01 -1.00281000e+00 1.35490060e+00 -2.40160584e+00 -1.12731814e+00 -1.14659786e-01 1.82228863e+00 7.99402833e-01 1.04542926e-03 4.61711101e-02 -2.13877469e-01 5.14732599e-01 3.91507149e-01 -5.96384287e-01 2.16735587e-01 -2.84179896e-01 -3.03118005e-02 5.09070158e-01 4.66413140e-01 -9.54158843e-01 1.11909854e+00 5.37774849e+00 6.21196449e-01 -5.04849613e-01 5.36103487e-01 -4.92588848e-01 -3.43319505e-01 -6.61777794e-01 1.95810691e-01 -4.06851083e-01 3.77828956e-01 8.37406695e-01 -9.50369954e-01 6.86570287e-01 5.01472890e-01 -1.90244377e-01 3.99187088e-01 -9.85735714e-01 1.06134760e+00 -6.56675845e-02 -1.73121870e+00 1.06652737e-01 -2.85624657e-02 1.08244646e+00 4.09202613e-02 -1.62001967e-01 6.25086427e-01 8.92176688e-01 -7.78789461e-01 4.77346301e-01 1.03011751e+00 5.79450428e-01 -9.29583430e-01 6.81370795e-01 -1.29946992e-01 -2.17668843e+00 -2.28233308e-01 6.96663484e-02 4.00923401e-01 6.52673364e-01 7.92861283e-01 -7.18298018e-01 1.57808876e+00 8.20176661e-01 1.42298806e+00 -5.03131986e-01 1.08180368e+00 -3.67934406e-01 2.14775994e-01 -3.61148268e-01 2.71069676e-01 1.23095468e-01 -2.96172444e-02 6.40308678e-01 8.81334484e-01 2.47774899e-01 2.02363268e-01 3.23146194e-01 7.63091147e-01 -3.73270243e-01 -3.05792123e-01 -7.91204333e-01 -6.66886926e-01 8.88755381e-01 1.13285065e+00 -5.65508246e-01 -2.78322071e-01 -4.35840547e-01 9.71884429e-01 4.52448785e-01 6.73508942e-01 -1.01554143e+00 -3.35847288e-01 7.80465722e-01 -2.44042918e-01 6.13412976e-01 -5.50609946e-01 3.32297832e-01 -1.37308967e+00 4.65102524e-01 -5.88777475e-02 9.91334200e-01 -7.80455530e-01 -1.35968256e+00 5.00566721e-01 3.33834328e-02 -1.11409795e+00 2.31681645e-01 -2.35509977e-01 -4.25479114e-01 2.01154470e-01 -1.57117331e+00 -1.77702987e+00 -4.17471945e-01 1.22478926e+00 -1.02140903e-01 1.34404048e-01 6.47302628e-01 4.53199118e-01 -6.42801583e-01 5.00609875e-01 -1.51507169e-01 3.56957495e-01 3.35979998e-01 -1.19757950e+00 3.69084179e-01 9.05399024e-01 3.31710160e-01 8.90185952e-01 4.66237426e-01 -1.05654931e+00 -2.09629941e+00 -1.61023355e+00 9.88536596e-01 -6.86816037e-01 1.42753553e+00 -1.70305550e-01 -8.87082398e-01 1.26645148e+00 9.00706723e-02 6.18587494e-01 7.09711492e-01 3.21809351e-01 -8.35771322e-01 -3.91618878e-01 -8.29629838e-01 5.55891395e-01 1.66692173e+00 -1.00390339e+00 -6.55477285e-01 6.27748728e-01 1.65391219e+00 -3.34312648e-01 -1.84184122e+00 3.61628681e-01 3.99080932e-01 -2.09043100e-01 1.13219428e+00 -7.23441303e-01 -1.82157710e-01 -7.26453245e-01 3.14341187e-02 -1.26132548e+00 -4.22145039e-01 -1.06948423e+00 -1.31396914e+00 1.13616073e+00 4.37471539e-01 -6.26682043e-01 7.99083948e-01 4.34878439e-01 -1.24349199e-01 -5.64806223e-01 -1.02971995e+00 -1.50347173e+00 -4.25081849e-01 -4.85859782e-01 1.00050759e+00 1.72665918e+00 3.64416003e-01 -3.38254054e-03 -5.26485920e-01 5.37480474e-01 7.54116297e-01 3.31480443e-01 4.55066711e-01 -1.26567125e+00 2.63519529e-02 -9.43501666e-02 -6.38450086e-01 -3.76052737e-01 2.31521562e-01 -1.16175306e+00 -7.26075292e-01 -2.02196765e+00 -4.33655530e-02 -2.10326284e-01 -6.83728933e-01 7.95622587e-01 1.72411099e-01 -3.09512317e-01 2.01270427e-03 -6.16638139e-02 -1.19614244e+00 1.00426328e+00 1.23103523e+00 -4.37140077e-01 -4.47396666e-01 -7.22631037e-01 -4.97334927e-01 8.12490433e-02 7.00902820e-01 -3.86262655e-01 -8.96046579e-01 -5.27057946e-01 1.00483966e+00 1.86557561e-01 4.97279614e-01 -7.43240178e-01 1.03625011e+00 9.39443614e-03 -7.26421550e-02 -6.97692275e-01 5.01571238e-01 -1.11657894e+00 8.97246420e-01 2.24502951e-01 3.58773887e-01 2.53244162e-01 3.75888795e-01 1.49711680e+00 -4.49895650e-01 7.81012774e-01 -1.84862837e-01 5.54199964e-02 -1.16124678e+00 1.04222476e+00 2.53065377e-01 7.43196532e-02 1.28100133e+00 -3.17639858e-02 -8.01341176e-01 -1.96998134e-01 -1.42853606e+00 9.02504086e-01 2.07314283e-01 8.36042523e-01 9.16763186e-01 -1.95545304e+00 -3.14282656e-01 -3.80881041e-01 5.11371851e-01 3.87949571e-02 7.37127483e-01 1.26177073e+00 -1.18217126e-01 4.70852464e-01 2.63597250e-01 -6.73461892e-03 -8.33667219e-01 1.29672539e+00 2.03832462e-01 -5.86847186e-01 -1.04172063e+00 7.83644736e-01 -3.24876100e-01 -4.83235508e-01 1.93809763e-01 -4.90584135e-01 -1.63842723e-01 2.75889635e-01 4.23420370e-01 4.96060669e-01 -2.86313742e-02 -2.30991215e-01 -5.61850250e-01 3.65703791e-01 -1.01579383e-01 1.01828650e-01 1.57067895e+00 -6.97113350e-02 -3.59777987e-01 5.00863731e-01 1.08195806e+00 2.62331292e-02 -9.52237010e-01 -9.07976806e-01 1.14515625e-01 -3.34528327e-01 -1.25595015e-02 -7.40810454e-01 -1.41841185e+00 -3.84470858e-02 -3.46955024e-02 2.16666982e-01 1.08021355e+00 2.16346443e-01 1.13542998e+00 5.51817358e-01 7.12584436e-01 -9.13555026e-01 1.50822923e-01 4.82368529e-01 8.91416013e-01 -9.40854788e-01 1.71814382e-01 -6.29750013e-01 -4.38581944e-01 7.23405898e-01 4.31012899e-01 1.42197952e-01 1.27820075e+00 -1.33421794e-01 -4.82275099e-01 -9.58584487e-01 -1.17190182e+00 -4.37454730e-01 3.43530238e-01 5.48958182e-01 -3.85135025e-01 2.85404712e-01 2.38800626e-02 8.96365821e-01 -1.65728122e-01 7.47717917e-02 3.95694524e-01 1.01672792e+00 2.20197469e-01 -1.16663444e+00 8.62281770e-02 2.20306471e-01 -2.62830183e-02 -1.09297290e-01 -4.33882684e-01 9.71900105e-01 -2.85807084e-02 9.44167018e-01 -2.08286315e-01 -8.11927259e-01 5.59916258e-01 1.23286672e-01 3.85862142e-01 -3.79032463e-01 -4.23011780e-01 -5.09062946e-01 2.45791823e-01 -9.23198104e-01 -4.28727478e-01 -5.47912180e-01 -1.43820953e+00 -6.24856055e-01 -1.22245453e-01 3.19176883e-01 2.42504641e-01 5.27682900e-01 7.97706068e-01 9.69872832e-01 3.65851462e-01 -2.61082780e-02 2.75748521e-01 -5.33327579e-01 -7.27442980e-01 3.97204161e-01 3.08070272e-01 -8.66264999e-01 -1.48665369e-01 1.45054106e-02]
[8.509096145629883, 7.879737377166748]
ab0164f4-59d1-46bb-b86a-7fd0d8e9f9c1
exploiting-partially-annotated-data-for
1804.08420
null
http://arxiv.org/abs/1804.08420v2
http://arxiv.org/pdf/1804.08420v2.pdf
Exploiting Partially Annotated Data for Temporal Relation Extraction
Annotating temporal relations (TempRel) between events described in natural language is known to be labor intensive, partly because the total number of TempRels is quadratic in the number of events. As a result, only a small number of documents are typically annotated, limiting the coverage of various lexical/semantic phenomena. In order to improve existing approaches, one possibility is to make use of the readily available, partially annotated data (P as in partial) that cover more documents. However, missing annotations in P are known to hurt, rather than help, existing systems. This work is a case study in exploring various usages of P for TempRel extraction. Results show that despite missing annotations, P is still a useful supervision signal for this task within a constrained bootstrapping learning framework. The system described in this system is publicly available.
['Qiang Ning', 'Dan Roth', 'Zhongzhi Yu', 'Chuchu Fan']
2018-04-18
null
null
null
null
['temporal-relation-extraction']
['natural-language-processing']
[ 3.54348607e-02 3.78590226e-01 -5.41024625e-01 -3.07476193e-01 -7.76069164e-01 -8.92103314e-01 6.61293507e-01 6.70252919e-01 -4.56649333e-01 1.28695130e+00 2.45878264e-01 -6.90084174e-02 5.17910086e-02 -6.01803243e-01 -5.97182930e-01 -5.10745347e-01 -7.00922385e-02 6.93530381e-01 6.39521658e-01 -1.39308691e-01 -1.32539183e-01 4.82693911e-01 -1.36886358e+00 4.04260099e-01 5.02221227e-01 5.57011127e-01 2.09842756e-01 1.51268840e-01 -4.00381416e-01 1.03596258e+00 -5.34411132e-01 -3.95718485e-01 -5.10980077e-02 -3.35291773e-01 -1.17644668e+00 3.15514486e-03 -3.02501529e-01 5.94042726e-02 -3.87610495e-02 5.47474563e-01 1.64815381e-01 3.63576710e-01 5.17476559e-01 -1.44611156e+00 1.04044586e-01 1.03940070e+00 -4.28617209e-01 3.89708251e-01 6.48159921e-01 -4.94789749e-01 1.19806886e+00 -6.98452115e-01 1.13695836e+00 1.00354552e+00 6.80438638e-01 1.37268037e-01 -1.34384012e+00 -4.62735504e-01 2.53579736e-01 3.42436917e-02 -1.42825651e+00 -4.04083967e-01 7.37015247e-01 -3.68341535e-01 1.47926188e+00 2.09733918e-01 5.45110583e-01 1.22524428e+00 -7.25856498e-02 7.57820189e-01 9.90178764e-01 -7.82230675e-01 1.92154542e-01 5.21100760e-01 3.25080425e-01 3.84168267e-01 2.70181596e-01 -1.10162415e-01 -7.60888398e-01 -3.24122787e-01 4.69608158e-01 -3.38750511e-01 -1.17197230e-01 -1.63012594e-01 -9.95770156e-01 5.62342346e-01 6.33770749e-02 7.26353705e-01 -1.82830781e-01 -2.81298816e-01 6.08334303e-01 2.65697718e-01 7.71658778e-01 5.96040726e-01 -9.09742832e-01 -5.23356855e-01 -9.43879724e-01 3.99860531e-01 1.12059212e+00 9.34672236e-01 7.64739990e-01 -4.77641165e-01 -1.20938318e-02 7.40387738e-01 -6.04849635e-03 -7.40328878e-02 2.35238940e-01 -8.67553413e-01 7.06027389e-01 7.52747416e-01 5.12622178e-01 -8.35244119e-01 -6.07924938e-01 -9.88395326e-03 -4.37420517e-01 -2.68820822e-01 7.70214617e-01 -1.33512422e-01 -4.82381552e-01 1.63602936e+00 4.53954756e-01 -7.31326193e-02 -4.68262248e-02 4.42242384e-01 5.59642494e-01 6.37839913e-01 2.82831371e-01 -7.12349176e-01 1.41129315e+00 -6.57298386e-01 -9.47088718e-01 -3.68328214e-01 8.39887738e-01 -6.72692001e-01 9.20248032e-01 3.61227363e-01 -8.66430938e-01 -1.04262888e-01 -8.62070739e-01 -1.13296688e-01 -6.68410063e-01 -1.66407842e-02 9.50035453e-01 3.46194744e-01 -5.92026055e-01 5.79991162e-01 -1.12670827e+00 -5.96264243e-01 2.48214543e-01 1.92907155e-01 -5.24697602e-01 -1.08750332e-02 -1.48443377e+00 1.16024220e+00 9.27117229e-01 -1.76149815e-01 -2.41732910e-01 -5.09764612e-01 -9.21365440e-01 2.76686493e-02 7.13897407e-01 -1.14611372e-01 1.22702920e+00 -5.04675031e-01 -8.55419517e-01 7.43211389e-01 -3.42734873e-01 -5.46468854e-01 4.87052292e-01 -2.36539453e-01 -4.71472561e-01 7.29396343e-02 3.05957735e-01 4.63999212e-01 3.41382295e-01 -1.06840456e+00 -6.77460611e-01 -1.27878949e-01 2.22968921e-01 1.21971801e-01 -3.87009114e-01 5.94759166e-01 -4.76151139e-01 -4.77345407e-01 -2.64036916e-02 -9.14446890e-01 -2.86089003e-01 -5.49126029e-01 -3.05529058e-01 -5.32611668e-01 7.79885054e-01 -7.36501336e-01 1.43088400e+00 -2.00482321e+00 -8.99572745e-02 7.61012509e-02 -2.25476623e-01 -1.18272781e-01 3.47533554e-01 8.37666810e-01 -1.81612909e-01 2.36616448e-01 -2.15499714e-01 -4.00431693e-01 -1.70284778e-01 6.49144173e-01 -4.55894738e-01 1.61413386e-01 2.23383173e-01 6.38123930e-01 -9.99257147e-01 -9.59216714e-01 4.73637991e-02 1.96008205e-01 -1.86558515e-01 -1.64145604e-01 -4.04808044e-01 5.65199554e-01 -5.63755691e-01 4.90976691e-01 1.81273669e-01 -2.06771553e-01 4.01656657e-01 1.47154450e-01 -2.88138449e-01 8.03973675e-01 -1.13204479e+00 1.57424128e+00 -3.19319546e-01 6.57553017e-01 -4.19934183e-01 -1.13307393e+00 6.81527436e-01 7.93424964e-01 7.94376910e-01 -9.08371732e-02 -4.50583696e-02 1.32909462e-01 -3.53149414e-01 -6.28754258e-01 5.47371864e-01 -2.34511629e-01 -3.65844965e-01 5.47987461e-01 7.93398693e-02 -7.80540183e-02 1.00931036e+00 2.57537991e-01 1.26700103e+00 4.56248224e-01 9.53378975e-01 1.63416550e-01 2.47783095e-01 5.18676400e-01 9.91700649e-01 4.87377018e-01 -5.81499040e-02 4.04044300e-01 8.17416251e-01 -3.41898143e-01 -1.13622606e+00 -4.91599798e-01 -3.57465684e-01 7.70267129e-01 -2.65356869e-01 -8.06466520e-01 -3.70389342e-01 -8.63656700e-01 -3.72450203e-01 8.46010923e-01 -3.93562496e-01 3.04787189e-01 -7.78718650e-01 -8.72449756e-01 5.52251697e-01 7.25438178e-01 1.07143179e-01 -1.35900247e+00 -8.15971375e-01 5.40567935e-01 -5.47848105e-01 -1.42986012e+00 3.48626450e-02 6.42398953e-01 -6.33710742e-01 -1.16811347e+00 -1.17411137e-01 -4.29979146e-01 4.47403848e-01 -1.33264020e-01 1.29545653e+00 -2.54386425e-01 -1.09340556e-01 -2.27957144e-02 -7.46247351e-01 -5.98143339e-01 -4.65498239e-01 1.92521602e-01 -7.66314343e-02 -5.43312550e-01 7.02707410e-01 -6.66856706e-01 1.84081852e-01 8.67792964e-02 -7.59846032e-01 -2.61927806e-02 3.65843982e-01 7.78753102e-01 3.69729280e-01 6.05338216e-01 5.81832170e-01 -1.11064327e+00 4.93120044e-01 -6.19594276e-01 -6.92230225e-01 2.58673519e-01 -5.63956797e-01 4.79551479e-02 4.05040056e-01 -5.72988391e-01 -1.34073424e+00 3.12279701e-01 7.35240802e-02 1.31194800e-01 -4.42898571e-01 1.08222473e+00 -8.35357830e-02 6.06278896e-01 7.20405221e-01 -2.24490479e-01 -4.97673452e-01 -5.42449117e-01 8.37180614e-02 4.52427447e-01 1.30500108e-01 -6.21264696e-01 5.19499660e-01 2.72359699e-01 -2.35269219e-02 -7.87649632e-01 -1.24159992e+00 -6.64529264e-01 -8.76171291e-01 -4.59960401e-02 5.53936303e-01 -8.25804949e-01 -2.63431579e-01 -1.78531513e-01 -1.17065263e+00 -2.31355458e-01 -4.71099168e-01 5.89029133e-01 -2.59527981e-01 2.04123810e-01 -5.94864726e-01 -1.07396138e+00 1.50704116e-01 -7.02495396e-01 9.35558856e-01 -2.16798466e-02 -8.17650378e-01 -9.99136508e-01 2.22354457e-01 3.79901648e-01 -2.07541108e-01 4.09403741e-01 9.06740010e-01 -9.64837551e-01 -3.20822775e-01 -5.20445704e-01 4.25629430e-02 -1.21751837e-02 2.68219531e-01 -1.05692193e-01 -8.21607471e-01 -5.77449389e-02 -1.80537719e-02 -3.44868571e-01 5.95791399e-01 1.34296343e-01 7.33164847e-01 -5.42116344e-01 -7.15590179e-01 -2.60581821e-01 1.12324762e+00 2.99642712e-01 3.23211521e-01 3.69103581e-01 3.69868040e-01 9.91827667e-01 1.03363383e+00 6.42906189e-01 3.54167879e-01 7.24689662e-01 -1.20433874e-01 1.29770115e-01 1.67012841e-01 -2.91346759e-01 3.38199288e-01 4.62814242e-01 -1.38972878e-01 -2.77977794e-01 -1.29594254e+00 8.47708106e-01 -2.08272672e+00 -1.05030680e+00 -2.70887464e-01 1.89831471e+00 1.31732130e+00 3.08766425e-01 1.38014674e-01 5.96756935e-01 3.98391664e-01 6.16245605e-02 -1.31707579e-01 -5.71160428e-02 -1.37906924e-01 -3.97191979e-02 3.51590693e-01 3.48491669e-01 -1.15162408e+00 9.06800508e-01 5.96882343e+00 5.34826815e-01 -6.07686996e-01 1.84976444e-01 2.38721400e-01 -1.75676197e-02 3.70743796e-02 5.80604076e-01 -9.80546951e-01 3.91630262e-01 1.19458628e+00 -1.97888762e-01 2.28912443e-01 7.70507276e-01 3.83172452e-01 -5.42060971e-01 -1.35112059e+00 6.52735114e-01 -1.54637560e-01 -1.14382899e+00 -4.37565893e-01 -4.31057438e-02 5.67278266e-01 -1.04014307e-01 -5.81860483e-01 3.70940894e-01 4.87760454e-01 -7.08499789e-01 6.07268989e-01 2.09725931e-01 4.91607666e-01 -6.60644352e-01 9.87699807e-01 6.94326937e-01 -1.18877125e+00 4.71006567e-03 -2.27391154e-01 -2.14601859e-01 4.35622454e-01 9.00773346e-01 -1.16871452e+00 6.55328333e-01 9.16082263e-01 7.44504094e-01 -4.51393574e-01 8.10413718e-01 -4.79364455e-01 7.41111219e-01 -5.33474147e-01 1.22982040e-01 -3.66474092e-02 1.12973385e-01 5.45913994e-01 1.24145889e+00 1.49914041e-01 3.94016027e-01 5.19844711e-01 5.61343491e-01 2.35422179e-02 1.88225061e-01 -7.62215376e-01 -2.22543880e-01 5.57385683e-01 1.07991695e+00 -1.02645636e+00 -3.14619511e-01 -5.95861614e-01 6.17423117e-01 4.17277098e-01 2.55325764e-01 -6.43797994e-01 2.61723548e-02 1.16451204e-01 2.24170044e-01 4.87745367e-02 -2.88412780e-01 -1.98487788e-01 -1.16868806e+00 2.67447382e-01 -6.30215049e-01 7.44606912e-01 -7.80144453e-01 -1.15779459e+00 3.83785576e-01 6.35188937e-01 -1.08803010e+00 -5.76089382e-01 -2.15324759e-01 1.94636248e-02 5.79391778e-01 -1.11543524e+00 -1.16810191e+00 3.81500721e-02 3.15492272e-01 5.78071952e-01 1.61199838e-01 9.51631069e-01 3.23942900e-01 -4.82046276e-01 9.05051902e-02 -2.56903589e-01 6.10059798e-02 8.41046095e-01 -1.29843068e+00 7.97143802e-02 9.32214022e-01 3.86233240e-01 6.39962852e-01 1.11210120e+00 -8.40460837e-01 -7.14428246e-01 -8.58048201e-01 1.73033428e+00 -5.97655773e-01 9.57599163e-01 -4.05463725e-01 -1.12214911e+00 1.08067417e+00 9.56735015e-02 -1.69401571e-01 6.91879392e-01 5.40747404e-01 -3.25951844e-01 7.80816823e-02 -9.11649823e-01 4.95979726e-01 8.31418514e-01 -5.03559232e-01 -8.90724540e-01 5.15318513e-01 7.33508587e-01 -4.40303743e-01 -8.73704553e-01 2.10117131e-01 1.05529934e-01 -4.35807288e-01 7.23122478e-01 -4.25581992e-01 2.73044139e-01 -4.25820976e-01 1.28600985e-01 -1.02540231e+00 2.29743510e-01 -4.91486222e-01 -2.25523904e-01 1.72736800e+00 8.13693702e-01 -4.08740103e-01 6.67337239e-01 1.08112586e+00 9.31575298e-02 -3.65448356e-01 -9.78843570e-01 -9.55793679e-01 -2.00688317e-01 -7.40914583e-01 3.50545079e-01 1.37935936e+00 6.00125968e-01 6.03613436e-01 -3.62937659e-01 8.98256898e-02 2.01910183e-01 1.49849623e-01 4.75331068e-01 -1.61573577e+00 -1.48034692e-01 1.07064404e-01 -3.08907516e-02 -4.80877817e-01 4.09180820e-01 -8.11855853e-01 -2.41952632e-02 -1.50702286e+00 2.89169550e-01 -7.48668253e-01 -1.89782634e-01 1.20102918e+00 1.46477342e-01 4.56072278e-02 -2.15413406e-01 2.82039374e-01 -3.37371737e-01 7.38018379e-02 6.76668584e-01 -5.75258285e-02 -6.36344254e-01 4.49372120e-02 -3.81669372e-01 9.27777231e-01 8.88997316e-01 -8.93111885e-01 -4.59439993e-01 6.40772507e-02 6.21453464e-01 3.26240867e-01 1.43978164e-01 -5.77808857e-01 2.63423115e-01 -3.28719944e-01 1.32056206e-01 -8.53774130e-01 3.74865860e-01 -1.00686944e+00 3.93425405e-01 -1.71588376e-01 -3.96234602e-01 -7.67058283e-02 3.41051072e-01 4.45075721e-01 -5.04774511e-01 -4.73233372e-01 3.55344355e-01 -3.15297842e-01 -5.30271173e-01 -1.75259873e-01 -3.57107341e-01 1.06602358e-02 9.00854409e-01 1.70679633e-02 -9.82203260e-02 -1.66582227e-01 -7.75243044e-01 3.20617110e-02 3.08263928e-01 3.28331232e-01 -2.20012106e-02 -1.03398001e+00 -4.16961670e-01 -4.35831577e-01 2.02568099e-01 1.97043926e-01 -4.72020507e-02 9.21141863e-01 -8.30120221e-02 6.64037585e-01 1.12625703e-01 -2.29712218e-01 -1.37903273e+00 7.41603971e-01 -2.05856591e-01 -8.42897892e-01 -8.99715960e-01 5.45596600e-01 -2.89338827e-01 -9.31815952e-02 1.77822009e-01 -2.38424897e-01 -4.64623213e-01 5.51926732e-01 3.05744797e-01 1.00996219e-01 1.93591326e-01 -3.76000553e-01 -5.13062477e-01 -1.31655335e-01 -1.87962562e-01 -4.48298544e-01 1.74025249e+00 -2.72807062e-01 -3.68885607e-01 9.01158631e-01 6.91806614e-01 2.69083213e-02 -9.90045667e-01 -2.39934191e-01 8.88167679e-01 -2.67074704e-01 -2.49258906e-01 -7.61047184e-01 -4.10870284e-01 3.27089757e-01 -8.71673971e-02 4.63598341e-01 1.04203761e+00 4.04351652e-01 4.40545887e-01 5.48897445e-01 6.48189247e-01 -1.27949786e+00 -2.95007080e-01 4.73711461e-01 9.06861722e-01 -1.36621141e+00 2.95943975e-01 -7.14863718e-01 -7.35796809e-01 7.50043213e-01 3.97453845e-01 4.57178921e-01 5.65551281e-01 6.59995914e-01 -2.16592446e-01 -1.65915534e-01 -9.18295741e-01 -1.51138231e-01 -9.84031111e-02 3.74489367e-01 7.95780182e-01 -1.67413190e-01 -7.10083306e-01 6.64817035e-01 -2.98204750e-01 -3.20430323e-02 6.00916982e-01 1.16663277e+00 -9.31518227e-02 -1.57037914e+00 -3.33807498e-01 2.50984788e-01 -7.65581608e-01 -1.83229476e-01 -4.45515901e-01 9.87704039e-01 2.11338699e-01 1.20605636e+00 -1.91405654e-01 2.78351128e-01 2.57435560e-01 4.68963772e-01 2.82453090e-01 -7.92848766e-01 -5.47254860e-01 6.64984360e-02 7.26846516e-01 -4.16037202e-01 -8.53028357e-01 -1.12756550e+00 -1.36930716e+00 1.51376292e-01 -3.85118574e-01 3.36777389e-01 3.92683208e-01 1.35531175e+00 -1.18080363e-01 3.95861387e-01 1.92481399e-01 -5.15940011e-01 6.06264402e-05 -1.08760834e+00 -6.42515182e-01 2.59650409e-01 -2.96332799e-02 -8.15580904e-01 -2.31846169e-01 5.49627483e-01]
[9.100269317626953, 9.219077110290527]
63388cf2-7b6c-4dfa-9bd2-632f55b1ca49
deft-detection-embeddings-for-tracking
2102.02267
null
https://arxiv.org/abs/2102.02267v2
https://arxiv.org/pdf/2102.02267v2.pdf
DEFT: Detection Embeddings for Tracking
Most modern multiple object tracking (MOT) systems follow the tracking-by-detection paradigm, consisting of a detector followed by a method for associating detections into tracks. There is a long history in tracking of combining motion and appearance features to provide robustness to occlusions and other challenges, but typically this comes with the trade-off of a more complex and slower implementation. Recent successes on popular 2D tracking benchmarks indicate that top-scores can be achieved using a state-of-the-art detector and relatively simple associations relying on single-frame spatial offsets -- notably outperforming contemporary methods that leverage learned appearance features to help re-identify lost tracks. In this paper, we propose an efficient joint detection and tracking model named DEFT, or "Detection Embeddings for Tracking." Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network. An LSTM is also added to capture motion constraints. DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards while having significant advantages in robustness when applied to more challenging tracking data. DEFT raises the bar on the nuScenes monocular 3D tracking challenge, more than doubling the performance of the previous top method. Code is publicly available.
["Stephen O'Hara", 'J. Ross Beveridge', 'Peter Zhang', 'Mohamed Chaabane']
2021-02-03
null
null
null
null
['3d-multi-object-tracking']
['computer-vision']
[-9.45250243e-02 -4.72142726e-01 -3.91310692e-01 7.94227142e-03 -7.08440781e-01 -8.01858664e-01 8.02277565e-01 -6.57366961e-03 -6.68478251e-01 3.50849152e-01 -2.34368183e-02 -1.77268963e-02 3.79528664e-02 -2.61658996e-01 -7.65624166e-01 -4.94244993e-01 -7.47979581e-02 5.02499938e-01 8.60398173e-01 1.11004539e-01 -7.55528267e-03 6.89777911e-01 -1.76197720e+00 -1.49291739e-01 -6.05770051e-02 1.01739478e+00 1.15883715e-01 8.04160118e-01 1.26464263e-01 6.81290984e-01 -4.57865953e-01 -2.77793556e-01 5.68690777e-01 8.57395530e-02 -1.03971481e-01 -3.05895731e-02 1.43298495e+00 -5.52524209e-01 -6.41976118e-01 8.02683532e-01 6.46180272e-01 -2.74771675e-02 3.85168523e-01 -1.56341827e+00 -4.66419458e-01 -7.75153562e-03 -7.58513570e-01 4.45541859e-01 3.47798944e-01 3.74651283e-01 9.43285465e-01 -7.82678962e-01 8.75779748e-01 1.35967541e+00 1.46851766e+00 7.49088764e-01 -1.37925279e+00 -7.94461727e-01 3.40404451e-01 -7.32313767e-02 -1.39890504e+00 -5.49080908e-01 1.10163607e-01 -7.39443302e-01 1.10711098e+00 6.24136329e-02 7.92469800e-01 1.12439561e+00 2.05487072e-01 7.90382981e-01 6.53067708e-01 -1.73466533e-01 -4.26209062e-01 4.64447439e-02 7.20847957e-03 7.52810061e-01 6.11050963e-01 7.59271502e-01 -4.84125495e-01 -7.21923485e-02 7.71660805e-01 2.14970469e-01 -2.39818059e-02 -9.31243658e-01 -1.37482142e+00 5.36859095e-01 5.90255141e-01 1.61778301e-01 -6.85601458e-02 7.08772302e-01 4.14452672e-01 3.51977021e-01 3.93074274e-01 -2.01039426e-02 -3.35647762e-01 1.16755567e-01 -1.05381918e+00 6.73456907e-01 3.51110399e-01 1.19951558e+00 4.61908698e-01 2.88929380e-02 -6.54915094e-01 2.25680813e-01 5.49687564e-01 6.84639812e-01 -5.37979193e-02 -9.11128521e-01 1.19699351e-01 5.30831933e-01 5.39396882e-01 -6.98091388e-01 -5.57656825e-01 -6.03938818e-01 -2.21648559e-01 7.79759526e-01 6.05729103e-01 1.29189994e-03 -9.65515971e-01 1.96340048e+00 7.43682623e-01 5.93148470e-01 -4.89855796e-01 9.54882622e-01 5.59367239e-01 2.04406120e-02 1.26185328e-01 1.27796873e-01 1.38796723e+00 -1.00380719e+00 -5.80909848e-01 -1.80896789e-01 6.20011568e-01 -8.63456368e-01 2.36001611e-01 -3.03035341e-02 -9.35217738e-01 -6.91962183e-01 -9.77329910e-01 -8.36171210e-02 -4.96964782e-01 2.09510446e-01 5.59767365e-01 7.71773219e-01 -1.33412862e+00 5.20219207e-01 -9.81108665e-01 -7.08754659e-01 4.69680846e-01 5.91616750e-01 -4.06824976e-01 -6.96572941e-03 -6.13831043e-01 1.37193465e+00 2.95029581e-01 -4.21191230e-02 -9.50224400e-01 -9.95825946e-01 -7.95227349e-01 -4.83977288e-01 4.45473194e-01 -1.17162323e+00 1.38753116e+00 -4.91109908e-01 -1.15458298e+00 9.49038267e-01 -1.92815483e-01 -5.89437246e-01 9.23162282e-01 -5.84490895e-01 -4.12245691e-01 -2.47591913e-01 2.01607525e-01 9.37822282e-01 9.57272649e-01 -9.21123981e-01 -1.02402401e+00 -1.23599805e-01 -1.11993253e-01 8.39069635e-02 -1.16291754e-01 2.14313418e-01 -7.46310234e-01 -5.30976534e-01 -1.50544688e-01 -1.19471693e+00 2.89874021e-02 9.77742553e-01 -3.98264118e-02 -4.06690061e-01 1.26410079e+00 -3.40234280e-01 9.84931588e-01 -1.99038017e+00 1.70991004e-01 -3.30799520e-01 4.14448440e-01 3.58182013e-01 -2.01685533e-01 1.15249187e-01 2.85601497e-01 -4.00208324e-01 5.57090342e-01 -7.37380743e-01 3.24794441e-01 -8.15789774e-02 -1.06368750e-01 8.71062994e-01 3.85827720e-01 1.05899549e+00 -9.87967432e-01 -4.63753372e-01 4.83719230e-01 6.40506983e-01 -3.75992924e-01 -6.57154471e-02 -3.50458115e-01 3.50114346e-01 -1.73741221e-01 8.05526793e-01 5.80528259e-01 -4.56202000e-01 -2.10315421e-01 -1.81949466e-01 -5.90070844e-01 6.95949420e-02 -1.34657609e+00 1.76722658e+00 1.19665444e-01 8.38286161e-01 2.23431602e-01 -2.32520700e-01 6.31868362e-01 2.53010094e-01 7.34506071e-01 -4.61083770e-01 2.02470571e-01 2.29132503e-01 -7.92025477e-02 6.60501048e-02 6.93098187e-01 5.26233986e-02 1.59806401e-01 2.23080546e-01 9.15437788e-02 3.29530776e-01 1.31382495e-01 2.26312667e-01 1.40828454e+00 8.00557077e-01 4.54903916e-02 1.74601320e-02 1.25702217e-01 3.29292327e-01 6.52657866e-01 1.14086676e+00 -6.52146578e-01 3.97961795e-01 -3.49365026e-01 -5.27129054e-01 -1.21389484e+00 -1.19346488e+00 -2.25729406e-01 1.05801868e+00 3.65204901e-01 -3.89135271e-01 -6.00468516e-02 -6.04759037e-01 7.74543822e-01 8.06800723e-02 -7.24048853e-01 1.64459050e-02 -7.25850582e-01 -2.83980072e-01 6.69931650e-01 7.53850341e-01 9.95151401e-02 -5.76367736e-01 -7.63752103e-01 4.09737170e-01 2.88842380e-01 -1.32316458e+00 -6.40883207e-01 1.48329839e-01 -6.99662566e-01 -1.03456116e+00 -8.59309912e-01 -5.97240210e-01 3.20001781e-01 7.82837808e-01 1.00861454e+00 2.08164006e-01 -5.31133056e-01 6.57787800e-01 -1.02241188e-01 -5.77313721e-01 -1.70648143e-01 -1.48314774e-01 5.35395384e-01 -3.86983901e-01 4.95080203e-01 -8.26782510e-02 -6.36821389e-01 4.68251050e-01 -4.04005587e-01 -9.80994999e-02 6.40288174e-01 5.28002024e-01 4.64960992e-01 -6.00421965e-01 3.21426019e-02 -1.51921868e-01 -1.45210922e-01 -2.74502993e-01 -1.02341080e+00 1.80354178e-01 -2.73261487e-01 -1.13310441e-01 7.71335810e-02 -7.53145218e-01 -6.54744506e-01 3.21654946e-01 2.09584653e-01 -1.12668586e+00 2.11451482e-02 -3.77239704e-01 2.82873154e-01 -6.67510390e-01 4.77093279e-01 -5.60011417e-02 8.29355568e-02 -5.76487899e-01 4.46340472e-01 6.79363459e-02 6.61494076e-01 -2.55948633e-01 1.35905051e+00 7.72548378e-01 1.98739782e-01 -4.16905403e-01 -1.04106855e+00 -8.03040087e-01 -8.09725881e-01 -5.19253731e-01 9.02888536e-01 -1.35652494e+00 -8.89729023e-01 3.94947052e-01 -1.05062008e+00 -1.47144228e-01 -2.39532754e-01 6.61530972e-01 -4.35176849e-01 2.87435234e-01 -5.52528024e-01 -8.19962859e-01 -1.15124360e-01 -8.24672878e-01 1.43396974e+00 2.01913565e-01 -1.04521707e-01 -8.62427950e-01 3.45248073e-01 -4.25779447e-02 6.28337860e-01 4.46170449e-01 8.33473280e-02 -3.55042875e-01 -1.11207557e+00 -4.94198084e-01 -5.01125216e-01 -2.14299768e-01 -5.72910346e-02 -6.95002079e-02 -8.80200922e-01 -8.87890458e-01 -5.13220787e-01 -1.82035431e-01 1.04077554e+00 6.22664630e-01 2.90188909e-01 2.38322303e-01 -1.02775824e+00 5.66009045e-01 1.50963831e+00 -2.13566199e-01 -6.94720447e-02 5.84797025e-01 7.33134389e-01 1.77438021e-01 6.31511271e-01 2.95567036e-01 3.35570574e-01 1.26128304e+00 4.31698650e-01 2.47485153e-02 -7.53474534e-01 -2.02347279e-01 5.64425468e-01 2.93688118e-01 2.28040040e-01 -1.17195472e-01 -6.92502737e-01 5.75418949e-01 -2.08860540e+00 -1.24700856e+00 -2.63977110e-01 2.17402959e+00 3.52750778e-01 3.72480601e-01 5.86386681e-01 -3.92753452e-01 8.27622414e-01 3.68825495e-02 -7.36213088e-01 3.11592221e-01 -1.41591042e-01 -1.97857365e-01 9.26355124e-01 3.52136761e-01 -1.50906491e+00 8.47170293e-01 6.61803913e+00 4.69224572e-01 -9.11779344e-01 2.84601152e-01 -4.67689842e-01 -5.56279063e-01 3.11700135e-01 9.97008383e-02 -1.73344827e+00 2.27637708e-01 7.01172948e-01 1.01312578e-01 -2.64724009e-02 6.14413977e-01 -1.49192084e-02 5.39541394e-02 -1.21291244e+00 9.19098377e-01 6.32117093e-02 -1.45858121e+00 -3.28085601e-01 1.45386621e-01 4.88208830e-01 6.21617913e-01 7.83228427e-02 3.48521858e-01 5.97785175e-01 -5.12727797e-01 1.13087809e+00 5.21305799e-01 6.16384864e-01 -6.21717647e-02 4.23868954e-01 1.54697165e-01 -1.92290783e+00 -8.91463384e-02 -2.69717991e-01 2.16653850e-02 3.13585073e-01 1.99070387e-02 -6.98424578e-01 6.29924893e-01 9.20364857e-01 1.04250872e+00 -6.67648792e-01 1.82126117e+00 2.54925311e-01 -1.31042123e-01 -7.33699918e-01 -4.34266031e-02 2.73450077e-01 3.19181204e-01 9.85341907e-01 1.28138888e+00 3.09366226e-01 -5.08607864e-01 5.12245297e-01 6.90084457e-01 1.69537634e-01 -4.35633004e-01 -7.58948922e-01 1.78916410e-01 6.70613766e-01 1.17411780e+00 -6.48221552e-01 -3.39680105e-01 -8.00007105e-01 6.62213027e-01 4.12507802e-01 -1.22122437e-01 -1.14714897e+00 1.12353742e-01 9.30739760e-01 1.97091341e-01 9.26872730e-01 -3.61384332e-01 2.34590217e-01 -1.06663322e+00 1.45606566e-02 -4.43718195e-01 5.23826480e-01 -5.87243319e-01 -1.30265331e+00 2.44015649e-01 -7.79223293e-02 -1.58179033e+00 2.24340379e-01 -7.99352169e-01 -2.51153708e-01 6.73891127e-01 -1.56169343e+00 -1.53320026e+00 -2.91609406e-01 4.65985537e-01 3.36928248e-01 3.15259509e-02 5.09413779e-01 7.86989033e-01 -5.15662670e-01 6.08949423e-01 1.38835147e-01 1.23629972e-01 1.01899028e+00 -1.17420387e+00 6.25260711e-01 1.00001431e+00 2.05467507e-01 5.14174402e-01 8.00788045e-01 -8.42170954e-01 -1.71644783e+00 -1.34268141e+00 7.28854060e-01 -1.24173415e+00 8.57776165e-01 -4.86790657e-01 -5.26216745e-01 1.16890550e+00 9.00755078e-02 2.69217342e-01 3.45148504e-01 1.48613006e-01 -5.06794989e-01 1.28877386e-01 -9.17501450e-01 4.92662013e-01 1.47474837e+00 -2.87212223e-01 -5.58704257e-01 3.35974574e-01 6.09325290e-01 -6.82652473e-01 -7.60167718e-01 4.17398959e-01 9.30238128e-01 -5.98847032e-01 1.27243066e+00 -3.96843791e-01 -6.19320869e-01 -9.77952003e-01 -9.07908902e-02 -6.96403325e-01 -7.52874196e-01 -7.44988561e-01 -4.90445584e-01 9.77813780e-01 -2.76961718e-02 -2.93096632e-01 9.41056728e-01 2.15842336e-01 -1.97771192e-01 -1.32645443e-01 -1.10160792e+00 -1.38510776e+00 -2.69123495e-01 -2.65257955e-01 1.60901964e-01 7.15926230e-01 -6.54276609e-01 1.28144801e-01 -6.66539788e-01 4.66054797e-01 1.23905659e+00 7.49114305e-02 1.15730977e+00 -1.54374099e+00 -2.97365487e-01 -6.21254146e-01 -6.69168830e-01 -1.33055568e+00 -1.48691952e-01 -9.01444316e-01 1.33454263e-01 -1.24045706e+00 2.21261844e-01 -4.45591390e-01 -3.53604734e-01 6.08696103e-01 -7.44282007e-02 4.88490671e-01 5.21281838e-01 3.66595030e-01 -1.20163560e+00 3.98721099e-01 1.03465807e+00 -1.69749394e-01 4.58871089e-02 -4.91917469e-02 -2.06204891e-01 4.50042665e-01 1.76014930e-01 -8.82601678e-01 2.32424021e-01 -6.59089565e-01 -3.82908732e-02 -1.43338919e-01 9.66391623e-01 -1.39034569e+00 7.40728378e-01 3.70077372e-01 6.83053970e-01 -1.09148121e+00 6.78877592e-01 -9.81592476e-01 5.50639272e-01 8.48481357e-01 6.02929965e-02 4.62413043e-01 6.03994966e-01 9.48831260e-01 2.75186419e-01 1.73886359e-01 6.91380382e-01 7.88588896e-02 -1.08300149e+00 6.05082512e-01 -7.63124973e-02 -1.77569732e-01 1.22698772e+00 -6.57863975e-01 -4.67901230e-01 6.85142279e-02 -6.08892202e-01 4.13897276e-01 7.88477182e-01 9.41882968e-01 2.37138748e-01 -1.64023304e+00 -6.59250617e-01 5.92973828e-02 2.23824263e-01 -4.55406219e-01 -7.14639276e-02 1.18868399e+00 -9.55068916e-02 5.37923932e-01 -2.10391730e-01 -1.17482758e+00 -1.61119509e+00 5.61206281e-01 4.53323185e-01 -1.25106573e-01 -1.07963526e+00 8.76356840e-01 -6.17718399e-02 -3.10059518e-01 5.84912658e-01 -1.79323211e-01 2.64660597e-01 2.46584080e-02 5.86208105e-01 2.73699701e-01 -1.52380064e-01 -7.39616394e-01 -6.97893500e-01 8.70455027e-01 -1.90539539e-01 7.18895346e-02 1.03367949e+00 -7.29635209e-02 4.53207493e-01 3.78127337e-01 7.60216713e-01 -1.93438485e-01 -1.73148465e+00 -5.33814669e-01 2.32657105e-01 -6.74925268e-01 8.15756023e-02 -6.85176492e-01 -7.90669620e-01 4.04082417e-01 1.11872029e+00 8.18618685e-02 3.73554945e-01 4.62432532e-03 6.32124305e-01 2.71442384e-01 5.04328907e-01 -7.16076136e-01 2.91238539e-02 5.89680076e-01 3.80444437e-01 -1.39351761e+00 1.46599695e-01 3.81061509e-02 -1.18184842e-01 8.80051732e-01 8.20493877e-01 -1.93495601e-01 5.20900726e-01 5.30488551e-01 7.78615773e-02 -2.75900990e-01 -7.88307548e-01 -5.99740028e-01 3.80991906e-01 6.61780477e-01 2.27838904e-01 -3.80327046e-01 2.61677951e-01 -2.49811754e-01 3.37845534e-01 -1.56131238e-02 -1.37329906e-01 1.24268115e+00 -5.48734486e-01 -1.16462052e+00 -5.92950940e-01 3.07996303e-01 -2.19334245e-01 3.02769899e-01 -3.02753091e-01 1.30734015e+00 2.58440018e-01 7.25555658e-01 2.34944493e-01 -3.12350750e-01 4.76312876e-01 -6.28554150e-02 9.50276732e-01 -4.94395673e-01 -8.31670165e-01 1.69802442e-01 2.84586474e-02 -8.42112064e-01 -7.66146064e-01 -1.07772601e+00 -7.58852422e-01 -4.38996702e-01 -8.28681350e-01 -3.77391487e-01 5.01217842e-01 8.04581225e-01 5.33932328e-01 5.34118712e-01 -8.85225832e-03 -1.30784082e+00 -5.62067807e-01 -6.57382727e-01 -1.84799463e-01 3.91816556e-01 8.14500213e-01 -1.35589564e+00 -1.33285403e-01 -3.49154651e-01]
[6.369413375854492, -2.0913760662078857]
f7198d97-e8a6-4925-93f6-c7fd0eaab31d
learning-to-hallucinate-face-images-via
1708.00223
null
http://arxiv.org/abs/1708.00223v1
http://arxiv.org/pdf/1708.00223v1.pdf
Learning to Hallucinate Face Images via Component Generation and Enhancement
We propose a two-stage method for face hallucination. First, we generate facial components of the input image using CNNs. These components represent the basic facial structures. Second, we synthesize fine-grained facial structures from high resolution training images. The details of these structures are transferred into facial components for enhancement. Therefore, we generate facial components to approximate ground truth global appearance in the first stage and enhance them through recovering details in the second stage. The experiments demonstrate that our method performs favorably against state-of-the-art methods
['Qingxiong Yang', 'Linchao Bao', 'Shengfeng He', 'Jiawei Zhang', 'Yibing Song']
2017-08-01
null
null
null
null
['face-hallucination']
['computer-vision']
[ 2.96764672e-01 5.66552401e-01 2.03385338e-01 -4.52709258e-01 -4.77619469e-01 -1.19309895e-01 6.02184772e-01 -7.86000311e-01 -6.35046214e-02 7.53576398e-01 4.89108860e-01 4.98537093e-01 5.22395611e-01 -1.06239951e+00 -8.30271482e-01 -6.07378125e-01 3.28785986e-01 2.70621628e-02 -1.50699407e-01 -3.38033855e-01 -1.50883242e-01 1.06184459e+00 -1.77177989e+00 6.56644285e-01 4.46203887e-01 1.14898682e+00 -2.51471013e-01 3.18306416e-01 -4.11562845e-02 6.55160666e-01 -4.09725636e-01 -5.83546460e-01 2.85427153e-01 -5.64869761e-01 -7.48966396e-01 7.29607880e-01 5.69787800e-01 -7.56267905e-01 -6.19003773e-01 1.38311696e+00 2.63044626e-01 -2.42099781e-02 5.85702121e-01 -1.02635384e+00 -9.97454226e-01 1.77894812e-02 -9.13211763e-01 -3.40982050e-01 4.13570464e-01 3.09531037e-02 4.41054612e-01 -1.46856713e+00 8.72267783e-01 1.80604744e+00 5.10874271e-01 1.02690148e+00 -1.34297824e+00 -9.73437965e-01 5.59304506e-02 -1.77351549e-01 -1.53956687e+00 -1.04310429e+00 9.90409434e-01 -1.92270875e-01 3.97469610e-01 -1.41527995e-01 6.55978143e-01 9.49612677e-01 1.66945666e-01 4.19004083e-01 1.27149773e+00 -1.86427549e-01 -6.04589991e-02 -5.48275746e-02 -4.97064590e-01 1.21477580e+00 5.70533387e-02 3.66252214e-01 -4.93067026e-01 -7.81045929e-02 1.31864011e+00 1.27463371e-01 -2.46934891e-01 1.22426726e-01 -7.56618023e-01 6.70085967e-01 5.12552440e-01 8.38295817e-02 -9.12815034e-01 -1.27689214e-02 -2.79332757e-01 6.94992170e-02 6.85345531e-01 1.21606767e-01 1.92156255e-01 4.93219465e-01 -1.11948049e+00 3.05062026e-01 1.99535355e-01 8.74557555e-01 1.06889164e+00 3.90223116e-01 -2.34469369e-01 1.00254214e+00 3.93148214e-01 3.76287043e-01 7.28539377e-02 -1.31396222e+00 -6.76151961e-02 4.55763102e-01 -8.32106993e-02 -8.97840023e-01 2.44204290e-02 -1.49044737e-01 -1.09130967e+00 5.66402018e-01 -3.97098809e-02 -7.99926966e-02 -1.30212927e+00 1.75426328e+00 3.80836636e-01 2.36959115e-01 1.35825440e-01 9.22513366e-01 1.16376519e+00 6.88455760e-01 9.07659680e-02 -2.05571815e-01 1.37812138e+00 -1.08041370e+00 -9.36117351e-01 -8.81309733e-02 -4.57760900e-01 -8.26335847e-01 7.21687853e-01 1.59347296e-01 -1.67628002e+00 -8.84636700e-01 -7.63431072e-01 -1.83269411e-01 2.34565865e-02 4.23256069e-01 3.81757438e-01 2.85939783e-01 -1.44829965e+00 6.93242133e-01 -5.04503727e-01 -7.16309920e-02 9.02565837e-01 1.88498199e-01 -9.06527638e-01 -1.25790551e-01 -9.24135089e-01 5.94605744e-01 -1.34121617e-02 3.08788925e-01 -1.34007585e+00 -5.56561947e-01 -1.07002330e+00 2.34560475e-01 -1.48691431e-01 -6.12529576e-01 1.17022645e+00 -1.28051817e+00 -1.52867770e+00 1.16137218e+00 -5.57275951e-01 2.73750693e-01 1.73362702e-01 9.91091058e-02 -4.11981881e-01 5.12308002e-01 -1.24918461e-01 9.86998558e-01 1.34505498e+00 -1.75502968e+00 -3.31799984e-01 -3.71456563e-01 -1.40129834e-01 2.89846528e-02 -9.27138850e-02 2.45590255e-01 -6.46820188e-01 -7.99262226e-01 2.99344987e-01 -5.88687301e-01 -2.33081847e-01 5.40836215e-01 -3.88803184e-01 3.53827864e-01 9.30434763e-01 -9.18486297e-01 7.67497659e-01 -2.12796974e+00 2.40996853e-02 2.36777291e-01 5.20589054e-01 1.80452257e-01 -6.51667595e-01 -2.40639262e-02 -4.56211001e-01 3.91272269e-02 -3.07408422e-02 -8.71167243e-01 -3.46672326e-01 5.24487570e-02 -3.43745351e-01 4.03184175e-01 7.02928424e-01 1.12435377e+00 -5.53640485e-01 -4.80957747e-01 7.99542218e-02 9.55719292e-01 -6.18732929e-01 5.64779162e-01 5.35174552e-03 5.44067562e-01 -3.04906934e-01 1.01343429e+00 1.23256338e+00 -1.11565225e-01 -1.05586706e-03 -5.12964606e-01 1.66823193e-01 -1.36548594e-01 -7.36616254e-01 1.38126576e+00 -1.69577271e-01 3.75333697e-01 4.38108057e-01 -7.09655404e-01 1.04184186e+00 4.19087648e-01 2.89457202e-01 -5.99597871e-01 2.80556619e-01 -1.03217073e-01 -3.03603768e-01 -2.65647322e-01 3.94492060e-01 -6.62693620e-01 5.02132237e-01 3.64920855e-01 3.34687382e-01 -3.20180655e-01 -2.84700841e-01 -7.75612295e-02 5.54105937e-01 2.89632171e-01 1.82791591e-01 2.27997936e-02 5.99864006e-01 -5.69912553e-01 4.52151418e-01 -5.66863529e-02 8.02583694e-02 1.07062817e+00 3.92905086e-01 -6.16017163e-01 -1.17165816e+00 -1.30109000e+00 1.45205945e-01 6.06280863e-01 -1.91134557e-01 -2.66847163e-01 -1.31367457e+00 -4.60681021e-01 -3.49876046e-01 1.21076256e-01 -1.10788512e+00 -2.65081674e-01 -3.87977511e-01 -3.91281277e-01 5.57782412e-01 6.79111123e-01 8.85379970e-01 -1.34658742e+00 -1.22837774e-01 3.33062112e-02 -2.18886942e-01 -1.25249124e+00 -6.07506514e-01 -5.35873234e-01 -8.43990386e-01 -8.77651215e-01 -9.15299773e-01 -9.03221667e-01 1.35931063e+00 2.51057565e-01 1.07655144e+00 4.86517817e-01 -4.72998112e-01 2.50345655e-02 8.41558650e-02 -7.27459937e-02 -4.25351858e-01 -7.82620311e-01 3.17035839e-02 5.10621727e-01 -2.73887217e-02 -7.59282947e-01 -5.55041790e-01 1.01643980e-01 -1.02753842e+00 3.11501801e-01 8.10898304e-01 8.23126197e-01 8.60178769e-01 2.04393521e-01 1.94469526e-01 -8.44892144e-01 5.99337757e-01 -1.14097878e-01 -4.25465673e-01 9.10111517e-02 -1.61846772e-01 2.28904244e-02 5.34753501e-01 -4.93883997e-01 -1.54454887e+00 1.20333135e-01 -4.62562978e-01 -8.34340990e-01 -3.03614140e-01 5.12711518e-02 -4.88730401e-01 -2.14314550e-01 4.92388636e-01 3.11786711e-01 3.00417572e-01 -4.78539556e-01 3.04746628e-01 3.76399100e-01 9.10884023e-01 -7.70655870e-01 1.13565588e+00 8.72249901e-01 6.30833209e-02 -7.88345933e-01 -8.70545626e-01 2.65665710e-01 -7.33023703e-01 -2.16823131e-01 9.82970476e-01 -1.06271684e+00 -6.00933194e-01 6.20080411e-01 -1.34273875e+00 -1.85980707e-01 -4.15443212e-01 2.68915836e-02 -6.65082753e-01 8.49869698e-02 -8.95868659e-01 -6.41324699e-01 -3.39447856e-01 -1.04631627e+00 1.50206959e+00 5.33637404e-01 1.33466780e-01 -6.47024810e-01 -1.48306504e-01 2.38939047e-01 4.28929001e-01 4.75540400e-01 7.24484265e-01 3.70585144e-01 -6.66134417e-01 1.59404844e-01 -5.09739935e-01 4.72272217e-01 3.67823750e-01 2.66405404e-01 -1.42083311e+00 -2.38257930e-01 -2.11174399e-01 -4.60161299e-01 6.21950209e-01 2.43357643e-01 1.43140256e+00 -5.42211235e-01 -1.13190234e-01 9.93026137e-01 1.14665663e+00 3.45070250e-02 1.08667409e+00 -1.86122611e-01 5.52765489e-01 9.03208315e-01 4.23427314e-01 3.44942182e-01 9.51700583e-02 5.08971214e-01 3.44482064e-01 -8.01407814e-01 -5.26275456e-01 -7.11075783e-01 3.11693221e-01 3.26965392e-01 -5.03785014e-01 4.44582969e-01 -3.20168853e-01 3.15456331e-01 -1.43404162e+00 -1.13327551e+00 5.06926775e-01 1.69974399e+00 9.85602438e-01 -3.49135637e-01 -8.84840563e-02 -2.62021661e-01 7.17336535e-01 1.83934361e-01 -3.20202500e-01 -9.73942652e-02 -1.09033428e-01 7.16146410e-01 -2.65683651e-01 3.68660182e-01 -7.23855197e-01 1.30117297e+00 7.50883007e+00 5.25301039e-01 -1.12925553e+00 -9.21425670e-02 1.01634443e+00 4.41380776e-02 -4.25773054e-01 -3.64001960e-01 -6.14789903e-01 3.32464837e-02 6.92052960e-01 -7.69486353e-02 5.70608020e-01 8.78214598e-01 1.50672987e-01 2.93739259e-01 -8.40386808e-01 9.64011788e-01 2.05672562e-01 -1.48471069e+00 5.80397546e-01 1.78837553e-01 1.05253637e+00 -6.08500957e-01 2.45217249e-01 5.55934198e-02 4.83009331e-02 -1.58323133e+00 6.94289148e-01 8.43476355e-01 1.39100409e+00 -9.49400425e-01 4.41978455e-01 -4.50895093e-02 -1.27655554e+00 2.75985837e-01 -6.90423310e-01 1.81015581e-01 1.30448520e-01 3.58002603e-01 -3.60643566e-01 3.01412761e-01 7.50505209e-01 4.18694317e-01 -3.81980956e-01 4.21103179e-01 -3.90310913e-01 1.96623698e-01 1.00186780e-01 7.10998118e-01 -8.10040720e-03 -3.55139762e-01 3.37820873e-02 9.24674392e-01 3.76511842e-01 5.95215738e-01 -2.44205430e-01 1.50069964e+00 -6.41705573e-01 -1.59207851e-01 -6.99132204e-01 -1.75670817e-01 2.77186900e-01 1.61729574e+00 -3.50473017e-01 -4.86737907e-01 -5.16132474e-01 1.16439378e+00 4.07046705e-01 5.71878552e-01 -6.94936514e-01 -1.58018112e-01 1.01101911e+00 4.17467475e-01 7.39630386e-02 1.64946213e-01 -6.09588716e-03 -1.17681289e+00 -1.18859649e-01 -1.14005375e+00 -1.12573512e-01 -1.10399806e+00 -1.08717155e+00 1.15813732e+00 -2.79663891e-01 -1.03094208e+00 -1.87121436e-01 -4.88252580e-01 -7.26683438e-01 1.13618541e+00 -1.65978754e+00 -1.42673886e+00 -8.01316440e-01 1.06405818e+00 4.28330511e-01 -1.33408025e-01 1.05893052e+00 1.36934370e-01 -2.42008463e-01 5.98074913e-01 -5.39142072e-01 4.15847838e-01 4.91498768e-01 -5.76223135e-01 6.52227998e-01 8.15507948e-01 -9.55187306e-02 7.65447319e-01 3.06287289e-01 -6.30004346e-01 -9.04245257e-01 -1.27514124e+00 6.82136655e-01 5.43628857e-02 8.66644308e-02 -3.21774840e-01 -9.13971364e-01 6.80297971e-01 2.15471193e-01 4.77225423e-01 4.81427640e-01 -4.30782139e-01 -5.85425794e-01 1.31310895e-01 -1.54779887e+00 6.94185853e-01 9.51485157e-01 -7.63390124e-01 -5.46379447e-01 -9.72426534e-02 4.81464297e-01 -3.95940185e-01 -7.95289040e-01 4.27381277e-01 7.95317054e-01 -9.48568285e-01 1.03101778e+00 -6.89568341e-01 9.30053711e-01 -3.41414779e-01 -8.47603977e-02 -1.42492485e+00 -4.09151107e-01 -6.84391439e-01 -6.73251152e-02 1.08256054e+00 2.23476022e-01 -3.28881919e-01 8.78879368e-01 4.95609075e-01 8.12184885e-02 -7.06162035e-01 -4.19440389e-01 -3.32391143e-01 -7.45004639e-02 2.34217837e-01 9.55594420e-01 9.02027309e-01 -4.73126054e-01 5.22930883e-02 -4.04750615e-01 9.78790820e-02 9.14531291e-01 1.88235402e-01 7.56114781e-01 -1.12003982e+00 -1.49556249e-01 -1.25666782e-01 -1.78643972e-01 -6.97708189e-01 5.79083025e-01 -3.94547939e-01 9.89101902e-02 -1.34438658e+00 4.80564177e-01 1.56110883e-01 4.87145297e-02 5.92991173e-01 -2.26863965e-01 9.38181162e-01 6.13597445e-02 -8.61974712e-03 4.18486074e-02 8.68171990e-01 1.82552183e+00 6.64584711e-02 6.34074137e-02 -1.96088791e-01 -9.94821846e-01 9.62849677e-01 5.20743310e-01 -4.13278379e-02 -2.69243866e-01 -1.54955402e-01 -5.01683056e-01 1.55652329e-01 3.90456676e-01 -8.48927498e-01 -2.12213799e-01 -4.02127326e-01 1.14412582e+00 -3.16921443e-01 8.69573295e-01 -7.31089771e-01 3.95617753e-01 1.90706879e-01 -2.15423241e-01 -4.13776711e-02 2.45423883e-01 2.01187000e-01 -4.95097101e-01 2.40819484e-01 1.48552215e+00 -2.65814245e-01 -3.58290315e-01 7.70580113e-01 -1.11329660e-01 -3.71476680e-01 8.48670542e-01 -2.27075756e-01 -2.91021913e-01 -7.81616509e-01 -1.04975998e+00 -3.66965562e-01 7.84436285e-01 4.42913204e-01 1.22490597e+00 -1.60256934e+00 -8.00975502e-01 8.28088224e-01 -1.27635643e-01 -4.17926386e-02 2.61953741e-01 4.01148319e-01 -5.29875815e-01 2.11392958e-02 -9.11928833e-01 -5.74052297e-02 -1.44505310e+00 5.67545414e-01 5.16791642e-01 1.67027935e-01 -6.19664490e-01 9.06838834e-01 9.65498924e-01 -2.03799769e-01 2.16958411e-02 1.19251512e-01 -2.03988686e-01 -3.79775703e-01 1.02091670e+00 -1.86046422e-01 -2.06260681e-01 -1.09618545e+00 -1.47172734e-01 8.87889683e-01 -9.90979970e-02 -3.20578754e-01 1.58202684e+00 -3.06616798e-02 -4.17654425e-01 -3.40415478e-01 1.29749370e+00 8.46903026e-02 -1.50403166e+00 -2.70843357e-01 -6.28220141e-01 -8.05783927e-01 5.42429313e-02 -5.55380940e-01 -1.70141709e+00 9.60831404e-01 4.51002300e-01 -5.22243917e-01 1.71316338e+00 1.10642932e-01 5.89840770e-01 -4.47502136e-02 3.26170653e-01 -7.80280113e-01 3.61973226e-01 3.18948716e-01 1.18943870e+00 -8.17232192e-01 -3.27757411e-02 -7.49405801e-01 -5.92179537e-01 1.14734006e+00 8.65632474e-01 -3.66155237e-01 6.66988194e-01 6.10272765e-01 3.45668755e-02 -4.15733188e-01 -8.50344419e-01 -2.98023075e-01 4.60951507e-01 7.87751973e-01 4.64891464e-01 -1.36806607e-01 2.01956943e-01 5.76276362e-01 -2.16496855e-01 5.41383624e-02 3.71173084e-01 5.23427427e-01 -3.80079091e-01 -9.40849841e-01 -6.45277262e-01 1.01290261e-02 -5.09938002e-01 -1.93632543e-01 -6.17780507e-01 6.94792688e-01 1.57280579e-01 6.48297608e-01 8.10806155e-02 -4.45961505e-01 5.49351931e-01 -3.34647819e-02 8.01968932e-01 -7.81841755e-01 -2.25232452e-01 3.29517186e-01 -6.74534515e-02 -9.80604053e-01 -3.19807202e-01 -2.89998442e-01 -1.12367475e+00 -4.65457827e-01 1.06889635e-01 -1.22906685e-01 5.56948006e-01 6.24981344e-01 3.60072434e-01 4.77049738e-01 7.16486692e-01 -1.40968740e+00 -1.77587464e-01 -8.89271080e-01 -7.84385562e-01 5.45112014e-01 5.70968688e-01 -7.41752326e-01 -2.48781204e-01 5.00635922e-01]
[12.768369674682617, -0.10806423425674438]
b7082c5d-6370-48b0-aa27-fb132131d497
max-margin-structured-output-regression-for
null
null
http://papers.nips.cc/paper/4794-max-margin-structured-output-regression-for-spatio-temporal-action-localization
http://papers.nips.cc/paper/4794-max-margin-structured-output-regression-for-spatio-temporal-action-localization.pdf
Max-Margin Structured Output Regression for Spatio-Temporal Action Localization
Structured output learning has been successfully applied to object localization, where the mapping between an image and an object bounding box can be well captured. Its extension to action localization in videos, however, is much more challenging, because one needs to predict the locations of the action patterns both spatially and temporally, i.e., identifying a sequence of bounding boxes that track the action in video. The problem becomes intractable due to the exponentially large size of the structured video space where actions could occur. We propose a novel structured learning approach for spatio-temporal action localization. The mapping between a video and a spatio-temporal action trajectory is learned. The intractable inference and learning problems are addressed by leveraging an efficient Max-Path search method, thus makes it feasible to optimize the model over the whole structured space. Experiments on two challenging benchmark datasets show that our proposed method outperforms the state-of-the-art methods.
['Du Tran', 'Junsong Yuan']
2012-12-01
null
null
null
neurips-2012-12
['spatio-temporal-action-localization']
['computer-vision']
[ 4.15021449e-01 -2.88420022e-01 -5.85846364e-01 -1.70570716e-01 -8.93883526e-01 -6.20590448e-01 3.48633260e-01 8.32561255e-02 -4.64138418e-01 6.19180977e-01 1.93784103e-01 1.07715249e-01 -2.54169852e-01 -3.18607301e-01 -1.11984348e+00 -8.38765740e-01 -4.09735203e-01 2.23533422e-01 6.51827633e-01 5.33258736e-01 3.54151309e-01 2.65763849e-01 -1.28859866e+00 3.24550211e-01 5.81852376e-01 1.20154297e+00 6.21626437e-01 5.07198572e-01 -8.61989707e-03 1.15593040e+00 -2.55264431e-01 1.74898610e-01 2.52565712e-01 -5.10719538e-01 -8.36829543e-01 4.80357736e-01 6.12304151e-01 -4.84938741e-01 -4.00276780e-01 1.10934186e+00 -9.81419459e-02 4.19723332e-01 4.17758733e-01 -1.39431238e+00 -2.79398739e-01 3.10551584e-01 -6.22440994e-01 2.40861177e-01 4.66070056e-01 -2.92183342e-03 9.66377676e-01 -7.67869413e-01 7.24169612e-01 1.10848761e+00 3.85801196e-01 2.33059719e-01 -9.43155289e-01 -3.89057547e-01 6.29216313e-01 5.64143658e-01 -1.44058263e+00 -2.53906280e-01 6.04805231e-01 -7.06456602e-01 8.49079788e-01 -1.36515602e-01 6.35597050e-01 8.85275900e-01 1.98298804e-02 9.77643609e-01 7.73579359e-01 -2.13814825e-01 3.74026150e-01 -2.25280806e-01 -3.54218334e-01 9.35834944e-01 -2.29369074e-01 -1.34873062e-01 -5.76534927e-01 2.24454645e-02 9.38489974e-01 5.05975068e-01 -2.18641192e-01 -7.25203812e-01 -1.43706465e+00 5.46032608e-01 2.64543802e-01 1.71530083e-01 -4.22672182e-01 5.47052979e-01 4.09798115e-01 -1.23938154e-02 3.44771773e-01 1.89479277e-01 -6.11570239e-01 -3.63963395e-01 -1.02127635e+00 3.12996477e-01 4.75679427e-01 1.03311646e+00 8.83904278e-01 -2.05033436e-01 -2.91326523e-01 4.50883716e-01 1.18769929e-01 3.84520173e-01 8.28263909e-02 -1.25067127e+00 9.12242532e-01 8.00489008e-01 6.12611234e-01 -1.04516053e+00 -6.08704425e-02 1.61544755e-01 -4.46989298e-01 1.00586653e-01 8.76121461e-01 -1.25016615e-01 -6.63780153e-01 1.54255855e+00 5.15531421e-01 9.13361490e-01 -1.90090731e-01 1.04353952e+00 6.13463484e-02 9.27114129e-01 1.35365561e-01 -3.69062066e-01 1.02780485e+00 -1.25058722e+00 -6.36465609e-01 -5.15456498e-01 6.52586699e-01 -3.31742287e-01 9.51606810e-01 1.53690636e-01 -9.19432223e-01 -5.19533098e-01 -7.20499754e-01 8.09419602e-02 -1.00580364e-01 4.27310914e-01 4.32393491e-01 -6.33768961e-02 -6.72857285e-01 6.06987894e-01 -1.19204521e+00 -3.11653495e-01 6.74305081e-01 4.63702768e-01 -4.91740584e-01 -1.93097860e-01 -7.34382868e-01 5.25838494e-01 7.21665859e-01 1.36339381e-01 -1.31637895e+00 -3.62795144e-01 -9.52582240e-01 1.22672878e-01 1.18850124e+00 -1.81904763e-01 1.22994757e+00 -1.12935364e+00 -1.31792152e+00 4.09495056e-01 -3.66380215e-01 -5.06865263e-01 5.14849246e-01 -4.49749678e-01 -4.79271337e-02 3.59345913e-01 1.46405026e-01 4.06141967e-01 1.07750034e+00 -7.70631075e-01 -1.10109353e+00 -3.22123259e-01 2.38134325e-01 2.01586589e-01 -5.42675793e-01 2.61919379e-01 -7.62043476e-01 -4.32845742e-01 1.09185368e-01 -8.95669937e-01 -4.82318908e-01 3.63674045e-01 -2.25950018e-01 -4.46845293e-01 1.04378402e+00 -5.87938309e-01 1.40805340e+00 -2.01618695e+00 4.02275175e-01 -7.27693737e-02 -2.16411695e-01 7.78982490e-02 4.28501703e-03 4.47974145e-01 2.69016445e-01 -1.48317143e-01 -9.27992091e-02 -3.23866069e-01 -7.50401020e-02 2.01169401e-01 -4.79166389e-01 7.17582226e-01 7.35012367e-02 8.94968212e-01 -1.08983028e+00 -7.04922616e-01 1.89030364e-01 2.64377981e-01 -4.66408789e-01 3.33632261e-01 -6.43752038e-01 7.08604753e-01 -8.75054240e-01 7.36742139e-01 2.41327703e-01 -5.97816408e-01 2.04451799e-01 1.36337221e-01 -2.98061699e-01 1.15048632e-01 -1.36526585e+00 1.98985660e+00 -3.11154723e-01 4.68922704e-01 -1.68437377e-01 -1.16218853e+00 6.08916998e-01 3.41117680e-01 9.09541845e-01 -4.56508338e-01 -2.37496406e-01 7.44164884e-02 -4.44409877e-01 -8.75431001e-01 5.23294248e-02 5.31368293e-02 -2.91278213e-01 4.24111784e-01 -4.06777114e-02 5.15681922e-01 2.99504250e-01 -7.10774809e-02 1.22430360e+00 7.01578081e-01 4.29707706e-01 1.56786188e-01 7.20439374e-01 2.70651400e-01 7.44589567e-01 7.82063305e-01 -2.63549000e-01 2.02931881e-01 6.32014751e-01 -5.60487926e-01 -8.48688841e-01 -8.37263644e-01 4.13127095e-01 1.13365412e+00 4.35282409e-01 -4.07102913e-01 -8.44314575e-01 -1.04946697e+00 -1.17740400e-01 8.95933434e-02 -5.97562253e-01 1.31615058e-01 -1.11340058e+00 1.05462208e-01 1.39843905e-02 8.33473384e-01 3.75395209e-01 -1.16688347e+00 -9.14710760e-01 2.61164516e-01 -2.29335442e-01 -1.49366963e+00 -8.85382175e-01 -1.73941001e-01 -1.05648255e+00 -1.15766788e+00 -6.47676289e-01 -8.33784163e-01 7.53665566e-01 2.59037256e-01 7.69509435e-01 -8.03918540e-02 -2.42713585e-01 3.77043962e-01 -3.26831579e-01 3.25675681e-02 4.47772630e-02 -1.01216540e-01 4.00879607e-02 4.26623762e-01 2.09927857e-01 -2.79841095e-01 -7.73934484e-01 6.23392284e-01 -6.65938199e-01 4.87817265e-02 4.67226505e-01 5.66553533e-01 1.04226446e+00 3.04590762e-01 3.59402508e-01 -5.83163321e-01 -2.23916605e-01 -4.61518586e-01 -1.03997314e+00 5.13869762e-01 -1.13191210e-01 -1.72556154e-02 6.86849177e-01 -7.11154461e-01 -9.17919397e-01 7.52222180e-01 5.97003043e-01 -7.75185883e-01 -1.85614318e-01 3.08376074e-01 -2.60057002e-01 3.65908630e-02 4.05847877e-02 3.42364788e-01 -2.77987123e-01 -5.42182684e-01 2.95326322e-01 3.68624687e-01 4.74839181e-01 -2.68308491e-01 8.01833630e-01 7.06721365e-01 2.35145427e-02 -5.64218223e-01 -1.05108523e+00 -8.54594290e-01 -1.12080860e+00 -3.73437732e-01 1.15645957e+00 -9.24130023e-01 -8.46375763e-01 1.15075342e-01 -1.19665396e+00 -4.95173484e-01 -1.80873156e-01 7.78530896e-01 -9.75684762e-01 3.84585708e-01 -1.80325136e-01 -7.71439850e-01 2.31481031e-01 -1.12629902e+00 1.27673578e+00 8.19493309e-02 -1.05494499e-01 -9.44118023e-01 1.28594980e-01 3.25180650e-01 -1.89924255e-01 3.29482079e-01 7.65700519e-01 -3.63607377e-01 -1.20213628e+00 -3.46751183e-01 -1.13212101e-01 1.26209244e-01 2.02741846e-01 -3.49982113e-01 -3.86188477e-01 -3.77443701e-01 -1.12593673e-01 -4.45580751e-01 6.83237493e-01 4.85621184e-01 1.53722608e+00 -6.01863384e-01 -6.52879179e-01 5.48050463e-01 1.36710906e+00 2.69798964e-01 3.19000334e-01 2.27652818e-01 6.66180551e-01 4.93101448e-01 1.35351384e+00 5.46572030e-01 4.15111110e-02 1.06313217e+00 5.35178244e-01 1.41941160e-01 1.56039432e-01 -6.46919191e-01 5.33064425e-01 2.52703875e-01 -7.72609785e-02 -1.72215283e-01 -7.79436886e-01 5.57446241e-01 -2.44166422e+00 -1.19250560e+00 2.97953516e-01 2.33002520e+00 4.96029824e-01 7.65955746e-02 3.39591146e-01 -1.54608235e-01 6.37941062e-01 4.10033673e-01 -8.47647727e-01 2.49934390e-01 3.53724718e-01 -2.79854834e-01 5.59753299e-01 3.45753759e-01 -1.55344629e+00 1.00542665e+00 6.31751013e+00 7.52204657e-01 -9.02847648e-01 1.84251279e-01 3.53869885e-01 -4.16318536e-01 3.30983520e-01 -1.93936843e-02 -8.60557616e-01 5.31062841e-01 5.29471815e-01 -1.09566730e-02 4.23992157e-01 1.01315439e+00 6.36315286e-01 -2.37343386e-01 -1.40026486e+00 1.04841018e+00 4.89625074e-02 -1.40154707e+00 -3.89623463e-01 -6.01525477e-04 9.03123021e-01 -1.64025992e-01 -1.03115864e-01 2.13567883e-01 -4.05925028e-02 -1.01543188e+00 6.33889437e-01 4.37437803e-01 8.07750344e-01 -5.32410204e-01 1.94881439e-01 6.67495787e-01 -1.48541355e+00 -7.21178591e-01 -3.53740513e-01 -1.22565530e-01 3.70643944e-01 -4.44764346e-02 -7.51919568e-01 3.14186625e-02 6.97121859e-01 1.12280142e+00 -2.20736265e-01 1.25210404e+00 -3.95887196e-01 5.51373363e-01 -5.75259402e-02 -3.40193026e-02 4.73088950e-01 -2.72052258e-01 4.18095678e-01 9.20390844e-01 4.02422965e-01 1.57092080e-01 8.47405255e-01 7.33710825e-01 -2.07990166e-02 6.06707968e-02 -5.86240888e-01 -2.39268243e-01 2.95985937e-01 9.81913626e-01 -8.56376052e-01 -2.40515485e-01 -6.98134601e-01 1.12784147e+00 5.22315979e-01 5.00866532e-01 -1.04918063e+00 1.73832010e-02 5.92185736e-01 3.45231682e-01 7.06716657e-01 -3.98373067e-01 1.36273682e-01 -9.86210525e-01 3.25357407e-01 -5.47370434e-01 4.51247483e-01 -5.78329980e-01 -6.72944486e-01 2.37312257e-01 1.14247262e-01 -1.56566358e+00 -2.58964032e-01 -4.77574617e-01 -4.43574786e-01 5.81340849e-01 -1.25825906e+00 -8.88102949e-01 -2.27167696e-01 8.08662176e-01 9.32763755e-01 -4.23211828e-02 5.08830726e-01 2.37452894e-01 -5.05557239e-01 1.58073336e-01 1.71146393e-01 1.58766240e-01 2.85375923e-01 -9.81892586e-01 -1.98159250e-03 8.81233454e-01 5.10934353e-01 1.15603060e-01 3.32980603e-01 -6.85568094e-01 -1.54176295e+00 -1.26640475e+00 7.60481775e-01 -5.27869403e-01 9.30503666e-01 -5.97148955e-01 -7.67025292e-01 8.83606970e-01 -1.74056172e-01 4.34329182e-01 3.19776863e-01 -2.89441943e-01 -1.28343731e-01 -1.73207566e-01 -7.06862628e-01 4.54846233e-01 1.36247075e+00 -5.10238469e-01 -3.45548034e-01 6.75331593e-01 6.91446900e-01 -4.13456261e-01 -5.86468518e-01 2.97548652e-01 4.15220827e-01 -6.05120480e-01 1.00749576e+00 -9.85429525e-01 4.38452303e-01 -5.26096284e-01 -6.77534565e-02 -8.64364624e-01 -2.19850853e-01 -7.70816863e-01 -7.13363707e-01 8.40543389e-01 1.65537283e-01 -1.41898822e-02 9.69614029e-01 4.21367466e-01 1.74260661e-01 -1.11765230e+00 -1.09695506e+00 -8.25150788e-01 -5.29479980e-01 -2.39206374e-01 2.33473301e-01 4.72721726e-01 -3.56288962e-02 -3.81458141e-02 -7.19479263e-01 4.45280552e-01 5.24177611e-01 5.38575113e-01 6.20301485e-01 -7.62025774e-01 -4.70873237e-01 -1.01746000e-01 -5.82721353e-01 -1.63932049e+00 4.42584366e-01 -5.18611968e-01 3.62257570e-01 -1.41189110e+00 3.57951075e-01 -2.62927055e-01 -3.56039733e-01 5.81097126e-01 -1.36043459e-01 9.30917412e-02 2.81725734e-01 3.85190099e-01 -1.25548410e+00 4.87210482e-01 1.24473500e+00 -1.29593939e-01 -1.88022032e-01 2.33400241e-01 1.36603815e-02 9.11682963e-01 5.36771178e-01 -7.25976467e-01 -6.47998393e-01 -4.84000564e-01 -6.00728132e-02 4.60701883e-01 5.21703124e-01 -9.95407462e-01 4.19301540e-01 -6.89241290e-01 2.24035829e-01 -7.02195227e-01 5.12718976e-01 -1.15507901e+00 -2.24019945e-01 3.92232567e-01 -5.68864346e-01 -1.17873013e-01 -1.65671006e-01 1.06926370e+00 -3.02337557e-01 -1.85575470e-01 5.87276161e-01 -2.12102279e-01 -1.10643065e+00 7.86486924e-01 -2.10442096e-01 1.84871897e-01 1.59989643e+00 -3.26443613e-01 1.93286777e-01 -2.76562363e-01 -8.35542023e-01 4.31439400e-01 3.30576718e-01 5.78198373e-01 7.15070963e-01 -1.28403425e+00 -3.18282753e-01 -5.71404546e-02 3.23938504e-02 -1.87147839e-03 2.71004409e-01 9.82065558e-01 -2.54844904e-01 5.11506796e-01 -5.45085920e-03 -7.82456279e-01 -1.40115607e+00 9.20235574e-01 2.63923228e-01 -2.87650526e-01 -9.35132444e-01 7.51378298e-01 3.07993203e-01 5.94742745e-02 7.38933861e-01 -2.20570475e-01 -1.49988890e-01 -1.74274996e-01 7.88648665e-01 5.76761127e-01 -4.92077470e-01 -6.44512534e-01 -3.92265439e-01 8.18084896e-01 5.91377728e-02 7.19434172e-02 1.23549843e+00 -1.65557235e-01 -5.73021770e-02 5.39774418e-01 1.35549974e+00 -4.51161474e-01 -2.09508705e+00 -5.13076007e-01 3.97554725e-01 -9.19913650e-01 -2.10548714e-01 -4.11564410e-01 -9.32451189e-01 8.32286358e-01 4.03853953e-01 -1.53217405e-01 1.10707176e+00 2.79694229e-01 8.43849599e-01 5.16154528e-01 6.59628451e-01 -1.14671361e+00 5.71355402e-01 3.91631246e-01 5.81055880e-01 -1.32287621e+00 -6.29912242e-02 -5.08273721e-01 -6.32524252e-01 1.04300797e+00 7.91577876e-01 -1.19858183e-01 5.80380201e-01 1.16391800e-01 -2.78164715e-01 -1.14839993e-01 -6.78627431e-01 4.08080313e-03 3.07527989e-01 2.72907376e-01 3.19668539e-02 -1.67717174e-01 1.15403766e-02 2.69821405e-01 5.73753297e-01 2.66322792e-01 1.23325460e-01 9.99337018e-01 -6.08523130e-01 -9.77043569e-01 -2.76538521e-01 2.17185676e-01 -3.97878200e-01 3.62663060e-01 -2.71439403e-01 6.12601578e-01 3.48005623e-01 7.73724258e-01 1.87414676e-01 -5.79220392e-02 1.63396642e-01 -2.33621094e-02 4.35577631e-01 -8.25730383e-01 6.15309216e-02 2.20628262e-01 -3.30571324e-01 -1.16158450e+00 -6.60596311e-01 -9.36545074e-01 -1.43894875e+00 3.94239902e-01 -1.12030782e-01 2.39658672e-02 3.03643733e-01 1.15934348e+00 1.55774757e-01 1.92047954e-01 6.98722005e-01 -7.84393907e-01 -7.17434227e-01 -6.89319551e-01 -4.36630696e-01 3.67733717e-01 4.84515548e-01 -7.55758286e-01 2.22718455e-02 2.71757454e-01]
[8.490264892578125, 0.5932130217552185]
b11f0b3b-d78b-42dc-a39b-b150b82cb9a5
uabcoral-a-preliminary-study-for-resolving
null
null
https://aclanthology.org/S12-1036
https://aclanthology.org/S12-1036.pdf
UABCoRAL: A Preliminary study for Resolving the Scope of Negation
null
['Binod Gyawali', 'Thamar Solorio']
2012-07-01
null
null
null
semeval-2012-7
['negation-detection']
['natural-language-processing']
[-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01 -8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01 -2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00 -3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01 -9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01 7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01 7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00 -1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01 3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01 9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01 5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00 -5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01 1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00 7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01 -1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02 -1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01 1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00 1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01 3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01 8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01 9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01 -9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01 -1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01 -2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01 -8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00 1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01 8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00 -6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01 -6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01 3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01 4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02 4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01 1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01 9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01 -1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01 -7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00 -1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02 1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01 -1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01 -1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01 -4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01 -1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01 6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01 -1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00 -7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01 -1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01 3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01 -1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01 1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01 3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00 -2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01 2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01 -1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01 4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01 2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00 1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01 -3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00 7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01 3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01 -2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01 7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01 -2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01 6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00 7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00 -3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01 -6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00 3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01 1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01 -5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01 -5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01 -2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01 -1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01 5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01 -2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01 -4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01 5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01 -6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00 1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01 8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02 -6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01 -1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01 1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01 8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03 3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01 8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01 -1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01 6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01 -9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01 -1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00 -5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02 -5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01 1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01 -4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01 1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01 6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01 5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01 1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01 1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01 1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01 1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00 -8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01 -1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01 6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01 4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00 -1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00 -7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00 2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01 -4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02 1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01 3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01 9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01 7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01 6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01 1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01 -1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00 3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01 9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01 -4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01 4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00 2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01 5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01 2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01 -2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01 -6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01 -1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01 -5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01 -1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00 -6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01 -1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01 1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02 1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01 5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01 -4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01 -1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01 6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01 7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01 1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01 1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01 8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01 8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00 -4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01 -5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02 5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01 -2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00 -3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01 6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01 5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00 3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01 -8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00 -8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01 3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01 -3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05 -1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01 8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02 6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01 5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00 1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01 2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02 -1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01 -4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02 9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01 -8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02 7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01 -3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01 -1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01 -1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01 -2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01 1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03 6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01 -4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01 9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01 8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01 1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01 -1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01 8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01 5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01 9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01 -4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01 1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01 -9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00 5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01 -7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00 -6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01 -5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01 -5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01 4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01 -9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00 -8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00 -5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01 -2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00 -3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02 2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01]
[-7.230929374694824, 3.7111520767211914]
4f7675a0-1b8c-4229-843e-fae7a6435787
resmlp-feedforward-networks-for-image
2105.03404
null
https://arxiv.org/abs/2105.03404v2
https://arxiv.org/pdf/2105.03404v2.pdf
ResMLP: Feedforward networks for image classification with data-efficient training
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We also train ResMLP models in a self-supervised setup, to further remove priors from employing a labelled dataset. Finally, by adapting our model to machine translation we achieve surprisingly good results. We share pre-trained models and our code based on the Timm library.
['Armand Joulin', 'Gautier Izacard', 'Hervé Jégou', 'Jakob Verbeek', 'Gabriel Synnaeve', 'Edouard Grave', 'Alaaeldin El-Nouby', 'Matthieu Cord', 'Mathilde Caron', 'Piotr Bojanowski', 'Hugo Touvron']
2021-05-07
null
https://openreview.net/forum?id=K9uApq7iyyI
https://openreview.net/pdf?id=K9uApq7iyyI
neurips-2021-12
['self-supervised-image-classification']
['computer-vision']
[ 6.10153079e-01 2.55007386e-01 -5.44085130e-02 -4.43709910e-01 -8.78952861e-01 -4.83045846e-01 9.91842985e-01 -3.24404716e-01 -6.71497107e-01 5.89383483e-01 1.92869842e-01 -5.70980310e-01 5.24910092e-01 -5.08786917e-01 -1.39711368e+00 -6.56980038e-01 -5.03945015e-02 5.29478669e-01 1.59068152e-01 3.65696102e-02 -1.17378449e-02 3.06570053e-01 -1.33835936e+00 6.56153858e-01 1.43150926e-01 9.58079100e-01 1.21471539e-01 1.23971093e+00 1.33049250e-01 1.32258117e+00 -1.66493788e-01 -3.18535566e-01 4.38785344e-01 -3.00911486e-01 -1.18917227e+00 2.58076400e-01 5.90218008e-01 -1.87082961e-01 -5.24241209e-01 7.26663291e-01 2.90238917e-01 -2.72946179e-01 5.31292737e-01 -7.85318494e-01 -8.08526218e-01 5.71968973e-01 -4.49626416e-01 1.07116722e-01 1.53590649e-01 3.75699550e-01 8.28350723e-01 -9.03758228e-01 4.79727030e-01 1.23175108e+00 7.95457304e-01 3.98910046e-01 -1.83714855e+00 -3.58396232e-01 1.47572666e-01 -3.56078073e-02 -1.15115416e+00 -7.52376854e-01 3.43133420e-01 -4.81800377e-01 1.32898426e+00 2.96107829e-01 2.15200648e-01 1.21267557e+00 1.07538760e-01 8.76017034e-01 1.38116837e+00 -6.10616326e-01 3.49145159e-02 2.67290443e-01 -4.36090268e-02 6.17735982e-01 -6.21299386e-01 4.33910266e-02 -1.33500323e-01 2.26834789e-02 1.00613427e+00 -9.81301516e-02 -2.84581576e-02 -3.10875326e-01 -1.31565559e+00 5.75346649e-01 7.73633957e-01 7.58297890e-02 -2.94088185e-01 5.83686173e-01 2.52612770e-01 6.63449287e-01 4.87369180e-01 3.37247968e-01 -9.59333301e-01 3.75914335e-01 -8.74220550e-01 -7.86667615e-02 9.34482217e-01 1.00222278e+00 1.04808092e+00 -1.33397192e-01 4.80165556e-02 7.84645259e-01 3.07355046e-01 2.28853285e-01 6.12614930e-01 -9.75517154e-01 2.55621195e-01 3.16068023e-01 -6.70014396e-02 -4.06189740e-01 -4.07014340e-01 -5.79621911e-01 -1.00324547e+00 3.28428417e-01 1.72606796e-01 -9.09042954e-02 -1.35067809e+00 1.63950336e+00 -1.45809337e-01 3.12436908e-01 5.02483733e-02 5.00145674e-01 6.43273175e-01 6.72719240e-01 2.90560097e-01 2.20846981e-01 1.29119241e+00 -1.33362675e+00 -4.44109738e-02 -5.69549382e-01 5.61592937e-01 -7.82368124e-01 9.93478060e-01 3.05104941e-01 -1.34740758e+00 -7.10187495e-01 -9.53420937e-01 -2.58026898e-01 -5.31615555e-01 3.17897797e-01 6.34449899e-01 3.67437452e-01 -1.67063725e+00 7.80537665e-01 -9.22735453e-01 -2.75303692e-01 4.89205450e-01 5.97989559e-01 -6.46880627e-01 -3.14895320e-03 -8.02684307e-01 8.98919344e-01 3.22087616e-01 -7.18993042e-03 -1.05896270e+00 -5.37223637e-01 -1.04344213e+00 -6.96811527e-02 1.15821511e-02 -8.30685019e-01 1.55375350e+00 -1.53934133e+00 -1.82052827e+00 1.28220356e+00 -1.20015532e-01 -8.09852064e-01 5.21991909e-01 5.93759120e-02 -2.22262114e-01 6.31088316e-02 1.08497581e-02 1.17235839e+00 1.06388175e+00 -1.08861113e+00 -4.78154451e-01 -3.38669773e-03 2.17523560e-01 1.74810469e-01 1.88727185e-01 1.63330063e-01 -6.78382576e-01 -4.67211217e-01 -4.81566861e-02 -1.14480865e+00 -5.93414843e-01 9.14186314e-02 -4.83954608e-01 1.60389096e-01 4.64320332e-01 -7.85491943e-01 4.51284021e-01 -2.15927458e+00 2.66470730e-01 5.18520772e-02 1.54003963e-01 1.30978853e-01 -5.96767485e-01 3.42623532e-01 -6.17641449e-01 1.05440691e-01 -3.70406419e-01 -6.59746706e-01 5.18008769e-02 2.98106283e-01 -3.08079034e-01 6.16991341e-01 6.13992691e-01 1.21523631e+00 -5.93916774e-01 -1.43774882e-01 4.27590132e-01 4.76254106e-01 -8.12169611e-01 2.73057312e-01 -5.15948534e-01 6.01685166e-01 2.48800337e-01 3.05366874e-01 6.94663405e-01 -6.94356263e-01 1.62059009e-01 -1.05154142e-01 -1.18251756e-01 4.08268571e-01 -8.64103317e-01 1.96232498e+00 -8.16822171e-01 7.19309688e-01 2.99886853e-01 -1.12328541e+00 3.45457166e-01 3.54055256e-01 1.30586699e-01 -6.87797368e-01 3.26577611e-02 8.00584480e-02 -2.19155610e-01 -2.30612323e-01 3.00844967e-01 2.91814152e-02 3.91090810e-02 3.65814537e-01 6.69830143e-01 4.93021198e-02 -2.43872795e-02 1.70949951e-01 1.40129864e+00 4.41222131e-01 5.49133457e-02 -2.78322190e-01 3.58702421e-01 -2.34300897e-01 8.90996829e-02 9.32427764e-01 1.31155416e-01 8.95951092e-01 4.46212143e-01 -5.97431600e-01 -1.36788380e+00 -1.02760017e+00 -2.32467145e-01 1.33581483e+00 -2.46673793e-01 -2.73069382e-01 -6.60358250e-01 -5.15731454e-01 -2.78241813e-01 3.61037165e-01 -7.03422427e-01 1.56433627e-01 -4.39254194e-01 -8.44441056e-01 5.33921301e-01 6.00242198e-01 7.02729881e-01 -1.24018919e+00 -6.82073757e-02 7.81674758e-02 1.75307214e-01 -9.68601644e-01 -1.41643360e-01 8.35371673e-01 -5.80875814e-01 -9.97071385e-01 -7.40171313e-01 -1.21410048e+00 8.55900705e-01 -8.98266435e-02 1.42547226e+00 1.30089581e-01 -8.35574195e-02 2.52845585e-01 -1.26454204e-01 -8.39603916e-02 -6.16550565e-01 4.03226346e-01 -4.36163515e-01 -7.63030052e-02 8.90296325e-02 -6.82375729e-01 -7.03556001e-01 3.06436300e-01 -9.83338058e-01 4.79877025e-01 9.68110561e-01 9.06241000e-01 5.09198904e-01 -1.25314981e-01 9.26480293e-02 -1.19777727e+00 7.49424286e-03 -5.31389296e-01 -5.92034161e-01 1.99133568e-02 -1.49386659e-01 1.45042315e-01 8.86509538e-01 -2.77994156e-01 -8.20977628e-01 4.87957925e-01 -5.97846568e-01 -2.59500742e-01 -5.40802479e-01 3.22218359e-01 9.24964249e-02 -3.21071446e-01 7.35537529e-01 3.55690986e-01 -4.25030664e-02 -5.60614228e-01 7.99877942e-01 6.20756328e-01 6.87020838e-01 -1.51109546e-01 7.38945246e-01 3.93106222e-01 -3.46313179e-01 -7.94372559e-01 -7.63200939e-01 -2.57284403e-01 -8.42647433e-01 4.22279507e-01 9.77236867e-01 -1.33726442e+00 -5.91224790e-01 8.16292048e-01 -1.07312739e+00 -9.91579473e-01 -3.24564666e-01 3.16986501e-01 -6.86508298e-01 5.43750264e-02 -1.22090244e+00 -1.88802660e-01 -1.01409435e-01 -1.08938384e+00 9.15100574e-01 -8.79204087e-03 5.93616813e-02 -1.07445228e+00 5.80674484e-02 2.80442774e-01 5.76289892e-01 -1.23027600e-01 6.15586877e-01 -7.55476058e-01 -8.07865381e-01 -1.42416522e-01 -4.82790828e-01 6.19699776e-01 -2.09825575e-01 -2.15747982e-01 -1.26821625e+00 -4.09033954e-01 -1.82913750e-01 -7.55790114e-01 1.30085838e+00 3.29345316e-01 1.33250058e+00 -5.21742940e-01 -2.94614643e-01 9.09442365e-01 1.40277076e+00 -2.74176538e-01 8.77100170e-01 4.26660508e-01 6.68116331e-01 2.82743275e-01 -4.15223330e-01 -9.97942388e-02 5.60079217e-01 3.10073912e-01 3.96138310e-01 -6.94642246e-01 -2.39124686e-01 -2.18102723e-01 2.75258899e-01 7.10603833e-01 2.02194244e-01 -1.26190856e-01 -7.19462097e-01 3.55376869e-01 -1.92640674e+00 -7.85199463e-01 6.68528304e-03 1.83984065e+00 9.98709619e-01 3.06805462e-01 4.47566584e-02 -1.63463429e-01 3.47970843e-01 2.75321364e-01 -4.44567651e-01 -3.18040609e-01 -2.76519299e-01 5.55425286e-01 1.02144670e+00 6.47870779e-01 -1.51835954e+00 1.05096900e+00 7.96787786e+00 5.68360269e-01 -1.11230612e+00 2.03827485e-01 8.82973909e-01 1.81916684e-01 -1.88543648e-01 1.40726596e-01 -3.34688872e-01 3.45626980e-01 1.15248179e+00 5.24195254e-01 8.22601497e-01 7.04634964e-01 -3.10369581e-01 -6.60112360e-03 -1.32106662e+00 9.12961483e-01 1.48754176e-02 -1.41682458e+00 -2.56514817e-01 -1.37922661e-02 8.06493700e-01 8.44166040e-01 1.39595985e-01 5.15472114e-01 9.17164564e-01 -1.25731575e+00 7.26284683e-01 2.72951990e-01 8.40344310e-01 -2.18675762e-01 5.08571625e-01 3.09525788e-01 -9.59486842e-01 6.20207861e-02 -4.22647446e-01 -3.60261053e-01 -1.61675230e-01 2.60509461e-01 -6.66374028e-01 3.19347471e-01 6.29371464e-01 8.51123452e-01 -6.99325323e-01 8.58741820e-01 -5.42801082e-01 5.95262229e-01 -2.58468002e-01 6.02207780e-01 2.22295225e-01 -3.65164429e-02 7.74516016e-02 1.47394180e+00 -3.43281776e-01 -1.52968764e-01 1.85312048e-01 7.37249911e-01 -4.55317855e-01 -2.85054386e-01 -5.24231315e-01 3.07210565e-01 5.00214174e-02 1.46388173e+00 -6.78113520e-01 -6.30380154e-01 -8.12921703e-01 1.46903014e+00 5.16493678e-01 7.45181978e-01 -6.92553222e-01 -2.11706012e-01 4.48325098e-01 4.83758710e-02 5.96771419e-01 -9.67128426e-02 -2.62411684e-02 -1.29286814e+00 -1.98388800e-01 -7.58097410e-01 1.56063601e-01 -1.04361057e+00 -1.37264776e+00 7.61329770e-01 -4.78674293e-01 -7.81049490e-01 -3.37733477e-01 -9.53169525e-01 -5.15057266e-01 1.04008532e+00 -1.64883792e+00 -1.46125448e+00 1.28809258e-01 5.86872578e-01 3.88301104e-01 -1.35279810e-02 1.08957946e+00 3.20208192e-01 -6.19302213e-01 4.59616601e-01 1.46133959e-01 3.27646732e-01 5.03479838e-01 -1.52885664e+00 9.08213854e-01 7.19698727e-01 1.73592240e-01 4.79069918e-01 4.85200018e-01 -1.35681614e-01 -1.18750787e+00 -1.30423987e+00 7.27956355e-01 -4.60201234e-01 7.59788692e-01 -7.49070346e-01 -8.28393519e-01 1.53057897e+00 7.67984271e-01 1.28713951e-01 6.23307586e-01 1.91035762e-01 -5.98597229e-01 1.99761972e-01 -9.19179082e-01 4.99872267e-01 7.78898239e-01 -9.57866371e-01 -4.74299580e-01 5.63901603e-01 8.45927715e-01 -5.36149919e-01 -7.01978862e-01 7.67214522e-02 4.02575076e-01 -8.21978867e-01 1.01804447e+00 -6.92950487e-01 6.01680994e-01 -1.78125158e-01 -1.52563184e-01 -1.33705616e+00 -6.70432210e-01 -6.64379895e-01 1.94353044e-01 8.78299356e-01 6.92722082e-01 -8.34456921e-01 7.85829425e-01 6.16730392e-01 -1.14438444e-01 -4.82530594e-01 -5.87201893e-01 -4.17989731e-01 2.24599749e-01 -4.07497585e-01 1.79759666e-01 8.15924883e-01 -2.74357408e-01 5.71544409e-01 -3.53951305e-01 1.36317357e-01 4.62076634e-01 -2.31096417e-01 7.85698295e-01 -8.41076136e-01 -7.72376299e-01 -3.86747986e-01 -3.60971838e-01 -1.57150650e+00 2.03714952e-01 -1.07966495e+00 1.16565511e-01 -1.34567308e+00 3.96642148e-01 -3.68404031e-01 -4.18047726e-01 9.38593626e-01 2.21931428e-01 8.29598367e-01 -1.69439558e-02 4.52170223e-01 -7.50954747e-01 2.52620667e-01 7.04294503e-01 -2.13852212e-01 -8.02162364e-02 -1.14429712e-01 -6.24250054e-01 8.97126794e-01 6.94859147e-01 -3.24311495e-01 -1.64636269e-01 -7.87249386e-01 1.99821040e-01 -1.68163657e-01 6.93846405e-01 -9.29255068e-01 2.03961402e-01 2.87661701e-01 7.79071987e-01 -3.20133448e-01 3.26463848e-01 -7.52608299e-01 2.37993017e-01 2.25764751e-01 -6.14126980e-01 -1.50746405e-01 4.52620685e-01 2.70213872e-01 -9.69161764e-02 8.51993114e-02 8.60047340e-01 -5.31028748e-01 -6.13181055e-01 3.09261918e-01 -5.60197949e-01 -3.45033795e-01 7.37899482e-01 4.95026745e-02 -4.24829245e-01 -3.03947628e-01 -1.02330244e+00 1.64906606e-01 8.06453586e-01 2.37169206e-01 6.93216324e-02 -1.18272674e+00 -6.47459209e-01 6.40825868e-01 -6.25680089e-02 -1.79300513e-02 5.26729375e-02 7.84735322e-01 -6.94421351e-01 3.91207904e-01 -9.93831158e-02 -6.90417767e-01 -8.35065544e-01 6.12410128e-01 4.78194416e-01 -2.76938349e-01 -4.94906336e-01 9.79696214e-01 3.96910042e-01 -9.04006958e-01 2.02031255e-01 -2.83737093e-01 1.98986173e-01 -3.71122181e-01 6.71944678e-01 -1.80184200e-01 2.34761000e-01 -5.28732836e-01 -3.18516672e-01 2.52852440e-01 -2.05058932e-01 -3.12191814e-01 1.48719454e+00 -2.20710412e-01 -2.79748291e-01 3.13926786e-01 1.53220010e+00 -2.56770015e-01 -1.63267219e+00 -4.34462249e-01 -1.74139053e-01 2.20599398e-02 1.24078184e-01 -1.05785000e+00 -9.91529465e-01 8.03015172e-01 4.46983516e-01 3.25146437e-01 1.17450750e+00 1.43902063e-01 4.12690461e-01 3.99531573e-01 1.29403234e-01 -6.85222149e-01 -2.12286822e-02 6.90276921e-01 7.09442139e-01 -1.31251597e+00 -2.49235377e-01 -4.15181257e-02 -3.86530489e-01 9.01221335e-01 1.84042439e-01 -5.11418581e-01 8.50002289e-01 5.90168118e-01 2.75061756e-01 -3.06510124e-02 -1.03211749e+00 -2.20596358e-01 1.43517330e-01 5.57887018e-01 6.60237134e-01 -2.65695769e-02 3.82093757e-01 1.58251852e-01 -1.11512408e-01 1.66777551e-01 2.14448407e-01 8.29754710e-01 -1.02427430e-01 -1.16832173e+00 -1.01637244e-01 4.84388620e-01 -4.91011411e-01 -5.08859694e-01 -3.32865983e-01 6.60491288e-01 1.60753746e-02 6.37864292e-01 3.16707164e-01 -4.53364164e-01 9.61164534e-02 -8.01088568e-03 5.62232852e-01 -6.48609340e-01 -6.43271625e-01 7.13494569e-02 4.70521152e-02 -6.82173848e-01 -4.27412748e-01 -2.98003823e-01 -9.23181474e-01 -3.13113719e-01 -7.76635632e-02 -1.93074659e-01 8.59098256e-01 8.89039636e-01 5.08756220e-01 5.68785071e-01 6.65541768e-01 -1.35439086e+00 -5.13081431e-01 -1.13482046e+00 -4.38968867e-01 2.56222934e-01 5.69479048e-01 1.66264489e-01 -3.52255970e-01 3.89731228e-01]
[9.542190551757812, 1.4730764627456665]
9b5a6535-7883-49fd-b562-b3bf01a05710
mfm-net-unpaired-shape-completion-network
2111.11976
null
https://arxiv.org/abs/2111.11976v3
https://arxiv.org/pdf/2111.11976v3.pdf
KTNet: Knowledge Transfer for Unpaired 3D Shape Completion
Unpaired 3D object completion aims to predict a complete 3D shape from an incomplete input without knowing the correspondence between the complete and incomplete shapes. In this paper, we propose the novel KTNet to solve this task from the new perspective of knowledge transfer. KTNet elaborates a teacher-assistant-student network to establish multiple knowledge transfer processes. Specifically, the teacher network takes complete shape as input and learns the knowledge of complete shape. The student network takes the incomplete one as input and restores the corresponding complete shape. And the assistant modules not only help to transfer the knowledge of complete shape from the teacher to the student, but also judge the learning effect of the student network. As a result, KTNet makes use of a more comprehensive understanding to establish the geometric correspondence between complete and incomplete shapes in a perspective of knowledge transfer, which enables more detailed geometric inference for generating high-quality complete shapes. We conduct comprehensive experiments on several datasets, and the results show that our method outperforms previous methods of unpaired point cloud completion by a large margin.
['Bisheng Yang', 'Xiongwu Xiao', 'Yu-Shen Liu', 'Zhen Dong', 'Xin Wen', 'Wenxiao Zhang', 'Zhen Cao']
2021-11-23
null
null
null
null
['point-cloud-completion']
['computer-vision']
[-1.26702815e-01 1.81436166e-01 -5.24118692e-02 -4.28648591e-01 -5.74473500e-01 -6.37481630e-01 2.26543754e-01 -1.92402929e-01 -9.09041520e-03 5.50045550e-01 -9.07768980e-02 -2.03055099e-01 -1.24111339e-01 -1.16143811e+00 -1.11412096e+00 -6.81642056e-01 4.75014716e-01 9.00508702e-01 3.16349149e-01 -1.34508431e-01 1.29170671e-01 7.01524198e-01 -1.38347471e+00 1.01996794e-01 1.18084288e+00 8.93007994e-01 5.25589943e-01 1.23601906e-01 -4.08135742e-01 3.15457314e-01 -3.24525237e-01 -3.02664429e-01 3.38595152e-01 1.20141387e-01 -7.58517623e-01 -3.06455418e-02 4.52774346e-01 -5.83779275e-01 -4.22982872e-01 9.75576460e-01 3.70945245e-01 5.54311164e-02 8.97536457e-01 -1.36508226e+00 -1.16081977e+00 3.76641244e-01 -4.33383346e-01 -3.94758850e-01 3.22174340e-01 8.11607167e-02 5.72190940e-01 -1.22047842e+00 5.04989386e-01 1.29749048e+00 5.68986177e-01 3.63222450e-01 -8.98336887e-01 -8.48968506e-01 1.27075210e-01 1.83011174e-01 -1.54830241e+00 -1.83240846e-02 9.55893040e-01 -3.61246437e-01 3.96894544e-01 -5.68446927e-02 8.10215712e-01 5.96561790e-01 -3.64281654e-01 1.14523149e+00 7.58821428e-01 -2.41316110e-01 -4.70301695e-02 4.42770049e-02 -1.49120182e-01 8.71154785e-01 2.37812459e-01 1.92033142e-01 -1.22640826e-01 1.04306459e-01 1.17603195e+00 1.69059828e-01 -2.88479328e-01 -7.17299461e-01 -1.10165012e+00 5.34864187e-01 8.80472600e-01 1.27740726e-01 -2.85171032e-01 -1.65711751e-03 -1.03196189e-01 1.86428726e-01 3.73849541e-01 1.01223104e-01 -7.23798811e-01 2.49635950e-01 -4.60113555e-01 1.98808581e-01 6.58607304e-01 1.49542308e+00 1.27855277e+00 -3.52049135e-02 -3.98799889e-02 4.61579025e-01 4.03992146e-01 9.12520707e-01 -1.21543631e-01 -9.92078841e-01 7.19005227e-01 1.10194051e+00 1.49796512e-02 -9.30049598e-01 7.79875442e-02 -3.86494607e-01 -8.53412926e-01 4.17880118e-01 3.09262186e-01 1.95847098e-02 -1.05126572e+00 1.54831386e+00 7.07512796e-01 5.93004882e-01 9.61532891e-02 9.00483072e-01 1.27683794e+00 6.89416349e-01 -2.22540841e-01 8.36867765e-02 1.09583032e+00 -8.55969250e-01 -2.96274126e-01 1.18110895e-01 3.72577369e-01 -7.87950158e-01 1.04612875e+00 1.72577530e-01 -1.01895082e+00 -8.54009390e-01 -9.27153111e-01 -4.34673607e-01 -2.20508769e-01 4.98124123e-01 3.47930074e-01 1.57564685e-01 -9.05102909e-01 7.48806775e-01 -6.32357419e-01 1.41697153e-02 8.02883625e-01 4.20704395e-01 -3.92606020e-01 -4.42370504e-01 -8.50860536e-01 8.34964573e-01 4.81398433e-01 4.99068499e-02 -9.07094836e-01 -1.35038137e+00 -8.17849636e-01 1.47846803e-01 2.71762758e-01 -1.05259871e+00 1.23828304e+00 -5.95706642e-01 -1.38890254e+00 8.10041368e-01 9.51737911e-03 2.35937059e-01 6.03354275e-01 -2.63785310e-02 1.40688524e-01 1.72866821e-01 2.48105905e-04 1.07223284e+00 8.55002820e-01 -1.66035962e+00 -4.86747265e-01 -5.69546402e-01 1.48592681e-01 5.19675076e-01 -5.72479293e-02 -7.63515353e-01 -5.39053798e-01 -4.60193396e-01 4.46937412e-01 -6.25763237e-01 9.73750427e-02 4.70032990e-01 -2.79202908e-01 -6.27478004e-01 1.13672447e+00 -5.66866338e-01 4.57971573e-01 -2.08175969e+00 3.21259230e-01 2.38742322e-01 4.50104952e-01 2.03462377e-01 -2.65621364e-01 1.91110998e-01 -1.18764065e-01 -5.51092252e-02 -3.49721879e-01 -3.53964925e-01 -1.62325174e-01 4.02889341e-01 -5.31529605e-01 6.19689487e-02 1.78757444e-01 1.12703121e+00 -1.02644205e+00 -5.13477147e-01 2.30368584e-01 5.16078770e-01 -4.19481039e-01 4.97387230e-01 -3.48632008e-01 7.38449633e-01 -8.69142234e-01 5.44794381e-01 1.03133452e+00 -1.28952816e-01 -3.29178065e-01 -3.89416039e-01 1.80970188e-02 -1.60762444e-01 -1.15689945e+00 2.04797530e+00 -2.87468791e-01 1.92319557e-01 1.18190035e-01 -9.09275353e-01 1.46911538e+00 3.02709073e-01 2.87585855e-01 -4.66036677e-01 3.00810058e-02 1.87426850e-01 -3.56399894e-01 -5.72100759e-01 2.30058730e-01 -4.01350766e-01 3.18093985e-01 5.37723660e-01 3.59611437e-02 -7.04424322e-01 -3.93865883e-01 1.54211834e-01 5.54149628e-01 4.97755557e-01 -2.12659284e-01 -7.80493617e-02 5.67790508e-01 -2.02332791e-02 6.66254282e-01 3.02643090e-01 4.53043990e-02 7.22952724e-01 8.33525062e-02 -7.27852345e-01 -1.03327370e+00 -1.58000326e+00 1.26979768e-01 5.80411136e-01 5.73263407e-01 7.77338743e-02 -4.64821130e-01 -8.22875738e-01 3.22399378e-01 6.38258159e-01 -5.84547639e-01 -3.30815375e-01 -5.44871867e-01 2.05588974e-02 2.54775941e-01 8.03842187e-01 7.17923105e-01 -1.25098646e+00 1.32427558e-01 -1.83324829e-01 -2.31069833e-01 -9.93893981e-01 -5.88862240e-01 -3.95629346e-01 -1.29253590e+00 -1.31087625e+00 -7.70207763e-01 -1.26366007e+00 1.37455988e+00 4.61031824e-01 9.34889436e-01 5.89815378e-01 -1.11248575e-01 4.48589623e-01 -1.28223121e-01 -5.15848696e-01 -3.02165538e-01 -2.66601667e-02 -1.20624481e-02 -1.70109048e-01 1.98609591e-01 -9.67429757e-01 -4.24494207e-01 3.88108313e-01 -8.84970129e-01 4.49641675e-01 7.71320760e-01 3.61817569e-01 7.33948171e-01 3.75670530e-02 5.19922614e-01 -5.73245168e-01 3.98517251e-01 -1.58372357e-01 -6.29953563e-01 3.97059679e-01 -2.53704697e-01 2.26927876e-01 7.44924724e-01 -3.75393957e-01 -1.36541951e+00 3.33596259e-01 -1.34033829e-01 -1.00256658e+00 -3.91132742e-01 2.97613055e-01 -6.11958086e-01 -1.60714105e-01 4.10994232e-01 5.58841228e-01 1.25670806e-01 -7.76079237e-01 4.40163434e-01 2.23925948e-01 6.22582018e-01 -1.12035823e+00 1.33478630e+00 6.13256812e-01 2.41616694e-03 -4.58296120e-01 -8.27443838e-01 -1.34440109e-01 -1.19664979e+00 -3.51558477e-02 6.38408899e-01 -8.69899631e-01 -9.32170749e-01 6.21577919e-01 -1.42449117e+00 -3.33193809e-01 -4.47017252e-01 3.59926641e-01 -5.63567638e-01 3.76926392e-01 -3.91845852e-01 -2.07812443e-01 -2.53667295e-01 -1.16387439e+00 9.86825049e-01 4.47493106e-01 4.60409433e-01 -1.04320204e+00 -5.32919429e-02 3.61918211e-01 -7.32957870e-02 3.46443690e-02 1.24190259e+00 -3.78274202e-01 -1.04963171e+00 -2.27381401e-02 -4.88662452e-01 2.43169829e-01 2.69341320e-01 7.87110403e-02 -7.80780673e-01 -2.80677468e-01 -1.27514705e-01 -3.29084724e-01 6.02348566e-01 2.02470005e-01 1.30031621e+00 -5.04256375e-02 -3.43237638e-01 7.77468979e-01 1.21646178e+00 -4.06561121e-02 7.55475938e-01 -1.57843679e-01 1.01418698e+00 6.03345633e-01 5.81358492e-01 7.12803826e-02 8.24692428e-01 2.37936959e-01 5.92777610e-01 -1.40193686e-01 -2.22565576e-01 -8.99572074e-01 -1.21191956e-01 1.11040044e+00 -1.50574192e-01 3.08692604e-01 -9.36128020e-01 5.06722867e-01 -1.63033199e+00 -6.93945587e-01 -1.63129523e-01 2.09750319e+00 8.43145370e-01 -1.35592252e-01 -2.70236850e-01 -4.21078056e-02 8.87706876e-01 -2.85937518e-01 -7.14969456e-01 1.73543409e-01 2.55142748e-01 6.00704402e-02 -9.74254459e-02 5.51310778e-01 -6.73004150e-01 1.07104170e+00 5.70151520e+00 1.00573087e+00 -8.26676369e-01 -3.30075651e-01 3.71947646e-01 5.13836503e-01 -6.09520733e-01 2.70408392e-01 -7.51756787e-01 2.24254996e-01 -9.48760659e-02 -2.51360565e-01 4.70626980e-01 7.85165012e-01 -1.13256276e-01 1.14317574e-01 -1.31512535e+00 1.07264447e+00 -1.24753013e-01 -1.41025937e+00 6.11934125e-01 6.21731579e-02 9.01192427e-01 -3.99855375e-01 -7.41945356e-02 3.87089998e-01 3.95621061e-01 -9.69567835e-01 5.14729321e-01 9.38186109e-01 8.47944319e-01 -8.00637484e-01 5.09874821e-01 9.00221765e-01 -1.45284438e+00 3.02245080e-01 -7.11796224e-01 -1.49133354e-01 -1.02459118e-01 6.32860959e-01 -1.12546122e+00 8.67458045e-01 4.81201172e-01 8.26759815e-01 -4.50068980e-01 1.13432682e+00 -7.87858069e-01 2.58972645e-01 -2.39442721e-01 1.81111500e-01 -1.97426975e-01 -4.68367428e-01 4.48724926e-01 5.03999829e-01 5.30048847e-01 6.91698372e-01 4.85391051e-01 1.26945567e+00 -3.34633589e-01 -9.14107487e-02 -6.30098343e-01 3.21533352e-01 7.71805882e-01 1.29095280e+00 -5.32840371e-01 -3.61764759e-01 -1.27828211e-01 6.28105223e-01 6.64586365e-01 3.64442199e-01 -3.81901711e-01 -3.23713720e-01 3.90512019e-01 -7.78561011e-02 4.43577260e-01 -2.58058101e-01 -5.65413773e-01 -1.02478409e+00 1.72633454e-01 -1.70110792e-01 2.05622509e-01 -1.43799651e+00 -1.28732872e+00 1.43122718e-01 4.24732044e-02 -1.33155870e+00 2.92952746e-01 -5.27102768e-01 -1.07935989e+00 9.92326081e-01 -1.54558945e+00 -1.48742962e+00 -6.78586543e-01 7.37954736e-01 1.96874604e-01 -9.19200704e-02 7.00791955e-01 1.65282726e-01 -1.34515673e-01 3.53496611e-01 -1.95075959e-01 4.53137010e-01 5.32767951e-01 -1.18346107e+00 2.95587689e-01 2.64089882e-01 -5.58964722e-02 4.38467175e-01 2.29864627e-01 -8.21952701e-01 -1.40801334e+00 -1.05040431e+00 6.31640911e-01 -5.36548316e-01 6.85982555e-02 -7.37441424e-03 -1.20232487e+00 6.15631998e-01 -2.41739392e-01 1.04419388e-01 2.80084372e-01 3.37380543e-03 -4.34473783e-01 -2.75332898e-01 -1.13148403e+00 4.09698784e-01 1.09144759e+00 -4.57062840e-01 -1.08599198e+00 5.57666309e-02 1.09312999e+00 -6.62809968e-01 -9.32909250e-01 5.48699975e-01 4.53263521e-01 -6.24807417e-01 1.10378778e+00 -5.51248848e-01 7.21274495e-01 -5.88202953e-01 9.56173688e-02 -1.57217884e+00 -2.26428390e-01 2.75221188e-02 4.99529354e-02 1.09725940e+00 2.06528872e-01 -3.54181856e-01 1.06968069e+00 4.53415513e-01 -5.87603033e-01 -9.72853541e-01 -7.24400043e-01 -6.26084149e-01 4.45453763e-01 -2.93284804e-01 1.12434375e+00 1.15325594e+00 -5.43205082e-01 2.18950912e-01 -5.44625055e-03 4.04645503e-01 6.68444991e-01 7.08777845e-01 8.92585039e-01 -1.53986239e+00 1.91221297e-01 -9.66895819e-02 -2.92568684e-01 -1.46227443e+00 2.63057888e-01 -1.23105359e+00 -1.38254672e-01 -1.71591103e+00 3.02721232e-01 -8.60157788e-01 1.40661776e-01 7.47794747e-01 -2.68257141e-01 6.48490116e-02 1.90067127e-01 2.20511034e-01 -3.95400494e-01 1.03766966e+00 2.25005937e+00 -2.44276032e-01 -2.60187000e-01 2.46782780e-01 -7.75674760e-01 8.36334944e-01 6.21234655e-01 -4.27371085e-01 -5.33407927e-01 -8.56368482e-01 1.20383106e-01 1.96911916e-01 6.03294313e-01 -7.55345702e-01 4.83216524e-01 -2.51652807e-01 8.23963523e-01 -1.12448525e+00 2.46487424e-01 -1.08024430e+00 -1.34875089e-01 4.17990327e-01 5.07966653e-02 -2.02289432e-01 1.94152474e-01 5.81305921e-01 5.90089299e-02 -2.91964382e-01 5.38416386e-01 -2.25029707e-01 -5.13521314e-01 9.38431859e-01 4.72295731e-01 1.87080488e-01 9.14680421e-01 -4.68075246e-01 -2.14860305e-01 -3.37474227e-01 -9.43000078e-01 5.91121137e-01 5.61651468e-01 5.38029969e-01 1.15361726e+00 -1.76095426e+00 -7.81534612e-01 5.10784090e-01 3.52117233e-02 8.52692544e-01 3.22561890e-01 4.10477936e-01 -4.65121388e-01 2.10221037e-02 -3.29903275e-01 -8.61775935e-01 -1.10046923e+00 5.07422268e-01 1.70888290e-01 1.47630632e-01 -5.74336648e-01 6.49334490e-01 5.49752474e-01 -1.30941379e+00 2.52015531e-01 -3.27431798e-01 5.10822535e-02 -2.57227451e-01 3.45237404e-01 3.52940172e-01 -5.05522713e-02 -3.91597301e-01 7.35113546e-02 9.58733141e-01 1.97873861e-02 2.53695071e-01 1.44915307e+00 9.36641768e-02 -1.95939675e-01 1.35702312e-01 1.32432270e+00 -2.53862232e-01 -1.57958984e+00 -5.21271825e-01 -4.57369715e-01 -5.83794951e-01 -2.75956064e-01 -7.73586929e-01 -1.24640977e+00 1.17668748e+00 1.59391358e-01 -4.47451591e-01 9.12502944e-01 1.89953774e-01 8.05986047e-01 7.12650120e-01 3.87788177e-01 -6.43611610e-01 3.12199563e-01 6.87619209e-01 1.17147100e+00 -1.02276099e+00 1.07902013e-01 -7.19558775e-01 -3.22142452e-01 1.26036727e+00 1.00245237e+00 -2.71850973e-01 7.12723494e-01 -3.48478518e-02 5.02620451e-02 -2.88903207e-01 -4.74768251e-01 6.29276410e-02 5.60845792e-01 8.97461057e-01 -1.81286499e-01 1.41196787e-01 3.60111803e-01 5.41762233e-01 -3.34842652e-01 -1.04386508e-02 1.01261944e-01 7.19436347e-01 -6.41113162e-01 -1.19790518e+00 -5.04547060e-01 3.32873613e-01 5.00756145e-01 1.31103992e-01 -5.00431478e-01 7.90596068e-01 3.18717688e-01 3.74700516e-01 1.56379864e-01 -3.59649658e-01 5.23344219e-01 -1.10597149e-01 7.37951100e-01 -7.09341109e-01 -2.54803330e-01 -3.23218524e-01 -6.42231405e-01 -9.69988108e-02 -1.60424486e-01 -2.72362471e-01 -1.70332241e+00 -4.05821830e-01 -2.64217407e-01 2.62114555e-01 4.67419446e-01 1.23604107e+00 3.98862630e-01 3.43070984e-01 7.56832004e-01 -9.81684804e-01 -6.31809771e-01 -5.96353531e-01 -4.63151693e-01 5.31810939e-01 1.68248177e-01 -7.45345294e-01 -1.31514847e-01 9.78763551e-02]
[8.484164237976074, -3.6140987873077393]
f039879b-4c8d-45d3-8df6-d59cbd9594e3
video-acceleration-magnification
1704.04186
null
http://arxiv.org/abs/1704.04186v2
http://arxiv.org/pdf/1704.04186v2.pdf
Video Acceleration Magnification
The ability to amplify or reduce subtle image changes over time is useful in contexts such as video editing, medical video analysis, product quality control and sports. In these contexts there is often large motion present which severely distorts current video amplification methods that magnify change linearly. In this work we propose a method to cope with large motions while still magnifying small changes. We make the following two observations: i) large motions are linear on the temporal scale of the small changes; ii) small changes deviate from this linearity. We ignore linear motion and propose to magnify acceleration. Our method is pure Eulerian and does not require any optical flow, temporal alignment or region annotations. We link temporal second-order derivative filtering to spatial acceleration magnification. We apply our method to moving objects where we show motion magnification and color magnification. We provide quantitative as well as qualitative evidence for our method while comparing to the state-of-the-art.
['Jan C. van Gemert', 'Silvia L. Pintea', 'Yichao Zhang']
2017-04-13
video-acceleration-magnification-1
http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Video_Acceleration_Magnification_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhang_Video_Acceleration_Magnification_CVPR_2017_paper.pdf
cvpr-2017-7
['motion-magnification']
['computer-vision']
[ 5.68629622e-01 -1.13359511e-01 -6.86000362e-02 9.54047143e-02 -5.66521548e-02 -7.76092350e-01 5.89029670e-01 5.25795668e-03 -4.94534016e-01 5.41598201e-01 1.54711604e-01 -3.11864406e-01 1.14531882e-01 -5.03870726e-01 -6.88865185e-01 -3.84752482e-01 -3.52574140e-01 -2.58316785e-01 7.86584437e-01 -3.58514577e-01 4.26162809e-01 5.39161146e-01 -1.37929094e+00 4.96756285e-01 6.18787348e-01 6.39547646e-01 -1.22904755e-01 1.34108698e+00 3.41713995e-01 8.37531805e-01 -5.86899340e-01 -1.84182227e-01 4.55220819e-01 -5.52941203e-01 -7.78464556e-01 2.63283938e-01 7.20348179e-01 -6.21031225e-01 -2.86972642e-01 1.03352273e+00 3.55024815e-01 1.75729647e-01 2.66604275e-01 -1.04356349e+00 -5.78142583e-01 2.16936514e-01 -1.04474568e+00 7.81570435e-01 6.05019450e-01 4.63106453e-01 4.13478702e-01 -5.21952629e-01 1.17254245e+00 1.25460768e+00 7.99973845e-01 4.96720254e-01 -1.35654569e+00 -1.87436715e-01 2.34744176e-01 8.35567713e-02 -1.04422140e+00 -3.48693371e-01 7.05589771e-01 -5.10950387e-01 8.12606514e-01 5.64691246e-01 7.08444655e-01 5.98818898e-01 4.08599108e-01 5.41077971e-01 9.61041451e-01 -4.88627285e-01 1.77156374e-01 -5.14144860e-02 -3.56481701e-01 5.05178392e-01 4.70312312e-02 2.03806877e-01 -3.23744327e-01 1.06415741e-01 1.25458705e+00 -1.87286749e-01 -4.16977048e-01 -1.00721218e-01 -1.55847228e+00 5.45398295e-01 2.40540892e-01 4.34359610e-01 -3.07025552e-01 5.00957668e-01 3.36884588e-01 3.57636064e-01 4.65473980e-01 5.75000882e-01 -2.23177344e-01 -5.22443295e-01 -1.12646365e+00 3.89102697e-01 4.18750852e-01 6.33626699e-01 4.35433239e-01 1.14163727e-01 -3.61406803e-02 3.29104334e-01 -3.05830315e-02 3.45817894e-01 5.22264302e-01 -1.45849144e+00 1.58237755e-01 8.11058208e-02 2.30199412e-01 -1.20439076e+00 -4.42375034e-01 -2.57051326e-02 -6.71426594e-01 7.70056188e-01 6.54858112e-01 -2.54314914e-02 -6.82817519e-01 1.52251935e+00 3.76750380e-01 4.45140541e-01 -2.44638279e-01 1.02314615e+00 2.55918413e-01 5.41437864e-01 -9.52886045e-02 -5.57530403e-01 1.23637748e+00 -6.89419091e-01 -1.09212685e+00 9.10183415e-02 5.37116110e-01 -1.17609012e+00 1.25387561e+00 5.49441099e-01 -1.53708208e+00 -5.87075651e-01 -1.14799595e+00 -1.51214257e-01 -5.54036796e-02 -1.36201397e-01 4.49909061e-01 7.12975860e-01 -1.11137915e+00 1.09718788e+00 -9.27330196e-01 -1.36565819e-01 3.09420396e-02 3.37438017e-01 -8.47735405e-02 3.49875420e-01 -1.01557815e+00 7.04310000e-01 -6.17295615e-02 -3.02505493e-03 -1.48302808e-01 -9.61200237e-01 -5.67769408e-01 -2.75621712e-01 3.23816389e-01 -6.18473589e-01 1.42524183e+00 -1.27497947e+00 -1.67998683e+00 7.51289189e-01 -2.34586656e-01 -4.71076548e-01 1.10063350e+00 -4.00401026e-01 -3.82846832e-01 4.20003086e-01 -3.11250597e-01 7.45634854e-01 9.70305800e-01 -9.91284132e-01 -5.65493405e-01 -5.14377542e-02 3.50015759e-01 1.59866899e-01 -1.23554476e-01 -9.90387872e-02 -3.63497764e-01 -1.07648456e+00 -6.61964044e-02 -1.10436249e+00 -2.62172252e-01 4.19696033e-01 -7.59474337e-02 4.51235741e-01 1.28989649e+00 -6.48911655e-01 1.57674587e+00 -2.01409197e+00 9.98735204e-02 -4.00365591e-02 3.21692050e-01 2.95117408e-01 -4.73117009e-02 7.88605735e-02 -8.71205628e-02 1.08448818e-01 -1.99113846e-01 -8.64295736e-02 -3.55150700e-01 6.85516838e-03 -2.73041338e-01 6.83152199e-01 2.31214687e-01 8.68581593e-01 -1.09967434e+00 -3.02229911e-01 4.37503934e-01 6.09208941e-01 -8.50328147e-01 -3.27241689e-01 -7.84894377e-02 5.92161238e-01 1.18001021e-01 5.35626769e-01 7.94158518e-01 -9.47246887e-03 5.15043475e-02 -5.28598666e-01 -5.56598246e-01 -1.62648745e-02 -1.39106488e+00 1.36532199e+00 -2.44965091e-01 1.10887218e+00 1.82790495e-02 -4.48997796e-01 2.79616058e-01 1.82385221e-01 5.51121235e-01 -6.93160355e-01 7.68617243e-02 1.06965981e-01 2.25920975e-01 -6.43702865e-01 7.77012169e-01 -3.23745728e-01 3.78342420e-01 2.80111790e-01 -6.07390523e-01 -3.34784359e-01 4.31431800e-01 2.19849527e-01 1.02202857e+00 2.80844599e-01 3.96156102e-01 -1.99218079e-01 3.78705561e-01 -1.41460940e-01 2.71403283e-01 3.67264241e-01 -4.77974594e-01 7.57833421e-01 6.64598703e-01 -4.24343646e-01 -1.26377702e+00 -8.16788197e-01 1.90565765e-01 8.03335488e-01 4.17744994e-01 -4.01198924e-01 -7.85704255e-01 -2.59111583e-01 -8.27768371e-02 2.77560055e-01 -6.35948837e-01 -6.29945919e-02 -1.00821102e+00 -6.46857321e-01 4.46305573e-01 6.26804948e-01 2.72381544e-01 -7.03734875e-01 -1.16777158e+00 2.68781573e-01 -1.12465799e-01 -1.15712655e+00 -9.68869150e-01 -5.58512390e-01 -1.18199563e+00 -9.16767955e-01 -7.50661433e-01 -3.35286349e-01 5.25998056e-01 3.65650147e-01 9.88779485e-01 8.36696997e-02 -5.52251875e-01 3.44858974e-01 -2.15719879e-01 -2.34765768e-01 -5.52815855e-01 -4.42389190e-01 1.61680043e-01 -1.94043875e-01 -1.70909315e-01 -5.88472664e-01 -9.03700173e-01 4.99647170e-01 -1.30383527e+00 9.69427004e-02 4.26431298e-01 4.47628349e-01 4.85122979e-01 -6.73963968e-03 1.02868140e-01 -7.39935040e-01 6.66267872e-01 1.12623475e-01 -6.95632935e-01 -2.29441494e-01 -3.76758248e-01 3.31543684e-02 5.35312414e-01 -1.19132352e+00 -8.40629101e-01 4.82539311e-02 1.14636920e-01 -6.14829898e-01 4.74942997e-02 1.54829741e-01 3.56494695e-01 -2.93092161e-01 9.71545577e-01 -2.52167672e-01 1.10054664e-01 -2.42118910e-01 5.31120956e-01 1.04469486e-01 8.25853527e-01 -2.10886301e-05 7.39371300e-01 1.15265107e+00 2.28371724e-01 -1.05611265e+00 -6.82521462e-02 -3.54858309e-01 -7.51331925e-01 -5.99080324e-01 7.82381415e-01 -3.54182959e-01 -9.40405488e-01 3.10506344e-01 -1.15112495e+00 -5.29670596e-01 -5.23866534e-01 4.98037934e-01 -6.94044888e-01 6.99439585e-01 -9.40304697e-01 -6.69164956e-01 3.49946544e-02 -1.07963550e+00 9.54967201e-01 1.85732156e-01 -5.94876409e-01 -1.09249210e+00 1.20697327e-01 -1.29078463e-01 5.98776698e-01 6.20959282e-01 4.08214897e-01 4.12051171e-01 -5.07725298e-01 -3.25691849e-02 7.99322203e-02 7.81973302e-02 1.87697411e-01 5.64558744e-01 -7.49549210e-01 -1.87139586e-01 -1.53142706e-01 3.65245342e-01 6.74408138e-01 8.33979845e-01 8.19353938e-01 -5.40772974e-01 -9.01131257e-02 5.17851412e-01 1.12257183e+00 2.68451124e-01 1.03593576e+00 3.60419750e-01 6.95407629e-01 7.73202717e-01 7.17759728e-01 3.70704353e-01 -2.67844856e-01 9.60229933e-01 2.03444093e-01 -3.67815256e-01 -3.92830878e-01 1.11729883e-01 4.84901458e-01 5.22927225e-01 -6.16310596e-01 3.56976339e-03 -5.74129462e-01 4.60006803e-01 -1.65785837e+00 -1.30431819e+00 -4.10565078e-01 2.27291036e+00 8.01614821e-01 3.59705418e-01 4.38464463e-01 4.88758236e-01 6.47339344e-01 9.48744416e-02 -3.85292977e-01 -6.05393052e-01 -9.67657845e-03 -8.30490068e-02 8.15679610e-01 9.00794387e-01 -1.07243741e+00 6.47002339e-01 7.29669762e+00 4.40411538e-01 -1.63949955e+00 2.22463049e-02 5.81601501e-01 -5.13174355e-01 -3.19112241e-01 -2.00304240e-01 -2.51258761e-01 4.32981819e-01 7.30754137e-01 -1.01406500e-01 3.19110721e-01 4.96086597e-01 7.71898150e-01 -1.97818995e-01 -9.85956907e-01 8.95661473e-01 -1.78903341e-01 -1.50966775e+00 -1.48708209e-01 1.42120570e-01 8.24888289e-01 -5.19227266e-01 3.80050510e-01 -3.43626797e-01 -1.85037941e-01 -8.88549626e-01 8.99604976e-01 3.80533755e-01 9.65464950e-01 -5.22578716e-01 3.38418305e-01 9.46392864e-03 -1.25931275e+00 8.74068514e-02 -2.07339153e-02 -2.34783515e-01 6.92894638e-01 6.46395445e-01 -6.19690776e-01 9.95536894e-02 4.33760852e-01 6.02178931e-01 -3.95645559e-01 8.92117143e-01 9.13815126e-02 4.34383541e-01 -3.48270416e-01 2.87539184e-01 7.84468353e-02 -2.94873029e-01 8.63867998e-01 1.42790520e+00 3.59596729e-01 1.90044060e-01 -2.77370900e-01 5.42577386e-01 2.93654174e-01 -4.60892022e-02 -3.49806756e-01 -8.36431608e-02 -3.65151092e-02 9.37628865e-01 -1.07591510e+00 -6.17708743e-01 -4.93121773e-01 1.31064785e+00 -5.02071619e-01 4.52323169e-01 -9.13410425e-01 -3.21987003e-01 6.94582343e-01 6.18276417e-01 2.35975817e-01 -4.10307467e-01 -2.96615720e-01 -1.15704441e+00 1.37308180e-01 -7.05745220e-01 2.29242310e-01 -7.10534513e-01 -5.75759292e-01 3.70145470e-01 1.51462823e-01 -1.62621045e+00 -4.06780094e-01 -6.15729272e-01 -5.16064763e-01 4.01226699e-01 -1.23202634e+00 -7.95039535e-01 -2.00916752e-01 3.51877570e-01 6.96025193e-01 5.06744981e-01 9.05862153e-02 6.41530931e-01 -5.90311252e-02 3.38618129e-01 -2.13574558e-01 -3.14454496e-01 8.48789632e-01 -1.16060424e+00 4.00415063e-01 1.17691636e+00 -9.77451056e-02 5.45991182e-01 1.36542499e+00 -7.01934218e-01 -1.22671473e+00 -7.41648912e-01 7.24666536e-01 -3.37078780e-01 7.09677160e-01 -4.30531874e-02 -9.62250888e-01 5.00397444e-01 1.25641242e-01 2.95018137e-01 2.32534692e-01 -5.25008917e-01 -1.51825175e-01 -5.55035360e-02 -1.17297637e+00 8.00447345e-01 9.29513335e-01 -2.98857987e-01 -1.90607309e-01 9.38809365e-02 6.78336859e-01 -6.97598398e-01 -6.24905646e-01 2.60618210e-01 8.92577529e-01 -1.16978729e+00 1.06050968e+00 -3.90786231e-01 5.31596422e-01 -6.72243655e-01 1.93880036e-01 -1.08198082e+00 -2.70058662e-01 -1.12274969e+00 -4.19995129e-01 6.40630066e-01 1.78938940e-01 -3.95953238e-01 5.72914779e-01 4.77290303e-01 1.37103379e-01 -4.04081464e-01 -7.07168519e-01 -7.60820925e-01 -1.70430571e-01 -4.27249312e-01 1.57880530e-01 1.07642782e+00 2.84813464e-01 -1.97912052e-01 -4.26854521e-01 1.73679106e-02 3.92404586e-01 -3.01169753e-01 6.59882784e-01 -7.52101302e-01 -5.14023900e-01 -6.57924592e-01 -7.38210142e-01 -1.13295412e+00 -6.90944910e-01 -2.90154684e-02 -1.76511705e-01 -9.82289970e-01 -5.61983697e-02 6.28424063e-02 8.06344897e-02 3.92016284e-02 -2.06551045e-01 7.40824580e-01 2.43121937e-01 2.53141999e-01 -2.22614661e-01 -3.98073159e-02 1.52419913e+00 -2.07978580e-02 -6.46094918e-01 -1.41528234e-01 -2.94330686e-01 7.63495982e-01 5.99563777e-01 -1.79637037e-02 -4.89644200e-01 -1.16564393e-01 4.01666760e-01 -8.04840699e-02 4.32818055e-01 -9.53276038e-01 -1.08198173e-01 -2.43252486e-01 3.09348583e-01 -2.99626857e-01 1.01814613e-01 -5.83350897e-01 2.76084453e-01 9.00725901e-01 -3.64768386e-01 4.36960250e-01 4.14795071e-01 4.01937276e-01 -1.04421191e-01 4.60011102e-02 1.10640347e+00 1.48019437e-02 -7.45612621e-01 -4.28445600e-02 -6.24610722e-01 -2.37212703e-01 1.00363612e+00 -5.03036857e-01 -2.33836696e-01 -7.72814751e-01 -9.26467896e-01 -2.67936856e-01 8.63709152e-01 4.47296441e-01 4.87367213e-01 -1.28047776e+00 -4.87372011e-01 4.44433317e-02 -3.19985360e-01 -4.65246558e-01 4.54143763e-01 1.34036291e+00 -1.01466966e+00 1.23634703e-01 -1.79239795e-01 -6.83767200e-01 -1.76897395e+00 8.23367238e-01 3.09767902e-01 -7.12316036e-02 -6.70291603e-01 5.17836332e-01 3.04474205e-01 4.51423764e-01 -8.04754645e-02 -9.02395666e-01 -1.73586830e-01 1.02472804e-01 9.45341706e-01 7.76149511e-01 -1.17727190e-01 -5.96435964e-01 -2.95561045e-01 8.79461348e-01 5.86721934e-02 -5.66239119e-01 9.31762516e-01 -5.29662430e-01 1.43929020e-01 4.32719201e-01 1.18327498e+00 3.65950167e-01 -1.55987775e+00 3.16036642e-01 -2.33171523e-01 -8.42940986e-01 -8.26580152e-02 -2.93603778e-01 -9.72417474e-01 8.79762828e-01 8.67782116e-01 5.53901196e-01 1.36616814e+00 -2.40394592e-01 7.06736565e-01 -2.19771162e-01 -1.46864757e-01 -1.21393812e+00 3.70189101e-01 1.47730708e-01 7.20702231e-01 -8.45359504e-01 2.75770456e-01 -7.57643521e-01 -5.89675963e-01 1.15888965e+00 3.11752528e-01 -2.40153372e-01 3.14284742e-01 7.29898989e-01 1.35829464e-01 1.41340837e-01 -6.27762437e-01 -4.44183908e-02 3.52266997e-01 5.61345756e-01 6.66076541e-01 -2.74567097e-01 -6.84270680e-01 -4.36938256e-01 -1.48518467e-02 2.97011346e-01 9.58976984e-01 1.16726387e+00 -3.07268023e-01 -8.25332344e-01 -6.91429555e-01 -2.51835957e-02 -7.40736783e-01 1.01901621e-01 -4.65883501e-02 8.38049054e-01 1.43373862e-01 6.76492810e-01 2.43251145e-01 -1.94744453e-01 4.65319157e-01 -4.20517385e-01 7.60271192e-01 9.04496983e-02 -3.56846094e-01 5.99205494e-01 -7.43672848e-02 -9.09564376e-01 -7.39892900e-01 -6.93390548e-01 -1.31594968e+00 -5.75663447e-01 -9.85811800e-02 -4.31707859e-01 5.00713646e-01 5.20089209e-01 2.15617329e-01 8.52048278e-01 1.71886683e-01 -1.17757642e+00 -7.14590475e-02 -7.85924613e-01 -3.15880299e-01 8.28341961e-01 8.86771679e-01 -4.57576096e-01 -5.06095290e-01 8.93399656e-01]
[10.829383850097656, -1.4417403936386108]
71084e0d-5111-4ece-b276-9178327b9aca
enriched-music-representations-with-multiple
2104.00437
null
https://arxiv.org/abs/2104.00437v1
https://arxiv.org/pdf/2104.00437v1.pdf
Enriched Music Representations with Multiple Cross-modal Contrastive Learning
Modeling various aspects that make a music piece unique is a challenging task, requiring the combination of multiple sources of information. Deep learning is commonly used to obtain representations using various sources of information, such as the audio, interactions between users and songs, or associated genre metadata. Recently, contrastive learning has led to representations that generalize better compared to traditional supervised methods. In this paper, we present a novel approach that combines multiple types of information related to music using cross-modal contrastive learning, allowing us to learn an audio feature from heterogeneous data simultaneously. We align the latent representations obtained from playlists-track interactions, genre metadata, and the tracks' audio, by maximizing the agreement between these modality representations using a contrastive loss. We evaluate our approach in three tasks, namely, genre classification, playlist continuation and automatic tagging. We compare the performances with a baseline audio-based CNN trained to predict these modalities. We also study the importance of including multiple sources of information when training our embedding model. The results suggest that the proposed method outperforms the baseline in all the three downstream tasks and achieves comparable performance to the state-of-the-art.
['Dmitry Bogdanov', 'Yuntae Kim', 'Konstantinos Drossos', 'Xavier Favory', 'Andres Ferraro']
2021-04-01
null
null
null
null
['genre-classification']
['computer-vision']
[ 2.84933537e-01 -3.47083390e-01 -3.11534584e-01 -2.95839965e-01 -1.29978979e+00 -7.12384641e-01 5.98667920e-01 4.92830873e-01 -3.39455366e-01 3.29005301e-01 8.40938270e-01 6.14882946e-01 -3.04016978e-01 -5.45539439e-01 -7.31851459e-01 -6.02351367e-01 -3.85505781e-02 2.45909870e-01 1.38229936e-01 -7.68934786e-02 2.40455270e-01 5.29729351e-02 -1.99973726e+00 7.51425326e-01 1.95710912e-01 1.39011562e+00 9.26004201e-02 4.88499910e-01 -1.74991533e-01 8.11816931e-01 -5.74547052e-01 -3.32824260e-01 -5.37244836e-03 -3.03773820e-01 -8.21092546e-01 -1.32388309e-01 6.16207421e-01 5.77637665e-02 -2.50484884e-01 6.57905936e-01 7.09451854e-01 3.10093075e-01 7.08643556e-01 -1.19680893e+00 -3.54864299e-01 1.06467688e+00 -4.16301548e-01 5.31324483e-02 5.16466498e-01 -3.84237528e-01 1.58766806e+00 -6.51461661e-01 5.93559802e-01 1.14980996e+00 9.21784222e-01 2.96160460e-01 -1.17667925e+00 -7.90638804e-01 9.50553194e-02 5.38054287e-01 -1.33387959e+00 -6.45028174e-01 1.06098390e+00 -7.43956447e-01 6.71123564e-01 3.02593738e-01 5.33599138e-01 1.44639599e+00 -1.50842562e-01 9.06192780e-01 7.61844099e-01 -5.87377310e-01 4.11509648e-02 1.40718818e-01 2.45662797e-02 1.87635109e-01 -4.44813639e-01 -1.68734014e-01 -1.24434471e+00 -3.13128740e-01 3.33401203e-01 -3.78762223e-02 -1.81834817e-01 -1.26067743e-01 -1.34965229e+00 6.09262884e-01 2.98962235e-01 5.80723166e-01 -3.50488454e-01 2.62192011e-01 7.47477651e-01 2.19364181e-01 6.32474303e-01 6.24745369e-01 -4.98449504e-01 -4.83329147e-01 -1.09505272e+00 2.13370636e-01 7.89859474e-01 6.08333588e-01 4.27404106e-01 -8.05273280e-02 -2.83062786e-01 1.18937898e+00 4.06500310e-01 -6.30081296e-02 6.39765680e-01 -1.07215548e+00 4.31291729e-01 4.22226489e-01 -2.97058761e-01 -8.68183851e-01 -2.00114712e-01 -6.41881585e-01 -5.59705377e-01 -1.15844592e-01 2.46829972e-01 2.39917904e-01 -2.99138725e-01 1.97547460e+00 9.45094675e-02 5.30438185e-01 -2.33716249e-01 6.33761346e-01 9.31731522e-01 6.59851611e-01 8.44397023e-02 -1.04977496e-01 1.19344258e+00 -9.87289906e-01 -8.43002915e-01 1.47018805e-01 2.99751937e-01 -1.07664573e+00 1.00292838e+00 5.27090788e-01 -1.01968646e+00 -9.14094448e-01 -1.07135534e+00 -9.12507102e-02 -3.35848689e-01 3.12343031e-01 4.33199048e-01 1.80056587e-01 -7.30139077e-01 9.10132170e-01 -5.86852610e-01 -2.20852181e-01 2.84042090e-01 3.97895783e-01 -4.89853889e-01 3.35439146e-01 -1.14430296e+00 3.50861460e-01 3.05422157e-01 -2.51540601e-01 -8.00758421e-01 -9.00044084e-01 -7.14258730e-01 2.84100533e-01 1.48335099e-01 -4.50212210e-01 1.17703295e+00 -1.08209348e+00 -1.53762257e+00 7.86452174e-01 -1.32716363e-02 -2.33081043e-01 5.73919937e-02 -5.17671704e-01 -3.73337060e-01 7.79322013e-02 2.01797545e-01 6.15514576e-01 7.98370600e-01 -9.96011078e-01 -6.07305408e-01 -3.64351213e-01 2.43342996e-01 1.80736601e-01 -7.86368966e-01 1.41083255e-01 -6.49897337e-01 -9.30267751e-01 -8.21600854e-02 -1.08664215e+00 3.26913387e-01 -5.59789389e-02 -4.19461191e-01 -3.98576140e-01 4.43229824e-01 -6.42115116e-01 1.40244734e+00 -2.64702654e+00 5.80957532e-01 -9.30916965e-02 -1.34176239e-01 -2.45813400e-01 -2.16225758e-01 7.42526770e-01 -8.49112682e-03 -6.17139339e-02 4.06894758e-02 -7.28710711e-01 3.49597454e-01 -9.60149691e-02 -4.68579173e-01 2.19968513e-01 -7.99781382e-02 6.05890572e-01 -8.37989628e-01 -4.52996701e-01 -3.70986089e-02 7.82068670e-01 -6.31960452e-01 3.01406980e-01 -2.04643711e-01 6.54636621e-01 -5.92411943e-02 6.38644099e-01 8.28339756e-02 -4.56433184e-02 2.55011797e-01 -5.91232896e-01 2.68271677e-02 7.36586034e-01 -1.27302969e+00 2.39838195e+00 -6.63142145e-01 8.77270103e-01 -1.40209556e-01 -8.54494631e-01 8.56952965e-01 6.40121043e-01 7.32733965e-01 -2.58152336e-01 9.75339338e-02 8.82883519e-02 -2.00782165e-01 -4.79065597e-01 5.72691798e-01 -1.37810320e-01 -4.40893978e-01 5.26779354e-01 7.05731511e-01 2.67722338e-01 -4.39606048e-02 -1.55828521e-02 1.07780778e+00 3.80843848e-01 5.10680228e-02 1.41454741e-01 3.82218927e-01 -4.16277379e-01 4.85517859e-01 5.56982577e-01 1.87085077e-01 6.49070680e-01 2.95316637e-01 -1.36050209e-01 -6.42837763e-01 -9.70621824e-01 -5.78230992e-02 1.68577552e+00 3.71749885e-02 -1.01065326e+00 -3.42610419e-01 -5.68327129e-01 6.33950382e-02 2.74232745e-01 -7.52741218e-01 -2.72413045e-01 -4.16236252e-01 -3.17971230e-01 7.41939127e-01 6.72964990e-01 7.43493438e-02 -1.09095860e+00 -4.34839074e-03 3.37063521e-01 -4.35767502e-01 -8.92174602e-01 -5.02302885e-01 2.53498703e-01 -8.10790360e-01 -9.25460577e-01 -4.33167219e-01 -7.87132084e-01 -2.46657446e-01 3.11250892e-02 1.14653885e+00 -2.74927586e-01 -1.97189033e-01 5.71396470e-01 -6.00760281e-01 -2.91430295e-01 -1.77227750e-01 4.91161942e-01 1.39186054e-01 4.52843666e-01 2.80481964e-01 -9.92748022e-01 -3.75094831e-01 9.82058123e-02 -9.79733467e-01 -2.64650643e-01 4.20634508e-01 7.24182904e-01 7.42428839e-01 -4.39381823e-02 6.74101889e-01 -7.64213026e-01 5.57149708e-01 -6.06673777e-01 1.87042415e-01 1.51915416e-01 -1.21512979e-01 1.39466733e-01 3.38810086e-01 -8.82887661e-01 -7.79072225e-01 1.82362244e-01 -1.83475703e-01 -6.07942224e-01 -2.54410356e-01 5.63070774e-01 -4.14558381e-01 2.71335602e-01 5.22563338e-01 -8.63614529e-02 -3.12671781e-01 -1.14572585e+00 3.74956846e-01 1.07465971e+00 6.22781217e-01 -7.03952789e-01 4.00423557e-01 3.28117073e-01 -1.68788373e-01 -7.14227438e-01 -1.21098638e+00 -7.99623609e-01 -7.73533881e-01 -3.82585913e-01 6.77225530e-01 -1.05779803e+00 -5.55592418e-01 2.08032802e-01 -1.06380570e+00 9.04527232e-02 -6.55916810e-01 8.31468225e-01 -7.64835536e-01 1.23194270e-01 -6.50046706e-01 -6.75935268e-01 -1.54260397e-01 -8.87635410e-01 1.43527257e+00 -1.31049976e-01 -5.84807038e-01 -8.64075243e-01 5.04142463e-01 5.04106164e-01 1.28387526e-01 2.60557353e-01 8.92410338e-01 -8.28194261e-01 -3.61672729e-01 -2.31611684e-01 2.42743000e-01 3.41732383e-01 2.73447186e-01 -1.71372965e-01 -1.45940459e+00 -1.47428483e-01 -3.47420156e-01 -5.34676790e-01 1.12420630e+00 2.27725253e-01 1.34430170e+00 -1.01552300e-01 -2.11909115e-01 6.10168636e-01 1.11419022e+00 -3.95924039e-02 3.88309777e-01 4.69882190e-01 7.29380190e-01 6.14629745e-01 5.50734520e-01 6.39378011e-01 3.11908245e-01 1.22958159e+00 3.55105042e-01 3.14306170e-01 -3.26489508e-01 -4.80410337e-01 5.76733768e-01 1.44530571e+00 -2.22990379e-01 -9.75447893e-02 -4.28304374e-01 6.27382874e-01 -2.00480294e+00 -1.21925712e+00 1.58409059e-01 2.04375052e+00 1.06955194e+00 -7.11366683e-02 4.04573590e-01 5.26352465e-01 6.09348297e-01 2.48703986e-01 -2.83005744e-01 -1.76446766e-01 3.86508815e-02 3.50832313e-01 -5.83344921e-02 1.72060832e-01 -1.45477581e+00 6.45516396e-01 6.22990990e+00 1.00850070e+00 -1.10275650e+00 5.28182268e-01 -1.16432026e-01 -4.48665321e-01 -2.42470026e-01 -1.11488722e-01 -6.65414691e-01 5.54263949e-01 1.02415669e+00 3.12600493e-01 4.63617027e-01 5.37383735e-01 -1.06284507e-01 3.25260729e-01 -1.49727643e+00 1.09077466e+00 4.17076141e-01 -1.28856230e+00 4.69324403e-02 1.66972522e-02 5.16597748e-01 -1.54545367e-01 1.51028708e-01 4.71165270e-01 -1.91074744e-01 -6.70498312e-01 1.12530065e+00 8.69270682e-01 6.81745291e-01 -6.57808244e-01 6.58775210e-01 8.34152997e-02 -1.45984542e+00 -1.45036042e-01 9.39610898e-02 -2.47813724e-02 1.38391554e-01 2.77967453e-01 -5.95313787e-01 6.44070625e-01 8.56517136e-01 1.22024107e+00 -5.40403008e-01 1.19041586e+00 -7.87001848e-02 7.59821296e-01 -1.56523973e-01 3.05521280e-01 -1.67236388e-01 1.75983727e-01 6.18808746e-01 1.23416793e+00 4.24394011e-01 -5.45599461e-01 1.17905661e-01 6.97938859e-01 -3.10085565e-01 4.07586604e-01 -4.37886387e-01 -2.45938629e-01 5.02542675e-01 1.13014841e+00 -3.19038957e-01 -1.16105095e-01 -3.50854874e-01 8.59229803e-01 2.74773389e-01 -6.81573749e-02 -6.64261162e-01 -3.29490900e-01 7.88086355e-01 1.84425548e-01 3.27842623e-01 -4.00150418e-02 3.12894769e-02 -1.17046010e+00 -1.66255478e-02 -6.70389056e-01 5.06941199e-01 -7.74192631e-01 -1.59538746e+00 6.94199443e-01 -6.03127852e-02 -1.74123454e+00 -4.11551803e-01 -3.21497172e-01 -3.53820533e-01 5.80510080e-01 -1.30338013e+00 -1.40533972e+00 -3.22590321e-02 5.18388808e-01 6.77325845e-01 -5.61026275e-01 1.17180979e+00 7.86186278e-01 -2.43581846e-01 8.10690284e-01 1.50684744e-01 1.61172017e-01 1.14290345e+00 -1.12450516e+00 -1.97261542e-01 1.41125932e-01 9.33000207e-01 4.56335634e-01 4.64147747e-01 -2.27092534e-01 -1.08518398e+00 -9.87626910e-01 9.11938965e-01 -4.55616772e-01 7.29392886e-01 -3.93731385e-01 -6.99855804e-01 5.50499022e-01 2.34924257e-01 -2.22062409e-01 1.52414584e+00 8.39681208e-01 -8.02334428e-01 -4.34741080e-01 -5.12831688e-01 6.10995740e-02 9.98756528e-01 -1.03883803e+00 -7.88835645e-01 -2.90260483e-02 6.58837616e-01 2.43720803e-02 -1.18113196e+00 4.16972280e-01 1.02365541e+00 -5.98817229e-01 1.02551186e+00 -5.97767889e-01 5.53482115e-01 -2.21887648e-01 -5.63888013e-01 -1.27839327e+00 -3.67158502e-01 -4.33985561e-01 -2.85158128e-01 1.75244462e+00 3.04874659e-01 1.07247889e-01 4.34972346e-01 -1.86346576e-01 -2.36633494e-01 -4.09497470e-01 -9.37601924e-01 -6.43155575e-01 -2.89609373e-01 -6.70397818e-01 5.86277246e-01 1.11121619e+00 2.90056407e-01 7.24449992e-01 -7.20614374e-01 4.55382690e-02 2.70135015e-01 4.87893432e-01 6.52671576e-01 -1.73022306e+00 -7.92939782e-01 -4.34545636e-01 -8.01546335e-01 -7.53874660e-01 5.52935004e-01 -1.28173041e+00 -5.13980240e-02 -1.31202817e+00 3.34260970e-01 -3.53104919e-01 -8.65312815e-01 5.97067595e-01 2.72906452e-01 6.35589361e-01 3.68081033e-01 4.17632252e-01 -9.91540074e-01 5.92420936e-01 7.94453382e-01 -5.78640401e-01 -2.87297904e-01 -1.81073565e-02 -7.32230365e-01 6.69247448e-01 6.21865094e-01 -6.78639352e-01 -1.89294964e-01 -3.66758019e-01 4.71995890e-01 1.32496897e-02 2.70619273e-01 -1.26902068e+00 1.91673666e-01 2.82067001e-01 3.17480266e-01 -4.28012818e-01 1.00174892e+00 -7.01131165e-01 3.51000160e-01 -2.02370971e-01 -8.74300957e-01 -3.84816706e-01 2.19300032e-01 7.14861035e-01 -7.93258369e-01 -3.05865973e-01 2.40116760e-01 8.31834823e-02 -4.67351973e-01 5.58672138e-02 -2.20060617e-01 -1.29895940e-01 5.20667195e-01 5.86874709e-02 5.70544936e-02 -4.94483054e-01 -1.24198902e+00 -4.16684121e-01 2.14389920e-01 9.14651692e-01 2.85273224e-01 -1.79681242e+00 -5.41404128e-01 1.12219281e-01 3.63969147e-01 -6.53925419e-01 2.48752564e-01 7.84639418e-01 9.43167657e-02 1.05506353e-01 -2.60908782e-01 -6.50380015e-01 -1.56531107e+00 3.17219704e-01 -5.44064119e-03 -1.48422271e-01 -3.41915309e-01 8.84431362e-01 -1.74224060e-02 -3.58202755e-01 6.23608649e-01 -1.33387730e-01 -6.14021122e-01 7.08666861e-01 4.49485511e-01 3.00073981e-01 1.63501471e-01 -9.19213414e-01 -2.67715335e-01 7.79513776e-01 5.07589579e-02 -3.45341802e-01 1.61464369e+00 5.90452589e-02 -2.48575993e-02 1.21655977e+00 1.33212531e+00 3.23752254e-01 -9.82077360e-01 -4.54227895e-01 -3.69571783e-02 -4.96744543e-01 1.63951799e-01 -7.44546831e-01 -1.01868653e+00 1.10993600e+00 7.37936497e-01 3.29202354e-01 1.10066533e+00 3.51460308e-01 7.13609278e-01 3.87502760e-02 2.85641015e-01 -1.02857423e+00 2.62480348e-01 3.85356665e-01 8.32261324e-01 -1.01670599e+00 -1.43902287e-01 -1.64877817e-01 -5.27754784e-01 1.12125802e+00 2.75507063e-01 -3.32036614e-02 9.29382384e-01 8.70520920e-02 1.34881372e-02 -4.34565917e-02 -8.69731963e-01 -3.90024275e-01 8.42850924e-01 2.90394664e-01 8.26658785e-01 3.33997211e-03 -1.09801926e-01 1.21261299e+00 -2.37373799e-01 -9.33485478e-02 1.03637807e-01 8.62672031e-01 -4.52055447e-02 -1.58734941e+00 -1.91960365e-01 3.41092438e-01 -8.10689628e-01 5.61558083e-02 -6.91141129e-01 4.14224178e-01 5.94182730e-01 8.95400941e-01 1.19638138e-01 -8.00487459e-01 2.07592741e-01 3.09233189e-01 5.51115572e-01 -7.73838222e-01 -8.65243554e-01 3.42428714e-01 5.90061806e-02 -4.39338028e-01 -9.75006878e-01 -8.21103513e-01 -6.61370337e-01 1.60551310e-01 -3.86776179e-01 2.58102983e-01 7.05237925e-01 9.04478252e-01 4.39468145e-01 8.65956068e-01 6.17458582e-01 -1.28481162e+00 -2.61452913e-01 -1.16761041e+00 -7.61564374e-01 6.07942760e-01 2.25081518e-01 -9.83134151e-01 -3.25580388e-01 3.01047534e-01]
[15.633539199829102, 5.167294025421143]
e212c4c5-efa2-4d34-b654-6a2dc7d0f8d0
growsp-unsupervised-semantic-segmentation-of-1
2305.16404
null
https://arxiv.org/abs/2305.16404v1
https://arxiv.org/pdf/2305.16404v1.pdf
GrowSP: Unsupervised Semantic Segmentation of 3D Point Clouds
We study the problem of 3D semantic segmentation from raw point clouds. Unlike existing methods which primarily rely on a large amount of human annotations for training neural networks, we propose the first purely unsupervised method, called GrowSP, to successfully identify complex semantic classes for every point in 3D scenes, without needing any type of human labels or pretrained models. The key to our approach is to discover 3D semantic elements via progressive growing of superpoints. Our method consists of three major components, 1) the feature extractor to learn per-point features from input point clouds, 2) the superpoint constructor to progressively grow the sizes of superpoints, and 3) the semantic primitive clustering module to group superpoints into semantic elements for the final semantic segmentation. We extensively evaluate our method on multiple datasets, demonstrating superior performance over all unsupervised baselines and approaching the classic fully-supervised PointNet. We hope our work could inspire more advanced methods for unsupervised 3D semantic learning.
['Bo Li', 'Bing Wang', 'Bo Yang', 'Zihui Zhang']
2023-05-25
growsp-unsupervised-semantic-segmentation-of
http://openaccess.thecvf.com//content/CVPR2023/html/Zhang_GrowSP_Unsupervised_Semantic_Segmentation_of_3D_Point_Clouds_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Zhang_GrowSP_Unsupervised_Semantic_Segmentation_of_3D_Point_Clouds_CVPR_2023_paper.pdf
cvpr-2023-1
['unsupervised-semantic-segmentation', '3d-semantic-segmentation']
['computer-vision', 'computer-vision']
[ 1.99441597e-01 3.84619266e-01 -2.03400657e-01 -6.46461964e-01 -8.52453470e-01 -8.21929932e-01 7.28678226e-01 4.08190936e-01 -2.47495323e-01 -1.24411145e-03 -2.31900290e-01 -2.98824042e-01 5.34327067e-02 -6.58746421e-01 -9.48192716e-01 -2.19639957e-01 -1.54006615e-01 1.03922284e+00 7.80827403e-01 5.73427901e-02 5.85755467e-01 8.87509048e-01 -1.65289974e+00 -2.11290836e-01 7.70322025e-01 1.12014437e+00 2.79779345e-01 3.91589075e-01 -5.28009951e-01 2.51712710e-01 -2.26760671e-01 1.11245953e-01 5.15946567e-01 1.00424988e-02 -1.11623943e+00 5.98461211e-01 4.71303970e-01 -1.49536371e-01 2.33755901e-01 1.05545092e+00 2.91636307e-02 2.89264977e-01 8.11946929e-01 -1.22644210e+00 -1.75246775e-01 2.82878309e-01 -6.00172400e-01 -1.96490541e-01 1.87469363e-01 -5.58458380e-02 1.17780733e+00 -1.09281337e+00 6.96377814e-01 1.32701898e+00 9.37575042e-01 2.54853278e-01 -1.22165346e+00 -3.80024374e-01 1.56752169e-01 -1.75845861e-01 -1.23874497e+00 -2.83003479e-01 9.55029726e-01 -7.06210375e-01 1.09681404e+00 -4.19301651e-02 6.27866030e-01 4.03296798e-01 -7.18693912e-01 7.98947990e-01 8.51762414e-01 -4.23585981e-01 5.71734548e-01 -1.52545914e-01 3.00118119e-01 7.33451009e-01 -1.06183410e-01 -9.64536220e-02 -1.28352821e-01 -2.14975402e-01 1.12151778e+00 1.62791938e-01 3.67659330e-01 -9.36227500e-01 -1.11301351e+00 8.18389714e-01 7.24582374e-01 1.04039378e-01 -3.86919916e-01 3.11874300e-01 2.88049281e-02 8.69968534e-03 7.18201637e-01 5.84436178e-01 -7.55258560e-01 7.76570365e-02 -1.11287653e+00 2.81573236e-01 6.13978624e-01 1.18783498e+00 1.30537581e+00 -5.10975897e-01 4.77097094e-01 8.80205870e-01 3.58020037e-01 2.60397285e-01 1.39050633e-02 -1.30827212e+00 2.28553891e-01 1.10680354e+00 6.94778040e-02 -7.09275901e-01 -5.71766376e-01 -1.14993140e-01 -2.35893294e-01 3.73728216e-01 1.34197190e-01 2.42501616e-01 -1.43679380e+00 1.18033743e+00 6.42367601e-01 3.84556472e-01 -3.35416943e-01 8.57826173e-01 7.36471236e-01 4.12592947e-01 3.66687961e-02 5.18896759e-01 1.23437607e+00 -9.29170847e-01 2.93275326e-01 -2.99001545e-01 6.99141681e-01 -6.18184984e-01 9.57131147e-01 -3.95925641e-02 -1.23924208e+00 -5.04446328e-01 -9.71876025e-01 -4.01832044e-01 -4.41217065e-01 -1.43418372e-01 8.05029809e-01 2.50183344e-01 -1.25093269e+00 7.48240471e-01 -1.15693712e+00 -5.92432976e-01 9.39591050e-01 5.67174435e-01 -3.74307305e-01 1.43683299e-01 -4.50052738e-01 5.29931962e-01 6.24481201e-01 -3.42820317e-01 -9.61762726e-01 -7.69485950e-01 -1.03414643e+00 -1.32451177e-01 4.16062623e-01 -9.63160217e-01 1.34056151e+00 -8.36999893e-01 -1.25345385e+00 1.52494955e+00 -1.25245079e-01 -3.24374527e-01 2.84846902e-01 -3.12157780e-01 5.15327334e-01 3.41838032e-01 4.35764283e-01 1.24875820e+00 7.89101124e-01 -1.76907647e+00 -1.00159466e+00 -6.53357923e-01 -3.68346716e-03 3.40757042e-01 2.89827526e-01 -1.25005066e-01 -9.02463615e-01 -4.72644538e-01 8.70560944e-01 -9.89070177e-01 -6.52034342e-01 -5.00585027e-02 -7.19724715e-01 -6.78601682e-01 8.46471608e-01 -2.19573274e-01 2.03990698e-01 -2.10960603e+00 2.49269098e-01 5.64354181e-01 4.64611560e-01 -9.42583457e-02 3.59415053e-03 7.00588152e-02 -8.98828804e-02 1.15071423e-01 -5.69422722e-01 -5.99849880e-01 2.27543026e-01 1.75093025e-01 -2.48830587e-01 4.06625688e-01 5.07541358e-01 1.04468739e+00 -1.01173389e+00 -4.34364557e-01 4.74193603e-01 1.75232708e-01 -7.69910157e-01 1.16496995e-01 -6.58638239e-01 4.93189484e-01 -7.64186680e-01 7.96294034e-01 5.71114421e-01 -6.54653549e-01 -3.59744847e-01 -6.13383716e-03 -8.03314447e-02 5.61679661e-01 -1.03353274e+00 2.30681086e+00 -2.80550104e-02 1.80628195e-01 -2.70022377e-02 -1.27968633e+00 1.05809951e+00 -2.26041581e-02 9.25039709e-01 -1.92859456e-01 1.55259281e-01 2.50427932e-01 -6.41503692e-01 -2.77910411e-01 3.94972354e-01 -2.06302360e-01 -2.37260163e-01 4.66582954e-01 4.29163069e-01 -8.64558756e-01 -7.52579868e-02 3.06281000e-01 1.03325927e+00 3.57795954e-01 -1.43856302e-01 -3.17195088e-01 2.82155365e-01 5.21144390e-01 3.29981744e-01 5.88651240e-01 -3.19179147e-03 7.70997763e-01 3.87323618e-01 -4.18883055e-01 -1.36222768e+00 -1.32349932e+00 -8.15677345e-02 1.03817952e+00 5.99803984e-01 -2.96451390e-01 -7.37601757e-01 -8.64930868e-01 2.95465171e-01 5.11557102e-01 -3.49881947e-01 2.04084411e-01 -3.95959824e-01 -3.14947397e-01 2.95605004e-01 7.49367595e-01 2.65879154e-01 -8.24838936e-01 -6.02019787e-01 -1.40310571e-01 1.42710045e-01 -1.26767516e+00 -1.57080367e-01 5.41577160e-01 -1.31025624e+00 -1.07002401e+00 -5.08558691e-01 -1.11763668e+00 1.01312685e+00 4.18236732e-01 1.29294658e+00 2.82013237e-01 -1.00845046e-01 5.87638795e-01 -3.97862434e-01 -6.01338804e-01 -5.87928370e-02 3.49089652e-01 -1.66891158e-01 -4.90928650e-01 6.82550728e-01 -7.66464710e-01 -5.28256834e-01 1.92596421e-01 -5.77929497e-01 9.10413265e-02 5.25298178e-01 2.28378892e-01 9.78708565e-01 -1.86562650e-02 1.27412915e-01 -1.03307068e+00 7.44600222e-02 -3.29867005e-01 -6.56714857e-01 -2.80077100e-01 -1.91864014e-01 -5.11104940e-03 1.46803230e-01 7.95941129e-02 -5.84864557e-01 5.50424039e-01 -3.71843427e-01 -6.63383424e-01 -7.86424756e-01 1.27293542e-01 -1.04340151e-01 -1.05996877e-01 6.70110226e-01 5.85880391e-02 -1.18951857e-01 -7.60180712e-01 8.52388263e-01 4.79428768e-01 7.07707107e-01 -7.30755508e-01 1.25869334e+00 8.78123939e-01 2.67586466e-02 -9.05686557e-01 -9.11597431e-01 -9.82550740e-01 -1.38197625e+00 1.43597916e-01 1.27770305e+00 -9.71753538e-01 -3.12258661e-01 3.45047116e-01 -1.14498866e+00 -5.23020208e-01 -5.40419400e-01 3.06480974e-01 -9.82177556e-01 3.60677958e-01 -5.37568152e-01 -3.94314915e-01 -1.02389967e-02 -9.60966408e-01 1.66969657e+00 2.00333353e-02 -2.27662563e-01 -1.05215967e+00 1.00238822e-01 5.24137497e-01 -2.40506411e-01 3.40589046e-01 1.04730165e+00 -8.31232965e-01 -9.32370126e-01 -2.64627874e-01 -3.54513466e-01 2.54796743e-01 1.05045743e-01 -1.66413590e-01 -8.86875093e-01 1.27329035e-02 -6.94983313e-03 -4.65832800e-01 7.74677873e-01 3.52128386e-01 1.35359359e+00 1.76623598e-01 -6.90989017e-01 9.56319809e-01 1.24383140e+00 -2.89761722e-02 2.06370234e-01 3.39645684e-01 1.07718003e+00 7.08128214e-01 4.01017785e-01 7.24062100e-02 5.60737550e-01 3.32716823e-01 5.34252644e-01 -4.40778255e-01 5.26617207e-02 -4.94582862e-01 -3.66173029e-01 6.45031154e-01 -2.15528548e-01 2.69805402e-01 -1.26628852e+00 6.96288526e-01 -1.69631624e+00 -4.83528525e-01 6.70445245e-03 1.93047512e+00 4.08351481e-01 3.33114207e-01 3.49644274e-01 2.11357325e-01 6.27928197e-01 -9.45028907e-04 -7.44417429e-01 1.18430011e-01 2.67196238e-01 4.72635597e-01 6.27376497e-01 3.97054344e-01 -1.45495236e+00 1.45271313e+00 6.44037533e+00 5.41121304e-01 -7.63226271e-01 1.38479676e-02 5.16634703e-01 1.62163362e-01 -2.47202978e-01 3.47211480e-01 -6.31068349e-01 1.15461603e-01 2.14283183e-01 3.66052926e-01 1.68268576e-01 1.13230586e+00 3.53910401e-03 2.57862695e-02 -1.29439974e+00 1.08227968e+00 -1.57709211e-01 -1.28144562e+00 9.01862755e-02 8.75032246e-02 7.96616554e-01 4.90998536e-01 -3.71072620e-01 -1.24887176e-01 7.96364605e-01 -9.98638868e-01 6.75116181e-01 2.62536377e-01 5.82020044e-01 -6.32301867e-01 2.26881072e-01 3.67509365e-01 -1.11641860e+00 1.79049462e-01 -4.88307059e-01 5.83400838e-02 2.37939090e-01 6.01352632e-01 -8.65979254e-01 4.45835620e-01 8.39416802e-01 1.20972097e+00 -5.11376739e-01 1.10346162e+00 -3.67242634e-01 4.19501305e-01 -7.58227170e-01 3.16232771e-01 6.16976738e-01 -2.04049349e-01 6.10320449e-01 8.66663277e-01 1.08618319e-01 2.74029732e-01 4.59501863e-01 1.00582397e+00 -9.59295407e-02 -4.36907746e-02 -5.71762085e-01 -9.95295346e-02 6.55978024e-01 1.17594266e+00 -1.42356920e+00 -4.05029386e-01 -3.76549959e-01 9.06973004e-01 3.67932409e-01 2.07601756e-01 -3.76187176e-01 -3.12485039e-01 5.62104225e-01 2.75590539e-01 5.94272494e-01 -7.17241824e-01 -7.30728626e-01 -9.13537741e-01 -1.07288174e-01 -3.07694912e-01 4.02515501e-01 -8.84350836e-01 -1.35086572e+00 1.94651574e-01 6.39298838e-03 -1.03675365e+00 -3.08911894e-02 -5.29678404e-01 -5.79461932e-01 6.07860923e-01 -1.48529541e+00 -1.26615119e+00 -3.70019674e-01 7.10964143e-01 6.65964007e-01 1.84539869e-01 4.83540505e-01 6.00058138e-02 7.18485704e-03 -5.30147851e-02 -2.52208352e-01 2.09409967e-01 1.60879746e-01 -1.53383493e+00 9.18969691e-01 5.72517574e-01 4.06635046e-01 3.86811197e-01 3.69289905e-01 -7.29215324e-01 -1.04857576e+00 -1.01941538e+00 6.77933753e-01 -1.08554435e+00 5.79195201e-01 -6.85173631e-01 -8.12255263e-01 8.48278940e-01 -4.80850875e-01 -1.38691589e-01 4.70259696e-01 3.96536559e-01 -3.49002421e-01 3.19520444e-01 -9.83764470e-01 2.76349694e-01 1.54703617e+00 -4.95576799e-01 -1.08473217e+00 4.98940736e-01 1.00997257e+00 -3.93441707e-01 -8.73400271e-01 5.90359092e-01 2.22088043e-02 -8.48253489e-01 1.33841777e+00 -6.04785085e-01 4.81456369e-01 -3.73887956e-01 -9.96946245e-02 -9.92232978e-01 -2.75063336e-01 -1.81479409e-01 2.04526454e-01 8.73360634e-01 4.10674393e-01 -3.07140589e-01 1.33605397e+00 5.01268685e-01 -5.34392476e-01 -4.85417068e-01 -6.93093181e-01 -6.52628720e-01 1.05709150e-01 -7.64444649e-01 7.00315237e-01 1.01750958e+00 -3.31982762e-01 4.71056968e-01 3.61698925e-01 3.50200653e-01 9.51751411e-01 2.66506881e-01 1.20142233e+00 -1.66920149e+00 3.45547944e-02 -6.05014086e-01 -8.09703946e-01 -1.52284038e+00 2.24766880e-01 -1.24727774e+00 3.25253725e-01 -1.75954950e+00 4.27523442e-02 -1.07304847e+00 -1.04884565e-01 6.42472565e-01 -9.66388434e-02 3.24022770e-01 1.66753847e-02 6.18849874e-01 -9.46900666e-01 5.24245679e-01 1.06018972e+00 -4.55710776e-02 -5.47947526e-01 -6.56472472e-03 -5.16771436e-01 1.14336276e+00 4.85165566e-01 -5.59891582e-01 -5.87516844e-01 -6.25894248e-01 -3.19688842e-02 -3.80244911e-01 7.21356809e-01 -9.84639645e-01 2.68996716e-01 -3.70519720e-02 4.25699472e-01 -1.05195940e+00 3.24800909e-01 -8.97295713e-01 -1.73284814e-01 3.08991466e-02 -1.06545143e-01 -1.85657308e-01 7.04159364e-02 4.78663653e-01 -2.52727401e-02 -1.54611677e-01 7.09525466e-01 -5.24377346e-01 -9.96357143e-01 5.15079200e-01 1.24990530e-01 3.10933366e-02 1.06688762e+00 -5.27746320e-01 7.69526362e-02 8.13074037e-02 -9.86163199e-01 4.70799506e-01 1.07388735e+00 4.73642707e-01 5.61648488e-01 -1.08632886e+00 -3.03496927e-01 2.86281288e-01 9.23810825e-02 9.85503197e-01 -1.48091108e-01 3.69086146e-01 -8.20772886e-01 3.84360850e-01 4.35906239e-02 -1.25717759e+00 -8.45126092e-01 4.85812515e-01 2.57676780e-01 3.40458721e-01 -1.04147422e+00 1.11764657e+00 4.55587327e-01 -9.07849491e-01 1.57590628e-01 -2.96457738e-01 9.13922861e-02 -1.76067591e-01 -1.13078490e-01 1.90899834e-01 4.02138941e-02 -7.87832856e-01 -4.30023730e-01 1.00785005e+00 1.03807017e-01 -1.36395365e-01 1.61713636e+00 -8.00204650e-02 -1.60812363e-01 4.88353074e-01 1.19293487e+00 -4.39331532e-01 -1.42435801e+00 -2.27511436e-01 5.23843110e-01 -4.67571408e-01 -1.32768517e-02 -3.47408563e-01 -7.88283348e-01 7.65650451e-01 2.64455259e-01 2.38326713e-01 8.37123394e-01 8.24210882e-01 8.87307763e-01 3.66959155e-01 6.35147810e-01 -9.80342686e-01 1.29007861e-01 5.52854538e-01 3.99954200e-01 -1.26874602e+00 -5.36138564e-02 -7.15279639e-01 -2.40731716e-01 8.48035872e-01 2.98730999e-01 -6.72907948e-01 8.61096323e-01 4.59648147e-02 2.33028948e-01 -8.53748262e-01 -3.11046451e-01 -4.87287372e-01 4.29238558e-01 7.34867752e-01 -7.60763064e-02 -1.40765816e-01 2.80223340e-01 2.94695139e-01 -5.75458705e-01 -1.00231461e-01 -1.24665000e-01 1.07029665e+00 -8.20857882e-01 -1.03567934e+00 -3.06447417e-01 4.63629514e-01 -6.53544143e-02 1.78186551e-01 -6.81793571e-01 7.49981523e-01 2.88453072e-01 6.43334925e-01 6.14972651e-01 -3.66578072e-01 4.92985427e-01 1.84464902e-01 4.79163110e-01 -1.11376715e+00 -1.50721118e-01 1.89619079e-01 -3.31076950e-01 -7.66708851e-01 -6.76780343e-01 -7.30268538e-01 -1.63393271e+00 9.89534557e-02 -1.50976032e-01 1.31899297e-01 9.06357586e-01 1.15939951e+00 3.51974964e-01 1.69304945e-02 6.61652684e-01 -1.48558712e+00 -6.78150579e-02 -6.11595333e-01 -5.15060782e-01 7.52174020e-01 1.22757018e-01 -8.16672742e-01 -3.47362608e-01 3.37176710e-01]
[8.013278007507324, -3.2727761268615723]
69f6c3d3-597f-4ba4-babc-56caa60e2f57
molecular-docking-studies-on-jensenone-from
2004.00217
null
http://arxiv.org/abs/2004.00217v2
http://arxiv.org/pdf/2004.00217v2.pdf
Molecular docking studies on Jensenone from eucalyptus essential oil as a potential inhibitor of COVID 19 corona virus infection
COVID-19, a member of corona virus family is spreading its tentacles across the world due to lack of drugs at present. However, the main viral proteinase (Mpro/3CLpro) has recently been regarded as a suitable target for drug design against SARS infection due to its vital role in polyproteins processing necessary for coronavirus reproduction. The present in silico study was designed to evaluate the effect of Jensenone, a essential oil component from eucalyptus oil, on Mpro by docking study. In the present study, molecular docking studies were conducted by using 1-click dock and swiss dock tools. Protein interaction mode was calculated by Protein Interactions Calculator.The calculated parameters such as binding energy, and binding site similarity indicated effective binding of Jensenone to COVID-19 proteinase. Active site prediction further validated the role of active site residues in ligand binding. PIC results indicated that, Mpro/ Jensenone complexes forms hydrophobic interactions, hydrogen bond interactions and strong ionic interactions. Therefore, Jensenone may represent potential treatment potential to act as COVID-19 Mpro inhibitor. However, further research is necessary to investigate their potential medicinal use.
[]
2020-04-17
null
null
null
null
['molecular-docking']
['medical']
[ 5.04550450e-02 -5.14164746e-01 -1.32379234e-01 -4.91115414e-02 1.26830682e-01 -5.65704763e-01 2.13845238e-01 3.99585605e-01 -4.05558914e-01 1.02245772e+00 2.77471300e-02 -4.75508302e-01 2.57034987e-01 -3.55405778e-01 -4.00203824e-01 -9.44077015e-01 -2.58914292e-01 3.80455106e-01 4.77977283e-02 -2.32892334e-01 2.70332366e-01 9.84889507e-01 -6.66917026e-01 8.07788223e-02 1.38666701e+00 1.61785513e-01 7.16708183e-01 4.39872593e-01 1.38030335e-01 2.23598834e-02 -3.41160685e-01 -3.54611017e-02 -3.04660872e-02 -3.02492380e-01 -2.08327726e-01 -3.83873224e-01 -4.69882309e-01 -3.39126140e-01 5.90690255e-01 7.56349266e-01 4.94981945e-01 -1.10849440e-01 1.09367383e+00 -8.00103366e-01 -4.04701918e-01 -3.17208529e-01 -4.05680090e-01 1.22402042e-01 4.53531653e-01 1.15871407e-01 7.29433358e-01 -1.18007123e+00 7.59341002e-01 9.13929701e-01 4.30604339e-01 2.61040151e-01 -1.07898808e+00 -7.72394836e-01 -3.71297181e-01 4.35537070e-01 -1.29037237e+00 6.47658184e-02 4.96322364e-01 -7.59013474e-01 1.53774595e+00 2.00467646e-01 8.75625193e-01 4.02955413e-01 9.60541368e-01 3.42280567e-01 1.11860049e+00 -4.32025790e-02 2.37081334e-01 1.00832790e-01 1.45363793e-01 5.36512733e-01 6.91702843e-01 4.68748547e-02 -1.41239688e-01 -9.58661020e-01 2.77182907e-01 3.63175273e-01 -6.45929575e-01 -4.26268160e-01 -5.22388101e-01 1.10376585e+00 3.46877277e-01 1.68855652e-01 -4.25896883e-01 -5.83461285e-01 4.75244164e-01 -2.50008702e-01 -2.89616436e-02 2.78422117e-01 -8.22676003e-01 1.65986761e-01 -1.27377853e-01 2.15633184e-01 7.13334501e-01 1.75699219e-02 3.28144610e-01 -1.37820899e-01 3.32536906e-01 4.31492597e-01 9.03025866e-01 7.76536644e-01 -2.14836299e-02 2.72689704e-02 -8.21716785e-02 7.44974852e-01 3.16570461e-01 -8.19735885e-01 -6.37443125e-01 3.36846821e-02 -5.60124934e-01 6.73158988e-02 1.06654763e-01 -3.33099484e-01 -5.74084222e-01 1.52319956e+00 4.69851851e-01 1.76504746e-01 3.14393133e-01 1.05444825e+00 7.46823967e-01 9.42880094e-01 6.40853107e-01 -8.64109159e-01 1.82897246e+00 -4.48093623e-01 -6.01951957e-01 5.25435686e-01 3.15094203e-01 -1.15008152e+00 4.45611387e-01 2.53924042e-01 -5.74057579e-01 5.56771234e-02 -1.19599485e+00 6.59974992e-01 -2.91807115e-01 2.27471173e-01 7.03498423e-01 7.58813083e-01 -1.87932566e-01 4.46923316e-01 -1.12728941e+00 -5.96858382e-01 5.33662066e-02 5.82413316e-01 -3.33949178e-01 6.08525537e-02 -1.24097824e+00 1.07597196e+00 2.78836906e-01 1.52242959e-01 -5.11578202e-01 -4.18951690e-01 -4.42346156e-01 -8.29867087e-03 -1.89442009e-01 -7.84631670e-01 7.15016842e-01 -2.27928653e-01 -1.42426109e+00 5.20671844e-01 -3.54225516e-01 -3.68919492e-01 -3.38697553e-01 -1.71095088e-01 -5.56333840e-01 3.24078351e-01 -1.62148118e-01 -5.10613471e-02 9.59686115e-02 -1.01597166e+00 -5.73462807e-02 -7.62526512e-01 -2.14446709e-01 2.31632441e-01 3.85903805e-01 6.22729778e-01 2.03706056e-01 -6.70370162e-01 1.33440485e-02 -1.19637299e+00 -3.89605552e-01 -4.39320832e-01 -1.41978487e-01 -3.98661524e-01 6.59408748e-01 -4.93611068e-01 8.73621762e-01 -1.67856610e+00 -1.42301649e-01 7.00747848e-01 2.34385934e-02 9.16460991e-01 2.31400505e-01 1.15616989e+00 -1.02363966e-01 2.13993222e-01 9.16287303e-02 9.49256420e-01 -4.16949451e-01 -3.50103050e-01 -1.23515256e-01 9.00852859e-01 -2.36732210e-03 6.10297263e-01 -6.48014188e-01 -2.57047594e-01 -4.62787077e-02 8.59424472e-01 -5.41800320e-01 1.07809097e-01 -5.36850750e-01 4.23535258e-01 -1.14669752e+00 7.86306620e-01 1.22536898e+00 -1.84389412e-01 7.26275086e-01 -3.36558700e-01 -1.56072423e-01 -1.05527960e-01 -5.31728327e-01 8.91072273e-01 3.56597930e-01 1.43864200e-01 4.47868556e-02 -2.43997782e-01 6.97140336e-01 6.42711818e-01 3.84549677e-01 -4.77632940e-01 3.48113298e-01 1.11911044e-01 2.65090913e-01 -4.85251516e-01 3.16500030e-02 -3.27536881e-01 6.45935595e-01 -2.26992257e-02 -7.72494376e-01 6.77620888e-01 1.97974682e-01 2.23082453e-01 5.79512537e-01 1.02949977e-01 6.60740137e-01 -4.16958123e-01 8.21817458e-01 3.28919411e-01 6.14480138e-01 -1.09101005e-01 -2.51216274e-02 -2.20254883e-01 3.06304216e-01 -2.18718231e-01 -7.66751349e-01 -8.90545189e-01 -6.40184760e-01 4.87885237e-01 2.04140201e-01 -5.26477396e-01 -7.31206775e-01 3.07602063e-03 -2.39940867e-01 3.41684103e-01 -1.24833979e-01 1.12122573e-01 -4.37144727e-01 -9.93103445e-01 3.95880818e-01 -1.90504670e-01 3.46800655e-01 -9.43246961e-01 -6.64370120e-01 4.16904926e-01 1.89233348e-01 -6.41289949e-01 -4.10617560e-01 3.47287469e-02 -9.52175558e-01 -1.64347780e+00 -5.35863459e-01 -8.21694613e-01 4.66065943e-01 2.03230932e-01 2.06518859e-01 1.67111486e-01 -1.87348872e-01 -2.96901226e-01 -3.89605701e-01 -6.41650915e-01 -3.94901425e-01 -5.13099730e-01 1.47111192e-01 -4.92185175e-01 8.29877436e-01 -4.72158641e-01 -1.05089438e+00 4.00517404e-01 -5.25282085e-01 -8.52491036e-02 7.31453359e-01 6.89254582e-01 4.65304375e-01 -2.58278519e-01 5.16784489e-01 -1.05190670e+00 8.28302026e-01 -5.56072950e-01 -7.51920998e-01 4.00005952e-02 -5.14487028e-01 -2.56192535e-01 6.16474032e-01 -1.20811798e-02 -1.08748031e+00 -4.94936407e-02 -1.19786210e-01 2.00988472e-01 1.07163645e-01 7.71117747e-01 -6.13742769e-01 1.03412047e-01 4.44062740e-01 2.04388946e-01 4.17638451e-01 -5.14166176e-01 -4.83849883e-01 6.57226682e-01 -1.15676932e-01 -3.25350404e-01 5.24025500e-01 3.51606905e-01 8.66147131e-03 -1.13246453e+00 -1.04894988e-01 -6.91312075e-01 4.93367156e-03 1.87090233e-01 1.51861727e+00 -9.99614120e-01 -1.57111478e+00 3.00003886e-01 -1.32808053e+00 2.82398671e-01 1.23101103e+00 1.03847647e+00 8.44547972e-02 7.67173111e-01 -6.80520833e-01 -4.83511955e-01 -1.08217716e+00 -1.12469566e+00 2.60026008e-01 3.00720423e-01 -6.08144477e-02 -5.37808359e-01 8.52874756e-01 4.67880964e-01 1.39225483e-01 6.32408500e-01 1.31558287e+00 -8.69044006e-01 -7.10874200e-01 -5.77671230e-02 -1.38000876e-01 2.12108158e-02 2.69324444e-02 2.70310372e-01 -3.62190992e-01 -3.97493213e-01 -3.90739292e-02 8.57303292e-02 3.60753953e-01 5.19772291e-01 2.56589055e-01 -3.08834255e-01 -7.18484938e-01 3.99817467e-01 1.63012433e+00 9.66473281e-01 8.22667241e-01 3.47348213e-01 3.61799479e-01 -1.46129234e-02 1.00599492e+00 6.74035013e-01 -1.77794635e-01 7.29147315e-01 4.91209030e-01 -4.56054695e-02 5.96022844e-01 1.31522000e-01 4.00450140e-01 3.08361739e-01 -5.55705965e-01 -1.67721480e-01 -7.55774438e-01 -7.43294284e-02 -1.36974001e+00 -1.03761888e+00 -7.93907523e-01 2.12700129e+00 9.55805242e-01 -2.47709945e-01 2.27907747e-02 -5.72938561e-01 4.64094490e-01 -4.50866282e-01 -5.68795800e-01 -7.24064350e-01 -4.97859046e-02 3.16974461e-01 3.79085988e-01 3.79063874e-01 -6.65390193e-01 5.43987870e-01 5.65334940e+00 4.10712689e-01 -1.03851891e+00 -3.01747799e-01 -2.07260489e-01 2.46574432e-01 -1.41740158e-01 4.73067075e-01 -7.33708024e-01 5.38744628e-01 6.15226090e-01 -4.79210541e-02 9.38462988e-02 6.64546013e-01 8.38224411e-01 -3.27810496e-01 -4.50752169e-01 7.44568527e-01 -2.01134503e-01 -1.44962776e+00 1.00077063e-01 5.65374494e-01 5.34453034e-01 4.42247689e-02 -5.59704483e-01 -2.74836302e-01 -1.22822635e-01 -9.52836812e-01 -2.35674694e-01 2.84157127e-01 3.91290516e-01 -1.02278376e+00 8.92491400e-01 2.82342196e-01 -1.16327322e+00 3.51436466e-01 -4.86896574e-01 2.07477376e-01 3.37757647e-01 3.15883875e-01 -1.34023130e+00 1.43158734e-01 2.02050686e-01 1.65208280e-01 -1.66183755e-01 1.16167510e+00 -6.61418959e-02 3.52903903e-01 -1.03285499e-01 -2.97369063e-01 -3.73302139e-02 -8.28538537e-01 6.00928664e-01 9.22761858e-01 -3.27109337e-01 6.14857674e-01 4.04052794e-01 4.13905233e-01 3.25079024e-01 7.05474317e-01 -4.66047645e-01 -2.85837829e-01 3.97110581e-01 8.31697762e-01 -7.59943128e-01 -1.84681371e-01 -5.36194265e-01 7.11136162e-01 -1.50262177e-01 5.26334763e-01 -8.62958550e-01 -3.77092361e-01 1.17478871e+00 3.25122952e-01 3.45620662e-01 -1.77590489e-01 4.93753046e-01 -7.12803185e-01 -4.54737961e-01 -9.85293686e-01 3.23721111e-01 -5.78250289e-01 -6.80462658e-01 3.05883944e-01 5.55552207e-02 -9.15720582e-01 3.11795443e-01 -5.15582025e-01 -7.87471712e-01 9.49998915e-01 -1.11677146e+00 -9.94634748e-01 1.19978830e-01 3.14112931e-01 2.42063209e-01 -6.02053553e-02 1.17426813e+00 -2.42667288e-01 -6.22715771e-01 -1.00634776e-01 5.87037742e-01 -3.11544538e-01 6.26404345e-01 -7.20176101e-01 -3.25258106e-01 3.34294558e-01 -7.10114956e-01 1.25714481e+00 1.14593136e+00 -1.18879020e+00 -1.37135553e+00 -7.32343435e-01 9.92607594e-01 2.46261638e-02 3.43346655e-01 -9.97670740e-02 -6.52644396e-01 4.29135263e-01 4.48076278e-01 -9.47750270e-01 1.56691921e+00 -4.14980501e-01 -1.68016300e-01 6.56862199e-01 -1.25541711e+00 8.36983562e-01 2.80544519e-01 -1.26485318e-01 -4.75704759e-01 5.15556335e-01 4.88334209e-01 -1.40307784e-01 -1.18160009e+00 5.99627972e-01 8.62216294e-01 -8.56761336e-01 8.81867111e-01 -7.16636121e-01 -1.63845345e-01 -8.72461736e-01 7.48715848e-02 -7.69092083e-01 -2.90680647e-01 -5.59496641e-01 2.18346745e-01 6.27269208e-01 2.46981680e-01 -6.71779692e-01 6.53647959e-01 4.20947582e-01 1.31496578e-01 -7.68617153e-01 -5.07359505e-01 -4.65708166e-01 -2.97173023e-01 3.98126543e-01 3.10777068e-01 6.58160686e-01 3.02600622e-01 7.76308537e-01 -2.66814768e-01 2.59486824e-01 3.81195337e-01 2.62087911e-01 7.08198845e-01 -1.39080846e+00 -1.89953431e-01 4.87520210e-02 -3.95991802e-02 -4.16400284e-01 -1.48194566e-01 -9.05654371e-01 -8.40766847e-01 -1.66161740e+00 5.94252050e-01 -4.24778089e-02 2.30424061e-01 3.63645032e-02 9.95968729e-02 -1.05176136e-01 1.60394758e-01 3.91044974e-01 -7.46182576e-02 5.12921035e-01 1.13426542e+00 1.36605158e-01 -7.89145529e-01 1.90933377e-01 -5.71107626e-01 6.29503071e-01 1.18359435e+00 -5.96013129e-01 -5.42927504e-01 6.13750041e-01 5.48426509e-01 -5.95061630e-02 -5.36141098e-02 -5.72845899e-02 -2.72130132e-01 -5.93982697e-01 4.55945700e-01 -9.96585906e-01 3.64130378e-01 -1.15345693e+00 9.00454342e-01 1.03356826e+00 6.46206796e-01 -2.98673548e-02 2.55288929e-01 5.21492839e-01 3.20162833e-01 -3.68873090e-01 7.13271618e-01 -1.82452910e-02 -3.69996428e-01 3.85531560e-02 -1.18862879e+00 -2.31460616e-01 1.11693120e+00 -8.31283271e-01 -1.99099407e-01 3.77361119e-01 -9.36627865e-01 8.57821025e-04 8.43390524e-01 7.31070489e-02 6.51048005e-01 -8.12572479e-01 -4.86481100e-01 1.96068913e-01 4.91000354e-01 -6.14867270e-01 4.82148528e-01 1.01141846e+00 -1.21635675e+00 8.37078869e-01 -3.65008980e-01 -5.10896087e-01 -2.07249594e+00 8.06387246e-01 1.90864146e-01 -1.10875532e-01 -3.90465766e-01 1.07928999e-01 4.52882051e-01 1.19488306e-01 3.25061311e-03 6.12667762e-03 -7.48123169e-01 -2.39015505e-01 5.20119667e-01 4.10180330e-01 -3.94211560e-02 -7.64353633e-01 -9.31592822e-01 6.20281279e-01 -2.31982872e-01 8.87591898e-01 1.42238903e+00 1.58291698e-01 -4.58554119e-01 -4.64815885e-01 1.10653400e+00 3.27643722e-01 -5.97648203e-01 2.85021484e-01 -1.58135384e-01 -4.02433395e-01 -5.36442220e-01 -9.89862502e-01 -3.73562455e-01 1.06708743e-01 9.35998023e-01 -7.38292158e-01 7.91179001e-01 -4.36162166e-02 7.88373530e-01 3.14103872e-01 2.93526709e-01 -8.09907198e-01 -1.85640350e-01 2.40522996e-01 8.84665191e-01 -9.64316428e-01 1.01749711e-01 -6.32924318e-01 -6.35397255e-01 6.98360503e-01 4.67261016e-01 -2.04945747e-02 8.20953548e-01 -1.14478707e-01 -2.10615108e-03 -6.07490420e-01 -8.69015336e-01 1.62379980e-01 1.35918498e-01 5.87652266e-01 9.32463050e-01 1.47659913e-01 -1.43136370e+00 5.30159354e-01 2.79630840e-01 3.86885740e-02 3.74827892e-01 8.79566967e-01 -7.60487318e-01 -1.47868836e+00 -5.45330286e-01 3.05018246e-01 -7.58294821e-01 -2.10623622e-01 -4.56130117e-01 8.76739919e-01 -3.92570160e-02 9.34834898e-01 -5.41301966e-01 2.09940359e-01 1.76110640e-01 -7.26468815e-03 3.72993946e-01 -3.12224209e-01 -6.20737791e-01 6.91658795e-01 1.28448263e-01 -1.28961846e-01 -4.88270402e-01 -2.53266901e-01 -1.98802161e+00 -3.92199457e-01 -7.67486870e-01 8.91744256e-01 9.41827118e-01 7.40954757e-01 4.74575996e-01 -2.37076193e-01 6.41940951e-01 -2.45060593e-01 -2.91037172e-01 -8.51414502e-01 -7.47052014e-01 1.23944983e-01 -3.71942222e-02 -4.81431037e-01 -1.38423638e-02 -6.68929964e-02]
[4.667364120483398, 5.106382846832275]
1f77b5b4-b321-4ec3-a86d-419e788b21bb
maximum-entropy-heterogeneous-agent-mirror
2306.10715
null
https://arxiv.org/abs/2306.10715v1
https://arxiv.org/pdf/2306.10715v1.pdf
Maximum Entropy Heterogeneous-Agent Mirror Learning
Multi-agent reinforcement learning (MARL) has been shown effective for cooperative games in recent years. However, existing state-of-the-art methods face challenges related to sample inefficiency, brittleness regarding hyperparameters, and the risk of converging to a suboptimal Nash Equilibrium. To resolve these issues, in this paper, we propose a novel theoretical framework, named Maximum Entropy Heterogeneous-Agent Mirror Learning (MEHAML), that leverages the maximum entropy principle to design maximum entropy MARL actor-critic algorithms. We prove that algorithms derived from the MEHAML framework enjoy the desired properties of the monotonic improvement of the joint maximum entropy objective and the convergence to quantal response equilibrium (QRE). The practicality of MEHAML is demonstrated by developing a MEHAML extension of the widely used RL algorithm, HASAC (for soft actor-critic), which shows significant improvements in exploration and robustness on three challenging benchmarks: Multi-Agent MuJoCo, StarCraftII, and Google Research Football. Our results show that HASAC outperforms strong baseline methods such as HATD3, HAPPO, QMIX, and MAPPO, thereby establishing the new state of the art. See our project page at https://sites.google.com/view/mehaml.
['Yaodong Yang', 'Xiaojun Chang', 'Qiang Fu', 'Haobo Fu', 'Siyi Hu', 'Yifan Zhong', 'Jiarong Liu']
2023-06-19
null
null
null
null
['multi-agent-reinforcement-learning']
['methodology']
[-4.45618957e-01 2.45462283e-01 -5.56017637e-01 4.00288731e-01 -1.08991134e+00 -4.73262936e-01 7.58573174e-01 -4.60346416e-02 -5.84604263e-01 1.20608938e+00 3.41831923e-01 -1.42024413e-01 -2.89675862e-01 -4.02467906e-01 -6.83589399e-01 -8.21143568e-01 -3.40338409e-01 4.95776802e-01 1.21512283e-02 -6.66945040e-01 4.11365300e-01 -1.31746858e-01 -1.07142735e+00 -1.55033767e-01 1.00186455e+00 6.03531301e-01 -1.05801173e-01 6.79622471e-01 5.23810685e-01 1.32453620e+00 -3.36033493e-01 -3.87409270e-01 5.43635011e-01 -7.05504179e-01 -8.34021866e-01 -5.41050494e-01 -3.09923559e-01 -6.18297696e-01 -3.14181358e-01 9.54935670e-01 8.81695330e-01 3.92527878e-01 4.17076677e-01 -1.69138551e+00 -4.22857374e-01 1.14824224e+00 -7.82153487e-01 -8.84380490e-02 2.76907861e-01 5.34305871e-01 1.42957294e+00 -4.81685489e-01 6.95955396e-01 1.33483982e+00 6.22331083e-01 8.75990093e-01 -1.11981905e+00 -6.79796875e-01 2.51070336e-02 9.82803553e-02 -1.12449729e+00 -4.29093301e-01 5.51092029e-01 -9.23135504e-02 9.89940882e-01 1.49791082e-02 7.01542020e-01 1.28635991e+00 2.62880653e-01 1.37185824e+00 1.39615417e+00 -3.13565701e-01 7.01584518e-01 -2.42479891e-01 -4.32584465e-01 7.69269049e-01 1.84372574e-01 6.71737134e-01 -7.56350279e-01 -4.37585294e-01 6.94733322e-01 -3.72238249e-01 4.72974814e-02 -5.39467037e-01 -1.19254446e+00 1.13887036e+00 3.14437866e-01 -1.18487358e-01 -5.00274181e-01 5.99681735e-01 4.31263626e-01 3.92410576e-01 2.24432319e-01 8.61401975e-01 -2.84421533e-01 -7.05383301e-01 -5.80399334e-01 7.22129226e-01 9.56959784e-01 6.95634007e-01 4.28468853e-01 2.62202267e-02 -5.02722003e-02 4.62640226e-01 4.35393214e-01 4.19362426e-01 6.33002162e-01 -1.59512758e+00 4.43313837e-01 4.34743732e-01 3.93001914e-01 -4.03938085e-01 -6.07753396e-01 -3.49059969e-01 -6.08862579e-01 5.36464155e-01 3.85541886e-01 -5.23547649e-01 -2.00807601e-01 2.02287555e+00 3.86783957e-01 8.27259093e-04 6.13792062e-01 9.78170156e-01 3.55714649e-01 5.87956131e-01 -1.17625937e-01 -3.11941564e-01 7.81708717e-01 -1.24137962e+00 -5.11096358e-01 -3.33511531e-01 6.60446227e-01 -2.70123094e-01 1.02931404e+00 3.42477292e-01 -1.46685171e+00 1.63267761e-01 -9.39595580e-01 4.13308352e-01 1.71355560e-01 -4.66831386e-01 6.96504354e-01 4.49294627e-01 -9.18354571e-01 5.97842157e-01 -9.68091905e-01 3.50862443e-02 3.21399420e-01 3.72221351e-01 -6.46298099e-03 4.50090438e-01 -1.27420413e+00 9.98858154e-01 5.40340185e-01 -2.39896566e-01 -1.30925608e+00 -6.47172272e-01 -5.32347798e-01 8.89670663e-03 9.58140135e-01 -5.65915942e-01 1.81083155e+00 -1.00330365e+00 -2.31002617e+00 3.42362851e-01 5.44822454e-01 -7.65615046e-01 9.30570304e-01 -3.94732147e-01 1.89385161e-01 -3.34569775e-02 1.30117340e-02 6.57107890e-01 6.06936991e-01 -1.07525730e+00 -5.71499944e-01 -8.69780853e-02 3.37412506e-01 6.59192860e-01 -9.49198753e-02 -2.34516948e-01 1.86489955e-01 -4.09312427e-01 -6.21924579e-01 -1.12280202e+00 -5.32579124e-01 -5.05365789e-01 -2.40212530e-01 -3.93813074e-01 2.81415939e-01 -1.82121187e-01 1.15398705e+00 -1.88117337e+00 6.22886300e-01 4.55386676e-02 2.33334109e-01 8.01564977e-02 -3.83506089e-01 7.89788544e-01 4.07401621e-01 1.71574116e-01 -4.06248383e-02 -1.71762988e-01 4.62523848e-01 5.94219156e-02 -2.21573621e-01 6.15960777e-01 -2.87442565e-01 1.20595753e+00 -1.25646174e+00 -4.12841201e-01 -7.18293563e-02 -8.80717933e-02 -9.45695698e-01 2.27613300e-01 -4.79559571e-01 3.33138108e-01 -4.25921947e-01 5.42556942e-01 1.12890877e-01 -3.20337057e-01 4.64000165e-01 6.04773879e-01 -1.65185347e-01 2.20914871e-01 -1.16494811e+00 1.75967872e+00 -3.42605948e-01 2.73240447e-01 5.19985445e-02 -6.09512568e-01 5.48022211e-01 3.18716049e-01 6.85891211e-01 -9.75536585e-01 8.50412399e-02 4.99621421e-01 4.70746867e-02 -1.81086138e-01 7.16882169e-01 -6.70097768e-03 -3.10244948e-01 8.47335160e-01 -7.71700069e-02 -2.09672377e-01 2.95092195e-01 3.05911034e-01 1.10088158e+00 3.63582402e-01 6.84195578e-01 -3.05816919e-01 1.54928163e-01 -2.47852076e-02 6.56094730e-01 1.18365633e+00 -5.22139728e-01 1.42761674e-02 9.02699709e-01 -2.98008204e-01 -1.24704063e+00 -9.66497600e-01 3.95623922e-01 1.32939816e+00 2.57523656e-01 -5.70887387e-01 -6.26000822e-01 -6.00004315e-01 2.01216981e-01 6.37550354e-01 -5.92261732e-01 -1.99923784e-01 -6.44995391e-01 -8.49588990e-01 7.13410378e-01 1.90390036e-01 7.37864494e-01 -1.32951260e+00 -1.09353554e+00 2.88130879e-01 -2.68787384e-01 -7.81145036e-01 -5.33929527e-01 -1.34447724e-01 -6.04940414e-01 -9.53270435e-01 -7.25178599e-01 -1.55771017e-01 3.98233421e-02 -9.47579965e-02 9.80055332e-01 -7.36817643e-02 8.30602348e-02 4.35647607e-01 -4.61745143e-01 -2.90271670e-01 -7.66126215e-01 4.41306144e-01 3.52550387e-01 -3.63130391e-01 -2.49503940e-01 -5.94967425e-01 -8.51858377e-01 2.42760435e-01 -7.22705781e-01 1.67095736e-01 7.05273747e-01 1.13116479e+00 2.30384752e-01 -4.00986075e-01 9.45259750e-01 -4.44522470e-01 1.07638216e+00 -6.60061538e-01 -9.30157959e-01 9.26816612e-02 -9.62888598e-01 4.76352483e-01 7.25494087e-01 -3.89609188e-01 -8.00508976e-01 -2.20645189e-01 1.22518651e-01 -1.46946564e-01 4.75230157e-01 5.08690536e-01 4.25841331e-01 -1.74528435e-02 7.49335229e-01 2.81317383e-01 3.83428067e-01 7.71097243e-02 4.47586030e-01 4.98249888e-01 1.42085329e-01 -7.85703003e-01 5.61348617e-01 2.86151201e-01 3.99822555e-02 -3.85290533e-01 -6.88207209e-01 -1.69074103e-01 5.25873229e-02 -3.45248848e-01 4.08033222e-01 -9.73866105e-01 -1.52157724e+00 4.45609480e-01 -8.05677593e-01 -1.03806341e+00 -4.69035685e-01 5.22556245e-01 -1.14636886e+00 3.93492192e-01 -6.69403613e-01 -1.11653423e+00 -5.96227288e-01 -1.12644422e+00 6.65421426e-01 4.94986057e-01 -9.07799155e-02 -9.13920879e-01 7.28115141e-01 2.40059465e-01 5.03744900e-01 2.63196737e-01 4.80312347e-01 -5.26810229e-01 -6.06526136e-01 2.92324036e-01 3.54234010e-01 -8.76880735e-02 -4.46111083e-01 -1.33780405e-01 -5.29719770e-01 -7.79573441e-01 -4.50368673e-01 -1.03532708e+00 7.40469217e-01 4.78131205e-01 4.70719934e-01 -6.10806286e-01 1.72923759e-01 5.05999267e-01 1.44344914e+00 9.38721225e-02 3.88944715e-01 9.37800705e-01 3.78662124e-02 1.31250247e-01 6.63813889e-01 1.19063199e+00 6.69755220e-01 7.39891231e-01 8.37291181e-01 3.70978862e-01 4.41774607e-01 -4.89250988e-01 9.98208880e-01 7.19079494e-01 -3.02572995e-01 -2.11101994e-01 -7.80327976e-01 4.54630017e-01 -2.45612240e+00 -1.22620332e+00 4.78255868e-01 2.06899309e+00 1.08147883e+00 -8.22533295e-02 7.07991481e-01 -3.39355648e-01 3.46707076e-01 3.18463534e-01 -1.02334845e+00 -5.60177267e-01 -1.43524945e-01 -7.95719773e-02 6.30081594e-01 6.33559406e-01 -8.29848409e-01 1.09458399e+00 5.91884995e+00 8.30394268e-01 -6.31727278e-01 2.35026404e-01 4.02502179e-01 -4.78708237e-01 -1.20972142e-01 1.25944227e-01 -6.10949576e-01 3.55753154e-01 8.99545312e-01 -6.02495313e-01 1.19614089e+00 9.36140120e-01 2.38665894e-01 -2.38987118e-01 -7.64937699e-01 8.08624268e-01 -1.76266998e-01 -1.40988445e+00 -4.62842256e-01 2.51786232e-01 1.08367825e+00 3.42429668e-01 2.59555250e-01 7.27848709e-01 1.17792201e+00 -9.96824741e-01 8.62616003e-01 2.46879935e-01 3.63268554e-01 -1.03598773e+00 4.69835252e-01 5.54599166e-01 -8.19800794e-01 -4.87131327e-01 -3.57581586e-01 -3.10214132e-01 -1.94646809e-02 -1.22080885e-01 -7.20084727e-01 5.03979027e-01 4.14673388e-01 5.34314334e-01 -6.63098320e-02 8.34662855e-01 -3.87242287e-01 4.19187158e-01 -3.47975850e-01 -5.26049674e-01 6.88905537e-01 -2.01425761e-01 7.88553059e-01 6.19802833e-01 3.73978689e-02 -2.60683261e-02 2.68176883e-01 9.37017024e-01 -3.15920264e-01 1.39685512e-01 -3.54374737e-01 -1.16367377e-01 5.29452980e-01 1.22886729e+00 -2.81129509e-01 3.58906500e-02 -8.11328441e-02 6.68683171e-01 5.70170283e-01 1.54770911e-01 -1.02573168e+00 -1.80190891e-01 7.15215325e-01 -4.83144164e-01 1.30558968e-01 -1.06684886e-01 4.35598679e-02 -1.19972312e+00 -7.21994713e-02 -1.42222726e+00 5.46407580e-01 -3.30506712e-01 -1.09056830e+00 2.46030420e-01 -1.46757379e-01 -1.19953680e+00 -6.65392697e-01 -1.61736950e-01 -5.79539061e-01 1.96074471e-01 -1.58798647e+00 -8.34727883e-01 1.11725703e-01 5.22245944e-01 5.40049851e-01 -4.86503094e-01 6.20558977e-01 -8.34106803e-02 -6.50151789e-01 6.96266413e-01 5.98746538e-01 -1.49706438e-01 5.99982560e-01 -1.43765354e+00 2.51140624e-01 4.67780501e-01 -1.28265843e-01 8.37800950e-02 7.83347666e-01 -4.55797940e-01 -1.94026852e+00 -6.58543527e-01 1.57974020e-01 -2.42553875e-01 1.04568362e+00 -1.49117723e-01 -2.30337456e-01 6.80423379e-01 4.79954869e-01 -1.41676784e-01 3.08023334e-01 3.42808887e-02 -9.43804383e-02 1.48719996e-01 -9.26282227e-01 1.02989435e+00 7.94804394e-01 -1.68736652e-01 -3.73656541e-01 3.50118488e-01 6.32885695e-01 -6.87173247e-01 -7.94916928e-01 3.57327610e-02 8.09472799e-01 -1.17505896e+00 7.45402455e-01 -7.66792297e-01 7.78917491e-01 1.26844406e-01 -3.23679559e-02 -1.71666515e+00 -1.41987130e-01 -1.53334010e+00 -4.11325514e-01 7.17907429e-01 4.50982124e-01 -7.15991616e-01 7.17210352e-01 3.26283187e-01 7.57688209e-02 -9.81841803e-01 -1.25729573e+00 -1.04610360e+00 5.34375727e-01 -8.42145085e-03 4.49152768e-01 7.03305304e-01 6.89151108e-01 1.23032041e-01 -9.53491688e-01 -8.97825807e-02 8.97557437e-01 1.48279041e-01 9.52906191e-01 -6.92471802e-01 -6.57244265e-01 -6.74339175e-01 9.49681625e-02 -9.30114031e-01 3.29631895e-01 -8.46098900e-01 4.03572898e-03 -1.17595637e+00 4.81510550e-01 -3.91868740e-01 -2.70334691e-01 3.78342330e-01 -1.04100853e-01 -8.47314373e-02 6.76201046e-01 3.54436189e-01 -1.37356687e+00 1.05397809e+00 1.25740576e+00 5.71721420e-02 -5.69816589e-01 1.50902439e-02 -6.46126270e-01 6.18376136e-01 1.21068859e+00 -5.34411192e-01 -1.40441388e-01 -5.89498244e-02 7.89983571e-01 5.63798606e-01 3.30979288e-01 -8.12269926e-01 2.80275285e-01 -5.80822408e-01 -2.49647811e-01 6.98802620e-02 2.49340713e-01 -3.31893682e-01 -1.53829947e-01 9.93725181e-01 -7.89145410e-01 3.40053827e-01 -5.91637753e-02 5.31157851e-01 2.03759715e-01 -2.04970583e-01 8.64015818e-01 -1.86933130e-01 -4.86629993e-01 1.51626736e-01 -4.35429811e-01 7.46555388e-01 1.23019993e+00 3.54290754e-01 -6.97884440e-01 -7.72907078e-01 -1.62321374e-01 7.38267243e-01 3.70922357e-01 2.73757696e-01 5.54833174e-01 -1.21825957e+00 -9.93188798e-01 -2.47245848e-01 -9.60236564e-02 -4.29875255e-01 1.49828523e-01 1.09255004e+00 -3.84819537e-01 2.21233681e-01 -3.48525941e-01 -1.32251218e-01 -8.45303118e-01 2.95111805e-01 6.98916256e-01 -8.52824867e-01 -6.07956707e-01 4.24133122e-01 -2.41147116e-01 -6.40465736e-01 1.47870749e-01 5.15069440e-02 2.44336680e-01 -2.71687150e-01 2.38216773e-01 7.39623904e-01 -5.69827378e-01 -1.17854737e-01 -1.92016572e-01 1.36916876e-01 -9.87841487e-02 -5.92674315e-01 1.43493128e+00 -4.63201152e-03 1.88571200e-01 1.95834279e-01 6.19063914e-01 -3.15734781e-02 -1.62608123e+00 -2.04690799e-01 1.02125660e-01 -1.35473847e-01 -5.11480123e-02 -8.66965294e-01 -7.83765137e-01 3.02059919e-01 3.45342159e-01 1.66235402e-01 6.65259421e-01 -1.52093545e-01 7.41484642e-01 7.01269686e-01 5.14749885e-01 -1.46235216e+00 3.95078093e-01 6.75514579e-01 7.80138731e-01 -1.30815136e+00 1.41374916e-01 6.95911288e-01 -1.14875793e+00 9.36608493e-01 6.80550218e-01 -2.94107795e-01 1.33016750e-01 2.08112761e-01 -2.24798724e-01 -1.88920777e-02 -1.33246601e+00 -1.49098024e-01 -3.75404418e-01 1.08109608e-01 -2.31637135e-02 1.84330910e-01 -4.54610556e-01 4.23555076e-01 -1.84235409e-01 -5.93893267e-02 8.38089645e-01 1.08501816e+00 -4.64710355e-01 -1.08099723e+00 -7.90518373e-02 3.66945155e-02 -6.16934896e-01 -1.40023548e-02 -4.13609922e-01 1.01442134e+00 -6.60967290e-01 8.24976444e-01 -2.53865302e-01 -2.12323233e-01 -1.78473294e-02 -2.19699875e-01 4.97973770e-01 3.18742506e-02 -8.68155181e-01 -3.90042104e-02 -5.85655821e-03 -7.74792433e-01 -4.45029467e-01 -6.01006269e-01 -1.27783334e+00 -6.41213179e-01 -2.25438312e-01 3.47591400e-01 3.96899968e-01 8.38307083e-01 4.74350095e-01 1.67693391e-01 8.11753988e-01 -7.66696274e-01 -1.39999270e+00 -7.52802253e-01 -4.29636657e-01 1.22156762e-01 4.78662103e-01 -6.02431059e-01 -4.47271824e-01 -7.30522215e-01]
[3.8038694858551025, 1.97822105884552]
f7adeea0-08dc-4f62-af59-6230beba6691
unsupervised-opinion-summarization-with-1
2012.07808
null
https://arxiv.org/abs/2012.07808v1
https://arxiv.org/pdf/2012.07808v1.pdf
Unsupervised Opinion Summarization with Content Planning
The recent success of deep learning techniques for abstractive summarization is predicated on the availability of large-scale datasets. When summarizing reviews (e.g., for products or movies), such training data is neither available nor can be easily sourced, motivating the development of methods which rely on synthetic datasets for supervised training. We show that explicitly incorporating content planning in a summarization model not only yields output of higher quality, but also allows the creation of synthetic datasets which are more natural, resembling real world document-summary pairs. Our content plans take the form of aspect and sentiment distributions which we induce from data without access to expensive annotations. Synthetic datasets are created by sampling pseudo-reviews from a Dirichlet distribution parametrized by our content planner, while our model generates summaries based on input reviews and induced content plans. Experimental results on three domains show that our approach outperforms competitive models in generating informative, coherent, and fluent summaries that capture opinion consensus.
['Mirella Lapata', 'Stefanos Angelidis', 'Reinald Kim Amplayo']
2020-12-14
null
null
null
null
['unsupervised-opinion-summarization']
['natural-language-processing']
[ 2.90769130e-01 7.18663394e-01 -2.00172186e-01 -5.77093899e-01 -1.23186886e+00 -7.93061078e-01 1.19705617e+00 6.05675459e-01 -1.34837002e-01 1.07077229e+00 1.07843554e+00 -3.55399996e-02 3.90821934e-01 -7.27623880e-01 -7.67368734e-01 -1.91129684e-01 3.49026769e-01 9.90485013e-01 -1.68188646e-01 -2.40531445e-01 4.40593630e-01 -1.15461349e-01 -1.55971050e+00 5.97545207e-01 1.19763398e+00 6.29817784e-01 2.48401761e-01 8.79340947e-01 -3.11030626e-01 7.63964176e-01 -1.06723678e+00 -6.50753975e-01 7.13133514e-02 -7.82283485e-01 -7.20183551e-01 3.79656345e-01 3.44094187e-01 -4.10240501e-01 3.63076806e-01 6.92081630e-01 5.64975202e-01 2.18868867e-01 9.94003475e-01 -8.62483501e-01 -6.72411442e-01 1.02242947e+00 -4.54792589e-01 -2.82984287e-01 5.53441048e-01 2.28958175e-01 1.48594284e+00 -5.16140699e-01 9.81441498e-01 1.14505374e+00 3.78120571e-01 5.67496359e-01 -1.48822987e+00 3.13588381e-02 2.53049940e-01 -5.20043612e-01 -5.48593283e-01 -7.23402202e-01 7.09982097e-01 -1.32583037e-01 1.03472865e+00 2.22089276e-01 6.78355455e-01 1.31719458e+00 4.56638224e-02 1.07800281e+00 5.77447414e-01 -3.82084280e-01 4.83979315e-01 4.20089722e-01 -3.37876640e-02 1.96985722e-01 6.92158997e-01 -5.74315131e-01 -5.42019963e-01 -1.64396599e-01 2.00322583e-01 -2.98479557e-01 -2.87124515e-01 -1.38672501e-01 -1.20099592e+00 7.91145146e-01 2.92882007e-02 -1.27645386e-02 -7.20984638e-01 -1.57867167e-02 6.11555755e-01 3.14846933e-01 9.00321066e-01 1.05316925e+00 -3.35481524e-01 -2.61074394e-01 -1.24163663e+00 7.85321653e-01 1.38357890e+00 1.09683883e+00 5.71960211e-01 1.56096607e-01 -3.94605488e-01 7.89350688e-01 5.99695891e-02 5.99331081e-01 5.63109934e-01 -1.17285669e+00 6.18805468e-01 6.50539398e-01 6.99261189e-01 -8.92763615e-01 -1.00318529e-01 -3.05868775e-01 -6.98023260e-01 -2.71181613e-01 9.10887122e-02 -4.67597395e-01 -6.89626455e-01 1.50662947e+00 -8.73902142e-02 -3.72430474e-01 5.12887716e-01 5.56827545e-01 1.05740058e+00 8.84358466e-01 -1.81705192e-01 -3.73901278e-01 9.74669933e-01 -9.33696210e-01 -7.27694690e-01 -3.91069025e-01 6.70961916e-01 -6.96801186e-01 1.19711530e+00 4.75103378e-01 -1.48077166e+00 -3.01044494e-01 -1.01287210e+00 -1.62950635e-01 -1.44281313e-01 1.34357527e-01 4.71721977e-01 2.56300122e-01 -1.26774848e+00 7.11086571e-01 -7.89918900e-01 -3.45692992e-01 3.12038988e-01 8.65471959e-02 -2.92297482e-01 -3.14759985e-02 -8.00780952e-01 8.13707352e-01 1.35376200e-01 -2.21077606e-01 -7.71111667e-01 -5.34170568e-01 -1.05543256e+00 9.34899077e-02 1.57398641e-01 -1.00954258e+00 1.76358545e+00 -1.37544382e+00 -1.58438599e+00 7.22994268e-01 -2.15554044e-01 -5.85411966e-01 4.89152670e-01 -2.71944761e-01 3.01518235e-02 1.64371714e-01 3.34995180e-01 9.91678536e-01 6.10400438e-01 -1.42525816e+00 -4.21195000e-01 9.65335444e-02 2.37521529e-01 4.54424769e-01 -1.96224377e-01 -8.42170641e-02 -1.70883134e-01 -4.07931894e-01 -6.20287240e-01 -6.55036926e-01 -5.40466547e-01 -7.43303299e-01 -8.72698545e-01 -1.76869467e-01 2.51329392e-01 -7.02711880e-01 1.03860843e+00 -1.57976723e+00 2.52744108e-01 -9.37046334e-02 5.41266650e-02 1.05578281e-01 -4.59080696e-01 8.51253331e-01 2.85676867e-01 4.27441567e-01 -2.65439212e-01 -7.93472946e-01 2.97789127e-01 6.65042698e-02 -6.17776096e-01 -8.28982964e-02 4.14391130e-01 8.45167100e-01 -1.01365125e+00 -5.27545989e-01 -3.02722603e-01 7.15227947e-02 -8.15033972e-01 2.89102197e-01 -1.01496196e+00 4.18024153e-01 -5.17140090e-01 1.20005034e-01 2.12907791e-01 -4.96948153e-01 1.49433196e-01 1.18743397e-01 -2.34136563e-02 8.20225239e-01 -7.92450666e-01 1.63240564e+00 -6.78820670e-01 6.43323720e-01 -2.12920308e-01 -7.88586795e-01 1.00791776e+00 3.41306090e-01 1.69131398e-01 -3.82055521e-01 1.94157541e-01 2.35753298e-01 -3.23238105e-01 -2.48991057e-01 1.15207148e+00 -1.36063516e-01 -3.50819200e-01 1.15809667e+00 7.66851678e-02 -8.88943970e-01 7.64858902e-01 6.44682527e-01 1.13774943e+00 6.22198321e-02 1.57511696e-01 -1.52151272e-01 8.40056017e-02 4.35572535e-01 2.86492825e-01 8.34897995e-01 4.74082142e-01 1.00221443e+00 1.01685941e+00 -2.22738698e-01 -1.44336987e+00 -7.52912819e-01 2.03196958e-01 5.71819186e-01 -2.66507894e-01 -7.12406814e-01 -8.50011528e-01 -6.05576336e-01 -2.63210922e-01 1.25662899e+00 -4.61132199e-01 1.31651208e-01 -3.68331045e-01 -6.00902557e-01 1.39059350e-01 3.79596084e-01 1.76934436e-01 -1.35413492e+00 -5.36572635e-01 3.38852167e-01 -3.97792667e-01 -1.06400716e+00 -4.63637114e-01 -8.23966190e-02 -8.66381943e-01 -7.80678451e-01 -7.76731312e-01 -5.75774372e-01 7.09000111e-01 -2.86951140e-02 1.79173720e+00 -2.22310975e-01 2.41380170e-01 4.86042261e-01 -4.00420517e-01 -7.92683542e-01 -9.28051949e-01 4.57767606e-01 -1.59769729e-01 -1.99835837e-01 1.98250487e-01 -6.54713690e-01 -5.39556205e-01 -3.28430295e-01 -1.20664406e+00 3.71717572e-01 6.50293410e-01 6.72555268e-01 3.76829505e-01 -4.11704302e-01 1.17831624e+00 -1.28554976e+00 1.32040262e+00 -4.68963861e-01 -2.03277692e-01 1.46222398e-01 -4.89600182e-01 2.91651219e-01 7.81424582e-01 -3.12829345e-01 -1.31735885e+00 -3.32326621e-01 1.03570335e-01 6.25480041e-02 -1.04860663e-01 8.52629185e-01 3.50496434e-02 1.01852453e+00 9.56486285e-01 7.18021626e-03 5.74970134e-02 -2.75473446e-01 6.61672056e-01 6.68228328e-01 3.74782562e-01 -5.71740270e-01 3.48348469e-01 2.92111486e-01 -5.63495040e-01 -8.87511432e-01 -1.10282338e+00 -7.37609640e-02 -2.34807864e-01 1.12359494e-01 5.57555139e-01 -1.02502620e+00 5.35242222e-02 1.82621494e-01 -1.41376209e+00 -4.20177966e-01 -8.23827565e-01 2.69698769e-01 -6.83271468e-01 5.94875179e-02 -5.03385127e-01 -5.71653843e-01 -8.07252109e-01 -9.01547909e-01 1.31867635e+00 3.55319947e-01 -8.48995864e-01 -1.12008989e+00 4.15895313e-01 2.42877051e-01 4.83905911e-01 3.89743090e-01 8.66598845e-01 -1.03170919e+00 -5.87003648e-01 -5.50951898e-01 9.63712707e-02 6.05481207e-01 9.58195329e-02 3.84995610e-01 -7.87391007e-01 1.55228674e-01 -1.95350364e-01 -7.48656750e-01 8.19513083e-01 5.25348604e-01 5.99842727e-01 -8.45145702e-01 -1.05996929e-01 -4.07909863e-02 1.07504165e+00 -4.42022473e-01 5.19728005e-01 5.17694242e-02 3.70932966e-01 1.02698743e+00 4.37219113e-01 6.47926033e-01 6.98323250e-01 1.48014173e-01 5.15701212e-02 1.44957483e-01 2.53692511e-02 -4.17016268e-01 2.80901551e-01 9.80529547e-01 2.77845860e-01 -7.31332719e-01 -6.69542968e-01 1.05005419e+00 -1.95592606e+00 -9.91749465e-01 1.09773420e-01 1.91048467e+00 1.31019413e+00 2.77475178e-01 8.88651237e-02 -4.06135768e-01 4.70076889e-01 4.36951011e-01 -6.39091671e-01 -8.16858768e-01 -9.90742967e-02 2.58607984e-01 4.69585173e-02 5.25060356e-01 -7.35403538e-01 7.79664993e-01 5.80557680e+00 3.06993484e-01 -8.17219555e-01 -2.81265706e-01 9.60606098e-01 -5.00599325e-01 -1.11534023e+00 -2.70837825e-02 -6.46087825e-01 3.38859171e-01 1.18968546e+00 -5.87129295e-01 -4.43516904e-03 7.35892117e-01 5.25418937e-01 -3.62601668e-01 -1.38630295e+00 5.51904678e-01 2.52366424e-01 -1.64747512e+00 3.08134675e-01 -9.39176679e-02 1.31053865e+00 1.78696141e-02 -1.11873783e-01 2.28527501e-01 9.97222126e-01 -8.99589598e-01 6.78980291e-01 4.88354295e-01 6.10506952e-01 -7.12917149e-01 8.70424092e-01 5.02559602e-01 -3.29947561e-01 3.56765717e-01 -3.89980227e-01 -1.45472633e-02 4.60590452e-01 8.09760392e-01 -1.15205801e+00 3.90995651e-01 1.28112465e-01 9.38440979e-01 -3.99334282e-01 8.14498246e-01 -3.95081431e-01 6.12467408e-01 -2.09713534e-01 -3.92317444e-01 2.24484041e-01 -2.70451546e-01 5.15929222e-01 1.32356918e+00 2.58465260e-01 -1.08624212e-01 2.09000155e-01 9.19430554e-01 -4.67644215e-01 2.09243134e-01 -9.27205861e-01 -5.24748683e-01 3.47607046e-01 1.31993759e+00 -6.23174906e-01 -5.93643486e-01 -1.81344196e-01 6.39750779e-01 1.85470298e-01 4.11891192e-01 -2.93253481e-01 -3.92671227e-01 3.95086288e-01 1.46443874e-01 2.98231363e-01 5.00035286e-02 -4.95553255e-01 -1.33639181e+00 1.14133827e-01 -1.36027372e+00 -7.06480667e-02 -7.86213458e-01 -1.21501029e+00 7.92268336e-01 1.10198759e-01 -9.47407722e-01 -9.17567313e-01 5.76549321e-02 -1.10009062e+00 8.22137535e-01 -1.32852006e+00 -9.18429136e-01 -4.67681587e-02 -1.54780731e-01 8.02362919e-01 -1.55542627e-01 8.91614258e-01 -3.37886900e-01 -3.34696174e-01 1.63032979e-01 -4.11825627e-03 -2.46515766e-01 8.62668335e-01 -1.49411905e+00 8.58882427e-01 6.47494018e-01 6.20996244e-02 5.18905938e-01 1.31687486e+00 -6.58528864e-01 -9.82778072e-01 -1.02742183e+00 1.13326538e+00 -7.24068940e-01 4.98236090e-01 -1.90798804e-01 -6.57720029e-01 5.49244940e-01 8.73560250e-01 -6.46011770e-01 6.94534540e-01 1.45540893e-01 -6.57382831e-02 -4.03597020e-02 -9.24406528e-01 7.95090973e-01 6.23574913e-01 -1.89867899e-01 -6.59635663e-01 5.24736702e-01 1.03205967e+00 -2.02323720e-01 -5.40651143e-01 1.20192438e-01 2.92677641e-01 -9.13520515e-01 3.87824982e-01 -7.61083186e-01 1.28358412e+00 -5.46546141e-03 8.54142383e-02 -1.89131546e+00 3.05145144e-01 -7.74241745e-01 -6.92349002e-02 1.42546904e+00 9.24814522e-01 -2.11723611e-01 7.76793063e-01 8.63745689e-01 -3.11698556e-01 -6.74288929e-01 -1.21797316e-01 -2.44438827e-01 2.67372113e-02 -8.04266632e-02 6.13420784e-01 5.40862679e-01 8.48683417e-02 9.40131962e-01 -6.68894351e-02 -4.23443198e-01 2.71210313e-01 4.35200602e-01 1.14293444e+00 -1.12367976e+00 -4.30250794e-01 -4.84464377e-01 2.17997953e-01 -1.08906829e+00 3.70899826e-01 -6.72146022e-01 3.10170859e-01 -2.30589795e+00 1.83563545e-01 -2.69546837e-01 4.78594214e-01 1.88803002e-01 -1.58292845e-01 -6.68722615e-02 -2.19648797e-02 7.41401836e-02 -8.93372595e-01 7.34586239e-01 1.24067223e+00 -1.42525718e-01 -4.25231934e-01 1.10606112e-01 -1.38391554e+00 6.90650761e-01 8.39574337e-01 -2.27250800e-01 -7.24899471e-01 -4.68786567e-01 6.91100299e-01 2.18264297e-01 -2.14717463e-01 -7.03494728e-01 5.24757095e-02 -1.03702480e-02 1.50060937e-01 -6.61502242e-01 2.86316127e-01 -1.38937933e-02 -2.08816066e-01 -1.38152480e-01 -9.02058184e-01 3.33845854e-01 4.96253856e-02 6.77288711e-01 -4.40001249e-01 -4.14668471e-01 4.22563463e-01 -5.31395912e-01 3.99877578e-02 -7.46618509e-02 -3.35303038e-01 4.99571890e-01 5.23733437e-01 -4.98052686e-04 -5.31196058e-01 -1.10822999e+00 -2.31532931e-01 4.19673920e-01 7.49891222e-01 2.96870828e-01 4.13285106e-01 -9.12338734e-01 -1.11747456e+00 -9.00873318e-02 3.52209397e-02 5.86550593e-01 -1.30125716e-01 3.94294262e-01 -5.35582364e-01 5.09130418e-01 9.44295228e-02 -3.28563780e-01 -7.32048810e-01 1.38312355e-01 -6.61181509e-02 -7.37923145e-01 -5.74880660e-01 6.06033146e-01 1.86966255e-01 -5.58766901e-01 1.91407964e-01 -3.74333769e-01 -3.75352651e-01 3.48383695e-01 6.41572833e-01 -2.03421782e-03 7.52718300e-02 -8.00700262e-02 1.55792713e-01 -1.54193446e-01 -3.69219303e-01 -6.08572602e-01 1.69945157e+00 1.09239609e-03 -5.80273867e-02 4.64706898e-01 8.83593500e-01 1.88138172e-01 -1.26958811e+00 -4.15067971e-02 1.62542492e-01 -4.00683843e-02 -2.91290015e-01 -7.91923225e-01 -6.10347390e-01 6.91777229e-01 -4.84379679e-01 4.98038322e-01 7.24128246e-01 1.84498373e-02 9.50767517e-01 6.54876232e-01 4.83315848e-02 -1.05046594e+00 4.73467797e-01 4.68388796e-01 1.17120433e+00 -1.22692692e+00 1.24759652e-01 1.48141190e-01 -1.13832653e+00 8.58159542e-01 5.31333745e-01 -3.98382038e-01 1.49380639e-01 1.73851609e-01 2.84031723e-02 -1.99690565e-01 -1.50149310e+00 7.12140724e-02 9.40678120e-02 5.57068527e-01 6.40474856e-01 1.25774452e-02 -3.85829121e-01 6.77113056e-01 -5.88190138e-01 -2.90080696e-01 1.12301981e+00 7.26063251e-01 -6.12686634e-01 -1.21104026e+00 6.89041987e-02 8.94011974e-01 -5.81411660e-01 -2.12348655e-01 -7.67935932e-01 3.78904074e-01 -5.95985949e-01 9.70534861e-01 2.38949597e-01 1.08129054e-01 2.43872881e-01 -2.53981748e-03 3.02613944e-01 -1.21075630e+00 -6.23213530e-01 -6.09372323e-03 8.35615933e-01 -8.69133770e-02 -3.31655562e-01 -8.29337180e-01 -9.68444109e-01 -1.85846269e-01 -5.44646382e-02 6.27003014e-01 7.89264381e-01 8.56739938e-01 6.41726136e-01 5.25304794e-01 4.92781311e-01 -1.15702546e+00 -8.00166309e-01 -1.22290647e+00 -2.20066026e-01 3.94133240e-01 3.61190468e-01 5.86899966e-02 -1.71150997e-01 3.84116083e-01]
[12.391692161560059, 9.343610763549805]
8aff332a-15e3-4dc4-b2b9-57e41cbbdb13
how-good-is-the-model-in-model-in-the-loop
2306.05434
null
https://arxiv.org/abs/2306.05434v1
https://arxiv.org/pdf/2306.05434v1.pdf
How Good is the Model in Model-in-the-loop Event Coreference Resolution Annotation?
Annotating cross-document event coreference links is a time-consuming and cognitively demanding task that can compromise annotation quality and efficiency. To address this, we propose a model-in-the-loop annotation approach for event coreference resolution, where a machine learning model suggests likely corefering event pairs only. We evaluate the effectiveness of this approach by first simulating the annotation process and then, using a novel annotator-centric Recall-Annotation effort trade-off metric, we compare the results of various underlying models and datasets. We finally present a method for obtaining 97\% recall while substantially reducing the workload required by a fully manual annotation process. Code and data can be found at https://github.com/ahmeshaf/model_in_coref
['James H. Martin', 'Nikhil Krishnaswamy', 'Adam Pollins', 'Michael Regan', 'Abhijnan Nath', 'Shafiuddin Rehan Ahmed']
2023-06-06
null
null
null
null
['coreference-resolution']
['natural-language-processing']
[ 1.05941892e-01 6.59036994e-01 -2.10371166e-01 -5.58601618e-01 -1.38289583e+00 -9.77833390e-01 5.28513491e-01 5.98157942e-01 -6.45620465e-01 7.94275999e-01 5.32589555e-01 -1.49095565e-01 -1.85225725e-01 -3.72118413e-01 -4.26122844e-01 -2.31348038e-01 1.48934096e-01 9.74426150e-01 3.55345488e-01 1.15589000e-01 2.00869352e-01 2.41462663e-01 -1.26458228e+00 4.84004110e-01 4.38462913e-01 3.07051837e-01 2.32720286e-01 6.58369422e-01 -4.82734013e-03 6.14260018e-01 -5.24614811e-01 -8.74971986e-01 -7.67360181e-02 -4.86774832e-01 -1.41455173e+00 -6.34651780e-01 2.01315999e-01 2.13351727e-01 -4.17837799e-01 9.06593680e-01 8.97797585e-01 2.64451206e-01 2.91497171e-01 -1.11345255e+00 1.36873156e-01 1.08162212e+00 -2.82845885e-01 6.65802360e-01 7.01590061e-01 -1.86522096e-01 1.09178245e+00 -8.45581055e-01 9.73526359e-01 1.19506466e+00 6.34089470e-01 3.99819225e-01 -1.39116323e+00 -7.38921642e-01 -1.24519251e-01 2.54853666e-01 -1.57395160e+00 -7.94430137e-01 4.60264683e-01 -3.20088446e-01 1.09878993e+00 6.01692200e-01 2.78396547e-01 9.70679462e-01 -2.06651971e-01 5.94110370e-01 6.44420147e-01 -7.16276526e-01 -7.07939938e-02 -1.02013133e-01 3.56405526e-01 5.60097039e-01 2.58757651e-01 3.35775129e-02 -8.55274796e-01 -6.19809747e-01 1.47271231e-01 -5.60232520e-01 -4.93781328e-01 -1.63401604e-01 -9.98870254e-01 5.95481396e-01 -5.81104271e-02 4.10901934e-01 -2.37581924e-01 -3.80209759e-02 7.57282317e-01 1.14417769e-01 3.22976410e-01 4.65741575e-01 -6.25973821e-01 -4.60946262e-01 -1.09304917e+00 4.55576420e-01 1.02164769e+00 1.06334531e+00 4.42204148e-01 -7.97526658e-01 -4.11584079e-01 8.36742699e-01 1.09851956e-01 7.65299797e-03 1.86112210e-01 -1.35728836e+00 3.44611168e-01 3.54774386e-01 4.47655380e-01 -7.23536611e-01 -8.48820984e-01 -1.74859881e-01 -1.81991428e-01 -4.13496345e-01 6.92698479e-01 -1.04542412e-01 -1.67535275e-01 2.00305414e+00 4.71938431e-01 -8.83237422e-02 -3.75557728e-02 8.71631920e-01 6.55621231e-01 1.24779917e-01 5.81436992e-01 -7.76730239e-01 1.88950229e+00 -7.79115677e-01 -1.11244106e+00 -3.31667736e-02 1.06152594e+00 -1.08589745e+00 7.70282269e-01 1.89849406e-01 -1.53293073e+00 -1.95086896e-01 -7.46400237e-01 -3.92577559e-01 -1.02127232e-02 8.86006057e-02 5.07299066e-01 2.42690593e-01 -8.05966496e-01 4.80992705e-01 -1.05572724e+00 -8.03464770e-01 -5.17111011e-02 2.52995551e-01 -3.96203250e-01 1.47486717e-01 -1.23672163e+00 1.24921274e+00 9.38611209e-01 -2.62138039e-01 -4.57286537e-01 -6.80357277e-01 -6.76005065e-01 2.59200037e-01 6.19095147e-01 -4.96545851e-01 1.82761645e+00 -4.98110294e-01 -8.69896710e-01 1.09531081e+00 -3.96775812e-01 -3.37198406e-01 5.21481335e-01 -4.16840255e-01 -5.65236449e-01 1.42421201e-01 2.03573778e-01 5.88966727e-01 -2.76292711e-01 -1.02140248e+00 -7.41535008e-01 -1.67381883e-01 -8.51015449e-02 3.07341993e-01 8.94697756e-02 5.65500438e-01 -7.27315128e-01 -5.54508507e-01 2.15816591e-02 -1.01075804e+00 1.09747827e-01 -2.02450112e-01 -2.08209231e-01 -4.62082773e-01 4.17862564e-01 -7.60001421e-01 1.68722117e+00 -2.20667434e+00 -3.96327451e-02 3.05848122e-02 -2.22969383e-01 1.75087839e-01 -6.56660423e-02 6.48535609e-01 -2.70876735e-01 7.72225857e-02 -1.20102786e-01 -4.00756508e-01 -2.21172944e-02 8.29310343e-02 -1.49906548e-02 2.77159661e-01 -2.81123705e-02 6.67183757e-01 -1.06205070e+00 -9.14586067e-01 -1.79018259e-01 4.40926403e-01 -5.78327298e-01 4.36634481e-01 -2.11394876e-01 4.25455868e-01 -1.60203487e-01 3.56664836e-01 2.35483795e-01 -1.32459953e-01 9.57416713e-01 -6.45789802e-01 -2.01638103e-01 6.38006091e-01 -1.20871043e+00 2.02960539e+00 -4.33894508e-02 4.94638681e-01 6.32692724e-02 -8.42486978e-01 6.46528363e-01 7.44552374e-01 3.02041352e-01 -4.68879282e-01 2.38688394e-01 1.47651002e-01 3.60685997e-02 -4.31787580e-01 6.61149800e-01 4.89415452e-02 -3.79555702e-01 7.32333064e-01 2.93185085e-01 3.02943528e-01 4.02121127e-01 4.88535017e-01 1.18097770e+00 2.36963227e-01 5.89087427e-01 -4.42751974e-01 2.73726940e-01 2.23335311e-01 8.66829038e-01 8.24145913e-01 -2.93432653e-01 3.10480297e-01 4.74013984e-01 -3.97572190e-01 -9.41695333e-01 -7.08363652e-01 -2.61608213e-01 1.22085834e+00 -1.14011779e-01 -8.31837654e-01 -8.38950515e-01 -7.03674614e-01 -4.44783747e-01 1.23143852e+00 -4.77484405e-01 -1.20743498e-01 -6.94931090e-01 -6.85628772e-01 1.07811916e+00 4.62918282e-01 1.17354512e-01 -9.76471603e-01 -8.76739383e-01 2.72338331e-01 -1.04758120e+00 -1.01392770e+00 -6.30982637e-01 4.20580775e-01 -5.56488037e-01 -1.34704089e+00 -7.41706714e-02 -5.71876347e-01 3.54124963e-01 -2.41289645e-01 1.46457791e+00 2.10909888e-01 -2.54055649e-01 3.03019464e-01 -3.90743583e-01 -4.64858532e-01 -3.72250676e-01 1.73110634e-01 7.71538466e-02 -6.59992278e-01 9.59728837e-01 -4.32287216e-01 -5.59397340e-01 3.88926148e-01 -6.56558096e-01 8.73699859e-02 2.28586644e-01 6.77249372e-01 6.79958463e-01 -2.68588364e-01 3.76769185e-01 -9.03052449e-01 6.14286482e-01 -4.40875441e-01 -5.07746339e-01 4.76682842e-01 -6.39669716e-01 6.70465082e-02 -1.29348069e-01 -2.74174869e-01 -1.27736509e+00 2.58798003e-01 -1.56607747e-01 -1.04190253e-01 -2.15314716e-01 4.40832675e-01 -1.61228448e-01 4.20641899e-01 8.08170915e-01 -2.18267962e-01 -2.92907417e-01 -5.88156223e-01 2.94270068e-01 5.99882066e-01 8.67360294e-01 -8.74449372e-01 2.12578371e-01 2.00366527e-01 -3.53194892e-01 -6.65120631e-02 -1.24400485e+00 -6.20090604e-01 -7.25526869e-01 -1.95954159e-01 6.59036160e-01 -8.94979298e-01 -9.04599309e-01 -3.10575306e-01 -1.43588817e+00 -3.32307488e-01 -3.12896729e-01 6.04589105e-01 -7.26660073e-01 3.88584793e-01 -7.06761003e-01 -7.08572447e-01 -5.52541852e-01 -7.18478084e-01 7.71052837e-01 1.76396012e-01 -1.06046140e+00 -7.61333108e-01 5.02104163e-01 4.80786979e-01 -1.14397384e-01 3.78101356e-02 7.48014331e-01 -1.23245895e+00 -7.08596259e-02 -3.25618312e-02 -2.39008427e-01 -5.49768507e-01 -3.17940414e-01 -4.42563713e-01 -8.26837182e-01 -2.83963680e-01 -2.58089721e-01 -3.16790640e-01 3.49991798e-01 1.07211113e-01 8.26717198e-01 -1.97839096e-01 -7.33074546e-01 2.77790874e-01 1.14918995e+00 1.87990427e-01 4.71497625e-01 4.19585139e-01 2.29697153e-01 6.92170858e-01 1.12492859e+00 5.51818192e-01 5.22325039e-01 1.04024625e+00 -1.26712382e-01 1.59439594e-01 -6.44860864e-02 -3.42359692e-01 -8.05411935e-02 5.16285181e-01 -1.10775433e-01 -5.46055794e-01 -1.14247990e+00 7.29681134e-01 -2.23887157e+00 -1.15902805e+00 -1.90365270e-01 1.95199084e+00 1.12372911e+00 1.09303132e-01 1.57466486e-01 1.99946672e-01 7.84043908e-01 -2.75706708e-01 -5.93045540e-02 -3.80832613e-01 4.31733998e-03 1.02475621e-01 2.90359020e-01 7.82712519e-01 -9.20658946e-01 1.00043809e+00 6.53360224e+00 5.08551300e-01 -5.22690415e-01 5.63557804e-01 1.70587465e-01 -3.64755124e-01 -1.49577245e-01 2.24602893e-01 -8.97451520e-01 3.97491455e-01 1.38644350e+00 -2.03108385e-01 2.29899600e-01 4.50547069e-01 4.10158396e-01 -2.84602433e-01 -1.32175541e+00 8.33760440e-01 -4.15946618e-02 -1.27799535e+00 -1.91270232e-01 -1.21373817e-01 -4.32429127e-02 1.48667675e-02 -7.33189523e-01 1.77906588e-01 6.45164311e-01 -4.86969382e-01 7.75583386e-01 5.31043053e-01 7.69215047e-01 -7.42353559e-01 8.43691468e-01 2.21880347e-01 -1.13592553e+00 1.08997084e-01 1.33283585e-02 2.03278661e-01 5.86002171e-01 4.68692601e-01 -7.04401791e-01 6.85714424e-01 9.31623459e-01 4.67779115e-02 -3.04173917e-01 9.61954713e-01 -2.03747034e-01 5.59763074e-01 -1.94753259e-01 4.08122629e-01 -2.58109093e-01 3.29645365e-01 6.83358729e-01 1.89089239e+00 3.09673071e-01 7.20097601e-01 1.95976704e-01 6.15780950e-01 -1.39505193e-01 1.00436471e-01 -2.40308091e-01 6.66966587e-02 1.17366767e+00 1.27776051e+00 -7.17019022e-01 -3.33423555e-01 -2.59467930e-01 8.67063880e-01 6.62516236e-01 8.07052627e-02 -8.61277401e-01 -3.24197024e-01 3.21700394e-01 1.58925657e-03 3.29090515e-03 4.02051285e-02 1.18451435e-02 -8.97681832e-01 -1.55436844e-01 -8.59316051e-01 1.20502567e+00 -8.44158828e-01 -7.60475457e-01 5.26770413e-01 3.27189147e-01 -7.10839808e-01 -2.88068473e-01 -6.36361614e-02 -3.47516388e-01 7.36125827e-01 -1.04609573e+00 -9.97058511e-01 -3.22337508e-01 4.44583416e-01 3.50641251e-01 4.07738507e-01 1.17639112e+00 6.54931903e-01 -4.56159651e-01 8.33401084e-01 -5.13976395e-01 2.24629402e-01 1.19035220e+00 -1.03751111e+00 1.54626846e-01 7.09991336e-01 1.03516042e-01 7.02060044e-01 1.05865288e+00 -7.07372487e-01 -9.36209023e-01 -8.49499881e-01 1.54245353e+00 -6.32932544e-01 5.52722454e-01 -2.32222036e-01 -9.72297490e-01 1.13929522e+00 3.65121812e-01 -2.35812232e-01 1.07819271e+00 5.00564933e-01 -3.30818713e-01 3.86642635e-01 -1.12850213e+00 4.33860719e-01 1.36022246e+00 -5.45193613e-01 -1.03138602e+00 3.49366605e-01 4.47886080e-01 -6.48878694e-01 -1.24323416e+00 4.77248043e-01 5.45356274e-01 -6.37266338e-01 7.43518233e-01 -5.38589656e-01 -1.73957378e-01 -4.13535446e-01 -1.56216472e-01 -9.44121540e-01 -4.93214935e-01 -7.22689927e-01 -1.31258354e-01 1.48290098e+00 5.61290383e-01 -1.83140874e-01 3.38745803e-01 8.26810181e-01 -1.88826889e-01 -1.85790613e-01 -9.75859821e-01 -5.00412762e-01 -2.91223347e-01 -3.94770324e-01 4.25128371e-01 1.22580528e+00 6.96313262e-01 4.44335550e-01 -1.20933093e-01 3.25844109e-01 4.99207109e-01 -1.01067588e-01 3.81850451e-01 -1.31101823e+00 -2.82083780e-01 -1.48309410e-01 1.32169515e-01 -4.30103391e-01 1.73725933e-01 -1.00696969e+00 1.87735006e-01 -1.14658499e+00 5.80086827e-01 -3.99369150e-01 -3.06990236e-01 7.54262328e-01 -2.58937865e-01 8.82481039e-02 1.65927052e-01 4.38641638e-01 -9.61747766e-01 -4.85350899e-02 4.46162134e-01 2.42937282e-01 -1.48171112e-01 -4.88193125e-01 -6.47496343e-01 6.56294286e-01 7.64893711e-01 -9.37031150e-01 -2.24476054e-01 -4.16552067e-01 3.52777898e-01 4.61165011e-01 5.89063652e-02 -8.13763022e-01 5.80635667e-01 1.30906805e-01 1.79070845e-01 -5.19446492e-01 2.82139778e-01 -5.68146050e-01 7.36115336e-01 4.39177334e-01 -7.47004032e-01 2.75273561e-01 5.06483495e-01 3.92480969e-01 -1.46775618e-01 -4.27144110e-01 6.33602262e-01 -9.93151516e-02 -4.53898609e-01 -1.20443657e-01 -2.52606481e-01 3.39001298e-01 8.51397514e-01 3.24256331e-01 -4.72221553e-01 -6.56231195e-02 -1.18053746e+00 2.26268530e-01 4.34211165e-01 3.48945260e-01 -5.73687851e-02 -1.03984571e+00 -7.75451899e-01 -3.95230532e-01 3.76410872e-01 -3.45762402e-01 1.06532671e-01 1.02010059e+00 -2.14577526e-01 5.55640101e-01 4.22094902e-03 -3.60734999e-01 -1.68253398e+00 6.36974216e-01 3.75226945e-01 -4.41772550e-01 -4.47154135e-01 6.82061017e-01 -1.82420984e-01 -4.03589070e-01 3.21160167e-01 4.07676607e-01 -1.91010684e-01 1.26302555e-01 6.80743098e-01 3.52310449e-01 1.61330566e-01 -5.72419763e-01 -7.16787040e-01 9.69499797e-02 -1.21166252e-01 -3.97189766e-01 1.08214164e+00 -2.98600525e-01 -3.21204662e-02 2.36204222e-01 6.35038972e-01 -3.00753657e-02 -7.23190904e-01 -3.17556262e-01 7.29213953e-01 -1.80490375e-01 4.27794829e-02 -1.13119817e+00 -4.82565969e-01 3.81797493e-01 5.74249983e-01 5.89272492e-02 9.59029675e-01 3.71396244e-01 3.96017790e-01 3.82109970e-01 2.72391170e-01 -1.18130493e+00 -4.38754797e-01 2.47553274e-01 7.81519055e-01 -1.03730845e+00 -5.06209722e-03 -5.71267664e-01 -5.21501720e-01 7.61969209e-01 6.11651897e-01 4.80528921e-01 4.10904229e-01 5.79790473e-01 2.01847956e-01 -4.98591989e-01 -1.08373523e+00 -5.51015250e-02 5.80111630e-02 2.00229377e-01 1.01198721e+00 4.53151837e-02 -1.02688420e+00 8.43398690e-01 -1.08889446e-01 1.21258952e-01 2.88104385e-01 1.05717087e+00 -6.35981709e-02 -1.37591612e+00 -2.73241282e-01 1.16896331e-01 -8.33820701e-01 -1.81280032e-01 -3.77860099e-01 7.16666877e-01 2.14511640e-02 1.00612414e+00 2.97851026e-01 -1.04886666e-01 5.80563188e-01 5.41885734e-01 3.95659953e-01 -5.48426330e-01 -7.74727523e-01 2.42160231e-01 9.34399784e-01 -7.63572276e-01 -6.99869514e-01 -9.43134665e-01 -1.33606184e+00 -2.48159796e-01 -5.05692959e-01 7.19366610e-01 2.21959680e-01 9.06169772e-01 6.36834025e-01 3.85877818e-01 -1.12459185e-02 -6.44833386e-01 -1.72340944e-01 -1.03846407e+00 -5.79796210e-02 6.06050789e-01 -2.45741725e-01 -7.37666011e-01 -1.51695535e-01 1.33478567e-01]
[9.283900260925293, 9.448452949523926]
937fa682-c086-4189-bfbc-c96771b9431e
rotation-synchronization-via-deep-matrix
2305.05268
null
https://arxiv.org/abs/2305.05268v1
https://arxiv.org/pdf/2305.05268v1.pdf
Rotation Synchronization via Deep Matrix Factorization
In this paper we address the rotation synchronization problem, where the objective is to recover absolute rotations starting from pairwise ones, where the unknowns and the measures are represented as nodes and edges of a graph, respectively. This problem is an essential task for structure from motion and simultaneous localization and mapping. We focus on the formulation of synchronization via neural networks, which has only recently begun to be explored in the literature. Inspired by deep matrix completion, we express rotation synchronization in terms of matrix factorization with a deep neural network. Our formulation exhibits implicit regularization properties and, more importantly, is unsupervised, whereas previous deep approaches are supervised. Our experiments show that we achieve comparable accuracy to the closest competitors in most scenes, while working under weaker assumptions.
['Federica Arrigoni', 'Elisa Ricci', 'Andrea Fusiello', 'Paolo Rota', 'Giacomo Zara', 'Gk Tejus']
2023-05-09
null
null
null
null
['simultaneous-localization-and-mapping', 'matrix-completion']
['computer-vision', 'methodology']
[-9.78428796e-02 1.01949545e-02 -3.14481616e-01 -2.02393401e-02 -2.98651874e-01 -4.62696135e-01 6.58432424e-01 -1.80788845e-01 -5.75079501e-01 3.71065378e-01 2.31144637e-01 1.18528761e-01 -2.26405933e-01 -2.79821366e-01 -7.26257920e-01 -7.61811435e-01 -1.29624531e-01 4.74988341e-01 -3.12425166e-01 -2.54943281e-01 1.15279406e-01 5.42411566e-01 -7.96608746e-01 -3.91427070e-01 4.83602971e-01 4.45295632e-01 8.34178030e-02 4.72314030e-01 5.29809296e-01 9.46941197e-01 -2.38296926e-01 -9.79381725e-02 2.90252298e-01 -1.91692069e-01 -9.54907238e-01 1.83541074e-01 6.57856345e-01 -2.74411827e-01 -9.40507472e-01 1.09116864e+00 2.89965928e-01 3.22725803e-01 4.89893198e-01 -1.06652057e+00 -6.73900843e-01 5.36921799e-01 -7.78569281e-01 8.56674761e-02 4.02131736e-01 -3.97934169e-01 1.14624608e+00 -1.06551826e+00 7.89445877e-01 1.14297903e+00 7.58302271e-01 1.84443206e-01 -1.37203908e+00 -2.24157199e-01 1.14483595e-01 5.28779291e-02 -1.78083217e+00 -5.21299541e-01 8.66760731e-01 -4.03382331e-01 8.18996906e-01 -1.77236155e-01 5.07073164e-01 1.10591400e+00 1.26781300e-01 6.66107953e-01 4.74950075e-01 -3.42437506e-01 -5.61928041e-02 -4.60418224e-01 -8.16678405e-02 6.64631724e-01 4.15692866e-01 -1.82191879e-01 -5.84731102e-01 1.79547474e-01 1.21872807e+00 1.25305682e-01 -3.40578705e-01 -8.63199413e-01 -1.74475205e+00 8.69085371e-01 6.86391652e-01 4.19800758e-01 -3.56597304e-01 6.02601230e-01 1.56326219e-02 3.10281903e-01 4.34815466e-01 4.74469543e-01 -7.81606510e-02 1.86585709e-01 -9.07494724e-01 8.37205872e-02 7.79889762e-01 1.07689321e+00 9.63801146e-01 1.73236042e-01 3.36890638e-01 5.15590906e-01 3.32611084e-01 6.35186791e-01 2.56909460e-01 -1.18213618e+00 4.26150709e-01 1.06313378e-01 2.04219580e-01 -1.55898654e+00 -8.75790238e-01 -6.18015230e-01 -1.19631279e+00 -4.05564308e-01 4.11497712e-01 -1.44991860e-01 -5.60576856e-01 2.12644839e+00 1.95878178e-01 5.87104559e-01 -7.35259056e-02 1.06886494e+00 6.34129345e-01 3.56861234e-01 -5.16711175e-01 -3.46448988e-01 1.03132832e+00 -9.85884547e-01 -8.98426652e-01 -3.26743156e-01 6.42631292e-01 -7.91109979e-01 4.27521080e-01 2.24325627e-01 -9.91284907e-01 -6.18396401e-01 -1.17888296e+00 -3.41013670e-01 -5.78567423e-02 3.28511357e-01 7.15921044e-01 8.43189433e-02 -1.38878679e+00 5.94162583e-01 -1.26924038e+00 -6.42451644e-01 -2.05475777e-01 4.28480655e-01 -7.64207602e-01 1.05387166e-01 -1.12261331e+00 7.92481959e-01 3.90439928e-02 5.30892134e-01 -6.23552918e-01 -2.07900897e-01 -1.20027518e+00 -1.57312021e-01 2.89196014e-01 -1.01546967e+00 1.09905291e+00 -7.12464869e-01 -1.53378761e+00 7.75117099e-01 -2.32843563e-01 -4.94503707e-01 4.04012471e-01 -4.84751701e-01 -1.58949688e-01 2.13020772e-01 1.82423040e-01 7.81430364e-01 9.18709874e-01 -1.10344279e+00 -1.97370067e-01 -3.55877072e-01 1.99462682e-01 3.53101194e-01 -2.84325331e-01 -2.60049194e-01 -8.01839232e-01 -6.84026539e-01 7.01933742e-01 -1.38204980e+00 -4.82437968e-01 -1.83490857e-01 -4.40323710e-01 1.20100230e-01 6.47395074e-01 -7.18947709e-01 1.06072366e+00 -2.04268885e+00 7.92748868e-01 3.30460012e-01 5.92276990e-01 -2.04645529e-01 -2.94140756e-01 5.34319758e-01 -3.14575255e-01 -2.32663870e-01 -3.36371660e-02 -6.09390497e-01 3.51920840e-03 2.82903761e-01 -3.95462215e-01 1.20271182e+00 1.21970035e-01 8.23575556e-01 -1.01014304e+00 -1.21709689e-01 2.73837149e-01 8.05319369e-01 -6.26735330e-01 5.69063462e-02 3.11291933e-01 9.26442206e-01 -3.00862461e-01 2.40471438e-01 6.60478592e-01 -4.79837179e-01 4.15758789e-01 -6.36080980e-01 -2.57715732e-01 1.53324232e-01 -1.42293644e+00 2.37714052e+00 -4.10934359e-01 8.91010344e-01 1.30041286e-01 -1.41817379e+00 7.82338202e-01 2.83688903e-01 8.85176957e-01 -4.65472013e-01 2.38327414e-01 3.36883701e-02 2.08079889e-02 -1.62313268e-01 8.62529695e-01 4.31238532e-01 -1.44798495e-02 2.57417083e-01 1.69045150e-01 -4.79608551e-02 1.89559624e-01 4.16734695e-01 9.16974425e-01 3.52405876e-01 4.38387156e-01 -2.50815600e-01 4.06178325e-01 -3.45188826e-01 5.62143505e-01 6.13765776e-01 4.74564768e-02 6.89723253e-01 4.78985816e-01 -5.10832906e-01 -8.49796414e-01 -9.08906698e-01 -4.80612777e-02 4.88949180e-01 4.10674304e-01 -6.17191970e-01 -6.14383876e-01 -2.26459816e-01 -1.71633631e-01 -3.25874873e-02 -5.63968599e-01 4.88459552e-03 -1.03238547e+00 -5.27734280e-01 2.56079882e-01 5.49619913e-01 3.61593217e-01 -3.74387860e-01 -3.59767854e-01 1.84539169e-01 -5.04108846e-01 -1.65719235e+00 -5.34448504e-01 -1.37816584e-02 -9.05114591e-01 -9.14219081e-01 -7.83460736e-01 -9.11093175e-01 7.81985164e-01 7.62161732e-01 1.02953398e+00 -9.50688645e-02 -9.02575478e-02 5.73477328e-01 -1.52707577e-01 2.48995423e-01 1.65550604e-01 2.55447328e-01 5.34371555e-01 1.99563414e-01 -1.36493772e-01 -1.06611383e+00 -6.21947527e-01 4.43814427e-01 -8.99811745e-01 4.40349057e-02 6.39649928e-01 8.28177035e-01 6.33988976e-01 -4.12686378e-01 1.73754260e-01 -7.69765377e-01 1.86577335e-01 -2.89160818e-01 -7.33017623e-01 4.04928625e-02 -1.90564588e-01 2.63359487e-01 3.84618849e-01 -2.17817068e-01 -6.46910965e-01 5.42203605e-01 2.36064851e-01 -7.62025297e-01 1.64387435e-01 7.61361241e-01 -1.49638072e-01 -4.26569939e-01 5.37436187e-01 -2.80344449e-02 -1.62162930e-02 -4.31499839e-01 8.55246961e-01 -5.03473100e-04 7.53390908e-01 -4.80682701e-01 1.07749522e+00 9.94739890e-01 3.50212783e-01 -1.08105421e+00 -7.20055103e-01 -6.36016309e-01 -1.20069969e+00 -1.20459050e-01 8.18371832e-01 -1.28491962e+00 -7.11201847e-01 2.11836964e-01 -1.35449278e+00 -1.73273191e-01 -7.57927969e-02 8.95917416e-01 -6.38925552e-01 8.89230371e-01 -6.35017395e-01 -3.42371881e-01 1.44354001e-01 -1.17744744e+00 1.13600504e+00 4.41764574e-03 -2.34173790e-01 -1.22218966e+00 5.44268310e-01 -1.21488504e-01 2.03756571e-01 2.37657890e-01 1.15296558e-01 -3.76675159e-01 -8.08481097e-01 -2.15244010e-01 -1.19621173e-01 4.34562750e-03 2.30949029e-01 2.71391347e-02 -7.87675321e-01 -6.09199464e-01 1.15666322e-01 -9.48443562e-02 1.03730142e+00 6.85216308e-01 7.45118260e-01 -8.60758051e-02 -3.79592478e-01 1.15738249e+00 1.20221221e+00 -4.05367106e-01 4.60469067e-01 1.54118136e-01 1.16558528e+00 4.56730664e-01 3.09410304e-01 4.21940863e-01 4.73920643e-01 8.58668089e-01 4.61237878e-01 -2.80133963e-01 -3.49597409e-02 -1.67320266e-01 2.87366599e-01 1.37260437e+00 -3.59762669e-01 -8.41228589e-02 -9.00696874e-01 3.96803349e-01 -2.21126556e+00 -7.89439380e-01 -7.97685310e-02 2.18895292e+00 2.89220095e-01 -2.46638462e-01 -6.06602430e-02 -2.62944460e-01 7.30313659e-01 7.42384195e-01 -3.49830568e-01 1.72191232e-01 -3.40426087e-01 6.15154803e-02 6.26956761e-01 7.33976901e-01 -1.49250102e+00 1.06798720e+00 6.51479721e+00 1.63277999e-01 -1.13177109e+00 -4.07707281e-02 1.86890319e-01 1.69837683e-01 -1.43870460e-02 3.46854329e-01 -5.28593838e-01 -1.53568760e-01 5.00322938e-01 2.39450738e-01 5.16775370e-01 6.17406487e-01 2.24408969e-01 1.85692281e-01 -1.38901734e+00 1.19816291e+00 3.29619825e-01 -1.23150933e+00 -3.68045308e-02 7.47922361e-02 9.77840185e-01 2.20719218e-01 2.12696239e-01 -1.09564744e-01 3.91237795e-01 -9.13689613e-01 5.81348896e-01 6.48284793e-01 5.66951811e-01 -6.68494523e-01 4.86112505e-01 9.78508815e-02 -1.50694704e+00 2.58728564e-01 -5.39705873e-01 -2.07897022e-01 3.78786832e-01 5.90634465e-01 -4.96623427e-01 1.01366186e+00 4.85386878e-01 1.43540061e+00 -2.86300540e-01 8.80834699e-01 -4.18667406e-01 1.14207231e-01 -3.34940672e-01 5.00706375e-01 1.68048218e-01 -6.87031865e-01 6.15326107e-01 1.03625047e+00 3.06543529e-01 -1.21549033e-01 5.63703537e-01 7.15802491e-01 -2.84645230e-01 -6.41538426e-02 -7.29304075e-01 1.94998831e-01 2.50424534e-01 1.56459463e+00 -8.06645393e-01 -5.03256544e-03 -5.58695436e-01 1.13832891e+00 6.29709303e-01 7.12457240e-01 -8.64289284e-01 -2.00277343e-01 7.51936495e-01 -2.97425687e-01 2.51412749e-01 -9.70872045e-01 9.32004228e-02 -1.71048820e+00 3.46050523e-02 -5.86048901e-01 8.65618140e-02 -5.23939133e-01 -1.11227882e+00 3.78568113e-01 -8.46383572e-02 -1.42931485e+00 -3.37949425e-01 -6.97381973e-01 -5.64547598e-01 6.50202632e-01 -1.32920563e+00 -1.16015160e+00 -4.36921090e-01 8.19974005e-01 6.70702234e-02 2.03193113e-01 5.51707447e-01 4.33766723e-01 -7.61500776e-01 4.54511762e-01 2.79103637e-01 4.62344021e-01 9.28656161e-01 -1.22079182e+00 5.95323980e-01 1.13708639e+00 7.85622954e-01 1.07921278e+00 6.26872659e-01 -4.47616994e-01 -1.85527086e+00 -8.27389419e-01 8.91867220e-01 -3.92934769e-01 1.01776361e+00 -3.58675599e-01 -5.63149154e-01 1.04927695e+00 3.56713891e-01 2.43977770e-01 3.04128468e-01 1.60721406e-01 -3.86893153e-01 -4.83832434e-02 -3.27718407e-01 5.34106731e-01 1.24845278e+00 -7.94095159e-01 -2.95836449e-01 5.86443543e-01 7.26065934e-01 -6.91783667e-01 -7.30997503e-01 2.08874762e-01 4.24293786e-01 -6.06733263e-01 1.25629210e+00 -6.44213557e-01 8.81522223e-02 -5.45526981e-01 -2.60295749e-01 -1.24672127e+00 -5.49932003e-01 -9.00686622e-01 -1.39855549e-01 9.20887887e-01 2.00130537e-01 -4.77545857e-01 7.32333839e-01 9.08762366e-02 -1.21759467e-01 -1.87413678e-01 -9.32813644e-01 -8.06138039e-01 -1.85009897e-01 -1.91238374e-01 1.14073835e-01 1.34603262e+00 -1.45536497e-01 5.58553874e-01 -9.44241226e-01 5.11778235e-01 6.93270862e-01 1.44567326e-01 1.01729822e+00 -1.03784394e+00 -3.16294014e-01 -2.71977216e-01 -6.17447197e-01 -1.66920602e+00 4.72837746e-01 -9.06804562e-01 8.75945166e-02 -1.38700700e+00 5.60009442e-02 4.81478162e-02 -1.79115504e-01 1.16394490e-01 1.53414398e-01 2.84459949e-01 1.46253243e-01 5.72222888e-01 -7.84788132e-01 6.92947090e-01 1.08944321e+00 -1.24037080e-01 -1.96019083e-01 -1.15800887e-01 -4.24973905e-01 9.48337495e-01 5.04903793e-01 -2.89872617e-01 -3.83918345e-01 -8.97323489e-01 5.49189508e-01 1.87124938e-01 3.19588006e-01 -9.48354661e-01 6.55647695e-01 4.77408208e-02 3.03995520e-01 -5.91548026e-01 4.13052976e-01 -6.91141605e-01 2.96621889e-01 4.71532941e-01 -1.65546760e-01 6.17083192e-01 -2.49837428e-01 8.01041782e-01 -4.70972866e-01 2.27256432e-01 4.62825030e-01 1.92267671e-01 -6.99717581e-01 6.72133863e-01 -1.72813252e-01 -3.34894359e-02 4.43248630e-01 1.78082332e-01 -1.55625582e-01 -7.17184603e-01 -1.07562828e+00 1.38958037e-01 5.14946401e-01 2.46412247e-01 5.32915294e-01 -1.53683233e+00 -6.18883550e-01 -1.87924549e-01 5.84152415e-02 2.45335013e-01 1.99139267e-01 1.46250749e+00 -7.98277736e-01 5.55387855e-01 -5.51919341e-02 -9.92056012e-01 -7.18937993e-01 6.53712749e-01 2.79370934e-01 -3.56648594e-01 -6.78659081e-01 7.48047948e-01 4.90842432e-01 -4.25693065e-01 2.12354496e-01 -5.23592889e-01 -2.41182879e-01 5.77075258e-02 2.28291392e-01 3.44160676e-01 -7.45801181e-02 -1.04981434e+00 -5.59034824e-01 9.30648804e-01 8.10585320e-02 -2.27810487e-01 1.27416861e+00 -2.83553660e-01 -3.70531887e-01 2.92959183e-01 1.38501871e+00 1.86838984e-01 -1.10476959e+00 -6.00068450e-01 1.74415007e-01 -2.68871278e-01 -1.20855279e-01 1.91876262e-01 -1.27277589e+00 8.94510031e-01 2.93875039e-01 -1.26439050e-01 8.22833717e-01 -8.02744403e-02 4.40800399e-01 9.73281860e-01 2.09836170e-01 -9.51755583e-01 2.47135997e-01 8.31479192e-01 8.24977279e-01 -1.29394293e+00 2.53399372e-01 -4.29896533e-01 -2.35120848e-01 1.28674412e+00 3.68596375e-01 -6.14691734e-01 6.80659473e-01 5.49224950e-02 -9.74359573e-04 -8.27978849e-02 -2.58802682e-01 -1.62026495e-01 5.27129233e-01 4.71368253e-01 5.11653662e-01 -2.39474978e-02 -2.12079212e-01 2.28740588e-01 -1.35567114e-01 -4.65332568e-01 4.29198056e-01 6.33946240e-01 -1.83244601e-01 -1.19169748e+00 -2.09824607e-01 -2.79765308e-01 -1.46169692e-01 5.69976121e-03 -4.36979234e-01 9.99097764e-01 -2.78965533e-01 6.41946971e-01 7.77387992e-02 -4.20310289e-01 1.81849375e-01 -4.69112277e-01 6.82387233e-01 -3.73696685e-01 9.07718018e-03 4.22079563e-01 -4.08648774e-02 -8.62421632e-01 -9.87707496e-01 -7.63288319e-01 -1.02271199e+00 -2.75011897e-01 -1.82879284e-01 1.77492965e-02 4.83155549e-01 9.59049582e-01 2.51768559e-01 3.96792412e-01 7.92579412e-01 -1.20945668e+00 -4.14563537e-01 -8.14094841e-01 -5.85540354e-01 3.69580060e-01 5.18289268e-01 -8.09343517e-01 -2.25929633e-01 9.29793902e-03]
[8.125958442687988, -2.180600166320801]
b16fc2d5-e522-49d3-9c48-ad342097444e
recursive-construction-of-stable-assemblies
2106.08928
null
https://arxiv.org/abs/2106.08928v6
https://arxiv.org/pdf/2106.08928v6.pdf
RNNs of RNNs: Recursive Construction of Stable Assemblies of Recurrent Neural Networks
Recurrent neural networks (RNNs) are widely used throughout neuroscience as models of local neural activity. Many properties of single RNNs are well characterized theoretically, but experimental neuroscience has moved in the direction of studying multiple interacting areas, and RNN theory needs to be likewise extended. We take a constructive approach towards this problem, leveraging tools from nonlinear control theory and machine learning to characterize when combinations of stable RNNs will themselves be stable. Importantly, we derive conditions which allow for massive feedback connections between interacting RNNs. We parameterize these conditions for easy optimization using gradient-based techniques, and show that stability-constrained "networks of networks" can perform well on challenging sequential-processing benchmark tasks. Altogether, our results provide a principled approach towards understanding distributed, modular function in the brain.
['Leo Kozachkov', 'Jean-Jacques Slotine', 'Michaela Ennis']
2021-06-16
recursive-construction-of-stable-assemblies-1
https://openreview.net/forum?id=qTBC7E4c454
https://openreview.net/pdf?id=qTBC7E4c454
null
['sequential-image-classification']
['computer-vision']
[ 2.69659519e-01 9.18413624e-02 1.31101891e-01 7.39055406e-03 -1.68772861e-01 -6.20481074e-01 6.77994251e-01 -3.01196426e-01 -4.87804383e-01 6.65546060e-01 2.70929337e-01 -3.43244046e-01 -2.19897881e-01 -1.69357345e-01 -6.81895196e-01 -1.12583375e+00 -4.09521997e-01 8.75443816e-02 2.19551668e-01 -6.26014113e-01 1.71705768e-01 5.83559811e-01 -1.11929345e+00 8.84718522e-02 5.19106567e-01 4.87161547e-01 2.27463439e-01 7.68115759e-01 3.62267196e-01 8.73191953e-01 -2.95756817e-01 8.80165026e-02 3.56165290e-01 -8.34146559e-01 -7.14490533e-01 -3.68338525e-01 7.13650584e-02 2.41811529e-01 -4.26630557e-01 1.01940608e+00 6.14062309e-01 2.96555996e-01 6.32374346e-01 -7.01151311e-01 -5.34332752e-01 8.13446343e-01 -3.39997083e-01 6.03448451e-01 -1.62785962e-01 1.76150858e-01 1.25023699e+00 -6.61605716e-01 7.20741808e-01 1.10743427e+00 5.62327504e-01 8.62134755e-01 -1.69892323e+00 -5.18169284e-01 3.23633105e-01 -1.58499867e-01 -1.02025759e+00 -8.26268017e-01 6.47930145e-01 -3.94593626e-01 1.19708586e+00 1.28382802e-01 9.20494020e-01 1.21947074e+00 5.64391792e-01 8.04440677e-01 8.64328802e-01 -2.43216395e-01 1.84311286e-01 -3.20729285e-01 3.45764071e-01 4.72620159e-01 1.46852434e-01 -1.39357066e-02 -5.17876267e-01 -1.15936831e-01 1.08884466e+00 -1.73431620e-01 -4.24072832e-01 -3.01796138e-01 -1.33409476e+00 7.73697972e-01 4.44569230e-01 6.69659972e-01 -2.35411391e-01 3.36471796e-01 4.89297867e-01 4.35128838e-01 3.98589611e-01 6.86979890e-01 -2.97350258e-01 3.50929163e-02 -7.98021793e-01 2.71210968e-01 7.22883523e-01 4.59635794e-01 4.46302354e-01 2.57959336e-01 2.42982835e-01 9.87013340e-01 2.77652413e-01 2.64509082e-01 6.70452595e-01 -1.16824806e+00 1.60132036e-01 4.07403052e-01 -2.79181421e-01 -1.00802290e+00 -7.34594405e-01 -5.11291862e-01 -1.18416035e+00 1.83556423e-01 5.34640431e-01 -3.13957781e-01 -3.51803958e-01 2.07310033e+00 -2.12615013e-01 -2.21115872e-02 -3.56689258e-03 7.76215434e-01 1.81067720e-01 6.48869038e-01 -4.43301022e-01 -4.95073617e-01 7.29764044e-01 -7.09414542e-01 -5.13895929e-01 -3.03219765e-01 6.99331641e-01 -1.87887803e-01 6.80941582e-01 4.38438326e-01 -1.53114378e+00 1.64438915e-02 -9.18622553e-01 1.73655391e-01 -1.91909835e-01 -2.42061570e-01 6.66633964e-01 2.99642503e-01 -1.65761352e+00 8.05081129e-01 -1.10264313e+00 -3.38537693e-01 3.79670382e-01 8.11573803e-01 -4.14827973e-01 5.39516687e-01 -9.88519251e-01 1.01643336e+00 1.86817795e-01 6.12197936e-01 -8.90927076e-01 -4.77193534e-01 -4.70259458e-01 -5.64957969e-02 -5.52814156e-02 -7.71386564e-01 1.09674442e+00 -1.11111975e+00 -1.48806047e+00 7.00845480e-01 -4.08114731e-01 -6.93307579e-01 9.22086313e-02 -1.29122857e-03 8.28778651e-03 1.93174988e-01 -4.56972122e-01 4.83996034e-01 5.77452779e-01 -8.92736256e-01 8.47401023e-02 -3.79675269e-01 -1.80851653e-01 2.39536956e-01 -3.41448903e-01 3.62803996e-01 1.95848927e-01 -4.77048188e-01 3.50094855e-01 -1.05173838e+00 -5.67983449e-01 -2.25750759e-01 -3.30962270e-01 -1.65723801e-01 3.54625195e-01 -1.41162917e-01 9.25574660e-01 -1.92888808e+00 6.95398748e-01 3.89920801e-01 7.28071749e-01 2.10574403e-01 -2.40149543e-01 2.80380160e-01 -4.88894194e-01 1.99341238e-01 -2.31189087e-01 -1.19620644e-01 -2.07171500e-01 6.26585772e-03 -3.78346384e-01 6.58394456e-01 1.92141786e-01 1.29838419e+00 -7.64587402e-01 -7.92707503e-02 -1.41963258e-01 6.11133397e-01 -6.39784813e-01 -8.49232301e-02 -6.32879063e-02 4.09599781e-01 -2.26129904e-01 1.62027851e-01 -8.81419424e-03 -4.23587501e-01 5.21782637e-01 1.10325180e-01 -2.15834931e-01 3.21265250e-01 -9.13159430e-01 1.30171776e+00 -3.79316747e-01 1.14714348e+00 4.71362323e-01 -1.42226958e+00 5.74965894e-01 3.74741077e-01 5.39690912e-01 -4.48541403e-01 5.02179027e-01 1.47705913e-01 7.02439070e-01 -1.49810478e-01 -1.30018324e-01 -7.12858811e-02 2.37405166e-01 8.00529718e-01 1.97745010e-01 7.48461112e-02 1.59328625e-01 3.39666575e-01 1.56304359e+00 -2.07287237e-01 4.63778004e-02 -6.47156358e-01 2.71207958e-01 -5.56931674e-01 3.86033297e-01 9.27139461e-01 -4.32698965e-01 4.30551261e-01 8.97084355e-01 -1.61986262e-01 -1.14301503e+00 -1.02675986e+00 -5.75117841e-02 1.19324696e+00 -2.88500577e-01 -2.11009577e-01 -9.38464761e-01 4.35439236e-02 -5.06834865e-01 1.21203540e-02 -9.15616870e-01 -2.97501475e-01 -8.04395974e-01 -9.34400618e-01 8.01940560e-01 2.90671527e-01 5.59111908e-02 -1.34409869e+00 -4.57388401e-01 2.94107735e-01 1.28060922e-01 -6.64284289e-01 -3.46265972e-01 6.96433961e-01 -1.20663929e+00 -9.57618952e-01 -8.46525013e-01 -8.22424054e-01 6.88755751e-01 3.47990602e-01 9.58839059e-01 2.00383365e-01 -4.14918154e-01 2.33091444e-01 1.92083821e-01 1.62556861e-02 -3.33159536e-01 2.25723267e-01 5.01086831e-01 -5.02480306e-02 -2.26889312e-01 -1.12653613e+00 -5.44678152e-01 3.18427742e-01 -9.08591628e-01 4.02830318e-02 6.45277500e-01 9.28638101e-01 2.29716703e-01 -3.75088036e-01 8.60728443e-01 -7.74411559e-01 1.03952539e+00 -4.79765683e-01 -5.87705731e-01 1.82212755e-01 -3.42968881e-01 4.45621669e-01 7.83608794e-01 -6.43044710e-01 -8.27128649e-01 9.75364223e-02 -8.28407239e-03 -1.99445024e-01 1.20412238e-01 5.47193587e-01 6.56965151e-02 -3.29191715e-01 8.33303273e-01 4.77949619e-01 2.27607444e-01 7.22630471e-02 3.10938239e-01 7.40377232e-02 2.88707018e-01 -5.25535643e-01 5.98880589e-01 4.19867545e-01 -4.47024815e-02 -1.15742862e+00 -4.75083649e-01 -2.61513472e-01 -6.25218928e-01 -3.76847893e-01 5.04598856e-01 -6.81595981e-01 -1.11122131e+00 4.73040462e-01 -1.17587399e+00 -6.31662548e-01 4.16432600e-03 2.63688624e-01 -7.66396701e-01 8.02908987e-02 -1.03305173e+00 -1.08024359e+00 -3.40822339e-01 -1.03558016e+00 6.17034435e-01 1.68075770e-01 -4.03266966e-01 -1.12399149e+00 5.98803461e-01 -7.93822110e-02 5.53776085e-01 -2.14865535e-01 7.02698171e-01 -6.63156211e-01 -4.78125662e-01 1.18889071e-01 3.53015102e-02 2.69901395e-01 -3.37472975e-01 2.49425918e-01 -7.58831501e-01 -1.48436323e-01 1.88885063e-01 -3.54802102e-01 1.13317406e+00 7.66153932e-01 8.42575431e-01 -3.73060584e-01 -4.08982903e-01 4.54055548e-01 1.10026693e+00 -5.52715100e-02 6.12040162e-01 1.92480367e-02 4.58853722e-01 7.38556206e-01 -5.49076080e-01 -2.44404655e-02 -8.79427716e-02 3.32710266e-01 2.63481081e-01 1.83173627e-01 4.30888921e-01 1.72705159e-01 6.02736056e-01 1.12251103e+00 -4.02163863e-01 -6.49056584e-02 -7.82586992e-01 3.72895628e-01 -2.14361262e+00 -1.34866107e+00 -3.10659911e-02 1.93783665e+00 9.32443202e-01 4.19653177e-01 3.18581551e-01 -1.68478101e-01 6.99408174e-01 1.38004765e-01 -7.81042755e-01 -2.44528279e-01 -7.23150373e-01 1.76238671e-01 3.90093207e-01 5.23108780e-01 -6.87318146e-01 9.34842885e-01 8.14899445e+00 5.31908631e-01 -1.00716209e+00 -1.05542690e-02 6.26517057e-01 -5.35472751e-01 -2.63544023e-01 -1.87341109e-01 -7.47962236e-01 2.07405612e-01 1.29238331e+00 -1.59867108e-01 9.55100000e-01 3.22368205e-01 6.45397663e-01 -5.81897981e-02 -9.00732458e-01 8.67953420e-01 -1.83606580e-01 -1.57346606e+00 -4.69028652e-01 2.82473892e-01 8.86078477e-01 6.93797708e-01 2.28875935e-01 -1.17960982e-02 6.65485203e-01 -1.22749841e+00 3.56677264e-01 7.64900267e-01 -8.81207883e-02 -6.52993381e-01 2.11384133e-01 5.95690787e-01 -9.33623195e-01 -9.82657373e-02 -5.83817184e-01 -2.53427207e-01 -3.05981841e-02 6.18584871e-01 -2.95111299e-01 -2.58927882e-01 5.14690638e-01 8.92626703e-01 -5.01159310e-01 8.97656739e-01 2.43793502e-02 6.49168193e-01 -4.53826994e-01 -3.93383831e-01 3.00778206e-02 -3.70084554e-01 5.86110413e-01 1.04781175e+00 -1.87904418e-01 5.95858060e-02 -4.64352399e-01 1.22906148e+00 -1.36214525e-01 1.86595190e-02 -9.74031270e-01 -4.05831814e-01 1.07922561e-01 1.60420692e+00 -1.15508747e+00 -6.95199054e-03 1.41219962e-02 7.50239134e-01 8.22085023e-01 5.37172616e-01 -5.70972860e-01 -2.56522596e-01 7.91210651e-01 -1.15392037e-01 8.07914585e-02 -6.36146903e-01 -2.97684968e-01 -1.46044385e+00 -5.19430041e-02 -7.88774252e-01 -1.71532184e-01 -8.03243577e-01 -1.04067278e+00 7.04442739e-01 -4.54009771e-01 -6.67674601e-01 -3.56997997e-01 -7.67018259e-01 -8.94444227e-01 5.81670821e-01 -6.71558022e-01 -6.01175368e-01 4.85764474e-01 6.08702958e-01 3.07774037e-01 -7.25613460e-02 5.99235594e-01 8.86092931e-02 -1.06456459e+00 3.80642503e-01 4.05387163e-01 1.45208806e-01 2.04090938e-01 -9.79468405e-01 3.12338352e-01 9.09346104e-01 4.30573940e-01 1.33988416e+00 7.66561151e-01 -4.09838408e-01 -1.53898394e+00 -5.86116493e-01 7.00565338e-01 -4.26111817e-01 1.10741031e+00 -9.30276930e-01 -9.02507305e-01 6.59972966e-01 4.26903307e-01 -1.56249711e-02 4.80710864e-01 4.21420217e-01 -3.45324874e-01 2.03520045e-01 -4.48415995e-01 1.05019665e+00 1.28532398e+00 -6.65427566e-01 -3.99695158e-01 4.15002555e-01 6.10220194e-01 2.99727935e-02 -5.71704209e-01 1.38208285e-01 7.10063636e-01 -1.01866186e+00 9.35673356e-01 -8.48660827e-01 2.86347121e-01 -6.49605989e-02 5.42161874e-02 -1.50748658e+00 -3.65083933e-01 -1.06302071e+00 -1.52606130e-01 6.79307640e-01 7.88857341e-01 -8.85934293e-01 7.41250396e-01 5.69876730e-01 -1.39980942e-01 -9.81922626e-01 -8.40547562e-01 -8.08090568e-01 4.52100784e-01 -3.03751916e-01 -5.04688859e-01 6.49559855e-01 7.13710725e-01 6.70458972e-01 -1.54332221e-01 -2.98840314e-01 3.28318030e-01 -5.10318398e-01 2.08843902e-01 -1.13983667e+00 -3.15722764e-01 -1.23966372e+00 -2.52707034e-01 -1.03143275e+00 6.55679822e-01 -9.02424574e-01 1.38446227e-01 -1.19148207e+00 2.83922195e-01 5.41296303e-02 -3.15159440e-01 4.46361989e-01 1.69109702e-01 3.21924418e-01 4.95572127e-02 4.40514326e-01 -8.28540325e-01 4.35570091e-01 8.30646932e-01 1.27548054e-01 -2.88968354e-01 -3.73121835e-02 -8.13330233e-01 7.40797341e-01 1.01909482e+00 -2.33591527e-01 -3.71235162e-01 -1.12539612e-01 8.94157946e-01 -8.09630528e-02 3.21405321e-01 -8.99098516e-01 6.02940619e-01 -5.43123893e-02 3.26722234e-01 -2.06763983e-01 1.74955040e-01 -4.59920198e-01 -1.96763575e-01 4.68473047e-01 -9.15923119e-01 1.64869919e-01 2.78524011e-02 4.56125855e-01 1.69619247e-01 -7.90525004e-02 1.02108514e+00 -2.03266025e-01 1.25267848e-01 1.38722226e-01 -1.09163296e+00 2.38993466e-01 6.89831793e-01 -4.05800827e-02 -3.89882624e-01 -4.64495689e-01 -8.91748190e-01 8.21150690e-02 1.03705123e-01 6.02175258e-02 5.72713077e-01 -9.82822657e-01 -4.60796624e-01 2.31479138e-01 -4.52041537e-01 -3.87156278e-01 1.05041645e-01 1.13432765e+00 -3.09637696e-01 5.60266912e-01 -2.22181067e-01 -4.97951627e-01 -9.12722051e-01 3.37209553e-01 8.35053265e-01 -2.24186331e-01 -3.99750799e-01 9.99193668e-01 2.79400021e-01 -5.06870270e-01 1.31745026e-01 -1.88078418e-01 -1.83344692e-01 1.28839210e-01 5.52386880e-01 1.83459163e-01 4.39160503e-02 -5.24761021e-01 -2.09792659e-01 2.41953596e-01 -1.96270153e-01 -4.96323735e-01 1.61060774e+00 -2.15135917e-01 -5.14532030e-01 7.78206885e-01 1.25889099e+00 -3.34099442e-01 -1.11982179e+00 -1.83294877e-01 1.90150887e-01 5.74113607e-01 -9.43054557e-02 -2.91708678e-01 -1.09756732e+00 9.17322814e-01 1.80624038e-01 4.63893384e-01 9.33346331e-01 2.27367312e-01 3.67768675e-01 9.50666487e-01 8.55007619e-02 -1.00824106e+00 1.38669938e-01 9.50199127e-01 8.10337305e-01 -8.50219429e-01 -3.69201660e-01 3.64228189e-01 -2.21296772e-01 1.19227862e+00 4.89454359e-01 -7.50799060e-01 8.54660690e-01 4.32210535e-01 -3.00045580e-01 -2.88629830e-01 -1.31068492e+00 -1.10737979e-02 1.34438261e-01 2.06284001e-01 7.41244316e-01 -1.58287257e-01 -7.00965822e-02 3.92605633e-01 -1.65577769e-01 -3.18765610e-01 5.92824340e-01 6.75610065e-01 -7.14571178e-01 -8.33212972e-01 -3.24948803e-02 6.28193796e-01 -4.58880633e-01 -4.53392267e-01 -5.36503613e-01 4.36246574e-01 -5.59376478e-01 6.00624681e-01 -1.06140055e-01 -2.13270798e-01 -6.80486634e-02 1.45447403e-01 7.45773613e-01 -5.38604200e-01 -8.08124304e-01 3.54007602e-01 -4.03186679e-01 -5.01214921e-01 -4.16981399e-01 -8.89778197e-01 -1.26787758e+00 -4.24837500e-01 -5.02202094e-01 4.05204594e-02 4.77368712e-01 1.22084379e+00 3.26958984e-01 5.75757504e-01 5.25646508e-01 -1.02711022e+00 -4.97278422e-01 -7.88187861e-01 -5.36143839e-01 -2.17409983e-01 4.73458439e-01 -3.30473572e-01 -6.71602845e-01 -9.03028771e-02]
[8.21005630493164, 3.281325578689575]
0b31d1eb-d953-4246-9ce5-b4b6c515d2e3
tourist-attractions-recommendation-based-on
2306.10946
null
https://arxiv.org/abs/2306.10946v4
https://arxiv.org/pdf/2306.10946v4.pdf
Att-KGCN: Tourist Attractions Recommendation System by using Attention mechanism and Knowledge Graph Convolution Network
The recommendation algorithm based on knowledge graphs is at a relatively mature stage. However, there are still some problems in the recommendation of specific areas. For example, in the tourism field, selecting suitable tourist attraction attributes process is complicated as the recommendation basis for tourist attractions. In this paper, we propose the improved Attention Knowledge Graph Convolution Network model, named ($Att-KGCN$), which automatically discovers the neighboring entities of the target scenic spot semantically. The attention layer aggregates relatively similar locations and represents them with an adjacent vector. Then, according to the tourist's preferred choices, the model predicts the probability of similar spots as a recommendation system. A knowledge graph dataset of tourist attractions used based on tourism data on Socotra Island-Yemen. Through experiments, it is verified that the Attention Knowledge Graph Convolution Network has a good effect on the recommendation of tourist attractions and can make more recommendations for tourists' choices.
['Han Cao', 'Jingjing Li', 'Ahmad A. Mubarak']
2023-06-19
null
null
null
null
['knowledge-graphs']
['knowledge-base']
[-7.79187560e-01 -2.30747536e-01 -3.00275743e-01 -5.59073806e-01 2.10015729e-01 -2.51533866e-01 2.91585922e-01 4.64639366e-02 -3.37394327e-01 4.38158959e-01 6.02476299e-01 -3.81316662e-01 -7.55120337e-01 -1.44132626e+00 -4.79145557e-01 -7.63141394e-01 -2.13465169e-01 5.57566643e-01 9.66171548e-02 -7.37341642e-01 4.02965963e-01 5.73197365e-01 -1.46629179e+00 1.74057245e-01 7.99165070e-01 9.61225986e-01 4.45474267e-01 -6.14015758e-02 -4.29289490e-01 2.27373943e-01 -2.46693313e-01 -5.27001202e-01 1.72569409e-01 -1.61620572e-01 -6.93427205e-01 -1.27544120e-01 -8.90711229e-03 -1.03498884e-01 -6.31268322e-01 1.08226919e+00 3.28339428e-01 9.06749964e-01 7.66366124e-01 -1.03581536e+00 -1.27525187e+00 1.12164676e+00 -1.92665920e-01 4.59517956e-01 -1.55250102e-01 -2.27224901e-01 1.18639433e+00 -7.32333302e-01 4.43874747e-01 1.25801528e+00 3.60227704e-01 4.61531840e-02 -4.48037744e-01 -6.00074232e-01 6.93218470e-01 5.87073982e-01 -1.71473789e+00 3.44913125e-01 5.67690492e-01 -9.53210816e-02 7.62231886e-01 2.27680251e-01 1.04785192e+00 4.52473283e-01 9.51541662e-02 6.60731852e-01 4.00845349e-01 1.77300304e-01 4.59155366e-02 2.70060122e-01 1.94351956e-01 4.69539374e-01 3.48340780e-01 3.28323548e-03 -1.93242624e-01 2.97057569e-01 8.06403041e-01 7.64437556e-01 -3.43971908e-01 1.74174886e-02 -8.51310015e-01 1.07171619e+00 1.34532583e+00 6.21027946e-01 -5.17078578e-01 3.70995961e-02 5.51091544e-02 8.86929110e-02 7.15340376e-01 3.76883537e-01 -2.58645713e-01 4.94833648e-01 -6.17071629e-01 -9.11378264e-02 3.76433313e-01 9.23565447e-01 7.69824386e-01 7.86119252e-02 3.88133079e-02 5.73059499e-01 4.70487475e-01 4.53848928e-01 5.09199739e-01 1.09630130e-01 2.17584416e-01 8.76814008e-01 3.32575440e-02 -1.65755725e+00 -4.93804961e-01 -8.18663299e-01 -7.12250233e-01 -2.77566940e-01 -9.25464258e-02 -3.44529092e-01 -9.13192034e-01 1.16324604e+00 6.47079200e-02 5.08951604e-01 4.33668569e-02 1.43405056e+00 1.36410058e+00 9.41095233e-01 1.84509993e-01 1.47480011e-01 1.14486754e+00 -9.32842314e-01 -7.13210464e-01 5.62510192e-02 3.64957541e-01 -4.32908624e-01 9.37448621e-01 1.25810519e-01 -5.86613834e-01 -5.67983091e-01 -4.25480813e-01 2.46240735e-01 -1.00885677e+00 3.41404825e-01 1.33333015e+00 2.63352036e-01 -1.04023373e+00 4.46298689e-01 -3.37780148e-01 -9.10833716e-01 3.24382544e-01 4.97089297e-01 3.66445407e-02 -1.02255121e-01 -1.52971125e+00 8.22155297e-01 5.39762080e-01 3.25852215e-01 -6.34497881e-01 -2.91318893e-01 -6.87375307e-01 6.73976481e-01 1.81573883e-01 -3.56242120e-01 4.20239031e-01 -1.07065296e+00 -1.08666301e+00 1.51045352e-01 2.26972938e-01 -2.12462172e-01 -1.82498023e-01 3.12970690e-02 -1.30178571e+00 -4.28302020e-01 -5.79566285e-02 4.16917771e-01 3.50084037e-01 -9.91147816e-01 -1.28116071e+00 -1.49664670e-01 2.77449071e-01 6.23691618e-01 -5.95144451e-01 -2.41562545e-01 -8.30967486e-01 -6.31602824e-01 8.58004615e-02 -7.56882727e-01 -4.87886459e-01 -7.35895753e-01 -5.98130189e-02 -4.89180148e-01 7.17086792e-01 -3.07801574e-01 1.45853639e+00 -2.24638557e+00 3.95915657e-02 8.52822900e-01 -1.12003870e-01 2.24412739e-01 -1.05940744e-01 3.61396253e-01 2.74325162e-01 1.17445491e-01 2.25142464e-01 4.28191870e-01 -1.60375014e-01 3.32185894e-01 -2.79889017e-01 1.00060888e-01 -3.80599827e-01 8.75566006e-01 -1.17992616e+00 -2.62995511e-01 2.65779912e-01 4.98034775e-01 -4.06318694e-01 -7.39451870e-02 -8.59196335e-02 1.94460928e-01 -9.77420628e-01 6.76932096e-01 5.90097368e-01 -3.76611590e-01 1.35026693e-01 -3.66865426e-01 -2.42911935e-01 1.22608960e-01 -1.06440163e+00 1.44769347e+00 -3.79139245e-01 6.10121131e-01 -3.97320062e-01 -8.12370002e-01 1.21113670e+00 -1.69700935e-01 2.27957934e-01 -6.57121003e-01 4.42071676e-01 1.87452823e-01 -4.36319504e-03 -7.10622489e-01 1.04867160e+00 3.13243605e-02 -8.58365893e-02 3.20211202e-01 -8.41234475e-02 4.05786663e-01 -2.25917026e-02 3.12487543e-01 4.71258193e-01 5.90889715e-02 -3.30030546e-02 -4.49707419e-01 3.79944772e-01 2.04446748e-01 3.31628531e-01 4.47492331e-01 2.82001048e-01 2.72047788e-01 -1.49769485e-01 -8.19916725e-01 -3.73070866e-01 -7.50487030e-01 3.69118974e-02 1.15460324e+00 6.66826844e-01 -2.51092821e-01 -1.66900784e-01 -8.63139391e-01 9.63988230e-02 9.63105321e-01 -7.94926643e-01 -3.43424737e-01 -1.75612852e-01 -9.47959721e-01 -7.95020014e-02 5.37943542e-01 6.36646748e-01 -1.40465987e+00 1.48201376e-01 6.02326654e-02 -1.35414079e-01 -1.80456474e-01 -6.58158183e-01 -7.21442178e-02 -6.55960083e-01 -7.26973236e-01 -7.14927971e-01 -1.03862882e+00 1.03003812e+00 7.84915686e-01 9.52341914e-01 4.32510465e-01 3.66405338e-01 2.00006813e-01 -7.18196094e-01 -1.54522032e-01 5.92927217e-01 1.92595690e-01 6.35076761e-02 4.76581275e-01 7.48762250e-01 -4.48540360e-01 -8.68835986e-01 5.83508015e-01 -6.96650982e-01 -2.90494919e-01 5.50702631e-01 5.39654195e-01 5.99863052e-01 8.59266222e-01 6.24706745e-01 -9.59058166e-01 7.93227315e-01 -1.24613810e+00 -5.13956785e-01 2.93902814e-01 -8.84277880e-01 -1.92537427e-01 6.57066107e-01 -1.78660348e-01 -1.10256362e+00 -2.09782541e-01 -4.17681821e-02 -2.35377774e-01 -7.59350359e-02 1.21031535e+00 -2.03504056e-01 -2.00570673e-01 3.30810666e-01 1.49553731e-01 -6.43750548e-01 -4.77675617e-01 4.70942199e-01 5.68107426e-01 7.71250948e-02 -1.56272445e-02 3.27859908e-01 2.88918972e-01 -1.10388227e-01 -5.01529396e-01 -4.77709085e-01 -6.20346010e-01 -1.81676686e-01 -4.15821850e-01 6.99690282e-01 -7.08131075e-01 -8.86209190e-01 -1.58217445e-01 -5.64115644e-01 -4.38971585e-03 -8.81946981e-02 1.07329619e+00 2.29232907e-01 -8.06525797e-02 -2.23266497e-01 -5.07290363e-01 -1.72965810e-01 -9.69933510e-01 4.18745309e-01 8.44344914e-01 2.44490609e-01 -1.29747915e+00 -1.75136387e-01 -4.50435579e-02 6.82995260e-01 -1.75002351e-01 7.78593421e-01 -7.06632793e-01 -7.71930456e-01 -2.33980179e-01 -4.46947753e-01 -1.30847275e-01 1.17424086e-01 -9.30933729e-02 -3.86196524e-01 -4.02391478e-02 -7.63423860e-01 3.68568271e-01 1.12979877e+00 6.67390227e-01 1.10795224e+00 -4.33030069e-01 -6.93067729e-01 6.96136653e-01 1.58071804e+00 4.49737191e-01 7.54105449e-01 3.92480642e-01 9.15019929e-01 6.00271940e-01 1.00308788e+00 3.35824609e-01 4.85322535e-01 3.74087036e-01 6.62462652e-01 -1.42291695e-01 1.16865180e-01 -3.25692445e-01 2.19814047e-01 6.50003910e-01 -6.36247337e-01 -8.68525505e-01 -5.08966088e-01 9.62082505e-01 -2.00122929e+00 -1.00681806e+00 -2.23760799e-01 2.19586468e+00 -1.48813203e-01 -1.97608635e-01 -4.50586937e-02 -5.83873570e-01 8.74233305e-01 7.16000944e-02 -5.07514358e-01 -2.91862845e-01 -1.28596991e-01 -7.57428855e-02 9.47688103e-01 4.60236698e-01 -8.88270915e-01 1.39735210e+00 4.74109840e+00 1.13244367e+00 -1.27088606e+00 -1.05909951e-01 5.17187059e-01 -1.24538526e-01 -8.78414094e-01 -4.14565541e-02 -9.85296607e-01 4.97549534e-01 5.60857594e-01 -2.05775067e-01 7.85862029e-01 9.14718449e-01 1.47977263e-01 2.26962045e-01 -2.11015582e-01 8.68061125e-01 2.44333729e-01 -1.44938350e+00 6.00710094e-01 1.33017227e-01 7.68764079e-01 1.07142098e-01 2.79700935e-01 6.01114690e-01 7.59143531e-01 -1.02935684e+00 1.45151764e-01 9.32124138e-01 3.80729973e-01 -1.23786998e+00 1.14171600e+00 8.05838965e-03 -1.32327223e+00 -1.08339660e-01 -8.30209911e-01 8.68071988e-02 2.28955090e-01 3.95120591e-01 -9.51627612e-01 8.25944424e-01 1.21488798e+00 1.23664796e+00 -3.74493659e-01 1.17067707e+00 -3.72477442e-01 7.64292955e-01 -2.09388807e-01 -6.50424898e-01 8.12756300e-01 -7.97499657e-01 2.86675453e-01 1.02994907e+00 1.04504299e+00 6.40247405e-01 4.69968049e-03 5.46648383e-01 -1.37860939e-01 5.91618419e-01 -5.40244043e-01 -8.33083838e-02 2.73839086e-01 1.46882057e+00 -1.07524872e+00 -1.59257367e-01 -2.33466208e-01 6.85640037e-01 2.43692771e-01 5.87329924e-01 -8.08663964e-01 -5.31314433e-01 4.60754007e-01 2.71777138e-02 6.58604443e-01 4.93611805e-02 8.99413154e-02 -8.93062830e-01 -7.16582298e-01 -7.37505406e-02 6.93593383e-01 -9.61818159e-01 -1.18633258e+00 7.58461237e-01 -3.42720956e-01 -1.36272788e+00 4.84542072e-01 -5.07734776e-01 -9.58147168e-01 9.98246491e-01 -1.55660701e+00 -1.26248920e+00 -3.64397645e-01 9.28408086e-01 2.28794456e-01 -3.67230177e-01 7.48719215e-01 5.06056905e-01 -4.17649239e-01 3.98375154e-01 5.38115501e-01 1.28960097e-02 3.56121033e-01 -9.12792802e-01 9.56253707e-02 5.76473534e-01 3.12067926e-01 8.84977221e-01 4.16318685e-01 -8.68475795e-01 -1.08596611e+00 -1.42350566e+00 1.00209820e+00 -2.48476826e-02 5.02714872e-01 3.55186760e-01 -6.79835558e-01 1.06522226e+00 2.87462592e-01 -2.99864650e-01 9.50908601e-01 6.16448522e-01 2.69869894e-01 -2.64447927e-01 -1.12706006e+00 8.01349878e-01 9.20603096e-01 1.52326629e-01 -3.85025769e-01 7.51207292e-01 6.99636281e-01 -1.84854902e-02 -8.30205858e-01 -7.07677901e-02 3.55374008e-01 -4.52992886e-01 1.01635122e+00 -7.10691273e-01 -7.84395169e-03 -6.75868750e-01 -1.47112831e-01 -1.84159815e+00 -9.71526504e-01 -6.39703497e-02 4.90382552e-01 1.13991845e+00 6.07140660e-01 -5.80459952e-01 6.71680987e-01 4.16338384e-01 -3.64650518e-01 -4.17649180e-01 -5.33798337e-01 -3.99590254e-01 -5.64017177e-01 -1.09150305e-01 1.19070959e+00 1.20732272e+00 1.58060044e-01 3.58733356e-01 -6.82717383e-01 5.07816255e-01 2.76241135e-02 5.42347074e-01 3.56230587e-01 -1.27027476e+00 8.09898973e-02 -5.56844234e-01 -4.06041592e-01 -1.11325872e+00 -9.56703871e-02 -1.35149598e+00 -2.71753788e-01 -2.05688548e+00 -2.31228575e-01 -7.44900465e-01 -1.07640064e+00 5.01798928e-01 -1.93135291e-02 1.42543882e-01 -2.18617648e-01 1.60516918e-01 -9.00754988e-01 5.45055866e-01 1.32414007e+00 -2.67267644e-01 -4.69223022e-01 3.07631284e-01 -9.96911049e-01 4.44573373e-01 8.38610113e-01 -2.72476584e-01 -5.50540447e-01 -6.05251551e-01 6.44714415e-01 -1.72935978e-01 2.47150268e-02 -6.69992089e-01 4.51016396e-01 -4.35117364e-01 2.75174856e-01 -7.54024923e-01 1.01528749e-01 -1.21495581e+00 3.78230065e-01 1.69941202e-01 -2.87237465e-01 6.17510006e-02 8.44558775e-02 7.49893963e-01 -3.19586545e-01 -6.09352142e-02 9.00310576e-02 -1.58570394e-01 -1.53950417e+00 7.83019722e-01 -3.80890697e-01 -5.70565641e-01 8.25666010e-01 -5.07453009e-02 -1.39855176e-01 -6.10559285e-01 -8.19001853e-01 5.49739420e-01 7.87645876e-02 4.96199846e-01 8.81896496e-01 -1.46820474e+00 -6.15539014e-01 1.46557480e-01 2.73577213e-01 -2.62849510e-01 6.82020903e-01 5.42078793e-01 -4.09768403e-01 5.58879554e-01 -3.29184234e-01 9.97511744e-02 -9.18907881e-01 7.24652946e-01 1.47328913e-01 9.53707024e-02 -5.42132676e-01 1.21472943e+00 1.18079126e-01 -3.12835097e-01 -6.44154474e-02 -2.83895999e-01 -1.33361852e+00 9.54297483e-02 4.24450457e-01 3.45111847e-01 -9.55399498e-02 -8.89979064e-01 -1.82621509e-01 5.64259410e-01 -2.45965458e-02 2.43715331e-01 1.44735003e+00 -3.97790790e-01 -1.28218886e-02 -6.09940179e-02 7.51002669e-01 1.42912880e-01 -7.12506056e-01 -2.91526675e-01 -4.47668314e-01 -5.86604118e-01 5.17586410e-01 -9.29680467e-01 -1.92473650e+00 5.74008465e-01 5.76673806e-01 3.91411811e-01 1.08143055e+00 -2.26247963e-02 9.59127784e-01 3.84997398e-01 5.60691297e-01 -8.76470625e-01 -7.72580028e-01 4.90882665e-01 7.22793996e-01 -1.08545077e+00 -4.21703346e-02 -1.57636851e-01 -8.42980921e-01 1.08635092e+00 6.46651745e-01 -3.96677136e-01 1.18705344e+00 -7.46266961e-01 -6.22420833e-02 -6.75380230e-01 -1.48845151e-01 -6.25029922e-01 5.14837325e-01 3.46461535e-01 3.30034405e-01 5.04156768e-01 -6.31393135e-01 8.95869493e-01 -1.87821135e-01 -1.12447254e-01 2.32046276e-01 2.60791808e-01 -6.84299529e-01 -6.51827455e-01 -1.29359767e-01 8.19312572e-01 -7.62389973e-02 -6.08438253e-01 1.12043396e-02 7.69159257e-01 4.79071945e-01 1.02762496e+00 2.98315793e-01 -9.52486336e-01 3.15743029e-01 -4.33908433e-01 -2.46342406e-01 -5.33381999e-01 -8.14948499e-01 -4.98583652e-02 -1.69073045e-02 -2.91007549e-01 -5.05216122e-01 -4.64663416e-01 -1.49138629e+00 -6.48751080e-01 -5.85885942e-01 8.22835803e-01 5.17534971e-01 6.45952642e-01 5.99060059e-01 6.32397771e-01 5.77227116e-01 -5.19879341e-01 5.88236570e-01 -8.12679768e-01 -1.21000576e+00 5.11175752e-01 -3.31017643e-01 -8.66232097e-01 -2.58297473e-01 -3.35375965e-01]
[10.24071979522705, 5.619266033172607]