paperID
stringlengths 36
36
| pwc_id
stringlengths 8
47
| arxiv_id
stringlengths 6
16
⌀ | nips_id
float64 | url_abs
stringlengths 18
329
| url_pdf
stringlengths 18
742
| title
stringlengths 8
325
| abstract
stringlengths 1
7.27k
⌀ | authors
stringlengths 2
7.06k
| published
stringlengths 10
10
⌀ | conference
stringlengths 12
47
⌀ | conference_url_abs
stringlengths 16
198
⌀ | conference_url_pdf
stringlengths 27
199
⌀ | proceeding
stringlengths 6
47
⌀ | taskID
stringlengths 7
1.44k
| areaID
stringclasses 688
values | embedding
stringlengths 9.26k
12.5k
| umap_embedding
stringlengths 29
44
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
f514d546-5d01-44bc-ab77-848209685456 | beyond-word2vec-embedding-words-and-phrases | null | null | https://cdn.iiit.ac.in/cdn/ltrc.iiit.ac.in/icon2017/proceedings/icon2017/pdf/W17-7526.pdf | https://cdn.iiit.ac.in/cdn/ltrc.iiit.ac.in/icon2017/proceedings/icon2017/pdf/W17-7526.pdf | Beyond Word2Vec: Embedding Words and Phrases in Same Vector Space | Word embeddings are being used for several linguistic problems and NLP tasks. Improvements in solutions to such problems are great because of the recent breakthroughs in vector representation of words and research in vector space models. However, vector embeddings of phrases keeping semantics intact with words has been challenging. We propose a novel methodology using Siamese deep neural networks to embed multi-word units and fine-tune the current state-of-the-art word embed-dings keeping both in the same vector space. We show several semantic relations between words and phrases using the embeddings generated by our system and evaluate that the similarity of words and their corresponding paraphrases are maximized using the modified embeddings. | ['Manish Shrivastava', 'Vijay Prakash Dwivedi'] | 2017-12-18 | beyond-word2vec-embedding-words-and-phrases-1 | https://aclanthology.org/W17-7526 | https://aclanthology.org/W17-7526.pdf | international-conference-on-natural-language | ['phrase-vector-embedding'] | ['natural-language-processing'] | [-3.25111747e-01 -2.08909005e-01 -5.69092870e-01 -4.06702161e-01
-4.02481616e-01 -4.85773206e-01 5.56243539e-01 5.35001934e-01
-9.44937527e-01 4.08799171e-01 8.41101050e-01 -3.27861309e-01
-4.93443571e-02 -9.03351605e-01 -3.30912262e-01 -4.19629097e-01
-1.28381237e-01 3.76922786e-01 1.55677378e-01 -5.36005557e-01
4.12230253e-01 5.05781293e-01 -1.21437383e+00 1.81324571e-01
5.07159948e-01 5.26813865e-01 5.61273322e-02 6.86330140e-01
-9.55729425e-01 1.11617260e-01 -5.36082208e-01 -5.60189188e-01
1.59375951e-01 -1.26902446e-01 -6.52948797e-01 -3.75320852e-01
2.61526227e-01 5.25256805e-02 -7.36963809e-01 1.13389611e+00
4.49811876e-01 5.92882872e-01 8.23404372e-01 -1.16779828e+00
-2.00264955e+00 7.74536073e-01 -4.64460850e-01 5.13076603e-01
2.32057348e-01 -3.28010798e-01 1.79120970e+00 -1.27021503e+00
3.65244478e-01 1.48306704e+00 6.34072483e-01 4.60040063e-01
-1.33311987e+00 -4.21589404e-01 1.18436478e-01 6.60289407e-01
-1.57712531e+00 8.35479051e-02 6.99015081e-01 -2.00745896e-01
1.90809560e+00 -1.23185508e-01 7.50907183e-01 1.01558411e+00
4.43254352e-01 4.76920962e-01 2.11450130e-01 -7.08656371e-01
3.37287895e-02 4.41352576e-01 6.56686127e-01 5.15729129e-01
5.16914845e-01 -3.13169003e-01 -3.17120284e-01 -7.64220357e-02
5.60120881e-01 3.85051221e-01 -2.19913875e-03 -4.07325298e-01
-1.18066585e+00 1.60192716e+00 5.14700949e-01 9.80048895e-01
-3.87615442e-01 5.17748892e-01 6.78959608e-01 3.22216749e-01
5.26375830e-01 9.47285175e-01 -3.16912889e-01 -6.93267360e-02
-7.90566623e-01 4.74848807e-01 5.63692212e-01 8.25846612e-01
6.07614696e-01 1.44775391e-01 -1.33009106e-01 1.13942063e+00
3.86104465e-01 3.35126847e-01 1.45811749e+00 -4.59572017e-01
2.38961384e-01 6.92960620e-01 -1.50617018e-01 -1.41072333e+00
-2.64883220e-01 -8.33676457e-02 -4.74306792e-01 -4.15049940e-01
-3.28967422e-01 2.04569265e-01 -7.79344201e-01 1.58265829e+00
1.78431626e-02 2.22805232e-01 2.38725603e-01 5.14825046e-01
7.85226822e-01 1.26083422e+00 1.30673856e-01 1.67435482e-01
1.58502448e+00 -1.13933432e+00 -1.14006579e+00 -4.90427583e-01
9.35250700e-01 -5.36879838e-01 1.07865775e+00 -3.10215622e-01
-9.42008436e-01 -6.90660655e-01 -1.25128150e+00 -5.70024610e-01
-1.22909486e+00 -5.02477109e-01 4.80092227e-01 5.29643059e-01
-1.04336321e+00 5.53801179e-01 -6.44401789e-01 -6.32042348e-01
2.88344592e-01 4.24154401e-01 -7.31578350e-01 -1.40798874e-02
-1.66268516e+00 1.36484671e+00 7.04524219e-01 -3.18636835e-01
-9.55593735e-02 -1.00401878e+00 -1.41091418e+00 4.35468942e-01
-2.64842421e-01 -5.66886127e-01 8.19079995e-01 -4.50443983e-01
-9.57319736e-01 8.57606232e-01 -2.38848522e-01 -5.85191846e-01
-4.53405023e-01 -2.71907479e-01 -6.05918705e-01 -1.63587570e-01
1.43379778e-01 7.54367292e-01 5.97010493e-01 -7.24915206e-01
-5.45489907e-01 -1.56195179e-01 -4.71035540e-02 2.10962385e-01
-1.25795162e+00 9.40723047e-02 -1.63165376e-01 -9.77412522e-01
-2.06102237e-01 -5.71947753e-01 -2.80817509e-01 1.75046980e-01
6.05456978e-02 -8.19203377e-01 7.19048798e-01 -4.42198485e-01
1.53353822e+00 -1.99847031e+00 5.43054223e-01 -4.05751318e-02
1.77626580e-01 6.18926167e-01 -6.41969800e-01 9.47340250e-01
-3.52307916e-01 4.00535971e-01 -1.73484921e-01 -4.77467924e-01
3.37548256e-01 7.15139985e-01 -6.38477862e-01 4.20243829e-01
1.92412913e-01 1.20320785e+00 -1.09608078e+00 -4.31877404e-01
4.38960642e-01 7.51444221e-01 -8.08887184e-01 2.47904807e-01
1.38263538e-01 -6.64116144e-01 -1.74816132e-01 1.70064032e-01
3.36825758e-01 1.08349100e-01 1.40777946e-01 -2.33362317e-01
1.51637867e-01 2.78753102e-01 -9.28342402e-01 1.85432982e+00
-8.05966616e-01 8.70195746e-01 -5.62231600e-01 -1.34268391e+00
8.70282888e-01 3.11378390e-01 3.26740444e-01 -4.50276613e-01
1.54816017e-01 1.13285616e-01 -1.57565713e-01 -6.71248794e-01
1.09306574e+00 -7.71894693e-01 -2.30224192e-01 4.35871214e-01
6.11691892e-01 -3.50085616e-01 1.54212385e-01 3.03864539e-01
8.83545876e-01 -2.85525024e-01 8.33977222e-01 -1.97660401e-01
4.48631227e-01 -1.93848729e-01 -3.59781198e-02 3.80196303e-01
-2.87347227e-01 3.81951720e-01 2.33092278e-01 -3.75967711e-01
-1.35123444e+00 -1.11990559e+00 -2.08839282e-01 1.36870158e+00
3.78136709e-02 -5.90481102e-01 -3.12253952e-01 -4.72920239e-01
5.32266855e-01 1.14511263e+00 -9.64711607e-01 -5.98211169e-01
-5.95243990e-01 -4.88424808e-01 6.80923700e-01 9.56557214e-01
-3.16852808e-01 -1.09494555e+00 -5.28997220e-02 4.20791000e-01
2.85282373e-01 -9.55480933e-01 -7.10058153e-01 3.10573667e-01
-7.73004770e-01 -5.13333738e-01 -9.08422470e-01 -1.42365670e+00
3.94577086e-01 4.58058894e-01 1.06873035e+00 -1.08212613e-01
-4.11379308e-01 2.13280067e-01 -6.24595463e-01 -2.14894935e-01
-2.10188940e-01 8.80742520e-02 5.16783774e-01 -2.92070031e-01
1.20900798e+00 -6.40479088e-01 -3.70305687e-01 -2.63546765e-01
-1.31523788e+00 -7.03170121e-01 1.65642515e-01 1.09996128e+00
3.64258438e-01 -4.23431545e-01 7.18577683e-01 -5.57731152e-01
1.34892499e+00 -8.77100289e-01 -9.69982669e-02 1.71735063e-01
-6.35797858e-01 5.70359707e-01 5.52346528e-01 -6.58224523e-01
-2.80777097e-01 -6.26682281e-01 -4.69930112e-01 -5.18502533e-01
1.58597976e-01 5.74486375e-01 2.56424785e-01 1.34287491e-01
5.55324793e-01 1.84176311e-01 -1.72571883e-01 -2.84499526e-01
1.31544209e+00 9.68309760e-01 1.43661484e-01 -3.50690395e-01
7.11660802e-01 2.26653963e-01 -3.90837848e-01 -1.04265571e+00
-8.79001498e-01 -8.98255169e-01 -6.81622684e-01 5.12959421e-01
1.12091875e+00 -4.85432059e-01 -2.03002393e-01 -3.42350185e-01
-1.64615500e+00 6.71439230e-01 -8.17526996e-01 4.66385722e-01
-2.29981065e-01 7.08180547e-01 -3.67804527e-01 -3.23435634e-01
-3.87065053e-01 -9.97697055e-01 9.28967297e-01 1.41172945e-01
-7.17705786e-01 -1.67662942e+00 7.99609780e-01 -2.30001241e-01
7.53883243e-01 -3.31911474e-01 1.35006857e+00 -1.25331986e+00
3.56307149e-01 -6.39939189e-01 -2.86335051e-01 7.37444460e-01
3.99988353e-01 -2.48073637e-01 -7.12976933e-01 -1.26837313e-01
-1.13673739e-01 -1.58554494e-01 9.01729345e-01 3.03060353e-01
8.60643148e-01 -2.88174391e-01 -3.90519381e-01 5.37411213e-01
1.66872501e+00 1.12268649e-01 4.04391974e-01 3.29207331e-01
7.38043725e-01 5.90958714e-01 5.43911532e-02 1.34759068e-01
2.19709992e-01 5.74428082e-01 1.67816654e-01 2.80363232e-01
-3.08103710e-02 -4.89759117e-01 3.06258380e-01 1.47853160e+00
4.31433171e-01 -3.95701796e-01 -6.82635665e-01 1.28148234e+00
-1.82325268e+00 -8.54210377e-01 2.57225662e-01 1.55626690e+00
7.83124387e-01 6.21963933e-04 -3.29437196e-01 2.68989876e-02
5.71205378e-01 7.00631082e-01 -2.18670279e-01 -1.17180145e+00
1.33810975e-02 8.05540562e-01 4.04990643e-01 7.61916876e-01
-8.62399757e-01 1.42180252e+00 7.04872799e+00 8.70292544e-01
-7.44030416e-01 3.31725955e-01 -2.18503952e-01 -9.32457447e-02
-6.75416410e-01 -3.18429261e-01 -7.53881454e-01 1.64072901e-01
1.14014637e+00 -6.26158297e-01 1.26014367e-01 9.46975052e-01
-7.18050450e-02 5.85649967e-01 -1.27758741e+00 1.13319445e+00
6.24578476e-01 -1.56367433e+00 6.24768853e-01 -3.01832020e-01
6.23997748e-01 -3.54358628e-02 1.42624736e-01 6.40861750e-01
2.43737921e-01 -1.30382156e+00 1.43854618e-01 1.13831110e-01
5.78377306e-01 -8.14001441e-01 9.84132886e-01 -1.66365147e-01
-1.32418466e+00 -1.13028800e-02 -1.02449954e+00 -6.45318925e-02
4.68147844e-01 3.78323525e-01 -6.35583639e-01 1.76997617e-01
1.79175466e-01 1.06099594e+00 -3.30057770e-01 4.85051781e-01
-3.71006131e-01 3.19689870e-01 1.26490779e-02 -6.40598297e-01
8.10843229e-01 -2.40159795e-01 4.82826412e-01 1.68774140e+00
1.96635202e-01 -1.53728545e-01 -1.28734142e-01 1.05476785e+00
-3.55759025e-01 5.27139187e-01 -1.06329584e+00 -6.26966298e-01
5.31042755e-01 1.12039113e+00 -2.57705063e-01 -4.46171492e-01
-6.37319446e-01 1.17348802e+00 6.68908119e-01 2.31814340e-01
-8.37206423e-01 -9.58810151e-01 1.54898083e+00 -2.22891510e-01
4.30116475e-01 -6.45613492e-01 -2.73751527e-01 -1.15575540e+00
-1.28441453e-01 -2.00600654e-01 7.39525035e-02 -5.65671742e-01
-1.76123297e+00 6.97341323e-01 1.41341045e-01 -8.52110028e-01
-1.73903823e-01 -1.03230000e+00 -6.91260576e-01 9.54125583e-01
-1.56301630e+00 -8.90156686e-01 4.64706153e-01 2.50565797e-01
8.89744520e-01 -4.91146207e-01 1.30197573e+00 2.01466903e-01
-1.69038653e-01 7.56846905e-01 4.44192439e-01 1.20809540e-01
5.93157232e-01 -1.23853445e+00 8.49612057e-01 4.94152516e-01
6.72327399e-01 1.01631594e+00 7.28424609e-01 -2.83392459e-01
-1.37316716e+00 -8.47574294e-01 1.54956746e+00 -3.69673342e-01
1.52258587e+00 -5.27569711e-01 -1.10982788e+00 7.63619363e-01
6.26581252e-01 1.24638461e-01 1.05558431e+00 1.11346252e-01
-6.91179931e-01 2.22406358e-01 -9.34958756e-01 7.51038074e-01
8.03581238e-01 -8.24868560e-01 -1.56406438e+00 5.00991642e-01
1.54403138e+00 4.21635419e-01 -8.49739432e-01 -2.99559921e-01
5.55746078e-01 -2.86408424e-01 1.35940123e+00 -1.39299750e+00
5.77645063e-01 1.06271811e-01 -6.65383279e-01 -1.85044813e+00
-5.25144577e-01 4.69146967e-02 -2.28423312e-01 1.01434433e+00
3.84684384e-01 -7.24441528e-01 6.37874424e-01 3.12946379e-01
7.63957649e-02 -8.55916321e-01 -1.04466558e+00 -9.13515925e-01
7.06009030e-01 -3.86906683e-01 3.06801587e-01 1.08191109e+00
4.60919648e-01 6.28621519e-01 -1.96483612e-01 -1.55610770e-01
2.37638831e-01 -2.37874597e-01 -5.25764748e-03 -8.52905810e-01
4.35509831e-02 -5.82315803e-01 -1.15918732e+00 -1.09488964e+00
8.67647052e-01 -1.35513330e+00 -2.18265623e-01 -1.85817134e+00
-5.76019548e-02 4.37165685e-02 -5.79511762e-01 3.67482632e-01
-3.81731272e-01 2.35311225e-01 1.32552445e-01 -1.29945621e-01
-2.22482666e-01 1.09880066e+00 5.59963226e-01 -3.35062146e-01
3.44169214e-02 -8.10009181e-01 -8.02587390e-01 4.85949904e-01
6.48056269e-01 -6.59263730e-01 -3.63647193e-01 -7.82912552e-01
3.54118228e-01 -7.20405638e-01 -2.19738007e-01 -4.98994827e-01
1.84409931e-01 -4.07162346e-02 -5.77886105e-02 -3.52813154e-01
6.04123175e-01 -9.54992950e-01 -5.71645498e-01 4.12923336e-01
-6.91393375e-01 7.56462574e-01 2.73427278e-01 7.07530975e-01
-5.72758079e-01 -6.74429953e-01 8.13843012e-01 -5.61203882e-02
-9.18878734e-01 2.36075316e-02 -4.48335290e-01 2.85196424e-01
1.19844973e+00 -2.66266942e-01 5.84471673e-02 -2.36833915e-01
-4.73978758e-01 1.34862617e-01 8.49678218e-02 1.05077386e+00
9.89117920e-01 -1.73670530e+00 -7.44157255e-01 3.03230166e-01
4.43550825e-01 -6.09580576e-01 -8.93081352e-02 -4.83060405e-02
-7.26148248e-01 7.62131095e-01 -1.36856973e-01 -1.01096295e-01
-1.14843225e+00 1.01746190e+00 1.36588067e-01 -2.66955644e-01
-5.60710251e-01 1.15949726e+00 1.03911817e-01 -6.15421951e-01
1.68028995e-01 -5.16124129e-01 -5.18794954e-01 4.24908996e-01
7.33033121e-01 2.34752521e-01 -1.09904975e-01 -6.47027433e-01
-5.26138961e-01 7.72628546e-01 -3.67054701e-01 -8.68851170e-02
1.66372919e+00 -1.61217172e-02 -2.64521927e-01 7.05634773e-01
2.00178814e+00 -2.16965109e-01 -4.99004051e-02 -4.95487601e-01
2.38651752e-01 -4.60160106e-01 1.03993498e-01 3.55609171e-02
-8.24436545e-01 1.13219285e+00 5.07676721e-01 2.91459143e-01
3.22826684e-01 8.20203722e-02 1.22632456e+00 6.19132459e-01
-1.15500800e-01 -9.70438480e-01 1.57901183e-01 7.94081271e-01
7.37571061e-01 -1.03282642e+00 1.81013104e-02 1.41906336e-01
-6.02957666e-01 1.27787685e+00 1.76000908e-01 -8.00444007e-01
1.09507108e+00 4.95617688e-02 -6.11741133e-02 -1.87837481e-01
-6.75339520e-01 -2.34891176e-02 4.00230497e-01 6.58690631e-01
6.32055223e-01 1.14607766e-01 -6.77781582e-01 6.03849828e-01
-8.98474529e-02 -4.69098657e-01 4.10390228e-01 8.92287731e-01
-6.83107257e-01 -1.28166258e+00 -6.66738003e-02 3.68619800e-01
-2.96831101e-01 -7.16722012e-01 -1.60857975e-01 5.84505379e-01
-1.76287279e-01 6.78240955e-01 3.97270888e-01 -3.11995000e-01
3.94270450e-01 3.56536925e-01 1.71130344e-01 -1.08117414e+00
-5.85973978e-01 -6.62373722e-01 -1.50085211e-01 -3.95180792e-01
-2.62271702e-01 -9.85859260e-02 -1.23745954e+00 -1.81133017e-01
-3.31319422e-01 3.47131491e-01 1.08748806e+00 8.71165574e-01
3.22416365e-01 6.50898099e-01 3.78937542e-01 -8.48687470e-01
-8.54515493e-01 -1.08849955e+00 -8.12661290e-01 6.04503274e-01
1.75456583e-01 -6.68876171e-01 -5.20370543e-01 -2.57212728e-01] | [10.502143859863281, 8.632366180419922] |
0b3334fa-e439-4a1b-ac72-7bf01209b172 | deshadowgan-a-deep-learning-approach-to | 1910.02844 | null | https://arxiv.org/abs/1910.02844v1 | https://arxiv.org/pdf/1910.02844v1.pdf | DeshadowGAN: A Deep Learning Approach to Remove Shadows from Optical Coherence Tomography Images | Purpose: To remove retinal shadows from optical coherence tomography (OCT) images of the optic nerve head(ONH). Methods:2328 OCT images acquired through the center of the ONH using a Spectralis OCT machine for both eyes of 13 subjects were used to train a generative adversarial network (GAN) using a custom loss function. Image quality was assessed qualitatively (for artifacts) and quantitatively using the intralayer contrast: a measure of shadow visibility ranging from 0 (shadow-free) to 1 (strong shadow) and compared to compensated images. This was computed in the Retinal Nerve Fiber Layer (RNFL), the Inner Plexiform Layer (IPL), the Photoreceptor layer (PR) and the Retinal Pigment Epithelium (RPE) layers. Results: Output images had improved intralayer contrast in all ONH tissue layers. On average the intralayer contrast decreased by 33.7$\pm$6.81%, 28.8$\pm$10.4%, 35.9$\pm$13.0%, and43.0$\pm$19.5%for the RNFL, IPL, PR, and RPE layers respectively, indicating successful shadow removal across all depths. This compared to 70.3$\pm$22.7%, 33.9$\pm$11.5%, 47.0$\pm$11.2%, 26.7$\pm$19.0%for compensation. Output images were also free from artifacts commonly observed with compensation. Conclusions: DeshadowGAN significantly corrected blood vessel shadows in OCT images of the ONH. Our algorithm may be considered as a pre-processing step to improve the performance of a wide range of algorithms including those currently being used for OCT image segmentation, denoising, and classification. Translational Relevance: DeshadowGAN could be integrated to existing OCT devices to improve the diagnosis and prognosis of ocular pathologies. | ['Shamira Perera', 'Xiaofei Wang', 'Zhang Liang', 'Sripad Krishna Devalla', 'Haris Cheong', 'Alexandre H. Thiery', 'Tin Aung Tun', 'Tan Hung Pham', 'Michael J. A. Girard', 'Leopold Schmetterer', 'Craig Boote', 'Aung Tin'] | 2019-10-07 | null | null | null | null | ['shadow-removal'] | ['computer-vision'] | [ 4.43789721e-01 3.00085604e-01 4.33752477e-01 2.09378615e-01
-3.64251614e-01 -5.18939137e-01 -5.03849089e-02 -2.44027033e-01
-4.29017395e-01 1.02314985e+00 2.96498323e-03 -5.37753761e-01
2.99189061e-01 -6.58701837e-01 -5.90801120e-01 -7.92575955e-01
-9.36144218e-02 -1.40532568e-01 3.29017580e-01 3.33538264e-01
2.52332777e-01 5.32992005e-01 -1.47441900e+00 3.36387664e-01
1.27899992e+00 1.34558725e+00 -1.64702982e-01 6.96638644e-01
2.11192027e-01 2.82618940e-01 -6.43810451e-01 -2.13568985e-01
6.32971942e-01 -5.96566319e-01 -2.65346736e-01 5.13842143e-02
1.03856087e+00 -4.89902616e-01 2.88254380e-01 1.32566619e+00
6.78182840e-01 -2.61657953e-01 5.12658596e-01 -6.01590753e-01
-2.79978782e-01 -1.28407419e-01 -9.05723274e-01 2.44090214e-01
-3.31654102e-01 7.60809422e-01 3.63781244e-01 -6.14478111e-01
6.62045598e-01 5.14511585e-01 5.46296418e-01 4.32091236e-01
-1.34734035e+00 -8.94710302e-01 -1.86935499e-01 -6.78584129e-02
-1.06719053e+00 -3.18336636e-01 -8.76754969e-02 -1.01311731e+00
9.81847405e-01 1.58223912e-01 1.48633647e+00 -3.17351148e-03
6.51600897e-01 5.97485900e-02 1.86086309e+00 -2.69965887e-01
4.82210778e-02 1.41861260e-01 1.26510961e-02 8.09101820e-01
6.03818655e-01 3.36540788e-01 9.36173126e-02 -3.45615065e-03
8.25972795e-01 -5.09955406e-01 -7.63368666e-01 3.86441529e-01
-3.02476883e-01 4.26425040e-01 4.53493387e-01 -1.83925599e-01
-4.09696013e-01 1.47994354e-01 2.50152089e-02 -1.18559830e-01
5.10123253e-01 6.65558815e-01 -1.40633449e-01 1.24252774e-02
-6.51745498e-01 -1.71572149e-01 5.22660688e-02 4.54403579e-01
5.90517402e-01 -1.04844174e-03 -1.62875697e-01 9.84886587e-01
3.17258596e-01 5.29214084e-01 2.70785689e-01 -1.30689955e+00
1.63536388e-02 9.00730431e-01 2.58623570e-01 -1.66371390e-01
-1.86051071e-01 -6.32117450e-01 -7.08255708e-01 1.08028316e+00
4.34955239e-01 -4.67281044e-01 -1.42378032e+00 1.11125052e+00
9.06599388e-02 2.15796962e-01 -4.80834723e-01 9.64145362e-01
7.56377637e-01 2.63282597e-01 -1.07218869e-01 -4.36123520e-01
1.32384431e+00 -5.96484423e-01 -5.31370699e-01 -2.74139941e-01
2.81531990e-01 -1.27765393e+00 9.00288343e-01 4.76988733e-01
-1.75814736e+00 -5.20130813e-01 -9.89120960e-01 1.06698163e-01
3.34712714e-01 4.46937799e-01 2.45397121e-01 8.16252112e-01
-1.37181556e+00 3.50504100e-01 -6.67123139e-01 -1.29594216e-02
7.17863381e-01 5.85399270e-01 -1.42529130e-01 -2.18100160e-01
-1.77988261e-01 7.37087131e-01 -1.48129329e-01 1.57345653e-01
-2.54759997e-01 -1.08877790e+00 -5.05616963e-01 -3.40242147e-01
-2.41466150e-01 -1.13520348e+00 8.69406044e-01 -9.21923399e-01
-1.57364011e+00 1.17087376e+00 -5.33290863e-01 -7.14288950e-01
2.49277070e-01 -1.85107440e-01 -1.83566198e-01 4.54948276e-01
-9.24335122e-02 3.71174753e-01 8.66007149e-01 -1.20528746e+00
-7.96771407e-01 -6.51565671e-01 -1.83871940e-01 -9.11629573e-02
5.07238686e-01 2.66970962e-01 -1.32257238e-01 -1.89437240e-01
1.31404072e-01 -1.13420367e+00 -3.09869610e-02 1.48562282e-01
-5.95718026e-01 5.17739475e-01 3.36190879e-01 -8.88328314e-01
1.03841019e+00 -1.90058351e+00 -4.29302841e-01 1.90835714e-01
6.80352807e-01 8.43507588e-01 4.11417335e-02 -3.22055876e-01
-6.57854602e-02 2.38630921e-01 -3.53736848e-01 1.16948015e-03
-7.08171487e-01 -2.62420446e-01 1.57813787e-01 6.94107115e-01
-9.80498362e-03 8.77868950e-01 -4.98134166e-01 -1.50445504e-02
3.40606391e-01 7.06044734e-01 -3.80377680e-01 -1.41753837e-01
-8.13889056e-02 5.30118763e-01 2.12136522e-01 7.57971942e-01
9.16300297e-01 6.64759800e-02 -3.35132107e-02 -1.82374954e-01
-5.92454076e-01 -4.27974872e-02 -7.85180449e-01 6.55440152e-01
-3.56076241e-01 1.03586674e+00 2.21335873e-01 1.00511934e-05
6.77734613e-01 1.19793586e-01 2.95183957e-01 -6.84357762e-01
4.12130624e-01 4.86966044e-01 7.72946715e-01 -3.86565149e-01
7.54775573e-03 -5.76528847e-01 7.89688230e-01 1.21047683e-01
-4.15557235e-01 -2.76812166e-01 -4.54057679e-02 -2.33987376e-01
8.77334535e-01 -3.65164191e-01 2.46119410e-01 4.35222536e-02
4.90420431e-01 -1.14803530e-01 4.26691949e-01 3.23327839e-01
-3.28881115e-01 8.54343772e-01 7.01159477e-01 -5.61736561e-02
-8.64439666e-01 -1.14054298e+00 -5.54575682e-01 -3.63067240e-01
-7.46469349e-02 -3.91244143e-02 -1.05795836e+00 -1.21951088e-01
-3.52436677e-02 2.17451289e-01 -2.38082170e-01 2.37805396e-01
-2.93162942e-01 -7.34512150e-01 1.41288817e-01 1.74370378e-01
6.81016147e-01 -6.19185448e-01 -7.03158259e-01 1.66251197e-01
-7.61725707e-03 -9.83202755e-01 -1.15464605e-01 -7.16286719e-01
-9.42939758e-01 -1.24254584e+00 -7.31948972e-01 -4.22214389e-01
1.00736082e+00 -1.74495712e-04 9.63977695e-01 1.95011292e-02
-1.07645094e+00 1.49835557e-01 2.70687900e-02 -8.28392267e-01
-1.92410052e-01 -8.45551074e-01 -2.53749281e-01 2.90578604e-01
8.92778039e-02 -6.04417145e-01 -1.38591397e+00 3.38002086e-01
-2.95526028e-01 -1.56881750e-01 7.05641448e-01 8.44287276e-01
9.44898605e-01 1.71022564e-01 -8.62388387e-02 -8.28043938e-01
3.93545210e-01 1.79614469e-01 -1.18315279e+00 -3.51095736e-01
-7.97923148e-01 -7.27033138e-01 3.26137543e-01 -1.02199212e-01
-8.77399862e-01 -3.72765779e-01 3.15949798e-01 -3.77217531e-01
-2.42515668e-01 8.50752592e-02 5.77374808e-02 -5.21646738e-01
8.88648868e-01 -1.99035153e-01 2.16481358e-01 -2.01363713e-01
-8.08718950e-02 6.19287252e-01 2.98089027e-01 7.33421519e-02
4.35756773e-01 9.55093026e-01 2.27754563e-01 -9.19955671e-01
-5.23721993e-01 -4.70253319e-01 -1.63343642e-02 -3.94263655e-01
9.12065029e-01 -6.63490653e-01 -8.36611032e-01 7.89433241e-01
-7.90983558e-01 -6.26851857e-01 -3.65622789e-01 8.47451866e-01
3.33088599e-02 9.61896777e-02 -6.12127841e-01 -5.11633694e-01
-5.56513011e-01 -1.30132067e+00 4.65401441e-01 6.89609230e-01
-5.76212741e-02 -7.04376459e-01 -1.86770409e-01 8.65716994e-01
4.67654020e-01 4.63099658e-01 1.10465157e+00 4.53903824e-01
-8.71546924e-01 -5.68748638e-02 -6.71577275e-01 1.27483308e+00
5.68723790e-02 4.81556982e-01 -1.04240024e+00 -2.00209171e-01
-1.23919405e-01 2.86912054e-01 1.00461960e+00 1.41549039e+00
9.02342737e-01 -2.43307397e-01 -1.56521007e-01 8.64629686e-01
1.73993289e+00 5.16890049e-01 1.37816393e+00 4.96476144e-02
1.66005939e-01 7.28609145e-01 4.66385782e-01 2.07809880e-01
-1.98352188e-01 3.95865321e-01 5.64865828e-01 -5.42710602e-01
-8.50631356e-01 3.94916177e-01 1.05489075e-01 1.16623737e-01
-4.63930875e-01 -6.60946444e-02 -9.06706572e-01 7.07874238e-01
-8.92679513e-01 -3.78320754e-01 -6.62432551e-01 2.33983827e+00
7.38838971e-01 1.06459893e-01 -6.35229796e-02 -2.42262110e-01
6.27130151e-01 -6.23252511e-01 -5.91947377e-01 -3.41964126e-01
-1.26559496e-01 1.10399270e+00 7.61502266e-01 8.10944617e-01
-6.26453876e-01 7.14361072e-01 4.69624233e+00 2.01655433e-01
-1.46171212e+00 -1.37753129e-01 4.89481270e-01 -7.24352837e-01
-4.77429181e-02 9.55298692e-02 -7.88616717e-01 7.69296169e-01
7.20437527e-01 7.64297396e-02 2.10722446e-01 -1.03042372e-01
4.99624461e-01 -8.45845759e-01 -3.80863816e-01 1.10343206e+00
-2.96094090e-01 -1.42161071e+00 -3.33994746e-01 6.40260994e-01
7.93716788e-01 2.51063973e-01 4.94092256e-01 -6.61532640e-01
-2.03831181e-01 -1.31657052e+00 -6.97063580e-02 8.10973585e-01
1.34016263e+00 -6.02852941e-01 1.06046784e+00 -4.71068740e-01
-5.37000477e-01 1.70821011e-01 -6.82127923e-02 3.74624059e-02
-2.60752421e-02 9.56751883e-01 -1.29584706e+00 -1.24149665e-01
7.26770699e-01 4.79777724e-01 -3.96370411e-01 1.71118367e+00
-4.63806123e-01 6.85222208e-01 -1.40964657e-01 4.66924459e-01
-1.56241804e-01 -4.68043506e-01 9.56644237e-01 5.18536329e-01
2.93661654e-01 2.73686379e-01 -5.47035217e-01 8.95493805e-01
-1.08468421e-01 1.26331925e-01 -1.25939697e-01 1.21184684e-01
3.23069364e-01 1.03636348e+00 -5.20758033e-01 3.81067172e-02
-4.69907582e-01 4.84188557e-01 -6.20151341e-01 8.72474194e-01
-5.21787047e-01 -5.82151592e-01 1.09573543e+00 1.10364175e+00
-3.13421845e-01 1.89708039e-01 -5.77487886e-01 -5.70200801e-01
3.86920750e-01 -5.29021680e-01 8.97962824e-02 -9.83240485e-01
-8.77894998e-01 4.35492605e-01 -5.66236317e-01 -1.32284248e+00
3.70353639e-01 -8.54861438e-01 -6.02497995e-01 1.61906004e+00
-1.86403763e+00 -8.29706013e-01 -5.77829123e-01 4.18836355e-01
-3.24306697e-01 -1.95773646e-01 6.25079751e-01 1.34951979e-01
-6.65378392e-01 3.69919509e-01 -2.83221416e-02 -7.90786818e-02
7.37465262e-01 -1.17795873e+00 -1.41018927e-01 8.89205635e-01
-8.19364846e-01 8.21093976e-01 2.25198120e-01 -6.22758329e-01
-7.75707066e-01 -1.12572229e+00 5.86532116e-01 -9.05652530e-03
2.95110226e-01 3.05160731e-01 -6.84595942e-01 6.07814193e-01
2.90736943e-01 1.97454587e-01 1.00963581e+00 -3.16536844e-01
-9.78096109e-03 -3.40068698e-01 -1.39687204e+00 8.24146092e-01
3.90507758e-01 -6.56802207e-02 -4.03760746e-02 8.89456868e-02
2.04915076e-01 -6.59295082e-01 -1.02376425e+00 5.01557887e-01
7.15820134e-01 -1.35642517e+00 5.88516951e-01 4.57434636e-03
2.98309118e-01 -4.56465155e-01 2.36655653e-01 -1.06023586e+00
4.53099459e-02 -1.04818165e+00 3.26213270e-01 7.43952632e-01
5.80188930e-01 -1.52116978e+00 9.44855571e-01 6.40286684e-01
-5.89868844e-01 -5.95915973e-01 -8.62465978e-01 -1.42259344e-01
5.07707074e-02 -1.78278074e-01 -8.96406174e-02 3.49573255e-01
-6.22946024e-01 -5.03839813e-02 3.22176933e-01 2.95313478e-01
7.28309095e-01 -2.78486009e-03 6.98069572e-01 -1.35411358e+00
-1.72418624e-01 -4.89963681e-01 -8.32941294e-01 -4.78975654e-01
-3.00977826e-01 -7.26215720e-01 -5.89624643e-01 -1.75919926e+00
-1.70988366e-02 -3.58007252e-01 -1.48174852e-01 2.98958421e-01
1.74296156e-01 6.73113406e-01 4.12591211e-02 1.40201226e-01
6.76429629e-01 -2.66407728e-01 1.86056948e+00 3.73555832e-02
-6.93608880e-01 2.54710704e-01 -6.69066906e-01 9.14958239e-01
1.10591948e+00 -7.84723908e-02 -5.25763214e-01 -2.12692335e-01
1.97617397e-01 -1.14916032e-02 1.00010204e+00 -9.52272534e-01
5.48817264e-03 3.36081907e-02 5.33725321e-01 -3.25669885e-01
3.74515206e-01 -4.52780813e-01 2.58985370e-01 5.60437977e-01
4.89716083e-01 -8.89464259e-01 6.05792940e-01 1.23652682e-01
-2.07646102e-01 2.01706871e-01 1.60510623e+00 -3.86432201e-01
-2.62948781e-01 8.23183730e-02 -3.16937000e-01 1.70305416e-01
1.09667468e+00 -8.38655174e-01 -7.87506044e-01 -8.76266733e-02
-1.05669034e+00 -2.05921635e-01 7.77466297e-01 -4.46533293e-01
1.06738913e+00 -3.26823771e-01 -7.63776541e-01 4.98950630e-01
-7.51194879e-02 1.17647387e-01 6.21732235e-01 1.48621941e+00
-1.04184544e+00 2.55767852e-01 -4.15618360e-01 -7.20008910e-01
-1.48682523e+00 -7.16317356e-01 1.14174700e+00 2.17094213e-01
-4.83600557e-01 1.28200245e+00 2.52140820e-01 5.64046979e-01
4.26598750e-02 -6.42944753e-01 1.11970939e-01 -1.25697941e-01
6.37421727e-01 6.84149146e-01 2.14090750e-01 -1.69702157e-01
1.24265887e-01 1.05406106e+00 -1.78603470e-01 -3.95884411e-03
8.79365802e-01 -2.82540977e-01 -6.73601866e-01 3.58327441e-02
8.52619171e-01 4.88147080e-01 -1.04438233e+00 1.58097386e-01
-8.47925484e-01 -7.90090382e-01 4.30515587e-01 -1.48696959e+00
-1.17778087e+00 9.28525209e-01 1.04754674e+00 -1.30682424e-01
1.49105179e+00 -1.35530502e-01 1.02301586e+00 -9.10569966e-01
1.25038609e-01 -8.97681952e-01 -2.92492062e-01 -2.90686339e-02
7.25773931e-01 -8.19986105e-01 -3.89080420e-02 -7.42113829e-01
-3.52980912e-01 8.96904469e-01 5.35416186e-01 -1.43777862e-01
7.55881727e-01 1.70986101e-01 3.34133387e-01 -2.18650311e-01
-2.82531857e-01 -5.79833031e-01 5.67362607e-01 6.09869719e-01
4.66300607e-01 2.35008642e-01 -4.40887153e-01 1.58202246e-01
-3.59619051e-01 1.01869209e-02 1.09805048e+00 4.66346443e-01
-4.11245167e-01 -9.43163395e-01 -4.79796901e-02 9.07043159e-01
-7.22830057e-01 -4.51950967e-01 -3.05821508e-01 7.60012031e-01
8.98839951e-01 1.08074307e+00 1.93624079e-01 2.27279812e-01
3.90347779e-01 -2.38243237e-01 6.00681901e-01 -9.81700778e-01
-7.58491516e-01 6.94268405e-01 1.25025123e-01 -6.54875994e-01
-2.02665135e-01 -4.52951044e-01 -1.33019447e+00 -1.31118506e-01
3.25258300e-02 -2.99889177e-01 7.72112429e-01 8.19626227e-02
4.78454202e-01 3.48944426e-01 1.66981936e-01 -7.73218200e-02
2.88049757e-01 -8.59508932e-01 -1.10386789e+00 -2.56728411e-01
7.10083306e-01 -3.95192146e-01 -5.81785977e-01 9.69226211e-02] | [15.810975074768066, -3.990570306777954] |
6336dad1-8126-4d48-9ea8-cc8e145898af | multi-layered-semantic-representation-network | 2106.11596 | null | https://arxiv.org/abs/2106.11596v1 | https://arxiv.org/pdf/2106.11596v1.pdf | Multi-layered Semantic Representation Network for Multi-label Image Classification | Multi-label image classification (MLIC) is a fundamental and practical task, which aims to assign multiple possible labels to an image. In recent years, many deep convolutional neural network (CNN) based approaches have been proposed which model label correlations to discover semantics of labels and learn semantic representations of images. This paper advances this research direction by improving both the modeling of label correlations and the learning of semantic representations. On the one hand, besides the local semantics of each label, we propose to further explore global semantics shared by multiple labels. On the other hand, existing approaches mainly learn the semantic representations at the last convolutional layer of a CNN. But it has been noted that the image representations of different layers of CNN capture different levels or scales of features and have different discriminative abilities. We thus propose to learn semantic representations at multiple convolutional layers. To this end, this paper designs a Multi-layered Semantic Representation Network (MSRN) which discovers both local and global semantics of labels through modeling label correlations and utilizes the label semantics to guide the semantic representations learning at multiple layers through an attention mechanism. Extensive experiments on four benchmark datasets including VOC 2007, COCO, NUS-WIDE, and Apparel show a competitive performance of the proposed MSRN against state-of-the-art models. | ['Xiao Zheng', 'Linchuan Xu', 'Jun Huang', 'Hao Che', 'Xiwen Qu'] | 2021-06-22 | null | null | null | null | ['multi-label-image-classification'] | ['computer-vision'] | [ 2.80911177e-01 -1.70894220e-01 -4.81246501e-01 -8.27465057e-01
-2.56064028e-01 -3.04118752e-01 3.96341503e-01 4.17194337e-01
-3.22956532e-01 3.26806277e-01 9.81870070e-02 2.31720537e-01
-6.49669245e-02 -6.72564268e-01 -4.87431288e-01 -5.51864803e-01
3.83599818e-01 1.64573923e-01 3.86491120e-01 -7.12207099e-03
3.23068857e-01 2.19235495e-01 -1.78385067e+00 6.10102355e-01
4.68755096e-01 1.42959714e+00 2.55097657e-01 1.16474822e-01
-4.56062496e-01 1.21850920e+00 -3.12366486e-01 -1.30044490e-01
-1.74407944e-01 -3.93565297e-01 -8.97481501e-01 2.75779873e-01
4.29199249e-01 2.31923938e-01 -1.07525341e-01 1.33814073e+00
1.45827398e-01 8.32390636e-02 6.45852268e-01 -1.33933818e+00
-1.01477528e+00 4.13112998e-01 -7.15380728e-01 -2.16289628e-02
-2.19378501e-01 -3.50218475e-01 1.30962896e+00 -7.72284806e-01
3.01802248e-01 1.43963432e+00 5.62576830e-01 5.46026289e-01
-8.82362843e-01 -8.38527977e-01 5.93393207e-01 3.77365708e-01
-1.52042723e+00 1.72647461e-01 8.92751098e-01 -5.12885630e-01
4.33798254e-01 -2.63283383e-02 9.47090909e-02 8.64217937e-01
4.17520516e-02 8.94766212e-01 1.25825441e+00 -2.84437329e-01
1.67271346e-02 1.38829216e-01 4.36490357e-01 8.71897936e-01
1.42558012e-03 -3.37452143e-01 -3.81684780e-01 -1.14087760e-02
6.92292511e-01 4.31470364e-01 2.04350464e-02 -3.58137101e-01
-1.10130072e+00 1.02033317e+00 8.33923876e-01 4.73763764e-01
-2.07197577e-01 4.64863360e-01 7.44850695e-01 4.27445732e-02
6.36389673e-01 2.62656808e-01 -6.31220877e-01 5.04789352e-01
-4.32335824e-01 -7.84206316e-02 3.26892465e-01 1.00048447e+00
1.12711775e+00 -3.93089592e-01 -2.74126738e-01 1.31147242e+00
5.50707042e-01 2.18414832e-02 6.70707703e-01 -7.08257437e-01
3.21704209e-01 1.03068745e+00 -2.66639084e-01 -1.26249504e+00
-6.62276328e-01 -6.76312208e-01 -7.95936704e-01 -1.70366671e-02
-2.36881990e-02 1.35278702e-01 -9.34763789e-01 1.72982740e+00
4.15410623e-02 7.04821825e-01 5.16232364e-02 9.83801067e-01
1.20950687e+00 4.67889190e-01 5.93466401e-01 9.41105336e-02
1.51203895e+00 -1.49253881e+00 -7.34436929e-01 -4.23845768e-01
8.16693187e-01 -7.27265239e-01 9.33402479e-01 4.84047569e-02
-4.96016115e-01 -9.49096322e-01 -1.00428236e+00 -1.27830543e-02
-6.19935870e-01 4.62527573e-01 5.87940812e-01 2.60310054e-01
-7.96924710e-01 4.40945655e-01 -3.57763112e-01 -4.32318658e-01
5.77494740e-01 2.45153472e-01 -5.60874864e-02 -4.12775218e-01
-1.18770480e+00 7.32968807e-01 7.51662135e-01 4.65262160e-02
-8.80544066e-01 -2.89131552e-01 -8.80166233e-01 1.33665785e-01
4.49545771e-01 -1.82263598e-01 9.82922912e-01 -1.48696458e+00
-1.03702009e+00 1.04571998e+00 -6.97278455e-02 -1.88107044e-02
-1.66121408e-01 -7.02093989e-02 -6.61316633e-01 1.16645075e-01
3.93434852e-01 8.56049001e-01 4.50988114e-01 -1.59075010e+00
-8.64306808e-01 -3.00849557e-01 1.31078035e-01 1.46671787e-01
-5.24931669e-01 1.67626455e-01 -3.85477573e-01 -6.47589028e-01
3.77674818e-01 -9.06237960e-01 -1.88781723e-01 -2.67830700e-01
-3.74966711e-01 -7.31115699e-01 8.68776500e-01 -3.05088997e-01
1.07553923e+00 -2.20919585e+00 6.07916005e-02 7.98183084e-02
8.80676880e-02 1.27357453e-01 -4.30044860e-01 1.46345630e-01
-1.98928639e-01 1.00102916e-01 -6.07259758e-03 -4.19863313e-01
-1.53353363e-01 4.94976968e-01 -1.68072701e-01 3.54241371e-01
2.82972962e-01 9.75490272e-01 -9.34846759e-01 -5.82553804e-01
1.63695946e-01 3.43947083e-01 -3.38515937e-01 2.05303043e-01
-3.62084657e-01 6.75369263e-01 -7.00392723e-01 7.10469782e-01
6.05892956e-01 -8.04663777e-01 4.05313551e-01 -4.10768777e-01
1.18208662e-01 -7.62483478e-02 -1.10469866e+00 1.94320405e+00
-5.77414036e-01 1.73533291e-01 -5.15988171e-01 -1.39994144e+00
1.14976728e+00 3.27944130e-01 4.98404652e-01 -7.29324222e-01
4.06537890e-01 4.62941527e-01 -4.30164665e-01 -4.98653293e-01
3.23470682e-01 -3.34092259e-01 -2.58409470e-01 2.85404921e-01
3.13012064e-01 5.66448331e-01 -1.24755561e-01 -1.08105943e-01
5.91796100e-01 1.25122115e-01 2.09153280e-01 -2.66262054e-01
8.74669135e-01 -1.24295339e-01 8.94900978e-01 3.98999661e-01
-1.43625617e-01 6.31813884e-01 3.39149326e-01 -6.73732221e-01
-5.62145233e-01 -7.69984066e-01 -1.45603701e-01 1.57261598e+00
7.58663237e-01 -4.49078768e-01 -3.37588400e-01 -1.01718390e+00
-5.85769955e-03 3.49416554e-01 -8.46886933e-01 -2.40909860e-01
-5.13809443e-01 -5.08136392e-01 4.36202317e-01 7.92857707e-01
7.64066577e-01 -1.21044409e+00 -3.11580986e-01 2.03658536e-01
-2.77004540e-01 -1.34473574e+00 -3.08584332e-01 1.43438146e-01
-7.57812083e-01 -1.22602141e+00 -5.08694351e-01 -1.22737098e+00
7.90801287e-01 4.82018620e-01 1.00732875e+00 3.19480568e-01
-1.62286401e-01 1.78848103e-01 -5.90718865e-01 -1.94003135e-01
-9.87739302e-03 1.26191303e-01 -2.43099689e-01 5.80275834e-01
5.34553528e-01 -3.18886757e-01 -4.82391924e-01 5.25895417e-01
-9.27332938e-01 1.57351047e-01 5.24796307e-01 7.98222244e-01
8.80565643e-01 1.95713535e-01 8.38067412e-01 -1.15536618e+00
3.47139537e-01 -7.67594159e-01 -3.43484938e-01 5.96296549e-01
-5.49632609e-01 1.26320913e-01 7.60021091e-01 -2.52373219e-01
-9.94027376e-01 -3.40048224e-03 1.09340169e-01 -5.72980046e-01
-4.21237856e-01 5.38154960e-01 -9.78637263e-02 -6.26315400e-02
1.95495963e-01 5.99019527e-02 -2.25609884e-01 -7.68945277e-01
5.43598771e-01 7.57069230e-01 3.34052652e-01 -6.28756464e-01
2.04495490e-01 4.81082141e-01 8.51688236e-02 -1.96666330e-01
-1.65065658e+00 -8.85875225e-01 -6.32534742e-01 -2.70697594e-01
1.24628067e+00 -1.12449372e+00 -5.45946658e-01 4.92505372e-01
-1.08047998e+00 8.90888497e-02 9.95272771e-02 4.30570036e-01
-4.75031912e-01 1.53989345e-01 -5.04137576e-01 -2.78337061e-01
5.02528921e-02 -1.36454654e+00 1.24627781e+00 5.22150993e-01
1.87531151e-02 -1.21527410e+00 -1.51599109e-01 5.06376386e-01
3.19688469e-01 3.00662309e-01 1.05149627e+00 -7.65609086e-01
-3.65701646e-01 8.94140601e-02 -8.72567356e-01 5.40683270e-01
3.39573979e-01 -5.16402245e-01 -1.09197390e+00 -3.24252456e-01
-1.86698526e-01 -7.05645323e-01 1.17613530e+00 1.50326252e-01
1.57452416e+00 -8.12904090e-02 -4.66184497e-01 4.59135771e-01
1.79611301e+00 2.54713651e-02 2.83717513e-01 5.07435918e-01
1.10252082e+00 8.31375659e-01 7.87818015e-01 3.24599266e-01
6.02129281e-01 6.24480128e-01 6.66491091e-01 -1.36060134e-01
-1.85464486e-01 -1.41394898e-01 -1.43295348e-01 9.81325626e-01
1.93658501e-01 -3.15654129e-02 -7.22024977e-01 4.51450109e-01
-2.20486546e+00 -4.53544110e-01 -2.09013581e-01 1.64774346e+00
5.89172482e-01 -1.65540546e-01 -2.53759861e-01 -2.33942881e-01
1.05435908e+00 4.24428523e-01 -6.35650754e-01 -3.63368571e-01
-3.59974317e-02 4.33867313e-02 5.94656825e-01 5.06916121e-02
-1.52597868e+00 1.05645251e+00 5.21339655e+00 8.83936584e-01
-1.14059103e+00 4.20432597e-01 7.01635778e-01 2.30205432e-01
-8.99141729e-02 -1.16332315e-01 -8.78532112e-01 5.24920583e-01
6.93674803e-01 3.67799014e-01 1.06559917e-01 1.02241516e+00
-3.26675385e-01 2.12398961e-01 -8.35840344e-01 1.04735792e+00
3.32340240e-01 -1.20256913e+00 1.79824606e-01 -1.60154954e-01
1.09170616e+00 1.10755637e-02 7.14033842e-03 3.35147202e-01
4.05316889e-01 -1.17234731e+00 7.20352650e-01 5.64297438e-01
8.55867028e-01 -9.12356436e-01 9.44080353e-01 1.83382064e-01
-1.62198150e+00 -4.27431315e-01 -6.62186503e-01 6.52298033e-02
-2.09248960e-01 2.83498794e-01 -2.40571275e-01 6.66465640e-01
5.79175532e-01 1.31575370e+00 -8.32536042e-01 7.46432126e-01
-4.46013808e-01 4.81123328e-01 2.71671206e-01 2.27530316e-01
6.32404923e-01 5.18012606e-02 -4.38904762e-01 1.14711976e+00
1.42162964e-01 -5.21095432e-02 6.77824616e-01 7.55083144e-01
-3.44463676e-01 3.19774777e-01 -2.08449259e-01 3.31613347e-02
3.01860124e-01 1.32046294e+00 -9.03771579e-01 -2.58843660e-01
-7.79103756e-01 9.27799821e-01 5.32121480e-01 3.90373975e-01
-8.67274344e-01 -1.81837633e-01 6.79345191e-01 -3.55241448e-01
2.67832398e-01 1.82294019e-03 -4.48461503e-01 -1.05376470e+00
-2.64301240e-01 -5.04863620e-01 6.89120829e-01 -5.38962841e-01
-1.54404104e+00 3.71530950e-01 -2.26158276e-01 -1.18393564e+00
3.52114916e-01 -6.49820268e-01 -4.09956634e-01 9.36668813e-01
-1.96999002e+00 -1.47491777e+00 -4.36827838e-01 5.43239295e-01
8.48728180e-01 -2.56308705e-01 9.26239491e-01 3.81020159e-01
-4.23431605e-01 3.65379959e-01 1.88502625e-01 2.99324185e-01
6.04028523e-01 -9.14711356e-01 1.71982944e-02 3.61194551e-01
1.87364146e-01 4.06139344e-01 7.80603141e-02 -4.84866083e-01
-6.92675173e-01 -1.51769710e+00 9.54733729e-01 -5.16301170e-02
5.40312409e-01 -9.23890695e-02 -9.63886380e-01 6.87551618e-01
8.13632980e-02 4.23408151e-01 8.55303466e-01 2.86704808e-01
-6.99038386e-01 -1.13130890e-01 -8.20327342e-01 1.07277475e-01
9.04185653e-01 -7.07696497e-01 -3.51464063e-01 3.77260953e-01
8.59014571e-01 3.45172547e-02 -8.50723267e-01 6.08468115e-01
4.03635383e-01 -7.79841781e-01 9.62980628e-01 -5.53021431e-01
5.38755774e-01 -5.56716740e-01 -3.63735855e-01 -1.23306966e+00
-4.59357619e-01 5.64743817e-01 2.91833222e-01 1.34402966e+00
1.08479731e-01 -5.66829920e-01 5.58755755e-01 1.22634880e-01
-1.70645043e-01 -1.00642300e+00 -6.76258981e-01 -6.83993995e-01
-8.98712501e-03 -2.84459680e-01 6.98619187e-01 1.32307923e+00
-4.08100307e-01 4.71608818e-01 -4.18713748e-01 1.93842918e-01
5.08506417e-01 3.59362692e-01 1.17142446e-01 -1.50425386e+00
5.47053441e-02 -3.81087571e-01 -6.21041119e-01 -1.01688504e+00
6.15617573e-01 -1.28459918e+00 -2.15130695e-03 -1.65402377e+00
5.14316261e-01 -8.20856690e-01 -1.22770333e+00 7.16401935e-01
-3.05036098e-01 4.27229851e-01 2.90922999e-01 4.24459994e-01
-1.19497430e+00 5.02649665e-01 1.29354000e+00 -3.34353477e-01
3.83610755e-01 -2.91125417e-01 -9.39779282e-01 8.79892826e-01
8.30292463e-01 -7.05629528e-01 -5.84412217e-01 -6.19267106e-01
2.64701903e-01 -3.42916459e-01 4.24087554e-01 -1.03451335e+00
2.19374791e-01 -2.23575190e-01 2.46637002e-01 -3.95080298e-01
3.27478498e-02 -8.98349106e-01 -1.21557154e-01 2.71002114e-01
-8.09024036e-01 -2.29435235e-01 -1.05545074e-01 8.30095232e-01
-5.39354444e-01 -3.69726658e-01 9.81008828e-01 -3.73145491e-01
-1.42983687e+00 3.04528564e-01 1.04131624e-01 1.55472383e-02
1.12429154e+00 9.89174917e-02 -3.93736601e-01 2.13244334e-01
-6.75698519e-01 4.43618476e-01 2.78000951e-01 9.17972803e-01
6.43675566e-01 -1.73996186e+00 -4.62897748e-01 6.05461001e-02
6.33160412e-01 -1.23678498e-01 4.19248074e-01 5.18335521e-01
-2.60788649e-01 3.99349540e-01 -3.35860312e-01 -5.80247879e-01
-1.27128696e+00 6.20134175e-01 2.81968087e-01 -3.17395717e-01
-3.57608289e-01 1.13621259e+00 6.09036326e-01 -5.97602129e-01
2.18849540e-01 -3.76592949e-02 -8.18510711e-01 2.33121857e-01
4.27323550e-01 1.45924807e-01 -2.58325994e-01 -1.06620204e+00
-4.34229404e-01 1.08801508e+00 -1.36571482e-01 5.83715916e-01
1.07943940e+00 -2.80978262e-01 -3.32091868e-01 7.83116460e-01
1.75696349e+00 -7.31627703e-01 -1.08661091e+00 -7.13438332e-01
3.30643594e-01 -4.07903671e-01 -1.36940032e-02 -7.07750797e-01
-1.48868823e+00 1.06602561e+00 6.97407722e-01 -1.23766273e-01
1.15557635e+00 3.21482301e-01 8.49089980e-01 7.74105936e-02
4.26752031e-01 -1.26031530e+00 5.86280286e-01 5.08111894e-01
5.60698271e-01 -1.48060656e+00 -2.54025757e-01 -5.46581388e-01
-7.84187257e-01 1.14947510e+00 9.35762644e-01 -1.34602994e-01
6.40628278e-01 -3.56817842e-01 2.47032017e-01 -4.61933851e-01
-4.19708282e-01 -3.95720482e-01 3.67337614e-01 9.69028249e-02
5.34851730e-01 3.10045689e-01 -4.45990831e-01 6.24570012e-01
6.06486440e-01 -7.08111376e-02 1.02788635e-01 8.40862811e-01
-7.26310372e-01 -1.30141306e+00 -1.83925778e-01 3.49363357e-01
-4.73282576e-01 1.84171125e-02 -1.07819736e-01 3.51304680e-01
7.63468146e-01 1.08070827e+00 -1.84711982e-02 -6.09781623e-01
1.22109853e-01 1.35561317e-01 -4.87606227e-03 -9.14234996e-01
-5.98910987e-01 -1.49935544e-01 -1.46568879e-01 -4.79710639e-01
-8.88646781e-01 -3.66495430e-01 -1.51836002e+00 2.90814638e-01
-2.96481997e-01 1.26443282e-01 5.88637054e-01 1.07979333e+00
2.66399026e-01 9.55644548e-01 7.14739740e-01 -3.38870168e-01
-2.93167174e-01 -9.01942074e-01 -9.63302910e-01 7.78701186e-01
-3.65216695e-02 -1.08881247e+00 5.77341113e-03 -6.21262379e-03] | [9.783952713012695, 4.051229953765869] |
5561b607-2afa-4ae0-a057-8f4182f46b2e | from-open-set-to-closed-set-supervised | 2001.01886 | null | https://arxiv.org/abs/2001.01886v2 | https://arxiv.org/pdf/2001.01886v2.pdf | From Open Set to Closed Set: Supervised Spatial Divide-and-Conquer for Object Counting | Visual counting, a task that aims to estimate the number of objects from an image/video, is an open-set problem by nature, i.e., the number of population can vary in [0, inf) in theory. However, collected data and labeled instances are limited in reality, which means that only a small closed set is observed. Existing methods typically model this task in a regression manner, while they are prone to suffer from an unseen scene with counts out of the scope of the closed set. In fact, counting has an interesting and exclusive property---spatially decomposable. A dense region can always be divided until sub-region counts are within the previously observed closed set. We therefore introduce the idea of spatial divide-and-conquer (S-DC) that transforms open-set counting into a closed-set problem. This idea is implemented by a novel Supervised Spatial Divide-and-Conquer Network (SS-DCNet). Thus, SS-DCNet can only learn from a closed set but generalize well to open-set scenarios via S-DC. SS-DCNet is also efficient. To avoid repeatedly computing sub-region convolutional features, S-DC is executed on the feature map instead of on the input image. We provide theoretical analyses as well as a controlled experiment on toy data, demonstrating why closed-set modeling makes sense. Extensive experiments show that SS-DCNet achieves the state-of-the-art performance. Code and models are available at: https://tinyurl.com/SS-DCNet. | ['Liang Liu', 'Hao Lu', 'Chunhua Shen', 'Chengxin Liu', 'Zhiguo Cao', 'Haipeng Xiong'] | 2020-01-07 | null | null | null | null | ['object-counting'] | ['computer-vision'] | [ 1.06482863e-01 -2.67806113e-01 -1.50305396e-02 -1.70813084e-01
-4.30095553e-01 -7.58945942e-01 5.40069103e-01 2.07218185e-01
-4.97987121e-01 5.52481353e-01 -3.62667799e-01 -3.01654696e-01
1.41559184e-01 -1.07383001e+00 -1.07599044e+00 -6.89802706e-01
-1.43982366e-01 5.48381984e-01 4.61684287e-01 1.94146380e-01
1.97621375e-01 4.24910933e-01 -1.59748781e+00 1.57793462e-01
5.87143838e-01 9.39013302e-01 3.51228654e-01 6.36122584e-01
-3.09655100e-01 9.78014708e-01 -5.17502427e-01 1.74465273e-02
4.80890185e-01 -3.23025316e-01 -5.88949144e-01 5.66638149e-02
6.75913572e-01 -4.33658868e-01 -4.71582234e-01 1.27048063e+00
1.37432907e-02 8.86950716e-02 8.84483099e-01 -1.31260681e+00
-7.62240708e-01 1.03450142e-01 -1.09660983e+00 6.09890878e-01
2.19805241e-01 2.38758460e-01 6.60768390e-01 -7.93806374e-01
4.30468023e-01 1.03688657e+00 6.05798423e-01 5.44355154e-01
-1.17133272e+00 -8.24921727e-01 2.05244929e-01 -1.22704856e-01
-1.60745537e+00 -8.03042017e-03 3.93307596e-01 -6.04264021e-01
5.90518475e-01 2.56571978e-01 9.23039973e-01 6.68052495e-01
-1.18274666e-01 8.13941658e-01 1.29106474e+00 -4.71144736e-01
4.12285209e-01 -1.51518539e-01 1.58745691e-01 9.45089281e-01
6.50528789e-01 -2.25914996e-02 -3.11034054e-01 1.55086040e-01
1.40998042e+00 4.74516481e-01 -1.57815099e-01 -4.23603773e-01
-1.16703188e+00 6.85528755e-01 8.68555188e-01 2.98404306e-01
3.72485742e-02 4.95108157e-01 2.35182717e-01 5.09074219e-02
5.01047790e-01 2.26292402e-01 -1.76827565e-01 2.34257832e-01
-1.14493716e+00 2.31493652e-01 7.28443086e-01 1.10189962e+00
1.06501961e+00 -4.69010770e-01 -3.06904137e-01 4.38152701e-01
-1.36825889e-01 6.08624339e-01 6.47964701e-02 -9.55277801e-01
4.06204998e-01 7.75940061e-01 1.78448454e-01 -9.75526690e-01
-3.63265574e-01 -3.04020762e-01 -9.69974875e-01 3.26697052e-01
9.49265540e-01 8.66355076e-02 -1.03357565e+00 1.66878176e+00
3.54391515e-01 5.15504301e-01 -5.39569914e-01 1.00528169e+00
5.44641078e-01 6.72027707e-01 -1.85587630e-01 -2.34262437e-01
1.45496809e+00 -9.84460294e-01 -3.82423639e-01 -4.48032886e-01
4.74260479e-01 4.60195243e-02 1.12115216e+00 2.61850357e-01
-9.05558467e-01 -2.72996098e-01 -9.84312832e-01 -1.07229367e-01
-5.91415524e-01 1.17902786e-01 7.10412323e-01 4.75042552e-01
-8.48813713e-01 4.06809390e-01 -8.55661929e-01 -3.48978132e-01
9.82075512e-01 2.39823774e-01 -3.33921045e-01 -1.66093633e-01
-5.70395887e-01 5.37899256e-01 2.98743725e-01 -8.40640590e-02
-9.38133538e-01 -6.26251578e-01 -8.70118022e-01 2.35193551e-01
5.83241999e-01 -5.53028405e-01 1.07233489e+00 -9.23932791e-01
-5.85887492e-01 1.18234134e+00 -3.75879377e-01 -3.73264074e-01
7.07054675e-01 4.53310534e-02 3.14931050e-02 2.25544006e-01
4.97684807e-01 5.93617201e-01 6.20391548e-01 -1.35962653e+00
-6.93305850e-01 -5.90043008e-01 6.11776784e-02 -1.71689373e-02
-3.71753126e-01 -1.09696567e-01 -5.40414631e-01 -4.41869527e-01
1.53587073e-01 -6.93775713e-01 -1.78938314e-01 4.20996457e-01
-5.10292530e-01 -1.74089074e-01 7.51002371e-01 -1.90856203e-01
1.40236342e+00 -2.02872920e+00 -4.97311324e-01 6.58546761e-02
6.81311607e-01 1.52802750e-01 1.08207047e-01 5.59247881e-02
-1.46724572e-02 1.60167396e-01 -3.88742566e-01 -3.49216729e-01
-2.11984515e-01 2.06084207e-01 -2.46821389e-01 8.10205221e-01
1.53393403e-01 7.89408863e-01 -1.19440472e+00 -6.76433384e-01
3.15931261e-01 1.53366670e-01 -3.87968719e-01 -2.25224961e-02
-2.63044834e-01 4.50507045e-01 -2.49922544e-01 7.80051947e-01
1.02586710e+00 -5.89633346e-01 -1.27417836e-02 2.36269325e-01
-3.40572357e-01 -2.60753602e-01 -1.20972741e+00 1.21773636e+00
-3.43350977e-01 6.24470055e-01 -1.58099830e-01 -9.71894145e-01
7.29304016e-01 -3.45865309e-01 4.09022540e-01 -6.73285961e-01
2.19794393e-01 2.90376097e-01 -1.31006584e-01 -2.93219119e-01
3.30208510e-01 -2.17613112e-03 -1.34244040e-01 4.57235307e-01
-2.76582334e-02 -5.31342486e-03 4.63536531e-01 1.07897200e-01
1.36776006e+00 -1.65290400e-01 6.49682760e-01 -4.23372447e-01
2.13357285e-01 8.43090937e-02 5.99038839e-01 1.07941341e+00
-4.82712507e-01 9.02269781e-01 7.22798169e-01 -6.56704605e-01
-1.03949928e+00 -1.14012110e+00 -3.81457567e-01 8.61913860e-01
5.25242865e-01 -2.39853077e-02 -1.02289069e+00 -7.41416097e-01
1.27308682e-01 3.18636030e-01 -1.04882276e+00 2.08362639e-01
-7.02702582e-01 -3.97963256e-01 3.72994930e-01 7.40868211e-01
6.25243843e-01 -9.75356638e-01 -9.19059575e-01 -1.38808295e-01
-1.45129964e-01 -1.13135874e+00 -7.15226293e-01 3.07472408e-01
-6.16733909e-01 -1.38650858e+00 -7.42901683e-01 -9.04992342e-01
9.07452524e-01 7.04435945e-01 1.16083026e+00 2.75611937e-01
-4.16159242e-01 1.56636223e-01 -8.27647150e-02 -6.29018724e-01
5.90934530e-02 -1.10162251e-01 -1.28270313e-02 -1.01280876e-01
7.87042797e-01 -4.00955737e-01 -8.71104300e-01 4.22544688e-01
-8.32592189e-01 -1.61138371e-01 2.51342833e-01 7.20273256e-01
8.34223688e-01 1.49284914e-01 3.99886906e-01 -7.17160285e-01
2.70020247e-01 -5.56038320e-01 -9.39519703e-01 1.87663123e-01
-2.09657565e-01 -5.78725226e-02 6.95936501e-01 -5.50852716e-01
-5.62349856e-01 1.79191783e-01 6.00470304e-01 -8.70537400e-01
-2.07069233e-01 -2.15859525e-02 2.57393289e-02 4.64778244e-02
6.22185647e-01 3.43955815e-01 -1.04986645e-01 -1.51118055e-01
7.53384754e-02 6.00082517e-01 7.21406937e-01 -4.02139157e-01
7.05228806e-01 1.16639495e+00 1.93968937e-01 -7.45487392e-01
-1.16680217e+00 -9.05151486e-01 -7.76505351e-01 -4.62111801e-01
7.93965578e-01 -1.00806391e+00 -8.90637159e-01 4.29349005e-01
-1.06156790e+00 -5.93477786e-01 -5.02959132e-01 1.86492369e-01
-6.25809252e-01 2.62770414e-01 -3.36064607e-01 -1.03139997e+00
-9.54951718e-02 -8.00606132e-01 1.29169488e+00 3.77102137e-01
7.15322047e-02 -9.12720680e-01 1.42494449e-02 5.06447069e-02
3.67598310e-02 4.08793360e-01 6.24974430e-01 -5.72056472e-01
-8.74161661e-01 -2.28156775e-01 -6.79796457e-01 2.43942589e-01
-1.38887897e-01 -6.23901337e-02 -9.48672831e-01 -2.94734716e-01
-1.41493633e-01 -3.42442781e-01 1.27758014e+00 6.87277436e-01
1.82967699e+00 -2.30017215e-01 -5.64839303e-01 6.75398588e-01
1.78319359e+00 -1.75537586e-01 7.31610477e-01 3.02947938e-01
5.86381853e-01 2.87361205e-01 5.81937134e-01 5.74242711e-01
4.13972557e-01 3.03757489e-01 7.52585828e-01 -1.56038702e-01
-9.16122720e-02 -5.23289502e-01 1.85942836e-02 2.63758242e-01
-1.03550233e-01 -2.46452734e-01 -9.51048732e-01 6.58849835e-01
-1.73052812e+00 -1.15705240e+00 -3.54527920e-01 2.57208610e+00
5.83676279e-01 3.79676335e-02 4.61658031e-01 1.24103025e-01
1.07484233e+00 1.42500311e-01 -5.85211754e-01 -1.16248623e-01
-1.86053321e-01 9.76896584e-02 8.51910770e-01 1.94799662e-01
-1.22715807e+00 7.25876391e-01 5.62929201e+00 1.05458939e+00
-9.71858203e-01 1.80241391e-01 9.04592156e-01 -1.95504829e-01
6.20750897e-02 1.83320250e-02 -9.08089519e-01 7.25384951e-01
2.65081346e-01 5.01602851e-02 5.96147954e-01 8.45907986e-01
-1.25844404e-01 -6.16151810e-01 -1.19347632e+00 1.20214808e+00
5.39969392e-02 -1.37511408e+00 -1.43376246e-01 2.43588030e-01
6.83735967e-01 2.12916527e-02 2.37566903e-02 3.48518074e-01
1.72316909e-01 -1.13687456e+00 9.79661703e-01 3.53171885e-01
1.36795831e+00 -5.34293890e-01 5.12527525e-01 9.12380338e-01
-1.35710108e+00 -3.71253192e-01 -6.14505768e-01 -2.41663501e-01
-1.02269024e-01 7.79912472e-01 -4.39529330e-01 -3.92557494e-02
9.51681733e-01 5.69519043e-01 -4.89864558e-01 1.23527384e+00
-3.39631201e-03 3.62773746e-01 -6.31527781e-01 -1.99305639e-01
2.20090464e-01 -4.18008059e-01 3.54547650e-01 1.27250409e+00
3.78530473e-01 1.86045304e-01 1.37526795e-01 1.30000818e+00
-2.51452923e-01 -2.51683742e-01 -9.30269539e-01 2.16608703e-01
6.24269068e-01 1.08843637e+00 -1.18072510e+00 -2.91713476e-01
-5.32500625e-01 8.15213382e-01 7.29370713e-01 1.83065251e-01
-1.02859092e+00 -2.57954508e-01 2.32564032e-01 7.06995130e-01
4.74234432e-01 -5.59646972e-02 -4.57103968e-01 -1.20231807e+00
1.44762293e-01 -3.15732718e-01 4.45887864e-01 -6.25538290e-01
-1.28693163e+00 1.83066711e-01 1.25383899e-01 -1.39569771e+00
3.32275391e-01 -7.84862339e-01 -6.74483657e-01 4.10827637e-01
-1.35509539e+00 -9.26142871e-01 -6.91804409e-01 4.83630508e-01
5.08798599e-01 2.23518863e-01 4.71903950e-01 9.42118838e-02
-5.02828538e-01 4.45860296e-01 3.97551954e-01 5.52369952e-01
2.16871843e-01 -1.44073498e+00 2.15391859e-01 7.73413420e-01
1.66234657e-01 4.95488852e-01 3.49406630e-01 -5.20927846e-01
-9.33627486e-01 -1.30204248e+00 5.11416495e-01 -5.59427500e-01
5.60599387e-01 -8.65607798e-01 -7.91802347e-01 6.77618086e-01
-1.97021261e-01 9.05469120e-01 1.93861023e-01 -1.87331438e-01
-6.03733838e-01 -3.05542778e-02 -1.35908127e+00 4.50194120e-01
1.31766164e+00 -4.57161158e-01 -1.69666663e-01 4.51226264e-01
3.86021376e-01 -2.96705514e-01 -4.63654608e-01 7.04386830e-02
4.42821175e-01 -1.26144218e+00 9.90259111e-01 -1.90128267e-01
7.51745760e-01 -4.14477766e-01 -1.33151636e-01 -1.01760709e+00
-3.18725646e-01 -3.46116304e-01 -5.21994114e-01 8.98325622e-01
6.12013638e-02 -6.14224136e-01 8.26788485e-01 -4.97829132e-02
2.60076970e-01 -9.03605878e-01 -1.12165570e+00 -1.19413197e+00
4.07293499e-01 -2.35523000e-01 6.26148522e-01 9.73888934e-01
-3.88341323e-02 1.12711802e-01 1.29692569e-01 2.93371916e-01
8.11212838e-01 1.47136554e-01 7.06656992e-01 -1.13315642e+00
1.46384770e-03 -4.13963854e-01 -5.05555749e-01 -1.25773239e+00
3.61976251e-02 -7.59228528e-01 4.94480357e-02 -1.40747404e+00
7.49924123e-01 -7.06187904e-01 8.56578350e-02 2.99452752e-01
-2.78258622e-01 3.34655613e-01 1.61586389e-01 3.85553658e-01
-9.26151097e-01 2.13686988e-01 1.38585722e+00 -1.47688419e-01
7.47918189e-02 -2.09363643e-02 -4.37767804e-01 8.87107790e-01
8.01807940e-01 -6.41662657e-01 -5.19438908e-02 -3.84845376e-01
2.76899666e-01 2.91594807e-02 7.73034334e-01 -1.25784135e+00
3.41598600e-01 -1.78401738e-01 6.19191945e-01 -6.66390300e-01
2.04641208e-01 -7.55804598e-01 -3.25503290e-01 4.02670711e-01
2.18004249e-02 -2.12893948e-01 1.08204111e-01 9.00519550e-01
3.50457318e-02 -3.51556927e-01 8.59818876e-01 -5.03417134e-01
-5.90481937e-01 4.66136605e-01 -1.60355940e-02 2.62027442e-01
1.35779154e+00 -8.06525588e-01 -7.20744550e-01 -2.09978148e-01
-4.02737439e-01 3.67295533e-01 7.21671045e-01 -1.08086310e-01
4.68411654e-01 -1.17758715e+00 -5.10034680e-01 1.46157831e-01
3.28262180e-01 7.00577319e-01 2.23538190e-01 7.15697169e-01
-8.21425319e-01 2.89134324e-01 1.33350864e-01 -9.65514183e-01
-9.04088497e-01 9.10778582e-01 4.27488238e-01 -3.90230834e-01
-6.43402576e-01 7.95970440e-01 6.78860128e-01 -5.74601293e-01
1.54527873e-01 -4.61922109e-01 -9.33788791e-02 -1.70330554e-01
6.64680719e-01 4.57177460e-01 -2.20863432e-01 -4.31414366e-01
-3.35108876e-01 5.33950925e-01 1.57170013e-01 1.90861896e-01
1.21610546e+00 -3.12183090e-02 -1.28854513e-01 5.86472631e-01
1.24313939e+00 -1.80208862e-01 -1.55758393e+00 -2.35923797e-01
-3.56616110e-01 -7.84891307e-01 -7.33890086e-02 -3.80744517e-01
-1.02593875e+00 8.66869748e-01 4.68854010e-01 5.10668814e-01
1.09006798e+00 3.87987047e-01 4.80489671e-01 2.92942852e-01
6.36644125e-01 -9.90350068e-01 3.20442647e-01 5.39158523e-01
6.49114013e-01 -1.42370987e+00 4.72709686e-02 -5.87190926e-01
-3.69721174e-01 9.62538302e-01 9.28377807e-01 -4.25665349e-01
6.45820022e-01 5.79381943e-01 -4.21496242e-01 -5.04413724e-01
-5.24624586e-01 -3.54468137e-01 -2.65513152e-01 6.39845550e-01
-3.13556753e-02 2.25730345e-01 2.42066756e-01 4.34197068e-01
-4.74453270e-02 2.00445250e-01 6.47615194e-01 9.66566205e-01
-6.00890696e-01 -1.54803202e-01 -7.43209362e-01 8.72196019e-01
-2.21472293e-01 2.99994797e-02 -1.54159144e-01 1.03870547e+00
3.29922378e-01 6.25713348e-01 8.05228233e-01 -2.57564876e-02
8.29915628e-02 -5.91501772e-01 7.67972648e-01 -6.82766259e-01
-1.28835991e-01 -2.71626115e-01 -4.92288500e-01 -5.15818477e-01
-2.91298330e-01 -7.43627071e-01 -1.28812885e+00 -5.17721951e-01
-7.08706200e-01 -3.76413852e-01 2.96981514e-01 7.19589412e-01
-5.35107888e-02 4.95373011e-01 7.00781047e-01 -8.25845003e-01
-6.21507049e-01 -9.21674609e-01 -9.19710159e-01 2.95033038e-01
5.12944043e-01 -7.61857927e-01 -6.29999161e-01 -8.50854963e-02] | [8.835429191589355, 0.2173265516757965] |
2c5d7877-92a7-4f22-bcb9-5f7687ccd5a3 | fast-and-robust-video-based-exercise | 2210.00507 | null | https://arxiv.org/abs/2210.00507v1 | https://arxiv.org/pdf/2210.00507v1.pdf | Fast and Robust Video-Based Exercise Classification via Body Pose Tracking and Scalable Multivariate Time Series Classifiers | Technological advancements have spurred the usage of machine learning based applications in sports science. Physiotherapists, sports coaches and athletes actively look to incorporate the latest technologies in order to further improve performance and avoid injuries. While wearable sensors are very popular, their use is hindered by constraints on battery power and sensor calibration, especially for use cases which require multiple sensors to be placed on the body. Hence, there is renewed interest in video-based data capture and analysis for sports science. In this paper, we present the application of classifying S\&C exercises using video. We focus on the popular Military Press exercise, where the execution is captured with a video-camera using a mobile device, such as a mobile phone, and the goal is to classify the execution into different types. Since video recordings need a lot of storage and computation, this use case requires data reduction, while preserving the classification accuracy and enabling fast prediction. To this end, we propose an approach named BodyMTS to turn video into time series by employing body pose tracking, followed by training and prediction using multivariate time series classifiers. We analyze the accuracy and robustness of BodyMTS and show that it is robust to different types of noise caused by either video quality or pose estimation factors. We compare BodyMTS to state-of-the-art deep learning methods which classify human activity directly from videos and show that BodyMTS achieves similar accuracy, but with reduced running time and model engineering effort. Finally, we discuss some of the practical aspects of employing BodyMTS in this application in terms of accuracy and robustness under reduced data quality and size. We show that BodyMTS achieves an average accuracy of 87\%, which is significantly higher than the accuracy of human domain experts. | ['Georgiana Ifrim', 'Brian Caulfield', 'Darragh Whelan', 'Martin OReilly', 'Kevin McGuinness', 'Feiyan Hu', 'Thach Le Nguyen', 'Antonio Bevilacqua', 'Ashish Singh'] | 2022-10-02 | null | null | null | null | ['pose-tracking'] | ['computer-vision'] | [ 2.98908323e-01 -2.89448202e-01 -3.88777852e-01 1.56573541e-02
-4.99956697e-01 -2.74894863e-01 -1.45382181e-01 2.73465425e-01
-6.81878209e-01 3.48153204e-01 -7.84663036e-02 9.72691625e-02
-1.72249451e-01 -7.20886469e-01 -7.89208353e-01 -6.06895089e-01
-1.90668985e-01 1.87037662e-01 4.89513189e-01 -7.79103860e-02
7.33661428e-02 3.35442573e-01 -1.94299555e+00 3.19006145e-01
5.54095387e-01 1.26399577e+00 3.10754012e-02 7.70480394e-01
3.11151266e-01 6.13098800e-01 -6.80370271e-01 -4.09584552e-01
2.54283309e-01 -3.88733000e-01 -5.11339724e-01 2.26636410e-01
4.85899836e-01 -1.85252637e-01 -3.75629038e-01 5.80025911e-01
8.33702266e-01 2.28431165e-01 2.06272736e-01 -1.01713455e+00
3.38575095e-01 4.49036323e-02 -3.61775219e-01 3.84398550e-01
5.96294761e-01 1.44958302e-01 4.02976662e-01 -2.47233644e-01
4.05520171e-01 5.10986745e-01 1.16492522e+00 5.09557843e-01
-1.17148268e+00 -4.97956216e-01 -2.23482907e-01 6.73330724e-01
-1.39842999e+00 -3.43244374e-01 9.11627412e-01 -5.96987009e-01
7.08984733e-01 5.02708137e-01 1.32489812e+00 1.07325220e+00
5.55001557e-01 8.33388865e-01 1.01822925e+00 -4.71655518e-01
3.44225228e-01 -2.41981596e-01 9.64955799e-03 4.26077515e-01
2.20508516e-01 -3.08381487e-02 -8.48061383e-01 2.65826046e-01
7.04359353e-01 1.75751582e-01 -1.59446269e-01 -3.78731430e-01
-1.05034626e+00 5.08197904e-01 5.33783361e-02 3.47003222e-01
-5.64198375e-01 1.51882827e-01 6.00898266e-01 1.08037598e-01
3.88727814e-01 2.42735296e-01 -2.93311030e-01 -7.65678227e-01
-1.15340376e+00 3.78217906e-01 6.49845779e-01 5.34002960e-01
5.98406754e-02 9.85878259e-02 1.49690017e-01 8.42806458e-01
2.69728061e-02 4.07953441e-01 8.60400379e-01 -9.38562691e-01
2.79984832e-01 6.83299363e-01 -2.42972791e-01 -1.17512870e+00
-6.93405807e-01 -4.88529623e-01 -7.37054169e-01 2.23012865e-01
4.89899725e-01 1.22429598e-02 -6.18571877e-01 1.28859282e+00
4.82522070e-01 1.73680916e-01 -3.38505566e-01 1.10599923e+00
7.05558598e-01 2.12523460e-01 -9.44261774e-02 -3.53679031e-01
1.44367671e+00 -4.94547307e-01 -7.33155847e-01 -2.32815668e-01
6.17899895e-01 -4.83469665e-01 9.19874847e-01 9.72728014e-01
-1.17623115e+00 -7.83698916e-01 -1.19886088e+00 2.28234485e-01
-4.42869663e-02 2.14739665e-01 4.28096265e-01 1.08943236e+00
-4.74353522e-01 9.95990336e-01 -1.33592093e+00 -3.67910773e-01
2.09650636e-01 6.85491383e-01 -4.85283971e-01 2.83596128e-01
-1.03869522e+00 8.93203795e-01 1.99825838e-01 2.12692305e-01
-5.06431937e-01 -6.82463884e-01 -8.19894791e-01 -2.44183585e-01
3.71131688e-01 -5.14062405e-01 1.08523571e+00 -8.55425715e-01
-1.81751108e+00 8.98022473e-01 1.70340747e-01 -6.63692653e-01
7.01362610e-01 -6.84492230e-01 -5.64888656e-01 3.18331808e-01
-2.36364543e-01 5.15700541e-02 8.24541748e-01 -4.07007635e-01
-5.13343871e-01 -5.50437093e-01 -2.05373242e-02 1.35081425e-01
-5.97917557e-01 -2.15079844e-01 -5.13321102e-01 -5.34228444e-01
1.82694644e-01 -1.28051531e+00 1.04004681e-01 -5.35646267e-02
7.37016350e-02 -3.75040583e-02 6.84530675e-01 -8.22748780e-01
1.48920631e+00 -2.05630851e+00 2.05712020e-01 2.37875059e-01
8.29132050e-02 5.57398915e-01 4.84006077e-01 3.51498276e-01
-9.48033854e-02 -3.11868846e-01 1.03012539e-01 5.86254895e-03
-4.68435675e-01 4.81060386e-01 2.32261851e-01 8.03928077e-01
-3.75386268e-01 5.54701686e-01 -5.82378745e-01 -6.20114565e-01
6.30459249e-01 4.19705868e-01 -6.08702242e-01 1.24625817e-01
2.59808898e-01 5.20176351e-01 -1.68222949e-01 7.27768004e-01
4.07303274e-02 1.85691491e-01 2.76637554e-01 -4.18732077e-01
-5.82140684e-02 9.36990902e-02 -1.42593908e+00 1.84255934e+00
-3.80086750e-01 6.34985566e-01 2.83700638e-02 -1.46241856e+00
8.93500030e-01 4.73513931e-01 1.00473571e+00 -7.84727275e-01
2.55357832e-01 2.24611238e-01 1.10594019e-01 -1.07943380e+00
2.28289634e-01 -2.26115346e-01 5.94725125e-02 2.80632209e-02
-4.29925658e-02 1.51814669e-01 3.37405354e-01 -3.73438329e-01
1.11882329e+00 4.57380444e-01 1.86369270e-01 -1.58404246e-01
3.74800980e-01 -1.57329384e-02 5.51014602e-01 3.72852743e-01
-2.32531622e-01 5.32747328e-01 9.61647257e-02 -6.10828340e-01
-7.24387109e-01 -8.04967940e-01 -8.53351317e-03 8.54824483e-01
-1.45409571e-03 -5.97375989e-01 -8.44443202e-01 -3.39900494e-01
2.23866776e-02 -8.23768042e-03 -4.24419880e-01 -4.93849874e-01
-1.01962054e+00 -6.64264560e-01 5.48585892e-01 8.59897792e-01
3.47244233e-01 -7.92499304e-01 -1.28548443e+00 4.06205744e-01
-3.93300861e-01 -1.02398622e+00 -1.04188502e-01 4.45257919e-03
-1.32747972e+00 -1.19871330e+00 -7.34257281e-01 -4.50519115e-01
8.14211518e-02 -7.04796687e-02 9.14282680e-01 -4.20274101e-02
-4.80601549e-01 7.22498655e-01 -4.25030142e-01 -6.30520344e-01
-9.08377767e-02 1.88806340e-01 5.20312428e-01 7.04297051e-02
2.25303739e-01 -7.47330368e-01 -9.58198726e-01 3.08520049e-01
-7.48366416e-01 -2.57735476e-02 5.54785013e-01 6.50291145e-01
6.56648397e-01 9.64113325e-02 1.91184670e-01 -3.31865162e-01
2.93376118e-01 -1.79735392e-01 -2.77699322e-01 -1.55602679e-01
-5.50160348e-01 -3.96354169e-01 4.35745418e-01 -7.33148932e-01
-4.73558456e-01 2.57449239e-01 -3.77932161e-01 -5.28941631e-01
-1.74434334e-02 5.95605850e-01 -1.16955675e-02 -1.75168499e-01
8.56567025e-01 2.33766377e-01 5.53269625e-01 -5.72192371e-01
-3.43851238e-01 6.52077258e-01 7.24269450e-01 -3.86338800e-01
2.83233821e-01 4.48742688e-01 2.99397528e-01 -1.21085310e+00
-6.52851224e-01 -6.28762186e-01 -6.94161892e-01 -1.01070929e+00
8.15857828e-01 -8.23677361e-01 -1.18610048e+00 5.92206657e-01
-6.38066649e-01 -9.36601683e-02 -3.41143727e-01 1.01405025e+00
-8.36836755e-01 3.78320456e-01 -6.92123890e-01 -8.33626270e-01
-3.90939504e-01 -8.15424323e-01 9.62963223e-01 7.33733326e-02
-5.88215947e-01 -6.92801833e-01 5.80335297e-02 8.48803282e-01
6.27012402e-02 6.66946173e-01 3.56092244e-01 -3.90090972e-01
-1.31453609e-03 -7.35994756e-01 6.42773926e-01 5.14605165e-01
-7.11141899e-02 -3.54952186e-01 -6.65832639e-01 -4.02087420e-01
2.15155363e-01 -1.32961735e-01 3.06248814e-01 6.07550144e-01
1.31444478e+00 -5.92219010e-02 -2.44970307e-01 4.87708509e-01
1.13597405e+00 2.41472632e-01 8.54069769e-01 6.16262019e-01
7.01976597e-01 6.40538514e-01 7.78839886e-01 3.20875704e-01
1.43817207e-02 9.66364443e-01 3.53372544e-01 1.38718057e-02
-1.07637517e-01 -1.75941847e-02 4.09664005e-01 9.85035896e-01
-8.87608409e-01 1.83995426e-01 -9.11233962e-01 4.08535540e-01
-1.77656722e+00 -1.08157551e+00 -4.08196300e-01 2.46014762e+00
6.92370474e-01 2.94233054e-01 7.18520761e-01 9.97600436e-01
4.75186616e-01 -1.91307291e-01 -4.11673844e-01 -3.32989663e-01
3.80937278e-01 4.24531400e-01 6.39317870e-01 -1.19687855e-01
-1.12682402e+00 1.62792146e-01 6.36960793e+00 7.52013147e-01
-1.40958428e+00 4.86327857e-02 1.78893819e-01 -6.04170263e-01
5.74498892e-01 -4.63788778e-01 -5.37739515e-01 6.63548350e-01
1.17370272e+00 1.51950657e-01 -4.81595062e-02 9.82539773e-01
3.79016310e-01 -2.90178210e-01 -9.43509459e-01 1.22052121e+00
2.04848900e-01 -1.04826736e+00 -5.75503409e-01 7.65897259e-02
1.88883379e-01 -2.51760036e-01 -2.52572745e-01 1.58867642e-01
-7.39478946e-01 -6.92087233e-01 7.20364153e-01 6.30998075e-01
5.85424900e-01 -6.33189499e-01 7.30352223e-01 4.52799559e-01
-1.19424009e+00 -1.59868002e-01 1.87687334e-02 -5.06504834e-01
7.05232024e-02 6.40130222e-01 -4.07200873e-01 5.22305727e-01
1.05996239e+00 7.76215613e-01 -3.84787202e-01 1.10302722e+00
1.69279754e-01 8.47907662e-01 -4.59136456e-01 2.71064844e-02
-2.99431264e-01 -3.65704820e-02 5.77309847e-01 1.04468060e+00
4.85737473e-01 1.71422765e-01 3.07118595e-01 7.96117261e-02
3.94219756e-01 1.67306423e-01 -4.43727016e-01 1.22693159e-01
-1.00387834e-01 1.03857017e+00 -6.27140999e-01 -1.60395101e-01
-4.19261634e-01 7.41527498e-01 -1.76416889e-01 -1.84066355e-01
-9.31195557e-01 -2.76391447e-01 5.87202013e-01 9.25276518e-01
6.29003346e-02 -3.78431201e-01 -2.65332103e-01 -1.06759536e+00
4.27836895e-01 -1.00480223e+00 4.86567587e-01 -5.26867807e-01
-8.06698024e-01 1.25097319e-01 1.37879074e-01 -1.76381540e+00
-3.54955137e-01 -7.49061286e-01 -2.39213333e-01 2.80626595e-01
-7.58169174e-01 -8.61729443e-01 -3.99753213e-01 6.31618440e-01
6.03625000e-01 1.82937682e-01 6.93444669e-01 6.82977021e-01
-5.49113333e-01 4.50625539e-01 -1.82971984e-01 1.30781680e-01
5.27901471e-01 -8.83793056e-01 -2.33355939e-01 7.11283863e-01
6.19080514e-02 3.37847561e-01 9.70247090e-01 -6.59660995e-01
-1.80292165e+00 -7.10214913e-01 5.71327925e-01 -4.69237775e-01
3.92913818e-01 -2.33461380e-01 -6.28426373e-01 3.51992935e-01
-2.60989368e-01 1.50857165e-01 1.02715981e+00 1.08665749e-01
2.57680714e-01 -6.23555541e-01 -9.87155974e-01 4.03628767e-01
1.04805267e+00 -2.71338761e-01 -6.89308763e-01 2.37227350e-01
-1.16921596e-01 -8.65298331e-01 -1.36614478e+00 6.13894224e-01
1.22830403e+00 -1.03763604e+00 1.03485596e+00 -3.45023662e-01
3.83802801e-01 -1.62227795e-01 1.46679223e-01 -1.01652896e+00
-1.18157856e-01 -3.08359832e-01 -4.04282093e-01 7.68445253e-01
-2.02411830e-01 -2.58906633e-01 1.16985166e+00 6.74809813e-01
-2.60402799e-01 -8.73363137e-01 -1.21772039e+00 -9.98652041e-01
-3.69705886e-01 -7.97363818e-01 1.64165813e-02 6.68836832e-01
3.72598201e-01 6.91981092e-02 -7.98902154e-01 -1.85324773e-01
5.03102541e-01 6.99560121e-02 9.25001740e-01 -1.37839460e+00
-4.54475462e-01 -1.97524671e-02 -1.09521139e+00 -7.31631517e-01
-4.14972484e-01 -3.59315485e-01 -1.33340359e-01 -1.24168849e+00
-2.05116048e-01 1.16937429e-01 -1.55819550e-01 3.16461891e-01
2.46361494e-01 7.14372694e-01 1.32958427e-01 1.39916375e-01
-5.10834277e-01 1.56888723e-01 1.08758843e+00 -1.78693570e-02
-3.34580809e-01 3.65989268e-01 -9.76852626e-02 9.07097757e-01
6.22148633e-01 -3.70160073e-01 -2.67433107e-01 -1.90129057e-01
3.22690368e-01 2.24454671e-01 4.07612920e-01 -1.72739923e+00
1.79775968e-01 7.62434602e-02 6.78080440e-01 -4.13824409e-01
6.39326334e-01 -1.04023945e+00 5.48387110e-01 9.65579629e-01
-6.53251782e-02 4.40868922e-02 2.66517788e-01 4.08367991e-01
-3.17986816e-01 -6.49417713e-02 5.60788393e-01 -1.15922697e-01
-6.03883326e-01 9.59614962e-02 -7.64199853e-01 -2.41480842e-01
1.16844428e+00 -8.14941406e-01 1.21502645e-01 -2.20662594e-01
-1.16432130e+00 -8.05868581e-02 9.11346525e-02 5.01934648e-01
4.93841290e-01 -1.27292657e+00 -3.26474428e-01 3.23212415e-01
1.11143604e-01 -3.14501226e-01 5.86447418e-01 1.34906733e+00
-5.99196672e-01 1.87389448e-01 -4.23120648e-01 -1.03817773e+00
-1.74820304e+00 3.69154185e-01 2.19639674e-01 -1.00778766e-01
-8.60582411e-01 2.99912661e-01 -5.67715228e-01 9.01364535e-02
1.96610019e-01 -3.56961071e-01 -3.85692477e-01 1.29350051e-01
5.45858443e-01 8.76123071e-01 5.83337545e-01 -5.45026243e-01
-4.69588727e-01 7.65119970e-01 3.01134318e-01 1.32695556e-01
1.21901965e+00 2.91774385e-02 3.79999697e-01 6.00624859e-01
8.94549489e-01 -8.12312886e-02 -9.67878938e-01 1.16749294e-01
-8.55073035e-02 -4.84231174e-01 1.10184409e-01 -3.87100816e-01
-1.22870517e+00 8.56741309e-01 1.19088376e+00 2.58707494e-01
1.40303922e+00 -2.51847535e-01 9.99365628e-01 3.95103656e-02
5.41148126e-01 -1.49073887e+00 1.33249760e-01 2.84032207e-02
5.65762877e-01 -9.15497363e-01 2.71010429e-01 -4.07113999e-01
-4.86051917e-01 1.08314419e+00 5.53997695e-01 -2.52310276e-01
5.57484984e-01 1.90022752e-01 -6.02095667e-03 -9.41122323e-02
-2.70992130e-01 -2.09702060e-01 5.06218433e-01 6.68091536e-01
5.35408318e-01 5.69298118e-02 -7.79555023e-01 7.84375608e-01
-3.40596855e-01 5.03783047e-01 2.40174964e-01 1.32406354e+00
-2.91405082e-01 -1.06229424e+00 -6.53114796e-01 6.54935300e-01
-9.51538086e-01 4.91629660e-01 2.84828320e-02 8.23334336e-01
3.68742138e-01 9.36400831e-01 -5.72525151e-02 -6.65435076e-01
8.35009098e-01 1.54119730e-01 7.21031725e-01 -3.57686758e-01
-8.42137218e-01 2.66772449e-01 2.20892817e-01 -9.00380790e-01
-7.80129552e-01 -8.36438894e-01 -8.69203210e-01 -2.77038962e-01
-2.54966944e-01 4.87805009e-02 8.09890330e-01 9.05076325e-01
3.18375617e-01 7.14727461e-01 1.66556969e-01 -9.40725982e-01
-2.34291136e-01 -9.10833359e-01 -6.54651821e-01 4.86290812e-01
-5.00808284e-03 -8.84446442e-01 1.14052363e-01 3.59989911e-01] | [7.266118049621582, 0.37424540519714355] |
187a4965-75c6-42c6-b594-6483b32a613a | entity-aware-and-motion-aware-transformers | 2205.05854 | null | https://arxiv.org/abs/2205.05854v1 | https://arxiv.org/pdf/2205.05854v1.pdf | Entity-aware and Motion-aware Transformers for Language-driven Action Localization in Videos | Language-driven action localization in videos is a challenging task that involves not only visual-linguistic matching but also action boundary prediction. Recent progress has been achieved through aligning language query to video segments, but estimating precise boundaries is still under-explored. In this paper, we propose entity-aware and motion-aware Transformers that progressively localizes actions in videos by first coarsely locating clips with entity queries and then finely predicting exact boundaries in a shrunken temporal region with motion queries. The entity-aware Transformer incorporates the textual entities into visual representation learning via cross-modal and cross-frame attentions to facilitate attending action-related video clips. The motion-aware Transformer captures fine-grained motion changes at multiple temporal scales via integrating long short-term memory into the self-attention module to further improve the precision of action boundary prediction. Extensive experiments on the Charades-STA and TACoS datasets demonstrate that our method achieves better performance than existing methods. | ['Xinxiao wu', 'Shuo Yang'] | 2022-05-12 | null | null | null | null | ['action-localization'] | ['computer-vision'] | [ 1.55362397e-01 -4.01616454e-01 -7.44561732e-01 -2.86292106e-01
-1.07946789e+00 -3.87039810e-01 3.22840571e-01 -1.59539238e-01
-3.68897736e-01 4.19768184e-01 9.64500129e-01 4.45907474e-01
2.01076165e-01 -2.46970445e-01 -7.14072764e-01 -2.97449499e-01
-4.13844764e-01 7.02306256e-02 9.65779126e-01 2.61065483e-01
3.38092953e-01 2.22783223e-01 -1.41259027e+00 9.12507057e-01
5.28859198e-01 1.18580639e+00 2.50933945e-01 6.59406662e-01
-8.62477943e-02 1.45688832e+00 -1.84195608e-01 -1.03733554e-01
1.27002880e-01 -5.39806485e-01 -1.14096856e+00 1.89071283e-01
7.05762625e-01 -5.50854921e-01 -6.47664845e-01 7.33579278e-01
2.62467563e-01 4.23384070e-01 2.31424227e-01 -1.34826255e+00
-6.02195919e-01 4.06611472e-01 -9.05740559e-01 7.69939780e-01
7.42146075e-01 2.13539600e-01 1.08105755e+00 -9.40224588e-01
8.87250364e-01 1.30710363e+00 6.78909481e-01 3.84154201e-01
-7.98084140e-01 -5.48094749e-01 5.47027171e-01 9.85264421e-01
-1.69297731e+00 -5.60750008e-01 6.96217656e-01 -6.95308864e-01
1.26863658e+00 -3.81068103e-02 6.13112748e-01 1.04726255e+00
9.97042656e-02 1.20118868e+00 3.86572480e-01 8.57948959e-02
-7.91235566e-02 -5.67629099e-01 -3.55907023e-01 8.95454049e-01
-4.46393549e-01 -2.31859073e-01 -8.66181791e-01 5.33878729e-02
1.05172300e+00 1.82864159e-01 -2.93356478e-01 -3.28150898e-01
-1.62600911e+00 4.65966493e-01 3.78252536e-01 5.47959864e-01
-6.08800054e-01 5.24435580e-01 7.16709197e-01 -2.04747215e-01
5.16488671e-01 9.84418765e-02 -4.34879363e-01 -5.02773166e-01
-1.35509372e+00 6.14670478e-02 1.73362866e-01 1.14810407e+00
7.17066288e-01 -1.58957243e-01 -8.91284108e-01 5.60229599e-01
1.16544865e-01 1.78370342e-01 5.45784652e-01 -1.43731511e+00
6.83538020e-01 8.15243125e-01 3.63537729e-01 -1.08959615e+00
-1.30624741e-01 1.12045623e-01 -3.96313846e-01 -2.19469443e-01
5.36134303e-01 1.48642868e-01 -7.95376062e-01 1.65928340e+00
5.21835804e-01 8.10182393e-01 -3.72913063e-01 1.13372087e+00
6.08835518e-01 7.42020547e-01 7.99060106e-01 -1.75979555e-01
1.47991765e+00 -1.45653129e+00 -7.77308106e-01 -3.50620538e-01
5.77363729e-01 -5.13916552e-01 9.63993192e-01 -1.49637625e-01
-1.25372374e+00 -8.90368581e-01 -4.86910224e-01 -5.49858868e-01
-1.42166838e-01 4.08987820e-01 3.08655679e-01 -2.52573252e-01
-9.36872721e-01 2.96069711e-01 -1.00336146e+00 -5.36652863e-01
6.62352502e-01 4.41476293e-02 -6.17662430e-01 5.23192734e-02
-1.36132908e+00 4.76517349e-01 4.80085343e-01 3.33980434e-02
-1.10794544e+00 -7.31760502e-01 -1.11281800e+00 7.18340129e-02
6.45698667e-01 -6.69989765e-01 1.23245668e+00 -1.29223192e+00
-1.17617595e+00 8.98399711e-01 -6.79946005e-01 -6.35422409e-01
5.50537109e-01 -4.64940906e-01 -3.30079734e-01 7.37443686e-01
4.42509741e-01 1.11934805e+00 7.84469783e-01 -7.01767027e-01
-1.12956655e+00 -2.08655685e-01 1.94134101e-01 4.49855179e-01
-1.29164368e-01 3.37751955e-01 -1.08180785e+00 -8.68578017e-01
-2.20983289e-02 -6.10082209e-01 -1.50676653e-01 3.12129825e-01
-7.98126236e-02 -5.36932290e-01 8.82958770e-01 -9.94320571e-01
1.66388512e+00 -2.09889555e+00 1.81510255e-01 -3.31123024e-01
1.54967629e-03 6.14927970e-02 -3.20886284e-01 3.33934963e-01
7.54870754e-03 -5.87976798e-02 2.48756409e-01 -9.95507315e-02
-1.01517998e-01 -1.06191389e-01 -3.33632052e-01 4.63895887e-01
1.68027848e-01 1.33897281e+00 -9.98344481e-01 -1.08464658e+00
2.64069736e-01 4.15929288e-01 -6.23156190e-01 2.51432300e-01
-3.75898123e-01 3.94508630e-01 -7.70423591e-01 9.43982720e-01
3.40484716e-02 -4.89544183e-01 -9.50426906e-02 -6.12131953e-01
-3.17381442e-01 -2.18724571e-02 -8.88551712e-01 2.17745566e+00
-1.60420731e-01 8.42741787e-01 -1.16992891e-01 -9.31298614e-01
4.18445081e-01 3.17016929e-01 9.80711401e-01 -8.58922839e-01
-1.13560453e-01 -3.11173141e-01 -6.23112500e-01 -1.16345716e+00
5.36000311e-01 1.85361236e-01 -8.32753852e-02 1.35607347e-01
-7.37971952e-03 8.16904187e-01 3.32818747e-01 1.91751033e-01
1.13439298e+00 8.47854555e-01 4.26414758e-01 1.75507545e-01
7.29442835e-01 1.55467421e-01 8.17643225e-01 3.77124369e-01
-8.28486443e-01 6.22628629e-01 3.62924039e-01 -4.69787985e-01
-7.23027110e-01 -9.00476158e-01 3.94367754e-01 1.64289153e+00
4.62834895e-01 -5.66383958e-01 -7.65622616e-01 -8.63583446e-01
-9.83129591e-02 3.67057532e-01 -8.42390120e-01 -6.23678006e-02
-8.13695908e-01 9.77348164e-02 4.66719747e-01 1.07497871e+00
8.53075385e-01 -1.30162346e+00 -6.59206390e-01 1.90639600e-01
-8.42970312e-01 -1.41654766e+00 -1.24338949e+00 -4.49280173e-01
-6.12082243e-01 -1.10964251e+00 -1.05366218e+00 -9.17065978e-01
3.71535808e-01 3.30679834e-01 9.56621885e-01 -2.91761577e-01
-2.93575585e-01 6.76876724e-01 -4.06014234e-01 3.83249789e-01
2.08072186e-01 -1.37911230e-01 -2.41088241e-01 2.97953010e-01
7.52298355e-01 -2.56566375e-01 -9.24494743e-01 5.77303648e-01
-5.64681292e-01 1.11646228e-01 4.84788418e-01 3.93683642e-01
8.52941334e-01 -2.99325854e-01 3.34503651e-01 -2.18886316e-01
-1.01848096e-01 -5.70427597e-01 -2.34215975e-01 6.13714397e-01
1.52746350e-01 -1.61046520e-01 1.66601434e-01 -5.13891280e-01
-1.20465410e+00 4.87296939e-01 7.89024606e-02 -8.86386633e-01
-3.42711806e-01 1.68377936e-01 -2.05261454e-01 2.11813778e-01
1.88706428e-01 3.51288438e-01 -5.39451003e-01 -3.95332932e-01
3.35320383e-01 4.11930591e-01 6.82400167e-01 -3.27573627e-01
3.66651028e-01 6.84957683e-01 -5.34448981e-01 -6.94288969e-01
-1.18744862e+00 -8.31376016e-01 -1.03956521e+00 -5.92584372e-01
1.60897696e+00 -1.27837110e+00 -7.74033248e-01 2.77495593e-01
-1.07675886e+00 -6.10233307e-01 -2.09472656e-01 6.21561944e-01
-9.54072177e-01 5.77450275e-01 -6.74882829e-01 -3.71341377e-01
-4.96979505e-02 -8.86831403e-01 1.53447616e+00 2.36044332e-01
-3.88356864e-01 -9.32293832e-01 1.86480567e-01 7.56149709e-01
-4.74452712e-02 2.66623437e-01 3.60891551e-01 -3.17560315e-01
-9.86317515e-01 6.36258572e-02 -4.73608851e-01 -1.27103046e-01
7.14030340e-02 -8.91867951e-02 -6.10206902e-01 -8.03149492e-02
-4.85134870e-01 -3.94872159e-01 9.90618527e-01 7.29847491e-01
1.34646523e+00 -1.87678799e-01 -7.05071390e-01 6.38494611e-01
9.87433493e-01 2.74409384e-01 6.30705118e-01 2.47346476e-01
7.75184751e-01 3.76847327e-01 1.13150620e+00 5.38625002e-01
5.83608985e-01 8.80276561e-01 2.31621861e-01 -8.85669440e-02
-3.12633723e-01 -5.12830913e-01 6.77337825e-01 1.12569049e-01
-2.15291381e-01 1.99129898e-02 -7.45529950e-01 9.30819154e-01
-2.14006186e+00 -1.71007383e+00 1.77843750e-01 1.74764132e+00
8.28886986e-01 -8.84016678e-02 3.77114475e-01 -4.57793117e-01
9.38465416e-01 5.22493362e-01 -7.11076021e-01 2.41506115e-01
1.83097556e-01 -3.90532494e-01 2.19204262e-01 4.29722399e-01
-1.63688409e+00 1.27811241e+00 5.81834650e+00 9.30309951e-01
-9.13447142e-01 2.39545748e-01 5.99779487e-01 -2.63745159e-01
1.47718236e-01 -9.81531516e-02 -8.13669145e-01 4.33810443e-01
4.62222248e-01 -4.16093841e-02 2.93094143e-02 9.53167081e-01
6.52702510e-01 -3.94417137e-01 -1.11522746e+00 1.04169297e+00
3.47777069e-01 -1.43036842e+00 -5.60342260e-02 -2.99467534e-01
8.01786423e-01 2.40864139e-02 -2.70544112e-01 3.52042913e-01
-1.65453460e-02 -8.05339754e-01 8.79452705e-01 8.74353111e-01
8.46077621e-01 -4.70917553e-01 2.22340673e-01 5.88121377e-02
-1.95601487e+00 -2.26289421e-01 -1.97289973e-01 1.46197721e-01
4.60191876e-01 -5.44214249e-02 -4.03153926e-01 1.97173879e-01
1.01329637e+00 1.38921940e+00 -5.88390350e-01 1.11700964e+00
-3.88607681e-02 5.39173126e-01 2.87603028e-02 4.23606277e-01
4.02291328e-01 7.07005337e-02 3.61021519e-01 1.43656075e+00
3.12248737e-01 3.89862776e-01 5.83316386e-01 6.80862248e-01
1.60941139e-01 2.10213866e-02 -3.75620484e-01 -2.11631224e-01
1.61180824e-01 1.06707394e+00 -7.37581193e-01 -4.66663808e-01
-7.13485777e-01 1.33971286e+00 4.41735864e-01 7.20241725e-01
-1.36070228e+00 -1.59686312e-01 8.45367193e-01 3.44185382e-01
7.02916741e-01 -3.12158942e-01 3.18174422e-01 -1.24776626e+00
-8.90808925e-02 -5.45141399e-01 7.77416945e-01 -1.05187035e+00
-9.93132770e-01 3.18627149e-01 2.24484261e-02 -1.43908596e+00
-1.50526077e-01 -7.28168190e-02 -4.19235229e-01 4.28409427e-01
-1.28258204e+00 -1.28055835e+00 -5.44688404e-01 9.18528438e-01
1.15161824e+00 2.22835794e-01 3.15291792e-01 5.04834533e-01
-5.76700389e-01 3.57790232e-01 -2.91680306e-01 4.70265120e-01
9.03888822e-01 -7.17816472e-01 1.05359346e-01 8.44500840e-01
2.61942387e-01 1.79086789e-01 3.31278175e-01 -9.83455062e-01
-8.49589109e-01 -1.44864511e+00 1.11980903e+00 -4.46266055e-01
8.38234246e-01 -8.08832124e-02 -9.40683603e-01 1.01797807e+00
2.39988074e-01 3.43221545e-01 5.06695151e-01 -3.43811661e-01
-2.74490952e-01 -6.58652037e-02 -5.61525702e-01 5.67287147e-01
1.45591521e+00 -8.53678167e-01 -6.87174976e-01 2.85415232e-01
4.90229636e-01 -3.33219290e-01 -7.90716588e-01 3.22432101e-01
5.95282137e-01 -9.75417316e-01 1.20424318e+00 -8.62710893e-01
3.98696035e-01 -5.50968766e-01 -6.92624375e-02 -5.72016597e-01
-5.76581776e-01 -5.58414757e-01 -1.83398739e-01 1.30967867e+00
-6.99109659e-02 3.27610195e-01 8.51998925e-01 5.67488492e-01
-7.68721476e-02 -6.91356361e-01 -8.93594682e-01 -4.52748597e-01
-4.16886240e-01 -4.18544382e-01 1.30945802e-01 8.25939596e-01
2.25594595e-01 9.33554173e-02 -5.90556502e-01 8.68665352e-02
1.93097323e-01 3.71279746e-01 6.32177174e-01 -5.28468251e-01
3.82975787e-02 -2.98279941e-01 -5.69896817e-01 -1.59055185e+00
5.22877455e-01 -6.42315090e-01 1.74733534e-01 -1.66375673e+00
4.69802141e-01 2.30223984e-01 -2.60121465e-01 6.60145640e-01
-2.81698316e-01 5.21160424e-01 9.64227766e-02 1.54794246e-01
-1.57211900e+00 5.71326673e-01 1.25987625e+00 -1.88342676e-01
-1.56818524e-01 -2.35193580e-01 -3.55234519e-02 9.98284459e-01
4.61019635e-01 -2.31157169e-01 -4.94282931e-01 -3.90458137e-01
-8.30143467e-02 3.70679468e-01 5.82623005e-01 -1.25530183e+00
3.90409172e-01 -5.50446928e-01 6.14585340e-01 -9.00845706e-01
3.48681748e-01 -6.97158873e-01 3.34846154e-02 2.54368395e-01
-8.31439078e-01 7.24536851e-02 5.78599982e-02 8.61778677e-01
-5.04444480e-01 2.46797815e-01 6.55007064e-01 -1.88526779e-01
-1.60867071e+00 6.54256821e-01 -5.14647245e-01 4.64453191e-01
1.57646000e+00 -4.45034236e-01 -1.05928533e-01 -4.56541866e-01
-1.17348981e+00 5.28484821e-01 4.01821315e-01 7.10985422e-01
6.58597887e-01 -1.50146735e+00 -4.22426641e-01 6.77469373e-03
1.72195241e-01 -4.25443739e-01 7.89217472e-01 1.18961692e+00
-3.06441784e-01 4.59915519e-01 -2.44287953e-01 -7.76389182e-01
-1.55514657e+00 7.00790882e-01 4.60688978e-01 -1.37003973e-01
-6.44836962e-01 1.05896091e+00 6.54748917e-01 4.95933890e-01
5.21401942e-01 -4.25050855e-01 -4.50836033e-01 2.35311240e-01
7.79450238e-01 4.93746966e-01 -6.95549190e-01 -1.22585952e+00
-5.99154830e-01 1.00064993e+00 2.03796253e-01 1.87027052e-01
8.65502536e-01 -6.49144650e-01 1.93082735e-01 4.22947854e-01
1.29364097e+00 -2.75389493e-01 -1.90993297e+00 -3.58982176e-01
1.84049234e-01 -6.04037046e-01 -1.92009881e-01 -5.79907417e-01
-1.17770088e+00 9.80327249e-01 4.16111678e-01 -2.72046566e-01
1.26691997e+00 3.61102134e-01 1.05458987e+00 1.06608592e-01
1.67310521e-01 -1.27221978e+00 5.67164421e-01 3.87795508e-01
9.42523599e-01 -1.29136336e+00 -1.56656429e-01 -2.71012962e-01
-1.04279923e+00 9.39145744e-01 1.05798173e+00 -7.59592326e-03
4.63263631e-01 8.89437180e-03 -5.68963960e-02 -8.26870874e-02
-8.10430646e-01 -5.61061621e-01 7.10354328e-01 4.91930544e-01
3.63286376e-01 -3.38732719e-01 -1.61403209e-01 5.82608998e-01
6.32556438e-01 4.01618123e-01 -7.96881765e-02 6.89064622e-01
-6.07590616e-01 -6.59316599e-01 -1.51941612e-01 9.82728004e-02
-5.06139517e-01 -1.39360847e-02 -3.77413958e-01 7.52866268e-01
3.08954567e-01 6.91450179e-01 4.11079526e-01 -2.64118344e-01
1.82349473e-01 2.55695283e-01 3.13510895e-01 -3.67296249e-01
-4.31513101e-01 3.68325144e-01 2.95359343e-02 -1.39485812e+00
-8.63465548e-01 -9.26163256e-01 -1.57095468e+00 2.25516438e-01
2.30284974e-01 4.57965881e-02 -2.04787463e-01 9.36645985e-01
7.42968917e-01 4.52075332e-01 2.08144665e-01 -9.99611318e-01
-4.75023501e-02 -7.79123902e-01 -3.18515152e-01 5.03894687e-01
2.98146099e-01 -8.10461640e-01 3.36028226e-02 6.63365424e-01] | [9.714305877685547, 0.7145808339118958] |
ba2d6854-25a0-480f-a37b-dfb9c09b382d | entropy-environment-transformer-and-offline | 2303.03811 | null | https://arxiv.org/abs/2303.03811v1 | https://arxiv.org/pdf/2303.03811v1.pdf | ENTROPY: Environment Transformer and Offline Policy Optimization | Model-based methods provide an effective approach to offline reinforcement learning (RL). They learn an environmental dynamics model from interaction experiences and then perform policy optimization based on the learned model. However, previous model-based offline RL methods lack long-term prediction capability, resulting in large errors when generating multi-step trajectories. We address this issue by developing a sequence modeling architecture, Environment Transformer, which can generate reliable long-horizon trajectories based on offline datasets. We then propose a novel model-based offline RL algorithm, ENTROPY, that learns the dynamics model and reward function by ENvironment TRansformer and performs Offline PolicY optimization. We evaluate the proposed method on MuJoCo continuous control RL environments. Results show that ENTROPY performs comparably or better than the state-of-the-art model-based and model-free offline RL methods and demonstrates more powerful long-term trajectory prediction capability compared to existing model-based offline methods. | ['Shaojie Shen', 'Meixin Zhu', 'Pengqin Wang'] | 2023-03-07 | null | null | null | null | ['trajectory-prediction', 'offline-rl', 'continuous-control'] | ['computer-vision', 'playing-games', 'playing-games'] | [-5.00916421e-01 -1.29286990e-01 -4.44251180e-01 6.12408072e-02
-6.13000989e-01 -7.89801538e-01 7.42094040e-01 6.49210960e-02
-4.93885607e-01 1.32985401e+00 7.76244700e-02 -5.89984417e-01
-2.13646129e-01 -7.00600445e-01 -8.42235923e-01 -4.48971003e-01
-5.22630632e-01 7.00419366e-01 1.11401506e-01 -5.19795954e-01
2.03838438e-01 4.82106000e-01 -1.64516449e+00 -4.27460410e-02
1.03473973e+00 6.13664150e-01 4.14080322e-01 8.64571691e-01
1.29618287e-01 1.31925607e+00 -5.13835013e-01 3.82835954e-01
3.54826063e-01 -6.48309529e-01 -5.93906224e-01 -4.67348099e-01
-6.21292949e-01 -7.78584659e-01 -6.72493339e-01 3.73797238e-01
5.77967107e-01 7.39046693e-01 4.39926386e-01 -1.30688262e+00
-1.64977923e-01 6.79855704e-01 2.84067899e-01 7.21188402e-03
5.79208732e-01 7.85530448e-01 5.39765656e-01 -2.79757380e-01
6.89664066e-01 1.12841296e+00 5.30017257e-01 7.94729173e-01
-1.11215878e+00 -5.00173926e-01 2.99013495e-01 3.98417503e-01
-1.03307950e+00 -1.75949857e-01 5.97932398e-01 -3.16333532e-01
1.40685260e+00 3.85777429e-02 1.16600025e+00 1.37259972e+00
4.23662692e-01 9.18861985e-01 1.48626626e+00 -1.50797993e-01
6.24144673e-01 -3.95279527e-02 -5.63148141e-01 5.73183775e-01
-3.66577238e-01 1.13899457e+00 -2.69120365e-01 -1.09454952e-01
9.13236380e-01 -1.04459763e-01 7.53568560e-02 -9.70776528e-02
-1.21647251e+00 4.94241387e-01 1.96522221e-01 -8.44339803e-02
-6.07520044e-01 5.04305482e-01 3.67919743e-01 6.24004304e-01
1.54203206e-01 6.52820826e-01 -5.86172163e-01 -1.04248202e+00
-8.08608353e-01 8.61691535e-01 1.04307020e+00 1.12025106e+00
5.29174507e-01 5.11818528e-01 -6.17105305e-01 3.21538836e-01
2.17424303e-01 6.99461758e-01 4.82771367e-01 -1.08814120e+00
4.86767769e-01 3.12318712e-01 8.70048881e-01 -5.88907301e-01
-4.61878598e-01 -2.39004835e-01 -1.53875738e-01 4.33332622e-01
3.24138820e-01 -5.83011806e-01 -5.52741110e-01 1.57933211e+00
3.84738356e-01 6.10682130e-01 3.71493459e-01 7.98672140e-01
1.15542993e-01 8.98054183e-01 3.57875712e-02 -5.01856208e-01
2.68749058e-01 -1.31054688e+00 -7.47796416e-01 2.36816257e-01
5.05258381e-01 -8.19704533e-02 1.17723739e+00 5.05454123e-01
-1.09176207e+00 -5.07957399e-01 -8.26395214e-01 7.19869435e-01
-2.75727302e-01 1.05243623e-01 4.37479645e-01 5.32701731e-01
-8.57839823e-01 1.22553265e+00 -1.13540173e+00 -1.05409816e-01
-1.51337728e-01 3.94531339e-01 2.39899158e-01 3.95126909e-01
-1.08112681e+00 1.16797638e+00 5.36809087e-01 -6.78588971e-02
-1.85070467e+00 -7.25263596e-01 -7.08380342e-01 -1.30781218e-01
6.00224078e-01 -2.18619511e-01 1.84739482e+00 -7.20279694e-01
-2.50228977e+00 -2.39288867e-01 -4.92237583e-02 -7.25593328e-01
7.03314841e-01 -3.22584808e-01 -5.99413097e-01 4.48894175e-03
-3.57743382e-01 2.29761079e-01 8.09942245e-01 -1.42235398e+00
-7.29197979e-01 2.70181000e-01 2.47628257e-01 4.44717586e-01
-4.73257527e-03 -2.62512714e-01 4.42143045e-02 -3.74902934e-01
-8.73971760e-01 -1.03729367e+00 -5.77235401e-01 -6.32624507e-01
-6.25209371e-03 -7.69058242e-02 8.27193737e-01 -7.19778717e-01
1.60935581e+00 -1.52854872e+00 1.78099379e-01 2.46701524e-01
-2.71625817e-01 5.57720065e-01 -3.34379315e-01 1.24019480e+00
4.51730490e-01 -1.32428497e-01 1.00718997e-01 -1.54259354e-01
2.92721838e-01 4.03382421e-01 -7.16686845e-01 1.75969213e-01
-2.42828906e-01 1.05979407e+00 -1.44764447e+00 -1.10485263e-01
5.98966777e-01 -2.87990645e-02 -4.84021068e-01 7.66426027e-01
-8.62540424e-01 1.02833712e+00 -5.06844580e-01 5.48271120e-01
9.55863968e-02 1.21388413e-01 5.49365640e-01 4.15642738e-01
-4.99081731e-01 1.30606115e-01 -8.49984527e-01 1.47726142e+00
-7.25523770e-01 3.41475815e-01 -1.98582292e-01 -7.54213572e-01
9.22132492e-01 4.42091107e-01 7.71870971e-01 -9.31825399e-01
1.19245633e-01 1.74921706e-01 -2.65917312e-02 -7.51918614e-01
7.07471073e-01 1.47474721e-01 -1.06027387e-01 5.03024399e-01
-3.91713530e-02 -1.18660286e-01 1.41785264e-01 -9.98387933e-02
1.21069229e+00 1.04169250e+00 1.98180526e-01 1.04192875e-01
4.40801412e-01 3.69894445e-01 4.77808326e-01 9.53916728e-01
-3.53526235e-01 -1.69762045e-01 2.00079665e-01 -2.58508056e-01
-1.06198895e+00 -9.53500688e-01 6.83455408e-01 9.34436142e-01
2.74075925e-01 -6.00094199e-01 -6.22374833e-01 -7.35307932e-01
2.85712540e-01 1.15317678e+00 -4.05733138e-01 -1.46469876e-01
-7.44486749e-01 -9.18216258e-02 5.16255260e-01 5.97291231e-01
4.96024877e-01 -1.44789338e+00 -7.24440694e-01 8.30982208e-01
-9.41034108e-02 -7.92320251e-01 -2.85538018e-01 -2.75292188e-01
-8.78308475e-01 -1.00088406e+00 -2.82452017e-01 -1.92152858e-01
3.86454612e-01 -2.14092165e-01 8.03755403e-01 -8.46095532e-02
4.93175089e-02 9.24570680e-01 -5.21931291e-01 -4.19048131e-01
-7.05034196e-01 -1.35416105e-01 4.47258651e-01 -2.83397138e-01
-1.13944113e-01 -4.72650647e-01 -5.92038512e-01 3.25110137e-01
-5.27514338e-01 -1.49216190e-01 1.80004984e-01 9.72650707e-01
6.70888662e-01 9.15877745e-02 1.06115127e+00 -4.68229860e-01
1.16728103e+00 -5.69839656e-01 -1.08251452e+00 4.25360888e-01
-1.03996551e+00 1.79613233e-01 1.21720421e+00 -6.80476606e-01
-1.19379890e+00 6.46754121e-03 -8.94802362e-02 -7.43686318e-01
-1.63478598e-01 5.12642026e-01 3.85041058e-01 -5.63407652e-02
4.36505944e-01 6.11791432e-01 2.44454965e-01 -3.18845719e-01
3.72071356e-01 4.72477883e-01 1.50182083e-01 -8.92399192e-01
7.19051540e-01 1.32585287e-01 -6.46690726e-02 -4.83509779e-01
-2.94149727e-01 -2.99192399e-01 -3.52417618e-01 -7.33570933e-01
5.00644088e-01 -7.39495635e-01 -1.32419682e+00 5.81857443e-01
-6.75871313e-01 -1.47138524e+00 -5.47435701e-01 5.54278433e-01
-1.39880204e+00 -8.39287490e-02 -6.09285951e-01 -1.37760890e+00
-7.36702234e-02 -1.06028354e+00 5.52607596e-01 2.89014697e-01
-7.61259198e-02 -1.25647640e+00 6.70638144e-01 -3.02108526e-01
6.37627959e-01 4.22437429e-01 6.12858474e-01 -3.86611015e-01
-6.12109244e-01 6.57751858e-02 5.24911702e-01 1.34910196e-01
-1.34129271e-01 -1.52944326e-01 -5.73813796e-01 -6.41150773e-01
-3.84788424e-01 -5.39129853e-01 2.19881594e-01 1.87584132e-01
1.17887843e+00 -7.06391633e-01 -4.02741313e-01 2.90554672e-01
1.55387247e+00 6.03576660e-01 6.04647577e-01 4.22892004e-01
3.75822902e-01 2.64216989e-01 1.34155190e+00 9.45038497e-01
6.05484664e-01 6.30859435e-01 4.19872612e-01 2.37492099e-01
3.05684358e-01 -1.03122914e+00 9.15654540e-01 7.27570713e-01
-2.92294472e-01 -1.19135462e-01 -7.45614529e-01 6.37796402e-01
-2.41972113e+00 -1.35693860e+00 2.89693832e-01 2.32651830e+00
8.44650865e-01 -1.70289174e-01 6.84614956e-01 -3.33700389e-01
1.01407148e-01 -1.82650730e-01 -9.02835011e-01 -5.67992032e-01
3.71327013e-01 1.83293074e-01 6.05504572e-01 4.72652256e-01
-7.28321731e-01 1.30500185e+00 7.35153198e+00 8.79081488e-01
-1.13931537e+00 1.58541389e-02 1.11629486e-01 -2.77561694e-01
-1.53694481e-01 1.46053910e-01 -7.73087025e-01 5.74955523e-01
1.43803775e+00 -4.24996346e-01 1.28366315e+00 9.76357996e-01
9.53758895e-01 -8.91329423e-02 -9.88086343e-01 7.98464060e-01
-4.45189089e-01 -1.38146245e+00 -3.84148419e-01 8.15942511e-02
1.03171277e+00 4.96595800e-02 -7.28268847e-02 1.10962772e+00
7.77404964e-01 -1.21633959e+00 8.46706867e-01 1.03978193e+00
6.02169394e-01 -1.12309647e+00 3.52107614e-01 9.56424892e-01
-1.33568275e+00 -7.16238260e-01 -5.28143123e-02 -3.39378595e-01
3.82427037e-01 -2.52694249e-01 -9.74964559e-01 6.60091758e-01
3.78705144e-01 8.94949555e-01 -1.64415881e-01 1.15832615e+00
-2.83515364e-01 1.05326259e+00 -1.22708984e-01 -4.37858671e-01
4.70993817e-01 -4.06665802e-01 7.70091176e-01 8.18656921e-01
4.62628067e-01 3.34376507e-02 6.35467350e-01 9.17271078e-01
4.87644225e-01 -1.52727649e-01 -1.03033459e+00 -4.75751221e-01
6.49028957e-01 9.53811407e-01 -2.03107193e-01 -3.82437676e-01
-5.35388701e-02 7.78586030e-01 3.75807315e-01 6.16621673e-01
-1.15579867e+00 -2.92766988e-01 6.42097235e-01 -1.97445601e-01
2.97750592e-01 -7.27832794e-01 3.14705819e-01 -9.58700418e-01
-3.55413675e-01 -1.19728208e+00 -9.18834955e-02 -4.42815810e-01
-1.01364446e+00 3.08194071e-01 3.67028356e-01 -1.64742970e+00
-1.04827321e+00 -2.88922936e-01 -6.74327254e-01 5.06794989e-01
-1.48054302e+00 -9.83134866e-01 7.12466836e-02 5.56665599e-01
5.63758194e-01 -4.91516203e-01 8.03315878e-01 -1.03406638e-01
-3.94667923e-01 3.81930798e-01 6.78841710e-01 -4.08962339e-01
3.54468971e-01 -1.35221851e+00 1.48703247e-01 4.37752098e-01
-3.46998245e-01 4.82224435e-01 7.20389843e-01 -9.51547027e-01
-1.91196048e+00 -1.27568913e+00 2.28257343e-01 -4.73142594e-01
6.00313127e-01 -1.65130630e-01 -4.25719708e-01 7.06758082e-01
2.44490027e-01 -3.53324652e-01 2.65721977e-01 -3.36572856e-01
4.24848258e-01 1.99918263e-02 -1.23019445e+00 8.69622111e-01
1.04749238e+00 -4.35248941e-01 -1.59357548e-01 9.24002677e-02
8.14166367e-01 -6.92604125e-01 -1.05447805e+00 2.16214672e-01
7.06042588e-01 -6.98987782e-01 7.76689112e-01 -8.66095662e-01
1.19065642e-02 -2.82285064e-01 1.21102206e-01 -1.82095110e+00
-1.11354385e-02 -1.35902607e+00 -8.67570519e-01 9.07601714e-01
3.32945913e-01 -8.02399576e-01 5.31723082e-01 4.31851894e-01
-1.79079592e-01 -8.93452585e-01 -6.64498031e-01 -1.47093534e+00
6.41001835e-02 -4.65048134e-01 1.09748495e+00 5.03736854e-01
3.19880515e-01 -2.41979644e-01 -7.44822323e-01 -7.50579089e-02
4.29228067e-01 1.43163323e-01 1.21651888e+00 -4.03520346e-01
-7.26625502e-01 -2.19748586e-01 2.68717319e-01 -1.14866436e+00
4.89511460e-01 -5.17434537e-01 3.17203283e-01 -1.59431469e+00
-3.84519607e-01 -6.05474830e-01 -2.55062431e-01 4.51024890e-01
9.55506414e-02 -6.36685312e-01 2.74454266e-01 6.20012060e-02
-7.82306910e-01 1.17866433e+00 1.52405119e+00 2.00319275e-01
-8.30225408e-01 2.38541022e-01 7.01490641e-02 2.94974983e-01
1.13855481e+00 -2.83523977e-01 -9.49144423e-01 1.43556863e-01
1.61340963e-02 7.26315022e-01 3.48364055e-01 -1.22969937e+00
1.34713799e-01 -9.80868697e-01 1.22114727e-02 -6.86954319e-01
3.67973417e-01 -7.33161569e-01 1.87039211e-01 7.33753204e-01
-4.84743029e-01 3.26463282e-01 4.09841865e-01 9.72217917e-01
6.65904731e-02 1.10254765e-01 2.04255909e-01 -2.03839198e-01
-9.44991827e-01 3.73489887e-01 -9.12663639e-01 -4.13305163e-02
1.34354115e+00 -3.09756789e-02 -2.57127941e-01 -7.42356241e-01
-8.28009903e-01 6.35030806e-01 3.51544768e-01 5.14884591e-01
8.24262381e-01 -1.31314456e+00 -2.79599816e-01 7.08562359e-02
-2.65475601e-01 -6.60057068e-01 1.01717338e-01 8.09593022e-01
-4.00224179e-01 5.05396783e-01 -3.63840520e-01 -1.71338648e-01
-7.20881522e-01 5.91429234e-01 5.41204810e-01 -7.30501652e-01
-6.63360417e-01 5.21231219e-02 -7.30126441e-01 -9.58077908e-01
2.14681938e-01 -3.00139874e-01 -2.60137439e-01 -5.03110111e-01
4.27770942e-01 8.53468537e-01 -4.02324498e-01 -2.33111575e-01
7.16518089e-02 4.27998155e-02 4.61881638e-01 -7.58428156e-01
1.18937075e+00 -2.46948078e-02 3.04461300e-01 6.59048140e-01
5.19658506e-01 -3.71035010e-01 -1.83697808e+00 2.49752536e-01
-6.05102926e-02 -4.86463368e-01 -1.67652503e-01 -1.11815035e+00
-3.78362477e-01 5.58760285e-01 7.05604136e-01 -4.85435612e-02
8.25645268e-01 -8.45288754e-01 1.03025997e+00 7.03310907e-01
1.09165990e+00 -1.73443806e+00 2.67769635e-01 1.00013447e+00
8.40208292e-01 -1.03086126e+00 -3.34685147e-01 3.68208349e-01
-9.37169611e-01 8.86850536e-01 9.76782262e-01 -4.38681304e-01
5.49584746e-01 1.69322699e-01 -9.31506678e-02 1.82817668e-01
-1.26836276e+00 -4.28424388e-01 4.46748324e-02 9.32008147e-01
-1.34311795e-01 3.60119909e-01 -2.61524498e-01 4.66199219e-01
-3.82961743e-02 5.29735208e-01 3.63065422e-01 1.21014333e+00
-2.88551092e-01 -1.45828164e+00 -1.78044900e-01 2.77568758e-01
1.15576021e-01 4.18301970e-01 -4.82328571e-02 8.11842382e-01
-3.63092303e-01 1.15712154e+00 -1.79837510e-01 -7.48820782e-01
1.97929710e-01 -3.72718163e-02 7.47709513e-01 -3.69035393e-01
-1.14713669e+00 -2.15081275e-01 4.65657026e-01 -1.06769383e+00
3.45886126e-02 -5.37233829e-01 -1.68959582e+00 -4.12467122e-01
-7.81093389e-02 1.52608961e-01 6.69509113e-01 1.05073118e+00
6.45812392e-01 5.03226995e-01 1.01072621e+00 -1.17725837e+00
-1.20953321e+00 -7.98017979e-01 -4.58096832e-01 2.41110161e-01
3.63981456e-01 -8.47251296e-01 9.05265510e-02 -2.93113261e-01] | [4.05009651184082, 1.9362125396728516] |
16c8cc77-d1d6-4e67-99c8-8258443d1667 | representation-learning-for-tablet-and-paper | 2301.06293 | null | https://arxiv.org/abs/2301.06293v1 | https://arxiv.org/pdf/2301.06293v1.pdf | Representation Learning for Tablet and Paper Domain Adaptation in Favor of Online Handwriting Recognition | The performance of a machine learning model degrades when it is applied to data from a similar but different domain than the data it has initially been trained on. The goal of domain adaptation (DA) is to mitigate this domain shift problem by searching for an optimal feature transformation to learn a domain-invariant representation. Such a domain shift can appear in handwriting recognition (HWR) applications where the motion pattern of the hand and with that the motion pattern of the pen is different for writing on paper and on tablet. This becomes visible in the sensor data for online handwriting (OnHW) from pens with integrated inertial measurement units. This paper proposes a supervised DA approach to enhance learning for OnHW recognition between tablet and paper data. Our method exploits loss functions such as maximum mean discrepancy and correlation alignment to learn a domain-invariant feature representation (i.e., similar covariances between tablet and paper features). We use a triplet loss that takes negative samples of the auxiliary domain (i.e., paper samples) to increase the amount of samples of the tablet dataset. We conduct an evaluation on novel sequence-based OnHW datasets (i.e., words) and show an improvement on the paper domain with an early fusion strategy by using pairwise learning. | ['Christopher Mutschler', 'Bernd Bischl', 'Lucas Heublein', 'David Rügamer', 'Felix Ott'] | 2023-01-16 | null | null | null | null | ['handwriting-recognition'] | ['computer-vision'] | [ 5.69531262e-01 -3.68091136e-01 -3.20916802e-01 -3.73778582e-01
-5.62525272e-01 -7.32320011e-01 5.21754622e-01 -2.50069082e-01
-3.31125259e-01 5.43157816e-01 7.52623975e-02 2.40793973e-02
-4.31919366e-01 -2.40847930e-01 -7.53673851e-01 -8.54114592e-01
4.29792941e-01 5.32526195e-01 -2.34226622e-02 -1.81170866e-01
4.53968316e-01 6.81614637e-01 -1.16363716e+00 2.92361796e-01
7.57277489e-01 8.12472820e-01 5.53028345e-01 7.66384304e-01
7.78188258e-02 5.04241347e-01 -8.16207290e-01 4.92874347e-02
6.39495015e-01 -5.04397452e-01 -4.64869946e-01 5.82790375e-01
6.68567359e-01 -3.17080289e-01 -5.23727536e-01 8.96459162e-01
6.98144853e-01 3.84353399e-01 8.14550340e-01 -1.01878858e+00
-6.58360600e-01 3.33805919e-01 -6.13448858e-01 -4.87862676e-02
4.64556307e-01 -2.79656976e-01 6.02693319e-01 -1.01365554e+00
9.38648403e-01 9.52804863e-01 7.08057106e-01 4.98142898e-01
-1.16106617e+00 -5.32523572e-01 9.55308825e-02 3.13813567e-01
-1.13480997e+00 -2.17328444e-01 1.10436451e+00 -4.49594885e-01
7.91699827e-01 1.68852299e-01 2.07745716e-01 1.36761224e+00
3.22002977e-01 9.30077970e-01 9.55379367e-01 -6.24228179e-01
3.79480273e-01 1.80911317e-01 2.74871588e-01 1.71978518e-01
1.58463091e-01 -1.37023807e-01 -1.02702570e+00 8.51376131e-02
7.25158632e-01 4.78670001e-02 -3.23040903e-01 -6.88885272e-01
-1.09832406e+00 5.19602835e-01 -9.72360969e-02 3.09765100e-01
-3.59318793e-01 -4.57892030e-01 3.01183134e-01 6.41162694e-01
-3.14512337e-03 4.34574395e-01 -4.31381106e-01 -5.45447409e-01
-9.38161314e-01 1.57270789e-01 8.89507234e-01 1.19637382e+00
4.54297781e-01 -3.95462327e-02 -1.46553144e-01 8.92379999e-01
2.28821233e-01 9.08948004e-01 9.35348094e-01 -5.46656072e-01
1.09459209e+00 4.51210588e-01 1.82471916e-01 -8.26295674e-01
-2.73529351e-01 -1.16598658e-01 -7.73286879e-01 1.59282148e-01
6.07554018e-01 -2.15297550e-01 -9.82499957e-01 1.29672253e+00
5.54446429e-02 2.04292536e-01 1.94082439e-01 1.05843031e+00
2.11770833e-01 3.83284271e-01 -6.94184065e-01 -2.75801778e-01
6.85086489e-01 -6.37030482e-01 -1.11122978e+00 -2.98608571e-01
6.14654005e-01 -9.30840731e-01 1.10395217e+00 7.08211958e-01
-7.67563879e-01 -7.67118752e-01 -1.57871139e+00 -7.58267343e-02
-2.50519633e-01 3.59987140e-01 -1.41863987e-01 6.98460162e-01
-4.50355977e-01 9.37048376e-01 -1.03957903e+00 -4.84990448e-01
8.63878801e-02 5.77275395e-01 -4.96900737e-01 -2.24447340e-01
-7.34349012e-01 9.62801695e-01 1.88704252e-01 -6.27167374e-02
-8.98517370e-02 -6.46765530e-01 -6.73448741e-01 -3.99663836e-01
9.99733731e-02 2.11791531e-03 9.38398302e-01 -1.01035738e+00
-1.83347857e+00 4.00701284e-01 -7.25859106e-02 -3.32651705e-01
6.59337759e-01 -4.67252314e-01 -5.03687322e-01 -8.89112949e-02
-1.95519701e-01 -1.15530990e-01 1.47772789e+00 -9.93852079e-01
-4.53030199e-01 -7.64888883e-01 -6.69368148e-01 2.97213942e-01
-6.14654899e-01 -2.49959931e-01 -2.43321940e-01 -8.64790082e-01
4.12875772e-01 -1.22092092e+00 4.37940359e-01 -2.00264603e-01
-1.91645667e-01 9.73294750e-02 1.54633558e+00 -1.19655371e+00
1.09778273e+00 -2.32922626e+00 4.54937458e-01 5.24845898e-01
-2.38205463e-01 5.72732866e-01 -2.96069026e-01 5.46262920e-01
-1.72227934e-01 -5.99072278e-01 -2.44726703e-01 -3.17275912e-01
-1.23315930e-01 2.96426713e-01 -6.14463210e-01 6.45018697e-01
2.98627913e-01 3.82222891e-01 -9.06166971e-01 8.65235478e-02
2.70735562e-01 1.93581760e-01 -2.02373743e-01 3.75586241e-01
1.55725330e-01 3.87943834e-01 -2.50053793e-01 5.97404718e-01
8.42893004e-01 -4.02566157e-02 4.34418261e-01 -4.05280203e-01
1.81903139e-01 7.42170289e-02 -1.67415321e+00 1.85475516e+00
-4.34283912e-01 8.38726223e-01 -2.08368316e-01 -8.47958028e-01
1.47635448e+00 1.56721264e-01 5.17395198e-01 -7.35731542e-01
-1.49030134e-01 4.03752118e-01 1.98509485e-01 -3.87247473e-01
4.68614638e-01 1.80125073e-01 2.42232651e-01 3.71593326e-01
9.97147188e-02 -3.05007577e-01 -1.42149091e-01 -2.86933213e-01
1.16887331e+00 3.77515256e-01 8.78320709e-02 -6.14621714e-02
4.64613676e-01 -2.54424274e-01 4.51399684e-01 7.01504409e-01
-7.66845718e-02 9.31272328e-01 -1.32914260e-02 -2.24633873e-01
-1.23382747e+00 -9.97983992e-01 -3.65559235e-02 5.48753977e-01
1.73725590e-01 -1.46814629e-01 -4.72776681e-01 -6.84007645e-01
4.11020070e-01 6.72503531e-01 -2.10553065e-01 -4.32969779e-01
-7.96188772e-01 -2.74690390e-01 1.90622970e-01 8.79440546e-01
5.17669618e-01 -5.00228465e-01 -4.89553601e-01 2.92035073e-01
8.74374211e-02 -1.17995179e+00 -7.02889860e-01 3.89546365e-01
-9.74697888e-01 -9.30551946e-01 -8.47468138e-01 -6.69144511e-01
6.05184436e-01 1.33253127e-01 3.17667872e-01 -7.52390027e-01
-3.94128356e-03 7.25385010e-01 -5.31565964e-01 -4.59710270e-01
-2.35989377e-01 -5.72508499e-02 6.15696907e-01 3.04570913e-01
6.09598100e-01 -3.50529581e-01 -1.39181867e-01 4.69266146e-01
-7.93838441e-01 -3.69325340e-01 4.51835871e-01 1.22710264e+00
3.99668008e-01 -5.22691607e-02 2.81967491e-01 -3.77637386e-01
9.32590485e-01 -8.00431073e-02 -4.70666349e-01 4.87372309e-01
-6.38229132e-01 2.79070258e-01 7.97206342e-01 -9.62434292e-01
-1.02510035e+00 2.65939832e-01 4.50870961e-01 -8.05754602e-01
1.68262228e-01 2.65202492e-01 -2.78761953e-01 -1.39644787e-01
6.45157754e-01 2.83662200e-01 2.52456903e-01 -7.22458363e-01
5.20834364e-02 1.23166883e+00 5.11709630e-01 -5.02678871e-01
8.89396608e-01 3.31189841e-01 1.79175198e-01 -1.25565028e+00
-1.42214790e-01 -6.83553040e-01 -1.06774712e+00 1.08419843e-01
4.88432765e-01 -5.64640701e-01 -2.81429172e-01 8.83833230e-01
-1.12759268e+00 -3.44950199e-01 -4.47409362e-01 1.00267327e+00
-7.36502111e-01 6.52128994e-01 -2.12058932e-01 -7.37051308e-01
5.10709137e-02 -8.15199077e-01 1.15295577e+00 1.84008136e-01
-3.99790615e-01 -8.91464889e-01 2.65874445e-01 1.06597943e-02
-1.42066451e-02 -8.11547190e-02 5.87926626e-01 -9.36061859e-01
-2.08391219e-01 -4.30874944e-01 1.07800834e-01 8.62518191e-01
6.44596219e-01 -3.73834856e-02 -7.88743317e-01 -6.03438616e-01
2.49687314e-01 6.64438447e-03 6.12374008e-01 1.73412457e-01
7.64805198e-01 -1.03540719e-01 -2.37323880e-01 4.30613369e-01
1.08572316e+00 7.19555199e-01 5.29253662e-01 3.39617223e-01
8.37242365e-01 3.52700263e-01 1.12393081e+00 7.33246744e-01
-1.23968251e-01 1.11472774e+00 -3.47433001e-01 3.51648003e-01
-1.31673560e-01 -2.86050856e-01 6.84600353e-01 9.09213662e-01
-7.28931725e-02 -1.93841249e-01 -9.64919984e-01 2.41217360e-01
-1.99616027e+00 -6.43777549e-01 2.94444799e-01 2.51529360e+00
7.25363314e-01 -1.45420298e-01 -4.33709770e-02 3.80560488e-01
7.86199987e-01 -6.21618591e-02 -1.06331623e+00 -4.76142049e-01
-2.51134127e-01 2.10204601e-01 6.50453210e-01 4.68563199e-01
-1.15655518e+00 6.39662027e-01 5.44872332e+00 5.40072262e-01
-1.41013777e+00 -3.01321089e-01 -3.23744789e-02 7.23020956e-02
4.10688788e-01 -3.17020088e-01 -9.47947919e-01 5.37755191e-01
7.37885535e-01 -1.20871983e-01 5.93121588e-01 5.67609370e-01
1.58849671e-01 1.59866571e-01 -1.64877713e+00 1.52785397e+00
4.03169513e-01 -9.70389664e-01 -2.60236919e-01 1.08051628e-01
7.68883109e-01 -1.47719696e-01 2.43241161e-01 2.89348159e-02
-1.66962937e-01 -6.21368885e-01 5.20307302e-01 8.48668456e-01
6.51153684e-01 -3.54836226e-01 7.94227242e-01 3.56791347e-01
-7.46620476e-01 -2.75869429e-01 -3.18756133e-01 -1.56827673e-01
-1.65292904e-01 4.25452203e-01 -1.13219905e+00 6.05331004e-01
2.80563504e-01 1.09267008e+00 -3.51013839e-01 6.97858691e-01
1.69485286e-01 3.81698519e-01 -3.61918539e-01 1.79168992e-02
-1.07633866e-01 -3.95990312e-01 7.39244521e-01 9.66081321e-01
6.43515885e-01 -7.52274022e-02 7.37592671e-03 5.11451364e-01
4.07516025e-02 -2.25245640e-01 -9.18436229e-01 -2.70700544e-01
4.83113915e-01 7.51392901e-01 -2.43302986e-01 -8.40654150e-02
-4.54418242e-01 1.44751644e+00 -1.15118094e-01 4.85496670e-01
-4.32853967e-01 -6.94135785e-01 6.00965142e-01 -5.17913662e-02
4.64387208e-01 -6.08662665e-01 -3.72616649e-01 -1.13510740e+00
5.92599928e-01 -1.05994272e+00 3.96267846e-02 -5.56713164e-01
-1.45443141e+00 1.25214487e-01 -2.17613816e-01 -1.77679038e+00
-6.19248927e-01 -1.02756774e+00 -2.80943751e-01 1.12887442e+00
-1.01352775e+00 -7.61010706e-01 -2.04010367e-01 6.10692561e-01
5.48820078e-01 -6.45525277e-01 6.39725089e-01 1.25987455e-01
-3.17420512e-01 9.06655133e-01 8.74078691e-01 2.02464059e-01
1.18855190e+00 -1.21351135e+00 2.70126760e-01 7.23355711e-01
3.22144926e-01 6.53542101e-01 5.68647206e-01 -8.48998249e-01
-2.06579971e+00 -9.29173589e-01 5.86929679e-01 -6.07900679e-01
4.47187960e-01 -4.52033132e-01 -9.48187411e-01 6.29820108e-01
-1.71658114e-01 -1.20893262e-01 5.17647386e-01 -6.96316287e-02
-4.08899575e-01 -3.33639830e-01 -1.23712373e+00 4.46097106e-01
8.72071385e-01 -7.93881714e-01 -7.27229714e-01 3.79174381e-01
1.27464592e-01 -6.84328079e-01 -1.06275845e+00 2.03398287e-01
9.14682686e-01 -5.57418823e-01 7.99647331e-01 -5.52386999e-01
3.89944911e-02 -3.02301735e-01 -5.17378807e-01 -1.46248758e+00
-1.87131539e-01 -7.19980299e-01 -5.62143743e-01 1.04200697e+00
-9.69716385e-02 -6.11344934e-01 7.95798063e-01 5.85792601e-01
1.51821554e-01 -3.73715222e-01 -9.10316229e-01 -1.46323466e+00
-3.81984413e-02 -1.08327538e-01 3.59648556e-01 9.74554896e-01
2.64664531e-01 3.05444688e-01 -3.68313491e-01 1.85175329e-01
4.46705312e-01 -5.62802181e-02 8.04862738e-01 -1.08816743e+00
-3.59166056e-01 6.60283715e-02 -7.91077256e-01 -1.12374020e+00
1.11293212e-01 -6.78681433e-01 -7.02556074e-02 -1.06271470e+00
-1.76110208e-01 -1.28507972e-01 -2.66392201e-01 2.30391532e-01
1.63780168e-01 -3.34969193e-01 6.16600990e-01 2.93837249e-01
-1.81352660e-01 4.12198156e-01 1.15231550e+00 -3.70568991e-01
-5.88349164e-01 1.94109485e-01 -4.40832078e-02 4.71166819e-01
7.25580394e-01 -1.60706758e-01 -4.22195703e-01 -4.05953318e-01
-2.34999791e-01 -4.80084270e-02 1.06046624e-01 -1.21165502e+00
4.12782311e-01 1.16907157e-01 6.72490239e-01 -7.62247026e-01
3.15254599e-01 -1.04888654e+00 -1.22403577e-01 3.83989990e-01
-3.08713019e-01 -5.93689736e-03 2.65960723e-01 5.67070603e-01
-2.52943277e-01 -3.31685394e-01 6.14657581e-01 4.46944714e-01
-6.00159883e-01 -1.07239999e-01 -5.28748371e-02 -2.50667989e-01
8.56775820e-01 -6.06547773e-01 -1.10169947e-01 -2.81233311e-01
-5.85894406e-01 -1.29151627e-01 3.83273304e-01 7.96402395e-01
7.75337338e-01 -1.45418942e+00 -5.88863909e-01 6.41465366e-01
5.72831631e-02 -2.22220480e-01 -4.86816019e-02 6.41073823e-01
-1.49360120e-01 5.60844839e-01 -3.62425774e-01 -6.48073077e-01
-1.55201292e+00 3.10552567e-01 1.76575482e-01 -2.20286503e-01
-6.22954607e-01 6.23107493e-01 -4.30757821e-01 -4.86046612e-01
4.26255196e-01 -5.85550070e-01 1.88178658e-01 1.19652569e-01
5.72925031e-01 7.35260189e-01 5.30103505e-01 -4.13937747e-01
-5.19384682e-01 8.02644789e-01 -4.27676439e-01 -2.73403287e-01
1.20069790e+00 4.77846786e-02 3.82480323e-01 6.43340826e-01
1.36537457e+00 -4.03637066e-02 -1.63326323e+00 -4.06292289e-01
2.20334366e-01 -7.90672004e-01 -1.15451261e-01 -9.25647795e-01
-5.26246846e-01 8.81213725e-01 1.22481501e+00 -3.25735360e-01
1.10286462e+00 -4.31801945e-01 6.45938993e-01 9.05369639e-01
2.85763741e-01 -1.93176675e+00 3.21261942e-01 6.76475465e-01
1.11938572e+00 -1.13012981e+00 3.27428766e-02 1.22836307e-01
-8.21841121e-01 1.46976471e+00 3.50485116e-01 -1.98499173e-01
4.67870981e-01 3.06543589e-01 4.75777239e-02 3.13283682e-01
-1.54546186e-01 2.53226191e-01 3.67522001e-01 1.06516564e+00
2.51881540e-01 6.98381141e-02 -2.07723975e-01 5.38096845e-01
8.66373256e-02 9.84290466e-02 4.60996330e-01 1.28472221e+00
3.25809270e-02 -1.42827082e+00 -7.05791831e-01 4.70882893e-01
2.09025770e-01 4.20332164e-01 -6.70756400e-01 6.31714940e-01
-1.23626493e-01 7.36403167e-01 1.70829490e-01 -6.90932035e-01
6.58561826e-01 1.66499123e-01 9.61611390e-01 -4.98024493e-01
-1.21092044e-01 -1.19017206e-01 -3.35668296e-01 -4.53010052e-01
-2.36136898e-01 -1.07381546e+00 -1.25740016e+00 1.50515988e-01
-2.38910437e-01 -3.04592311e-01 9.61013854e-01 9.38692391e-01
4.49591219e-01 3.62974048e-01 9.47866619e-01 -8.67185712e-01
-1.24605203e+00 -8.90083194e-01 -9.93050635e-01 5.84246278e-01
5.39091051e-01 -6.73273087e-01 -1.07298642e-01 1.68687701e-01] | [11.646872520446777, 2.6737663745880127] |
a1ef0ced-c88a-466f-932d-094582507d68 | refining-a-nearest-neighbor-graph-for-a | null | null | https://doi.org/10.1016/j.patcog.2021.107869 | https://github.com/mashaan14/Spectral-Clustering/blob/master/Refining%20a%20k-nearest%20neighbor%20graph%20for%20a%20computationally%20efficient%20spectral%20clustering/PR-Preprint.pdf | Refining a -nearest neighbor graph for a computationally efficient spectral clustering | Spectral clustering became a popular choice for data clustering for its ability of uncovering clusters of different shapes. However, it is not always preferable over other clustering methods due to its computational demands. One of the effective ways to bypass these computational demands is to perform spectral clustering on a subset of points (data representatives) then generalize the clustering outcome, this is known as approximate spectral clustering (ASC). ASC uses sampling or quantization to select data representatives. This makes it vulnerable to 1) performance inconsistency (since these methods have a random step either in initialization or training), 2) local statistics loss (because the pairwise similarities are extracted from data representatives instead of data points). We proposed a refined version of
-nearest neighbor graph, in which we keep data points and aggressively reduce number of edges for computational efficiency. Local statistics were exploited to keep the edges that do not violate the intra-cluster distances and nullify all other edges in the
-nearest neighbor graph. We also introduced an optional step to automatically select the number of clusters
. The proposed method was tested on synthetic and real datasets. Compared to ASC methods, the proposed method delivered a consistent performance despite significant reduction of edges | ['Masahiro Takatsuka', 'John Stavrakakis', 'Mashaan Alshammari'] | 2021-02-06 | null | null | null | pattern-recognition-2021-2 | ['graph-clustering', 'spectral-graph-clustering', 'graph-partitioning'] | ['graphs', 'graphs', 'graphs'] | [ 7.85379112e-02 -1.86246440e-01 -1.82597954e-02 -2.82904923e-01
-5.87928116e-01 -7.61267602e-01 4.44350839e-01 4.91696447e-01
-4.63123560e-01 5.37509978e-01 6.74844980e-02 6.83926791e-02
-6.37778938e-01 -7.84218907e-01 -2.49105215e-01 -1.18989050e+00
-3.25707316e-01 5.51346123e-01 6.04796708e-01 2.89411902e-01
6.47247314e-01 7.16892838e-01 -1.73736775e+00 1.17325500e-01
1.25087380e+00 6.01338089e-01 2.78361291e-01 2.29504019e-01
-3.78167599e-01 1.05842941e-01 -3.04497182e-01 5.14669605e-02
5.41031659e-01 -3.70672911e-01 -5.84342360e-01 3.38990599e-01
-7.37302601e-02 2.82311320e-01 2.20121831e-01 1.19083691e+00
4.93025422e-01 4.20394629e-01 7.83391416e-01 -1.50067055e+00
-2.84577399e-01 4.88124788e-01 -1.06229424e+00 -3.19790915e-02
1.70079321e-01 -1.64164081e-01 8.31416488e-01 -8.72452497e-01
5.18923819e-01 9.50470150e-01 7.88768113e-01 6.33566603e-02
-1.43766701e+00 -6.37472332e-01 -1.12525605e-01 1.23082153e-01
-2.16706514e+00 -4.21313167e-01 9.62433517e-01 -3.00815403e-01
5.03143251e-01 3.32931280e-01 5.46606600e-01 3.93575907e-01
-1.84969604e-01 1.37745485e-01 1.21997976e+00 -3.96245033e-01
5.17669439e-01 2.73665518e-01 3.06254208e-01 4.96274710e-01
3.18719774e-01 -2.34663755e-01 -1.41230971e-01 -5.43194711e-01
2.51385182e-01 8.86797607e-02 -3.04087728e-01 -7.23494530e-01
-9.58115101e-01 8.97183120e-01 3.39442402e-01 2.99180210e-01
-4.36711222e-01 -3.40999186e-01 2.03545168e-01 -3.24667664e-03
-5.68064535e-03 2.14752853e-02 -1.40562519e-01 9.46300402e-02
-1.15098405e+00 -5.11402339e-02 4.22639042e-01 8.02702248e-01
1.12484181e+00 -1.63235083e-01 1.75055251e-01 8.06404650e-01
2.45957360e-01 8.19116458e-02 6.76819086e-01 -7.36410856e-01
3.32063168e-01 1.07424974e+00 -7.18286680e-03 -1.46893311e+00
-4.73838061e-01 -3.99128288e-01 -1.04551065e+00 1.93334863e-01
3.21392357e-01 -8.00398586e-04 -9.27030921e-01 1.43150115e+00
4.79045719e-01 3.70355159e-01 -7.61072338e-02 9.04944062e-01
4.04007703e-01 5.90203881e-01 2.90698186e-02 -5.73754907e-01
1.03910577e+00 -2.54222125e-01 -5.16509652e-01 4.14324880e-01
5.83856761e-01 -9.49562609e-01 8.71254802e-01 3.26001942e-01
-8.18840325e-01 -5.32974899e-01 -1.09821117e+00 5.39542139e-01
-5.15253782e-01 1.13295890e-01 3.50030482e-01 8.29728723e-01
-1.06578958e+00 7.18716085e-01 -7.84027219e-01 -4.98865664e-01
1.91499129e-01 7.06590056e-01 -4.07118350e-01 3.12351704e-01
-7.06860185e-01 2.17842489e-01 8.12866747e-01 -8.34779814e-02
-1.62257776e-01 -2.19505176e-01 -5.65127134e-01 -4.91333120e-02
4.02899235e-01 -1.54447898e-01 1.76888347e-01 -9.34438586e-01
-1.14082074e+00 5.24465322e-01 -2.76196927e-01 -3.23666066e-01
2.53039449e-01 3.34948212e-01 -4.23400730e-01 1.72584727e-01
9.58929807e-02 5.76051116e-01 7.05646932e-01 -1.55090582e+00
-6.04206622e-01 -4.87496227e-01 -6.85360134e-01 2.99156040e-01
-4.62659687e-01 -3.23228031e-01 -5.39301991e-01 -5.11752605e-01
8.95696282e-01 -1.16352618e+00 -2.13755548e-01 -5.34562707e-01
-6.27313495e-01 -3.90052378e-01 1.12282145e+00 -2.39958048e-01
1.45277202e+00 -2.18542361e+00 -1.76563933e-01 1.00715363e+00
1.27218470e-01 1.24181449e-01 2.19965458e-01 6.96704865e-01
-2.97467232e-01 3.05723041e-01 -5.04449844e-01 -1.15121476e-01
-2.86541909e-01 7.54444674e-02 9.49972346e-02 7.97176301e-01
-1.46681845e-01 9.89253223e-02 -7.45021462e-01 -9.09209549e-01
4.43352610e-01 3.14237118e-01 -5.29494882e-01 -1.34950966e-01
2.33655170e-01 3.16435367e-01 -4.46165115e-01 4.11387146e-01
1.16107810e+00 -1.67092055e-01 2.03284115e-01 -5.55859327e-01
-3.51895958e-01 -1.75210640e-01 -2.19868565e+00 1.31677508e+00
1.00078948e-01 4.76493761e-02 7.32273757e-02 -1.17253041e+00
1.17320442e+00 3.12457085e-01 9.15764928e-01 -1.25329107e-01
9.77740586e-02 1.36516601e-01 1.76898167e-01 -2.21018910e-01
3.34153324e-01 1.57486901e-01 1.32646859e-01 3.47930908e-01
-3.30473125e-01 2.67518073e-01 2.56561607e-01 1.86988831e-01
7.37184346e-01 -1.34770200e-01 3.77898008e-01 -7.27906704e-01
8.17194879e-01 2.00666130e-01 8.62198472e-01 5.27782857e-01
-1.42094851e-01 7.81470716e-01 3.41330841e-02 -2.37045065e-01
-9.68120277e-01 -1.21249259e+00 -2.46361390e-01 6.60344362e-01
4.33810711e-01 -5.59176803e-01 -6.94346249e-01 -5.42466760e-01
-1.10297307e-01 4.95252758e-01 -3.78179878e-01 -6.42230883e-02
-4.24576640e-01 -1.03308821e+00 2.73916334e-01 5.62547930e-02
7.70512223e-01 -7.46580005e-01 -3.79029125e-01 7.49702975e-02
6.56250194e-02 -6.06477916e-01 -5.42983413e-01 3.31212014e-01
-9.55444217e-01 -1.22617710e+00 -2.03066081e-01 -8.04030478e-01
9.59880292e-01 6.02912426e-01 4.69722003e-01 2.54799992e-01
-2.24481791e-01 -8.55648965e-02 -6.62819386e-01 8.51069018e-02
-1.95626259e-01 1.24203034e-01 2.32578561e-01 3.67801011e-01
6.06060922e-01 -8.12904894e-01 -7.03298509e-01 4.65212405e-01
-8.53266537e-01 -3.08730662e-01 4.61675704e-01 7.18705714e-01
8.30135763e-01 8.76362383e-01 5.95360816e-01 -1.03831911e+00
6.19285285e-01 -5.77000856e-01 -5.93438506e-01 4.69674692e-02
-7.89016247e-01 1.39419854e-01 1.08853388e+00 -1.29114538e-01
-8.77754390e-01 5.21235466e-01 1.70779288e-01 -3.30102950e-01
-3.23678315e-01 2.71380246e-01 -1.56222209e-01 3.31468657e-02
4.76687133e-01 3.11067939e-01 -1.45376295e-01 -4.75843847e-01
1.49260983e-01 9.51716006e-01 3.24754179e-01 -4.56816584e-01
9.11209762e-01 5.99483430e-01 2.39616737e-01 -1.01847029e+00
-1.13970540e-01 -8.82328510e-01 -1.03325772e+00 4.75321598e-02
1.02192092e+00 -5.71688235e-01 -8.66569936e-01 -1.07513629e-02
-6.84581935e-01 4.81541812e-01 1.27879843e-01 5.52779615e-01
-1.75918326e-01 7.04857230e-01 -1.61971346e-01 -1.12174153e+00
-1.82086468e-01 -1.12339413e+00 6.87477410e-01 2.43006706e-01
-2.52116472e-01 -7.89586246e-01 -1.87247604e-01 -9.61262081e-03
-2.52156854e-02 4.82142240e-01 1.02980876e+00 -7.97468603e-01
-2.78949350e-01 -1.58622131e-01 -1.57083467e-01 -4.32358794e-02
6.01942360e-01 3.59039575e-01 -7.60868013e-01 -5.57861030e-01
-1.54764012e-01 1.81759417e-01 5.80826342e-01 3.62791270e-01
1.25404727e+00 -2.37423703e-01 -7.11777568e-01 5.06261408e-01
1.63456881e+00 6.30578101e-01 4.76605475e-01 1.65604472e-01
6.10612810e-01 6.32568538e-01 4.47328031e-01 5.23953199e-01
3.26116979e-02 6.25429869e-01 1.86200112e-01 -1.65282160e-01
6.59445599e-02 -2.26445869e-01 -4.31185700e-02 9.65351105e-01
2.36020493e-03 -2.12410882e-01 -8.93241763e-01 6.93563759e-01
-1.76258624e+00 -1.06676757e+00 -6.29865408e-01 2.75864720e+00
5.58929563e-01 2.02255741e-01 5.61304212e-01 6.67581916e-01
1.19081891e+00 -1.74090669e-01 -2.96433270e-01 -2.46157035e-01
-1.09662741e-01 9.31210816e-02 7.06511259e-01 5.00097096e-01
-1.12202144e+00 7.20631063e-01 5.34074545e+00 9.25917625e-01
-8.11564684e-01 -1.46140724e-01 5.42334616e-01 2.76634574e-01
-1.42581509e-02 2.68552929e-01 -7.40105510e-01 8.31542432e-01
5.67682385e-01 1.03241675e-01 2.93626755e-01 5.51021576e-01
4.85810846e-01 -3.34921867e-01 -6.39831126e-01 8.98102999e-01
-2.58971721e-01 -9.68247235e-01 1.52135760e-01 8.99151266e-02
7.55081117e-01 -3.38613689e-01 -1.92304507e-01 -2.87460834e-01
3.03868532e-01 -8.17307353e-01 1.91741452e-01 2.93912113e-01
4.00332183e-01 -1.25409460e+00 7.54660726e-01 5.25766075e-01
-1.51954079e+00 -8.56262892e-02 -4.48104590e-01 2.46877059e-01
-1.42909944e-01 6.26039803e-01 -1.05178976e+00 7.43439496e-01
8.68697405e-01 4.12461817e-01 -5.67528546e-01 1.15092134e+00
4.97045100e-01 5.45977354e-01 -6.21379733e-01 8.23056400e-02
3.36996913e-01 -8.43718946e-01 5.57421148e-01 1.12824035e+00
5.18789291e-01 8.88963416e-02 5.32355011e-01 8.09012949e-01
3.40266556e-01 3.74681711e-01 -6.32552862e-01 2.86295861e-01
1.19443285e+00 1.25257349e+00 -1.31370533e+00 -1.10263541e-01
-3.08910340e-01 8.45491827e-01 1.05957404e-01 2.56529272e-01
-5.26116729e-01 -6.20081484e-01 1.73603684e-01 5.54465175e-01
1.61634132e-01 -3.61144513e-01 -3.05822313e-01 -3.28672618e-01
-1.86456606e-01 -6.24103904e-01 7.46248960e-01 -3.47621590e-01
-1.20979190e+00 4.50619519e-01 1.73363477e-01 -1.49275970e+00
-1.96099300e-02 -2.05982048e-02 -5.68366706e-01 7.49338984e-01
-7.77386308e-01 -7.93891013e-01 -4.34452593e-01 8.13085854e-01
2.84893602e-01 2.80476194e-02 5.73152721e-01 3.82895261e-01
-4.94509757e-01 4.75832194e-01 4.32361305e-01 2.00658385e-02
7.64691830e-01 -1.32793128e+00 -2.99900144e-01 7.66286373e-01
7.18569336e-03 9.52768147e-01 7.33961880e-01 -8.12816203e-01
-1.12307250e+00 -8.71460676e-01 5.37183523e-01 8.59021842e-02
3.18890929e-01 -3.57289791e-01 -9.63440657e-01 4.26444381e-01
1.15249470e-01 -1.61471397e-01 7.40427971e-01 -2.08826333e-01
2.34766245e-01 -2.70790279e-01 -1.36751544e+00 6.93165779e-01
8.75077426e-01 3.58427018e-02 -4.48665410e-01 -3.58911566e-02
2.25357205e-01 1.84688523e-01 -8.76374245e-01 3.21051538e-01
1.55889392e-01 -1.31241167e+00 9.04543519e-01 6.38757795e-02
-3.17107171e-01 -1.09494400e+00 -1.12713166e-01 -1.22083676e+00
-6.18972957e-01 -6.75785720e-01 5.60440660e-01 1.65912700e+00
2.84199506e-01 -5.94711542e-01 1.07982242e+00 3.45529437e-01
-1.14592776e-01 -4.17412043e-01 -9.31926310e-01 -7.57217705e-01
-2.56589144e-01 8.19543079e-02 5.93887508e-01 1.17053246e+00
6.15121946e-02 1.35638118e-01 -1.66945145e-01 4.09659654e-01
9.27807748e-01 2.43330538e-01 6.43884122e-01 -1.56278956e+00
2.53001824e-02 -4.42629963e-01 -5.36079824e-01 -6.39349818e-01
-1.28045306e-01 -1.03018665e+00 -1.14848666e-01 -1.27968943e+00
1.55044124e-01 -9.11239207e-01 -2.26208210e-01 2.84191430e-01
-1.80833533e-01 3.05602282e-01 -7.40875751e-02 4.90833312e-01
-3.94434661e-01 2.17342556e-01 8.70738685e-01 2.34226942e-01
-8.12718928e-01 7.35567957e-02 -3.35639685e-01 5.95827401e-01
8.61559927e-01 -6.41677558e-01 -6.64511025e-01 2.30420023e-01
-1.07312866e-01 -4.71429937e-02 -4.85075777e-03 -1.20111120e+00
6.02537870e-01 -1.42975211e-01 5.01823008e-01 -1.06985855e+00
1.52658239e-01 -1.30009401e+00 6.50029361e-01 3.37651730e-01
2.18934403e-03 2.59397745e-01 -2.94158738e-02 6.59628749e-01
-1.99567944e-01 -3.21965784e-01 1.05548096e+00 -8.21249485e-02
-5.92218637e-01 5.32755032e-02 -2.69080311e-01 -3.14539433e-01
1.46209550e+00 -8.28987718e-01 1.22121982e-01 -1.74633607e-01
-7.37235069e-01 2.13139325e-01 7.48797715e-01 -1.44488830e-02
3.90348613e-01 -1.37145162e+00 -4.99855846e-01 3.25790197e-01
7.03068525e-02 1.33704487e-02 5.89884706e-02 8.44967604e-01
-5.42669654e-01 2.02658504e-01 -1.04313321e-01 -8.34629714e-01
-1.44246852e+00 7.79062331e-01 6.77888393e-02 1.33971199e-01
-6.87563479e-01 4.60107028e-01 -1.22998774e-01 -2.83156097e-01
1.12519868e-01 6.54244721e-02 -3.01179022e-01 1.36684015e-01
6.11254796e-02 7.54846513e-01 1.18555956e-01 -8.14019859e-01
-6.06760681e-01 9.39096808e-01 1.46628032e-02 4.44607437e-02
1.12977111e+00 -3.89198065e-01 -2.04101816e-01 3.53100061e-01
1.31232417e+00 3.49581897e-01 -9.63659346e-01 9.04555246e-02
3.64399225e-01 -5.77528715e-01 1.31036872e-02 -2.90549606e-01
-9.58359361e-01 5.42528450e-01 7.93787181e-01 6.39356613e-01
1.30596375e+00 -3.33036244e-01 5.49059451e-01 4.04910222e-02
2.89912254e-01 -1.33834743e+00 -2.96035886e-01 -6.54226243e-02
1.61057487e-01 -1.10435891e+00 1.62955537e-01 -6.71384037e-01
-5.93959928e-01 1.09736931e+00 4.66472745e-01 -3.67364854e-01
7.84790337e-01 1.27037585e-01 -1.97753489e-01 -2.26263747e-01
-2.58487821e-01 -1.13827713e-01 1.37138784e-01 6.28012002e-01
4.39955235e-01 -3.07692513e-02 -6.30277872e-01 3.25377703e-01
-2.01415777e-01 -3.36983472e-01 3.63702655e-01 7.80795038e-01
-6.07732594e-01 -1.10047889e+00 -7.00389445e-01 5.56225777e-01
-2.55369693e-01 1.43713459e-01 -4.86220330e-01 9.98718143e-01
4.95229840e-01 1.37023091e+00 2.10436210e-01 -4.85577464e-01
1.45909339e-01 1.91605523e-01 -4.98748086e-02 -2.97939479e-01
-5.40416241e-01 3.38813096e-01 -2.11894229e-01 -3.58477622e-01
-5.29216349e-01 -7.26571918e-01 -1.66421080e+00 -4.09350008e-01
-5.25647819e-01 7.55631268e-01 5.08742511e-01 5.63787520e-01
4.92801756e-01 1.08116701e-01 1.03250551e+00 -4.39443946e-01
-3.17372620e-01 -6.73618019e-01 -8.49221528e-01 7.39695013e-01
-4.77834009e-02 -7.32269704e-01 -6.03645384e-01 1.83194071e-01] | [7.570435047149658, 4.587327480316162] |
ab5ce8b8-f74e-4014-8e12-2d17f74160be | motionrec-a-unified-deep-framework-for-moving | null | null | https://ieeexplore.ieee.org/abstract/document/9093324 | https://openaccess.thecvf.com/content_WACV_2020/papers/Mandal_MotionRec_A_Unified_Deep_Framework_for_Moving_Object_Recognition_WACV_2020_paper.pdf | MotionRec: A Unified Deep Framework for Moving Object Recognition | In this paper we present a novel deep learning framework to perform online moving object recognition(MOR) in streaming videos. The existing methods for moving object detection (MOD) only computes class-agnostic pixel-wise binary segmentation of video frames. On the other hand, the object detection techniques do not differentiate between static and moving objects. To the best of our knowledge, this is a first attempt for simultaneous localization and classification of moving objects in a video, i.e. MOR in a single-stage deep learning framework. We achieve this by labelling axis-aligned bounding boxes for moving objects which requires less computational resources than producing pixel-level estimates. In the proposed MotionRec, both temporal and spatial features are learned using past history and current frames respectively. First, the background is estimated with a temporal depth reductionist (TDR) block. Then the estimated background, current frame and temporal median of recent observations are assimilated to encode spatiotemporal motion saliency. Moreover, feature pyramids are generated from these motion saliency maps to perform regression and classification at multiple levels of feature abstractions. MotionRec works online at inference as it requires only few past frames for MOR. Moreover, it doesn’t require predefined target initialization from user. We also annotated axis-aligned bounding boxes (42,614 objects (14,814 cars and 27,800 person) in 24,923 video frames of CDnet 2014 dataset) due to lack of available benchmark datasets for MOR. The performance is observed qualitatively and quantitatively in terms of mAP over a defined unseen test set. Experiments show that the proposed MotionRec significantly improves over strong baselines with RetinaNet architectures for MOR. | ['Santosh Kumar Vipparthi', 'Mahipal Singh Saran', 'Lav Kush Kumar', 'Murari Mandal'] | 2020-04-14 | null | null | null | wacv-2020-4 | ['moving-object-detection'] | ['computer-vision'] | [ 1.32386148e-01 -3.92207503e-01 -1.64838508e-01 -8.42238218e-02
-7.54142404e-01 -3.91960442e-01 5.59085250e-01 -1.10440217e-01
-8.28585982e-01 5.95006585e-01 -1.51624752e-03 1.07949309e-01
2.27655768e-01 -5.97567976e-01 -1.03148329e+00 -7.61245251e-01
-3.25792968e-01 -1.89833969e-01 1.06216526e+00 9.04656425e-02
1.85383618e-01 4.84900296e-01 -1.87250400e+00 5.21523297e-01
5.47503889e-01 1.30074251e+00 5.43985665e-01 1.08261597e+00
2.10053816e-01 1.23914051e+00 -5.36096692e-01 -1.26033768e-01
2.96710402e-01 -4.54962283e-01 -7.38680661e-01 2.99813896e-01
7.96277463e-01 -7.65399098e-01 -5.73206246e-01 1.01164126e+00
2.58705676e-01 5.41205704e-01 4.63818163e-01 -1.22141755e+00
-3.75804007e-01 4.95991200e-01 -7.18715012e-01 1.00314355e+00
9.57980826e-02 4.30449516e-01 6.97606504e-01 -1.11851513e+00
7.53926575e-01 1.24394262e+00 2.96119809e-01 6.73562169e-01
-8.09626758e-01 -4.14118409e-01 5.39117396e-01 6.60494208e-01
-1.32553434e+00 -5.00555158e-01 5.86895764e-01 -5.15446961e-01
8.84228051e-01 1.67236328e-01 7.17313051e-01 9.78911698e-01
1.66716412e-01 1.06009328e+00 5.51781476e-01 -5.83143309e-02
3.45763922e-01 -1.67721212e-01 8.74806046e-02 7.13179767e-01
1.35527432e-01 4.33432385e-02 -6.99719846e-01 3.66484582e-01
8.47758889e-01 1.48646533e-01 -2.09582806e-01 -2.13128999e-01
-1.47512436e+00 4.20206338e-01 5.36317587e-01 2.46144161e-01
-4.63282406e-01 4.74494547e-01 3.07080299e-01 -5.65187149e-02
2.62442887e-01 -3.19610834e-01 -5.14204144e-01 -6.20308034e-02
-1.27281618e+00 1.29801497e-01 3.90844166e-01 9.34668899e-01
9.26631153e-01 4.37376559e-01 -3.00395489e-01 3.75485867e-01
2.76187837e-01 6.25734568e-01 5.22954524e-01 -1.17741549e+00
4.05393720e-01 2.75875390e-01 3.35015774e-01 -1.27162707e+00
-4.12320256e-01 -2.66833425e-01 -6.60116076e-01 2.30623260e-01
5.12654364e-01 -1.80796579e-01 -1.21703923e+00 1.54682887e+00
4.54162866e-01 8.21819663e-01 8.78070146e-02 1.26051962e+00
1.03509283e+00 8.51554990e-01 2.69336760e-01 -1.45229653e-01
1.37613714e+00 -1.41267264e+00 -4.93861258e-01 -3.05978239e-01
4.67452675e-01 -4.73604143e-01 6.03938162e-01 2.11002931e-01
-1.14098704e+00 -9.62289989e-01 -8.91351581e-01 -9.26352292e-02
-2.69499213e-01 2.85320371e-01 5.10067701e-01 4.50404495e-01
-1.09004927e+00 4.26508635e-01 -1.18578362e+00 -2.30766267e-01
6.30881488e-01 2.03568786e-01 -1.41733378e-01 5.17239831e-02
-1.05875766e+00 6.29109085e-01 4.32117075e-01 3.45280588e-01
-1.64076352e+00 -5.10704041e-01 -1.02849603e+00 -1.10576205e-01
3.58959496e-01 -5.67209959e-01 1.06627285e+00 -1.24912608e+00
-1.30505300e+00 5.69027662e-01 -4.31684256e-01 -1.01681376e+00
5.29389501e-01 -4.21450645e-01 -4.00076479e-01 6.23133481e-01
1.30073130e-01 1.27285588e+00 1.13098764e+00 -8.57897520e-01
-1.30022931e+00 1.10800406e-02 1.92291170e-01 1.79533720e-01
-2.39193186e-01 2.05162570e-01 -7.42947161e-01 -6.49590671e-01
-6.94115385e-02 -7.14291036e-01 -2.73437679e-01 6.30459040e-02
-7.72867873e-02 -2.12658141e-02 1.08946478e+00 -8.30949187e-01
1.16498303e+00 -2.07771111e+00 8.89468268e-02 -4.74626690e-01
1.51883557e-01 3.58501256e-01 -2.30742842e-01 -1.69639900e-01
1.72003627e-01 -1.44719854e-01 -2.23296985e-01 -3.39479864e-01
-3.47001910e-01 -1.88151300e-01 -3.77372622e-01 7.19864190e-01
5.28790474e-01 1.12863612e+00 -9.08150077e-01 -7.89434195e-01
6.49256766e-01 5.39398909e-01 -6.02440476e-01 -5.84724806e-02
-2.19075158e-01 5.80348611e-01 -3.84864956e-01 9.32159722e-01
6.79563761e-01 -1.19393356e-01 -4.34138566e-01 -1.35412857e-01
-2.57885098e-01 -8.91615357e-03 -1.19769824e+00 1.79171526e+00
-1.10300541e-01 1.09958124e+00 -1.75772160e-01 -9.56114173e-01
5.43511629e-01 1.83551386e-01 5.73922217e-01 -4.84417975e-01
1.84253767e-01 1.37353304e-03 -1.69998240e-02 -5.73398054e-01
6.31636798e-01 4.43602264e-01 4.66827042e-02 -1.28871158e-01
2.05851763e-01 3.11426789e-01 4.27391887e-01 3.97361303e-03
1.14931488e+00 3.38699102e-01 1.89599395e-02 6.78473106e-03
8.13504338e-01 2.21473172e-01 8.43294740e-01 8.25417101e-01
-6.79073691e-01 8.50677609e-01 6.45991936e-02 -6.34637833e-01
-7.86765814e-01 -1.12318063e+00 -5.95139861e-02 1.12818635e+00
6.27147079e-01 2.25047441e-03 -8.37912142e-01 -5.62142789e-01
-3.02665800e-01 4.30057824e-01 -4.80403990e-01 8.54039714e-02
-9.31036890e-01 -5.51989794e-01 3.25389028e-01 6.69627547e-01
8.58063757e-01 -1.30626237e+00 -1.28943765e+00 3.97326231e-01
-3.07088703e-01 -1.50781178e+00 -4.97999251e-01 -2.75314987e-01
-8.27546716e-01 -9.89755273e-01 -7.84708679e-01 -8.72330189e-01
4.56074655e-01 5.69929421e-01 9.51075494e-01 -1.20778427e-01
-4.96319503e-01 2.42064372e-01 -3.16922724e-01 -1.87979624e-01
1.06189668e-01 -2.21240595e-01 -1.19956784e-01 3.13377112e-01
4.43487138e-01 -2.14150786e-01 -1.09722650e+00 4.20310736e-01
-8.41224909e-01 1.40138030e-01 6.81674063e-01 4.78477359e-01
5.00690162e-01 2.88985800e-02 3.58773232e-01 -1.86306015e-01
-4.23218429e-01 -4.62595522e-01 -8.29836011e-01 -5.59822991e-02
2.21282482e-01 -4.42391008e-01 4.00445968e-01 -5.42836607e-01
-9.61443722e-01 3.14687401e-01 1.60211280e-01 -7.12773144e-01
-3.29395086e-01 7.10819811e-02 8.90925303e-02 6.22531623e-02
5.04656196e-01 4.49653774e-01 -5.93057454e-01 -1.80772707e-01
4.11993802e-01 5.33140600e-01 9.76597488e-01 -9.67926532e-02
6.91213906e-01 1.01591730e+00 -1.55628979e-01 -9.14825261e-01
-7.53356040e-01 -6.77422762e-01 -7.66817510e-01 -5.21326959e-01
1.35119462e+00 -1.30255485e+00 -6.37078822e-01 5.91104984e-01
-1.10614824e+00 -3.87363553e-01 -7.33254552e-02 6.57245159e-01
-6.50887072e-01 2.89409280e-01 -6.54732764e-01 -1.08256376e+00
-3.27183336e-01 -1.10539675e+00 1.27301085e+00 3.98110509e-01
4.06133346e-02 -6.65645182e-01 -5.55166900e-01 3.38965923e-01
2.68081516e-01 5.12509346e-01 1.41660601e-01 -1.82983890e-01
-1.37772346e+00 -8.21896717e-02 -2.46565118e-01 3.23552877e-01
-1.03662759e-01 1.63415387e-01 -1.03568530e+00 -2.48047933e-01
-9.29657444e-02 5.63408509e-02 1.36050594e+00 8.62490356e-01
1.15401399e+00 -1.85975537e-01 -3.64373207e-01 6.75497770e-01
1.39062667e+00 4.41145808e-01 6.81567371e-01 3.72361988e-01
8.85586321e-01 5.40158391e-01 1.08986306e+00 4.40440238e-01
3.34538609e-01 5.83531439e-01 6.71490252e-01 4.77867797e-02
-3.45090449e-01 6.99632019e-02 7.70529091e-01 3.80310655e-01
-1.67562932e-01 -2.11869985e-01 -8.52354467e-01 1.00580442e+00
-1.93979001e+00 -1.22563529e+00 -1.18031122e-01 2.02423000e+00
4.17416364e-01 1.49573013e-01 2.00141564e-01 -6.90959245e-02
9.06174302e-01 3.53968173e-01 -6.58711433e-01 2.33160526e-01
-3.20003092e-01 -7.07932338e-02 6.02201283e-01 3.02880704e-01
-1.62622809e+00 1.19990230e+00 5.00929451e+00 6.14813566e-01
-1.18096888e+00 3.15670699e-01 8.31997275e-01 -3.82239759e-01
3.60602975e-01 2.31376048e-02 -1.17711353e+00 6.42363727e-01
9.22099531e-01 9.41619277e-02 1.83542252e-01 9.66124773e-01
4.44176674e-01 -4.09962058e-01 -1.06681037e+00 1.13176918e+00
7.63673708e-02 -1.54476357e+00 -1.07042722e-01 -3.27734977e-01
1.03328145e+00 2.32621357e-01 1.63111061e-01 2.72857219e-01
-7.32639730e-02 -9.35471833e-01 1.24407089e+00 6.85099185e-01
2.54231393e-01 -8.63528609e-01 6.69387043e-01 3.21547538e-01
-1.52938533e+00 -3.80900830e-01 -4.95120585e-01 -1.17832888e-02
2.55000025e-01 3.59651834e-01 -4.59895313e-01 3.49673808e-01
1.11061180e+00 1.08454382e+00 -6.04940176e-01 1.12200415e+00
8.04930106e-02 4.88097399e-01 -2.01461524e-01 1.01255104e-01
4.74874645e-01 1.03746422e-01 6.49153709e-01 1.29700589e+00
3.19085121e-01 -4.30323146e-02 2.32492790e-01 7.85250664e-01
1.58817470e-01 -1.95114106e-01 -2.18770385e-01 9.32953060e-02
4.08146024e-01 1.33206081e+00 -1.07456100e+00 -5.91899514e-01
-5.33530116e-01 1.12448728e+00 -3.48038375e-02 6.07375801e-01
-1.26369131e+00 -1.66670620e-01 8.12892079e-01 2.84294952e-02
9.83488321e-01 -3.96297008e-01 1.57337502e-01 -1.26701188e+00
-2.36031469e-02 -5.12510419e-01 4.07811433e-01 -6.86858654e-01
-6.99193835e-01 5.29068291e-01 6.28300607e-02 -1.36847579e+00
-3.26316297e-01 -5.29014528e-01 -5.00319839e-01 5.49502552e-01
-1.62303221e+00 -9.78476942e-01 -5.78384757e-01 5.77846110e-01
1.13058627e+00 4.21221554e-02 1.16466224e-01 3.13283235e-01
-6.94075108e-01 2.02794030e-01 -1.49223253e-01 4.16224629e-01
4.02194589e-01 -1.00512159e+00 6.06550217e-01 1.41743708e+00
1.87205404e-01 2.24887997e-01 5.59900105e-01 -5.77818573e-01
-1.26127231e+00 -1.63083589e+00 4.61664021e-01 -6.23536646e-01
5.61461747e-01 -2.66143441e-01 -8.04919899e-01 4.94415343e-01
7.69070685e-02 6.61092043e-01 -6.30446300e-02 -9.53283012e-01
2.54858375e-01 -1.08633921e-01 -8.40014219e-01 6.25143230e-01
1.18217599e+00 -2.19761759e-01 -2.96787143e-01 1.94757640e-01
8.79132807e-01 -5.62560022e-01 -5.13286650e-01 5.09526551e-01
3.52709115e-01 -1.02083540e+00 1.14809835e+00 -4.13940609e-01
4.42684501e-01 -9.68932033e-01 -2.33144164e-01 -4.40074235e-01
-6.40052035e-02 -5.93909264e-01 -5.47614694e-01 1.09936464e+00
2.88302619e-02 -1.32080302e-01 8.37623954e-01 2.56083071e-01
-1.81232721e-01 -7.03650653e-01 -8.95092547e-01 -6.93837285e-01
-3.68294805e-01 -6.15615964e-01 2.55415261e-01 6.17244065e-01
-7.73562133e-01 -9.23070684e-02 -4.71360892e-01 5.13914287e-01
6.92449331e-01 1.56507656e-01 7.79486835e-01 -7.61960924e-01
-1.79542914e-01 -2.40879714e-01 -1.01450062e+00 -1.29784751e+00
1.00489080e-01 -4.71980929e-01 1.23026311e-01 -1.44193375e+00
1.31280363e-01 1.19262330e-01 -5.30010045e-01 2.08564639e-01
-1.69223174e-01 5.72817206e-01 1.89693943e-01 2.29185209e-01
-1.01791334e+00 3.79568219e-01 1.08519220e+00 -1.66327775e-01
-2.72514492e-01 -1.16814852e-01 -1.46102354e-01 8.91269624e-01
5.86393297e-01 -3.51882458e-01 -3.07070255e-01 -4.29080725e-01
-3.83111447e-01 1.15946546e-01 8.86989117e-01 -1.44966578e+00
4.39163715e-01 -2.48869434e-01 6.96155012e-01 -1.14205158e+00
3.68230551e-01 -6.13185406e-01 2.37873513e-02 5.39344132e-01
-1.67408720e-01 -6.74086809e-02 2.56020874e-01 9.53368425e-01
-1.93353251e-01 -5.16679958e-02 9.17659283e-01 -4.57008071e-02
-1.64065218e+00 4.55689669e-01 -5.70530891e-01 1.03228822e-01
1.32237399e+00 -5.18428683e-01 -1.84388697e-01 -2.45578751e-01
-6.53864980e-01 1.42955676e-01 2.70827293e-01 6.66444361e-01
7.71507084e-01 -1.12268090e+00 -6.85308456e-01 -6.81865886e-02
-1.65282860e-01 2.93794066e-01 6.14919007e-01 1.07301772e+00
-7.65216112e-01 4.12645847e-01 -2.29333133e-01 -1.05218852e+00
-1.15163553e+00 7.49961853e-01 3.90117258e-01 3.25724155e-01
-8.18989694e-01 9.49209213e-01 5.71936250e-01 4.58436757e-01
2.91200429e-01 -6.16673172e-01 -3.63109082e-01 9.60961655e-02
9.47480142e-01 4.26002383e-01 -1.65148959e-01 -1.03339672e+00
-4.86264795e-01 5.64760029e-01 -7.31769903e-03 -1.76766187e-01
1.16646755e+00 -5.20928800e-01 8.35758671e-02 4.86994505e-01
1.18667376e+00 -3.43240708e-01 -1.88095391e+00 -1.81297332e-01
7.10768402e-02 -6.32571638e-01 3.12623158e-02 -1.67281508e-01
-1.19703245e+00 9.30535197e-01 8.32836688e-01 -2.19099492e-01
1.21524537e+00 2.11166013e-02 8.25617611e-01 2.87933409e-01
3.01969111e-01 -1.09570730e+00 3.14713359e-01 3.87074500e-01
5.54681540e-01 -1.28206098e+00 -2.91661084e-01 -3.84317994e-01
-7.01813042e-01 1.08287799e+00 8.93475711e-01 -2.49363005e-01
3.64129245e-01 1.05880551e-01 -1.15780989e-02 2.01640114e-01
-9.04734373e-01 -6.31280839e-01 4.37001914e-01 6.45811439e-01
4.93033864e-02 -3.85066032e-01 4.54553589e-02 2.78617471e-01
5.80498651e-02 -1.71848327e-01 5.45364082e-01 8.75947416e-01
-7.55041420e-01 -1.97939172e-01 -3.64260554e-01 1.16416380e-01
-5.94474971e-01 -1.22636572e-01 1.37541607e-01 7.59045124e-01
2.50377059e-01 1.08855462e+00 3.51529568e-01 -2.50478446e-01
-1.27311483e-01 -2.19964266e-01 2.12712109e-01 -5.29277027e-01
-1.29221812e-01 1.77790254e-01 -1.44978344e-01 -7.93125093e-01
-7.67869592e-01 -7.53789425e-01 -1.52752280e+00 1.15182120e-02
-2.09529251e-01 -3.20891559e-01 4.87235576e-01 8.78892243e-01
2.31216311e-01 6.93481863e-01 4.24901843e-01 -1.31249356e+00
-1.19913325e-01 -7.38933504e-01 -3.59436214e-01 2.85733283e-01
5.68148434e-01 -6.92469954e-01 -3.85011286e-01 6.33707404e-01] | [9.070127487182617, -0.3114894926548004] |
365b76d2-5d6b-414d-8e18-1ac6f745b991 | learning-to-branch-in-combinatorial | 2307.01434 | null | https://arxiv.org/abs/2307.01434v1 | https://arxiv.org/pdf/2307.01434v1.pdf | Learning to Branch in Combinatorial Optimization with Graph Pointer Networks | Branch-and-bound is a typical way to solve combinatorial optimization problems. This paper proposes a graph pointer network model for learning the variable selection policy in the branch-and-bound. We extract the graph features, global features and historical features to represent the solver state. The proposed model, which combines the graph neural network and the pointer mechanism, can effectively map from the solver state to the branching variable decisions. The model is trained to imitate the classic strong branching expert rule by a designed top-k Kullback-Leibler divergence loss function. Experiments on a series of benchmark problems demonstrate that the proposed approach significantly outperforms the widely used expert-designed branching rules. Our approach also outperforms the state-of-the-art machine-learning-based branch-and-bound methods in terms of solving speed and search tree size on all the test instances. In addition, the model can generalize to unseen instances and scale to larger instances. | ['Kaiwen Li', 'Xiangke Liao', 'Xin Xu', 'Ling Wang', 'Tao Zhang', 'Zhiming Zhou', 'Rui Wang'] | 2023-07-04 | null | null | null | null | ['combinatorial-optimization', 'variable-selection'] | ['methodology', 'methodology'] | [ 1.41437026e-02 5.53512126e-02 -9.00331497e-01 -3.06716621e-01
-6.10769272e-01 -5.74692965e-01 1.92250967e-01 2.30568990e-01
-2.00032905e-01 1.02711380e+00 -6.73891246e-01 -7.45629072e-01
-5.76833308e-01 -9.82956588e-01 -6.83267355e-01 -6.48584604e-01
-6.02943659e-01 8.89469087e-01 3.85930508e-01 -6.34854361e-02
6.89462423e-01 5.93990505e-01 -1.09234428e+00 1.62756354e-01
9.54046011e-01 1.34338319e+00 5.64088114e-02 6.60784423e-01
-4.54371154e-01 8.99627268e-01 -5.75294197e-01 -2.08170593e-01
4.09859508e-01 -3.89504284e-01 -9.59120393e-01 -3.62193942e-01
2.06919506e-01 2.81738285e-02 -3.49094748e-01 1.14536369e+00
1.82403758e-01 2.56333798e-01 3.17621827e-01 -1.19889939e+00
-4.08990234e-01 7.39335239e-01 -5.80943644e-01 6.28614306e-01
4.59673673e-01 3.13300937e-01 1.05970263e+00 -1.66165158e-01
8.48558426e-01 1.08606505e+00 4.61473912e-01 3.63277435e-01
-1.18734086e+00 -6.16781354e-01 6.26427412e-01 5.79229593e-01
-1.20106053e+00 3.14712077e-01 8.20524037e-01 -4.03955311e-01
1.24127614e+00 2.47280046e-01 7.72346318e-01 8.21625292e-01
6.31582379e-01 7.34140635e-01 1.14447725e+00 -3.51769954e-01
4.44293886e-01 -2.06957325e-01 2.94807792e-01 1.16997218e+00
9.13883522e-02 5.75921953e-01 -5.02922475e-01 -3.10704291e-01
5.82002163e-01 -2.50829637e-01 -3.88808846e-01 -5.80926299e-01
-6.23388052e-01 9.85548139e-01 7.09504247e-01 -4.84511927e-02
-3.57612878e-01 2.73876756e-01 5.28837085e-01 4.85962182e-01
1.54909238e-01 7.54981458e-01 -6.87649310e-01 -2.25229770e-01
-9.32121336e-01 4.63883400e-01 1.13482356e+00 1.06228113e+00
6.58148229e-01 5.54214977e-02 -5.31778455e-01 2.40948886e-01
1.06761307e-01 6.55717775e-02 3.21258694e-01 -7.37202048e-01
7.36154199e-01 9.62428629e-01 -1.77865282e-01 -9.71141756e-01
-5.20093620e-01 -7.48604894e-01 -4.17300254e-01 3.22375298e-01
2.59599656e-01 -9.30053294e-02 -1.13398755e+00 1.52807677e+00
5.50006211e-01 2.56137937e-01 -2.02148393e-01 8.77670765e-01
5.98204195e-01 8.34667623e-01 -1.92362487e-01 -4.85892534e-01
7.89783120e-01 -1.43693757e+00 -7.00749338e-01 -2.90354520e-01
6.07691169e-01 -8.87012854e-02 6.70926630e-01 8.32511187e-01
-1.16341794e+00 -1.75688937e-01 -1.12637949e+00 4.15420920e-01
-3.81326735e-01 -2.91936725e-01 1.17593277e+00 5.19360065e-01
-7.90251732e-01 1.11468446e+00 -1.06876850e+00 7.18613788e-02
3.25171024e-01 6.71192348e-01 -7.08241090e-02 -1.65932983e-01
-9.76654053e-01 7.98194468e-01 7.98859119e-01 2.14029834e-01
-1.09125459e+00 -4.84422058e-01 -7.13568091e-01 2.80546844e-01
1.07344198e+00 -6.15283310e-01 1.19696128e+00 -8.66592944e-01
-1.86355412e+00 3.69573861e-01 7.79636530e-03 -4.86661404e-01
3.86546612e-01 3.66741419e-02 -2.35907853e-01 -1.37471817e-02
-2.91112930e-01 3.19539830e-02 7.43202031e-01 -9.38105464e-01
-8.48365545e-01 -4.90255088e-01 1.92709267e-01 2.68871337e-02
-9.05899629e-02 -3.58004808e-01 -5.46323180e-01 -2.66868562e-01
1.45107359e-01 -6.79825902e-01 -5.41039050e-01 -2.64836401e-01
-4.04195994e-01 -4.01129663e-01 4.44013894e-01 -4.77467358e-01
1.89242172e+00 -1.64107776e+00 7.83274591e-01 5.40870607e-01
3.69674787e-02 2.68190354e-01 -2.18268663e-01 4.78486478e-01
-6.97680637e-02 5.68251853e-05 8.19523931e-02 3.42607349e-01
-3.34340148e-02 2.53230929e-01 -2.12044008e-02 4.53808069e-01
6.56659454e-02 7.32382178e-01 -9.89143848e-01 -3.15031499e-01
-1.21798687e-01 -3.44887227e-01 -6.39931202e-01 3.70668739e-01
-6.51917696e-01 1.75190493e-01 -7.63419151e-01 7.60951817e-01
4.77876753e-01 -2.76798218e-01 5.11196434e-01 2.66934693e-01
1.33912891e-01 3.20519745e-01 -1.26335502e+00 1.84329677e+00
-2.49482229e-01 2.30008423e-01 1.34961233e-01 -1.31225920e+00
9.76662993e-01 -1.25365347e-01 -1.95604954e-02 -7.79147983e-01
3.38309586e-01 2.42903858e-01 1.27120703e-01 -4.71208960e-01
1.67787358e-01 2.67094314e-01 -1.09813720e-01 -1.27409443e-01
3.13933119e-02 -2.69574672e-02 6.54839873e-01 -1.50226772e-01
1.48252606e+00 2.73204625e-01 4.78026628e-01 -2.92883277e-01
8.45195472e-01 2.15104714e-01 1.01736605e+00 7.56225824e-01
-2.36991886e-02 -3.16150188e-01 1.01848948e+00 -8.22400570e-01
-3.52521807e-01 -8.62515926e-01 9.61396471e-02 1.16427028e+00
2.06404358e-01 -5.18882275e-01 -6.84294999e-01 -9.85837936e-01
2.00214446e-01 1.07887995e+00 -6.70113981e-01 -4.08929169e-01
-7.02700496e-01 -2.16072276e-01 -7.84536004e-02 4.76959944e-01
2.25206390e-01 -9.93442178e-01 -4.71272767e-01 4.02529091e-01
3.12205613e-01 -6.05945349e-01 -3.13693762e-01 6.58693969e-01
-1.10801148e+00 -1.18946099e+00 -1.53532550e-01 -8.10698926e-01
5.02064824e-01 -4.96180534e-01 1.21782649e+00 2.33918816e-01
-5.14001787e-01 -4.20856737e-02 -2.76925206e-01 -1.08505776e-02
-1.81088194e-01 4.43641633e-01 -3.34126472e-01 -4.19057339e-01
4.03369308e-01 -4.95590568e-01 -3.97990257e-01 2.93907046e-01
-4.87354636e-01 -2.96363354e-01 3.73682171e-01 1.21021402e+00
8.33404779e-01 3.70466769e-01 2.80873179e-01 -9.83823538e-01
8.26950550e-01 -5.00073314e-01 -1.51871431e+00 5.04614592e-01
-1.11684656e+00 5.41191459e-01 8.98881853e-01 -5.93627751e-01
-5.74106634e-01 7.17718527e-03 5.55534661e-01 -6.45232677e-01
1.63678721e-01 8.75609219e-01 1.16911486e-01 -3.98008078e-01
5.16851604e-01 5.21660559e-02 -4.02484328e-01 -3.56573999e-01
2.78589576e-01 3.22198123e-01 5.55343747e-01 -9.56566274e-01
6.55803978e-01 -1.26734152e-01 5.18586397e-01 7.53618330e-02
-7.80062377e-01 -2.40791440e-01 -2.36951441e-01 4.21302505e-02
5.38016915e-01 -3.42759103e-01 -1.08548594e+00 1.73802301e-01
-1.00501001e+00 -3.68496209e-01 -2.43039429e-02 1.33698255e-01
-7.44215131e-01 -1.02175185e-02 -7.04760075e-01 -8.85711491e-01
-3.18196684e-01 -1.27868915e+00 6.32017493e-01 5.40170610e-01
5.53032421e-02 -9.94021475e-01 1.76288143e-01 2.17555761e-01
2.72092104e-01 5.18857718e-01 1.32170165e+00 -7.04980731e-01
-9.10328448e-01 -3.01712245e-01 1.23129129e-01 -1.03488483e-01
-2.83019245e-01 1.75450742e-02 -3.73519689e-01 -5.59623599e-01
-3.91822532e-02 -3.08976352e-01 8.50577593e-01 4.54482913e-01
1.60077775e+00 -4.07740146e-01 -6.15751147e-01 1.08457756e+00
1.63382471e+00 5.98488569e-01 3.66206974e-01 6.90587103e-01
3.01221192e-01 1.16974197e-01 8.51464391e-01 4.98023093e-01
-1.75177809e-02 4.61353660e-01 8.44951808e-01 3.03241491e-01
4.24758226e-01 -2.49822572e-01 1.89437747e-01 5.56784630e-01
1.70137919e-02 -3.67551953e-01 -1.11264133e+00 3.55613142e-01
-2.02024913e+00 -6.59344077e-01 1.58651993e-01 2.16440916e+00
7.95998335e-01 5.97604394e-01 -4.50537875e-02 -1.47181610e-02
6.46890879e-01 2.94964332e-02 -9.00791585e-01 -1.07437742e+00
5.03239214e-01 6.43058956e-01 8.48841965e-01 5.78613579e-01
-9.92913842e-01 1.17764103e+00 6.20352888e+00 9.72282946e-01
-1.32567859e+00 -3.65786254e-01 4.19840723e-01 -2.25348547e-01
1.92564316e-02 3.23125497e-02 -8.29858184e-01 2.54415810e-01
1.04535639e+00 -3.73125255e-01 1.19887161e+00 1.34317613e+00
-2.39588574e-01 -4.46723774e-02 -1.51075792e+00 8.21458519e-01
-5.56519665e-02 -1.55585611e+00 -2.15801999e-01 -1.38935998e-01
7.74236679e-01 -1.82535037e-01 -1.93611402e-02 5.78893185e-01
4.10247236e-01 -1.38854825e+00 4.46579188e-01 2.56872088e-01
4.99535263e-01 -9.85506415e-01 8.12914908e-01 3.93487483e-01
-1.28264964e+00 -6.95281982e-01 -2.88222253e-01 -1.95459262e-01
1.16021256e-03 2.15424508e-01 -7.35913754e-01 8.11088264e-01
6.55261815e-01 4.80693042e-01 -4.54266399e-01 1.25054431e+00
-5.26181281e-01 5.40493190e-01 -2.77493894e-01 -4.77936596e-01
6.74607038e-01 -3.84737998e-01 5.01319408e-01 8.05015385e-01
1.12004489e-01 3.77928168e-02 5.56357145e-01 1.04348683e+00
1.79370612e-01 2.18568649e-02 -2.69546270e-01 -4.20536637e-01
6.04254305e-01 1.06366885e+00 -6.39425099e-01 -5.27682006e-02
-8.67935345e-02 6.69098794e-01 8.72947931e-01 4.49028343e-01
-8.80337656e-01 -6.50521696e-01 1.91388920e-01 -1.40342906e-01
8.58222067e-01 -2.53005791e-03 -2.83228099e-01 -7.99697340e-01
2.82183707e-01 -1.10029054e+00 7.15888917e-01 -2.94042379e-01
-1.22931635e+00 6.90867364e-01 -1.46965124e-02 -6.12642765e-01
-3.41955692e-01 -1.07342148e+00 -7.91120172e-01 9.07791317e-01
-1.50450885e+00 -5.44476390e-01 -9.55522656e-02 5.24767578e-01
3.53275150e-01 -3.96497190e-01 6.56119347e-01 -1.31319165e-01
-9.09024358e-01 6.62565112e-01 1.35605946e-01 -1.62900940e-01
5.11003807e-02 -1.32651067e+00 7.08171576e-02 5.90964735e-01
-1.96590886e-01 5.59123635e-01 7.20990419e-01 -6.31748796e-01
-1.97022355e+00 -7.35445499e-01 2.00282112e-01 1.92294151e-01
9.47146595e-01 -4.61670123e-02 -7.82360017e-01 7.29955435e-01
1.77351058e-01 1.33391142e-01 2.53546596e-01 4.65431064e-01
-2.16958523e-01 -3.44574809e-01 -1.26037014e+00 3.03689957e-01
9.52586591e-01 5.28537966e-02 -5.93255758e-01 5.70983827e-01
5.30214310e-01 -9.21539843e-01 -8.37233186e-01 4.41792101e-01
1.55028954e-01 -7.10506558e-01 6.16481662e-01 -1.29435909e+00
5.19236624e-01 7.87227321e-03 -5.33372574e-02 -1.36000025e+00
-7.72808015e-01 -9.98458624e-01 -6.03825212e-01 8.50244164e-01
6.16547406e-01 -7.63000190e-01 1.03860009e+00 5.59053779e-01
1.05153903e-01 -1.58555830e+00 -1.32544231e+00 -9.96513784e-01
2.32645854e-01 5.42362221e-02 6.94098711e-01 7.42088079e-01
1.46294639e-01 2.00378776e-01 3.61806415e-02 2.56118238e-01
4.32985485e-01 6.53851688e-01 5.99472702e-01 -1.16457975e+00
-7.00609148e-01 -7.31183410e-01 -6.03016019e-01 -8.92974198e-01
3.97886246e-01 -1.14287686e+00 -2.21815169e-01 -1.33584833e+00
-1.44116227e-02 -3.44185203e-01 -5.86606264e-01 4.37563449e-01
-2.00687930e-01 -8.92357171e-01 2.77384836e-02 -4.52738911e-01
-5.88443935e-01 4.62830961e-01 1.43244791e+00 -1.25931516e-01
-3.96428972e-01 -2.30560247e-02 -3.22301596e-01 5.10505438e-01
7.63920188e-01 -7.44804382e-01 -2.84541398e-01 -2.46764541e-01
2.81225741e-01 6.33882642e-01 -2.87937045e-01 -7.82153487e-01
3.40571195e-01 -8.38118732e-01 1.45045146e-01 -5.02011955e-01
8.63573402e-02 -8.85666370e-01 -1.94418605e-03 7.53214002e-01
-4.52033967e-01 3.92650813e-01 3.17801714e-01 7.40346193e-01
-1.49826054e-02 -3.91515404e-01 5.93818665e-01 -1.46813318e-01
-6.77411914e-01 4.33393568e-01 9.36701745e-02 2.05490470e-01
1.44219840e+00 -8.80942494e-02 -3.99418443e-01 4.89641428e-02
-6.19411588e-01 8.67617667e-01 1.68045640e-01 2.11232558e-01
4.77460951e-01 -1.16924679e+00 -3.11123222e-01 2.48425692e-01
-1.29654378e-01 1.22821465e-01 -2.65928864e-01 7.23375440e-01
-8.04155529e-01 4.93303835e-01 -1.81639135e-01 -5.47944069e-01
-1.09315228e+00 1.05273652e+00 4.63734150e-01 -1.05207539e+00
-4.80379194e-01 9.29491401e-01 -4.26120669e-01 -4.81002003e-01
7.05114245e-01 -3.94394368e-01 2.22781792e-01 -3.60157371e-01
2.35951513e-01 5.47750950e-01 -5.44845164e-02 3.05376351e-01
-4.79025215e-01 2.94891119e-01 -2.94708699e-01 2.96849310e-01
1.45167506e+00 5.44914901e-01 -2.98615634e-01 2.33981177e-01
9.51583564e-01 -4.83995855e-01 -9.71424282e-01 -2.17372090e-01
1.85133845e-01 -5.82168818e-01 4.90753710e-01 -1.23104036e+00
-1.32633662e+00 7.43660152e-01 5.93191862e-01 2.12756425e-01
1.14285982e+00 -2.63032198e-01 5.03392518e-01 6.89902067e-01
6.80189252e-01 -1.32641935e+00 -2.62344986e-01 5.67356229e-01
6.83662117e-01 -8.92557621e-01 2.23506451e-01 -3.79988164e-01
-1.23833016e-01 1.48526788e+00 9.90009010e-01 -3.96343261e-01
3.62725943e-01 3.79928738e-01 -2.24212125e-01 -3.01945716e-01
-1.15501785e+00 3.13790947e-01 1.95272028e-01 3.67256552e-01
-2.41938932e-03 1.68370634e-01 -6.13997400e-01 6.42818093e-01
-1.27888486e-01 2.77911603e-01 1.09461665e-01 1.08504653e+00
-4.44673151e-01 -1.11644733e+00 -3.36685121e-01 5.78336596e-01
-2.40401402e-01 2.77952868e-02 -4.48442012e-01 9.60780561e-01
-2.51398623e-01 6.09792829e-01 -1.83808371e-01 -3.13143700e-01
2.36066684e-01 9.44881812e-02 7.75641322e-01 -4.50696409e-01
-9.57661986e-01 -3.44455987e-01 1.21928647e-01 -1.15475428e+00
2.06832960e-01 -2.20815480e-01 -1.19579864e+00 -2.99091309e-01
-7.55022228e-01 2.58640558e-01 5.60640454e-01 7.08269775e-01
2.81591952e-01 9.05581534e-01 6.37405455e-01 -6.57316625e-01
-1.16020942e+00 -5.71774960e-01 -5.96836805e-01 2.10683569e-02
1.78989083e-01 -9.60914195e-01 -4.36008602e-01 -6.79631472e-01] | [5.145573139190674, 2.988293170928955] |
7339e470-1d7d-4762-a4d4-87de7aeceb90 | cross-spectral-image-reconstruction-using-a | 2306.15237 | null | https://arxiv.org/abs/2306.15237v1 | https://arxiv.org/pdf/2306.15237v1.pdf | Cross Spectral Image Reconstruction Using a Deep Guided Neural Network | Cross spectral camera arrays, where each camera records different spectral content, are becoming increasingly popular for RGB, multispectral and hyperspectral imaging, since they are capable of a high resolution in every dimension using off-the-shelf hardware. For these, it is necessary to build an image processing pipeline to calculate a consistent image data cube, i.e., it should look like as if every camera records the scene from the center camera. Since the cameras record the scene from a different angle, this pipeline needs a reconstruction component for pixels that are not visible to peripheral cameras. For that, a novel deep guided neural network (DGNet) is presented. Since only little cross spectral data is available for training, this neural network is highly regularized. Furthermore, a new data augmentation process is introduced to generate the cross spectral content. On synthetic and real multispectral camera array data, the proposed network outperforms the state of the art by up to 2 dB in terms of PSNR on average. Besides, DGNet also tops its best competitor in terms of SSIM as well as in runtime by a factor of nearly 12. Moreover, a qualitative evaluation reveals visually more appealing results for real camera array data. | ['André Kaup', 'Jürgen Seiler', 'Frank Sippel'] | 2023-06-27 | null | null | null | null | ['image-reconstruction'] | ['computer-vision'] | [ 5.77019870e-01 -4.81718659e-01 2.36683220e-01 -1.32062986e-01
-5.54062068e-01 -5.21362364e-01 2.22594082e-01 1.15171045e-01
-6.48219585e-01 5.14671147e-01 -2.82831848e-01 -2.15743929e-01
-2.46013120e-01 -1.00064814e+00 -7.91421056e-01 -1.04108095e+00
2.60474950e-01 -1.78682730e-01 -8.91628340e-02 -2.64402423e-02
-1.02220131e-02 7.76473403e-01 -1.66118979e+00 -3.54805849e-02
8.91290307e-01 1.33723092e+00 5.79044223e-01 4.22901720e-01
1.53694972e-01 4.79989141e-01 -2.94165194e-01 -2.89689183e-01
5.47964394e-01 -1.24656722e-01 -1.88716874e-01 5.97508729e-01
8.56095314e-01 -7.37381041e-01 -2.82114834e-01 1.54896867e+00
4.77138281e-01 1.57250822e-01 1.56667277e-01 -8.34529936e-01
-5.17196834e-01 3.62652779e-01 -9.29904521e-01 -2.77813107e-01
2.08394676e-02 2.92650789e-01 8.71180773e-01 -8.17381859e-01
3.51532608e-01 5.47248363e-01 4.78180796e-01 -7.61369094e-02
-1.39801586e+00 -5.02748251e-01 1.46286618e-02 3.10361207e-01
-1.51565182e+00 -2.53476262e-01 9.37241554e-01 -2.86958307e-01
6.18879020e-01 2.25816637e-01 8.65897655e-01 9.16835666e-01
-1.37999177e-01 2.02281654e-01 1.31109095e+00 -2.88838178e-01
3.24733138e-01 -2.03893200e-01 -2.08263978e-01 3.01315874e-01
4.36544776e-01 -1.66600831e-02 -3.75198811e-01 2.80482113e-01
7.91511297e-01 3.12061489e-01 -7.00355768e-01 -2.78435230e-01
-1.09225881e+00 5.84299147e-01 7.58542657e-01 1.81060046e-01
-7.11902022e-01 6.03048243e-02 1.26735643e-01 -5.68342283e-02
2.22768098e-01 2.82942802e-01 -2.34062403e-01 3.95598173e-01
-1.04792118e+00 -7.67930076e-02 2.99123108e-01 7.84705460e-01
1.01194668e+00 2.62948960e-01 3.66564929e-01 8.59738827e-01
1.94873199e-01 8.98659110e-01 2.32235476e-01 -9.56401765e-01
3.68033439e-01 5.41389823e-01 1.60171404e-01 -1.25821722e+00
-6.64942861e-01 -7.68072724e-01 -1.57829797e+00 4.00819004e-01
3.18930864e-01 -6.54634759e-02 -6.74717188e-01 1.41052425e+00
1.31872758e-01 1.29834101e-01 1.20049298e-01 1.32242382e+00
6.51017725e-01 9.95438516e-01 -3.01457226e-01 -5.17616391e-01
1.38196838e+00 -6.80867910e-01 -6.35864735e-01 -3.87520373e-01
8.32461044e-02 -7.72229552e-01 9.46271360e-01 8.41000915e-01
-1.00521910e+00 -6.57579899e-01 -1.13330150e+00 1.12720644e-02
-2.66885936e-01 6.11575067e-01 6.10129476e-01 4.87723768e-01
-9.87331688e-01 4.44392592e-01 -6.88862383e-01 -1.69388190e-01
2.34668881e-01 2.25165319e-02 -5.32830179e-01 -3.61156911e-01
-8.08266640e-01 4.17808682e-01 4.35118079e-01 4.09087747e-01
-6.12384081e-01 -6.30058348e-01 -8.05226684e-01 2.32661009e-01
4.71790045e-01 -4.18881506e-01 6.51975155e-01 -1.06295574e+00
-1.35092652e+00 5.88199735e-01 2.32217878e-01 -3.21716994e-01
2.07452893e-01 3.89376516e-03 -5.52808702e-01 4.07490402e-01
-1.35545507e-01 4.99058455e-01 1.00641453e+00 -1.25652444e+00
-6.75783992e-01 -5.78128755e-01 1.32625476e-01 2.08782479e-01
-5.90017796e-01 -3.52045566e-01 -6.46556675e-01 -5.81833184e-01
4.24458474e-01 -9.84779835e-01 -2.56686509e-01 1.61270589e-01
-4.91075754e-01 4.41652596e-01 5.41229725e-01 -6.46709621e-01
9.73195314e-01 -2.36246276e+00 4.64273579e-02 2.68807083e-01
2.39726245e-01 3.98436278e-01 -1.31988510e-01 2.27694958e-01
-3.87664974e-01 -2.17507198e-01 -5.12429476e-01 -1.53149366e-01
-3.71257037e-01 -5.70999347e-02 -9.23120454e-02 6.77502275e-01
-4.98274378e-02 2.67727435e-01 -4.76692617e-01 5.94582185e-02
4.71068710e-01 5.21513283e-01 -3.29368025e-01 1.76166072e-01
-1.23938270e-01 4.43116486e-01 4.37990762e-02 4.80876744e-01
1.30621374e+00 -4.84436214e-01 2.57106334e-01 -6.90711319e-01
-5.77946126e-01 -3.46387506e-01 -1.42776167e+00 1.97996712e+00
-5.93692064e-01 6.41006052e-01 3.44824106e-01 -8.46365392e-01
9.84852374e-01 1.49443388e-01 5.15268981e-01 -8.02124143e-01
1.21457316e-01 2.46037871e-01 -1.02457449e-01 -3.62958819e-01
5.68410337e-01 6.93572462e-02 3.74561429e-01 2.75273472e-01
-2.92828709e-01 -1.57327458e-01 2.78892308e-01 -1.93232954e-01
7.47421443e-01 -2.96558559e-01 1.72583684e-01 -2.01948602e-02
8.72209311e-01 4.73996140e-02 5.16902804e-01 4.48568612e-01
2.71233827e-01 7.23404348e-01 1.62612125e-01 -5.08879244e-01
-1.19160378e+00 -7.46674955e-01 -2.09609076e-01 5.76434016e-01
3.65551800e-01 -9.72613245e-02 -7.53733039e-01 4.81236875e-02
-3.46679986e-01 4.60808188e-01 -1.92830727e-01 2.32873902e-01
-2.31836438e-01 -8.54172945e-01 3.94153483e-02 2.89932787e-01
1.10427809e+00 -6.37656569e-01 -7.74999678e-01 1.31201774e-01
-1.47169307e-01 -1.59296262e+00 -6.87246025e-03 1.73510477e-01
-8.59284401e-01 -1.17008090e+00 -6.60513461e-01 -3.67714107e-01
5.65838397e-01 8.45144093e-01 7.22025633e-01 -2.62528509e-01
-3.00425023e-01 4.85180579e-02 -3.24453026e-01 -1.08120568e-01
1.07982129e-01 -1.23795033e-01 -1.81205526e-01 4.76658046e-01
6.25254679e-03 -8.04525077e-01 -8.40867579e-01 3.16827744e-02
-1.38084316e+00 4.91127819e-01 7.97547519e-01 7.60765254e-01
8.85976434e-01 5.54650724e-01 -7.42650554e-02 -4.96401787e-01
2.72954851e-01 -1.47158042e-01 -1.31234086e+00 9.13137347e-02
-4.46050376e-01 -3.75663698e-01 1.14133942e+00 -1.06881507e-01
-1.11418819e+00 5.72649539e-01 -1.24884591e-01 -4.39843297e-01
-3.26525092e-01 6.29007399e-01 -2.21412331e-01 -1.91928595e-01
6.56150043e-01 3.71468544e-01 -5.26092537e-02 -5.74476063e-01
2.27920681e-01 6.29685283e-01 7.52241850e-01 7.36943930e-02
9.47349489e-01 8.87468934e-01 2.72755474e-01 -1.13055277e+00
-7.84841061e-01 -4.58525866e-01 -4.93964285e-01 -2.96181202e-01
1.02606440e+00 -1.24861622e+00 -9.61763561e-01 9.43226933e-01
-1.21452045e+00 -1.59455925e-01 7.78857470e-02 5.70215642e-01
-1.67689413e-01 4.19003367e-01 -3.17207098e-01 -5.41886568e-01
-3.74539584e-01 -1.32497156e+00 9.73317266e-01 3.98293346e-01
6.26284719e-01 -6.41821742e-01 -3.36531997e-01 2.12353975e-01
4.20635045e-01 2.97063798e-01 6.64889514e-01 9.98774618e-02
-8.88673127e-01 -1.72446862e-01 -7.45359540e-01 6.91650152e-01
2.13335276e-01 -3.52008343e-02 -1.03387272e+00 -4.11207259e-01
9.71210301e-02 -7.49928653e-02 7.33401597e-01 4.74960774e-01
1.61230969e+00 -2.34969631e-02 2.94595182e-01 1.18798351e+00
2.14654016e+00 1.13349877e-01 6.97362244e-01 3.56018811e-01
8.54048729e-01 5.63531756e-01 3.98526967e-01 6.99482620e-01
9.02043581e-02 6.51357591e-01 1.12811530e+00 -5.03505766e-01
1.54713988e-01 2.83057630e-01 9.22516882e-02 4.80538785e-01
-8.60730410e-02 -2.86033541e-01 -7.61833906e-01 2.16238812e-01
-1.53384030e+00 -9.09392893e-01 -6.02770329e-01 2.36017275e+00
3.27144593e-01 -2.87411898e-01 -2.59156436e-01 4.41236556e-01
7.88514078e-01 4.77034092e-01 -6.81100786e-01 1.18415147e-01
-4.59896713e-01 3.49163890e-01 9.67260122e-01 1.83261052e-01
-1.10810840e+00 6.16366744e-01 4.78846693e+00 6.56014085e-01
-1.62436330e+00 -3.04978117e-02 6.21719420e-01 -4.84742410e-02
5.90821430e-02 -1.92366600e-01 -4.38251525e-01 4.72448707e-01
5.07581592e-01 1.74178764e-01 8.63750160e-01 6.85790777e-01
4.93705839e-01 -6.13389373e-01 -5.41864812e-01 1.60765970e+00
8.58508572e-02 -1.30371928e+00 -1.52188763e-01 2.26788923e-01
7.90170372e-01 8.88980925e-02 8.96217525e-02 -5.77283025e-01
-2.50637922e-02 -7.44439423e-01 4.52571899e-01 4.94683772e-01
8.80630791e-01 -9.35455978e-01 7.53404498e-01 3.80831331e-01
-1.07599914e+00 -2.48936817e-01 -6.76744163e-01 8.71990547e-02
7.35005736e-02 1.13096595e+00 -2.10892797e-01 8.68951201e-01
7.91859269e-01 6.56283796e-01 -6.48249924e-01 1.08695483e+00
-3.13444138e-01 2.66752750e-01 -1.94726810e-01 5.18519402e-01
4.70438600e-01 -6.99303567e-01 2.45343477e-01 7.85771430e-01
8.82097781e-01 1.67698145e-01 2.65941694e-02 7.77489245e-01
-1.58513427e-01 2.14814916e-02 -5.74459612e-01 7.45425001e-02
2.71952480e-01 1.72336793e+00 -4.91309494e-01 -1.03280723e-01
-6.29001737e-01 1.10509288e+00 -1.28347084e-01 4.08624083e-01
-7.95051277e-01 -2.58769244e-01 7.01466858e-01 -1.05725318e-01
2.53426552e-01 -3.80884290e-01 -4.83265631e-02 -9.78902996e-01
2.26512671e-01 -9.77520943e-01 2.39116643e-02 -1.25440121e+00
-1.00158989e+00 7.48864412e-01 -4.72148210e-01 -1.55661988e+00
4.00470570e-02 -8.78297329e-01 -1.11631230e-01 1.07359552e+00
-1.78135490e+00 -1.01745045e+00 -1.20914447e+00 7.36219466e-01
1.12492040e-01 6.29068092e-02 7.16565549e-01 4.82277125e-01
-8.63869905e-01 3.40264803e-03 3.14390153e-01 7.77482539e-02
5.07883549e-01 -8.87648165e-01 9.00276303e-02 1.21100092e+00
-9.44866613e-02 2.69929439e-01 3.95907909e-01 -1.56794056e-01
-1.84529161e+00 -1.30889845e+00 1.68787375e-01 5.27183950e-01
5.83542705e-01 3.87698933e-02 -8.76307070e-01 1.94646850e-01
2.76862293e-01 2.91919947e-01 6.01700902e-01 -4.43598658e-01
-2.36274838e-01 -7.85067797e-01 -8.19229901e-01 3.78638625e-01
7.58856833e-01 -4.59619224e-01 2.46270522e-01 4.75247741e-01
5.11923194e-01 -4.22232032e-01 -8.55536222e-01 3.11920464e-01
3.65282238e-01 -1.56871593e+00 8.86132598e-01 2.85308510e-01
6.41413033e-01 -7.17507362e-01 -3.17735106e-01 -1.36423683e+00
-3.18775296e-01 -2.52805978e-01 3.27187896e-01 1.05681670e+00
1.52568787e-01 -6.26181602e-01 6.76525831e-01 1.46218166e-01
-2.21062288e-01 -3.95342171e-01 -6.26615405e-01 -8.70675325e-01
-5.66337705e-01 -4.98016685e-01 6.81938827e-01 9.37581778e-01
-7.76664257e-01 1.50004178e-01 -4.95655537e-01 8.52111161e-01
8.64040136e-01 3.49538326e-01 7.94216752e-01 -1.24223137e+00
-2.60739535e-01 -3.75135332e-01 -3.63632232e-01 -1.06142330e+00
-6.97652549e-02 -6.03196800e-01 -7.80119821e-02 -1.58612764e+00
-3.23185809e-02 -1.95272297e-01 -6.00650422e-02 1.39745072e-01
1.59451819e-03 5.95432520e-01 3.74945104e-01 1.78357393e-01
-1.28547177e-01 4.25264537e-01 1.27764690e+00 -2.31266037e-01
-1.58239245e-01 -2.65078157e-01 -6.83999479e-01 7.67681181e-01
7.16264427e-01 -8.81656185e-02 -3.42139989e-01 -8.64560544e-01
5.46474457e-01 2.29530424e-01 5.54380417e-01 -1.43861413e+00
5.22792101e-01 -7.87534118e-02 4.53150839e-01 -6.93379819e-01
6.12493217e-01 -1.35815871e+00 6.05756700e-01 2.52343208e-01
3.99033949e-02 -7.86963403e-02 2.27541566e-01 4.08152372e-01
-4.40681607e-01 -3.02736461e-01 1.03374350e+00 -6.92331418e-02
-7.94373274e-01 5.14422357e-01 -2.17607334e-01 -4.78718787e-01
8.16028774e-01 -2.81251341e-01 -3.63688678e-01 -3.16607386e-01
-3.61328959e-01 -1.55184612e-01 5.89220583e-01 -2.12729529e-01
5.64292312e-01 -1.14234006e+00 -5.34017622e-01 3.67124349e-01
2.57042110e-01 3.62748027e-01 8.17204416e-01 8.95951390e-01
-8.65145087e-01 1.52126864e-01 -3.27991396e-01 -8.21418405e-01
-1.13668323e+00 4.10224706e-01 2.93975383e-01 6.41724318e-02
-4.95675445e-01 5.44048011e-01 1.27231836e-01 -1.12027243e-01
1.31805882e-01 -3.14721704e-01 -1.30079284e-01 3.08135837e-01
7.10156381e-01 3.34973961e-01 3.79012316e-01 -6.46835268e-01
-1.07827090e-01 7.29758680e-01 3.35410655e-01 1.67384297e-02
1.58187008e+00 -2.61078831e-02 -5.59407294e-01 9.95380357e-02
1.18708491e+00 1.56572714e-01 -1.33197117e+00 -2.44215623e-01
-5.22502542e-01 -6.73587501e-01 5.18486261e-01 -5.61672270e-01
-1.46780133e+00 9.18994963e-01 8.68921280e-01 3.67136776e-01
2.03038836e+00 -6.58478916e-01 4.54185635e-01 5.21045864e-01
2.94446141e-01 -9.43209231e-01 -1.68640763e-01 4.81668293e-01
7.71275401e-01 -1.29979980e+00 2.48549566e-01 -4.66828644e-01
-4.04315352e-01 1.31072736e+00 3.21969628e-01 2.46841703e-02
3.64583820e-01 1.48063362e-01 -4.07020114e-02 -8.21724012e-02
-1.68531477e-01 -3.95911485e-01 -1.94990896e-02 4.95919943e-01
2.79463112e-01 4.56133261e-02 -1.54560730e-02 4.27463092e-02
-5.83730116e-02 -1.99113101e-01 6.65369570e-01 2.68705517e-01
-4.30994004e-01 -7.49211729e-01 -6.46229029e-01 2.74981827e-01
-1.80393264e-01 -2.91520119e-01 -1.29770979e-01 7.16824472e-01
1.40488774e-01 1.01104128e+00 2.53433466e-01 -3.36914390e-01
2.85823196e-01 -4.50192958e-01 2.04816833e-01 -2.86844730e-01
-2.73106426e-01 2.89146721e-01 -2.35165238e-01 -7.36364841e-01
-6.46564662e-01 -2.95925230e-01 -9.49975371e-01 -4.69149262e-01
-3.55454236e-01 -2.83666879e-01 1.14426208e+00 6.07192159e-01
1.82290584e-01 5.72713375e-01 1.02375615e+00 -9.80634809e-01
-1.05163194e-01 -7.87045240e-01 -8.57484996e-01 1.44369349e-01
2.70859599e-01 -2.75025994e-01 -4.35712308e-01 1.41845167e-01] | [10.222865104675293, -2.083768844604492] |
49854822-9f72-4751-844e-6fc1f2dd400f | speed-reading-learning-to-read-forbackward | null | null | https://aclanthology.org/D18-1474 | https://aclanthology.org/D18-1474.pdf | Speed Reading: Learning to Read ForBackward via Shuttle | We present LSTM-Shuttle, which applies human speed reading techniques to natural language processing tasks for accurate and efficient comprehension. In contrast to previous work, LSTM-Shuttle not only reads shuttling forward but also goes back. Shuttling forward enables high efficiency, and going backward gives the model a chance to recover lost information, ensuring better prediction. We evaluate LSTM-Shuttle on sentiment analysis, news classification, and cloze on IMDB, Rotten Tomatoes, AG, and Children{'}s Book Test datasets. We show that LSTM-Shuttle predicts both better and more quickly. To demonstrate how LSTM-Shuttle actually behaves, we also analyze the shuttling operation and present a case study. | ['Wei-Yun Ma', 'Tsu-Jui Fu'] | 2018-10-01 | null | null | null | emnlp-2018-10 | ['news-classification'] | ['natural-language-processing'] | [ 4.06910717e-01 2.00812697e-01 -1.22061238e-01 -5.67769587e-01
-5.93199968e-01 -4.18716192e-01 -1.22797024e-02 6.49056613e-01
-5.99048853e-01 4.48792160e-01 2.87657231e-01 -6.18035495e-01
1.95789441e-01 -7.55693018e-01 -9.64086771e-01 -7.50966296e-02
3.58321071e-02 5.10642409e-01 1.94955971e-02 -3.16181928e-01
4.06497657e-01 -3.14278960e-01 -1.22822058e+00 9.80455577e-01
9.67331707e-01 8.82956982e-01 4.22688097e-01 8.45120072e-01
-4.26886827e-01 1.49246192e+00 -6.04435563e-01 -6.68694615e-01
-2.45149747e-01 -2.79379606e-01 -1.26615119e+00 -5.51282644e-01
6.33558452e-01 -5.58256984e-01 2.26804927e-01 6.81675553e-01
2.41360202e-01 3.02507550e-01 3.23421568e-01 -7.00710475e-01
-8.21006536e-01 1.29935801e+00 -5.16500413e-01 4.13856059e-01
6.05729640e-01 -1.11247517e-01 1.07060528e+00 -8.95729125e-01
4.00318623e-01 1.23594332e+00 7.19329655e-01 5.92000306e-01
-9.86887038e-01 -5.86052120e-01 4.88662809e-01 3.31195801e-01
-5.14096558e-01 -3.06618720e-01 -9.06047523e-02 -1.49160564e-01
1.61818957e+00 2.48342648e-01 6.94072068e-01 1.40996301e+00
6.03255749e-01 1.39789045e+00 9.71208155e-01 -5.93319297e-01
-6.50381446e-02 -4.80927564e-02 7.41518617e-01 6.96715593e-01
-7.98067600e-02 -6.59466684e-02 -1.06546474e+00 3.20418656e-01
2.30229199e-01 4.43307273e-02 -3.96956265e-01 9.61652845e-02
-1.39588857e+00 5.46610713e-01 5.26557624e-01 3.79073381e-01
-3.72785598e-01 1.24050811e-01 5.74999213e-01 9.18892741e-01
9.40227211e-01 5.96714795e-01 -9.98867631e-01 -5.14030695e-01
-1.08190656e+00 -6.83566332e-02 1.03976846e+00 9.96270657e-01
2.33600810e-01 -4.70875464e-02 -3.51162553e-01 8.33305061e-01
-4.15895842e-02 6.24740720e-01 6.99611068e-01 -6.33132875e-01
7.75288284e-01 2.08834484e-01 -1.08760685e-01 -8.66665483e-01
-5.90019763e-01 -6.00947440e-01 -8.47585738e-01 -4.23776954e-01
2.19595760e-01 -9.53136906e-02 -9.54183936e-01 1.71177602e+00
-3.44003052e-01 -2.17712447e-01 -4.19097766e-03 4.15212452e-01
8.37336719e-01 8.79489779e-01 1.98766366e-02 -7.66207278e-02
1.04246724e+00 -1.33950067e+00 -6.18205428e-01 -5.43118417e-01
1.20817959e+00 -3.13954085e-01 1.45152569e+00 9.96662199e-01
-1.23002958e+00 -2.29593664e-01 -8.24069262e-01 -3.35611999e-01
-4.10221189e-01 -9.98908058e-02 2.83736050e-01 4.50601131e-01
-1.31492448e+00 9.02048528e-01 -9.42006409e-01 -5.00480413e-01
3.64590406e-01 1.91723496e-01 -3.47390711e-01 -2.36986890e-01
-1.22458124e+00 1.41326928e+00 3.89989913e-01 1.60313025e-01
-7.48135626e-01 -5.56648612e-01 -9.06585872e-01 5.30957103e-01
2.31818348e-01 -7.58970976e-01 1.99165273e+00 -1.03678298e+00
-1.58011925e+00 5.45356989e-01 -4.63163972e-01 -1.07828534e+00
4.14176553e-01 -8.88899744e-01 -7.05388635e-02 -3.37371558e-01
-1.57951757e-01 8.31988752e-01 6.04251623e-01 -5.25069892e-01
-4.54692155e-01 -3.27258825e-01 -1.62867248e-01 2.64853507e-01
-6.19505823e-01 1.55126840e-01 6.50213957e-02 -5.88535726e-01
9.85276103e-02 -4.52206194e-01 1.33280143e-01 -3.59040916e-01
-7.24011898e-01 -2.72724718e-01 3.04373443e-01 -1.02941847e+00
1.36257064e+00 -1.79871082e+00 1.97487250e-01 -1.41600013e-01
4.75825697e-01 3.00582707e-01 -6.03136420e-01 5.53660870e-01
-7.19886348e-02 3.14993978e-01 1.91276819e-02 -7.61176288e-01
-1.15697488e-01 2.46764839e-01 -4.70653355e-01 2.96646003e-02
-1.26577109e-01 1.11039281e+00 -8.82841825e-01 -1.73755616e-01
3.83468978e-02 1.87764287e-01 -5.06935298e-01 4.07623090e-02
-5.84845901e-01 3.34675908e-02 -4.32953760e-02 5.71561515e-01
3.42847615e-01 -3.41720879e-01 -1.80748299e-01 4.13369864e-01
-1.35502055e-01 7.45219529e-01 -1.46637231e-01 1.73517501e+00
-7.01799095e-01 1.11399770e+00 -3.69249225e-01 -6.83147430e-01
6.59858704e-01 7.27370977e-02 -3.42684686e-01 -1.45859861e+00
2.99226910e-01 3.42579037e-02 -1.72250822e-01 -6.19202852e-01
7.69622445e-01 9.89218578e-02 7.46635646e-02 7.86820233e-01
-2.91881934e-02 2.67956316e-01 1.12460721e-02 4.47054088e-01
1.11021841e+00 1.19466916e-01 1.05150662e-01 -1.00358829e-01
-6.89914897e-02 -3.32798548e-02 4.39185090e-02 1.25417590e+00
2.08990932e-01 2.92362630e-01 4.33721989e-01 -3.75659376e-01
-6.35507584e-01 -8.04329693e-01 4.63341266e-01 2.00493097e+00
-3.38636100e-01 -3.40546042e-01 -9.71148133e-01 -6.57802105e-01
-3.64956886e-01 1.54397321e+00 -9.01960373e-01 -2.30751783e-01
-3.94675761e-01 -3.54014814e-01 5.79878569e-01 6.30870640e-01
5.69030464e-01 -1.19501042e+00 -1.00411046e+00 2.50608712e-01
-4.48052138e-01 -6.75827920e-01 -3.12152565e-01 4.84510094e-01
-1.04331982e+00 -5.01097620e-01 -5.84874332e-01 -6.55952394e-01
2.24482536e-01 2.52120435e-01 1.68276274e+00 3.06776941e-01
3.55396807e-01 -6.76913559e-02 -6.59799218e-01 -6.84978604e-01
-3.84556234e-01 6.41080558e-01 -1.93624884e-01 -7.24575043e-01
4.58072335e-01 -4.21672553e-01 -1.70293897e-01 -6.63081482e-02
-5.56558371e-01 5.34457743e-01 5.23696661e-01 1.14477873e+00
4.65181023e-02 -3.82549554e-01 5.36494493e-01 -1.08790624e+00
6.50481761e-01 -5.81219316e-01 -1.44150943e-01 5.37122309e-01
-7.51948357e-01 1.14119999e-01 6.56023324e-01 -2.95429140e-01
-9.34805155e-01 -5.27173877e-01 -3.33079875e-01 -1.57003418e-01
-1.09753096e-02 8.62547815e-01 3.49676490e-01 3.16354185e-01
6.61258161e-01 5.23918509e-01 -2.96388984e-01 -7.36470163e-01
2.24863991e-01 4.68951851e-01 4.42400455e-01 -2.46732906e-01
7.15933815e-02 -1.27547786e-01 -9.11533415e-01 -6.30873084e-01
-1.51368213e+00 1.53601125e-01 -4.11903471e-01 -1.03178263e-01
6.75229788e-01 -6.63039684e-01 -1.02873409e+00 7.29241788e-01
-1.41392684e+00 -7.00301230e-01 -9.00819600e-02 9.19912383e-02
-1.35846615e-01 -9.52707753e-02 -1.08053327e+00 -6.83196306e-01
-9.13616478e-01 -7.07943559e-01 8.08888078e-01 1.31272689e-01
-4.76428747e-01 -1.19468904e+00 -1.05227400e-02 2.61937469e-01
8.14432621e-01 -2.17993945e-01 1.15255010e+00 -1.21001077e+00
-1.97213098e-01 -1.61007047e-01 -1.51576504e-01 6.38864577e-01
-4.90819395e-01 -1.42403841e-01 -9.94809806e-01 -4.44240153e-01
1.47998586e-01 -6.34513855e-01 1.25406420e+00 3.75282943e-01
1.17129254e+00 -5.37917614e-01 -1.43049598e-01 4.72170502e-01
9.95194674e-01 1.17025763e-01 4.43269968e-01 5.45365512e-01
7.21262038e-01 5.91137171e-01 6.09485924e-01 2.26283550e-01
8.69418859e-01 -1.05702421e-02 3.76515716e-01 -1.97235301e-01
3.18872899e-01 -8.25460196e-01 7.85422862e-01 1.33323097e+00
4.39997345e-01 -9.81047988e-01 -1.00098419e+00 4.21623886e-01
-1.61562014e+00 -7.35201895e-01 -4.81800586e-02 1.98648727e+00
7.16800213e-01 4.22670007e-01 -1.71605334e-01 1.94526374e-01
4.58540767e-01 1.27464309e-01 -6.47220790e-01 -1.10302353e+00
5.57967797e-02 5.03903091e-01 5.13674259e-01 5.24239361e-01
-5.97002804e-01 1.24722469e+00 6.93606615e+00 6.57095015e-01
-1.40497351e+00 3.81639957e-01 8.38858187e-01 -3.17655951e-01
-3.16163570e-01 -1.87047303e-01 -4.21741158e-01 3.03814858e-01
1.06931043e+00 -3.88182700e-02 3.35454196e-01 5.58374763e-01
1.62917286e-01 -5.04622400e-01 -1.44409919e+00 5.37850797e-01
1.74039930e-01 -9.95811224e-01 2.53893822e-01 -4.39837188e-01
2.34568477e-01 5.37413478e-01 2.19246402e-01 6.51343524e-01
3.44677061e-01 -1.44157541e+00 9.03731823e-01 4.53553081e-01
4.24794912e-01 -6.93937719e-01 7.27003813e-01 9.87855375e-01
-3.81420255e-01 -1.02182262e-01 -1.97757453e-01 -5.73647022e-01
-2.01688707e-02 5.20685971e-01 -1.12940872e+00 2.25136101e-01
9.29000735e-01 9.51329231e-01 -7.78495133e-01 6.85797989e-01
-4.96330768e-01 9.42465365e-01 -2.53284454e-01 -4.63808060e-01
2.34459415e-01 3.47645789e-01 3.85565281e-01 1.36871970e+00
3.46989810e-01 -1.76111422e-02 -4.23006751e-02 7.01122701e-01
-1.73527583e-01 1.25583842e-01 -3.59981447e-01 -2.04388112e-01
5.29236317e-01 6.84801579e-01 -4.41194564e-01 -6.09183431e-01
-3.02799791e-02 1.17668545e+00 4.97608066e-01 3.56812924e-01
-5.53325474e-01 -4.28111166e-01 9.76511762e-02 2.83174552e-02
7.06676096e-02 -3.13113183e-02 -5.26004851e-01 -1.29184854e+00
-2.60196596e-01 -9.68217015e-01 3.71225268e-01 -1.16691577e+00
-1.01181149e+00 9.63936687e-01 -1.19635336e-01 -5.96578300e-01
-5.64537704e-01 -6.05454147e-01 -7.05732286e-01 5.32118261e-01
-1.29044759e+00 -9.09118831e-01 -1.81016237e-01 1.46968141e-01
1.08556390e+00 2.51450628e-01 9.38186347e-01 5.80915622e-02
-8.48218143e-01 7.88716137e-01 1.72048006e-02 -8.35156441e-03
5.25242448e-01 -1.36381316e+00 1.17256737e+00 6.92354679e-01
1.93486482e-01 6.35292232e-01 1.02577507e+00 -4.74516273e-01
-1.03535497e+00 -6.90155804e-01 1.22785497e+00 -5.13352752e-01
5.49802721e-01 -4.86387372e-01 -1.06982839e+00 1.20315528e+00
7.92353630e-01 -8.94766033e-01 4.67729062e-01 3.66382003e-01
-4.84376907e-01 1.26830623e-01 -8.88778210e-01 3.65973920e-01
7.62239039e-01 -3.41901392e-01 -9.34180975e-01 2.87495047e-01
1.03786147e+00 -6.00289524e-01 -6.58753216e-01 1.69640049e-01
6.62161529e-01 -1.34706998e+00 4.51178461e-01 -6.53094947e-01
8.62521529e-01 5.82279682e-01 1.17795162e-01 -1.92983830e+00
1.31277323e-01 -3.41078132e-01 9.09019783e-02 8.78850698e-01
7.80660808e-01 -8.17476988e-01 5.65094292e-01 3.14504743e-01
-1.50858805e-01 -9.61929440e-01 -6.57491744e-01 -4.73765910e-01
4.69297767e-01 -6.78894341e-01 5.60452819e-01 8.19205701e-01
2.62123555e-01 5.05119681e-01 -5.21442711e-01 -3.66509974e-01
4.00904983e-01 -1.20180018e-01 3.92823607e-01 -1.04223979e+00
-3.08197528e-01 -2.87740856e-01 2.60984451e-01 -1.60467494e+00
1.55036151e-01 -6.84587836e-01 2.54219443e-01 -1.72616494e+00
2.59346306e-01 -5.18674962e-02 -3.96271706e-01 9.05090928e-01
7.75695369e-02 -1.92529872e-01 2.58891732e-01 -2.60327995e-01
-7.42926836e-01 3.20889384e-01 1.10538208e+00 -2.50570893e-01
-7.79736340e-02 2.32405886e-02 -7.17805147e-01 6.65654182e-01
7.98642516e-01 -4.94506896e-01 -3.61805379e-01 -1.30346394e+00
7.09871769e-01 4.24794674e-01 1.51156485e-01 -7.79833555e-01
3.66193771e-01 1.84394434e-01 4.25660074e-01 -8.32643569e-01
2.63331324e-01 -1.28794506e-01 -5.57163835e-01 5.97107053e-01
-1.05612350e+00 6.04482234e-01 2.52057135e-01 8.46478567e-02
-2.58837849e-01 -2.09665537e-01 4.66334283e-01 -3.39383930e-01
-4.17023987e-01 -1.14857532e-01 -7.69323707e-01 1.94136500e-01
3.10667902e-01 -5.93758700e-03 -6.82335854e-01 -7.33652353e-01
-7.24069655e-01 7.48281896e-01 3.43924105e-01 6.84465408e-01
9.03571248e-01 -5.70627749e-01 -7.12557316e-01 3.77742946e-01
-5.27687147e-02 1.00953490e-01 2.88396329e-01 8.84522378e-01
-5.25970876e-01 4.71339107e-01 -1.02221202e-02 -6.25959933e-01
-1.34168315e+00 3.55584562e-01 4.89729345e-01 -3.11326057e-01
-5.39166391e-01 1.45439732e+00 -2.25147642e-02 -4.62429911e-01
5.37909269e-01 -1.17716968e+00 -2.36975923e-01 1.96256652e-01
6.19511247e-01 1.99571952e-01 3.23572308e-01 6.64676130e-02
-1.14481792e-01 4.12777998e-02 -5.62966168e-01 -2.06978142e-01
1.25991440e+00 -3.13870192e-01 -4.22625273e-01 8.40908766e-01
9.13498819e-01 -3.48166853e-01 -4.16465372e-01 -2.00323910e-01
4.55712199e-01 -1.90437987e-01 3.37886102e-02 -1.29454851e+00
-8.60061347e-01 1.33714819e+00 1.97163299e-01 2.26882964e-01
1.13117731e+00 -4.09952343e-01 1.30579305e+00 8.94528627e-01
3.44530284e-01 -8.36634219e-01 9.19790491e-02 1.04817879e+00
5.87474108e-01 -9.28357065e-01 -4.20947343e-01 9.73521098e-02
-6.31818950e-01 8.64485085e-01 8.36789370e-01 1.72609985e-01
1.41460419e-01 3.71172816e-01 1.07640907e-01 -1.44949019e-01
-1.72624540e+00 3.45504999e-01 -6.48494437e-02 2.19020844e-01
5.83495915e-01 -1.45478938e-02 3.34641248e-01 6.56876206e-01
-6.30336165e-01 1.68879360e-01 7.82210231e-01 1.01289272e+00
-8.79240334e-01 -6.87957287e-01 -1.63588420e-01 7.99629033e-01
-4.30276662e-01 -7.27558613e-01 -4.74303842e-01 4.39855427e-01
-1.50237486e-01 1.06450891e+00 2.22699687e-01 -6.83908820e-01
2.82307357e-01 2.44529068e-01 3.81728232e-01 -6.87149882e-01
-1.08215439e+00 -3.18033665e-01 3.09311062e-01 -6.81232989e-01
8.16384107e-02 -2.76889235e-01 -1.12339759e+00 -6.26228154e-01
-6.00171268e-01 2.22254530e-01 5.85812032e-01 1.28174305e+00
2.26234540e-01 5.66493213e-01 3.31780285e-01 -5.36314249e-01
-7.41990864e-01 -1.37945700e+00 -2.62334198e-01 -3.27702582e-01
6.51370704e-01 -8.49477947e-02 -2.01331928e-01 -4.13943022e-01] | [11.255081176757812, 8.36172866821289] |
0c761c35-0991-4bd9-bd2f-b40da4a17294 | an-optimal-energy-management-algorithm | 2303.04503 | null | https://arxiv.org/abs/2303.04503v1 | https://arxiv.org/pdf/2303.04503v1.pdf | An Optimal Energy Management Algorithm Considering Regenerative Braking and Renewable Energy for EV Charging in Railway Stations | This paper proposes a novel optimal Energy Management System (EMS) algorithm for Electric Vehicle (EV) charging in smart electric railway stations with renewable generation. As opposed to previous railway EMS methods, the proposed EMS coordinates the combined Regenerative Braking Energy (RBE), renewable generation, electric railway demand and EV charging demand at the EV parking lot of the railway station. Numerical results using a scenario-based approach on an actual railway station in Chur, Switzerland demonstrate that the proposed algorithm can effectively minimize the expected daily operating cost for the train station over an entire year. | ['Gabriela Hug', 'Yannick Zwirner', 'Georgia Pierrou'] | 2023-03-08 | null | null | null | null | ['energy-management'] | ['time-series'] | [-3.94129246e-01 5.89317456e-02 -3.52204405e-02 8.41318537e-03
-6.99288070e-01 -4.64204222e-01 4.86576080e-01 -1.49723858e-01
-5.04655778e-01 1.34402013e+00 -1.21321291e-01 -4.24492866e-01
-7.20336497e-01 -1.12943983e+00 -3.16284448e-01 -8.68584812e-01
3.83497626e-01 8.22221398e-01 -1.83367327e-01 -7.06973910e-01
3.85409296e-01 1.08135009e+00 -1.34944737e+00 -5.28553903e-01
8.74639928e-01 1.00202239e+00 8.48419726e-01 -2.43027210e-02
-8.60492699e-03 2.01665938e-01 -4.49180931e-01 -2.51295507e-01
-1.17357239e-01 -1.37367453e-02 -8.51718545e-01 -2.46613950e-01
-1.24465358e+00 -1.08438924e-01 -3.06234121e-01 6.85366511e-01
5.92969954e-01 4.36739951e-01 6.79317296e-01 -1.77392542e+00
1.50120422e-01 7.19313502e-01 -2.81060278e-01 1.38558939e-01
-2.84881592e-01 -3.19438398e-01 6.68929338e-01 -7.05554605e-01
4.68537807e-01 4.51103747e-01 2.71098077e-01 5.23719847e-01
-9.59073007e-01 -3.26029867e-01 -4.91137892e-01 8.00222754e-01
-1.56448555e+00 -3.64026576e-02 1.03379500e+00 1.86581507e-01
1.45125711e+00 6.38725936e-01 1.37343693e+00 6.48894766e-03
5.63110173e-01 7.45339751e-01 9.56609070e-01 -2.40364745e-01
5.65896213e-01 8.22492093e-02 8.31797048e-02 -5.75965226e-01
6.22576952e-01 -2.44190529e-01 3.94237638e-01 1.06910288e-01
-1.77112684e-01 -2.86388397e-01 1.10807233e-01 -1.85064077e-01
-5.41986525e-01 7.41205990e-01 -1.28250420e-01 7.43548930e-01
-8.74065340e-01 3.50117207e-01 5.14575303e-01 -1.07607424e-01
2.48371497e-01 -5.67159057e-02 -5.11647403e-01 -2.55431592e-01
-9.23685968e-01 2.31849831e-02 5.41065574e-01 1.11220407e+00
3.32040608e-01 5.51816761e-01 1.90122858e-01 7.07526088e-01
2.57157087e-01 9.54146266e-01 -1.02922007e-01 -7.67650425e-01
9.37721580e-02 -9.14051011e-02 6.00785375e-01 7.62493238e-02
-6.61011517e-01 -6.15209103e-01 -7.59157479e-01 -5.25367036e-02
-3.07612509e-01 -5.14080942e-01 -2.57029403e-02 1.21557939e+00
1.55080594e-02 -2.01461658e-01 2.70596027e-01 3.12457174e-01
2.87115544e-01 7.08099902e-01 1.58284873e-01 -7.23944843e-01
1.25835717e+00 -4.02973413e-01 -1.15007341e+00 1.78136989e-01
4.17525589e-01 -4.83729213e-01 -1.49633542e-01 4.07613158e-01
-2.09980392e+00 1.23685393e-02 -7.54371524e-01 2.55043089e-01
-6.58133924e-01 -5.42604811e-02 2.33229190e-01 4.61637765e-01
-1.19232798e+00 5.53892612e-01 -4.88837153e-01 1.10564023e-01
1.33870959e-01 3.55177701e-01 2.66176183e-02 3.06211501e-01
-1.54238307e+00 1.50866485e+00 2.72019237e-01 7.28569925e-01
-4.43046182e-01 -5.86627781e-01 -6.35156751e-01 3.03901494e-01
-6.70382101e-03 -5.41010261e-01 1.13477850e+00 -1.00323841e-01
-1.28696835e+00 1.60659075e-01 2.11331807e-02 -3.82411510e-01
5.23194790e-01 3.91986251e-01 -5.76696277e-01 -3.61740738e-02
-1.01529889e-01 4.98036705e-02 -3.46863449e-01 -1.23471987e+00
-1.06239843e+00 1.02148941e-02 -4.66398418e-01 -1.44900575e-01
2.57518411e-01 -3.15752655e-01 5.68375945e-01 -3.77739280e-01
-5.67883432e-01 -9.69877124e-01 -4.00629878e-01 -1.17314661e+00
-3.32677849e-02 -1.02236056e+00 6.26221478e-01 -7.06054032e-01
8.23085308e-01 -1.77790630e+00 1.12518840e-01 6.75227642e-01
-9.59103525e-01 -2.50936091e-01 2.80279040e-01 9.54002857e-01
-3.17777455e-01 -1.73837572e-01 -5.95920645e-02 -6.61804602e-02
5.51291704e-01 8.30149889e-01 -3.71222571e-02 5.60406268e-01
-1.86625227e-01 9.64810431e-01 -1.02670562e+00 -2.37045601e-01
5.35201550e-01 6.21270537e-01 9.64498669e-02 -3.61671090e-01
3.26485068e-01 -2.26306245e-02 -5.35780311e-01 3.83090854e-01
1.24838495e+00 5.40868521e-01 1.08407632e-01 -3.03028494e-01
-7.27965891e-01 -1.06753595e-03 -1.17402565e+00 1.62687659e+00
-9.50672328e-01 7.07483470e-01 3.65214646e-01 -1.55471945e+00
8.26891840e-01 4.70912546e-01 1.32966375e+00 -1.23860121e+00
7.04051182e-02 5.37090540e-01 -5.80702066e-01 -4.09336686e-01
1.08308697e+00 -3.84910524e-01 -1.46415830e-01 2.97752261e-01
-1.12338968e-01 -9.79550034e-02 3.36050630e-01 3.85890082e-02
7.39732325e-01 -4.62560058e-02 -4.69220668e-01 -1.08407569e+00
6.52088761e-01 1.80381641e-01 6.65136218e-01 -1.59600884e-01
4.16513413e-01 -5.87265790e-01 1.11755304e-01 2.71069974e-01
-1.27121663e+00 -1.01528919e+00 -5.34542143e-01 3.14275503e-01
7.50782609e-01 3.00776333e-01 -5.67759037e-01 -1.27412766e-01
1.42564280e-02 1.98957646e+00 7.65431151e-02 -3.77954431e-02
-8.22708488e-01 -7.43288279e-01 -1.53232470e-01 4.94096726e-01
2.67755240e-01 -6.52006388e-01 -7.65391171e-01 5.12219429e-01
-6.75586879e-01 -7.74548650e-01 -1.09222598e-01 2.76560277e-01
-4.72692043e-01 -7.46377647e-01 -7.29623675e-01 -6.10728025e-01
8.78536701e-01 1.89163014e-01 1.17005301e+00 1.06244035e-01
-3.21534067e-01 6.70424640e-01 1.24704480e-01 -4.53731090e-01
-3.97863984e-01 -1.03735521e-01 -1.23742603e-01 -4.31336641e-01
2.30686024e-01 -2.10647255e-01 -1.02812994e+00 5.67504764e-01
-4.84101504e-01 -4.36080396e-02 8.80691484e-02 7.49414742e-01
7.23294318e-01 9.39161479e-01 1.60171986e+00 -1.12111814e-01
6.05843782e-01 -9.60405707e-01 -9.18071270e-01 3.55529606e-01
-9.19789493e-01 -1.97889104e-01 3.05644959e-01 2.65576154e-01
-1.44404924e+00 -2.00525612e-01 -7.64783919e-01 2.34058201e-01
1.05384089e-01 2.00600535e-01 -3.47601384e-01 1.31925836e-01
-7.85442293e-01 6.31594479e-01 -2.22523630e-01 -5.64181924e-01
-8.83677825e-02 7.03468740e-01 7.44791150e-01 -3.46431345e-01
7.94900715e-01 3.64630908e-01 6.94745123e-01 -3.46763164e-01
6.43006325e-01 -2.57550061e-01 -2.55712837e-01 -8.67420912e-01
8.20799589e-01 -8.33014905e-01 -1.51635194e+00 2.45268732e-01
-1.03938437e+00 -8.25537667e-02 -7.73852408e-01 7.55734086e-01
-9.32810783e-01 2.41649389e-01 4.85752337e-02 -1.46916759e+00
-4.81491297e-01 -9.85565960e-01 6.13295376e-01 1.45699278e-01
1.17296346e-01 -1.10950458e+00 -1.66834116e-01 1.50774807e-01
8.07786822e-01 4.96426493e-01 8.32826316e-01 -2.44937375e-01
-5.00401735e-01 -1.92318797e-01 1.53146282e-01 4.17411298e-01
-1.38002217e-01 -2.11761877e-01 -2.63881117e-01 -7.30129182e-01
-1.49419948e-01 4.14665550e-01 1.04147092e-01 3.04432392e-01
9.50243652e-01 6.16877116e-02 -6.32965326e-01 -3.84031922e-01
2.33619833e+00 6.31471753e-01 1.01938510e+00 6.24799073e-01
-3.72842252e-01 5.33392310e-01 1.37023556e+00 7.71470845e-01
9.21626687e-01 7.19489098e-01 7.71076739e-01 -2.53348172e-01
5.37451208e-01 4.18450594e-01 1.87530786e-01 6.81664288e-01
-5.58371782e-01 -2.23677278e-01 -3.93748045e-01 1.17583215e+00
-1.60018253e+00 -1.31873345e+00 -5.49285650e-01 2.13811421e+00
4.33670849e-01 -1.66255161e-02 1.28697187e-01 5.52396119e-01
6.42893136e-01 -8.04745734e-01 -8.78745019e-02 -1.03255105e+00
-2.08367094e-01 2.70486593e-01 1.41353345e+00 1.28370449e-01
2.34676361e-01 -3.71321172e-01 5.98500299e+00 1.37656093e+00
-4.06150579e-01 3.59508514e-01 -8.14512605e-04 -8.93097073e-02
-1.07440317e+00 1.11597694e-01 -5.19958258e-01 9.29602444e-01
1.41017473e+00 -1.19059598e+00 6.43229783e-01 5.52272856e-01
9.65946019e-01 -4.21519637e-01 -5.46937704e-01 4.04138565e-01
-5.99683702e-01 -1.37004173e+00 -6.64328635e-01 3.87631357e-01
4.91134435e-01 2.48576045e-01 -6.32851839e-01 1.93957731e-01
1.88251272e-01 -3.28538179e-01 8.79083812e-01 1.23013544e+00
4.92084831e-01 -2.06208014e+00 1.14346492e+00 4.93435651e-01
-1.48759556e+00 -2.17283115e-01 6.30568936e-02 8.13483655e-01
1.26912582e+00 3.00259441e-01 -3.23207945e-01 1.31412840e+00
7.90826380e-01 1.67394727e-01 1.59115210e-01 8.05336475e-01
4.32831615e-01 3.89957353e-02 -3.74985069e-01 -1.54387072e-01
2.21029133e-01 -7.12175846e-01 3.70432615e-01 9.78863835e-01
7.18322158e-01 1.04023747e-01 -6.95843756e-01 4.66037929e-01
1.28956899e-01 -1.94738224e-01 -3.82487416e-01 3.20132732e-01
5.43854892e-01 1.52968907e+00 -6.91530585e-01 -2.82942653e-01
-2.20157027e-01 2.66328037e-01 -8.62958610e-01 1.84541970e-01
-1.26565313e+00 -9.84450638e-01 3.55145961e-01 2.76306868e-01
3.52820516e-01 -3.76585126e-02 -2.14099929e-01 -3.39801997e-01
-2.97086090e-01 5.52699685e-01 1.54644683e-01 -1.11676526e+00
-1.05039787e+00 1.21162362e-01 7.03293920e-01 -1.21353936e+00
-5.50952435e-01 -2.22253501e-01 -7.65388072e-01 9.94822264e-01
-2.30633593e+00 -1.01545095e+00 8.15820023e-02 6.30347788e-01
8.13335359e-01 -8.60171914e-02 4.85311687e-01 9.71364617e-01
-4.28740203e-01 1.33962050e-01 1.05387640e+00 -5.04496634e-01
-3.57753515e-01 -1.38795495e+00 -7.30174705e-02 3.82914603e-01
-1.23294544e+00 -1.72650114e-01 1.13046670e+00 -3.52977395e-01
-1.91128349e+00 -7.27617025e-01 9.55800951e-01 3.76450956e-01
7.36323059e-01 1.65908802e-02 -4.31365639e-01 3.33475679e-01
1.36759377e+00 -6.97323918e-01 6.39097810e-01 -7.86264896e-01
1.24967206e+00 -2.27904409e-01 -1.68410182e+00 3.19618225e-01
6.94598377e-01 1.23301208e-01 -1.73422009e-01 4.38365936e-01
-2.06640154e-01 -9.10115689e-02 -1.43826187e+00 4.99021500e-01
5.25092244e-01 1.04353102e-02 8.29352915e-01 4.81027886e-02
-4.45841461e-01 -1.48976907e-01 1.82558000e-01 -1.66539133e+00
-1.57952726e-01 -8.34520280e-01 2.19985664e-01 1.53516185e+00
1.29841566e-01 -1.14527941e+00 1.04766078e-01 7.13501990e-01
-6.07441723e-01 -5.04166305e-01 -2.02042842e+00 -8.45072985e-01
2.59914070e-01 -2.56584406e-01 1.12964344e+00 5.94699740e-01
1.37488946e-01 -1.38948247e-01 -1.03338562e-01 -9.30889845e-02
1.07311928e+00 -6.48396984e-02 9.73237678e-02 -1.33420336e+00
2.89606541e-01 -4.59849924e-01 -2.52176654e-02 -1.90078899e-01
5.72575867e-01 -1.06090033e+00 -1.15250491e-01 -2.54086828e+00
-4.74333987e-02 -3.01544845e-01 -5.94889104e-01 1.99102104e-01
9.49860811e-01 1.32264271e-01 -5.38900718e-02 -3.79062086e-01
-3.79032008e-02 6.61192536e-01 8.90120268e-01 -2.28430450e-01
5.63315749e-01 5.10401547e-01 -2.06522986e-01 5.47004521e-01
7.70416021e-01 -5.36069691e-01 -4.22665447e-01 8.38639438e-02
6.53855681e-01 4.49128717e-01 2.28883788e-01 -2.46219084e-01
1.87594354e-01 -4.52042639e-01 -2.35146552e-01 -1.77393270e+00
1.46113962e-01 -1.81262219e+00 1.38574624e+00 8.11400056e-01
3.89767081e-01 3.85142952e-01 1.47696882e-01 3.10036063e-01
1.48291096e-01 -6.41821623e-01 6.82733238e-01 4.71166700e-01
-5.40825665e-01 -4.82491404e-01 -1.13218057e+00 -7.97791600e-01
1.68704593e+00 -4.79643434e-01 -4.86563295e-01 -9.30078402e-02
-8.84470582e-01 1.08176851e+00 1.58361524e-01 2.51220733e-01
4.57815140e-01 -1.43167591e+00 -8.50713968e-01 -1.89880341e-01
-4.77495521e-01 -5.07895529e-01 6.91407323e-01 1.07677150e+00
-2.85055071e-01 4.13168937e-01 -4.68142539e-01 -1.59831464e-01
-1.18267667e+00 3.29131156e-01 4.70367521e-01 -2.91369557e-01
-5.64625800e-01 -3.72813106e-01 -9.18373227e-01 3.80808353e-01
-5.40308654e-01 2.45776713e-01 -3.55423987e-01 4.92956340e-01
-1.46187127e-01 1.42957354e+00 3.21747184e-01 -8.02921712e-01
-5.51884234e-01 4.77839291e-01 8.64240885e-01 -7.79834539e-02
1.88705122e+00 -8.29422653e-01 -1.68390647e-01 1.92590997e-01
9.51727033e-01 -7.24166119e-03 -4.05588388e-01 5.03281593e-01
-4.44428883e-02 -1.25097796e-01 4.75669503e-01 -6.89799309e-01
-1.38453984e+00 1.83798194e-01 6.39328241e-01 8.96599412e-01
1.64546955e+00 -1.28978506e-01 1.06585944e+00 1.94311708e-01
6.98634326e-01 -2.25791645e+00 -1.09133780e+00 -5.13297319e-03
7.67531812e-01 -1.98776245e-01 1.34854093e-01 2.16312155e-01
-5.90367675e-01 9.98045146e-01 -2.07445502e-01 -1.12387411e-01
8.65990162e-01 5.45375407e-01 -9.11618292e-01 7.50954077e-02
-7.15423048e-01 -2.39891872e-01 -5.41516006e-01 1.68972909e-01
-2.45211959e-01 1.53160496e-02 -1.39032221e+00 6.73595011e-01
1.62041947e-01 3.28193575e-01 8.76566947e-01 1.34643924e+00
-1.59768775e-01 -1.06153059e+00 4.69939038e-03 2.32771456e-01
-5.46644211e-01 4.28953141e-01 8.19709122e-01 1.17124903e+00
1.44401371e-01 1.13724184e+00 5.85552275e-01 2.92357922e-01
1.12467945e+00 -2.18342900e-01 2.94896156e-01 4.60896283e-01
-4.56908643e-01 1.96155578e-01 5.11146665e-01 1.06267184e-01
-7.10223734e-01 -8.75503540e-01 -2.08093452e+00 -6.80219412e-01
-9.36375141e-01 1.24436915e+00 1.70590436e+00 1.01918101e+00
1.14743032e-01 8.18007350e-01 1.71842456e+00 -6.88032448e-01
-2.35634938e-01 -5.82338810e-01 -1.31092644e+00 -2.65001565e-01
-1.73880860e-01 -6.21542275e-01 -5.56026757e-01 -5.21577716e-01] | [5.6210126876831055, 2.3012800216674805] |
e592916e-9454-47c0-b4d8-e2876d6419ac | deepface-closing-the-gap-to-human-level-1 | null | null | https://research.fb.com/publications/deepface-closing-the-gap-to-human-level-performance-in-face-verification/ | https://research.fb.com/wp-content/uploads/2016/11/deepface-closing-the-gap-to-human-level-performance-in-face-verification.pdf | DeepFace: Closing the Gap to Human-Level Performance in Face Verification | In modern face recognition, the conventional pipeline consists of four stages: detect => align => represent => classify. We revisit both the alignment step and the representation step by employing explicit 3D face modeling in order to apply a piecewise affine transformation, and derive a face representation from a nine-layer deep neural network. This deep network involves more than 120 million parameters using several locally connected layers without weight sharing, rather than the standard convolutional layers. Thus we trained it on the largest facial dataset to-date, an identity labeled dataset of four million facial images belonging to more than 4,000 identities.
The learned representations coupling the accurate model-based alignment with the large facial database generalize remarkably well to faces in unconstrained environments, even with a simple classifier. Our method reaches an accuracy of 97.35% on the Labeled Faces in the Wild (LFW) dataset, reducing the error of the current state of the art by more than 27%, closely approaching human-level performance. | ['Marc’ Aurelio Ranzato', 'Ming Yang', 'Yaniv Taigman', 'Lior Wolf'] | 2014-06-24 | deepface-closing-the-gap-to-human-level | http://openaccess.thecvf.com/content_cvpr_2014/html/Taigman_DeepFace_Closing_the_2014_CVPR_paper.html | http://openaccess.thecvf.com/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf | conference-on-computer-vision-and-pattern | ['3d-face-modeling'] | ['computer-vision'] | [ 1.68584123e-01 2.63028771e-01 -8.03703889e-02 -1.02261591e+00
-6.34434938e-01 -5.06419718e-01 7.97125220e-01 -6.73748791e-01
-3.32115680e-01 1.92108154e-01 -9.02472585e-02 -1.87311396e-02
4.62509274e-01 -4.25593764e-01 -7.13183403e-01 -5.44128776e-01
-8.96472856e-02 7.02877641e-01 -3.85662585e-01 9.41204093e-03
1.16558662e-02 1.07844245e+00 -1.62632132e+00 4.66061622e-01
1.74289029e-02 1.42131233e+00 -6.73709869e-01 4.45245951e-01
-2.75823772e-02 5.40187001e-01 -4.10292357e-01 -9.62613106e-01
5.94064474e-01 -2.71924376e-01 -7.69319236e-01 1.69515729e-01
1.46698093e+00 -7.46325850e-01 -2.98438847e-01 9.91133332e-01
5.98328352e-01 -2.45647818e-01 6.63020432e-01 -1.32661903e+00
-7.85991967e-01 2.08186775e-01 -8.00283968e-01 -9.42039490e-02
2.36093894e-01 7.32022375e-02 6.62772298e-01 -1.35086131e+00
6.59624696e-01 1.54481232e+00 1.11687100e+00 9.29050028e-01
-1.45839977e+00 -1.09243178e+00 -6.37588203e-02 -7.86347017e-02
-1.69305599e+00 -1.28262711e+00 4.30558771e-01 -6.11092269e-01
1.29278517e+00 -2.03169703e-01 4.67808247e-01 1.11393118e+00
-1.46191940e-01 3.79863173e-01 6.97971344e-01 -3.00212741e-01
-1.35011464e-01 -2.65645117e-01 -9.80026573e-02 1.10938525e+00
7.68415779e-02 -1.25053316e-01 -5.98064244e-01 -3.82050008e-01
8.86205554e-01 -1.28082797e-01 1.49040833e-01 -2.76934981e-01
-9.63157773e-01 6.07978344e-01 4.68379110e-01 -8.61930940e-03
-2.75308430e-01 4.52177107e-01 3.69569093e-01 3.88274759e-01
7.06536233e-01 1.74472407e-01 -4.50425774e-01 2.78077424e-01
-1.16058588e+00 1.66115671e-01 7.45557904e-01 9.68126178e-01
9.11191106e-01 4.26632762e-01 2.92382479e-01 8.02400529e-01
2.56909996e-01 4.42937195e-01 2.66383350e-01 -1.25549090e+00
9.48146805e-02 4.25348163e-01 -1.26208529e-01 -9.65146601e-01
-4.65187788e-01 -3.45090359e-01 -9.21612442e-01 5.50041854e-01
5.33809483e-01 -7.12558553e-02 -1.07246459e+00 1.88364184e+00
2.25998148e-01 3.24884534e-01 -2.75777549e-01 5.78315079e-01
8.80788088e-01 2.02366963e-01 1.11652784e-01 7.20022544e-02
1.35907352e+00 -7.31299758e-01 -2.43746698e-01 -2.05377728e-01
4.85858083e-01 -1.04247129e+00 5.45430839e-01 2.49148920e-01
-1.10711086e+00 -7.64422715e-01 -9.97033834e-01 -1.51596740e-01
-2.50099868e-01 4.03803617e-01 8.52560699e-01 7.54474103e-01
-1.71610308e+00 5.19858062e-01 -6.59677923e-01 -6.48361921e-01
1.10975945e+00 8.27239811e-01 -1.14540458e+00 -2.92532705e-03
-5.17902553e-01 8.99924397e-01 9.86411422e-03 1.18409850e-01
-1.02476680e+00 -8.72765958e-01 -8.29443634e-01 -7.26968795e-02
-1.34608492e-01 -5.98226666e-01 1.29856169e+00 -1.50392771e+00
-1.48656464e+00 1.78461456e+00 -6.01192236e-01 -2.39615127e-01
4.77840006e-01 -1.43409938e-01 -5.01814008e-01 8.67023543e-02
-1.14396200e-01 1.08216691e+00 1.00652969e+00 -1.00760090e+00
-3.59583288e-01 -4.88935232e-01 -2.53541708e-01 -4.25077438e-01
-2.99133122e-01 5.88205397e-01 -4.88254488e-01 -4.48715389e-01
2.64968872e-01 -9.35223937e-01 1.59188241e-01 6.45738602e-01
-9.71432999e-02 -1.57346383e-01 5.54910779e-01 -7.28590012e-01
4.88835633e-01 -2.09184170e+00 -1.30745992e-01 1.78236768e-01
3.89204860e-01 4.84987587e-01 -6.77491903e-01 1.34779625e-02
-7.00823903e-01 -3.23869451e-03 -1.24054715e-01 -6.80033922e-01
-3.41469049e-03 -1.03342421e-01 -2.55135626e-01 8.79484832e-01
7.08820581e-01 9.87464964e-01 -5.03026545e-01 -1.72050461e-01
-1.67619467e-01 7.03823447e-01 -7.92196751e-01 2.21097931e-01
3.86485495e-02 1.72105610e-01 -5.87028731e-03 1.02378380e+00
1.14229059e+00 -6.05166256e-02 2.59701610e-01 -4.17653710e-01
1.51253730e-01 1.90881118e-02 -8.97004247e-01 1.59705937e+00
-2.66798556e-01 8.47921908e-01 3.47094119e-01 -8.29373181e-01
1.08986902e+00 4.04255480e-01 5.57085335e-01 -3.95123512e-01
1.70687690e-01 3.12219560e-01 2.36146292e-03 -2.84223974e-01
-1.51134748e-02 -9.53550413e-02 3.45478803e-01 4.96190429e-01
7.76794195e-01 2.62316793e-01 -2.75824636e-01 -2.20553681e-01
8.13275456e-01 4.20814961e-01 1.99436992e-01 -4.63812679e-01
4.37368959e-01 -3.33742738e-01 6.64604127e-01 2.20116079e-01
-2.92785197e-01 8.09388757e-01 7.02197969e-01 -1.17795587e+00
-1.27395940e+00 -8.73311996e-01 -2.54590720e-01 1.23993039e+00
-5.62966645e-01 -2.98190147e-01 -1.12153685e+00 -4.62697715e-01
3.73315781e-01 1.24288999e-01 -8.09314609e-01 -2.39184443e-02
-6.80152595e-01 -7.93664277e-01 9.59495068e-01 5.77589035e-01
6.64782584e-01 -9.32504296e-01 6.25588819e-02 1.61641371e-02
2.22389370e-01 -1.25183368e+00 -3.06229085e-01 -1.54995620e-01
-4.31206971e-01 -1.13298476e+00 -5.26677132e-01 -1.01297331e+00
9.83135879e-01 -1.35956734e-01 1.40957892e+00 1.77542150e-01
-5.65458238e-01 4.23307382e-02 3.14556897e-01 -3.34731221e-01
-2.40343392e-01 4.39478457e-03 4.37214911e-01 3.54029119e-01
8.30094159e-01 -5.97383380e-01 -5.11790574e-01 3.13556105e-01
-3.00769597e-01 -2.10326999e-01 5.35691679e-01 7.23117232e-01
2.74737597e-01 -7.67062724e-01 7.54221678e-01 -6.42472327e-01
5.38089871e-02 -3.47268939e-01 -7.35301554e-01 2.34494343e-01
-3.00744265e-01 -2.76435941e-01 3.84820879e-01 -3.54220033e-01
-8.11184824e-01 6.14766121e-01 -4.71262336e-01 -5.00853181e-01
-2.53700912e-01 -2.53430367e-01 -2.98124790e-01 -6.16973817e-01
7.12477386e-01 -6.15910105e-02 3.30559671e-01 -5.09220123e-01
4.32767183e-01 6.51217639e-01 8.85624588e-01 -4.90461409e-01
8.36873114e-01 6.18596137e-01 2.19587117e-01 -5.32012582e-01
-7.24482298e-01 1.23011004e-02 -1.27686822e+00 -2.01634377e-01
7.41922975e-01 -1.14771616e+00 -1.18095255e+00 7.51722634e-01
-1.32770693e+00 -1.92232177e-01 9.16902572e-02 1.80008858e-01
-5.98095179e-01 8.49971548e-02 -7.27261782e-01 -5.88664770e-01
-3.87311786e-01 -1.12829161e+00 1.28907180e+00 7.99294934e-03
-3.12429070e-01 -5.26574492e-01 -2.67205596e-01 1.46824345e-01
5.71178794e-01 5.22293329e-01 7.00966239e-01 -7.11462975e-01
-3.22019964e-01 -4.41861868e-01 -4.75951254e-01 4.07554924e-01
2.26849526e-01 3.75093192e-01 -1.56150806e+00 -3.02393913e-01
-1.86838716e-01 -7.15847075e-01 9.34975564e-01 -7.98657164e-02
1.34225106e+00 -3.38728011e-01 -1.89405054e-01 1.23322368e+00
1.12434781e+00 -2.02378049e-01 5.76059997e-01 8.54709595e-02
7.63064802e-01 6.97513282e-01 -1.13293208e-01 1.84286207e-01
5.99725246e-02 6.55862033e-01 4.12698090e-01 -1.82364196e-01
-3.24795902e-01 -3.63862254e-02 1.98007241e-01 3.79419595e-01
-3.92020792e-01 3.19683433e-01 -1.05469620e+00 2.23404750e-01
-1.46567559e+00 -1.19870698e+00 3.87362421e-01 2.17892790e+00
8.84877086e-01 -2.02444911e-01 2.83338893e-02 -3.83752495e-01
6.38740420e-01 1.50107324e-01 -6.12103641e-01 -4.31491345e-01
-1.70458958e-01 5.08587539e-01 2.17855141e-01 4.59265172e-01
-1.44440985e+00 1.24732494e+00 7.81061029e+00 5.63542843e-01
-1.27000070e+00 -1.01419978e-01 1.19803381e+00 -2.36561775e-01
1.40652299e-01 -3.58797997e-01 -1.04653943e+00 7.46322200e-02
1.06335032e+00 3.09093092e-02 6.13872826e-01 1.11064756e+00
-2.02983871e-01 5.58569610e-01 -1.40248454e+00 1.38668752e+00
5.53120196e-01 -1.23342407e+00 2.85129786e-01 1.58376068e-01
8.16837251e-01 1.16141893e-01 2.73454100e-01 8.32550973e-02
3.51871580e-01 -1.70118737e+00 7.41654575e-01 7.06682682e-01
1.40435505e+00 -7.47367799e-01 5.18465817e-01 -1.15267709e-01
-1.12795579e+00 6.42600805e-02 -6.94001794e-01 4.56220731e-02
-1.81826785e-01 2.80580193e-01 -7.44723856e-01 -2.74309330e-02
7.05846786e-01 7.23095298e-01 -6.62008166e-01 5.98380864e-01
3.87429371e-02 3.10021967e-01 -4.12747324e-01 6.66414022e-01
9.51697752e-02 -6.55402020e-02 -3.38772200e-02 1.21051383e+00
3.61675411e-01 4.67541628e-02 -1.84042469e-01 6.98504746e-01
-8.33112836e-01 -2.14110479e-01 -5.80051839e-01 1.35405198e-01
4.81617302e-01 1.52202296e+00 -3.14672500e-01 -3.15962076e-01
-5.56060135e-01 9.68195379e-01 7.88808405e-01 3.22694629e-01
-6.80639744e-01 -3.28498930e-02 1.32905066e+00 3.35915647e-02
2.11373493e-01 -2.93759853e-01 -1.37651889e-02 -9.24176991e-01
6.46974891e-02 -1.17264974e+00 5.62067069e-02 -5.26803970e-01
-1.49146533e+00 9.47530568e-01 -3.66887838e-01 -9.27785516e-01
-4.20624435e-01 -1.04326999e+00 -5.98090649e-01 1.19522786e+00
-1.43986928e+00 -1.57422042e+00 -4.83081102e-01 5.11539698e-01
1.44550845e-01 -6.36486650e-01 1.20720875e+00 4.46532220e-01
-7.40146279e-01 1.12118530e+00 -4.34629433e-02 5.72083533e-01
1.06099963e+00 -8.15005183e-01 1.07216716e+00 4.87620890e-01
6.76928088e-02 8.12075198e-01 4.66426201e-02 -2.09315091e-01
-1.40272593e+00 -1.16583145e+00 1.09135187e+00 -6.44345999e-01
4.75722581e-01 -6.65122569e-01 -8.63797605e-01 1.14348114e+00
1.33450136e-01 6.89328313e-01 8.96948934e-01 6.85459524e-02
-1.14262259e+00 -3.60543489e-01 -1.37176204e+00 4.78305757e-01
1.53395820e+00 -8.39969039e-01 -2.63590932e-01 2.80539691e-01
1.46817267e-01 -2.85177559e-01 -9.38533127e-01 4.68636513e-01
1.05737233e+00 -8.19479942e-01 1.16842687e+00 -1.12899220e+00
2.21130624e-01 -1.58150956e-01 -3.17685664e-01 -7.97951579e-01
-6.11980975e-01 -7.43972421e-01 -1.08825244e-01 1.40029585e+00
3.92088085e-01 -8.06755185e-01 9.05890822e-01 7.40411282e-01
6.78786188e-02 -7.09525883e-01 -1.10756946e+00 -5.51748157e-01
2.20810115e-01 -1.63043980e-02 9.73425806e-01 1.09650338e+00
-5.55212736e-01 -4.84067984e-02 -2.59218723e-01 6.94017634e-02
7.49988198e-01 -6.95544407e-02 9.24251378e-01 -1.32468843e+00
1.31945878e-01 -6.91840827e-01 -8.63637626e-01 -7.76009083e-01
8.20715725e-01 -1.14811981e+00 -2.96996564e-01 -8.74790967e-01
3.17447156e-01 -2.10479736e-01 -6.15936406e-02 9.98376131e-01
7.84157664e-02 9.96392012e-01 -4.18350846e-02 3.61981988e-01
-2.25107968e-01 3.52469444e-01 7.02773213e-01 -1.84103787e-01
5.16114116e-01 -3.43195081e-01 -7.16889501e-01 1.09299624e+00
6.53227091e-01 -2.02915370e-01 1.22210421e-01 -8.11628342e-01
-7.97538161e-02 -7.05746531e-01 4.00146335e-01 -1.01718366e+00
1.49902359e-01 1.25263035e-01 1.25209272e+00 -7.50132650e-02
4.63477910e-01 -7.15756893e-01 2.88600445e-01 2.11444199e-01
-3.41601342e-01 1.54851168e-01 4.89225149e-01 -6.68661967e-02
-1.86750323e-01 2.26163775e-01 1.17656100e+00 -2.98735294e-02
-7.31914043e-01 6.80691540e-01 -7.59063521e-03 -3.74614805e-01
8.94677699e-01 -1.67485476e-01 -4.53684121e-01 -1.72825649e-01
-7.42086828e-01 -1.87677771e-01 5.66040814e-01 4.34950143e-01
2.55877554e-01 -1.64123225e+00 -1.07840574e+00 6.96034789e-01
9.61045846e-02 -3.53284866e-01 -3.91895100e-02 3.26893747e-01
-8.10911000e-01 2.13588387e-01 -6.07671618e-01 -6.44290805e-01
-1.28985417e+00 3.21219176e-01 8.68837297e-01 4.14688259e-01
-3.02046418e-01 1.20073330e+00 1.73089758e-01 -5.53328812e-01
1.28312618e-01 3.20301890e-01 -4.41883951e-02 1.06120817e-01
9.14508581e-01 5.73795848e-02 2.38368005e-01 -1.35397387e+00
-6.56691134e-01 1.03665280e+00 -5.79889975e-02 1.89571664e-01
1.26795399e+00 4.33581561e-01 -4.59952742e-01 -1.99930951e-01
1.65911424e+00 -2.43716434e-01 -1.35500193e+00 -2.20552370e-01
-4.79672626e-02 -5.42897999e-01 -2.69656032e-01 -4.76876348e-01
-1.42071176e+00 8.44339967e-01 7.18029022e-01 -3.32633436e-01
1.00878549e+00 5.62168695e-02 3.86079043e-01 5.95141113e-01
4.13381040e-01 -6.07770860e-01 -7.76065513e-02 5.97610474e-01
1.16073036e+00 -1.24758518e+00 9.20181945e-02 -3.75318527e-01
-1.49863407e-01 1.27946019e+00 8.08198988e-01 -3.16061974e-01
8.44930291e-01 4.42100763e-01 3.67515206e-01 -1.48758247e-01
-6.70981526e-01 5.82454912e-02 2.83271253e-01 7.49495983e-01
8.15845907e-01 -1.80090323e-01 3.82779926e-01 2.60672957e-01
-3.61927509e-01 -5.52860200e-02 -2.31990293e-01 5.88237524e-01
-2.43106365e-01 -1.09968555e+00 -1.87921733e-01 3.41549009e-01
-5.33028901e-01 -1.30090918e-02 -6.71873093e-01 6.83431745e-01
2.49381065e-01 6.53119624e-01 5.70692897e-01 -3.83579016e-01
3.23224783e-01 5.09839773e-01 6.60179734e-01 -4.57349777e-01
-6.38146818e-01 -2.11856857e-01 4.39143414e-03 -9.54871297e-01
-4.19561446e-01 -6.09421670e-01 -9.86001194e-01 -7.98799038e-01
8.49311501e-02 -5.05223036e-01 6.80301249e-01 6.72897100e-01
6.81726515e-01 -7.80249620e-03 7.46526659e-01 -1.43073213e+00
-5.30182421e-01 -1.01760769e+00 -3.22311401e-01 3.83780271e-01
3.20123821e-01 -5.58691382e-01 -2.84105241e-01 3.22218537e-01] | [13.342659950256348, 0.7068510055541992] |
dbac8014-aa48-4881-aa92-317b6c1d6414 | spinenetv2-automated-detection-labelling-and | 2205.01683 | null | https://arxiv.org/abs/2205.01683v1 | https://arxiv.org/pdf/2205.01683v1.pdf | SpineNetV2: Automated Detection, Labelling and Radiological Grading Of Clinical MR Scans | This technical report presents SpineNetV2, an automated tool which: (i) detects and labels vertebral bodies in clinical spinal magnetic resonance (MR) scans across a range of commonly used sequences; and (ii) performs radiological grading of lumbar intervertebral discs in T2-weighted scans for a range of common degenerative changes. SpineNetV2 improves over the original SpineNet software in two ways: (1) The vertebral body detection stage is significantly faster, more accurate and works across a range of fields-of-view (as opposed to just lumbar scans). (2) Radiological grading adopts a more powerful architecture, adding several new grading schemes without loss in performance. A demo of the software is available at the project website: http://zeus.robots.ox.ac.uk/spinenet2/. | ['Andrew Zisserman', 'Timor Kadir', 'Amir Jamaludin', 'Rhydian Windsor'] | 2022-05-03 | null | null | null | null | ['body-detection'] | ['computer-vision'] | [ 1.23404004e-01 2.22449809e-01 -3.60036492e-01 -2.71616340e-01
-7.65965223e-01 -6.17889404e-01 3.65454704e-01 3.44930664e-02
-3.14026862e-01 6.62612736e-01 3.75655740e-01 -7.10067153e-01
-3.37340772e-01 -2.47319654e-01 -2.57877856e-01 -1.08284891e-01
-2.48859346e-01 1.26473594e+00 1.21839678e+00 -3.42916578e-01
3.93781871e-01 8.68215621e-01 -1.38713026e+00 1.23560831e-01
4.33161467e-01 9.28985953e-01 5.29689133e-01 8.78372133e-01
2.78450191e-01 1.33668613e+00 -4.37154859e-01 -9.36857332e-03
8.63113478e-02 -4.11207497e-01 -1.50000501e+00 2.17814624e-01
5.83580434e-01 -2.04501644e-01 -1.13903157e-01 9.40611720e-01
7.47295201e-01 -1.94324479e-01 5.19508660e-01 -5.35329819e-01
-1.83295295e-01 1.90081462e-01 -6.12921298e-01 9.67278004e-01
1.69330880e-01 -5.62151074e-02 3.42465073e-01 -5.01741052e-01
9.90411222e-01 9.61687386e-01 8.65387499e-01 6.39813900e-01
-7.54927158e-01 -4.86820996e-01 -7.28596449e-01 1.71110928e-01
-8.22105706e-01 -1.32324368e-01 -5.40559292e-02 -5.87513328e-01
7.71324992e-01 3.28113556e-01 8.40678811e-01 5.32412767e-01
8.69285345e-01 6.13183916e-01 1.74043500e+00 -1.28528044e-01
8.27833563e-02 -4.75465924e-01 1.04179524e-01 1.02615392e+00
2.34219283e-01 -1.69566795e-01 4.90648719e-03 -1.01868235e-01
1.19859087e+00 -1.08248539e-01 -4.90975231e-02 -7.08755732e-01
-1.32803702e+00 5.24242222e-01 3.70501906e-01 6.40967071e-01
-2.62003124e-01 3.96299988e-01 8.35991740e-01 3.00294340e-01
-1.84490383e-01 5.24836600e-01 -1.87015146e-01 -3.23539436e-01
-9.94003057e-01 9.09799114e-02 2.53912330e-01 4.88142371e-01
5.51099814e-02 -2.49443054e-01 2.29223773e-01 1.20744312e+00
2.09360406e-01 3.07022750e-01 1.10739648e+00 -1.59599185e+00
-2.22439989e-02 1.67636380e-01 -2.88517624e-01 -4.56508428e-01
-9.02620554e-01 -3.79217774e-01 -4.73455459e-01 7.03867257e-01
3.38649690e-01 6.10542037e-02 -1.36662388e+00 1.09201825e+00
2.59555310e-01 -6.23914421e-01 -5.33761799e-01 1.09764040e+00
7.83306003e-01 -3.55894178e-01 -1.27311900e-01 9.40968916e-02
1.69215691e+00 -1.07349527e+00 -7.41295636e-01 -2.42987067e-01
8.89013827e-01 -8.81361246e-01 9.45398510e-01 6.47221267e-01
-1.46338725e+00 -3.81064355e-01 -1.04135752e+00 -1.52494028e-01
-3.45396847e-01 -3.86490449e-02 6.34370387e-01 6.14213705e-01
-1.68270230e+00 4.50649500e-01 -1.06637621e+00 -6.41361415e-01
2.10291237e-01 6.31543219e-01 -5.97435832e-01 1.31276265e-01
-1.05577374e+00 1.61955249e+00 2.38532662e-01 -4.18579489e-01
-6.03674471e-01 -3.08626592e-01 -5.88976741e-01 -6.87836111e-01
6.86244607e-01 -9.03591573e-01 1.86640024e+00 -4.57070410e-01
-1.23220468e+00 1.45813870e+00 3.40108961e-01 -2.94843435e-01
7.93527067e-01 -2.04681590e-01 -4.17888969e-01 7.84762561e-01
4.89446998e-01 6.04363680e-01 2.99634993e-01 -1.07714140e+00
-8.77713740e-01 -7.96367824e-01 -1.15699902e-01 3.75939518e-01
4.88743037e-01 3.41089070e-01 -6.70101225e-01 -7.22013354e-01
1.82979614e-01 -1.27374268e+00 -4.96067524e-01 1.39113709e-01
-1.62645280e-01 -1.13223173e-01 7.64597297e-01 -7.93714583e-01
8.69055212e-01 -1.53118503e+00 -7.23255202e-02 3.91382039e-01
6.01503432e-01 4.19031054e-01 5.98657906e-01 3.90225686e-02
-1.70298725e-01 -2.03889504e-01 -3.00862610e-01 1.35179624e-01
-5.26561379e-01 5.88354766e-01 4.38125998e-01 6.75414443e-01
-6.65460050e-01 7.84508944e-01 -8.78452778e-01 -9.77659166e-01
4.93152559e-01 6.94405148e-03 1.20096773e-01 -6.83437169e-01
5.24670303e-01 4.72417057e-01 -3.17699909e-01 6.42674327e-01
7.65092969e-02 -3.65503490e-01 1.72699079e-01 1.44064054e-01
-2.69446559e-02 2.17295200e-01 -1.03166509e+00 2.02541518e+00
-2.82144487e-01 1.71108574e-01 4.66458678e-01 -7.21742868e-01
6.77808106e-01 4.49729830e-01 8.70534778e-01 -6.50754631e-01
4.32670474e-01 6.71634376e-01 1.81009725e-01 -7.72330821e-01
1.89226970e-01 -3.13341945e-01 1.29416198e-01 6.09122396e-01
2.76001543e-01 -5.24826765e-01 4.84595954e-01 3.64625216e-01
1.36838377e+00 1.36005795e-02 3.46126884e-01 -6.98472679e-01
5.25821984e-01 2.80581653e-01 1.41192123e-01 7.51789451e-01
-5.81210554e-01 8.34566772e-01 2.52090454e-01 -4.08834398e-01
-1.14333570e+00 -1.40856731e+00 -4.15915698e-01 8.68871689e-01
3.02175164e-01 -2.26076186e-01 -7.20718563e-01 -6.34712875e-01
-9.54333991e-02 2.25429893e-01 -6.94083691e-01 1.00754611e-01
-7.34850228e-01 -3.70245248e-01 5.61108530e-01 9.06119704e-01
6.27819300e-02 -1.17840350e+00 -1.15158510e+00 -3.09627131e-02
-1.74875427e-02 -6.65427566e-01 -2.82197356e-01 4.24867719e-01
-1.45205665e+00 -1.42548263e+00 -1.03705347e+00 -8.29936981e-01
3.95248532e-01 2.07886964e-01 1.13092184e+00 3.74767512e-01
-6.74683750e-01 6.44664586e-01 -1.46536633e-01 -2.81012982e-01
-4.85414863e-01 -2.51467861e-02 1.04935102e-01 -9.30264294e-01
-2.06458986e-01 -2.35766679e-01 -7.49761283e-01 4.59986866e-01
-7.67046809e-01 -6.89181834e-02 7.18791604e-01 4.73581940e-01
1.02653408e+00 -2.09462076e-01 3.53175074e-01 -1.15491235e+00
9.00706708e-01 -4.00865436e-01 -8.24922249e-02 2.28256136e-01
-8.53047669e-01 -3.49836290e-01 1.75974771e-01 8.40074047e-02
-5.96473277e-01 -2.71901309e-01 -4.12799507e-01 -1.87442005e-01
-3.29362065e-01 1.10186413e-01 7.50224173e-01 -1.68441594e-01
6.04343951e-01 -4.31965962e-02 6.77137673e-01 -4.75155711e-01
1.92327797e-01 5.72205007e-01 1.37774515e+00 -3.72503787e-01
6.35349676e-02 7.85016954e-01 3.87056977e-01 -5.59230149e-01
-5.44491768e-01 -9.81871486e-01 -9.99245286e-01 -6.45108521e-01
7.87598014e-01 -3.32616091e-01 -1.97856575e-01 1.36921570e-01
-3.59550923e-01 -3.57775718e-01 -5.03929377e-01 7.74396956e-01
-9.05945182e-01 6.56443536e-01 -1.02504802e+00 -3.99224050e-02
-5.33261597e-01 -1.61627638e+00 1.22296035e+00 7.75538236e-02
-7.01779366e-01 -1.07335770e+00 2.89775014e-01 4.80804980e-01
4.02861565e-01 2.55711466e-01 8.65064740e-01 -4.50607300e-01
5.19030035e-01 -1.75954923e-01 7.10120723e-02 4.48187232e-01
1.66435316e-01 -2.15943202e-01 -2.66020983e-01 -1.16507791e-01
2.55101472e-01 -4.62534666e-01 4.24022526e-01 7.42432535e-01
1.23948228e+00 5.56107402e-01 -3.95087808e-01 1.92201808e-01
1.17470050e+00 2.68304527e-01 7.42309749e-01 8.98304164e-01
3.91593039e-01 6.07217848e-01 5.95051646e-01 -2.36565456e-01
1.88644394e-01 6.13607824e-01 5.51450074e-01 -4.63641435e-01
-6.36242807e-01 4.57589120e-01 -2.77017593e-01 1.26624107e+00
-3.67944717e-01 4.55756426e-01 -1.37170732e+00 6.45976365e-01
-1.44547737e+00 -5.97634792e-01 -7.18479335e-01 1.68453979e+00
7.29741216e-01 2.79424965e-01 5.16754866e-01 1.32234439e-01
7.40352273e-01 -2.31378168e-01 -5.51339328e-01 -6.24153614e-01
2.83979267e-01 7.12429762e-01 8.28925848e-01 2.10315257e-01
-7.44056821e-01 5.23909211e-01 7.52796316e+00 7.88897216e-01
-1.09288836e+00 7.62411356e-01 2.49368593e-01 -1.76778525e-01
2.93221354e-01 -3.50690037e-01 -1.79909378e-01 4.46833163e-01
6.61152542e-01 2.36533815e-03 -1.73145011e-01 7.09380388e-01
-5.46366163e-02 -5.16925812e-01 -3.74847889e-01 5.78990638e-01
5.04774190e-02 -1.26128542e+00 -2.76803613e-01 1.96958572e-01
3.21582228e-01 7.29541123e-01 -1.42973959e-01 -9.84096527e-02
4.49255168e-01 -9.29320931e-01 8.26027334e-01 5.31983435e-01
1.09098554e+00 -6.29828632e-01 9.64164138e-01 7.83293545e-02
-8.76053631e-01 8.53556171e-02 -9.05717015e-02 2.84872741e-01
5.05662501e-01 1.73169494e-01 -7.27999568e-01 4.67830807e-01
1.27525222e+00 2.64182597e-01 -9.71755922e-01 1.41020048e+00
-4.25219983e-01 5.81775784e-01 -2.64420301e-01 6.20406151e-01
5.39862871e-01 -8.79446194e-02 3.97279799e-01 1.04454195e+00
6.31892830e-02 1.03959881e-01 2.02463657e-01 -9.73356143e-02
2.99478769e-01 1.05170816e-01 -4.00269270e-01 7.54003882e-01
2.03231409e-01 1.32194924e+00 -1.49964285e+00 -5.65747380e-01
-1.90996513e-01 6.42309606e-01 -1.54217720e-01 -3.96656871e-01
-4.94967490e-01 -1.93037957e-01 -4.61948067e-02 4.21406716e-01
-2.11239401e-02 -3.54616009e-02 -3.51870954e-01 -3.49061072e-01
-3.06673884e-01 -9.99238908e-01 7.40434229e-01 -1.28864264e+00
-7.26908922e-01 5.11324584e-01 5.41939884e-02 -8.65063787e-01
-3.62425119e-01 -7.55133271e-01 -3.53898168e-01 5.79080343e-01
-5.89008510e-01 -7.93925703e-01 -1.50198460e-01 6.32520556e-01
6.10195577e-01 1.53768003e-01 6.12004220e-01 2.50831574e-01
-3.33154686e-02 4.50980663e-02 1.20568082e-01 -1.74323589e-01
7.93370664e-01 -1.95168304e+00 2.45024294e-01 4.46034849e-01
-5.53258240e-01 5.54671347e-01 5.49230754e-01 -9.27021205e-01
-8.32138419e-01 -7.38347948e-01 4.84635919e-01 -6.26309335e-01
8.75174820e-01 4.02442724e-01 -6.53062582e-01 7.30652392e-01
2.01503024e-01 -4.53016907e-02 6.21366560e-01 -4.67540890e-01
2.98926741e-01 4.42523479e-01 -1.25608921e+00 4.53992873e-01
9.90398228e-01 -3.20923954e-01 -1.14187002e+00 6.59241915e-01
1.32755144e-02 -7.62476444e-01 -1.35445559e+00 7.41851568e-01
8.75896454e-01 -1.04118407e+00 1.10202682e+00 -2.21405625e-01
3.44522029e-01 -3.95944238e-01 2.09030688e-01 -9.60696995e-01
-3.60679001e-01 -3.12982976e-01 -2.02825114e-01 3.27539802e-01
-2.25354350e-04 -6.06602907e-01 4.93963718e-01 -3.97898406e-01
-7.44269133e-01 -1.34298861e+00 -9.36825037e-01 -7.39550948e-01
4.83624190e-02 -3.08749050e-01 1.45559385e-01 8.28449905e-01
-1.38337404e-01 1.05270207e-01 9.09989774e-02 -2.79388905e-01
4.47101980e-01 -2.36213282e-01 3.11647058e-01 -1.28747368e+00
-2.98911899e-01 -7.44297206e-01 -8.27517331e-01 -4.88435537e-01
-6.03210628e-01 -1.07577300e+00 -2.35436425e-01 -2.25955081e+00
4.29903939e-02 -3.55663091e-01 -3.58392179e-01 5.49582660e-01
3.34992081e-01 9.82895315e-01 -7.22556561e-02 7.76617289e-01
-6.48996353e-01 -3.50706190e-01 1.83184743e+00 3.47499341e-01
5.22646964e-01 4.87977676e-02 -5.33392012e-01 1.04585958e+00
1.04012632e+00 -4.31645095e-01 -4.50982600e-01 -1.82590619e-01
-1.22511610e-01 1.44279495e-01 1.34700060e-01 -1.43665802e+00
9.26716030e-02 2.67368764e-01 4.77919072e-01 -8.80667508e-01
-1.79702453e-02 -5.05506575e-01 1.29425451e-01 1.19763291e+00
-1.82322413e-01 7.35804915e-01 -1.35833204e-01 -8.01411550e-03
-3.74013148e-02 -6.56727433e-01 1.08418679e+00 -7.22893000e-01
-1.02315485e+00 -6.49697259e-02 -1.08416963e+00 3.77734601e-02
1.11205268e+00 -7.20284641e-01 -3.91492486e-01 -5.17020300e-02
-1.27668178e+00 3.82054120e-01 8.08180988e-01 5.59249640e-01
8.46226290e-02 -1.12894571e+00 -1.22372732e-01 -3.05758417e-01
2.29649562e-02 -1.09678768e-01 1.34763774e-02 1.68308818e+00
-1.40157902e+00 5.92467606e-01 -7.21523643e-01 -9.15595531e-01
-1.52109420e+00 2.09716603e-01 7.95451403e-01 -4.13613975e-01
-1.07400429e+00 6.74548566e-01 -1.15255281e-01 -6.17946923e-01
1.20639421e-01 -1.09340265e-01 -3.92710537e-01 -1.89524248e-01
4.22604471e-01 8.56784761e-01 6.01804852e-01 -1.05085778e+00
-3.96329194e-01 7.38662362e-01 -2.28756845e-01 -1.99040771e-01
1.13254583e+00 -3.42364341e-01 -3.04003745e-01 5.99865139e-01
7.69344032e-01 -1.38229609e-01 -5.62663019e-01 -3.41365201e-04
2.55714625e-01 1.13900974e-01 1.80856079e-01 -1.12820101e+00
-1.06497014e+00 6.58669114e-01 1.15143704e+00 1.39595464e-01
9.54446733e-01 5.35324037e-01 9.45996940e-01 -1.33192658e-01
7.32351720e-01 -1.33586597e+00 -9.30337533e-02 3.63932550e-01
5.38055897e-01 -5.96207976e-01 3.49974900e-01 -2.19033420e-01
-7.68117070e-01 1.22458565e+00 3.84775132e-01 -2.23104507e-01
4.60334122e-01 5.21637201e-01 6.83290064e-01 -1.21250010e+00
-2.29511410e-01 -1.84089288e-01 2.53712654e-01 7.03528762e-01
5.07578731e-01 1.45319685e-01 -9.44458067e-01 -4.18669619e-02
-5.25088549e-01 2.31742814e-01 6.28375649e-01 1.50917923e+00
-8.43548357e-01 -9.26899076e-01 -7.42109179e-01 1.01558661e+00
-1.06971955e+00 4.58933681e-01 -5.23070812e-01 1.04270935e+00
3.67038876e-01 5.10517299e-01 -2.58879542e-01 3.06654256e-03
4.27063614e-01 -2.22787693e-01 8.07305038e-01 -7.67052293e-01
-7.46383190e-01 4.25945222e-02 1.71373621e-01 -9.47481930e-01
-4.93942469e-01 -7.60004699e-01 -1.85620582e+00 5.77191589e-03
-2.40875199e-01 1.57224879e-01 8.38997543e-01 9.23041999e-01
-1.43583389e-02 8.79992902e-01 -1.00717977e-01 -9.18490648e-01
-4.01713997e-01 -9.77325976e-01 -1.02212667e+00 3.22052538e-01
-1.07355215e-01 -1.13280094e+00 1.18238941e-01 8.29212889e-02] | [14.77028751373291, -2.3500723838806152] |
73019071-1f37-421b-aa29-a2d7f2f83005 | do-not-trust-the-neighbors-adversarial-metric | 2011.07945 | null | https://arxiv.org/abs/2011.07945v1 | https://arxiv.org/pdf/2011.07945v1.pdf | Do not trust the neighbors! Adversarial Metric Learning for Self-Supervised Scene Flow Estimation | Scene flow is the task of estimating 3D motion vectors to individual points of a dynamic 3D scene. Motion vectors have shown to be beneficial for downstream tasks such as action classification and collision avoidance. However, data collected via LiDAR sensors and stereo cameras are computation and labor intensive to precisely annotate for scene flow. We address this annotation bottleneck on two ends. We propose a 3D scene flow benchmark and a novel self-supervised setup for training flow models. The benchmark consists of datasets designed to study individual aspects of flow estimation in progressive order of complexity, from a single object in motion to real-world scenes. Furthermore, we introduce Adversarial Metric Learning for self-supervised flow estimation. The flow model is fed with sequences of point clouds to perform flow estimation. A second model learns a latent metric to distinguish between the points translated by the flow estimations and the target point cloud. This latent metric is learned via a Multi-Scale Triplet loss, which uses intermediary feature vectors for the loss calculation. We use our proposed benchmark to draw insights about the performance of the baselines and of different models when trained using our setup. We find that our setup is able to keep motion coherence and preserve local geometries, which many self-supervised baselines fail to grasp. Dealing with occlusions, on the other hand, is still an open challenge. | ['Victor Zuanazzi'] | 2020-11-01 | null | null | null | null | ['scene-flow-estimation'] | ['computer-vision'] | [ 9.79037657e-02 -3.37239176e-01 -2.86404908e-01 -9.40499380e-02
-7.13143766e-01 -8.16869974e-01 7.08420217e-01 -3.82712148e-02
-3.60182464e-01 5.82026958e-01 2.35243812e-01 3.39278881e-03
1.24229401e-01 -6.94741666e-01 -6.87271118e-01 -5.55728495e-01
-1.63408920e-01 6.54119611e-01 4.66585994e-01 -2.70576403e-02
4.22301233e-01 8.76025677e-01 -1.40449393e+00 1.11634314e-01
5.31916380e-01 8.36488426e-01 -6.82346970e-02 1.12980580e+00
-1.08016267e-01 1.00241792e+00 -4.16329026e-01 -2.97488093e-01
7.74468064e-01 -2.36420542e-01 -1.09137309e+00 5.72862998e-02
1.13434863e+00 -5.78339398e-01 -6.55979156e-01 6.67230844e-01
2.98556298e-01 4.37141389e-01 7.75782466e-01 -1.58242548e+00
1.32816479e-01 -1.92523584e-01 -4.53310519e-01 4.11911339e-01
5.25264800e-01 6.20134294e-01 1.11747026e+00 -7.38478422e-01
1.06981921e+00 1.34903944e+00 6.18821979e-01 5.53175211e-01
-1.25264490e+00 -2.77344555e-01 3.36545445e-02 1.99573264e-01
-1.00465286e+00 -5.16240537e-01 8.10507476e-01 -9.63987112e-01
9.17896688e-01 7.43153542e-02 6.80457950e-01 1.06632078e+00
1.35576338e-01 6.98021293e-01 5.35994351e-01 2.30226126e-02
2.15292767e-01 -4.88991365e-02 -1.14958487e-01 8.17225635e-01
3.73924412e-02 2.95221508e-01 -7.10967064e-01 1.81546621e-02
8.24182212e-01 -1.69013619e-01 -3.91188323e-01 -9.47456956e-01
-1.36328149e+00 8.56318712e-01 6.31258130e-01 -3.73219070e-03
-6.28745358e-04 5.09867549e-01 5.10126591e-01 1.91749513e-01
4.39731359e-01 4.17081743e-01 -3.67417723e-01 -4.12335753e-01
-8.52481544e-01 4.22920853e-01 8.01430523e-01 9.31889653e-01
9.57782030e-01 -1.51976854e-01 -7.03014508e-02 8.69116113e-02
6.30836636e-02 4.42778051e-01 1.22935111e-02 -1.63317370e+00
7.63845325e-01 4.63334054e-01 2.17625469e-01 -1.20266819e+00
-3.24126273e-01 -8.67035314e-02 -6.61711633e-01 5.81542492e-01
8.99102271e-01 1.56387940e-01 -4.43040550e-01 1.65275729e+00
5.88868320e-01 6.70049489e-01 -1.39621705e-01 1.09603405e+00
3.88696998e-01 5.76632857e-01 -1.04421377e-01 5.16213365e-02
6.62600040e-01 -1.13482726e+00 -2.16476396e-01 -1.62863836e-01
1.01792181e+00 -7.05592453e-01 1.12184596e+00 5.71850501e-02
-1.23090136e+00 -5.61405957e-01 -8.69424164e-01 -4.31152374e-01
-1.40051290e-01 -2.74461478e-01 5.91410935e-01 4.30495799e-01
-9.10470307e-01 8.99756491e-01 -1.23282707e+00 -3.74100745e-01
8.13390791e-01 1.53214067e-01 -6.11807406e-01 -8.20312798e-02
-6.98501110e-01 9.88677979e-01 -4.07308228e-02 -2.60192096e-01
-9.08638120e-01 -1.15878165e+00 -1.12415481e+00 -2.17807412e-01
7.06665516e-02 -1.25409365e+00 8.66205931e-01 -5.73826909e-01
-1.21306396e+00 1.01987898e+00 -2.55879313e-01 -4.44263518e-01
1.11779809e+00 -4.21272665e-01 4.21238065e-01 4.64571327e-01
3.40483993e-01 8.59288931e-01 6.41720057e-01 -1.00237930e+00
-7.53126919e-01 -3.28042984e-01 2.66119987e-01 3.20150137e-01
1.03372606e-02 -3.15217614e-01 -2.80882210e-01 -3.47265691e-01
-1.43725127e-01 -9.29739475e-01 -2.62017876e-01 6.42942190e-01
-3.14638466e-01 4.12678234e-02 1.12113690e+00 -2.74690568e-01
6.73737288e-01 -1.98430645e+00 3.45353127e-01 -1.28556475e-01
2.78442174e-01 8.99862796e-02 -1.12128191e-01 1.54896140e-01
8.25944841e-02 -1.07101025e-02 -4.93903726e-01 -6.98860824e-01
-1.81233510e-01 2.24036887e-01 -4.47184771e-01 8.46249580e-01
4.87319767e-01 1.04039371e+00 -1.24045444e+00 -5.83790541e-01
7.71474063e-01 4.15598601e-01 -8.94534051e-01 3.46021861e-01
-1.20840482e-01 9.33044910e-01 -3.18496257e-01 3.83981973e-01
6.14684880e-01 -2.16833770e-01 -4.43683177e-01 -3.34854066e-01
-1.43281603e-02 4.18369234e-01 -1.22544527e+00 2.37680197e+00
-4.95365590e-01 9.07656968e-01 -1.87339306e-01 -1.07715940e+00
5.32824278e-01 -9.22158435e-02 9.75122690e-01 -3.25408101e-01
-6.37913030e-03 1.29226940e-02 -3.41132820e-01 -6.79654479e-01
4.96663332e-01 -9.59948227e-02 4.31700842e-03 4.81981635e-01
4.74223830e-02 -6.40891373e-01 2.06122443e-01 3.35088015e-01
1.48345232e+00 6.14981055e-01 3.70118730e-02 -8.14507455e-02
5.57958603e-01 3.56214434e-01 4.90504533e-01 5.30558944e-01
-6.17411017e-01 8.39799702e-01 5.00308990e-01 -7.04784930e-01
-1.12712002e+00 -1.35178173e+00 -4.11534458e-02 4.91933972e-01
4.97134477e-01 -2.76556045e-01 -3.99866223e-01 -1.00626910e+00
1.51076302e-01 3.94446671e-01 -4.72733468e-01 -1.10722445e-01
-8.77657652e-01 -1.43501908e-01 4.15467173e-01 5.58272362e-01
3.29163343e-01 -7.26979196e-01 -1.17820990e+00 4.26555835e-02
-3.51236045e-01 -1.58020985e+00 -6.47433579e-01 -1.33907482e-01
-9.27081406e-01 -1.38861001e+00 -4.69047964e-01 -3.75144005e-01
4.96264100e-01 2.43400261e-01 1.43035841e+00 -1.59369092e-02
-4.95278269e-01 7.42392778e-01 -2.05488324e-01 -2.73249336e-02
-3.39988917e-01 7.56975412e-02 4.68952069e-03 3.89832705e-02
1.11371927e-01 -7.55020976e-01 -9.43558812e-01 3.94146472e-01
-6.68693662e-01 -1.66257888e-01 -2.76109744e-02 5.05241573e-01
4.11477745e-01 -3.84106636e-01 -1.87962979e-01 -6.19173408e-01
-5.11608273e-02 -3.17283928e-01 -5.50836205e-01 -1.34075478e-01
4.82117683e-02 5.53497337e-02 4.62021321e-01 -2.29125559e-01
-6.70015335e-01 4.67240334e-01 4.58981805e-02 -9.09639955e-01
-1.26562312e-01 -2.61623323e-01 -1.55341730e-01 -2.95854360e-01
7.76879311e-01 -2.30061427e-01 3.24782496e-03 -6.47903085e-02
5.80309510e-01 1.04506649e-01 7.80356109e-01 -6.24937415e-01
1.09799302e+00 1.08583474e+00 5.93859315e-01 -7.34546006e-01
-9.38259304e-01 -8.21830750e-01 -1.14713478e+00 -3.67006689e-01
1.06856275e+00 -7.39505291e-01 -6.55106246e-01 3.09841454e-01
-1.47935307e+00 -5.73690176e-01 -8.23023617e-01 6.04062617e-01
-1.17699385e+00 4.54058647e-01 -4.93164003e-01 -5.79029620e-01
2.23763194e-02 -1.31260657e+00 1.37707293e+00 -1.80466548e-01
-2.86103725e-01 -1.33118653e+00 3.70178849e-01 3.91488075e-01
1.57139301e-01 7.16561794e-01 4.15225655e-01 -3.97832971e-03
-9.37344074e-01 2.39005573e-02 -1.22144915e-01 2.78207451e-01
1.32111296e-01 3.18203457e-02 -1.20924556e+00 -2.21379891e-01
1.19617898e-02 -5.33113599e-01 9.31246996e-01 4.04253334e-01
1.09476757e+00 -2.42582168e-02 -3.01926613e-01 1.06104636e+00
1.28287637e+00 -2.23577619e-01 6.95592523e-01 1.94325149e-01
1.08008087e+00 7.95840681e-01 7.03128338e-01 2.47788757e-01
3.74869674e-01 8.12418640e-01 6.41536415e-01 9.20957476e-02
-3.07501316e-01 -4.07355279e-01 2.79498756e-01 3.71809840e-01
-7.03492314e-02 -2.07228720e-01 -9.83694255e-01 5.07078230e-01
-1.84703386e+00 -1.07488823e+00 -2.03502119e-01 2.24339318e+00
3.77217889e-01 2.42871359e-01 1.85799927e-01 2.93284565e-01
2.61280447e-01 2.78185844e-01 -6.85541809e-01 -7.19220266e-02
-4.69791004e-03 2.05275238e-01 4.23722446e-01 8.84262741e-01
-1.36938882e+00 1.11309493e+00 5.55109835e+00 3.27350110e-01
-1.12790155e+00 1.08190686e-01 4.36428428e-01 -3.16956311e-01
-9.95726362e-02 3.09757262e-01 -5.48509657e-01 3.27036530e-01
5.58870673e-01 -1.69113167e-02 1.09305620e-01 5.44359207e-01
3.36971879e-01 -1.33559003e-01 -1.55933452e+00 1.17358041e+00
-2.08474249e-02 -1.59686911e+00 1.68605939e-01 9.02625695e-02
7.39036918e-01 1.28495663e-01 -1.94936424e-01 -9.98516306e-02
2.04876125e-01 -8.89100373e-01 5.83018720e-01 5.91330051e-01
6.46820664e-01 -4.27443564e-01 2.90389478e-01 3.59020859e-01
-1.22625279e+00 1.84918895e-01 -2.39484534e-01 -2.37308651e-01
6.33285880e-01 4.69762474e-01 -4.95656490e-01 5.81411064e-01
6.26400173e-01 1.26563454e+00 -3.31280082e-01 1.14230168e+00
1.79642066e-02 2.25994438e-01 -4.30867732e-01 4.82636511e-01
3.18214566e-01 -3.74776930e-01 9.64802086e-01 1.03828359e+00
1.80403531e-01 -2.03072503e-01 3.04192305e-01 8.85921955e-01
6.02821670e-02 -1.52211264e-01 -1.01419556e+00 4.03140008e-01
5.42526320e-02 1.09666014e+00 -6.68029606e-01 -8.08470845e-02
-2.42520913e-01 1.11746216e+00 3.75605464e-01 2.56914437e-01
-7.44314075e-01 -1.01871252e-01 1.19698048e+00 3.64789784e-01
4.97871302e-02 -6.27002120e-01 -3.08273405e-01 -1.45169902e+00
1.80472478e-01 -1.49629459e-01 3.21187764e-01 -7.04610229e-01
-1.14884901e+00 1.40805826e-01 1.85480546e-02 -1.57193375e+00
-3.66194695e-01 -5.90120733e-01 -7.23140478e-01 6.34862065e-01
-1.65239871e+00 -8.48449647e-01 -6.80271089e-01 6.35159612e-01
6.06416702e-01 2.04942554e-01 4.15830463e-01 2.92090684e-01
-2.79546201e-01 2.97002584e-01 -4.33229119e-01 2.71995723e-01
7.07003951e-01 -1.28937781e+00 5.94195902e-01 9.29996312e-01
3.89423400e-01 1.11177444e-01 4.95681763e-01 -4.06266123e-01
-1.25657225e+00 -1.30358160e+00 7.44821906e-01 -1.22626841e+00
5.91957092e-01 -4.01938111e-01 -6.89413607e-01 7.09957063e-01
-3.04256767e-01 6.68058276e-01 2.00781450e-01 -5.61330199e-01
-2.94695377e-01 -7.66802952e-02 -1.06350112e+00 3.81222099e-01
1.63480341e+00 -5.24635375e-01 -2.85943985e-01 4.62198019e-01
7.53818810e-01 -6.36570930e-01 -7.09096193e-01 3.26217651e-01
4.70249861e-01 -1.21874690e+00 1.22674680e+00 -8.28362226e-01
7.83199131e-01 -3.21744412e-01 -1.56943247e-01 -1.16188729e+00
1.68575838e-01 -8.66133034e-01 -2.52856284e-01 8.52161229e-01
-2.47856434e-02 -3.28245908e-01 1.19015050e+00 5.81777573e-01
-6.77247122e-02 -5.06136656e-01 -1.06331491e+00 -8.07392418e-01
2.32858315e-01 -7.42164969e-01 1.80396259e-01 9.64469910e-01
-4.01821554e-01 4.21285301e-01 -1.58941403e-01 1.06121227e-02
9.00040329e-01 8.18435997e-02 1.31366348e+00 -1.00040972e+00
-6.63779601e-02 -6.39065444e-01 -1.05143631e+00 -1.46731114e+00
4.42577273e-01 -9.66457546e-01 -1.42642722e-01 -1.34079158e+00
-1.98435515e-01 -5.61967790e-01 2.63653129e-01 5.01242094e-02
-1.53681133e-02 3.27396393e-01 4.18268681e-01 2.96659172e-01
-5.43201029e-01 5.78580499e-01 1.49757791e+00 -2.80660331e-01
-3.55619252e-01 1.04619622e-01 2.82779858e-02 8.38419437e-01
5.21629870e-01 -4.22530949e-01 -5.81649184e-01 -6.35275126e-01
2.34604767e-03 1.62256613e-01 8.31704855e-01 -1.18011439e+00
3.55426759e-01 -3.70656699e-01 1.35347679e-01 -5.24936497e-01
5.37560403e-01 -8.26926112e-01 -2.14644238e-01 4.80490088e-01
-4.04883623e-01 8.84438008e-02 3.73443663e-02 6.46649539e-01
5.04136179e-03 -2.55265925e-02 8.25066626e-01 -1.45486400e-01
-6.66768909e-01 8.01506221e-01 2.19079062e-01 7.06550658e-01
1.16643095e+00 -3.71118635e-01 -9.16987583e-02 -4.54615176e-01
-6.52169526e-01 2.66704887e-01 6.42312288e-01 5.07839382e-01
6.44554138e-01 -1.17012668e+00 -7.02907979e-01 1.51506513e-01
1.79569155e-01 6.17581010e-01 -5.02859876e-02 8.08191299e-01
-9.84281063e-01 2.26811543e-01 -2.10947648e-01 -1.20329010e+00
-8.99415195e-01 2.64501423e-01 6.06969833e-01 -2.63515949e-01
-8.84450853e-01 7.57273316e-01 3.89333963e-01 -4.38101768e-01
2.49965072e-01 -4.21408147e-01 8.20646137e-02 -9.43347514e-02
3.87008160e-01 7.17713416e-01 3.55738923e-02 -8.19876373e-01
-3.61280888e-01 1.04794157e+00 4.24683273e-01 -1.29029572e-01
1.07375062e+00 -1.73445687e-01 2.05985904e-01 4.98114467e-01
1.70450771e+00 -1.55480012e-01 -1.75806928e+00 4.70759682e-02
-1.93561271e-01 -9.78418052e-01 -1.49389982e-01 -7.11529404e-02
-1.23594093e+00 1.23421562e+00 3.82759869e-01 -1.78065345e-01
7.95406401e-01 -6.84079751e-02 8.97517323e-01 2.36548439e-01
4.51462090e-01 -6.30085945e-01 3.13930690e-01 5.21897674e-01
6.29156113e-01 -1.35988533e+00 -1.21469684e-01 -5.07212400e-01
-3.74812067e-01 1.03694701e+00 6.34102046e-01 -3.36523712e-01
5.86308956e-01 1.87565699e-01 9.65212807e-02 -3.18863988e-02
-5.76203287e-01 -2.70682037e-01 1.92303210e-01 7.75080800e-01
-1.52491748e-01 -3.78795862e-01 2.62512147e-01 -5.23302078e-01
-3.75589758e-01 -5.70953488e-02 4.72142339e-01 8.85593832e-01
-6.90433234e-02 -9.24729407e-01 -6.95171505e-02 2.07953125e-01
-9.69473422e-02 3.10510725e-01 -2.90548950e-01 7.18631983e-01
4.78783995e-02 7.91542649e-01 4.19183224e-01 -2.93668151e-01
5.31613827e-01 -2.05995932e-01 6.62294090e-01 -4.46239352e-01
-3.20328176e-01 -5.32989323e-01 -2.30740637e-01 -1.20447683e+00
-8.25191677e-01 -8.13511968e-01 -1.07820868e+00 -3.00799400e-01
1.65655136e-01 -1.04560085e-01 5.37214279e-01 8.51606786e-01
2.99090832e-01 1.45174056e-01 8.71543527e-01 -1.30161011e+00
-4.31571275e-01 -3.97185504e-01 -1.37345940e-01 9.41309571e-01
7.90542305e-01 -8.23255181e-01 -7.64000833e-01 3.52632314e-01] | [8.548983573913574, -1.9944708347320557] |
448db99b-7d7f-4ff3-b126-4565649de7fc | wabert-a-low-resource-end-to-end-model-for | 2204.10461 | null | https://arxiv.org/abs/2204.10461v1 | https://arxiv.org/pdf/2204.10461v1.pdf | WaBERT: A Low-resource End-to-end Model for Spoken Language Understanding and Speech-to-BERT Alignment | Historically lower-level tasks such as automatic speech recognition (ASR) and speaker identification are the main focus in the speech field. Interest has been growing in higher-level spoken language understanding (SLU) tasks recently, like sentiment analysis (SA). However, improving performances on SLU tasks remains a big challenge. Basically, there are two main methods for SLU tasks: (1) Two-stage method, which uses a speech model to transfer speech to text, then uses a language model to get the results of downstream tasks; (2) One-stage method, which just fine-tunes a pre-trained speech model to fit in the downstream tasks. The first method loses emotional cues such as intonation, and causes recognition errors during ASR process, and the second one lacks necessary language knowledge. In this paper, we propose the Wave BERT (WaBERT), a novel end-to-end model combining the speech model and the language model for SLU tasks. WaBERT is based on the pre-trained speech and language model, hence training from scratch is not needed. We also set most parameters of WaBERT frozen during training. By introducing WaBERT, audio-specific information and language knowledge are integrated in the short-time and low-resource training process to improve results on the dev dataset of SLUE SA tasks by 1.15% of recall score and 0.82% of F1 score. Additionally, we modify the serial Continuous Integrate-and-Fire (CIF) mechanism to achieve the monotonic alignment between the speech and text modalities. | ['Yafeng Deng', 'Zijian Chen', 'Yingfang Yang', 'Ruizhuo Xu', 'Jianfei Song', 'Lin Yao'] | 2022-04-22 | null | null | null | null | ['speaker-identification'] | ['speech'] | [ 1.08988620e-01 9.54642668e-02 1.29725903e-01 -5.62769592e-01
-1.03257620e+00 -3.42233002e-01 4.17623043e-01 1.00017473e-01
-5.16260743e-01 3.90220582e-01 2.90802866e-01 -3.10407341e-01
4.51917946e-01 -5.42881668e-01 -6.04951739e-01 -5.75299382e-01
4.03654486e-01 2.18493268e-01 4.05708641e-01 -4.78035867e-01
-9.52691212e-02 9.84557420e-02 -1.52833962e+00 4.78052467e-01
7.99086750e-01 1.11260068e+00 4.27538872e-01 7.41862893e-01
-5.41700721e-01 7.36846209e-01 -5.97964048e-01 -1.97807997e-01
-1.93918616e-01 -6.61311746e-01 -7.02407002e-01 5.99177205e-04
-3.63759726e-01 2.36934759e-02 3.59106846e-02 7.81621695e-01
8.48666787e-01 5.13162971e-01 4.25297737e-01 -8.70937049e-01
-2.79810578e-01 8.59296799e-01 -3.14239830e-01 -3.58141549e-02
3.33125472e-01 -7.60168210e-02 8.54524791e-01 -1.15617728e+00
2.88066775e-01 1.29815817e+00 3.91829699e-01 1.00810874e+00
-9.38099980e-01 -7.50250518e-01 2.70619303e-01 4.75906320e-02
-1.35510099e+00 -1.02269936e+00 7.96016276e-01 -2.24776313e-01
1.31275785e+00 2.54148424e-01 2.80005515e-01 1.00999725e+00
-1.79016650e-01 1.10641193e+00 9.89686191e-01 -5.75757384e-01
2.72487938e-01 4.59350824e-01 1.60728335e-01 3.37487996e-01
-7.96070278e-01 -2.95990845e-03 -8.13592911e-01 2.62436926e-01
3.53835613e-01 -3.30426395e-01 -3.34821463e-01 3.70560110e-01
-9.16603267e-01 6.69961631e-01 1.49861127e-01 5.72678328e-01
-2.33660847e-01 -3.00984859e-01 5.68655908e-01 3.82469803e-01
6.41237855e-01 2.15549380e-01 -6.15268707e-01 -3.69243979e-01
-1.00179207e+00 -2.62397259e-01 6.60904527e-01 7.52866745e-01
5.99688828e-01 2.37663031e-01 -2.97343701e-01 1.41040993e+00
4.24586236e-01 5.99514604e-01 9.35080707e-01 -2.44659334e-01
5.69969535e-01 3.74825031e-01 -3.93231034e-01 -3.47867817e-01
-2.57799804e-01 -5.08278489e-01 -6.62766457e-01 -8.79544765e-02
-1.62896700e-02 -2.67590135e-01 -1.07750130e+00 1.87853360e+00
2.04584882e-01 3.25987816e-01 5.78044236e-01 8.25469017e-01
1.20944345e+00 1.22689939e+00 -4.71345000e-02 -4.02443707e-01
1.33397651e+00 -1.22659671e+00 -9.76443470e-01 -6.02078795e-01
7.23248899e-01 -8.10787559e-01 1.31175637e+00 3.13823789e-01
-1.16971374e+00 -6.39932632e-01 -1.07966185e+00 -1.36003405e-01
-2.61824697e-01 3.95600438e-01 7.43954927e-02 7.40360081e-01
-1.18813968e+00 2.74303496e-01 -6.25941932e-01 -3.38987052e-01
-7.42851868e-02 3.39299351e-01 -3.01857859e-01 1.90222397e-01
-1.64386427e+00 5.83337486e-01 3.29634815e-01 1.99711412e-01
-6.87842727e-01 -2.93944925e-01 -9.67848301e-01 3.15282047e-01
4.72780466e-01 -1.87460124e-01 1.43320668e+00 -1.04976881e+00
-2.29459572e+00 7.34680712e-01 -4.51371491e-01 -2.38815621e-01
2.14370012e-01 -1.50829926e-01 -5.07328033e-01 -1.97880685e-01
-3.91112030e-01 5.92544973e-01 8.93714249e-01 -1.09142280e+00
-5.68944335e-01 -1.71189100e-01 -3.82936090e-01 4.09319550e-01
-3.59069973e-01 3.01922530e-01 -5.82903981e-01 -5.43517470e-01
9.03174952e-02 -6.66665971e-01 2.08002001e-01 -6.33333564e-01
-1.90636232e-01 -5.33467650e-01 6.55633688e-01 -9.51417267e-01
1.63284230e+00 -2.41794682e+00 1.93092629e-01 1.38766214e-01
-4.25627708e-01 6.18736565e-01 -2.41831735e-01 3.49862188e-01
-1.58881515e-01 8.20230991e-02 -1.80593073e-01 -9.66798663e-01
-7.03990161e-02 1.83373064e-01 -3.21910053e-01 -1.76561639e-01
4.05315399e-01 7.81873286e-01 -7.08573937e-01 -2.20354229e-01
1.86812475e-01 3.53929967e-01 -5.46057105e-01 5.13235211e-01
-4.26014438e-02 5.31908870e-01 -2.04891875e-01 3.47860396e-01
4.47287709e-01 3.54721457e-01 -4.69309874e-02 3.75380144e-02
-3.43588352e-01 9.04013991e-01 -1.14457905e+00 1.74186683e+00
-8.79059315e-01 2.31641322e-01 3.24359089e-01 -8.87266159e-01
1.25160384e+00 7.34741211e-01 -3.14885983e-03 -7.45599687e-01
4.38961416e-01 3.74279916e-01 4.20073047e-03 -4.15932089e-01
1.17348291e-01 -4.22277600e-01 -2.34221503e-01 3.23277444e-01
3.64071131e-01 -3.55347872e-01 -1.56501681e-01 -2.30106153e-02
8.14889729e-01 -1.09775342e-01 2.97941744e-01 6.45536929e-02
9.95635629e-01 -4.49251950e-01 5.37015557e-01 4.42605674e-01
-1.72037229e-01 7.45311797e-01 2.81072229e-01 2.87891716e-01
-5.31719089e-01 -8.42590332e-01 3.77035514e-02 1.35912848e+00
-2.25705475e-01 -5.22515297e-01 -9.82465923e-01 -5.43366551e-01
-5.37533343e-01 1.00823951e+00 -2.20669717e-01 -3.58462721e-01
-3.91481698e-01 -5.83435059e-01 6.26239419e-01 4.33338076e-01
4.72613573e-01 -1.37312615e+00 8.78119320e-02 3.08324516e-01
-3.29350471e-01 -1.16132247e+00 -7.23051071e-01 3.51720899e-01
-4.95620817e-01 -3.36429894e-01 -6.91939235e-01 -8.19152832e-01
4.01293039e-01 -3.90134677e-02 6.67289317e-01 -5.05038314e-02
3.84398997e-01 -4.34656553e-02 -7.32786119e-01 -3.95263106e-01
-7.61278927e-01 2.42562920e-01 1.78475305e-01 3.94130766e-01
3.40945393e-01 -3.14480782e-01 -9.18682590e-02 3.47093970e-01
-7.43537605e-01 1.54064864e-01 6.40349746e-01 9.57140148e-01
5.33060491e-01 -6.49897829e-02 9.87514675e-01 -6.16965830e-01
5.94456434e-01 -2.06679463e-01 -2.68039554e-01 1.49267405e-01
-2.74523437e-01 -6.47152811e-02 6.29983246e-01 -5.62357962e-01
-1.27014446e+00 1.85215384e-01 -9.96564031e-01 -4.75181013e-01
-1.30296886e-01 6.98740780e-01 -6.78856790e-01 3.27747911e-01
4.40120041e-01 4.67160136e-01 -6.58088475e-02 -5.59281468e-01
1.34413421e-01 1.41073203e+00 4.19071287e-01 -2.92230368e-01
4.69600052e-01 -2.01502919e-01 -7.49904275e-01 -1.23086882e+00
-9.58649516e-01 -5.30761898e-01 -3.81103247e-01 -2.50201643e-01
8.41431618e-01 -1.00901258e+00 -6.37505054e-01 7.97668457e-01
-1.19154954e+00 -5.48895538e-01 -8.74598175e-02 6.06921852e-01
-2.66111016e-01 1.95406407e-01 -6.46119714e-01 -1.27421308e+00
-5.54202855e-01 -1.27982080e+00 1.05722022e+00 3.13413858e-01
-2.23931164e-01 -6.92146599e-01 -1.21799493e-02 5.56790352e-01
4.81053740e-01 -5.56029618e-01 7.29985178e-01 -9.51563716e-01
-5.99668510e-02 3.48364748e-03 9.27126408e-02 9.25710678e-01
4.41788249e-02 -2.20344871e-01 -1.49840140e+00 -2.12175414e-01
3.48266512e-01 -5.59890270e-01 7.99694180e-01 3.62364143e-01
8.63890827e-01 -9.93964225e-02 -5.09770587e-04 4.25147712e-01
8.01198363e-01 6.11858666e-01 5.76063156e-01 -1.14076912e-01
5.32814145e-01 7.84990788e-01 5.61569095e-01 8.68174285e-02
4.45596159e-01 7.64849544e-01 -1.33549154e-01 -9.93073732e-02
-2.30994791e-01 -4.03467655e-01 1.03603899e+00 1.50885797e+00
3.14807653e-01 -3.41305345e-01 -9.10470784e-01 4.85507965e-01
-1.87950265e+00 -5.63534796e-01 5.14688380e-02 2.26374769e+00
1.06277835e+00 3.82209897e-01 -2.02332139e-02 3.47736567e-01
6.86060905e-01 9.31189209e-02 -3.02610934e-01 -6.01155758e-01
-6.90319762e-02 2.33970553e-01 -9.23006982e-02 7.39474297e-01
-8.83260548e-01 1.39762700e+00 4.84120274e+00 1.22017515e+00
-1.45654547e+00 3.53880405e-01 6.02363110e-01 4.68158498e-02
-2.11859420e-01 -2.13306621e-01 -9.34599102e-01 4.19020355e-01
1.17229772e+00 -3.74634489e-02 5.23384452e-01 6.33446991e-01
4.50220197e-01 -1.16793774e-01 -1.11454725e+00 1.07276225e+00
2.51243174e-01 -7.28100419e-01 -1.05454788e-01 -5.03631294e-01
3.55233550e-01 -1.93860717e-02 -2.05943152e-01 8.58858883e-01
-2.33531326e-01 -8.99134457e-01 8.94303322e-01 1.92667708e-01
8.45999360e-01 -9.16558862e-01 1.01353431e+00 6.51034534e-01
-1.28444004e+00 1.43195480e-01 -8.11225325e-02 2.32158657e-02
3.56883526e-01 5.36029279e-01 -8.58093441e-01 5.58222294e-01
4.94609177e-01 4.23119724e-01 -1.47364095e-01 6.42040908e-01
-5.30083835e-01 1.03729522e+00 -4.46459234e-01 -2.67006427e-01
1.56892806e-01 -1.61366135e-01 6.54028416e-01 1.28044915e+00
4.33834642e-01 1.76136449e-01 1.68229789e-01 5.36837578e-01
-5.04529364e-02 4.92807150e-01 -3.33273560e-01 -2.30477214e-01
4.25683886e-01 1.06274641e+00 -5.58044553e-01 -2.44809225e-01
-3.78735214e-01 1.05678976e+00 9.40596908e-02 2.91698337e-01
-6.25320256e-01 -4.76037681e-01 4.67023790e-01 -1.44307643e-01
1.29018188e-01 -1.73976541e-01 -1.74202368e-01 -1.17597222e+00
2.93153487e-02 -7.48684406e-01 1.27984956e-01 -7.87530065e-01
-9.65358257e-01 9.96878922e-01 -4.54967320e-01 -9.72735107e-01
-4.78474796e-01 -3.55971158e-01 -6.29013658e-01 1.15337586e+00
-1.68146038e+00 -1.09606695e+00 9.41630155e-02 5.01873910e-01
1.03247583e+00 -1.55092597e-01 8.97329688e-01 4.79581296e-01
-7.40752459e-01 6.61998332e-01 -1.72035813e-01 1.69833452e-01
8.02399457e-01 -9.86688018e-01 3.47715616e-01 8.52087498e-01
5.68827242e-03 3.08938116e-01 5.02911866e-01 -4.72914606e-01
-1.01286817e+00 -1.01802707e+00 1.31993866e+00 -1.38562664e-01
5.55996060e-01 -9.41409290e-01 -1.15277565e+00 3.86178523e-01
6.72793910e-02 -2.54578501e-01 6.65254951e-01 1.25873730e-01
4.38882597e-02 -2.40857437e-01 -8.73438835e-01 4.06581640e-01
6.67953789e-01 -7.63287902e-01 -6.38091087e-01 -6.51067346e-02
9.06556129e-01 -4.05404270e-01 -4.45379555e-01 2.38198712e-01
2.62856424e-01 -7.72041500e-01 5.69885433e-01 -3.43796939e-01
2.15569183e-01 -3.16936553e-01 -2.12767795e-01 -1.66430128e+00
6.77651018e-02 -7.41514504e-01 2.02002019e-01 1.78748477e+00
7.24355519e-01 -5.93323350e-01 1.45578653e-01 2.55800664e-01
-4.06171888e-01 -7.77543545e-01 -9.85696971e-01 -6.28998160e-01
-1.77253887e-01 -7.17351139e-01 3.41147959e-01 7.28617549e-01
2.41627172e-01 9.68450904e-01 -2.47493908e-01 1.31151542e-01
-2.48294249e-02 -2.50106901e-01 4.87238884e-01 -9.42751586e-01
-3.63749415e-01 -3.21684897e-01 5.37069850e-02 -1.19861794e+00
3.48941147e-01 -9.99974072e-01 5.01740038e-01 -1.30954027e+00
-1.92747027e-01 -3.12192291e-01 -3.62620652e-01 7.32129276e-01
-2.22014040e-01 -2.36337870e-01 2.74007201e-01 -9.95079428e-02
-2.05532759e-01 1.01832390e+00 9.70138669e-01 6.18133843e-02
-6.62081122e-01 3.36658061e-01 -4.41919386e-01 4.97965336e-01
7.04914689e-01 -3.83590162e-01 -5.44982553e-01 -2.63628244e-01
-1.30398143e-02 3.71331364e-01 -2.15570211e-01 -8.64087403e-01
3.36202800e-01 1.12096094e-01 -1.24876991e-01 -5.76251328e-01
5.53974628e-01 -5.34360290e-01 -3.60816538e-01 1.95479557e-01
-1.55785695e-01 -4.04644817e-01 3.98727447e-01 1.66608337e-02
-6.14655316e-01 -4.32992160e-01 9.63631034e-01 2.05834076e-01
-5.92298627e-01 -2.73925741e-03 -6.39507174e-01 -1.52742624e-01
7.80212998e-01 5.80601580e-02 -3.71188931e-02 -6.01116776e-01
-9.09413159e-01 4.48987484e-01 -1.31051868e-01 6.76543832e-01
5.34430981e-01 -1.02003932e+00 -7.52739549e-01 5.57817280e-01
2.65811626e-02 1.66304067e-01 3.93233836e-01 9.23285306e-01
6.72956929e-02 3.68345380e-01 2.78107315e-01 -4.42554295e-01
-1.32584035e+00 1.82321936e-01 4.42436844e-01 -1.92953616e-01
-2.06522256e-01 1.20030367e+00 3.95903200e-01 -7.69730508e-01
3.45022857e-01 -3.11290979e-01 -4.71612543e-01 3.40194166e-01
6.42878532e-01 1.28880534e-02 4.59590912e-01 -7.09417403e-01
-6.59164608e-01 3.99271488e-01 -6.39304444e-02 -5.37038445e-01
1.37409472e+00 -4.33299720e-01 7.92475864e-02 8.86435986e-01
1.04476774e+00 9.94921923e-02 -8.97991776e-01 -2.44951487e-01
-1.06447674e-01 2.01454669e-01 5.16083360e-01 -9.90686238e-01
-9.56950665e-01 1.32837510e+00 3.62907380e-01 9.22170728e-02
1.20994604e+00 3.87454666e-02 1.03964853e+00 2.47178525e-01
1.09113380e-01 -1.37528050e+00 -5.73460236e-02 1.01821589e+00
1.02487087e+00 -1.07586861e+00 -7.33211696e-01 -4.43997771e-01
-9.69770432e-01 9.45970893e-01 5.68370819e-01 2.65641868e-01
7.07627714e-01 4.56919581e-01 4.38282341e-01 3.17420274e-01
-9.97363448e-01 -4.09347832e-01 3.54752481e-01 1.93110749e-01
5.15058219e-01 -6.53434321e-02 -2.64480591e-01 1.33733010e+00
-3.41408074e-01 2.03556158e-02 2.46175081e-01 6.91973150e-01
-4.87297922e-01 -1.12350214e+00 -3.15427065e-01 1.11774705e-01
-3.28938276e-01 -2.88980961e-01 -4.37769651e-01 1.38592213e-01
-3.80332246e-02 1.28409624e+00 -6.69333478e-03 -5.78992069e-01
6.15252376e-01 5.95592856e-01 7.40525275e-02 -8.91520023e-01
-7.65592337e-01 6.60823047e-01 2.58176237e-01 -4.21375275e-01
-1.25521377e-01 -5.54909825e-01 -1.52177942e+00 2.14568377e-01
-5.89050770e-01 3.38994414e-01 9.22322929e-01 1.27043879e+00
2.16012672e-01 8.41092467e-01 8.91171455e-01 -8.06129813e-01
-3.69808733e-01 -1.24653244e+00 -5.36007881e-01 4.22205403e-02
3.94101530e-01 -4.11221892e-01 -5.61198592e-01 -2.83249505e-02] | [14.39553165435791, 6.682505130767822] |
f76aefd7-4a5d-4cfb-8736-59fc16ea7c03 | conditional-generation-of-temporally-ordered | 2012.15786 | null | https://arxiv.org/abs/2012.15786v2 | https://arxiv.org/pdf/2012.15786v2.pdf | Conditional Generation of Temporally-ordered Event Sequences | Models of narrative schema knowledge have proven useful for a range of event-related tasks, but they typically do not capture the temporal relationships between events. We propose a single model that addresses both temporal ordering, sorting given events into the order they occurred, and event infilling, predicting new events which fit into an existing temporally-ordered sequence. We use a BART-based conditional generation model that can capture both temporality and common event co-occurrence, meaning it can be flexibly applied to different tasks in this space. Our model is trained as a denoising autoencoder: we take temporally-ordered event sequences, shuffle them, delete some events, and then attempt to recover the original event sequence. This task teaches the model to make inferences given incomplete knowledge about the events in an underlying scenario. On the temporal ordering task, we show that our model is able to unscramble event sequences from existing datasets without access to explicitly labeled temporal training data, outperforming both a BERT-based pairwise model and a BERT-based pointer network. On event infilling, human evaluation shows that our model is able to generate events that fit better temporally into the input events when compared to GPT-2 story completion models. | ['Greg Durrett', 'Nathanael Chambers', 'Shih-ting Lin'] | 2020-12-31 | null | https://aclanthology.org/2021.acl-long.555 | https://aclanthology.org/2021.acl-long.555.pdf | acl-2021-5 | ['story-completion'] | ['natural-language-processing'] | [ 4.04212534e-01 1.64006576e-01 -1.35780245e-01 -4.41044331e-01
-7.49878168e-01 -7.99655318e-01 1.07145560e+00 4.34695959e-01
-3.41336101e-01 8.04000139e-01 1.03566217e+00 -3.21710348e-01
-4.51528728e-01 -1.09221172e+00 -9.23596740e-01 -2.45079458e-01
-4.12157148e-01 9.00529087e-01 3.34618777e-01 -2.37880588e-01
1.27831772e-01 2.90387601e-01 -1.49508071e+00 8.66888881e-01
3.90648574e-01 4.75407511e-01 1.33215770e-01 7.72010982e-01
1.07130796e-01 1.57116151e+00 -6.06086493e-01 -4.49834436e-01
-5.38334176e-02 -6.78330064e-01 -1.06707203e+00 -2.34223634e-01
-6.92070723e-02 -5.96988261e-01 -6.49799407e-01 2.12057903e-01
1.75562069e-01 6.17170274e-01 7.99620867e-01 -1.17820001e+00
-4.27319854e-01 1.33636951e+00 -1.01419948e-02 4.24434453e-01
7.56946623e-01 -1.75108165e-02 1.08468103e+00 -5.84634542e-01
1.09132254e+00 1.01371729e+00 8.62419724e-01 2.81389743e-01
-1.22654760e+00 -3.98351043e-01 2.11681366e-01 6.83466613e-01
-9.73489165e-01 -2.37904966e-01 6.98713839e-01 -4.70571041e-01
1.34027147e+00 2.26404220e-01 8.47568810e-01 1.57000089e+00
1.50427252e-01 6.88305259e-01 6.64443970e-01 -2.90804654e-01
4.14892286e-01 -5.76268911e-01 -1.56058982e-01 1.96959615e-01
-4.33887213e-01 4.58333403e-01 -1.01616859e+00 -3.35641429e-02
7.36029923e-01 -5.82222547e-03 -1.61137775e-01 1.56344652e-01
-1.49007058e+00 6.97161555e-01 3.96125555e-01 4.28620607e-01
-7.50987589e-01 3.49690706e-01 4.95626241e-01 1.41021892e-01
2.98142880e-01 5.13973713e-01 -3.79047602e-01 -4.20601696e-01
-1.25421357e+00 7.14035034e-01 8.12919557e-01 7.55637646e-01
3.25491607e-01 -2.38849148e-01 -4.34851348e-01 3.43524575e-01
-2.65700340e-01 -3.15575570e-01 5.10060728e-01 -1.15770197e+00
4.86572564e-01 2.48708218e-01 2.91393071e-01 -8.57936621e-01
-4.95413214e-01 -9.31002721e-02 -4.50370431e-01 -4.67854068e-02
5.44903457e-01 -1.21628687e-01 -8.42479587e-01 2.12072635e+00
5.61457649e-02 8.18995237e-01 1.34053335e-01 6.22100830e-01
6.18677855e-01 1.05222023e+00 2.69195497e-01 -4.00667280e-01
1.14938986e+00 -4.96215194e-01 -6.55918300e-01 -4.61320996e-01
4.01895911e-01 -3.66905779e-01 7.92297542e-01 3.59726220e-01
-1.52478170e+00 -3.70821625e-01 -1.03305364e+00 -1.85702801e-01
-2.73504168e-01 -4.33210492e-01 7.69061923e-01 -7.54161552e-02
-9.16864038e-01 1.16233790e+00 -1.05499148e+00 -3.90020609e-01
2.23908335e-01 -1.74505100e-01 -4.69003528e-01 -5.77910282e-02
-1.48712230e+00 1.14858437e+00 1.10355639e+00 -1.23558745e-01
-1.21374536e+00 -9.11579251e-01 -9.05719280e-01 2.88674027e-01
4.59807575e-01 -7.91088462e-01 1.59189439e+00 -4.81746703e-01
-1.04939783e+00 4.24599946e-01 -2.65910923e-01 -8.61593187e-01
4.06724960e-01 -9.27211270e-02 -5.82640052e-01 2.56072879e-01
2.01577231e-01 7.14053571e-01 3.88169080e-01 -1.00319481e+00
-7.74607420e-01 3.14894505e-02 1.30286336e-01 3.77013057e-01
8.19708034e-03 1.42108455e-01 -1.27329558e-01 -8.89550328e-01
9.97125208e-02 -5.99915624e-01 -1.29598334e-01 -3.72409165e-01
-2.13488728e-01 -1.68635860e-01 4.52609569e-01 -8.61050606e-01
1.42170525e+00 -1.85818958e+00 4.64676738e-01 -1.36898786e-01
-2.82711893e-01 -4.47377294e-01 -2.95862574e-02 9.22482610e-01
-4.39784348e-01 5.31174876e-02 -4.71698225e-01 -3.38750213e-01
1.08712405e-01 3.65290880e-01 -7.13253140e-01 -9.36131328e-02
3.26147884e-01 8.42858315e-01 -1.27111137e+00 -3.71529371e-01
1.44787878e-01 2.87476778e-01 -5.69623709e-01 2.12193444e-01
-6.57020271e-01 3.50512505e-01 1.65283456e-02 6.13262244e-02
1.19321853e-01 -9.47227478e-02 3.06999564e-01 -4.70877327e-02
-3.43994498e-02 8.20043564e-01 -1.20044041e+00 1.95838416e+00
-4.18284148e-01 7.71457195e-01 -7.69304991e-01 -8.27305019e-01
5.92838526e-01 7.67743468e-01 3.31405938e-01 -5.25410354e-01
-2.02169016e-01 -1.18287630e-01 -2.32699901e-01 -6.42072916e-01
7.43910730e-01 -6.77742183e-01 -4.47543353e-01 8.05116117e-01
3.31086069e-01 -7.09054619e-02 5.19433558e-01 4.49053377e-01
1.46793413e+00 5.60949922e-01 3.29884648e-01 4.62840766e-01
-8.18098262e-02 2.68591374e-01 5.59373081e-01 8.75446439e-01
2.44444311e-01 7.49187171e-01 7.00480998e-01 -7.69104600e-01
-1.13794243e+00 -1.45849824e+00 1.02160230e-01 1.18348324e+00
-1.19285971e-01 -6.70411468e-01 -3.29029858e-01 -6.11608863e-01
-3.76272738e-01 1.57800603e+00 -8.46221387e-01 -2.85461664e-01
-8.56068075e-01 -6.40106738e-01 7.11213470e-01 9.62542593e-01
8.67108777e-02 -1.50290561e+00 -8.98410976e-01 7.54809797e-01
-7.40414083e-01 -7.72325993e-01 -2.59782076e-01 4.74769562e-01
-6.46738470e-01 -9.02421653e-01 -1.06859982e-01 -7.39058912e-01
5.25813624e-02 -4.70578521e-01 1.36065578e+00 -3.56698304e-01
8.69208276e-02 1.48224637e-01 -4.46705371e-01 -4.69843417e-01
-5.14342010e-01 -1.64582983e-01 -2.32418031e-01 -2.13793471e-01
2.65825778e-01 -1.04508567e+00 -4.13586348e-01 1.70135990e-01
-1.09470546e+00 4.09707099e-01 7.93842152e-02 8.22641015e-01
3.82307768e-01 5.16276956e-01 6.48124278e-01 -6.22466147e-01
5.90877593e-01 -8.27684462e-01 4.33176607e-02 1.78849950e-01
-6.55473769e-02 6.01047836e-02 6.00515842e-01 -5.66851854e-01
-1.47228134e+00 -1.73472181e-01 -2.01669093e-02 -2.02191249e-01
-3.66360784e-01 9.52912569e-01 9.29635391e-02 1.09858692e+00
8.22319686e-01 2.66323209e-01 -6.11579418e-01 -1.50888368e-01
5.63393295e-01 -1.09285988e-01 1.21996331e+00 -8.13838184e-01
4.80259091e-01 6.05889201e-01 -2.41685376e-01 -7.53768533e-02
-9.69289541e-01 -3.69032361e-02 -5.76175570e-01 -3.83477718e-01
9.37958479e-01 -7.73964882e-01 -5.85663438e-01 1.51518539e-01
-1.44484353e+00 -6.36969984e-01 -7.13458776e-01 6.34676039e-01
-9.19125438e-01 -9.25925151e-02 -9.16468203e-01 -5.30673265e-01
1.58846810e-01 -6.17847204e-01 7.63353407e-01 7.51944184e-02
-9.16786730e-01 -1.02816284e+00 2.42984548e-01 -5.80235980e-02
7.86496978e-03 5.96462846e-01 1.18934381e+00 -8.31887126e-01
-4.02344286e-01 -1.30023584e-01 2.98696756e-01 -4.06782448e-01
-1.42740116e-01 -1.48016572e-01 -6.25415087e-01 1.22739784e-01
2.99077593e-02 -3.32806051e-01 9.20560896e-01 4.21846271e-01
9.71117258e-01 -4.38332766e-01 -3.53330314e-01 3.23939681e-01
1.10243630e+00 5.13685763e-01 7.97750831e-01 4.46781904e-01
2.44937718e-01 9.11485612e-01 4.17943597e-01 5.81982195e-01
5.42432308e-01 4.53410089e-01 4.36627209e-01 4.82939392e-01
-1.08237090e-02 -8.70695353e-01 2.98127532e-01 2.97193199e-01
-1.33395016e-01 -6.28129840e-01 -9.05862868e-01 1.00965035e+00
-2.11424112e+00 -1.80731022e+00 1.82120427e-02 1.95843697e+00
1.09262729e+00 5.11686027e-01 7.59567991e-02 3.01862776e-01
6.03560030e-01 4.20283407e-01 -4.19821203e-01 -3.54598016e-01
-1.45534948e-01 4.28505987e-01 4.53978293e-02 5.47933042e-01
-9.54042256e-01 8.95358205e-01 7.17504072e+00 6.43759370e-01
-5.66368341e-01 -7.71671999e-03 4.94477361e-01 -4.79337066e-01
-5.75335622e-01 3.55461776e-01 -2.09163517e-01 4.24590319e-01
1.07587492e+00 -3.65566492e-01 5.74333370e-01 2.83553839e-01
2.85926908e-01 -1.39883861e-01 -1.74205971e+00 4.88846630e-01
3.33071016e-02 -1.76029181e+00 2.27013871e-01 -3.99372816e-01
4.92395431e-01 -4.78742689e-01 -3.67932886e-01 4.86732900e-01
9.03728426e-01 -1.30511522e+00 1.16051042e+00 7.36190319e-01
3.51507664e-01 -7.75121510e-01 4.67352331e-01 5.39967477e-01
-1.07792449e+00 -1.34403229e-01 1.73530951e-01 -5.81556201e-01
8.71675670e-01 2.29163900e-01 -1.08510780e+00 6.87269747e-01
6.33754969e-01 8.47798824e-01 -3.10696214e-01 8.18517029e-01
-5.97451329e-01 8.01796377e-01 -3.57486248e-01 2.32821837e-01
8.69171023e-02 7.20500350e-02 6.23012662e-01 1.04958689e+00
5.65471232e-01 4.90019798e-01 -2.10268330e-03 8.77437294e-01
8.65832865e-02 -5.50418496e-01 -5.40280700e-01 9.27178785e-02
7.69012094e-01 7.39244163e-01 -7.28329837e-01 -4.48785305e-01
-7.33926296e-02 1.03264856e+00 3.22362065e-01 3.17717671e-01
-1.02762246e+00 -8.61833170e-02 1.69905350e-01 5.58551289e-02
5.03528833e-01 -1.37641013e-01 -2.96621352e-01 -9.10038650e-01
-1.05782067e-02 -6.83014393e-01 8.94806802e-01 -1.52329338e+00
-1.10947704e+00 4.89848167e-01 4.98503447e-01 -9.81138170e-01
-8.48749161e-01 -2.72997245e-02 -1.04883194e+00 6.16589427e-01
-7.98576951e-01 -9.99309897e-01 3.43650510e-03 5.15457094e-01
7.18787014e-01 1.71717510e-01 7.83175468e-01 2.97802258e-02
-2.78652102e-01 2.79175341e-02 -3.50084603e-01 2.03459203e-01
6.83752358e-01 -1.31544685e+00 4.73083347e-01 1.13278818e+00
4.38065946e-01 5.28141797e-01 1.01498783e+00 -8.75919044e-01
-7.63702631e-01 -9.78034317e-01 1.29913330e+00 -6.19420886e-01
8.07586670e-01 -1.52981594e-01 -1.02068126e+00 1.42091835e+00
4.28351730e-01 -4.74816144e-01 6.66824400e-01 1.38879225e-01
-5.25587142e-01 2.15382919e-01 -7.65997767e-01 9.74023104e-01
1.44602156e+00 -5.42517066e-01 -1.37626612e+00 2.64073133e-01
8.86767507e-01 -6.24811590e-01 -9.00232077e-01 1.40510440e-01
4.08882737e-01 -9.78530407e-01 1.10864770e+00 -9.58156347e-01
1.15456581e+00 -3.63819450e-01 -1.29237905e-01 -1.50961971e+00
-4.80169475e-01 -5.83702028e-01 -2.61066645e-01 1.23387706e+00
5.24001062e-01 -5.85882291e-02 5.74225068e-01 6.21768594e-01
-1.91278964e-01 -4.34617937e-01 -9.38677967e-01 -6.23581231e-01
2.24878769e-02 -9.43712771e-01 9.45052862e-01 9.85608101e-01
3.37930232e-01 3.94800782e-01 -3.88903260e-01 1.52173117e-01
3.42376202e-01 1.12251677e-01 2.00298473e-01 -1.03058171e+00
-5.60189724e-01 -4.77415740e-01 1.02181852e-01 -7.11225510e-01
1.14128388e-01 -9.98371661e-01 1.23494387e-01 -1.78136373e+00
7.22889975e-02 -1.18884683e-01 -1.52961999e-01 7.34755218e-01
-1.93350941e-01 -3.63195799e-02 1.55697212e-01 -1.01087326e-02
-4.38950866e-01 4.45319027e-01 6.57673597e-01 -8.82727280e-02
-3.57224256e-01 -4.07489985e-01 -5.00981092e-01 8.63210261e-01
6.16617978e-01 -7.07045794e-01 -5.62315285e-01 -4.83087003e-01
7.11800933e-01 8.26078236e-01 7.13272095e-01 -1.06368876e+00
5.84523559e-01 -4.28823978e-01 6.01757407e-01 -8.51533473e-01
3.56603354e-01 -6.11041188e-01 8.26442897e-01 1.74371392e-01
-9.10383284e-01 2.35588789e-01 2.81878531e-01 6.47554994e-01
-3.01098526e-01 -3.45568091e-01 9.80836377e-02 -2.82426715e-01
-9.28697884e-01 4.25717235e-02 -7.03326225e-01 6.89799488e-02
1.03817093e+00 -2.69271553e-01 -2.19128564e-01 -6.63474739e-01
-1.19952536e+00 1.85828879e-01 1.80090025e-01 3.49919826e-01
5.62100649e-01 -1.54810905e+00 -8.65829349e-01 -2.36820370e-01
-2.02505887e-02 1.55573010e-01 4.22310084e-01 3.94173533e-01
-3.56279016e-01 5.12629980e-03 -2.78535783e-01 -3.24025661e-01
-7.15798795e-01 7.71015823e-01 1.12082034e-01 -6.63335383e-01
-7.44898438e-01 7.23346591e-01 -1.42957181e-01 -1.35187820e-01
8.29248279e-02 -2.93568194e-01 -3.00943583e-01 3.38505745e-01
6.60776138e-01 3.47629398e-01 7.18814181e-03 -2.16351107e-01
-9.57811028e-02 2.16006879e-02 -5.26031628e-02 -8.69762540e-01
1.65635371e+00 7.37676919e-02 8.89052898e-02 7.22643793e-01
7.58845985e-01 -3.52074921e-01 -1.48963892e+00 -1.62005693e-01
1.98014885e-01 -1.43816963e-01 -3.36882502e-01 -1.01397598e+00
-3.38451028e-01 5.39704859e-01 -3.92148256e-01 2.76490062e-01
1.27370203e+00 1.23300672e-01 8.41624618e-01 1.62991896e-01
3.63656402e-01 -8.81547272e-01 3.44643980e-01 6.17868066e-01
1.10024512e+00 -6.22393727e-01 -1.32235169e-01 -1.01646751e-01
-8.06283832e-01 1.08333731e+00 3.66430134e-01 -5.09430021e-02
2.24354595e-01 3.46392155e-01 -4.76852715e-01 -1.30856544e-01
-1.19018424e+00 -7.12166876e-02 3.80926654e-02 5.47883809e-01
2.38996625e-01 -4.15153764e-02 -1.68328345e-01 7.47897863e-01
-5.92285812e-01 1.54958278e-01 6.70439601e-01 1.02720356e+00
-1.08742632e-01 -9.20161903e-01 -4.09811646e-01 4.11052585e-01
-2.44658172e-01 -1.14095077e-01 -2.14534402e-01 7.45342553e-01
2.80440241e-01 8.94109607e-01 5.61620235e-01 -2.10826084e-01
3.40041012e-01 5.15298367e-01 5.70751011e-01 -5.18392265e-01
-7.01711774e-01 -9.80394781e-02 5.48817575e-01 -5.71487308e-01
-3.06452006e-01 -1.14786935e+00 -1.24300921e+00 -3.42075676e-01
3.22907597e-01 7.32770981e-03 8.85395557e-02 9.86020029e-01
1.69390425e-01 8.79375696e-01 2.27629542e-01 -9.35167789e-01
2.88978312e-02 -8.34354043e-01 -1.59930259e-01 8.26086879e-01
8.03475603e-02 -4.43262070e-01 -1.36887357e-01 5.91779947e-01] | [11.216638565063477, 8.87234115600586] |
7dd3ce3c-5943-4d5e-b1bf-7f67f710742a | cross-lingual-word-representations-induction | null | null | https://aclanthology.org/D17-3007 | https://aclanthology.org/D17-3007.pdf | Cross-Lingual Word Representations: Induction and Evaluation | In recent past, NLP as a field has seen tremendous utility of distributional word vector representations as features in downstream tasks. The fact that these word vectors can be trained on unlabeled monolingual corpora of a language makes them an inexpensive resource in NLP. With the increasing use of monolingual word vectors, there is a need for word vectors that can be used as efficiently across multiple languages as monolingually. Therefore, learning bilingual and multilingual word embeddings/vectors is currently an important research topic. These vectors offer an elegant and language-pair independent way to represent content across different languages.This tutorial aims to bring NLP researchers up to speed with the current techniques in cross-lingual word representation learning. We will first discuss how to induce cross-lingual word representations (covering both bilingual and multilingual ones) from various data types and resources (e.g., parallel data, comparable data, non-aligned monolingual data in different languages, dictionaries and theasuri, or, even, images, eye-tracking data). We will then discuss how to evaluate such representations, intrinsically and extrinsically. We will introduce researchers to state-of-the-art methods for constructing cross-lingual word representations and discuss their applicability in a broad range of downstream NLP applications.We will deliver a detailed survey of the current methods, discuss best training and evaluation practices and use-cases, and provide links to publicly available implementations, datasets, and pre-trained models. | ["Ivan Vuli{\\'c}", 'Anders S{\\o}gaard', 'Manaal Faruqui'] | 2017-09-01 | null | null | null | emnlp-2017-9 | ['multilingual-word-embeddings'] | ['methodology'] | [-2.88672686e-01 -4.58790749e-01 -8.58831465e-01 -3.95912975e-01
-1.10226679e+00 -1.07000613e+00 7.70701170e-01 2.16229856e-01
-8.23372066e-01 6.29550695e-01 5.38805664e-01 -5.94218969e-01
3.47554058e-01 -4.47698921e-01 -4.44434106e-01 -4.58147585e-01
2.42547736e-01 5.53112209e-01 -2.65824735e-01 -4.75424290e-01
1.85965419e-01 4.88433748e-01 -1.35987055e+00 9.15057212e-02
6.20243967e-01 3.11010808e-01 4.83973801e-01 3.23568970e-01
-7.24750161e-01 7.42296502e-02 -4.86055285e-01 -6.01056695e-01
2.15854287e-01 -1.65366650e-01 -6.68500483e-01 -2.31790289e-01
6.43162847e-01 2.65056491e-01 -2.93946058e-01 1.06330919e+00
8.04318726e-01 1.25789285e-01 8.11631143e-01 -9.45857346e-01
-1.53641462e+00 7.37544119e-01 -6.15733325e-01 4.75019008e-01
4.46175754e-01 5.82273602e-02 1.44127786e+00 -1.37718832e+00
9.61687446e-01 1.24613714e+00 5.65213323e-01 5.97709179e-01
-1.20880508e+00 -6.77453458e-01 1.52575731e-01 3.73545885e-01
-1.49370074e+00 -4.47140515e-01 3.88285577e-01 -5.06020188e-01
1.48944438e+00 -3.27836312e-02 4.79508877e-01 1.52090454e+00
9.10326019e-02 8.76286030e-01 1.02912295e+00 -9.73123372e-01
-5.34843445e-01 5.98663688e-01 3.82115543e-01 4.29729521e-01
2.91175872e-01 2.06645474e-01 -6.50401533e-01 7.32409880e-02
6.53180897e-01 -2.93355465e-01 -4.74446774e-01 -4.92895871e-01
-1.59195864e+00 1.11180902e+00 2.04358399e-01 8.43533695e-01
3.33195813e-02 -2.93471105e-03 6.89905822e-01 4.98813778e-01
5.16336918e-01 5.93373060e-01 -7.98461616e-01 -4.47317138e-02
-7.49375224e-01 8.53050128e-03 4.67431545e-01 1.21035886e+00
8.53561223e-01 3.04923326e-01 -1.42187759e-01 1.37968171e+00
3.90224069e-01 6.47109389e-01 1.21614945e+00 -7.59205148e-02
5.81764102e-01 2.18348265e-01 -2.40354612e-01 -6.92915976e-01
-1.84896111e-01 -8.79699290e-02 -4.38670039e-01 -1.85768947e-01
2.59947151e-01 -4.26337309e-02 -8.53782475e-01 1.76111102e+00
5.37623279e-02 -2.83295244e-01 3.93818438e-01 7.23899961e-01
1.11069643e+00 9.70915914e-01 2.53160924e-01 -2.35095441e-01
1.73711896e+00 -9.94935691e-01 -8.88844788e-01 -3.79834950e-01
8.70444238e-01 -1.23046076e+00 1.32929194e+00 -5.02698384e-02
-7.00772524e-01 -6.56434000e-01 -9.78266597e-01 -6.51704371e-01
-1.08717287e+00 2.14355260e-01 7.64459133e-01 6.70703948e-01
-9.65076685e-01 2.27599025e-01 -4.91273195e-01 -7.68018365e-01
1.97712511e-01 1.01972744e-01 -8.81534815e-01 -3.53408813e-01
-1.43306744e+00 1.46909630e+00 5.00627458e-01 -3.62083912e-01
-7.38335431e-01 -8.12761009e-01 -1.41545486e+00 -2.61844903e-01
-2.27836564e-01 -1.80345386e-01 9.00236905e-01 -9.63129044e-01
-1.08306539e+00 1.40162098e+00 -2.48992518e-01 -7.64470473e-02
-7.72006735e-02 -2.06597865e-01 -7.17299700e-01 -3.96536827e-01
3.56365114e-01 7.56349564e-01 5.80759287e-01 -1.08216381e+00
-5.50396740e-01 -2.54213154e-01 -6.28734678e-02 4.72797334e-01
-6.53515518e-01 5.11245966e-01 -6.05890214e-01 -8.13320696e-01
-3.32988828e-01 -7.14114904e-01 -1.62900567e-01 -1.47475377e-01
-2.32717365e-01 -6.35498881e-01 3.60888690e-01 -6.03780508e-01
1.05960345e+00 -2.26424265e+00 2.02260271e-01 -2.28809327e-01
-2.31222153e-01 3.79148155e-01 -5.04253924e-01 7.10352302e-01
-4.29454505e-01 2.55763650e-01 3.19957770e-02 -1.94902763e-01
6.67232573e-02 4.75528359e-01 -3.08241487e-01 7.68729270e-01
1.38026148e-01 1.10314214e+00 -1.05645871e+00 -6.93324685e-01
4.96490568e-01 8.16351295e-01 -2.67619133e-01 2.14832053e-01
2.08773017e-01 4.08259064e-01 -1.44480035e-01 6.00405455e-01
4.19459432e-01 1.73544154e-01 3.62732530e-01 -1.60751477e-01
-4.35864002e-01 4.59939569e-01 -8.72879624e-01 1.95634520e+00
-1.01298904e+00 1.03441226e+00 -3.37966621e-01 -1.10542619e+00
9.19773579e-01 6.25163257e-01 1.28440544e-01 -6.77934885e-01
1.44111633e-01 4.06131297e-01 -7.39626959e-02 -4.87658143e-01
6.95508957e-01 -4.35624391e-01 -3.46406221e-01 4.55978304e-01
9.15644646e-01 -1.28279999e-01 5.70586085e-01 -1.46865606e-01
3.52078855e-01 2.84367025e-01 9.03532326e-01 -4.88054812e-01
6.68058395e-01 1.44117609e-01 4.53904212e-01 2.43113101e-01
-2.24284157e-01 4.60995644e-01 1.26974424e-02 -4.88209695e-01
-9.14788842e-01 -1.17490804e+00 -6.60679162e-01 1.60845006e+00
-1.19876839e-01 -4.53849733e-01 -1.05857201e-01 -6.87585473e-01
8.14602673e-02 8.02575231e-01 -5.39918065e-01 1.86432377e-01
-5.94605505e-01 -7.62214065e-01 5.67980528e-01 5.71555197e-01
-3.22210729e-01 -1.35495317e+00 1.41307980e-01 1.32746967e-02
1.20962234e-02 -1.04318810e+00 -6.40950322e-01 3.57732296e-01
-6.02262259e-01 -9.66305733e-01 -9.42918897e-01 -1.51974940e+00
5.72786212e-01 3.53403360e-01 1.45019078e+00 -2.86241978e-01
-3.74031305e-01 4.49169517e-01 -4.83504951e-01 -3.56611580e-01
-2.50130713e-01 1.09615073e-01 4.94181812e-01 -2.61244714e-01
9.71977949e-01 -3.02469999e-01 -3.38523947e-02 -1.42131522e-01
-7.38205969e-01 -4.46523845e-01 3.84309143e-01 9.34806824e-01
9.78383362e-01 -6.82423413e-01 3.92701119e-01 -1.00547969e+00
9.16616797e-01 -5.91904104e-01 -6.16008282e-01 4.23515171e-01
-4.71633464e-01 1.63429692e-01 5.23047805e-01 -7.11909711e-01
-6.90728426e-01 -1.40029043e-01 -3.49318296e-01 -3.48605961e-01
-1.85131893e-01 6.40754521e-01 -8.59103277e-02 3.41239721e-02
8.37279677e-01 3.14436853e-01 -3.13702583e-01 -6.29083633e-01
1.22640264e+00 8.26694906e-01 2.25500897e-01 -7.60607302e-01
7.43070006e-01 -4.82584313e-02 -6.36991680e-01 -1.13377225e+00
-7.72900283e-01 -8.36771131e-01 -9.78502631e-01 1.43299669e-01
9.11789775e-01 -1.05429935e+00 -1.18326992e-01 -1.09919459e-01
-1.29297280e+00 1.38656721e-01 -4.81226951e-01 7.95054495e-01
-3.89877766e-01 2.51448572e-01 -5.02215683e-01 -2.96702504e-01
-2.82001495e-01 -1.33335507e+00 8.46388578e-01 1.21506602e-01
-4.00296032e-01 -1.52194059e+00 6.02240682e-01 9.33550522e-02
3.23052734e-01 -1.50185466e-01 1.02360427e+00 -1.00955725e+00
3.33425924e-02 -9.97840986e-02 -2.23365486e-01 5.41332722e-01
3.89815420e-01 -1.35642707e-01 -8.70702088e-01 -4.29265350e-01
-4.06367362e-01 -6.20422602e-01 6.23601913e-01 2.26891145e-01
7.49279201e-01 -6.41408190e-02 -3.98244977e-01 8.35682869e-01
1.65516508e+00 -1.85347795e-01 2.61706889e-01 3.35551441e-01
8.88623536e-01 7.83833802e-01 3.72966498e-01 -1.43207267e-01
3.96781057e-01 6.45569623e-01 -1.49410307e-01 -5.69135547e-02
-4.24506664e-01 -3.23744059e-01 6.32240415e-01 1.62860692e+00
-1.43424571e-02 -2.03560680e-01 -9.72777486e-01 1.21089697e+00
-1.37869751e+00 -7.08840132e-01 -1.36824042e-01 2.12466121e+00
1.11121988e+00 -5.63539863e-01 -3.08176935e-01 -3.87746185e-01
8.17518234e-01 4.18883055e-01 -1.72922209e-01 -8.22111845e-01
-3.75104070e-01 5.81393957e-01 6.40474856e-01 5.39656460e-01
-1.11093318e+00 1.65553737e+00 6.72977161e+00 9.71266687e-01
-1.14827180e+00 5.76179326e-01 -6.88570179e-03 1.37090027e-01
-5.39833963e-01 -1.30478069e-01 -1.05307698e+00 5.40505424e-02
1.01193118e+00 -5.72707891e-01 2.63889492e-01 1.00028384e+00
-3.10895294e-01 5.24382412e-01 -1.29937696e+00 1.33034492e+00
4.97260630e-01 -1.27225339e+00 3.80184621e-01 -3.25039178e-02
7.43577182e-01 6.70514882e-01 1.67895541e-01 7.03954518e-01
4.87680554e-01 -1.18767679e+00 3.39027464e-01 -1.98008925e-01
1.44832397e+00 -8.30351710e-01 6.51578486e-01 -5.01218550e-02
-1.32750070e+00 5.09941459e-01 -7.96274126e-01 2.36712337e-01
3.59183967e-01 2.55019069e-01 -4.18409675e-01 5.61377406e-01
5.39719164e-01 1.18846452e+00 -4.03010666e-01 6.02130532e-01
-5.88218987e-01 2.89608330e-01 6.93401508e-03 -1.39578685e-01
4.02759433e-01 -2.62013853e-01 2.43064091e-01 1.78472555e+00
3.53912801e-01 -4.66266364e-01 1.51472807e-01 4.05753583e-01
-2.74243146e-01 1.05334878e+00 -1.15950596e+00 -4.47787106e-01
3.36957872e-01 1.28773475e+00 -1.84796557e-01 -2.31866911e-01
-1.10024238e+00 9.53527629e-01 8.54043245e-01 4.40273136e-01
-5.27265489e-01 -5.07210195e-01 1.36131454e+00 -2.86923796e-01
1.23488590e-01 -5.07923186e-01 1.24892250e-01 -1.50334227e+00
-2.31807381e-01 -9.99300241e-01 3.75677139e-01 -5.21703124e-01
-1.94946206e+00 8.67708027e-01 -7.93478265e-02 -1.36744237e+00
-2.53905028e-01 -1.26860058e+00 -2.40203962e-01 1.22146297e+00
-1.91782832e+00 -1.19850934e+00 4.58663493e-01 7.51744509e-01
8.91840398e-01 -6.46316290e-01 1.32173336e+00 3.33317161e-01
-2.73062855e-01 8.10986340e-01 2.01531738e-01 5.11688411e-01
1.13216209e+00 -1.14942741e+00 4.54523772e-01 6.29153848e-01
1.03135681e+00 1.01628149e+00 3.45753640e-01 -3.58694524e-01
-1.50109291e+00 -1.03042090e+00 1.51968181e+00 -7.15011775e-01
1.13640296e+00 -4.69847828e-01 -8.54970515e-01 1.19872630e+00
7.13891208e-01 2.29933172e-01 1.23219192e+00 6.18536294e-01
-8.02345932e-01 2.10258633e-01 -8.11954319e-01 8.01032901e-01
9.03191328e-01 -8.89389753e-01 -1.00698221e+00 7.45133817e-01
7.71705747e-01 -2.52914578e-01 -9.15618181e-01 4.56192866e-02
4.25696403e-01 -4.53403920e-01 1.14999211e+00 -8.90528381e-01
1.26698062e-01 -1.03846334e-01 -4.40637052e-01 -1.71278119e+00
-3.54490399e-01 -2.57544905e-01 3.45225990e-01 1.34836912e+00
7.10196733e-01 -7.24283218e-01 1.33431911e-01 -1.44716516e-01
-4.31930460e-02 -5.11556327e-01 -1.02116024e+00 -9.00948286e-01
7.99222827e-01 -7.65722752e-01 2.88726211e-01 1.51535833e+00
2.41826609e-01 8.15431416e-01 -2.70373732e-01 1.33434532e-03
3.23306590e-01 9.72031578e-02 5.21097720e-01 -1.00448287e+00
8.75905827e-02 -5.02216518e-01 -5.79401314e-01 -1.18163335e+00
7.31373310e-01 -1.81504643e+00 -5.98427691e-02 -1.55879867e+00
8.98123831e-02 -3.48772377e-01 -4.67940778e-01 5.39786458e-01
-2.46213347e-01 3.79173070e-01 3.37051786e-02 2.04250008e-01
-6.75209835e-02 5.87731242e-01 1.06766760e+00 -2.53027052e-01
1.45465419e-01 -6.47104800e-01 -7.55367577e-01 5.60174942e-01
7.47673869e-01 -5.95984638e-01 -3.16417038e-01 -9.62681293e-01
2.09873423e-01 -5.53509831e-01 -4.16486830e-01 -4.06719208e-01
-1.18556291e-01 -2.34329939e-01 3.90767246e-01 -3.73692811e-01
3.58175457e-01 -6.58053458e-01 -5.19220591e-01 -6.02526292e-02
-2.62275904e-01 5.40623784e-01 3.37448210e-01 2.59662449e-01
-5.18324196e-01 -4.80679512e-01 6.56009912e-01 -3.01807314e-01
-1.11610532e+00 4.60514843e-01 -3.75907451e-01 4.17766511e-01
9.22379375e-01 5.75416386e-02 -7.30183572e-02 -2.80182585e-02
-4.83118802e-01 2.50628412e-01 3.85899007e-01 1.18799317e+00
4.60951895e-01 -1.65854108e+00 -9.75478232e-01 4.75350380e-01
8.06863606e-01 -7.43019342e-01 -9.44538638e-02 4.42220062e-01
-4.58854377e-01 6.93221629e-01 -3.00446808e-01 -4.51081038e-01
-1.11095762e+00 8.28876734e-01 -2.48437207e-02 -2.17442214e-01
-4.55396414e-01 9.60007012e-01 3.19424272e-01 -1.08589625e+00
-7.30693638e-02 -2.91505679e-02 -6.63608074e-01 4.41221416e-01
6.76054716e-01 -2.43624389e-01 -6.38075098e-02 -1.38655925e+00
-5.17898977e-01 9.60555196e-01 -9.42115784e-02 -2.84617811e-01
1.23812866e+00 -1.41732410e-01 -1.89060599e-01 9.38159585e-01
1.55330873e+00 3.30600321e-01 -3.56118083e-01 -4.19542909e-01
1.44716978e-01 -4.25999492e-01 -3.41754034e-02 -2.94118285e-01
-1.12117171e+00 1.22711337e+00 6.26457214e-01 -1.92948386e-01
4.58923399e-01 3.98494184e-01 6.50078833e-01 2.34535173e-01
5.09799838e-01 -1.20575750e+00 -3.29571038e-01 8.49422157e-01
1.03754532e+00 -1.46768332e+00 -7.75603130e-02 -1.58784211e-01
-8.78037393e-01 1.16767943e+00 3.56513023e-01 -1.87393174e-01
8.10134590e-01 1.11883450e-02 7.38569200e-01 -1.02463767e-01
-4.49448287e-01 -5.23317635e-01 4.61177766e-01 1.06803095e+00
1.20748103e+00 2.54104167e-01 -6.27391636e-01 3.76127511e-01
-4.36433822e-01 -5.61799288e-01 2.64452577e-01 7.39422083e-01
-7.90484920e-02 -1.83612752e+00 -2.37884119e-01 2.40305170e-01
-6.02676809e-01 -6.97119594e-01 -3.48153859e-02 1.09564412e+00
1.73802391e-01 7.53551960e-01 1.64138496e-01 8.13955814e-02
3.30248654e-01 4.78301287e-01 5.96384406e-01 -1.21891975e+00
-5.71079552e-01 -2.45668590e-01 1.74649790e-01 -4.22842205e-01
-4.78623807e-01 -6.56505048e-01 -9.73969102e-01 -6.60682917e-02
-1.84909269e-01 1.36573255e-01 9.33903635e-01 8.55222583e-01
7.48376548e-02 2.44110540e-01 2.56597489e-01 -1.00442123e+00
-1.48557812e-01 -1.18954897e+00 -5.49821556e-01 5.12391865e-01
1.13538869e-01 -6.73395693e-01 -3.43522638e-01 1.11794092e-01] | [10.941676139831543, 9.921299934387207] |
035e64e8-1f20-4a5d-868a-c00ceb83f1e0 | edu-level-extractive-summarization-with | 2210.04029 | null | https://arxiv.org/abs/2210.04029v2 | https://arxiv.org/pdf/2210.04029v2.pdf | EDU-level Extractive Summarization with Varying Summary Lengths | Extractive models usually formulate text summarization as extracting fixed top-$k$ salient sentences from the document as a summary. Few works exploited extracting finer-grained Elementary Discourse Unit (EDU) with little analysis and justification for the extractive unit selection. Further, the selection strategy of the fixed top-$k$ salient sentences fits the summarization need poorly, as the number of salient sentences in different documents varies and therefore a common or best $k$ does not exist in reality. To fill these gaps, this paper first conducts the comparison analysis of oracle summaries based on EDUs and sentences, which provides evidence from both theoretical and experimental perspectives to justify and quantify that EDUs make summaries with higher automatic evaluation scores than sentences. Then, considering this merit of EDUs, this paper further proposes an EDU-level extractive model with Varying summary Lengths and develops the corresponding learning algorithm. EDU-VL learns to encode and predict probabilities of EDUs in the document, generate multiple candidate summaries with varying lengths based on various $k$ values, and encode and score candidate summaries, in an end-to-end training manner. Finally, EDU-VL is experimented on single and multi-document benchmark datasets and shows improved performances on ROUGE scores in comparison with state-of-the-art extractive models, and further human evaluation suggests that EDU-constituent summaries maintain good grammaticality and readability. | ['Xiao-jun Zeng', 'Goran Nenadic', 'Shengzhong Mao', 'Jiayu Shang', 'Ching-Hsun Tseng', 'Yuping Wu'] | 2022-10-08 | null | null | null | null | ['extractive-summarization'] | ['natural-language-processing'] | [ 0.29974878 0.39896974 -0.56888777 -0.30636337 -1.3180888 -0.50043786
0.52390987 0.65909445 -0.3117039 1.0618869 1.0377425 0.01391945
-0.32654142 -0.7376737 -0.519611 -0.40102535 0.00793976 0.39165115
0.15295109 -0.11853825 0.9829436 -0.02206064 -1.490732 0.4705737
1.5159812 0.40349564 0.46432623 1.0471166 -0.29652455 0.68906647
-1.3113542 -0.538138 -0.20580232 -0.74285805 -1.0252146 0.13948138
0.624076 -0.43277463 -0.24305223 0.90047574 0.69054383 0.27375045
0.9987477 -0.58194053 -0.8164004 1.3322142 -0.30656385 0.33559972
0.6318 -0.07341863 1.6305076 -0.8093516 0.5347693 1.1063048
0.22321588 0.40798536 -0.71486086 -0.13122332 0.27124384 0.05524278
-0.9422632 -0.3519054 0.8909797 -0.02368596 1.3175819 0.6932389
0.6375295 1.0072472 0.45791212 1.3899814 0.57777035 -0.6013435
0.15360183 -0.12429269 0.60985607 0.6060036 0.5260418 -0.6761885
-0.74521977 -0.07883964 0.11249246 -0.4177075 -0.28864154 0.47607604
-1.176402 0.8382832 -0.01007457 0.4955571 -0.6034369 -0.22325481
0.74418646 0.10079259 0.5505948 0.7992395 -0.19409488 -0.31125948
-1.5125887 0.5095733 0.83422214 1.1333966 0.46793237 0.22038658
-0.87838936 0.7996592 -0.1104831 0.5343359 0.79103714 -0.8528794
0.80524015 0.8469909 -0.03945807 -1.0854878 -0.1824078 -0.54315335
-0.9327489 -0.5221773 -0.19196466 -0.2593728 -0.5107726 1.383056
-0.20260622 -0.27753094 0.33010054 0.4739614 1.3963255 1.0807819
-0.10538218 -0.7272974 1.4324774 -1.1707867 -0.97207534 -0.5195743
0.68725294 -0.6514177 1.3225381 0.29975095 -1.5086938 -0.5656985
-1.2517133 -0.23071617 -0.09035587 0.8090222 0.36510244 0.39700595
-0.99402046 0.71370584 -0.526073 -0.25237384 0.14293985 0.06561865
0.08754159 0.2719044 -1.1624222 0.8694827 0.8686841 -0.25007653
-0.4360951 -0.4297745 -0.8809512 0.38782078 0.2562275 -1.0284919
1.2300208 -0.3507467 -1.3697122 0.56328046 -0.47110185 -0.49591893
0.19997086 -0.45828128 -0.06149919 0.49062327 0.32777476 0.37913308
0.6285795 -0.9552331 -0.85994995 -0.05473683 0.01657896 0.57592565
-0.59551376 0.06272689 -0.18919095 -0.75294256 -0.0759796 -0.3258754
0.01408846 -1.135077 -0.84066623 -0.84627986 0.5553177 -0.9007228
2.1343722 -1.6137208 0.39615858 -0.275118 0.18895297 0.32083553
-0.07601086 0.87009895 0.43482414 0.26668045 -0.21962889 -0.4193818
0.30077764 -0.12550637 -0.4441511 -0.17150913 0.15432024 0.9479746
-1.1640227 -0.9779801 -0.07224386 -0.17220518 -0.38571644 0.32690844
-0.22057392 -0.15273829 -0.75184023 0.50775295 0.16069694 -0.24553728
0.08418277 -0.20315257 -0.2589189 0.74083483 -0.76764727 1.4617034
-0.03821523 0.6721027 -0.4251475 -0.9611059 1.0899022 0.22248393
0.15407729 -0.38152573 0.17509027 0.45265698 -0.2346682 -0.59390754
1.6009414 0.11423827 -0.63587105 0.56840783 0.2078049 -0.42785197
0.9207467 0.70846456 1.2638538 -0.2042586 0.6106864 -0.3255374
0.62938464 0.0595263 0.29428524 1.0477295 0.05260367 0.68970376
0.5782214 0.17714366 -1.0541935 -0.8262923 0.14356628 0.99193597
0.06838211 -0.83663297 -1.0222815 -0.7559951 -0.36329272 1.2998545
-0.32778972 -0.21242577 -0.81214184 -0.6092064 0.5582425 0.49237448
0.5212641 -1.4669899 -0.6825097 0.31120035 -0.73206574 -0.7680329
-0.60400546 -0.10068815 -0.77739245 -0.76745796 -0.7545765 -1.0108943
0.5613527 0.2083283 1.2026488 -0.03635155 0.20726107 0.3489614
-0.7035155 -0.5062639 -0.6645034 0.7463714 -0.15650128 -0.5961086
0.33198795 -0.2609426 -0.4844068 -0.41485742 -0.9281489 0.14625788
0.75808984 0.8757753 0.37487364 0.12549464 1.1501112 -0.7087168
1.5065267 -0.2047241 0.20066874 0.55519897 -0.5539051 0.04785302
0.85960716 -0.06034974 -1.0573618 -0.706046 -0.13764526 0.12335061
0.1568959 0.9520949 -0.06935173 0.89817905 0.6600406 0.714383
-0.3739631 -0.16712226 0.27382085 0.8722734 0.537755 -0.64466965
0.39009926 -0.21573 -0.52992713 -1.127738 -1.2398801 -0.47129273
-0.57831603 -0.2702461 0.64620453 -0.68608737 -0.17890085 0.17389195
-1.3417203 0.01676846 -0.4713677 0.38579962 -0.66734785 0.824818
-0.74707234 -0.8271934 -1.1055012 -0.9135153 1.2558005 0.5546511
-0.75629014 -0.91016346 -0.11046212 0.3483449 -0.02631438 0.24449055
1.0299283 -0.8164784 -0.32809013 -0.35206395 -0.01022899 0.41276577
0.29844493 0.2239896 -0.49967703 -0.32024595 -0.0687505 -0.32205188
0.9819842 0.62893355 0.8390891 -0.8916742 -0.14451332 -0.08921656
1.0918086 0.01976492 0.5826287 0.3999678 0.39079237 0.61105746
0.95287 0.5863772 0.5272198 0.06062718 0.06911861 0.4335123
-0.18351708 -0.30953243 0.58996135 1.686288 -0.01030519 -0.76943445
-0.46809754 0.9109813 -1.8295628 -1.2507217 0.00857976 1.8108469
1.1653893 0.45264643 0.11526339 0.14116967 0.70446646 0.6505047
-0.36263323 -0.697429 -0.43754992 0.06522746 0.03773829 0.4093931
-0.88382196 1.0065893 6.2868485 1.1581775 -0.8291484 -0.38324806
0.6056699 -0.16838561 -0.5983338 -0.18491466 -1.1155041 0.5085485
1.1464133 -0.90970224 -0.22248423 0.70361483 0.41788235 -0.09872845
-1.0111257 0.5691831 0.42314133 -1.6673898 0.5900982 -0.1913615
0.822355 -0.24275656 -0.2258059 0.5819781 0.16529769 -0.77929777
0.83242196 0.50958335 0.4693669 -0.893388 0.9664904 0.79298323
-0.97295326 0.05067419 -0.5926272 -0.0149402 0.29321784 0.41108847
-0.9461741 0.99911994 0.29148865 0.67611736 -0.66367936 0.7480436
-0.45099247 0.8612679 0.07625899 -0.76473147 0.5313377 -0.19944021
0.9335411 1.7797582 0.644794 0.27133465 0.1346385 0.55108243
-0.20677961 0.5010059 -0.2979269 -0.26714894 0.82533646 1.0384423
-0.6645712 -0.793647 0.02656901 0.75361717 0.36959213 0.09359619
-0.6353721 -0.7804763 -0.03194113 -0.06598079 0.2558382 -0.12904076
-0.5048831 -1.2410246 0.2659592 -0.8452085 0.32952967 -0.5915557
-1.1174837 0.658797 0.2871035 -1.299934 -0.5958579 -0.05561735
-1.0341307 0.60817844 -1.3840624 -0.94128495 -0.02925618 -0.15739675
1.2959427 -0.3244908 0.7888395 -0.21495658 -0.691 0.68966717
0.20925882 0.01511527 0.6145017 -1.5130568 0.31934342 1.0827129
-0.07262082 0.7124682 1.0133619 -0.8106643 -1.1997448 -1.0316349
1.5026042 -0.29314503 0.4629682 0.18859811 -0.8531686 0.4571936
0.861042 -0.98192567 0.74400985 0.00983744 0.23405395 0.1379819
-0.80480546 0.89538187 0.8335977 -0.16944276 -1.305969 0.31514612
0.8842159 -0.41562238 -0.87288815 0.33434162 0.2925948 -0.8951253
0.7692356 -0.5062352 1.0886053 0.04778931 -0.03624728 -1.5764431
-0.36071998 -0.5813602 -0.4990409 1.6446791 0.5051052 -0.13351488
0.7055099 0.26553077 -0.7376642 -0.9479295 -0.62602013 -0.5559795
0.2092644 0.12482919 0.49546212 0.5868639 0.4467906 0.88626766
-0.3220369 -0.1705156 0.48824242 0.40485495 0.7285851 -0.943431
0.0075046 -0.8932035 0.08655109 -1.4189156 0.3455964 -0.88282925
0.19097051 -2.2256153 0.37178513 0.16945997 0.01336354 0.18668728
-0.7732838 -0.35681888 0.12021331 0.1871925 -0.9420759 0.939837
1.3685199 -0.5127082 -0.40116286 -0.10520469 -1.0557021 0.6424727
0.846129 -0.2203612 -0.49543488 -0.3272543 0.03363222 0.27095333
-0.33437377 -0.821781 0.26260334 -0.22831897 0.18539533 -1.2971176
0.04820287 0.07635621 -0.6186244 0.2071474 -0.77106 0.03310411
0.02194159 0.39479735 -0.395185 -0.83839226 0.29810393 -0.26091728
-0.4961709 -0.08908958 -0.46848205 0.2841716 0.5740176 -0.55440736
-0.49905944 -0.34949705 -0.23498471 0.35933256 0.17874523 0.25386697
0.814791 -1.0677319 -1.3412564 -0.3003081 0.06615227 0.17583582
0.35868683 0.47914892 -0.47598964 0.67525685 0.12674938 -0.3904144
-1.4000516 0.0905448 -0.38883376 -0.80072063 -0.7351604 0.67230743
-0.1074206 -0.17658484 0.18641642 -0.48816562 -0.6784194 0.4258559
0.72147876 0.61103874 0.03194838 -0.5697387 0.10841163 0.28230324
-0.33624488 0.01930971 1.2589216 -0.33304462 -0.21768436 0.45040205
0.90435845 0.36740655 -0.8218815 -0.15773696 0.3110994 -0.14835763
-0.24656844 -0.54870164 -0.33682892 0.5716745 -0.47465664 0.57693607
1.0124247 -0.01915926 1.0424726 0.6597297 0.03511935 -1.4419143
0.433156 0.81846803 1.1159312 -0.9490576 0.41736913 -0.22650354
-0.83846027 1.2119098 0.52899307 -0.28031772 0.00923038 -0.08412015
-0.34675547 -0.22086383 -0.84396577 0.18491785 0.4592842 0.10190156
0.6625323 0.18432246 -1.1209476 0.92184836 -0.944031 -0.44897377
0.9029679 0.8942104 -1.1360235 -0.8880891 -0.127305 0.9091473
-0.5068923 -0.1591995 -0.5367986 0.5985015 -0.4287254 1.1687013
-0.15196449 -0.27876368 0.4059507 0.14583658 0.3890049 -0.87349534
-0.7802796 0.19082053 0.39004812 0.16620569 -0.37224475 -0.8126562
-1.4245887 -0.31548116 -0.41845635 0.6742136 0.24627234 0.97399515
0.2781291 0.92778534 0.66401356 -0.83787924 -0.99978787 -1.4273468
-0.51338106 0.15788221 0.26128387 -0.03687738 -0.44942188 0.06387007] | [12.589011192321777, 9.444276809692383] |
e53fadfd-6180-48e0-aaa7-f7d8d9d8029e | narrative-modeling-with-memory-chains-and | 1805.06122 | null | http://arxiv.org/abs/1805.06122v1 | http://arxiv.org/pdf/1805.06122v1.pdf | Narrative Modeling with Memory Chains and Semantic Supervision | Story comprehension requires a deep semantic understanding of the narrative,
making it a challenging task. Inspired by previous studies on ROC Story Cloze
Test, we propose a novel method, tracking various semantic aspects with
external neural memory chains while encouraging each to focus on a particular
semantic aspect. Evaluated on the task of story ending prediction, our model
demonstrates superior performance to a collection of competitive baselines,
setting a new state of the art. | ['Timothy Baldwin', 'Fei Liu', 'Trevor Cohn'] | 2018-05-16 | narrative-modeling-with-memory-chains-and-1 | https://aclanthology.org/P18-2045 | https://aclanthology.org/P18-2045.pdf | acl-2018-7 | ['cloze-test'] | ['natural-language-processing'] | [ 3.28187317e-01 2.18995541e-01 -5.50787210e-01 -3.98050010e-01
-6.03360534e-01 -7.08946764e-01 1.02325547e+00 2.30648667e-01
-2.69719064e-01 5.88116050e-01 1.34772980e+00 1.57455638e-01
1.61410511e-01 -8.89320433e-01 -6.71630025e-01 -5.16416356e-02
2.77433187e-01 6.49011016e-01 1.96586668e-01 -5.33552110e-01
5.99394977e-01 -1.85420349e-01 -1.35785091e+00 8.44896376e-01
2.87458390e-01 7.37052202e-01 6.36578500e-02 4.81199533e-01
-7.89990947e-02 1.76212084e+00 -7.36628592e-01 -6.82353914e-01
-3.44456106e-01 -7.27477610e-01 -1.12504661e+00 -1.75118282e-01
3.28536808e-01 -4.56032276e-01 -6.82416856e-01 6.85186982e-01
2.90512532e-01 6.30303621e-01 8.50149632e-01 -8.34629297e-01
-9.95767295e-01 1.19982922e+00 -1.75993070e-01 4.57820088e-01
1.02599967e+00 1.04560256e-01 1.45582831e+00 -7.43953526e-01
1.06064057e+00 1.02052045e+00 8.08678925e-01 6.59246027e-01
-1.14419830e+00 -4.78591740e-01 5.46497226e-01 9.16387498e-01
-9.49033499e-01 -3.35096747e-01 8.60522091e-01 -4.78496850e-01
1.33387184e+00 1.53411090e-01 7.87458539e-01 1.81900561e+00
-1.86661616e-01 1.09120369e+00 1.16061938e+00 -4.93726730e-02
4.34256345e-01 -2.90128827e-01 5.87861180e-01 2.74640858e-01
-1.78987250e-01 4.95121628e-02 -1.29829895e+00 1.09779246e-01
2.69689411e-01 -5.04070997e-01 -2.82792568e-01 -1.62439793e-01
-1.15961218e+00 9.35428202e-01 4.81015682e-01 2.87909299e-01
-2.52417684e-01 4.75929439e-01 7.20386446e-01 1.60777390e-01
2.53987640e-01 8.36209476e-01 1.25563711e-01 -6.09700203e-01
-9.43420768e-01 7.25741029e-01 8.87604833e-01 8.44975829e-01
-7.55253732e-02 -1.68608725e-01 -6.58952415e-01 6.52836740e-01
-2.45631300e-02 -8.89531821e-02 3.36936593e-01 -8.63891780e-01
5.82872987e-01 6.08416975e-01 -8.53521898e-02 -8.62210751e-01
-5.51952541e-01 -6.46095037e-01 -3.70504200e-01 -2.06761360e-02
3.32767099e-01 5.09818256e-01 -5.17288268e-01 1.95290637e+00
-5.77609800e-02 2.31098026e-01 1.64839208e-01 9.37685072e-01
1.17040277e+00 5.87885618e-01 5.04203558e-01 -3.17412354e-02
1.39602482e+00 -1.31421328e+00 -8.04136932e-01 -7.01600015e-01
4.41825777e-01 -4.94932055e-01 1.40618813e+00 4.30990338e-01
-1.17814624e+00 -3.48751068e-01 -1.31439435e+00 -3.99299711e-01
-3.48938882e-01 -2.76759446e-01 7.74118125e-01 1.43527701e-01
-8.90090346e-01 6.56231880e-01 -5.31806111e-01 -5.10822296e-01
6.86146557e-01 -3.30758691e-01 -2.45856956e-01 -1.69552565e-01
-1.26955414e+00 1.28375793e+00 7.62271702e-01 -4.84213710e-01
-1.24456704e+00 -7.16598451e-01 -8.99100184e-01 1.50859162e-01
4.93528724e-01 -9.31923985e-01 1.50651038e+00 -5.95431626e-01
-1.38926303e+00 1.23068285e+00 -1.96950585e-01 -4.83209640e-01
6.70171499e-01 -7.35496879e-01 -3.69788438e-01 2.68905640e-01
4.16483402e-01 6.35658145e-01 6.04655087e-01 -1.07281494e+00
-2.13536903e-01 -1.69146620e-02 3.39980721e-01 4.33874607e-01
-1.41730800e-01 4.31240439e-01 6.97292835e-02 -1.05664861e+00
7.58717358e-02 -5.07085800e-01 1.18713722e-01 -5.74685276e-01
-3.62388819e-01 -3.49741459e-01 6.05276406e-01 -8.85576487e-01
1.37503135e+00 -1.89828372e+00 2.95242429e-01 -3.63479525e-01
1.85025379e-01 -3.86749893e-01 -3.90890613e-02 6.11583710e-01
-1.61676511e-01 -4.65021096e-02 -2.31269509e-01 -2.75501132e-01
2.08041042e-01 -2.77591407e-01 -7.14462161e-01 2.15742871e-01
2.26165310e-01 1.15038264e+00 -1.24918413e+00 -1.89788625e-01
-7.29948506e-02 2.00896617e-02 -6.82407141e-01 2.45282978e-01
-6.99064493e-01 2.78036207e-01 -3.63214940e-01 4.93531972e-01
2.04075351e-01 -4.77332503e-01 -8.34776983e-02 1.84185296e-01
3.58124256e-01 1.06116974e+00 -6.49945438e-01 2.08746767e+00
-1.24672055e-01 1.00807345e+00 -6.54349744e-01 -6.85943961e-01
8.19840431e-01 3.79700601e-01 -2.76678205e-01 -4.66128051e-01
3.49407107e-01 -1.22081071e-01 -2.24285617e-01 -5.93442321e-01
6.94688201e-01 -6.29425585e-01 -4.91953731e-01 8.24230611e-01
1.94798201e-01 -1.80583656e-01 2.70272911e-01 5.41609406e-01
1.35093725e+00 5.84119320e-01 5.17595589e-01 -2.17262488e-02
5.87916840e-03 4.37838167e-01 2.64838077e-02 9.18112576e-01
-9.13887545e-02 8.54468048e-01 7.14502215e-01 -3.84418935e-01
-9.92483437e-01 -1.29358137e+00 1.22494355e-01 1.41826093e+00
2.33733192e-01 -7.75850058e-01 -7.06656337e-01 -7.37668395e-01
-3.73835057e-01 1.61580431e+00 -8.78194511e-01 -3.70367289e-01
-7.57042289e-01 -4.83637869e-01 5.00806928e-01 1.02654421e+00
5.02751708e-01 -1.29910672e+00 -9.29338515e-01 3.61105621e-01
-5.06624639e-01 -1.38534367e+00 -1.99139267e-01 7.95610771e-02
-5.94082296e-01 -1.02722120e+00 -2.71121889e-01 -6.76416397e-01
-3.98656577e-02 -3.47284391e-03 1.65047121e+00 -2.18977854e-02
2.66847551e-01 1.51506707e-01 -5.93156457e-01 -1.83931604e-01
-5.79484105e-01 3.73770863e-01 -4.22200680e-01 -4.60626990e-01
6.67155564e-01 -7.17607915e-01 -4.09971207e-01 3.73624228e-02
-6.34077787e-01 6.50944829e-01 -4.65723760e-02 7.24177659e-01
1.45656735e-01 -1.79461151e-01 7.89737940e-01 -8.38204563e-01
7.46570170e-01 -8.17469060e-01 2.64597327e-01 -1.25701442e-01
-1.58020020e-01 -1.28918767e-01 5.78600883e-01 -2.90978402e-01
-1.24246299e+00 -3.14928532e-01 -1.88005626e-01 6.37674890e-03
-3.18957746e-01 5.52850068e-01 -2.83886611e-01 8.42759848e-01
7.88694263e-01 2.02267542e-01 -4.86682534e-01 -3.23268116e-01
6.14259243e-01 -5.45800626e-02 1.06469405e+00 -4.29437101e-01
5.99077106e-01 5.18177807e-01 -3.31392378e-01 -2.69725561e-01
-1.67941821e+00 -3.29413712e-01 -4.86546993e-01 -4.79826361e-01
1.02376199e+00 -1.07544470e+00 -4.57124144e-01 3.26727539e-01
-1.39888799e+00 -3.71779740e-01 -4.05243903e-01 3.56875092e-01
-1.13957798e+00 -1.67985782e-01 -7.54204571e-01 -3.25014263e-01
1.31653100e-02 -5.03654540e-01 7.71463156e-01 1.34591371e-01
-1.30201280e+00 -9.02488172e-01 2.86745042e-01 7.02737331e-01
1.81510687e-01 5.30939043e-01 1.03649461e+00 -9.78527963e-01
-5.13717592e-01 -1.59674913e-01 -1.14095069e-01 -2.63969213e-01
-4.01700050e-01 -4.94503826e-01 -1.14621890e+00 1.86865270e-01
3.52478683e-01 -8.19989562e-01 1.27894962e+00 1.01023577e-01
7.83530056e-01 -2.04342663e-01 -3.28421474e-01 3.85072827e-01
1.15501285e+00 -1.88561417e-02 6.71258867e-01 1.01828146e+00
5.05725622e-01 4.32346076e-01 5.67280948e-01 4.61235315e-01
7.40246236e-01 5.02672553e-01 3.51676702e-01 2.91633219e-01
-4.96501267e-01 -9.07440722e-01 4.83872712e-01 3.63602370e-01
1.09554157e-01 -3.78998369e-01 -8.89809728e-01 6.79228067e-01
-1.98886609e+00 -1.44476783e+00 -1.56734943e-01 1.47955930e+00
8.15268159e-01 5.32026649e-01 1.28876179e-01 1.78900525e-01
6.69933081e-01 8.69799793e-01 -6.67322218e-01 -5.37466824e-01
-6.08046532e-01 2.23976359e-01 -1.19004607e-01 2.71408975e-01
-1.20274997e+00 1.34350777e+00 7.84056330e+00 7.81181574e-01
-5.49179435e-01 4.62973028e-01 4.85326648e-01 -3.81288528e-01
-4.68871981e-01 1.40076369e-01 -5.26139200e-01 4.60265502e-02
6.74508154e-01 -2.56318122e-01 3.64415824e-01 8.85479152e-01
3.09456866e-02 -3.73350799e-01 -1.50122643e+00 6.32611334e-01
6.45785391e-01 -1.60993052e+00 3.25254411e-01 -6.33832514e-01
7.98012733e-01 -1.53287098e-01 -2.97252983e-01 4.65490699e-01
4.42030400e-01 -1.49027824e+00 1.23570395e+00 4.42496538e-01
4.60599005e-01 -6.28969252e-01 4.68422413e-01 2.89080292e-01
-8.56432438e-01 7.59844333e-02 6.59018159e-02 -6.91143215e-01
6.58030510e-01 -1.77551642e-01 -6.78111792e-01 1.79753862e-02
5.28525531e-01 1.11191475e+00 -5.89550376e-01 7.99748421e-01
-1.04244661e+00 7.27844656e-01 9.76475105e-02 -2.49862269e-01
3.70060295e-01 4.69218910e-01 9.50893641e-01 1.26321518e+00
-6.66614920e-02 4.91205603e-01 -7.58701488e-02 1.17044461e+00
-3.36799592e-01 1.12229802e-01 -7.35782206e-01 -1.68260008e-01
3.63945454e-01 7.73766994e-01 -7.73655713e-01 -4.88258898e-01
-1.66064829e-01 1.03658593e+00 5.88513017e-01 9.60244909e-02
-1.01540124e+00 1.11665085e-01 4.85840201e-01 2.39812031e-01
2.84875035e-01 -1.21246174e-01 -1.02010298e+00 -1.08582473e+00
8.14481899e-02 -6.71096861e-01 7.42192686e-01 -1.21174347e+00
-1.14026749e+00 5.83700299e-01 6.87169582e-02 -1.07467759e+00
-3.75057399e-01 -2.83371240e-01 -1.04488838e+00 2.52193332e-01
-1.28419960e+00 -1.21981132e+00 -3.61851662e-01 2.98404753e-01
1.02410495e+00 -1.75232142e-01 7.49960184e-01 -4.01452094e-01
4.19776747e-03 4.44816291e-01 -2.16163442e-01 4.17437069e-02
5.17857730e-01 -1.11706781e+00 7.74110317e-01 7.09333181e-01
1.99551433e-01 2.40625784e-01 1.14402223e+00 -7.71304667e-01
-7.75554121e-01 -6.56500816e-01 9.25307691e-01 -9.65496659e-01
1.05157280e+00 -4.26637262e-01 -9.46269035e-01 9.49211299e-01
6.32429600e-01 -9.40046430e-01 9.05424058e-01 4.17304367e-01
-8.57486784e-01 7.42909014e-01 -8.71442378e-01 8.36222827e-01
1.62258232e+00 -6.14074647e-01 -1.59369922e+00 3.59511316e-01
8.46676111e-01 -4.79839534e-01 -5.02263069e-01 2.53834784e-01
4.42294091e-01 -9.89609480e-01 9.75403547e-01 -1.04474509e+00
1.51536059e+00 -1.64605290e-01 -1.95137516e-01 -1.43596768e+00
-4.38274086e-01 -4.82064456e-01 -4.79425311e-01 1.29454970e+00
3.02959651e-01 -1.49226580e-02 8.50529850e-01 5.40212929e-01
-3.32668573e-01 -3.13982904e-01 -8.46860230e-01 -7.31198788e-01
1.82516292e-01 -7.62624502e-01 5.05230188e-01 9.41539705e-01
7.27341235e-01 1.03067136e+00 -3.10110927e-01 -3.21452260e-01
3.42006415e-01 1.53603286e-01 4.00346369e-01 -7.61431873e-01
-5.25594771e-01 -1.07474005e+00 -3.21049839e-01 -8.63996029e-01
5.69277227e-01 -1.27581644e+00 -1.40714064e-01 -1.90237927e+00
7.64345586e-01 3.15933436e-01 -1.72646791e-01 2.53622621e-01
-3.91858786e-01 4.22998130e-01 4.46047813e-01 -3.94079238e-02
-1.05221987e+00 7.44469941e-01 1.06824636e+00 -3.61652076e-01
1.11688429e-03 -3.11977684e-01 -1.00421607e+00 1.03809357e+00
7.10168898e-01 -4.45217222e-01 -3.68806094e-01 -4.45694149e-01
6.23786330e-01 -6.42700419e-02 5.58675289e-01 -1.26144910e+00
1.66918308e-01 -1.16254210e-01 4.60425884e-01 -7.74031699e-01
5.75643182e-01 -2.01974109e-01 3.31405154e-03 2.26184577e-01
-1.02662158e+00 6.52088150e-02 1.78823233e-01 5.61862886e-01
-3.42653602e-01 -4.70225215e-01 5.48503935e-01 -2.14363188e-01
-1.11188626e+00 -4.01002496e-01 -4.96945411e-01 5.25361121e-01
1.01698804e+00 -3.49165946e-01 -7.87602246e-01 -7.36412823e-01
-1.07947814e+00 1.85877785e-01 4.50536281e-01 8.64720166e-01
7.52311289e-01 -1.53971791e+00 -1.02592540e+00 -4.16707873e-01
4.52415466e-01 -3.60173553e-01 2.95741022e-01 3.17952722e-01
-3.59397918e-01 1.65127710e-01 -2.03388155e-01 -2.49526441e-01
-9.39590454e-01 6.26322746e-01 -1.68294068e-02 -3.25959295e-01
-9.87012446e-01 1.04565966e+00 4.03715670e-01 5.87751605e-02
1.35765836e-01 1.33043751e-01 -7.07538068e-01 1.69322029e-01
9.86610770e-01 4.19416040e-01 -1.52185261e-01 -6.78278446e-01
-2.42510974e-01 3.84659082e-01 -1.00716300e-01 -1.58750296e-01
1.50517535e+00 -2.44402047e-02 1.19429141e-01 7.71061122e-01
8.84972334e-01 -2.36487016e-01 -1.22384560e+00 -2.04724416e-01
6.03566468e-01 -4.28555250e-01 -2.00369462e-01 -1.25026810e+00
-4.27760899e-01 6.33272946e-01 -6.60978109e-02 9.27064568e-02
9.25014317e-01 6.23046696e-01 8.30616057e-01 2.01025590e-01
1.75200641e-01 -1.33150494e+00 4.52123612e-01 9.82419193e-01
1.28473663e+00 -1.07895350e+00 -4.67158929e-02 -3.00095856e-01
-1.08167672e+00 9.34487641e-01 7.40495443e-01 -5.53579271e-01
2.16723248e-01 2.08550781e-01 -1.92560375e-01 -4.71591502e-01
-1.19108951e+00 -8.21514949e-02 1.13735877e-01 3.77884567e-01
5.55747211e-01 1.75373942e-01 -4.08988923e-01 1.15096295e+00
-8.30434382e-01 2.03370098e-02 7.14652658e-01 7.14708149e-01
-4.66973692e-01 -5.69122672e-01 -1.96135029e-01 4.16067421e-01
-3.86453271e-01 -2.83133209e-01 -6.93259537e-01 7.28743434e-01
-3.41645390e-01 8.98688316e-01 7.57600218e-02 -3.73889387e-01
4.33462173e-01 3.92009020e-01 4.80602622e-01 -7.08834529e-01
-9.54350233e-01 -2.19041631e-01 7.53342748e-01 -5.35686553e-01
-2.44742408e-01 -9.89857852e-01 -1.38197911e+00 -4.46163744e-01
1.05846338e-01 -1.96190983e-01 2.91875303e-01 1.25114286e+00
-5.96433617e-02 6.80720747e-01 1.49510860e-01 -5.32562256e-01
-2.04946429e-01 -8.86474431e-01 -2.53106356e-01 7.83489764e-01
-9.53464955e-02 -7.84791827e-01 -2.24521384e-02 1.32969096e-01] | [11.210871696472168, 8.853647232055664] |
3bf98cde-fcb9-47a9-8107-77f41e51615a | generative-category-level-shape-and-pose | 2210.01112 | null | https://arxiv.org/abs/2210.01112v2 | https://arxiv.org/pdf/2210.01112v2.pdf | Generative Category-Level Shape and Pose Estimation with Semantic Primitives | Empowering autonomous agents with 3D understanding for daily objects is a grand challenge in robotics applications. When exploring in an unknown environment, existing methods for object pose estimation are still not satisfactory due to the diversity of object shapes. In this paper, we propose a novel framework for category-level object shape and pose estimation from a single RGB-D image. To handle the intra-category variation, we adopt a semantic primitive representation that encodes diverse shapes into a unified latent space, which is the key to establish reliable correspondences between observed point clouds and estimated shapes. Then, by using a SIM(3)-invariant shape descriptor, we gracefully decouple the shape and pose of an object, thus supporting latent shape optimization of target objects in arbitrary poses. Extensive experiments show that the proposed method achieves SOTA pose estimation performance and better generalization in the real-world dataset. Code and video are available at https://zju3dv.github.io/gCasp. | ['Guofeng Zhang', 'Zhaopeng Cui', 'Tao Kong', 'Qihang Zhang', 'Zhichao Ye', 'Yifeng Li', 'Guanglin Li'] | 2022-10-03 | null | null | null | null | ['6d-pose-estimation-using-rgbd'] | ['computer-vision'] | [-2.51980931e-01 -2.17692077e-01 -7.76625723e-02 -4.52116072e-01
-5.15439332e-01 -7.96832025e-01 6.13840401e-01 -1.39687464e-01
-1.39763728e-01 1.79923669e-01 -8.07559874e-04 2.08153650e-01
-1.85099095e-01 -6.21384501e-01 -6.53301835e-01 -7.83152580e-01
3.00825536e-01 9.92420256e-01 3.08315367e-01 -8.30323994e-02
1.73271596e-01 8.46893132e-01 -1.52036631e+00 -2.33465046e-01
6.84369862e-01 1.14774072e+00 5.88108122e-01 1.20711647e-01
-5.04851118e-02 5.68934157e-02 -2.51394629e-01 -4.71008532e-02
4.87127990e-01 3.34762186e-01 -3.26407701e-01 6.40126646e-01
3.54792595e-01 -4.46035802e-01 -3.07065129e-01 1.24877667e+00
1.65910840e-01 -3.85061663e-04 7.41026580e-01 -1.48117340e+00
-4.71576810e-01 1.07692950e-03 -3.83331150e-01 -3.72368485e-01
4.02861387e-01 1.41090930e-01 8.04323077e-01 -1.10407722e+00
5.44342637e-01 1.63582444e+00 3.97038400e-01 4.14377242e-01
-1.09046185e+00 -6.98186636e-01 3.24800432e-01 3.10677588e-01
-1.55970192e+00 -4.13674176e-01 1.02727473e+00 -4.24117148e-01
5.38912833e-01 1.12377934e-01 8.26086819e-01 9.35510039e-01
-5.48701435e-02 8.24926972e-01 7.58307159e-01 6.25441447e-02
3.00045431e-01 -1.24147926e-02 -1.10240333e-01 5.13939500e-01
5.99844635e-01 -9.18490514e-02 -4.07220095e-01 -8.02651644e-02
9.69578147e-01 4.79153097e-01 6.91023469e-02 -1.32049561e+00
-1.42680681e+00 6.95874095e-01 6.66802704e-01 -4.77157207e-03
-3.80517125e-01 1.84912473e-01 -1.80574819e-01 -1.77470356e-01
3.25402528e-01 4.04338166e-02 -4.36487556e-01 -5.06700873e-02
-1.04870237e-01 4.08602923e-01 6.34466708e-01 1.53615963e+00
8.53033900e-01 -7.38871247e-02 3.04514140e-01 6.54917300e-01
8.87698114e-01 1.11315620e+00 3.23203690e-02 -1.08929968e+00
2.57156581e-01 9.35792923e-01 3.33416224e-01 -1.07681346e+00
-4.94164288e-01 -3.24312061e-01 -4.93126452e-01 2.32699469e-01
3.37690949e-01 3.40906739e-01 -8.68331909e-01 1.38691604e+00
6.85909629e-01 -1.30326450e-01 -4.57141995e-02 1.07673216e+00
8.31521749e-01 2.98187524e-01 -6.29284084e-02 1.30223766e-01
1.43398678e+00 -8.74837399e-01 -4.91482139e-01 -5.26173830e-01
1.66613266e-01 -6.95516586e-01 7.47413695e-01 1.98014379e-01
-6.61424279e-01 -3.06652933e-01 -9.09901917e-01 -2.10621819e-01
-3.18587989e-01 4.22439963e-01 7.40769029e-01 3.28992814e-01
-6.29895210e-01 -4.15873863e-02 -1.08943439e+00 -5.36264837e-01
5.10055542e-01 4.72361773e-01 -5.63527286e-01 -1.48809850e-01
-3.60685706e-01 8.76350343e-01 6.11739814e-01 1.80823743e-01
-1.02128220e+00 -3.46590757e-01 -1.01594460e+00 -3.86336327e-01
6.35783434e-01 -5.30307710e-01 1.16095114e+00 -2.33204737e-01
-1.55690885e+00 7.73578286e-01 -2.33762458e-01 5.31505793e-03
4.82488006e-01 -3.18541318e-01 1.10085823e-01 -2.12849285e-02
2.21749485e-01 7.44693816e-01 1.09719157e+00 -1.66866446e+00
-4.33981389e-01 -9.46427524e-01 1.06454261e-01 5.71482897e-01
-9.08339545e-02 -3.76401454e-01 -6.59420311e-01 -3.55309844e-01
1.03332841e+00 -1.24723566e+00 -3.10255200e-01 5.07432520e-01
-1.22549616e-01 -4.35546696e-01 1.14680135e+00 -3.22724283e-01
1.69269145e-01 -2.19293094e+00 4.37307149e-01 1.39527097e-01
2.00455591e-01 -1.84048489e-01 -2.54384577e-02 1.91169754e-02
4.82676715e-01 -3.94747019e-01 -1.81386158e-01 -5.70228815e-01
1.80255011e-01 4.94626909e-01 -1.97528377e-01 8.01258445e-01
1.39313772e-01 1.06153500e+00 -8.74082029e-01 -2.55848199e-01
3.09947938e-01 5.19160330e-01 -5.21036744e-01 1.91834763e-01
-4.07150567e-01 7.80124307e-01 -9.49857950e-01 1.07214248e+00
9.24232244e-01 -8.09182227e-02 -2.10530357e-03 -3.99699807e-01
-5.44832982e-02 -3.28926370e-02 -1.40432155e+00 2.12306976e+00
-1.43135965e-01 7.31765404e-02 1.75198868e-01 -7.18049943e-01
1.21371472e+00 -1.22406082e-02 5.94645143e-01 -3.43253434e-01
2.90520519e-01 3.78123820e-01 -2.64673114e-01 -3.39450479e-01
3.76956373e-01 6.18231334e-02 -2.70455569e-01 1.68967023e-01
3.16087268e-02 -7.42092609e-01 -7.74640813e-02 -2.28306875e-01
6.52336061e-01 4.94260371e-01 3.23471576e-01 -1.12468511e-01
4.11071241e-01 5.75549565e-02 5.22881806e-01 2.83590168e-01
-2.41182312e-01 5.02468526e-01 -1.09248027e-01 -5.25650561e-01
-1.08133376e+00 -1.46829188e+00 -2.93411613e-01 7.13727236e-01
6.99394464e-01 6.77154516e-04 -3.61858875e-01 -4.18873638e-01
4.67545748e-01 3.95567566e-01 -3.40008676e-01 -8.85776728e-02
-4.69408453e-01 -3.22502702e-01 -6.14051037e-02 4.69086200e-01
3.99119288e-01 -8.79506767e-01 -6.93367600e-01 1.09118327e-01
-2.03009024e-01 -1.37946606e+00 -2.70385593e-01 -9.18296576e-02
-1.04303014e+00 -9.43117023e-01 -6.09710753e-01 -7.09396183e-01
1.01404190e+00 7.89190710e-01 6.00056112e-01 -1.09561920e-01
-2.37222999e-01 6.23450220e-01 -5.09537280e-01 -5.57919800e-01
-3.62771899e-02 -1.40929908e-01 5.13933957e-01 1.20956050e-02
5.02950788e-01 -6.20977402e-01 -4.54523027e-01 5.86023569e-01
-5.74865222e-01 -1.10177249e-02 6.99335814e-01 3.87655228e-01
8.03402662e-01 -3.30031335e-01 1.72390297e-01 -1.20113723e-01
-7.30080232e-02 -3.15428287e-01 -8.69488418e-01 5.35985380e-02
-2.17479050e-01 -5.25053823e-03 -1.47608863e-02 -5.10957837e-01
-9.02463675e-01 6.42152488e-01 2.29635715e-01 -6.97310090e-01
-4.49239671e-01 1.13119893e-01 -5.06705642e-01 -2.61606693e-01
3.32132667e-01 4.00141776e-01 2.86858618e-01 -8.30104887e-01
5.07675946e-01 6.87030494e-01 4.54800695e-01 -6.39226437e-01
1.21318293e+00 9.12578225e-01 5.50412759e-03 -7.02056289e-01
-7.25507796e-01 -7.21990824e-01 -1.12683165e+00 -2.34413072e-01
8.06275964e-01 -1.20773566e+00 -8.40596378e-01 5.07396638e-01
-1.31000483e+00 6.10158406e-03 -9.35873613e-02 6.56886339e-01
-8.20938110e-01 3.36176395e-01 1.40204579e-02 -8.51792634e-01
-6.68172725e-03 -1.36332703e+00 1.50895154e+00 1.65051445e-01
2.11053789e-01 -5.18535435e-01 -1.86663926e-01 4.77990896e-01
1.81483328e-02 2.45562896e-01 4.28420186e-01 -3.84900600e-01
-9.92729187e-01 -2.64317513e-01 -3.15609604e-01 -1.41919121e-01
3.73634964e-01 -3.82673621e-01 -7.31597185e-01 -3.67689431e-01
2.57950157e-01 -1.68183044e-01 3.71664107e-01 1.29790664e-01
8.18897128e-01 -5.35362028e-02 -3.42457712e-01 7.99458027e-01
1.19209266e+00 1.51887611e-01 1.85290366e-01 4.02411580e-01
9.54792857e-01 5.78956306e-01 9.36600029e-01 6.44379795e-01
6.93135202e-01 9.58424330e-01 8.98554802e-01 3.99489045e-01
-1.74710732e-02 -2.21902385e-01 3.51846784e-01 7.53145397e-01
-1.11475199e-01 2.72377014e-01 -1.04622269e+00 4.97117847e-01
-1.94495749e+00 -4.46140379e-01 -1.68604314e-01 2.04569602e+00
4.59286690e-01 -6.31839857e-02 6.04230613e-02 -2.45587841e-01
6.20529652e-01 -1.05431698e-01 -9.37237680e-01 4.89875406e-01
4.02183644e-02 -4.64325637e-01 5.65056920e-01 3.13558668e-01
-1.00751793e+00 1.12302279e+00 4.99520254e+00 5.56586623e-01
-8.68447363e-01 1.61209777e-01 -1.65644765e-01 1.08486436e-01
-1.76466867e-01 3.07065770e-02 -8.99446189e-01 1.56762794e-01
1.88306212e-01 -1.77647993e-01 3.92761797e-01 1.14402652e+00
3.55151705e-02 5.80409616e-02 -1.08951187e+00 1.24248707e+00
2.23507315e-01 -8.01401317e-01 8.65320340e-02 2.73187757e-01
5.03126323e-01 1.75906733e-01 4.74877246e-02 1.18673190e-01
7.54447207e-02 -6.01252198e-01 1.21380389e+00 4.45305914e-01
5.22528827e-01 -5.25146186e-01 4.18831378e-01 5.83238184e-01
-1.37978375e+00 -1.76508009e-01 -6.92835927e-01 -3.72338258e-02
8.79300758e-02 2.51191705e-01 -9.00412202e-01 4.99864906e-01
8.01823914e-01 9.61295545e-01 -6.23538911e-01 1.14476860e+00
-3.17314923e-01 -1.67433769e-01 -6.75353825e-01 5.06181736e-03
1.24450866e-02 -4.72276121e-01 9.53847408e-01 5.10021567e-01
5.20273328e-01 1.70689434e-01 4.61298585e-01 9.99789774e-01
2.30546102e-01 -8.54304805e-02 -6.50790155e-01 1.30223900e-01
7.18823969e-01 1.36129177e+00 -9.48318481e-01 -5.31889871e-02
-2.16809630e-01 8.27423692e-01 2.59847701e-01 2.07071975e-01
-6.91219747e-01 2.89379627e-01 8.10804129e-01 -2.12080941e-01
4.31897312e-01 -9.33037162e-01 -3.82605940e-01 -1.34578407e+00
2.82953441e-01 -6.44134879e-01 -2.32664123e-02 -8.44440579e-01
-1.02616954e+00 2.67579436e-01 2.40155056e-01 -1.77175546e+00
-3.96753103e-03 -8.71871889e-01 -7.62276724e-02 4.79314387e-01
-1.35681534e+00 -1.61423373e+00 -6.87686563e-01 5.63265085e-01
7.26161301e-01 -1.39252171e-01 7.58849323e-01 -4.46922034e-02
-1.48734123e-01 1.27296567e-01 1.18298136e-01 -8.29106420e-02
4.04761583e-01 -9.89151299e-01 2.46882483e-01 5.67163587e-01
2.80206412e-01 5.39288580e-01 6.27866507e-01 -7.82516122e-01
-2.10271144e+00 -1.06215131e+00 2.42306411e-01 -8.07755530e-01
5.48382401e-01 -6.17924392e-01 -6.49187982e-01 7.57238507e-01
-5.50805092e-01 9.35769603e-02 2.17505082e-01 -1.47343919e-01
-4.32897717e-01 -6.91867471e-02 -1.20660198e+00 5.13529658e-01
1.29868138e+00 -4.09341514e-01 -6.03682995e-01 3.68433565e-01
8.12841952e-01 -7.52253652e-01 -8.22971821e-01 5.77876627e-01
7.01284528e-01 -4.94629920e-01 1.20703053e+00 -1.76669598e-01
-1.90016896e-01 -7.13018537e-01 -6.20690107e-01 -1.02136207e+00
-2.89795011e-01 -1.49794906e-01 -2.92192787e-01 8.28948140e-01
-1.17530756e-01 -6.36099517e-01 8.99846375e-01 4.27225828e-01
-2.13170543e-01 -4.23700362e-01 -9.71520841e-01 -9.42451119e-01
-2.77749538e-01 -5.45857191e-01 7.66834915e-01 5.05432308e-01
-4.04586881e-01 7.46480301e-02 -1.23520128e-01 7.05098927e-01
1.13040948e+00 4.74452227e-01 1.11304724e+00 -1.51009452e+00
3.43408361e-02 -4.28985506e-01 -8.47873986e-01 -1.33868718e+00
2.58423269e-01 -8.10934424e-01 3.89564872e-01 -1.53613496e+00
2.13759109e-01 -5.90535045e-01 7.40114003e-02 5.57661116e-01
7.83160850e-02 5.05296290e-01 4.59963024e-01 5.64114213e-01
-7.16823101e-01 1.04901373e+00 1.31069732e+00 -2.51349241e-01
-8.94063413e-02 2.99714208e-02 -3.83990169e-01 9.07183945e-01
8.11998129e-01 -4.17644501e-01 -2.36006185e-01 -7.74427474e-01
-1.31585330e-01 -1.84160978e-01 7.25334108e-01 -1.01465142e+00
2.09957391e-01 -4.50676978e-01 3.03014666e-01 -1.01084960e+00
8.71801198e-01 -1.36609137e+00 3.47590119e-01 5.06741524e-01
2.16845065e-01 -1.54877067e-01 1.11450337e-01 7.09832251e-01
1.15365662e-01 -1.12066269e-01 6.06734276e-01 -8.01605880e-02
-9.92597640e-01 6.65930092e-01 2.28526130e-01 -4.36622620e-01
1.22784078e+00 -3.29984516e-01 -1.13990106e-01 -2.40054697e-01
-6.19674385e-01 3.36930007e-01 8.04887235e-01 7.68648922e-01
8.54207337e-01 -1.61602485e+00 -5.83308935e-01 3.86072397e-01
5.43474674e-01 6.35599554e-01 3.48620079e-02 8.29917371e-01
-4.39385474e-01 3.96334380e-01 -3.12698752e-01 -1.18992233e+00
-1.10179889e+00 3.61027718e-01 5.94049618e-02 4.92883116e-01
-6.41728342e-01 8.04390311e-01 3.57851744e-01 -9.81112838e-01
2.56877929e-01 -2.91220933e-01 -9.26598236e-02 -5.07576056e-02
3.86313230e-01 2.37667784e-01 -1.21951327e-01 -1.23598671e+00
-5.86109281e-01 1.04642153e+00 2.27877438e-01 1.44734934e-01
1.59246457e+00 -4.03929830e-01 -2.20950752e-01 5.14323175e-01
1.04761529e+00 -2.26003200e-01 -1.72660673e+00 -5.67241073e-01
7.42910951e-02 -7.11765707e-01 -1.40121311e-01 -2.34608576e-01
-8.54398489e-01 6.12078905e-01 6.20086730e-01 -8.03017020e-02
6.59439802e-01 4.51149613e-01 4.67062503e-01 7.62482166e-01
1.00037479e+00 -6.83571577e-01 2.78778970e-01 7.10573137e-01
1.29887724e+00 -1.38927519e+00 2.23070815e-01 -6.07563376e-01
-4.54093158e-01 1.11851871e+00 5.20044446e-01 -9.53342915e-02
6.07784629e-01 -3.70759480e-02 1.20395891e-01 -3.00933003e-01
-1.84513927e-01 -3.58318835e-01 4.19785768e-01 7.88474023e-01
-2.91092992e-01 2.75035083e-01 1.98244497e-01 2.71218449e-01
-2.88805217e-01 -3.45925689e-01 2.12940827e-01 9.68436837e-01
-7.19071805e-01 -1.04422665e+00 -6.03295326e-01 1.32525206e-01
2.00321838e-01 4.01960015e-01 -2.08801061e-01 5.66549063e-01
9.79739130e-02 8.05774868e-01 3.68327536e-02 -2.96766877e-01
4.86322731e-01 -7.49928281e-02 7.89849460e-01 -7.46865094e-01
3.41677189e-01 2.75825530e-01 -3.45010072e-01 -7.07926452e-01
-6.12863481e-01 -9.41247880e-01 -1.38197947e+00 1.43489748e-01
-3.08671981e-01 -1.89431593e-01 1.10719466e+00 9.74611223e-01
2.93855697e-01 1.36153653e-01 5.36972642e-01 -1.67750847e+00
-7.11878002e-01 -8.64938915e-01 -4.89828706e-01 4.22352731e-01
2.18475476e-01 -1.39567888e+00 -1.95393771e-01 1.24107063e-01] | [7.353254318237305, -2.510502815246582] |
7be1c37b-4790-49c1-bb03-5426cc13e292 | improving-graph-representation-for-point | null | null | http://openaccess.thecvf.com//content/CVPR2023/html/Zhang_Improving_Graph_Representation_for_Point_Cloud_Segmentation_via_Attentive_Filtering_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Zhang_Improving_Graph_Representation_for_Point_Cloud_Segmentation_via_Attentive_Filtering_CVPR_2023_paper.pdf | Improving Graph Representation for Point Cloud Segmentation via Attentive Filtering | Recently, self-attention networks achieve impressive performance in point cloud segmentation due to their superiority in modeling long-range dependencies. However, compared to self-attention mechanism, we find graph convolutions show a stronger ability in capturing local geometry information with less computational cost. In this paper, we employ a hybrid architecture design to construct our Graph Convolution Network with Attentive Filtering (AF-GCN), which takes advantage of both graph convolution and self-attention mechanism. We adopt graph convolutions to aggregate local features in the shallow encoder stages, while in the deeper stages, we propose a self-attention-like module named Graph Attentive Filter (GAF) to better model long-range contexts from distant neighbors. Besides, to further improve graph representation for point cloud segmentation, we employ a Spatial Feature Projection (SFP) module for graph convolutions which helps to handle spatial variations of unstructured point clouds. Finally, a graph-shared down-sampling and up-sampling strategy is introduced to make full use of the graph structures in point cloud processing. We conduct extensive experiments on multiple datasets including S3DIS, ScanNetV2, Toronto-3D, and ShapeNetPart. Experimental results show our AF-GCN obtains competitive performance. | ['Ge Li', 'Wei Gao', 'Thomas H. Li', 'Zhiyi Pan', 'Nan Zhang'] | 2023-01-01 | null | null | null | cvpr-2023-1 | ['point-cloud-segmentation'] | ['computer-vision'] | [-3.06788385e-01 1.37804687e-01 1.71065435e-01 -6.13537610e-01
-1.37738794e-01 -1.35799035e-01 1.90036729e-01 9.59453732e-03
-5.98961823e-02 2.01879278e-01 1.21075593e-01 -4.63963002e-01
-4.04546736e-03 -1.36995316e+00 -1.07270980e+00 -3.62134963e-01
-2.35799044e-01 2.29894802e-01 4.02297556e-01 -1.36249036e-01
1.05755188e-01 1.00998628e+00 -1.08259177e+00 1.94653064e-01
1.05529666e+00 9.71973121e-01 5.35447776e-01 5.37608385e-01
-6.97540760e-01 6.67486191e-01 -1.69391721e-01 -4.01156545e-01
2.41259247e-01 7.40014985e-02 -8.01014543e-01 1.94831729e-01
5.17478645e-01 -4.65196073e-01 -7.03753769e-01 1.16138840e+00
3.89566928e-01 3.03281993e-01 1.86332852e-01 -1.16286731e+00
-1.15447021e+00 6.09941542e-01 -6.72616959e-01 3.03891957e-01
6.31823242e-02 4.25996751e-01 1.02767611e+00 -8.72133911e-01
3.01342785e-01 1.60323465e+00 7.10985482e-01 1.89722419e-01
-7.29894400e-01 -9.05167699e-01 7.61044800e-01 1.64700717e-01
-1.38497925e+00 1.12899259e-01 1.02063668e+00 -2.06720248e-01
1.35885608e+00 3.65939215e-02 9.47728872e-01 5.23988187e-01
7.36351758e-02 8.64425421e-01 3.37717026e-01 1.44842505e-01
-1.25362426e-01 -4.76229817e-01 1.41693830e-01 8.54250252e-01
1.26127647e-02 -1.66064173e-01 -5.67026157e-03 5.80743700e-02
1.55660772e+00 5.00361919e-01 -3.39622378e-01 -1.14479050e-01
-9.46558833e-01 8.34499240e-01 1.56459856e+00 2.89381474e-01
-6.44558370e-01 6.22101724e-01 1.32463321e-01 1.95318878e-01
7.48155653e-01 1.42086640e-01 -4.22257006e-01 3.22984397e-01
-5.08270800e-01 -2.58077011e-02 2.64921457e-01 1.45502591e+00
1.16358566e+00 1.79661840e-01 -3.66116256e-01 8.01930308e-01
4.74624485e-01 4.04703498e-01 1.77165374e-01 -6.42847657e-01
6.19086802e-01 1.16811788e+00 -6.10811949e-01 -1.02583766e+00
-4.30382371e-01 -6.75595045e-01 -1.06002736e+00 -5.41318208e-02
-3.06689322e-01 2.53482834e-02 -1.30261624e+00 1.30837345e+00
2.79945076e-01 8.26479614e-01 -1.54105410e-01 1.02811646e+00
1.27686989e+00 7.11540759e-01 2.28234902e-01 3.15427542e-01
1.10748184e+00 -1.14264429e+00 -3.43125433e-01 -2.56172121e-01
4.93322551e-01 -3.92531186e-01 1.12432957e+00 -2.48279050e-01
-1.09563041e+00 -8.26486349e-01 -7.60873199e-01 -4.25789356e-01
-3.99839669e-01 -2.61946410e-01 1.03268731e+00 5.16698919e-02
-1.11425400e+00 7.36872673e-01 -9.34695780e-01 -2.91175306e-01
9.05347764e-01 5.10312438e-01 -1.97621763e-01 -1.94692969e-01
-9.04372454e-01 8.77981260e-02 2.09917307e-01 2.67052174e-01
-4.59756285e-01 -7.21306443e-01 -1.07804298e+00 5.30057907e-01
2.03627378e-01 -1.01358736e+00 8.73741567e-01 -7.84269750e-01
-1.21541238e+00 5.22898555e-01 -1.46063328e-01 -3.35633218e-01
1.11848846e-01 -8.15941915e-02 -1.63213134e-01 2.07933962e-01
1.06004715e-01 8.31553340e-01 5.75325191e-01 -1.09889936e+00
-4.09210742e-01 -4.93461728e-01 3.83129120e-01 3.19122285e-01
-8.15318003e-02 -1.34656131e-01 -9.81160283e-01 -7.29644477e-01
4.37631965e-01 -6.83339536e-01 -5.64639270e-01 -1.01380058e-01
-5.70221901e-01 -4.27107781e-01 1.03658617e+00 -2.67912775e-01
1.15178776e+00 -2.24868107e+00 -8.11592117e-02 3.33390683e-01
5.38912117e-01 3.47374499e-01 -3.34795892e-01 2.41651997e-01
-3.30262512e-01 3.00527424e-01 -4.06455129e-01 -5.27624130e-01
-1.73954412e-01 5.45937121e-01 -2.01549158e-01 1.86795831e-01
6.52162433e-01 1.52224851e+00 -7.80585408e-01 -5.05009234e-01
5.04230142e-01 5.28344333e-01 -8.91370296e-01 2.19477534e-01
-3.76778543e-01 2.85441250e-01 -9.20307755e-01 6.79692149e-01
1.20512605e+00 -7.76959836e-01 -4.71162915e-01 -2.02706426e-01
-5.76860867e-02 1.60678118e-01 -8.69784057e-01 1.91764820e+00
-5.28946638e-01 1.62587613e-01 3.64932716e-02 -7.16812670e-01
9.69573975e-01 -1.58729732e-01 4.71688300e-01 -6.53282166e-01
1.94798529e-01 -2.00623631e-01 1.95599198e-02 -2.78893560e-01
4.06671196e-01 1.56997785e-01 3.57817799e-01 7.76138604e-02
1.83833674e-01 -6.72424361e-02 -8.31869021e-02 4.32406425e-01
1.21335959e+00 -2.35038139e-02 -2.20798835e-01 -2.02224106e-01
7.05398560e-01 -1.60959750e-01 4.71542805e-01 5.02506614e-01
1.43701630e-02 8.66653204e-01 4.03733045e-01 -7.01257348e-01
-6.55444920e-01 -7.88057983e-01 6.27579093e-02 7.95621634e-01
4.41039652e-01 -4.85923469e-01 -5.80754280e-01 -8.20670307e-01
2.40676507e-01 4.19089764e-01 -5.94534814e-01 -1.45997167e-01
-7.69467294e-01 -4.79677737e-01 1.50342494e-01 1.00354302e+00
8.82822156e-01 -1.27171814e+00 -1.21267140e-01 3.39187562e-01
2.86707461e-01 -1.14384472e+00 -5.90212286e-01 -2.30655838e-02
-1.03963125e+00 -1.04156566e+00 -5.99160671e-01 -8.17674160e-01
7.16677487e-01 6.73178315e-01 1.18177426e+00 5.76023698e-01
1.07621200e-01 2.10034177e-01 -3.77716333e-01 -3.85621190e-01
3.63600165e-01 2.48377502e-01 -6.37729466e-01 -3.97652648e-02
4.56589639e-01 -8.32670748e-01 -7.40887582e-01 5.91060482e-02
-7.50758588e-01 1.01767078e-01 7.28846133e-01 6.50462151e-01
7.85169780e-01 -6.22918382e-02 1.17044494e-01 -1.01514375e+00
4.96250927e-01 -7.17827678e-01 -4.93695557e-01 -5.65181999e-03
-2.83323228e-01 -1.40248060e-01 7.90284812e-01 5.58741018e-03
-9.15390491e-01 -7.58669376e-02 -5.82395792e-01 -1.15925193e+00
-1.32793024e-01 5.24913251e-01 -3.40251625e-01 -4.70571339e-01
-3.78298350e-02 1.96911961e-01 -1.52822882e-01 -5.81474602e-01
3.32186460e-01 3.59228462e-01 3.28450978e-01 -4.34933156e-01
8.06398153e-01 4.29670960e-01 -1.50289796e-02 -8.30000639e-01
-6.93103015e-01 -4.25609231e-01 -5.33063173e-01 7.05699529e-03
1.17734933e+00 -1.11807883e+00 -8.33398223e-01 4.78754342e-01
-1.39292705e+00 -4.47186410e-01 -2.07088590e-01 3.21516901e-01
-3.57160360e-01 3.45731378e-01 -7.73934722e-01 -5.49839258e-01
-4.35338438e-01 -1.26334548e+00 1.48081493e+00 4.38725024e-01
5.20137250e-01 -1.07318532e+00 -4.06528234e-01 -5.03161252e-02
4.49807435e-01 2.18299747e-01 8.85207653e-01 -4.13123816e-01
-1.32048464e+00 2.11476922e-01 -9.18517232e-01 2.97133237e-01
-1.32409455e-02 -1.39986217e-01 -8.20266604e-01 -2.03154102e-01
-2.61184216e-01 1.38020098e-01 9.43354249e-01 5.17382681e-01
1.94287086e+00 -6.70728013e-02 -3.75533462e-01 1.42432714e+00
1.61595702e+00 4.71442342e-02 8.17462087e-01 4.68698256e-02
1.57080877e+00 1.67390436e-01 2.04556331e-01 1.31183848e-01
7.66046703e-01 2.03134313e-01 9.00848567e-01 -5.95205307e-01
-3.84658247e-01 -4.60007399e-01 -2.84001827e-01 9.38287020e-01
-2.13543490e-01 -3.87991786e-01 -9.62536871e-01 4.18124706e-01
-1.93667042e+00 -6.39658689e-01 -4.65216488e-01 1.61409473e+00
-6.41583949e-02 1.60547480e-01 -2.34705612e-01 -3.17676514e-01
6.37860298e-01 3.71913195e-01 -6.87881827e-01 -2.75578856e-01
-9.49986801e-02 4.25437748e-01 8.20669949e-01 4.00519460e-01
-1.09786320e+00 1.26560748e+00 5.30919647e+00 8.25006127e-01
-1.22274411e+00 -8.92336145e-02 6.25215888e-01 2.42603481e-01
-5.92968345e-01 -1.01337776e-01 -3.59362572e-01 6.06777489e-01
4.59769845e-01 1.09409563e-01 3.88155162e-01 1.00067616e+00
-6.41998872e-02 4.87841427e-01 -6.81466579e-01 1.11840987e+00
-3.33868831e-01 -1.46499431e+00 3.26202154e-01 1.37660891e-01
5.68550527e-01 7.30752766e-01 -2.71809340e-01 3.34472179e-01
5.02435088e-01 -1.04647481e+00 4.54077065e-01 4.68034923e-01
7.34972179e-01 -9.56488490e-01 7.08437443e-01 1.54216528e-01
-1.80549455e+00 -1.29429325e-01 -7.26529896e-01 -9.97658595e-02
1.86689273e-01 5.43335199e-01 -4.22243655e-01 9.55708981e-01
8.39503527e-01 1.18748367e+00 -5.17427981e-01 1.08594429e+00
-2.12671638e-01 4.12113279e-01 -4.07911390e-01 9.18907300e-02
8.12175035e-01 -4.10498023e-01 4.58809942e-01 1.07185960e+00
2.80974954e-01 5.14265358e-01 3.90127510e-01 1.27252388e+00
-2.21398413e-01 1.80955362e-02 -6.47240222e-01 3.69498692e-02
3.88818622e-01 1.21910620e+00 -7.99596608e-01 -4.42194760e-01
-7.59295523e-01 9.90765750e-01 6.20726347e-01 5.36127448e-01
-8.34496498e-01 -5.61744630e-01 1.04250467e+00 1.98507592e-01
6.52518690e-01 -3.99354011e-01 -3.12622428e-01 -1.08827138e+00
-6.28187805e-02 -2.67778456e-01 2.26210281e-01 -1.01283848e+00
-1.36198330e+00 8.53515446e-01 -2.46392041e-01 -9.94841576e-01
4.16545421e-01 -5.19082904e-01 -1.13348734e+00 1.19493532e+00
-1.76632500e+00 -1.63421106e+00 -7.76770592e-01 8.44285011e-01
4.90094066e-01 1.78843781e-01 2.83374220e-01 4.71774757e-01
-6.50655270e-01 2.71700591e-01 -4.85996991e-01 3.37364614e-01
7.07170591e-02 -1.35044658e+00 1.20305717e+00 7.57085085e-01
-3.03316228e-02 7.86034524e-01 -2.27901638e-01 -9.46283102e-01
-1.48013473e+00 -1.68964887e+00 4.57284033e-01 -8.57698321e-02
4.90521729e-01 -3.21559548e-01 -1.30080330e+00 8.93915892e-01
6.56588227e-02 5.02420068e-01 3.02912593e-01 7.26899505e-02
-1.55615270e-01 4.78157066e-02 -9.57708538e-01 3.81176680e-01
1.75125444e+00 -4.72840130e-01 -3.36657465e-01 4.08377707e-01
1.45778012e+00 -6.29237890e-01 -8.80539060e-01 5.31932950e-01
-3.99696529e-02 -9.37886000e-01 1.06004560e+00 -4.61214304e-01
4.80852932e-01 -4.17919815e-01 -3.76829915e-02 -1.23818552e+00
-9.90678251e-01 -4.18293417e-01 8.31313655e-02 1.11827838e+00
9.56253335e-02 -7.88204312e-01 1.01799583e+00 3.36772621e-01
-8.14657211e-01 -1.06920826e+00 -5.71032524e-01 -6.06080413e-01
4.33684550e-02 -5.94292760e-01 1.40745723e+00 9.19919431e-01
-6.05100691e-01 3.72091442e-01 2.14632183e-01 5.16060650e-01
4.81288999e-01 4.03150946e-01 8.11075211e-01 -1.19650924e+00
-8.03141892e-02 -5.15026808e-01 -6.06369495e-01 -1.63769138e+00
1.84366003e-01 -1.14912772e+00 -3.78690600e-01 -1.85878515e+00
-1.51213288e-01 -6.56654477e-01 -3.05390716e-01 4.33584064e-01
-3.41863781e-01 1.48861587e-01 3.17676276e-01 5.36415726e-02
-5.81229627e-01 7.76586354e-01 1.74233103e+00 -1.77146867e-01
-1.84639066e-01 -1.80127636e-01 -6.75885797e-01 7.19387591e-01
5.41892529e-01 -1.18670702e-01 -5.08624077e-01 -1.09119761e+00
3.60214226e-02 -5.88377416e-02 5.60139596e-01 -1.09223652e+00
3.59632790e-01 -8.24318156e-02 4.44486022e-01 -1.05895972e+00
1.70686871e-01 -9.28363025e-01 -2.82782567e-04 1.68607354e-01
2.53274202e-01 3.08532238e-01 2.89429724e-01 6.57756925e-01
-3.66228342e-01 2.76830494e-01 5.81522346e-01 -5.13922036e-01
-8.54594827e-01 1.25891829e+00 2.82138258e-01 -2.87940472e-01
8.51512969e-01 -3.14756662e-01 -1.83770642e-01 -1.68445155e-01
-5.60526252e-01 7.44582772e-01 5.60609639e-01 4.25559133e-01
8.73009324e-01 -1.44078135e+00 -4.69862968e-01 6.52215958e-01
8.65036473e-02 9.09621775e-01 6.90309405e-01 5.59105217e-01
-9.09342408e-01 2.79526174e-01 -8.34802166e-02 -8.02929938e-01
-7.74772584e-01 6.10658169e-01 1.82940245e-01 -7.71940723e-02
-1.00992942e+00 1.33852243e+00 7.63723135e-01 -4.58297044e-01
-2.56791562e-02 -8.57879162e-01 1.83011126e-02 -4.73707944e-01
2.48532444e-01 1.03258878e-01 1.20201066e-01 -6.38754904e-01
-3.48591745e-01 8.21108639e-01 7.08264485e-02 6.77312493e-01
1.45925581e+00 -1.16238341e-01 -2.74833173e-01 -9.72744450e-02
1.31890702e+00 -1.16123736e-01 -1.40817475e+00 -2.78856903e-01
-4.65075344e-01 -5.41791618e-01 3.80112082e-01 -3.09790760e-01
-1.78577340e+00 1.05123246e+00 2.36778006e-01 3.44048560e-01
1.23339760e+00 1.50051415e-01 1.24251974e+00 1.33890256e-01
3.00640553e-01 -4.87302870e-01 -1.92147925e-01 7.72525728e-01
9.64591920e-01 -1.17936277e+00 -2.20536619e-01 -8.87401879e-01
-3.44145775e-01 1.02254581e+00 1.08028853e+00 -6.85904026e-01
8.86233151e-01 1.69932619e-01 -2.35699266e-01 -7.70009398e-01
-5.88304698e-01 -5.79192936e-01 2.90049940e-01 4.97669131e-01
2.69824445e-01 1.60055935e-01 2.02644438e-01 5.67040563e-01
-2.06165835e-01 -8.38169679e-02 8.00644830e-02 7.14684308e-01
-3.56039524e-01 -8.15510213e-01 2.97201984e-02 6.85672343e-01
-1.14925951e-01 -3.42775226e-01 -2.76763111e-01 7.42571175e-01
2.92590708e-01 4.83905643e-01 5.98863423e-01 -5.83018184e-01
5.87364316e-01 -3.82431716e-01 2.09516361e-01 -7.96299815e-01
-7.79204488e-01 5.20567000e-02 -3.50607663e-01 -9.54047441e-01
-1.96577787e-01 -1.78537324e-01 -1.54502988e+00 -3.85148495e-01
-3.42415363e-01 3.82393263e-02 4.98090982e-01 6.11109912e-01
8.10311556e-01 1.07629573e+00 5.21787465e-01 -9.55366671e-01
1.37231126e-01 -9.17652488e-01 -5.64240277e-01 3.23653519e-01
3.67223650e-01 -5.75176597e-01 5.83030423e-03 -5.19178569e-01] | [7.982937335968018, -3.596414089202881] |
73b5f8d8-6b03-41ff-8ff4-8ecd3c495607 | centralised-rehearsal-of-decentralised | 2305.18875 | null | https://arxiv.org/abs/2305.18875v2 | https://arxiv.org/pdf/2305.18875v2.pdf | Centralised rehearsal of decentralised cooperation: Multi-agent reinforcement learning for the scalable coordination of residential energy flexibility | This paper investigates how deep multi-agent reinforcement learning can enable the scalable and privacy-preserving coordination of residential energy flexibility. The coordination of distributed resources such as electric vehicles and heating will be critical to the successful integration of large shares of renewable energy in our electricity grid and, thus, to help mitigate climate change. The pre-learning of individual reinforcement learning policies can enable distributed control with no sharing of personal data required during execution. However, previous approaches for multi-agent reinforcement learning-based distributed energy resources coordination impose an ever greater training computational burden as the size of the system increases. We therefore adopt a deep multi-agent actor-critic method which uses a \emph{centralised but factored critic} to rehearse coordination ahead of execution. Results show that coordination is achieved at scale, with minimal information and communication infrastructure requirements, no interference with daily activities, and privacy protection. Significant savings are obtained for energy users, the distribution network and greenhouse gas emissions. Moreover, training times are nearly 40 times shorter than with a previous state-of-the-art reinforcement learning approach without the factored critic for 30 homes. | ['Malcolm McCulloch', 'Thomas Morstyn', 'Bei Peng', 'Flora Charbonnier'] | 2023-05-30 | null | null | null | null | ['multi-agent-reinforcement-learning'] | ['methodology'] | [-6.54405594e-01 4.07559961e-01 -1.45743743e-01 -2.46326357e-01
-6.32374406e-01 -7.66378641e-01 3.91873538e-01 2.12469697e-01
-5.63149810e-01 1.43740129e+00 -4.16462608e-02 -2.24129125e-01
-2.02135652e-01 -1.21226442e+00 -3.62943739e-01 -1.06653297e+00
-1.45351514e-01 5.11735141e-01 -3.82832140e-01 -1.06921107e-01
-4.70032543e-01 4.61708754e-01 -1.07006669e+00 -4.69142526e-01
7.05489039e-01 9.87215340e-01 -1.54226527e-01 6.26057744e-01
5.03469586e-01 8.65494668e-01 -8.08230877e-01 2.31684014e-01
5.97298384e-01 -1.59607768e-01 -6.92929924e-01 4.88991179e-02
-3.22721243e-01 -1.10905111e+00 -1.68344557e-01 8.60252321e-01
9.18087780e-01 4.48638856e-01 1.95360154e-01 -1.90044522e+00
-3.34741235e-01 7.22200990e-01 -3.90232831e-01 -3.42518330e-01
1.48758203e-01 4.32418823e-01 9.90061283e-01 2.34298632e-01
9.73942280e-02 5.65304518e-01 3.35491091e-01 6.81555927e-01
-1.14680433e+00 -7.94875622e-01 3.09958428e-01 3.02414626e-01
-1.16445637e+00 -2.85520077e-01 8.17330539e-01 2.36579448e-01
1.41787517e+00 4.99908656e-01 1.08166313e+00 7.11514533e-01
1.96511523e-04 5.74397624e-01 1.08670056e+00 -3.61033738e-01
9.83152032e-01 1.19768627e-01 -5.68637908e-01 4.25538778e-01
2.88088679e-01 2.15570889e-02 1.64751664e-01 -4.21672910e-01
4.07768250e-01 1.44125223e-01 -1.11943921e-02 -4.16197717e-01
-7.97376037e-01 8.62533927e-01 3.64011914e-01 3.38717073e-01
-8.70913327e-01 5.98747313e-01 6.08146071e-01 3.07445854e-01
1.81506455e-01 2.85997957e-01 -6.93276942e-01 6.12021657e-03
-7.57202566e-01 1.63816810e-01 1.05491781e+00 1.01360154e+00
8.89931440e-01 5.52955925e-01 1.60453498e-01 3.40586722e-01
2.53260702e-01 7.34153867e-01 4.35631663e-01 -1.34025216e+00
1.93476334e-01 5.21942854e-01 4.05340195e-01 -3.40678155e-01
-7.19573498e-01 1.36710227e-01 -1.19623351e+00 7.54479349e-01
1.01169623e-01 -1.01412296e+00 -1.18607827e-01 1.60078514e+00
7.84112275e-01 -2.00780451e-01 1.15006424e-01 4.89386737e-01
-1.46629229e-01 6.24494433e-01 1.90861300e-01 -3.88702840e-01
1.31726623e+00 -8.18684042e-01 -8.60239446e-01 1.96712077e-01
2.38686800e-01 5.88727091e-03 2.84234613e-01 7.92109594e-02
-1.15283740e+00 -2.98392610e-03 -1.11204851e+00 4.56239790e-01
-7.34536052e-01 -1.15272187e-01 6.19840026e-01 1.12362659e+00
-1.23098636e+00 4.64011163e-01 -1.02677619e+00 -6.60766065e-02
7.95087755e-01 8.37716103e-01 -8.47945809e-02 3.59170377e-01
-1.06916249e+00 1.08326793e+00 3.02543640e-01 -1.62756339e-01
-9.80073631e-01 -6.47026300e-01 -6.29796505e-01 4.74293053e-01
5.86768210e-01 -5.96031249e-01 1.56435132e+00 -8.17499936e-01
-1.97251940e+00 -9.76985544e-02 5.63776493e-01 -5.80491006e-01
7.72061110e-01 1.81959420e-02 -3.55755270e-01 1.01561561e-01
-7.15412945e-02 3.65110964e-01 8.00767958e-01 -1.14546978e+00
-9.21948969e-01 -1.14427373e-01 9.38173681e-02 3.66133898e-01
-6.90646350e-01 -3.50352138e-01 7.37486362e-01 -2.01394204e-02
-1.08003271e+00 -9.14054573e-01 -6.43624246e-01 6.73067477e-03
-1.22071609e-01 -5.92878819e-01 1.21708167e+00 -5.82957804e-01
7.88133502e-01 -1.80554688e+00 -3.97315085e-01 6.35532022e-01
2.30214223e-01 3.23453337e-01 2.59383731e-02 6.97924078e-01
1.58996023e-02 9.37596783e-02 3.76437716e-02 -2.74820596e-01
7.56259620e-01 4.33339953e-01 1.22964621e-01 6.26573682e-01
-2.63481855e-01 8.51788521e-01 -9.50444818e-01 -7.24941632e-03
6.64766967e-01 3.28932106e-01 -1.49969548e-01 3.76261711e-01
-5.45754015e-01 3.48618180e-01 -6.94268882e-01 5.04677236e-01
5.53319693e-01 -3.07818413e-01 9.70467210e-01 2.72337735e-01
-1.96202755e-01 -1.83008701e-01 -1.27375531e+00 1.26563573e+00
-6.98454678e-01 1.17676437e-01 7.35679030e-01 -1.12420642e+00
6.28121197e-01 8.31866562e-01 1.29200029e+00 -1.05244946e+00
6.42513782e-02 -8.92969500e-03 -3.96745861e-01 -1.14903808e-01
3.36491317e-01 2.73492396e-01 -1.63343832e-01 1.10023296e+00
-2.94107527e-01 -2.27722198e-01 -8.96879211e-02 -1.42591193e-01
1.33353233e+00 -1.15679242e-01 6.73344195e-01 -3.12112063e-01
4.16833729e-01 -3.35951626e-01 6.53658509e-01 3.89432341e-01
-5.48559248e-01 -5.58306098e-01 1.65543005e-01 -6.16460204e-01
-1.09208202e+00 -6.85981989e-01 5.72836339e-01 1.17125309e+00
-4.34691638e-01 -9.31176171e-02 -8.92863691e-01 -8.46178889e-01
3.20635945e-01 9.21764314e-01 -9.49708223e-02 1.62276044e-01
-7.72593319e-01 -7.88058400e-01 3.70444566e-01 5.71385801e-01
9.91710901e-01 -1.08498704e+00 -1.22684407e+00 6.19657695e-01
1.33987099e-01 -8.04330409e-01 -4.70240355e-01 5.21245658e-01
-2.23376065e-01 -1.13244736e+00 -5.43089569e-01 -4.50808555e-01
6.55089378e-01 -1.26792073e-01 1.09623981e+00 8.98963809e-02
-3.33556861e-01 9.99035656e-01 3.13326754e-02 -6.19530499e-01
-4.28818613e-01 2.64824629e-01 1.54023454e-01 -4.29701507e-01
1.37986302e-01 -1.05766940e+00 -9.06824052e-01 9.56713781e-02
-6.72736824e-01 -4.23737198e-01 1.80683687e-01 8.04055452e-01
2.54426301e-01 7.04517007e-01 1.30803049e+00 -4.54392165e-01
7.96765685e-01 -4.91134703e-01 -1.25925696e+00 3.82645786e-01
-1.22800207e+00 -2.33445823e-01 1.21743989e+00 -1.40906781e-01
-9.44121063e-01 2.92483956e-01 2.68608987e-01 4.02210793e-03
-2.26887003e-01 -2.69610167e-01 -2.61334807e-01 -2.08580017e-01
9.96253453e-03 9.04596001e-02 9.75955501e-02 1.51352808e-01
5.21545827e-01 5.12379229e-01 2.03238204e-02 -5.83471179e-01
7.71280944e-01 2.82320529e-01 2.52118915e-01 -7.04245508e-01
1.31938070e-01 -3.39076295e-02 -3.06065232e-01 -1.79067016e-01
8.73414457e-01 -1.15584528e+00 -1.93711317e+00 4.40562606e-01
-9.74765837e-01 -6.59567118e-01 -7.96652913e-01 1.19602472e-01
-7.00163841e-01 1.38563409e-01 -1.54759988e-01 -1.04322875e+00
-8.89038384e-01 -7.45339215e-01 2.56419569e-01 5.96295357e-01
-1.61626473e-01 -1.15676534e+00 3.10407013e-01 1.69576570e-01
9.42683041e-01 5.22146285e-01 8.64031255e-01 -6.32841825e-01
-8.38400126e-01 2.20429208e-02 1.81074098e-01 5.44339061e-01
4.97165889e-01 -4.26974595e-01 -1.04279554e+00 -1.03376377e+00
-1.94959164e-01 -6.40733480e-01 -2.62412131e-01 1.40476614e-01
1.24699545e+00 -9.98978376e-01 -3.16310935e-02 1.08836554e-01
1.72550488e+00 5.63558161e-01 4.16980416e-01 3.24291527e-01
4.53988642e-01 2.19268426e-01 2.39182934e-01 1.21378922e+00
9.06984627e-01 1.99504763e-01 8.89611661e-01 -2.87923872e-01
5.75652957e-01 5.35943881e-02 3.00840139e-01 4.43892479e-01
-2.69966990e-01 -3.29257846e-01 -5.24530590e-01 5.42814612e-01
-2.08059263e+00 -1.11181772e+00 7.32928872e-01 1.99280667e+00
6.28775358e-01 -5.17249286e-01 4.72684830e-01 6.56709541e-03
3.82982880e-01 3.22886139e-01 -1.25358152e+00 -4.87752914e-01
2.33746052e-01 3.54505450e-01 1.03401649e+00 2.86838681e-01
-9.19390082e-01 3.02150041e-01 6.14585209e+00 4.04207975e-01
-6.88628197e-01 2.67579943e-01 6.43791437e-01 -2.57733196e-01
-1.10744134e-01 -3.49922091e-01 -3.00647825e-01 4.05310959e-01
1.37623036e+00 -4.54103768e-01 1.23421955e+00 1.19059825e+00
5.39401948e-01 -2.13202521e-01 -1.15297234e+00 6.75146282e-01
-6.45491004e-01 -1.28320205e+00 -7.78212070e-01 3.28005195e-01
1.01691473e+00 1.99764743e-01 -4.15389210e-01 2.19720826e-01
1.24161506e+00 -8.97445261e-01 4.70233858e-01 2.64723778e-01
4.89244431e-01 -1.40675175e+00 4.95615304e-01 3.77994925e-01
-1.53680718e+00 -6.07544363e-01 -1.66051373e-01 3.49122621e-02
1.34000303e-02 2.17525169e-01 -8.11510503e-01 7.60141134e-01
8.82781565e-01 8.92216936e-02 5.29913679e-02 3.56153816e-01
-1.98604465e-01 3.22175205e-01 -5.98598540e-01 -5.29255271e-01
1.49625063e-01 -2.69904613e-01 2.68455669e-02 5.59508324e-01
9.72168967e-02 1.42456561e-01 6.84579730e-01 6.00658774e-01
-4.12713259e-01 -2.69697458e-01 -5.22807300e-01 1.19226679e-01
9.01000321e-01 1.52315080e+00 -4.19433147e-01 -3.01180959e-01
-4.92043048e-01 9.46345329e-01 3.43697280e-01 3.11439037e-01
-7.02080905e-01 -2.38467425e-01 1.03262436e+00 -2.79439747e-01
6.18543506e-01 -3.15477818e-01 1.33695021e-01 -6.03784680e-01
-8.30155760e-02 -1.03529406e+00 4.45252866e-01 -2.80525714e-01
-1.38816178e+00 6.19217791e-02 -1.05485260e-01 -6.67033613e-01
-8.26518476e-01 -2.00264856e-01 -1.00459647e+00 7.07070053e-01
-1.76777482e+00 -1.23875499e+00 -4.32995409e-02 1.10092008e+00
2.20778733e-01 -3.72933745e-01 1.62917697e+00 1.66002885e-01
-5.46591520e-01 5.37164986e-01 7.07407296e-01 1.22474156e-01
1.60326257e-01 -1.61424375e+00 -6.12517539e-03 5.03363311e-01
-5.22580683e-01 -1.76009923e-01 1.94838732e-01 -3.00857753e-01
-1.80289102e+00 -1.18823624e+00 2.28267819e-01 1.14443488e-01
5.36770463e-01 -4.18901950e-01 -3.33580852e-01 6.78186357e-01
1.27877343e+00 2.07090780e-01 7.99484611e-01 -2.42766768e-01
2.41954952e-01 -6.84958458e-01 -1.83688211e+00 2.23278001e-01
1.83185264e-01 -5.41292965e-01 1.59740970e-01 4.67208594e-01
4.72085804e-01 3.40601094e-02 -1.30060375e+00 -4.15384322e-01
3.02341700e-01 -4.97492045e-01 6.68900132e-01 -4.50958848e-01
-4.29541260e-01 -2.34682858e-01 -1.17917001e-01 -1.71963394e+00
-3.25923741e-01 -1.26727188e+00 -3.97447884e-01 1.35945463e+00
5.61920777e-02 -1.07007658e+00 1.00229084e+00 1.39993787e+00
2.68389791e-01 -4.79497910e-01 -1.41106260e+00 -7.37355769e-01
1.52691931e-01 2.71769494e-01 1.36953771e+00 1.19617891e+00
2.17969283e-01 1.04759419e-02 -4.33909088e-01 4.86389875e-01
8.95803034e-01 -1.24885716e-01 5.60018659e-01 -7.10267603e-01
-2.56320238e-01 -2.48336792e-02 7.90165290e-02 -1.25717551e-01
3.59182686e-01 -5.84228814e-01 -1.30850181e-01 -1.57930505e+00
-3.60334396e-01 -4.50553477e-01 -5.65734982e-01 1.24055076e+00
4.75219488e-01 -5.65725327e-01 4.58746016e-01 -3.20973545e-01
-7.78811216e-01 9.73435104e-01 8.15300226e-01 -4.47318763e-01
-2.06959680e-01 8.92626420e-02 -5.75959086e-01 4.70460713e-01
1.33798349e+00 -4.79679763e-01 -5.93159676e-01 -1.52459875e-01
-1.32756770e-01 2.62453526e-01 3.46452534e-01 -7.96055377e-01
5.06878376e-01 -4.69117075e-01 5.35542369e-01 -2.67334789e-01
5.92571385e-02 -1.78209686e+00 5.27627647e-01 8.58362257e-01
-3.41630764e-02 4.92045939e-01 5.00249863e-02 5.38301289e-01
4.83735412e-01 6.76367730e-02 7.59474576e-01 -5.45434058e-01
-2.93973953e-01 2.87823796e-01 -9.12925422e-01 -3.62827688e-01
1.69092774e+00 3.55535895e-01 -5.40427268e-01 -5.77136159e-01
-4.36452240e-01 1.08070397e+00 1.97904810e-01 7.47130439e-02
1.90474182e-01 -1.34096658e+00 -4.41375196e-01 -5.13102002e-02
-7.70391226e-01 1.29679978e-01 1.44186392e-01 3.18430662e-02
-3.12204566e-02 5.25401644e-02 -4.57034320e-01 4.19733003e-02
-1.13513589e+00 4.45372939e-01 6.69548273e-01 -7.34740198e-01
-5.30673683e-01 8.35762694e-02 -6.40144944e-01 -4.06071156e-01
2.73463458e-01 -2.41027534e-01 2.40268826e-01 2.38183513e-01
4.92906511e-01 1.09024262e+00 -7.99630303e-03 3.07125986e-01
-3.62598449e-01 -1.09794147e-01 -1.17792666e-01 1.36695453e-03
1.93851757e+00 -2.90985584e-01 -2.95845360e-01 -1.10954009e-01
8.68165791e-01 -3.14895064e-01 -1.55287528e+00 8.84579197e-02
-3.28013152e-01 5.09342067e-02 1.90180436e-01 -1.09870827e+00
-1.37066305e+00 7.71244764e-02 1.02886987e+00 7.82833457e-01
1.34551644e+00 -6.65588796e-01 6.83151186e-01 6.74359918e-01
6.63714826e-01 -1.90276062e+00 -1.70832366e-01 2.63769720e-02
5.43292284e-01 -1.12611091e+00 4.79879767e-01 4.69239950e-01
-5.33041894e-01 1.06121838e+00 6.58072829e-01 -2.85922959e-02
8.60579371e-01 4.68174368e-01 -2.44710609e-01 7.24781156e-02
-7.15415657e-01 2.07652643e-01 -7.49035239e-01 9.42408919e-01
-4.67981815e-01 6.64020002e-01 2.31639311e-01 3.50656778e-01
1.95905373e-01 1.79080572e-02 4.91242796e-01 1.37589276e+00
-2.34349012e-01 -1.29010141e+00 -2.01572329e-01 3.13274980e-01
-3.30443740e-01 3.48574370e-01 1.23175628e-01 7.53610075e-01
1.66426003e-01 1.03027177e+00 -1.94549300e-02 2.77025372e-01
3.37001771e-01 2.38907412e-02 1.36286482e-01 -1.84289962e-02
-1.04501665e+00 -1.22822702e-01 1.24673963e-01 -6.75162673e-01
-4.74665403e-01 -7.68000782e-01 -1.42293680e+00 -8.27970922e-01
-1.42728791e-01 1.79023474e-01 7.84649134e-01 7.20437407e-01
4.01903391e-01 7.45657623e-01 1.39106488e+00 -8.47706199e-01
-1.14919209e+00 -4.79272842e-01 -8.37834835e-01 -2.62832403e-01
5.71012497e-01 5.42626642e-02 -1.78874075e-01 -4.89360780e-01] | [5.517105579376221, 2.552633285522461] |
d017d610-8938-4ba8-aa94-da62b8115f70 | pubchemqc-b3lyp-6-31g-pm6-dataset-the | 2305.18454 | null | https://arxiv.org/abs/2305.18454v1 | https://arxiv.org/pdf/2305.18454v1.pdf | PubChemQC B3LYP/6-31G*//PM6 dataset: the Electronic Structures of 86 Million Molecules using B3LYP/6-31G* calculations | This article presents the "PubChemQC B3LYP/6-31G*//PM6" dataset, containing electronic properties of 85,938,443 molecules. It includes orbitals, orbital energies, total energies, dipole moments, and other relevant properties. The dataset encompasses a wide range of molecules, from essential compounds to biomolecules up to 1000 molecular weight, covering 94.0% of the original PubChem Compound catalog (as of August 29, 2016). The electronic properties were calculated using the B3LYP/6-31G* and PM6 methods. The dataset is available in three formats: (i) GAMESS quantum chemistry program files, (ii) selected JSON output files, and (iii) a PostgreSQL database, enabling researchers to query molecular properties. Five sub-datasets offer more specific data. The first two subsets include molecules with C, H, O, and N, under 300 and 500 molecular weight respectively. The third and fourth subsets contain C, H, N, O, P, S, F, and Cl, under 300 and 500 molecular weight respectively. The fifth subset includes C, H, N, O, P, S, F, Cl, Na, K, Mg, and Ca, under 500 molecular weight. Coefficients of determination ranged from 0.892 (CHON500) to 0.803 (whole) for the HOMO-LUMO energy gap. These findings represent extensive investigations and can be utilized for drug discovery, material science, and other applications. The datasets are available under the Creative Commons Attribution 4.0 International license at https://nakatamaho.riken.jp/pubchemqc.riken.jp/b3lyp_pm6_datasets.html. | ['Toshiyuki Maeda', 'Maho Nakata'] | 2023-05-29 | null | null | null | null | ['drug-discovery'] | ['medical'] | [-3.82272489e-02 -3.93858761e-01 -6.12946272e-01 2.71900445e-01
-5.73231101e-01 -4.24258620e-01 2.08477050e-01 8.54802132e-01
-1.31595537e-01 1.49875522e+00 1.45113289e-01 -4.43638206e-01
2.00667642e-02 -9.56843257e-01 -4.27248120e-01 -1.27402604e+00
-2.73394346e-01 8.12582001e-02 1.54355407e-01 -1.59552053e-01
6.58796251e-01 7.36371696e-01 -1.40408194e+00 2.36984968e-01
1.15987194e+00 1.02082372e+00 2.49002293e-01 1.60958320e-01
1.69994295e-01 3.99420023e-01 -2.92279601e-01 -2.08998144e-01
-5.64327538e-02 -3.86828423e-01 -7.56534100e-01 -4.07885283e-01
-5.26488423e-02 -5.99706024e-02 -1.63369119e-01 1.19018936e+00
7.63558030e-01 1.79969624e-01 9.17725623e-01 -9.45384324e-01
-9.35939848e-01 3.94286960e-02 -6.46055877e-01 7.34453872e-02
7.33251631e-01 5.47369063e-01 1.04647136e+00 -9.97010469e-01
7.19977915e-01 8.91086519e-01 2.33792394e-01 2.78899550e-01
-1.03580594e+00 -1.08589447e+00 -4.69822824e-01 3.37081820e-01
-1.52688098e+00 -3.53977889e-01 3.62077206e-01 -6.25705361e-01
1.29841411e+00 3.95330429e-01 6.87425256e-01 6.76028430e-01
5.86472988e-01 -7.09575415e-02 1.17487359e+00 -3.23246419e-01
4.56520259e-01 2.51020819e-01 2.48844698e-01 4.35833544e-01
6.58464968e-01 4.84967157e-02 -6.17126465e-01 -8.50606143e-01
4.45021629e-01 9.17831436e-03 -2.33565569e-01 -1.46897197e-01
-9.54296589e-01 8.39167893e-01 5.15387535e-01 8.53930339e-02
-5.85054517e-01 -6.76112771e-02 1.48867160e-01 -3.04562245e-02
2.07903504e-01 4.52741802e-01 -5.72813749e-01 -1.50644290e-03
-2.11460486e-01 2.73819596e-01 7.17589736e-01 1.11484277e+00
9.55947399e-01 -1.81152910e-01 2.24147663e-01 6.27429366e-01
3.45586717e-01 2.56218642e-01 1.92247927e-01 -9.57170486e-01
3.64046156e-01 3.24360162e-01 3.47673893e-01 -5.99396110e-01
-3.44740480e-01 6.56968206e-02 -8.73421311e-01 -2.63282090e-01
-6.59181699e-02 -1.59971520e-01 -4.38442051e-01 1.33938408e+00
5.31130791e-01 -3.26670170e-01 1.87389404e-01 5.31410813e-01
1.33927262e+00 9.51750100e-01 3.10617924e-01 -7.34210312e-01
1.47484815e+00 -7.16350377e-01 -6.13103867e-01 6.93297982e-01
4.74207520e-01 -8.26870501e-01 6.82606936e-01 6.02220953e-01
-1.38127995e+00 -3.43660563e-01 -7.82698870e-01 -2.71719918e-02
-7.56495714e-01 -1.00902244e-01 9.60889578e-01 5.12820303e-01
-5.72505832e-01 9.39049482e-01 -7.00586259e-01 -2.72803098e-01
3.12983990e-01 6.80607796e-01 -4.37846273e-01 1.29858866e-01
-1.25361741e+00 6.75562441e-01 7.72374749e-01 -2.89859027e-01
-6.52298033e-01 -6.94005907e-01 -6.21656656e-01 -4.95278798e-02
1.50168747e-01 -6.18520021e-01 7.62896061e-01 -1.79707333e-01
-1.29256618e+00 6.13481045e-01 -4.27404940e-01 4.32781167e-02
-2.27932915e-01 3.42742801e-01 -6.95306599e-01 4.62333292e-01
1.75729901e-01 4.64027166e-01 -1.35883421e-01 -9.49025393e-01
-2.77512938e-01 -6.12164795e-01 -8.27989578e-02 1.60323307e-01
-6.35165870e-02 3.11148077e-01 -7.37139881e-02 -1.85893625e-01
9.88047346e-02 -8.28904390e-01 -4.06597972e-01 -3.84812742e-01
-7.45881200e-01 -2.72814125e-01 2.51933992e-01 -5.42935550e-01
1.09590209e+00 -1.89521658e+00 -1.29275009e-01 5.94917297e-01
8.49756598e-02 1.55586628e-02 3.58012140e-01 1.21370482e+00
-6.27796292e-01 3.91228706e-01 -2.05056354e-01 4.73003209e-01
-1.80903226e-01 -4.55805510e-01 3.09033513e-01 7.32380450e-01
-9.25359055e-02 5.31030416e-01 -7.88472474e-01 -1.99860543e-01
1.33583084e-01 5.10201812e-01 -4.60445195e-01 -2.54835010e-01
-9.73991528e-02 5.88413060e-01 -6.71378911e-01 1.03679192e+00
9.52448547e-01 -3.58545929e-01 2.37753436e-01 -1.99894086e-01
-7.44346082e-01 5.54010093e-01 -1.09185934e+00 1.31420565e+00
4.22116280e-01 -7.43130520e-02 3.87283899e-02 -6.66652918e-01
8.79386127e-01 5.13225377e-01 9.48245883e-01 -5.89887202e-01
3.47551815e-02 4.93349522e-01 4.28384900e-01 -4.81975764e-01
4.46945399e-01 -1.69602975e-01 2.74722636e-01 4.12706807e-02
2.75687017e-02 -2.92593151e-01 6.91170037e-01 2.72904038e-01
6.24552011e-01 -1.33145630e-01 6.30901933e-01 -4.15740639e-01
7.20009565e-01 1.65782198e-01 4.07634646e-01 1.84163123e-01
-3.54564823e-02 1.84078387e-03 6.50883019e-01 -1.47885591e-01
-9.54637170e-01 -7.84161448e-01 -9.22131002e-01 7.04545438e-01
2.96294212e-01 -7.77481794e-01 -5.23277164e-01 2.87157476e-01
1.12180501e-01 5.63931286e-01 -1.31904185e-01 -3.43601823e-01
1.88633859e-01 -1.06513917e+00 9.01288316e-02 -2.21051928e-02
4.75807548e-01 -1.22161222e+00 2.46907935e-01 2.03325763e-01
1.48843125e-01 -4.54459608e-01 -3.36679488e-01 4.05661494e-01
-9.73714888e-01 -1.08710170e+00 -5.12862384e-01 -3.34836483e-01
4.47963834e-01 1.99566320e-01 7.64248788e-01 8.85262191e-02
-4.55772549e-01 -1.75482824e-01 -2.51603186e-01 -4.72193599e-01
-1.12917796e-01 -1.96518615e-01 3.96555990e-01 -5.83053648e-01
3.55248809e-01 -7.69765556e-01 -8.20422828e-01 1.39968529e-01
-4.52294648e-01 -2.73783654e-01 3.82282317e-01 7.17507541e-01
1.01037955e+00 2.52831310e-01 3.06846261e-01 -8.01916540e-01
4.14691627e-01 -8.06786895e-01 -6.69807076e-01 3.08928117e-02
-7.12481201e-01 -3.04823607e-01 7.07537830e-01 1.66176911e-02
-7.80560136e-01 -1.09575510e-01 -4.05555397e-01 2.59191543e-01
-2.81529814e-01 8.02241325e-01 -7.04703271e-01 -1.30013064e-01
5.23425817e-01 2.63730079e-01 -2.59740353e-01 -6.28442824e-01
-2.85485297e-01 8.68118167e-01 3.37288648e-01 -8.96420121e-01
5.12018859e-01 2.20524848e-01 3.71385217e-01 -1.13911951e+00
-5.75076044e-01 -6.08264983e-01 -6.26596987e-01 1.59450561e-01
8.80745709e-01 -9.68759775e-01 -1.27005601e+00 2.48365402e-01
-7.37717807e-01 2.26691008e-01 5.65316342e-02 7.88260877e-01
-2.37389192e-01 5.69541812e-01 -7.74539411e-01 -6.92732930e-01
-5.86593688e-01 -1.18917346e+00 4.91446763e-01 5.15749276e-01
-1.65236890e-02 -8.54898751e-01 -1.54971451e-01 6.83992743e-01
1.10960864e-01 5.92466891e-01 1.26854670e+00 -5.20613909e-01
-4.77264225e-01 -5.08436076e-02 -1.40741453e-01 4.61658984e-02
1.97924331e-01 4.40478444e-01 -6.64942861e-01 -3.74611080e-01
-5.19831657e-01 -2.33847752e-01 7.47146249e-01 5.24806440e-01
1.49990916e+00 -2.86353916e-01 -5.55909097e-01 5.52718818e-01
1.28556895e+00 9.57089245e-01 8.98503304e-01 1.17454588e-01
5.39117217e-01 2.19691083e-01 6.05870843e-01 6.25740051e-01
1.72594056e-01 5.32139063e-01 5.25025666e-01 -1.01565503e-01
5.16010106e-01 -2.19777390e-01 1.44153535e-01 6.27231121e-01
-7.97415853e-01 -9.47586745e-02 -8.75379145e-01 9.47016180e-02
-1.21269238e+00 -1.11897969e+00 -9.03752327e-01 2.46445012e+00
1.15880597e+00 -1.20099880e-01 2.96567529e-01 3.58840055e-03
5.27591169e-01 -2.75265872e-01 -9.62935746e-01 -4.42874879e-01
4.99622896e-04 6.88480318e-01 6.77859783e-01 3.01499903e-01
-7.55521894e-01 7.70037711e-01 5.72277737e+00 1.00843108e+00
-1.09636045e+00 -1.48382798e-01 3.97817820e-01 1.00350201e-01
-2.81644791e-01 4.65205342e-01 -7.88882732e-01 8.53480160e-01
1.10748291e+00 -4.60844189e-01 3.34990084e-01 7.16945827e-01
4.47724134e-01 -5.67856789e-01 -6.45465553e-01 9.42587078e-01
-6.16632819e-01 -1.58975196e+00 -6.46574348e-02 6.76820457e-01
6.85197830e-01 -9.13950428e-02 -6.80391788e-02 1.33134443e-02
-1.31108075e-01 -1.15781963e+00 2.67688662e-01 4.74470586e-01
1.07864797e+00 -1.15463829e+00 5.62523901e-01 2.76268661e-01
-1.08800852e+00 2.78475672e-01 -6.05108798e-01 -3.96701470e-02
-1.25146940e-01 8.44832182e-01 -1.79252893e-01 1.00516248e+00
6.89588487e-01 8.87471497e-01 -1.97518989e-01 1.05290520e+00
5.71199805e-02 4.86648589e-01 4.94763292e-02 -2.25275248e-01
9.05743316e-02 -9.41321254e-01 1.73675910e-01 7.27719724e-01
3.20033967e-01 5.83511889e-01 1.24252096e-01 8.41811001e-01
-8.78168717e-02 2.70793200e-01 -2.47654691e-01 -4.43635076e-01
7.31227577e-01 1.07575369e+00 -6.50050879e-01 -4.21276331e-01
-2.61277348e-01 4.50285435e-01 -2.77278036e-01 4.36464936e-01
-6.28439724e-01 -7.44747102e-01 7.44207025e-01 1.32159606e-01
-1.26807556e-01 -1.43448383e-01 2.32621163e-01 -1.02313209e+00
-4.33718264e-01 -8.35154831e-01 4.00994509e-01 -8.78701687e-01
-1.12286186e+00 1.19896941e-01 1.44404829e-01 -9.08969939e-01
5.01697361e-01 -1.01127470e+00 -5.59791565e-01 1.21001720e+00
-1.14765322e+00 -2.52865076e-01 -1.89265981e-01 4.36313570e-01
-2.38972351e-01 -2.28292465e-01 1.01491761e+00 3.83977622e-01
-9.61942375e-01 1.63319081e-01 9.96226013e-01 -4.42698240e-01
6.71077430e-01 -1.09627593e+00 -1.96198598e-01 -2.43671909e-01
-7.00429618e-01 1.04022861e+00 6.10232949e-01 -6.53626561e-01
-1.51385581e+00 -7.86510646e-01 8.29181612e-01 -6.34765998e-02
5.24421394e-01 -1.57911271e-01 -8.62080634e-01 2.99915254e-01
1.70444369e-01 -9.83171836e-02 1.39084196e+00 -1.22747585e-01
1.09631352e-01 1.87907487e-01 -1.44348443e+00 3.75008106e-01
7.68145204e-01 -4.84374404e-01 1.87728226e-01 9.60717261e-01
4.66137767e-01 -5.78032255e-01 -1.68375230e+00 3.30227539e-02
5.01160920e-01 -1.04218507e+00 1.19594550e+00 -5.93892395e-01
4.41981375e-01 -2.85415590e-01 -2.66133755e-01 -9.49749649e-01
-3.53647023e-01 -5.03497124e-01 -1.73889384e-01 9.28189039e-01
5.58944404e-01 -9.34666157e-01 5.24432123e-01 5.52570581e-01
-4.97709572e-01 -9.70987022e-01 -8.75253379e-01 -6.09998941e-01
2.80599207e-01 1.12016387e-01 8.32457662e-01 1.02346981e+00
3.18285406e-01 3.24213386e-01 -1.16721183e-01 -9.49429944e-02
4.21754986e-01 2.74968505e-01 4.38131034e-01 -1.34184623e+00
-1.02192104e-01 -2.29985759e-01 -1.73835680e-01 -5.09278595e-01
-1.16416350e-01 -9.83524799e-01 -9.22713697e-01 -1.55750215e+00
6.74274266e-01 -3.92068654e-01 -3.37797523e-01 4.74060655e-01
1.35143578e-01 -1.04536578e-01 -3.57928276e-01 5.67868829e-01
-3.18265587e-01 6.38412833e-01 1.46284056e+00 -1.37049541e-01
-3.61961752e-01 -1.22939706e-01 -8.55282187e-01 4.84441578e-01
9.96539831e-01 -3.92737091e-01 -8.38696782e-04 4.77769881e-01
8.99000317e-02 1.03886038e-01 1.56889893e-02 -6.65502489e-01
-1.37529626e-01 -8.68159533e-01 5.74078083e-01 -8.32151830e-01
5.97289383e-01 -5.80870450e-01 6.37207210e-01 9.29886401e-01
1.30857751e-01 -2.05577552e-01 1.25182852e-01 1.06587350e-01
-1.66479170e-01 -3.21561247e-01 8.17661941e-01 -3.86599988e-01
-2.94421434e-01 7.10349202e-01 -4.61434782e-01 -4.84819889e-01
1.22161245e+00 -4.75940049e-01 -5.49728632e-01 -7.61855543e-02
-8.05754781e-01 2.62363911e-01 6.82977080e-01 -3.00450712e-01
4.18251574e-01 -1.36804152e+00 -1.40749037e-01 -1.12543911e-01
2.97945589e-01 -8.57751742e-02 3.78268659e-01 1.22388113e+00
-6.78166628e-01 6.12805843e-01 -3.23093206e-01 -6.43580407e-02
-1.21452057e+00 6.09710872e-01 3.54265451e-01 3.14612865e-01
-2.35253319e-01 3.05278897e-01 4.22512330e-02 -2.55572438e-01
-5.31913713e-02 -1.08851932e-01 -2.50927627e-01 1.96370319e-01
3.39352220e-01 6.70170069e-01 1.10884883e-01 -9.71783578e-01
-5.62229276e-01 4.49528724e-01 -1.12920776e-01 4.64710176e-01
1.48312676e+00 1.74008995e-01 -5.84449291e-01 1.92921534e-01
1.33251011e+00 3.72246116e-01 -4.93207723e-01 3.00973386e-01
-1.27113074e-01 -3.12112898e-01 -1.52901351e-01 -5.79318345e-01
-6.37620747e-01 7.12581933e-01 3.06906581e-01 4.31371145e-02
8.42787206e-01 1.45991258e-02 5.71126699e-01 3.03296894e-01
4.74658310e-01 -1.04021001e+00 -2.02807620e-01 4.99032646e-01
5.57435691e-01 -9.29584503e-01 5.26289880e-01 -6.22277260e-01
-6.00513518e-01 1.20917928e+00 3.87215197e-01 3.84679109e-01
4.87104267e-01 -2.89667606e-01 -6.78635836e-01 -5.00997305e-01
-7.98989177e-01 -1.57835841e-01 1.60461739e-01 3.69575739e-01
1.14410138e+00 1.79255635e-01 -6.68530703e-01 6.10676825e-01
-3.43759835e-01 -2.09237054e-01 5.89349508e-01 1.04953015e+00
-5.38331330e-01 -1.34037578e+00 -4.43743885e-01 5.87239087e-01
-5.66152453e-01 -3.55194330e-01 -6.53016388e-01 7.40338385e-01
4.17898566e-01 1.03465247e+00 -3.16731453e-01 7.56854340e-02
1.74505159e-01 -7.70999640e-02 4.12930071e-01 -5.68281591e-01
-5.01541257e-01 1.91569805e-01 1.56576604e-01 -3.07230413e-01
-4.37202394e-01 -5.62878132e-01 -1.79267108e+00 -6.73409402e-01
-6.97450221e-01 1.02860570e+00 7.02407539e-01 3.52643341e-01
4.20256406e-01 1.86137885e-01 5.77003956e-01 -8.20210457e-01
-1.43189773e-01 -8.80351484e-01 -1.18079853e+00 -3.57225374e-03
7.84789920e-02 -7.32988358e-01 -3.13968450e-01 -2.00809568e-01] | [5.070320129394531, 5.486292839050293] |
16fe0955-7556-4082-979c-d13c2ffd7227 | few-shot-video-object-detection | 2104.14805 | null | https://arxiv.org/abs/2104.14805v3 | https://arxiv.org/pdf/2104.14805v3.pdf | Few-Shot Video Object Detection | We introduce Few-Shot Video Object Detection (FSVOD) with three contributions to real-world visual learning challenge in our highly diverse and dynamic world: 1) a large-scale video dataset FSVOD-500 comprising of 500 classes with class-balanced videos in each category for few-shot learning; 2) a novel Tube Proposal Network (TPN) to generate high-quality video tube proposals for aggregating feature representation for the target video object which can be highly dynamic; 3) a strategically improved Temporal Matching Network (TMN+) for matching representative query tube features with better discriminative ability thus achieving higher diversity. Our TPN and TMN+ are jointly and end-to-end trained. Extensive experiments demonstrate that our method produces significantly better detection results on two few-shot video object detection datasets compared to image-based methods and other naive video-based extensions. Codes and datasets are released at \url{https://github.com/fanq15/FewX}. | ['Yu-Wing Tai', 'Chi-Keung Tang', 'Qi Fan'] | 2021-04-30 | null | null | null | null | ['few-shot-video-object-detection'] | ['computer-vision'] | [-1.12482414e-01 -5.44572234e-01 -5.32003939e-01 -1.53210074e-01
-1.00760412e+00 -4.22390312e-01 4.07685429e-01 -5.75218618e-01
-2.66271263e-01 2.79930055e-01 4.54966843e-01 4.18132395e-02
2.45969161e-01 -3.27252358e-01 -9.10802722e-01 -3.01849574e-01
-4.84598905e-01 3.02430749e-01 9.60773647e-01 1.24108367e-01
1.17640108e-01 1.75011680e-01 -1.68176937e+00 6.48078382e-01
1.92945033e-01 1.33908761e+00 5.69533825e-01 1.02553952e+00
1.51816025e-01 1.22106075e+00 -1.38747379e-01 -1.88551426e-01
8.16901922e-01 -3.88486922e-01 -5.45250654e-01 5.01646638e-01
1.07717752e+00 -8.77947152e-01 -1.00721395e+00 8.24099004e-01
6.67696178e-01 4.05290842e-01 6.51421130e-01 -1.46221256e+00
-2.93071568e-01 5.14356196e-01 -9.34079945e-01 1.01452434e+00
5.20012379e-01 8.46468508e-01 1.00443316e+00 -1.19640815e+00
1.16287851e+00 1.30758345e+00 5.51424921e-01 8.18913937e-01
-9.33661401e-01 -5.67532599e-01 1.49006635e-01 4.68063802e-01
-1.26782823e+00 -7.74077952e-01 4.12897348e-01 -5.63029826e-01
1.01577318e+00 1.61343098e-01 9.01314437e-01 1.46378350e+00
-1.18516073e-01 1.37301838e+00 3.81505132e-01 -6.45023435e-02
1.10422172e-01 -4.66930568e-02 -1.83592528e-01 9.04801548e-01
2.13959709e-01 2.59360284e-01 -7.51703680e-01 -1.48108914e-01
8.23877275e-01 2.92775095e-01 -4.50701445e-01 -9.15791571e-01
-1.17336929e+00 8.40147913e-01 1.76175207e-01 1.22609928e-01
-3.46520960e-01 5.94746947e-01 6.46928668e-01 3.44571441e-01
2.16041639e-01 1.06529325e-01 -4.60912973e-01 -3.79573107e-01
-9.13962901e-01 5.22272110e-01 5.20399690e-01 1.18752635e+00
4.94129241e-01 2.25419402e-01 -8.98594618e-01 8.01196992e-01
1.42059207e-01 5.22380590e-01 4.88284886e-01 -1.30128241e+00
6.09549403e-01 1.39853895e-01 2.13272080e-01 -5.98447800e-01
-8.65674689e-02 -2.45271385e-01 -1.32798433e-01 -7.48553127e-03
3.36562365e-01 -4.35560942e-02 -1.17354596e+00 1.62252569e+00
3.68670493e-01 8.61998796e-01 -2.11008981e-01 1.19933796e+00
1.28536391e+00 7.73846626e-01 -1.93191338e-02 -1.42431989e-01
1.20925581e+00 -1.49115586e+00 -1.52219579e-01 -2.61242986e-01
7.28496671e-01 -6.41765058e-01 1.00736582e+00 1.77882284e-01
-1.10523295e+00 -5.81161141e-01 -7.55115151e-01 1.04557291e-01
1.84745401e-01 6.75701275e-02 6.11759901e-01 4.51406002e-01
-1.20132911e+00 2.08592996e-01 -7.77508795e-01 -6.39179647e-01
1.08646894e+00 1.25819638e-01 -1.74557805e-01 -5.77665150e-01
-5.94725549e-01 3.50888491e-01 3.59900832e-01 -4.73030746e-01
-1.72998095e+00 -8.67188156e-01 -8.25489223e-01 -1.47083908e-01
9.69152331e-01 -8.04271221e-01 1.49026179e+00 -8.29449415e-01
-8.60137224e-01 7.81449556e-01 -2.52259880e-01 -6.69412434e-01
7.54399121e-01 -9.92465243e-02 -4.94804904e-02 6.82716250e-01
4.97741342e-01 1.13495660e+00 9.63919282e-01 -8.60134065e-01
-1.00529647e+00 5.51543161e-02 -1.31828591e-01 3.51059467e-01
-3.00071776e-01 2.25490466e-01 -1.12694955e+00 -6.93922639e-01
-3.57068777e-01 -6.43634379e-01 -2.41058022e-01 4.34778959e-01
-1.12005159e-01 -3.74692708e-01 1.08973944e+00 -2.35004053e-01
1.10589647e+00 -2.06185508e+00 9.34776589e-02 -2.65229523e-01
5.44525325e-01 3.66872907e-01 -5.96467972e-01 1.46571651e-01
2.31282324e-01 -3.36094707e-01 2.55934417e-01 -3.31251562e-01
-2.17593208e-01 -1.95981190e-01 -3.52997094e-01 4.43337977e-01
9.16463360e-02 1.13589942e+00 -1.11203218e+00 -6.66268110e-01
3.76195639e-01 1.45550802e-01 -6.78451002e-01 2.22216442e-01
-4.93339360e-01 -1.22568861e-01 -5.25914192e-01 1.23988080e+00
3.21689188e-01 -4.67344403e-01 -3.13336790e-01 -2.14506969e-01
3.16682696e-01 -4.05313879e-01 -1.15237164e+00 1.60308433e+00
2.34621406e-01 7.65056133e-01 -2.46908128e-01 -7.03787327e-01
5.71549773e-01 1.91597015e-01 7.58483350e-01 -5.89557171e-01
2.41355315e-01 -5.84374135e-03 -3.48641366e-01 -8.27002347e-01
5.25008440e-01 4.35547471e-01 2.03057393e-01 1.97912306e-01
5.37026584e-01 1.37868822e-01 8.13264251e-01 7.25758612e-01
1.43195295e+00 2.32306108e-01 1.09449774e-01 4.14978079e-02
1.40885621e-01 -2.53631477e-03 8.88402522e-01 1.03289413e+00
-9.39015448e-01 6.95259035e-01 3.10984194e-01 -6.44623399e-01
-1.27659416e+00 -1.08061457e+00 7.69557580e-02 1.33548868e+00
4.27421629e-01 -5.73716521e-01 -3.71950835e-01 -7.27145374e-01
2.03265011e-01 1.94972396e-01 -5.73981524e-01 4.01448421e-02
-3.51028919e-01 -3.67137343e-01 3.66429389e-01 7.89803684e-01
3.11427027e-01 -1.01417589e+00 -7.60162652e-01 1.13020755e-01
-2.86121070e-01 -1.32971370e+00 -1.03320730e+00 -1.50302112e-01
-7.55616486e-01 -1.32409811e+00 -8.84405553e-01 -8.52219641e-01
1.94132105e-01 1.02348590e+00 1.04846942e+00 -6.21851943e-02
-8.15580368e-01 9.04263914e-01 -5.81916034e-01 -1.62770078e-01
-1.97640792e-01 -3.68885756e-01 2.56359965e-01 -7.88016841e-02
8.13750029e-01 -1.62206784e-01 -8.22783113e-01 4.94651437e-01
-6.17413580e-01 -7.37417936e-02 3.35923761e-01 5.84364235e-01
4.58419949e-01 -4.92920488e-01 3.56312126e-01 -3.98108840e-01
1.41321465e-01 -6.55861735e-01 -5.56442678e-01 2.22617403e-01
-1.47682711e-01 -5.74816525e-01 2.16881916e-01 -6.24825120e-01
-7.07277000e-01 2.64959514e-01 2.97089368e-01 -1.37656939e+00
-7.51893967e-03 -2.51081079e-01 3.62784088e-01 -1.52537659e-01
1.02780306e+00 4.20492530e-01 6.53877109e-02 -1.80530578e-01
3.74542445e-01 4.06348139e-01 6.22995019e-01 -3.56845438e-01
7.77784765e-01 5.08186936e-01 -3.94128978e-01 -8.54082048e-01
-6.76799893e-01 -1.16572857e+00 -2.49070838e-01 -6.58952832e-01
8.26222301e-01 -1.47006035e+00 -3.27664137e-01 3.65132749e-01
-7.90013015e-01 -6.36625648e-01 -3.19461316e-01 7.25288093e-01
-8.56510103e-01 4.85886425e-01 -7.61730373e-01 -6.76203310e-01
-4.52085167e-01 -1.11996198e+00 1.23721242e+00 3.17874491e-01
-9.04411171e-03 -5.23905039e-01 1.41889900e-01 5.04889548e-01
2.02232331e-01 1.42928585e-01 2.63657030e-02 -4.58742499e-01
-1.17400801e+00 -1.06593542e-01 -3.74408096e-01 1.10493051e-02
-3.55415851e-01 1.81143522e-01 -8.75506938e-01 -8.96599174e-01
-4.07987952e-01 -9.05083656e-01 1.47549701e+00 8.12442839e-01
9.46439862e-01 1.63911954e-02 -6.92390084e-01 8.77354145e-01
1.57942319e+00 1.93573326e-01 5.04443467e-01 1.80997163e-01
6.73609436e-01 5.07337190e-02 9.93446589e-01 6.83672845e-01
9.78940278e-02 8.00874591e-01 5.29333115e-01 1.74061760e-01
-4.51769888e-01 -1.56812847e-01 7.44917691e-01 1.54583484e-01
-1.45383418e-01 -4.30852979e-01 -6.19616926e-01 8.18573296e-01
-2.01729369e+00 -1.70904362e+00 1.77485868e-01 1.91069603e+00
1.84639663e-01 1.76360458e-01 8.87945533e-01 -5.11687458e-01
8.54296803e-01 5.31200945e-01 -8.05130899e-01 2.93063283e-01
-2.25294799e-01 -2.65680075e-01 3.30544621e-01 -1.59767251e-02
-1.52011740e+00 1.08035445e+00 5.82608414e+00 1.15919197e+00
-9.44937527e-01 2.80493945e-01 6.15730464e-01 -7.51328647e-01
1.13044508e-01 -2.14064658e-01 -1.08676994e+00 3.04739714e-01
5.06782830e-01 -3.21585864e-01 2.39249170e-01 1.26390493e+00
1.89937875e-01 -4.02934141e-02 -9.62832272e-01 1.28834033e+00
3.55389059e-01 -1.88792014e+00 9.43543911e-02 -1.78488478e-01
9.13863719e-01 7.88332283e-01 9.08555090e-03 3.88827175e-01
2.36683667e-01 -4.55887705e-01 8.84493172e-01 3.08540106e-01
9.34985161e-01 -2.85877973e-01 1.69010490e-01 -5.18616140e-02
-1.67257404e+00 -6.74687386e-01 -8.24849963e-01 3.25242609e-01
1.29331484e-01 8.66102928e-04 -9.37755346e-01 6.80253208e-02
1.27583504e+00 1.18579340e+00 -8.42220724e-01 1.79233360e+00
4.20787007e-01 8.03193629e-01 -2.89583921e-01 -1.60749257e-01
5.17738879e-01 2.56727576e-01 9.88974929e-01 1.25327349e+00
3.73686373e-01 -4.47994173e-02 5.07508993e-01 6.11996830e-01
-1.86502442e-01 -6.94339722e-02 -7.82453239e-01 3.41536701e-02
7.16964841e-01 1.33187389e+00 -9.06431973e-01 -5.46481669e-01
-6.59510136e-01 8.08003008e-01 2.06944585e-01 3.75481844e-01
-9.17015791e-01 -9.95842814e-02 6.22510016e-01 3.36266786e-01
1.07002604e+00 1.70923293e-01 7.40112722e-01 -1.47095406e+00
1.08230770e-01 -8.46126437e-01 8.25833380e-01 -8.43724251e-01
-1.27403581e+00 5.60337543e-01 6.16521053e-02 -1.72719216e+00
-2.75101125e-01 -5.20434618e-01 -7.74174869e-01 1.11443974e-01
-1.13390470e+00 -1.14417589e+00 -4.15120602e-01 9.06283557e-01
9.95977581e-01 -5.62449396e-01 1.53426364e-01 4.27512169e-01
-4.92899150e-01 6.91579580e-01 1.36985615e-01 3.40807676e-01
7.42358446e-01 -9.13503706e-01 4.75265771e-01 1.04527724e+00
3.06141675e-01 4.00616713e-02 5.36041975e-01 -6.01245761e-01
-1.50255835e+00 -1.61944079e+00 1.76811621e-01 -5.89594543e-01
5.53480864e-01 -4.11370844e-01 -7.33639777e-01 7.93319702e-01
3.24390493e-02 5.92365205e-01 4.07034934e-01 -4.34247285e-01
-5.03601909e-01 -1.80898041e-01 -8.81618321e-01 5.33839047e-01
1.50220203e+00 -3.21927905e-01 -4.49473858e-01 6.63427055e-01
9.49657261e-01 -3.54882538e-01 -4.74149317e-01 2.27900565e-01
4.40200984e-01 -1.14987886e+00 1.07968998e+00 -7.19353378e-01
3.75129849e-01 -4.61140424e-01 -3.38212907e-01 -6.07618928e-01
-5.01106620e-01 -7.91293561e-01 -6.07951164e-01 7.71866858e-01
1.73914060e-01 -5.46692125e-02 1.08077312e+00 1.53145269e-01
-1.57991081e-01 -9.84849215e-01 -8.48747551e-01 -1.04160750e+00
-5.43642640e-01 -5.43821394e-01 1.16813473e-01 5.98029971e-01
-2.00660884e-01 1.46784142e-01 -8.81785512e-01 -2.06356034e-01
9.49587941e-01 1.45958185e-01 1.14638031e+00 -6.78530335e-01
-5.94115078e-01 -5.24060786e-01 -1.06227136e+00 -1.30592299e+00
-4.73733097e-01 -7.53199279e-01 -4.49250378e-02 -1.21983910e+00
8.52057517e-01 6.60288557e-02 -2.17278510e-01 1.96475133e-01
-1.82170197e-01 6.80003583e-01 4.49974954e-01 2.78364569e-01
-1.64312923e+00 5.48843324e-01 1.16838050e+00 -9.36865658e-02
-2.60278821e-01 -2.44158041e-02 -3.72328460e-01 5.10620654e-01
2.55703270e-01 -4.23241675e-01 -4.96688128e-01 -1.59458101e-01
-3.17127228e-01 3.38712573e-01 5.26179612e-01 -1.20645237e+00
2.61375159e-01 -1.32184669e-01 5.61668158e-01 -8.30289960e-01
4.31126297e-01 -1.87537029e-01 -1.37355655e-01 6.57756627e-01
-1.79550573e-01 -2.73500234e-01 1.42342290e-02 1.07160461e+00
7.66021088e-02 -2.42816587e-03 9.01075959e-01 -2.38723218e-01
-1.55176032e+00 1.05459857e+00 -3.34694952e-01 3.27275097e-01
1.46033919e+00 -5.76551139e-01 -4.96749371e-01 -5.16680002e-01
-4.36199456e-01 7.26281345e-01 4.80370343e-01 8.89604747e-01
9.30166245e-01 -1.37147820e+00 -9.39754903e-01 -1.94071874e-01
5.85527003e-01 -2.40322486e-01 5.53737402e-01 8.59244049e-01
-5.43353617e-01 2.86076248e-01 -1.62135631e-01 -1.05998397e+00
-1.53911853e+00 7.22151399e-01 3.76132518e-01 1.93542019e-01
-8.07565928e-01 1.41522038e+00 2.55273581e-01 3.10254414e-02
6.46479785e-01 3.60000357e-02 4.26792912e-02 -4.61457856e-02
8.17231536e-01 5.02183855e-01 -6.04552209e-01 -6.90045178e-01
-2.94742376e-01 5.82175493e-01 -4.32818890e-01 2.25921407e-01
1.37805653e+00 -2.26868644e-01 5.26159286e-01 6.33461475e-02
1.25510597e+00 -4.74515021e-01 -1.75729012e+00 -5.97212374e-01
-3.27835202e-01 -9.59191918e-01 -1.69747293e-01 -2.87539899e-01
-1.17201090e+00 4.35897678e-01 7.92674065e-01 -2.94863582e-01
8.81917059e-01 3.89208317e-01 9.85195279e-01 6.17387116e-01
4.37161416e-01 -1.00914347e+00 7.47843981e-01 1.87000051e-01
5.26803970e-01 -1.43572044e+00 2.64747860e-03 -1.79706201e-01
-7.98407853e-01 1.12039244e+00 1.00772357e+00 -1.88754961e-01
3.76929045e-01 4.63337004e-02 5.94893061e-02 -1.75469294e-01
-1.26920068e+00 -4.04856205e-01 2.42809549e-01 7.38195539e-01
-1.58367846e-02 -3.50754112e-01 2.32343510e-01 1.97677016e-01
4.23263550e-01 3.11056852e-01 5.22499800e-01 9.63432848e-01
-9.15480673e-01 -3.88216376e-01 -2.57679731e-01 9.54477429e-01
-2.98814714e-01 1.76911995e-01 -9.50821042e-02 6.40413761e-01
-3.91948856e-02 8.27750206e-01 9.85580832e-02 -4.96453136e-01
4.78911027e-02 -3.39070648e-01 5.89495897e-01 -6.58683479e-01
-1.29103467e-01 2.87995458e-01 6.31055981e-02 -1.21326435e+00
-4.12488908e-01 -8.77808630e-01 -8.93391609e-01 -2.23970503e-01
-3.86977702e-01 -1.54367730e-01 -8.94199610e-02 5.76294005e-01
5.23060501e-01 1.74414620e-01 6.65758312e-01 -1.18247843e+00
-6.53723776e-01 -7.34031737e-01 -5.57249129e-01 5.17243922e-01
3.00825387e-01 -7.62017131e-01 -2.66759396e-01 1.58040106e-01] | [8.790526390075684, 0.8481943011283875] |
0c01620f-7aa0-441e-8755-ea86b942ced6 | stitch-it-in-time-gan-based-facial-editing-of | 2201.08361 | null | https://arxiv.org/abs/2201.08361v2 | https://arxiv.org/pdf/2201.08361v2.pdf | Stitch it in Time: GAN-Based Facial Editing of Real Videos | The ability of Generative Adversarial Networks to encode rich semantics within their latent space has been widely adopted for facial image editing. However, replicating their success with videos has proven challenging. Sets of high-quality facial videos are lacking, and working with videos introduces a fundamental barrier to overcome - temporal coherency. We propose that this barrier is largely artificial. The source video is already temporally coherent, and deviations from this state arise in part due to careless treatment of individual components in the editing pipeline. We leverage the natural alignment of StyleGAN and the tendency of neural networks to learn low frequency functions, and demonstrate that they provide a strongly consistent prior. We draw on these insights and propose a framework for semantic editing of faces in videos, demonstrating significant improvements over the current state-of-the-art. Our method produces meaningful face manipulations, maintains a higher degree of temporal consistency, and can be applied to challenging, high quality, talking head videos which current methods struggle with. | ['Daniel Cohen-Or', 'Amit H. Bermano', 'Rinon Gal', 'Ron Mokady', 'Rotem Tzaban'] | 2022-01-20 | null | null | null | null | ['facial-editing'] | ['computer-vision'] | [ 6.24168336e-01 2.74416387e-01 7.26189315e-02 -4.39829767e-01
-4.91195828e-01 -6.78663909e-01 8.45047593e-01 -8.59578013e-01
-4.79617640e-02 6.68156862e-01 6.47175252e-01 2.61772245e-01
-3.60400341e-02 -4.08688724e-01 -9.27201569e-01 -5.62298656e-01
-2.03953639e-01 7.80621469e-02 -2.63368428e-01 -2.22193778e-01
-2.72545904e-01 4.29021984e-01 -1.58705080e+00 4.22416419e-01
4.02922034e-01 6.84539199e-01 -1.66844934e-01 6.49127722e-01
1.96731210e-01 1.03186047e+00 -4.63787079e-01 -6.04342401e-01
4.75639433e-01 -7.12344110e-01 -7.08965838e-01 3.07495862e-01
8.82787108e-01 -8.76651824e-01 -7.11825252e-01 9.45718169e-01
2.88279057e-01 1.56549916e-01 5.64795494e-01 -1.54673469e+00
-6.50999367e-01 3.13898116e-01 -4.44063544e-01 -6.96665868e-02
4.29629803e-01 3.90643984e-01 8.86342883e-01 -7.89374530e-01
1.04686427e+00 1.52674830e+00 8.56433630e-01 9.22708929e-01
-1.47184992e+00 -8.26023042e-01 6.77442923e-02 -2.06797659e-01
-1.25034845e+00 -1.23767459e+00 6.47057950e-01 -4.56572980e-01
7.83974409e-01 5.09631447e-02 8.19186091e-01 1.61961842e+00
-9.16690566e-03 4.55689847e-01 9.86896932e-01 -1.94744155e-01
-7.18682185e-02 -3.19415063e-01 -6.19882405e-01 7.77971327e-01
-1.25631377e-01 2.99383402e-01 -9.26963866e-01 -5.76555729e-02
9.87054467e-01 3.05972528e-03 -5.20699799e-01 -4.42084342e-01
-9.74598467e-01 6.68055952e-01 1.83726057e-01 2.26565316e-01
-3.27202708e-01 5.17842114e-01 2.27510884e-01 3.82333994e-01
4.59478021e-01 2.87950099e-01 -1.78014100e-01 -4.33360338e-01
-1.34895384e+00 3.74246866e-01 9.05929089e-01 9.93594050e-01
4.24279392e-01 2.57757157e-01 -1.06223680e-01 5.90656877e-01
1.71843350e-01 4.06115770e-01 1.01480015e-01 -1.58788502e+00
-1.64163232e-01 -4.77313623e-02 3.49485315e-03 -1.21827579e+00
5.05161881e-02 -1.18981041e-01 -5.78196406e-01 4.54600930e-01
5.69116116e-01 -3.41694057e-02 -9.60720360e-01 2.42837930e+00
9.22571868e-02 5.59011281e-01 -7.38735572e-02 6.05833650e-01
3.14083606e-01 3.82622510e-01 -2.07923376e-03 -2.92031139e-01
1.17650926e+00 -7.20075309e-01 -9.49715137e-01 -2.92083949e-01
3.44997160e-02 -8.55197668e-01 8.88709545e-01 3.24941248e-01
-1.41239274e+00 -4.26398993e-01 -8.79287124e-01 -2.02271923e-01
1.15158267e-01 -2.87462711e-01 8.37257564e-01 5.74355125e-01
-1.49454021e+00 8.62626195e-01 -1.00813699e+00 -4.30670202e-01
7.89569676e-01 3.52762252e-01 -8.10695112e-01 -1.90800980e-01
-9.46714342e-01 7.18340039e-01 -8.53707641e-02 3.50022204e-02
-1.01310134e+00 -1.00541925e+00 -9.10266459e-01 1.74096203e-04
4.48863894e-01 -8.49711120e-01 1.31688428e+00 -1.46907210e+00
-1.66618562e+00 8.98809254e-01 -2.66343564e-01 -2.91289866e-01
7.80263543e-01 -3.09361041e-01 -3.30421239e-01 5.61761737e-01
6.41302904e-03 1.17276573e+00 1.45646214e+00 -1.08116472e+00
-2.03145906e-01 -9.25028101e-02 1.36819571e-01 -4.80535068e-03
-5.06035447e-01 1.01344101e-01 -6.93414629e-01 -9.35002208e-01
-2.06809804e-01 -1.09699214e+00 1.60509750e-01 4.68106031e-01
8.21369439e-02 2.71651298e-01 9.52181935e-01 -7.54355133e-01
8.21518123e-01 -2.30020833e+00 3.13219994e-01 3.01154442e-02
4.38416928e-01 9.08299070e-03 -3.14146966e-01 2.80351549e-01
-2.56090909e-01 2.11728975e-01 -1.54958233e-01 -5.95606267e-01
6.52146563e-02 3.21121067e-01 -4.49073881e-01 3.98939341e-01
6.02579296e-01 1.04654706e+00 -8.60088408e-01 -3.06649953e-01
3.58228497e-02 9.98934507e-01 -1.08945096e+00 2.12159097e-01
-1.58047497e-01 5.83284855e-01 1.44907990e-02 5.41595280e-01
5.11059642e-01 -2.81768769e-01 4.17488247e-01 -5.25779188e-01
2.71138757e-01 1.85025111e-01 -9.19462323e-01 1.97778785e+00
-5.79778366e-02 9.03564036e-01 4.88117576e-01 -7.03147888e-01
2.87202567e-01 4.32736754e-01 7.26789176e-01 -4.35121953e-01
1.18643656e-01 1.56205725e-02 -3.50326374e-02 -4.75418210e-01
5.16703069e-01 -3.47352833e-01 4.01372641e-01 4.70007449e-01
4.62355673e-01 -3.88236135e-01 1.76586255e-01 3.50840241e-01
1.26707745e+00 5.93262255e-01 -8.69540274e-02 -2.22190738e-01
-1.11621737e-01 -4.51849878e-01 5.24193645e-01 6.21559381e-01
-3.49712342e-01 7.83392251e-01 6.48805559e-01 -1.17078021e-01
-1.32867992e+00 -1.07098711e+00 1.20852236e-02 9.40075099e-01
-4.18685526e-01 -5.60297072e-01 -9.97452080e-01 -4.70866054e-01
4.43943916e-03 2.31601566e-01 -8.22109163e-01 -2.90313393e-01
-6.00563586e-01 -2.38450795e-01 8.34272444e-01 4.37644839e-01
3.31574649e-01 -8.43516588e-01 -3.93149406e-01 2.78999537e-01
-1.38823003e-01 -1.47210169e+00 -6.25460088e-01 -3.41487795e-01
-6.97805583e-01 -1.00969815e+00 -6.96132600e-01 -4.08004612e-01
6.31859601e-01 2.33020544e-01 1.43198204e+00 1.48368850e-01
-3.45719308e-01 7.72425592e-01 -7.15774074e-02 -6.23051375e-02
-6.61417603e-01 -3.86914790e-01 2.33195439e-01 8.59983340e-02
6.24541230e-02 -1.03215039e+00 -5.95247507e-01 1.64330527e-01
-1.22271383e+00 9.36725587e-02 3.59041184e-01 1.03632140e+00
5.67737222e-02 -5.34748435e-02 3.73973697e-01 -8.97028327e-01
4.05258179e-01 -2.97995478e-01 -3.89844865e-01 -6.86052665e-02
-3.30882728e-01 2.98195127e-02 3.41573358e-01 -4.22911793e-01
-1.04944420e+00 -3.07238810e-02 -9.77935493e-02 -9.43791926e-01
-1.03181312e-02 1.52815640e-01 -9.22857001e-02 -2.72791773e-01
4.70718145e-01 -2.33125731e-01 6.44261539e-01 -9.18865129e-02
6.33795738e-01 5.50103374e-02 9.39348817e-01 -7.34181762e-01
1.01419508e+00 8.22794676e-01 1.09323040e-02 -7.93257117e-01
-5.80685496e-01 2.35583439e-01 -4.84678060e-01 -2.70034432e-01
7.38269746e-01 -1.11989236e+00 -6.99245214e-01 5.38027346e-01
-1.04099631e+00 -4.48488504e-01 -4.89912629e-01 2.82757103e-01
-6.95658565e-01 3.53712738e-01 -8.10003459e-01 -4.49863702e-01
-3.55451889e-02 -1.08395624e+00 1.03331494e+00 8.86766985e-02
-5.05160093e-01 -9.58621264e-01 -2.00855255e-01 2.09853321e-01
5.94988167e-01 3.96529227e-01 5.94457686e-01 -2.52715661e-03
-7.33180523e-01 3.00682873e-01 -8.95903856e-02 4.83465821e-01
3.29427451e-01 4.97714847e-01 -1.32399583e+00 -5.94529212e-01
-5.14299702e-03 -5.44571459e-01 7.39725411e-01 3.47840607e-01
9.34032261e-01 -4.94165659e-01 -5.32526188e-02 9.23128545e-01
9.72898662e-01 -1.48121089e-01 7.46522725e-01 -1.01063415e-01
6.63323522e-01 7.68355250e-01 1.23223789e-01 3.59777063e-01
9.58290771e-02 7.48646796e-01 3.01185638e-01 -9.14560929e-02
-4.12613273e-01 -3.07672620e-01 6.70037568e-01 7.29389906e-01
-5.21266647e-02 -5.59994504e-02 -6.21170104e-01 4.09841508e-01
-1.58054447e+00 -1.41026092e+00 6.54201925e-01 1.81415033e+00
1.11416364e+00 7.43169859e-02 4.96583953e-02 2.39982288e-02
4.08717722e-01 3.87093961e-01 -5.04278719e-01 -5.57171963e-02
-2.53863573e-01 5.26316285e-01 1.76393330e-01 4.91488606e-01
-8.92891884e-01 9.39991534e-01 7.50464487e+00 6.70191109e-01
-1.27366877e+00 5.93295917e-02 5.25105357e-01 -4.21571136e-01
-5.34282267e-01 -5.89668117e-02 -3.61264586e-01 4.60466892e-01
8.94927025e-01 -1.10059798e-01 9.12814319e-01 5.41204751e-01
2.11814195e-01 2.45409787e-01 -1.49161673e+00 1.08098638e+00
3.10609937e-01 -1.54941666e+00 8.86218026e-02 1.95575386e-01
8.58365297e-01 -2.30373144e-01 4.68857735e-01 7.57248774e-02
3.73744547e-01 -1.50549173e+00 9.39178050e-01 5.48993886e-01
1.16061783e+00 -6.00289464e-01 1.23379957e-02 -2.25622281e-01
-9.32889342e-01 6.62187636e-02 -6.83841063e-03 2.11395882e-02
1.73546776e-01 3.71857941e-01 -5.23573577e-01 3.21101665e-01
7.36660779e-01 1.01827121e+00 -3.42166603e-01 2.23075554e-01
-1.76729888e-01 4.71140206e-01 -3.51630539e-01 7.28857398e-01
7.78376535e-02 -1.75030395e-01 4.76860344e-01 1.02185965e+00
3.83929968e-01 1.26038060e-01 -7.79262036e-02 9.26295698e-01
-4.55175191e-01 -3.97564471e-01 -9.62806642e-01 -5.57729363e-01
4.37523156e-01 1.11818731e+00 -5.31247377e-01 -2.06870824e-01
-4.88357753e-01 1.18828034e+00 1.99619681e-01 4.40937161e-01
-1.07283807e+00 1.66997209e-01 1.22526252e+00 -1.99647192e-02
3.44257236e-01 -2.79016137e-01 2.30211169e-02 -1.34590900e+00
1.33441985e-01 -1.52973580e+00 6.55681640e-02 -9.36017573e-01
-1.22932398e+00 4.99149114e-01 -7.52404630e-02 -1.01909018e+00
-6.25534534e-01 -4.20518756e-01 -2.43583485e-01 5.92017949e-01
-1.38264370e+00 -1.30461156e+00 -3.65695477e-01 8.30576539e-01
4.20004785e-01 -7.93845430e-02 7.68244684e-01 4.65085268e-01
-1.84703931e-01 8.85285199e-01 -2.74348170e-01 -4.50281939e-03
9.94823754e-01 -8.32938313e-01 4.22331661e-01 1.04226327e+00
2.54398584e-01 8.47083569e-01 8.44868302e-01 -3.94819409e-01
-1.71143222e+00 -8.90476942e-01 3.97639126e-01 -5.87807775e-01
6.44332647e-01 -4.21755612e-01 -8.10397625e-01 9.56308782e-01
3.49958390e-01 8.68268088e-02 5.25552571e-01 -1.20058879e-01
-6.60520256e-01 1.46201311e-03 -1.11111104e+00 8.07798266e-01
1.49675786e+00 -1.05791473e+00 -3.60615402e-01 9.17028487e-02
6.95288777e-01 -5.46370625e-01 -8.68437529e-01 3.37230682e-01
8.72485399e-01 -1.17694378e+00 1.04124343e+00 -5.50220668e-01
7.03566074e-01 -1.32613704e-01 -4.74089496e-02 -1.27642703e+00
-2.13657513e-01 -1.34712720e+00 -1.51391491e-01 1.46549165e+00
-1.41806901e-01 -3.73720676e-01 7.28718817e-01 8.60161126e-01
2.24895813e-02 -3.81830633e-01 -7.54370332e-01 -5.61569273e-01
-4.68676575e-02 -3.50648224e-01 6.20997608e-01 1.24988747e+00
-3.61028790e-01 1.01170570e-01 -7.25021601e-01 -5.84736019e-02
6.57902002e-01 -3.18475962e-01 9.43453193e-01 -9.47996855e-01
-4.43779707e-01 -5.01386046e-01 -4.12587017e-01 -9.27050710e-01
4.90774125e-01 -6.40583217e-01 -1.34449512e-01 -8.17814291e-01
1.01404786e-01 -1.63250282e-01 2.51224134e-02 7.22415090e-01
1.27178021e-02 6.79441810e-01 3.93424511e-01 2.20709413e-01
-2.28900015e-01 5.68685591e-01 1.24204254e+00 6.88690469e-02
1.23394050e-01 -6.92604363e-01 -7.69016504e-01 7.61315942e-01
3.63402516e-01 -2.66258210e-01 -5.94148934e-01 -5.64936340e-01
1.44242749e-01 -1.07402965e-01 5.60340285e-01 -1.00974798e+00
5.40105067e-02 -9.81534049e-02 5.70592463e-01 2.31808364e-01
6.56112492e-01 -8.27717245e-01 7.28204429e-01 2.02602789e-01
-2.74934530e-01 2.03247089e-02 3.53026718e-01 4.98015970e-01
-2.97974408e-01 2.55207986e-01 1.02723932e+00 -1.14443555e-01
-6.31704211e-01 4.14860696e-01 6.27697725e-03 3.30341309e-01
6.79484367e-01 -3.02725494e-01 -2.82508612e-01 -7.98414886e-01
-6.47673965e-01 -1.81737274e-01 9.18636858e-01 5.06041706e-01
3.49426895e-01 -1.40876770e+00 -5.75024605e-01 5.73620439e-01
-2.00933188e-01 -2.51970172e-01 2.98843294e-01 8.22474837e-01
-4.22044128e-01 -6.43821210e-02 -6.48936212e-01 -6.94634736e-01
-1.17940271e+00 1.80646524e-01 3.27474684e-01 1.24161191e-01
-6.95647240e-01 9.37870264e-01 3.50194037e-01 6.63511828e-02
1.92003950e-01 -9.04814675e-02 1.72252893e-01 1.12111695e-01
4.47303295e-01 -1.13929711e-01 -1.67926013e-01 -7.09601104e-01
-2.03645408e-01 4.79095191e-01 -1.04047872e-01 -3.76770735e-01
1.52293718e+00 -6.92495853e-02 -1.50099501e-01 2.61052977e-02
1.17841566e+00 2.73379087e-01 -2.02196932e+00 -1.46239800e-02
-3.94312948e-01 -7.11088657e-01 -1.09817781e-01 -3.89903784e-01
-1.28241205e+00 6.47735536e-01 3.71730506e-01 1.94073701e-03
1.18635356e+00 -3.31447244e-01 7.64567494e-01 1.05617806e-01
2.68005461e-01 -8.39278221e-01 2.72662669e-01 4.63823617e-01
8.72422516e-01 -9.91859257e-01 4.14797738e-02 -3.99568677e-01
-4.41927582e-01 1.10065246e+00 2.98515558e-01 -8.32307711e-02
5.77092648e-01 6.25646532e-01 -3.04455240e-03 -9.69238654e-02
-8.81048560e-01 1.32289231e-01 1.65561721e-01 5.17121494e-01
4.67375964e-01 -3.90940487e-01 1.18481964e-01 3.54070440e-02
-3.52925658e-01 3.60002548e-01 4.65203315e-01 9.81716990e-01
2.04903215e-01 -1.14020932e+00 -1.16079077e-01 1.27985597e-01
-8.26022148e-01 -1.93994790e-01 -7.91214705e-02 9.12055671e-01
1.33886226e-02 8.57565641e-01 1.53218374e-01 -2.09869117e-01
3.64074744e-02 2.88790017e-01 8.99653316e-01 -3.35624397e-01
-2.65824258e-01 2.73120135e-01 3.71001996e-02 -1.12457407e+00
-7.66380072e-01 -6.76906884e-01 -9.29844737e-01 -7.61595964e-01
1.86131582e-01 -1.09497949e-01 4.16832447e-01 8.09420586e-01
7.16137409e-01 5.32973289e-01 5.14763713e-01 -1.18312550e+00
-4.24368262e-01 -6.54733300e-01 -3.34037393e-01 1.00855649e+00
4.96665865e-01 -7.68010795e-01 -5.05048096e-01 6.81228101e-01] | [12.585700988769531, -0.3156823515892029] |
804d321e-5d24-4211-90cf-e0d42b2a18bb | real-time-multi-object-tracking-based-on-bi | 2303.08444 | null | https://arxiv.org/abs/2303.08444v1 | https://arxiv.org/pdf/2303.08444v1.pdf | Real-time Multi-Object Tracking Based on Bi-directional Matching | In recent years, anchor-free object detection models combined with matching algorithms are used to achieve real-time muti-object tracking and also ensure high tracking accuracy. However, there are still great challenges in multi-object tracking. For example, when most part of a target is occluded or the target just disappears from images temporarily, it often leads to tracking interruptions for most of the existing tracking algorithms. Therefore, this study offers a bi-directional matching algorithm for multi-object tracking that makes advantage of bi-directional motion prediction information to improve occlusion handling. A stranded area is used in the matching algorithm to temporarily store the objects that fail to be tracked. When objects recover from occlusions, our method will first try to match them with objects in the stranded area to avoid erroneously generating new identities, thus forming a more continuous trajectory. Experiments show that our approach can improve the multi-object tracking performance in the presence of occlusions. In addition, this study provides an attentional up-sampling module that not only assures tracking accuracy but also accelerates training speed. In the MOT17 challenge, the proposed algorithm achieves 63.4% MOTA, 55.3% IDF1, and 20.1 FPS tracking speed. | ['Zehua Zeng', 'Huilan Luo'] | 2023-03-15 | null | null | null | null | ['motion-prediction', 'occlusion-handling', 'real-time-multi-object-tracking'] | ['computer-vision', 'computer-vision', 'computer-vision'] | [-3.28768045e-02 -7.01674998e-01 -3.06396514e-01 1.09024987e-01
-3.30447704e-01 -4.28172737e-01 1.22237787e-01 3.73795666e-02
-4.43299323e-01 6.76302850e-01 -3.54646474e-01 -1.21685781e-01
2.06931204e-01 -7.64294744e-01 -8.59163463e-01 -7.46490836e-01
-3.57243605e-02 5.12367666e-01 1.23651218e+00 2.31129289e-01
-1.36972945e-02 6.38180852e-01 -1.76597142e+00 9.80007574e-02
7.29056299e-01 9.96182740e-01 4.30944800e-01 5.95909774e-01
-2.47859895e-01 3.61744791e-01 -8.19786966e-01 -8.01750347e-02
3.14675629e-01 8.78799930e-02 -2.66303420e-01 -6.45788088e-02
7.77089298e-01 -5.76875389e-01 -1.88739240e-01 9.63584006e-01
4.29282248e-01 2.82007381e-02 2.29802519e-01 -1.48820150e+00
-1.55851409e-01 2.63011903e-01 -9.36562836e-01 3.85918856e-01
1.31276384e-01 2.67419934e-01 4.14800763e-01 -7.02394962e-01
5.80356419e-01 1.49314392e+00 7.49046445e-01 6.34764791e-01
-8.75882447e-01 -1.24782097e+00 4.03197765e-01 2.82462746e-01
-1.43601835e+00 -4.06118244e-01 3.50380987e-01 -3.63589823e-01
2.86487669e-01 4.92033958e-01 8.78133118e-01 6.07045591e-01
3.20222348e-01 8.86124194e-01 4.71499026e-01 -1.28234535e-01
-1.67999133e-01 8.86549801e-02 1.57696187e-01 5.14010429e-01
7.21605062e-01 3.41408342e-01 -4.73278403e-01 -1.76984072e-01
6.53824329e-01 3.25874537e-01 -1.79455832e-01 -4.61838812e-01
-1.43352437e+00 3.96667123e-01 5.06022513e-01 4.06095445e-01
-3.84868443e-01 1.90495893e-01 2.77112484e-01 9.43387952e-03
1.47987828e-01 -2.60354519e-01 -7.17157573e-02 -1.64892692e-02
-8.86114538e-01 3.65198821e-01 1.94742694e-01 1.24932683e+00
6.73840702e-01 1.80859745e-01 -3.97019833e-01 3.64001185e-01
5.10508001e-01 8.61357510e-01 2.49767721e-01 -6.28879786e-01
3.74552459e-01 8.11482608e-01 4.89019215e-01 -9.99274731e-01
-3.73944402e-01 -5.24462819e-01 -7.08359063e-01 4.76239443e-01
4.98437583e-01 2.65512373e-02 -7.92390525e-01 1.62890160e+00
1.02227163e+00 6.20283782e-01 -2.20456436e-01 9.76376593e-01
5.19933462e-01 5.61391652e-01 2.36688077e-01 -4.83748555e-01
1.49274755e+00 -8.56498063e-01 -8.92296493e-01 -5.14866039e-02
5.09105980e-01 -9.65122283e-01 4.62216318e-01 3.35264541e-02
-9.69298959e-01 -1.06727171e+00 -1.01648724e+00 4.76576537e-01
-1.08657107e-01 4.59146835e-02 2.52083838e-01 5.82629442e-01
-6.11384511e-01 3.61377686e-01 -9.58348572e-01 -2.44681880e-01
4.77837443e-01 4.78904098e-01 1.04900904e-01 -1.40710697e-01
-8.95932138e-01 6.95243895e-01 5.28278172e-01 -4.12311126e-03
-7.88803399e-01 -8.70179296e-01 -4.35190022e-01 -1.58314392e-01
5.59412003e-01 -5.68011403e-01 1.00577331e+00 -6.98558807e-01
-8.78119588e-01 3.10157210e-01 -4.00986195e-01 -3.71416062e-01
6.80045366e-01 -3.78163069e-01 -6.62976623e-01 -2.21999943e-01
1.70512185e-01 7.02216387e-01 8.03641975e-01 -1.21300018e+00
-1.22134578e+00 -3.51411045e-01 -2.44550928e-01 2.01319709e-01
-4.06629950e-01 1.42166719e-01 -8.02102268e-01 -6.29642963e-01
1.41905710e-01 -1.06036055e+00 -5.94521649e-02 5.00994146e-01
-1.00400068e-01 -2.86692351e-01 1.65810275e+00 -1.97530985e-01
1.45010412e+00 -2.14670706e+00 -1.73878208e-01 -8.17419216e-02
2.05725431e-01 6.88291848e-01 1.06476136e-01 -3.22541557e-02
3.50716978e-01 -3.03502917e-01 3.73762488e-01 -3.40316921e-01
-2.13926151e-01 1.23548128e-01 -2.91206211e-01 5.00421941e-01
-2.04992577e-01 7.55016446e-01 -7.27437437e-01 -8.81877661e-01
4.50756758e-01 3.93439502e-01 -3.14383328e-01 1.13150395e-01
-2.87814438e-01 5.79624355e-01 -5.47084451e-01 9.01688814e-01
1.08345008e+00 -2.39405096e-01 -1.52803615e-01 -3.74148250e-01
-5.69592655e-01 -3.53555977e-01 -1.74949312e+00 1.31921268e+00
2.00604126e-02 3.58501405e-01 5.65714501e-02 -3.63622487e-01
6.45832300e-01 1.68655083e-01 8.56754601e-01 -5.41161418e-01
7.52631798e-02 1.36120796e-01 1.53995343e-02 -1.30557239e-01
7.47654378e-01 3.69686246e-01 3.04497451e-01 1.32487193e-01
-6.76946998e-01 7.15514779e-01 3.05685729e-01 6.28500432e-02
9.30546999e-01 2.58057237e-01 1.17668835e-02 -1.48547359e-03
5.86599708e-01 2.18377918e-01 1.04604685e+00 7.89321601e-01
-4.30459380e-01 1.94434822e-01 -5.05675137e-01 -5.80733359e-01
-7.12182283e-01 -9.20543611e-01 -1.85908616e-01 9.15700138e-01
7.93446958e-01 -3.84107798e-01 -2.34077290e-01 -3.87359113e-01
2.64050215e-01 1.72069862e-01 -1.82968572e-01 -1.93183571e-01
-9.63753641e-01 -5.32063901e-01 2.53709942e-01 5.47345161e-01
4.66052353e-01 -8.54794323e-01 -1.01419342e+00 5.25715768e-01
-2.25691527e-01 -9.89564836e-01 -6.75880313e-01 -4.69321191e-01
-8.83201301e-01 -1.16639400e+00 -6.87358975e-01 -5.88926136e-01
7.07771182e-01 9.49344635e-01 6.15225494e-01 6.54349983e-01
-3.00639451e-01 1.16229601e-01 -2.14365229e-01 -3.91896695e-01
-4.40044492e-01 -2.07878813e-01 2.71735519e-01 6.03342876e-02
1.71361133e-01 -5.38559891e-02 -6.34711385e-01 9.78135526e-01
-6.59884870e-01 1.05089068e-01 5.13296366e-01 4.39319193e-01
8.59420478e-01 1.64427102e-01 3.97159666e-01 -2.18396500e-01
-2.56583929e-01 -3.06544453e-01 -1.10380745e+00 3.23762655e-01
-3.65232944e-01 -4.11803037e-01 3.58941108e-01 -1.18003583e+00
-7.91645586e-01 2.76547015e-01 1.72340795e-01 -9.53523040e-01
9.00360793e-02 -2.00123563e-01 -1.77739412e-01 -3.75476658e-01
2.74351358e-01 2.12547094e-01 3.68035361e-02 -4.98504102e-01
-3.58007289e-02 5.63174665e-01 4.14517403e-01 -2.43074507e-01
1.09750378e+00 6.67851031e-01 8.75412673e-02 -5.43631494e-01
-4.35687453e-01 -7.36251950e-01 -3.64437848e-01 -7.50742257e-01
6.72016680e-01 -1.12174201e+00 -1.19854903e+00 5.17348111e-01
-1.05783224e+00 3.85784619e-02 2.71065049e-02 6.26295745e-01
-3.75545323e-02 5.07086515e-01 -3.33981872e-01 -1.06136250e+00
-3.87811333e-01 -1.21945620e+00 1.12923205e+00 5.86878598e-01
1.20992593e-01 -4.70939815e-01 -1.80922046e-01 -2.10521016e-02
5.31877935e-01 1.28107414e-01 2.05551848e-01 -2.70280391e-01
-1.38459575e+00 -1.14657499e-01 -1.00273266e-01 -4.69409972e-01
1.62680715e-01 1.65663771e-02 -5.01756489e-01 -7.98894703e-01
-3.58176589e-01 1.80415422e-01 6.27810776e-01 4.03485358e-01
8.15696597e-01 -1.60655409e-01 -1.15014887e+00 3.53323638e-01
1.32839787e+00 5.15857697e-01 4.48224276e-01 5.72555959e-01
7.00611234e-01 7.01682940e-02 1.35162151e+00 4.78964686e-01
3.25596571e-01 1.24047709e+00 6.73631012e-01 1.40613601e-01
-4.54615563e-01 2.16707285e-03 3.63035202e-01 4.00463820e-01
1.84214100e-01 -2.77690500e-01 -5.35053611e-01 5.74300230e-01
-2.06193519e+00 -1.11214006e+00 -6.27468526e-01 2.46535850e+00
6.85344815e-01 4.14909154e-01 4.51115221e-01 -2.52899397e-02
1.11047506e+00 -3.15109380e-02 -6.49613082e-01 6.78161263e-01
9.59436968e-02 -4.16464269e-01 6.96999490e-01 3.33615631e-01
-1.25865436e+00 8.18181753e-01 5.51681519e+00 9.07462060e-01
-9.08183813e-01 1.16745770e-01 -1.20248683e-01 -1.92312568e-01
3.09293449e-01 -6.03031516e-02 -1.71468902e+00 8.63210320e-01
6.43727243e-01 -2.11181846e-02 -7.02138692e-02 8.73481214e-01
1.19070850e-01 -3.11810613e-01 -7.37944722e-01 9.17917311e-01
-1.63664520e-01 -1.24416518e+00 -8.22604671e-02 4.81915623e-02
4.25299525e-01 -2.06302449e-01 -1.32348493e-01 2.74544746e-01
6.98021576e-02 -2.09543899e-01 9.60980654e-01 4.14824426e-01
5.30193567e-01 -5.31971335e-01 5.02739549e-01 5.93764961e-01
-1.92895555e+00 9.04809497e-03 -5.21567166e-01 2.37917826e-01
4.71054316e-01 4.04439896e-01 -5.89431882e-01 7.24040091e-01
8.04108620e-01 5.59120059e-01 -5.79525590e-01 1.78736401e+00
3.87265682e-01 2.15176031e-01 -7.04182386e-01 -2.50741304e-03
-9.85421836e-02 1.51082829e-01 9.72016811e-01 8.32451820e-01
4.38510120e-01 2.98835207e-02 6.70987844e-01 4.82431918e-01
2.59290367e-01 -4.14918438e-02 -3.68060648e-01 5.48741639e-01
7.23677814e-01 1.16786373e+00 -7.74314821e-01 -6.49571002e-01
-4.70660657e-01 5.36811709e-01 9.11087613e-04 -5.70519120e-02
-1.47046661e+00 -7.04888329e-02 7.32380271e-01 1.96810842e-01
5.99036455e-01 -2.66836047e-01 1.95147708e-01 -9.08461034e-01
1.15807869e-01 -6.32011175e-01 5.09184599e-01 -5.34133673e-01
-7.07319379e-01 3.77331197e-01 -1.19568154e-01 -1.80373168e+00
1.03654556e-01 -1.45744935e-01 -4.31977004e-01 6.28848851e-01
-1.45307899e+00 -1.25338268e+00 -6.39779866e-01 5.65640986e-01
6.95169866e-01 1.15952671e-01 2.97270060e-01 1.05183566e+00
-6.13605976e-01 5.96207798e-01 2.04420704e-02 -9.82151404e-02
7.93550014e-01 -6.47848010e-01 1.62811607e-01 1.01920593e+00
-8.86635184e-02 3.97601157e-01 7.92315900e-01 -1.22742283e+00
-1.56938505e+00 -1.45003617e+00 3.78259540e-01 -3.25932592e-01
3.54758084e-01 -1.94846958e-01 -1.18902779e+00 7.15624690e-01
-2.36017153e-01 2.62922198e-01 2.37958208e-01 -2.77188927e-01
4.80738953e-02 -3.33006352e-01 -9.59798634e-01 5.79111278e-01
1.09503937e+00 3.17981005e-01 -2.81657487e-01 3.50904971e-01
7.19567418e-01 -7.65139163e-01 -7.71305799e-01 5.95236897e-01
7.56896496e-01 -6.59608543e-01 1.24692047e+00 -3.24244827e-01
-5.99803627e-01 -1.04403961e+00 1.12295374e-01 -6.12222373e-01
-4.65102971e-01 -5.44461846e-01 -6.10857248e-01 1.27639699e+00
-1.26321182e-01 -4.30143625e-01 8.95272851e-01 4.05707747e-01
-1.63363189e-01 -3.43638808e-01 -1.12419724e+00 -1.22022462e+00
-4.95293319e-01 -9.37585682e-02 5.82231283e-01 6.33645177e-01
-6.00915909e-01 -8.29441771e-02 -6.69879079e-01 5.71094275e-01
1.07856381e+00 4.08770502e-01 1.18523097e+00 -1.35951304e+00
6.22015409e-02 -3.32396179e-01 -3.94563049e-01 -1.40768075e+00
-3.00645679e-01 -4.94989753e-01 9.30671617e-02 -1.17772198e+00
1.82987213e-01 -8.76956880e-01 -1.61311746e-01 4.27683800e-01
-4.34438884e-01 3.13679367e-01 3.87138546e-01 6.24429941e-01
-1.04580867e+00 2.90384650e-01 1.22197831e+00 -8.52012336e-02
-2.15561122e-01 4.88314152e-01 -1.55819133e-01 5.39300382e-01
6.13177538e-01 -7.80643761e-01 1.41439840e-01 -3.41551065e-01
-4.10770804e-01 8.71072561e-02 5.56206346e-01 -1.53518820e+00
6.63475156e-01 -2.54925162e-01 5.40743887e-01 -1.51778829e+00
4.64620739e-01 -1.38138390e+00 9.23554778e-01 1.09310925e+00
3.43977809e-01 2.00304955e-01 6.32658005e-01 7.32689977e-01
1.32040337e-01 -1.11812860e-01 9.53088582e-01 1.77675441e-01
-7.69306362e-01 5.73209345e-01 -1.34617299e-01 -4.09992516e-01
1.57596886e+00 -5.54500639e-01 -3.28217715e-01 2.61182696e-01
-5.13969600e-01 7.30078697e-01 5.70486307e-01 6.31647408e-01
4.17933345e-01 -1.68577397e+00 -5.18112361e-01 1.28604472e-01
-2.17796657e-02 -3.86069156e-02 4.24525052e-01 9.75369751e-01
-1.30124316e-01 4.00335521e-01 -1.60522729e-01 -1.05033791e+00
-1.89643526e+00 8.77304912e-01 1.31630704e-01 -1.30368352e-01
-8.72931600e-01 3.54314238e-01 1.18471324e-01 3.76688808e-01
5.11168420e-01 -1.43206105e-01 -6.88251778e-02 -7.02916011e-02
9.62621748e-01 5.25858223e-01 -3.16138268e-01 -8.04374754e-01
-5.77433944e-01 8.98362279e-01 -2.99400419e-01 2.81300396e-01
7.79702544e-01 -2.42362440e-01 2.18437657e-01 2.44053140e-01
5.45984268e-01 1.32205397e-01 -1.42067575e+00 -4.29850131e-01
-7.02455714e-02 -1.01649106e+00 -2.28125468e-01 -5.70354342e-01
-1.07184911e+00 3.73068810e-01 9.98086751e-01 1.02512591e-01
8.39468181e-01 -7.85865337e-02 1.01231074e+00 8.68995562e-02
6.64394140e-01 -7.11019933e-01 2.02754196e-02 1.42457396e-01
4.90361959e-01 -1.17583621e+00 1.70022070e-01 -3.98746431e-01
-2.52433121e-01 9.07640636e-01 1.14143872e+00 3.51993501e-01
2.25665554e-01 4.07523900e-01 -1.83101296e-01 1.56993978e-02
-5.00110030e-01 -3.00431341e-01 1.38748601e-01 5.56174815e-01
-2.74249315e-01 -2.84119666e-01 -1.95729017e-01 4.67220321e-02
3.94221812e-01 -2.49519087e-02 9.58998874e-02 1.16277099e+00
-9.86155152e-01 -1.01832747e+00 -9.74468112e-01 2.23945260e-01
-3.65089148e-01 3.21752787e-01 3.04589808e-01 9.62289274e-01
2.62956858e-01 7.78108895e-01 2.02898756e-01 -1.82903931e-01
4.91439372e-01 -1.85135216e-01 2.95723587e-01 -1.89629823e-01
-5.45718372e-01 3.66063595e-01 -2.11236775e-01 -5.54760098e-01
-5.62571764e-01 -8.16867530e-01 -1.44296992e+00 -4.77113277e-01
-8.82466078e-01 4.25868779e-02 5.89895308e-01 5.23389339e-01
5.79337537e-01 7.33244002e-01 3.04238468e-01 -7.51012444e-01
-2.85465688e-01 -7.81295359e-01 -9.29021090e-02 3.25643927e-01
4.29773629e-01 -1.18111587e+00 -4.20820005e-02 -6.57144338e-02] | [6.508765697479248, -2.04012131690979] |
97d41055-ba38-4778-9bbd-a88caabd086c | action-attending-graphic-neural-network | 1711.06427 | null | http://arxiv.org/abs/1711.06427v1 | http://arxiv.org/pdf/1711.06427v1.pdf | Action-Attending Graphic Neural Network | The motion analysis of human skeletons is crucial for human action
recognition, which is one of the most active topics in computer vision. In this
paper, we propose a fully end-to-end action-attending graphic neural network
(A$^2$GNN) for skeleton-based action recognition, in which each irregular
skeleton is structured as an undirected attribute graph. To extract high-level
semantic representation from skeletons, we perform the local spectral graph
filtering on the constructed attribute graphs like the standard image
convolution operation. Considering not all joints are informative for action
analysis, we design an action-attending layer to detect those salient action
units (AUs) by adaptively weighting skeletal joints. Herein the filtering
responses are parameterized into a weighting function irrelevant to the order
of input nodes. To further encode continuous motion variations, the deep
features learnt from skeletal graphs are gathered along consecutive temporal
slices and then fed into a recurrent gated network. Finally, the spectral graph
filtering, action-attending and recurrent temporal encoding are integrated
together to jointly train for the sake of robust action recognition as well as
the intelligibility of human actions. To evaluate our A$^2$GNN, we conduct
extensive experiments on four benchmark skeleton-based action datasets,
including the large-scale challenging NTU RGB+D dataset. The experimental
results demonstrate that our network achieves the state-of-the-art
performances. | ['Jian Yang', 'Zhen Cui', 'Wenming Zheng', 'Rongrong Ji', 'Chunyan Xu', 'Chaolong Li'] | 2017-11-17 | null | null | null | null | ['action-analysis'] | ['computer-vision'] | [ 6.15968525e-01 1.35527298e-01 -1.54267490e-01 -2.89413452e-01
-5.09949088e-01 1.39253572e-01 2.93922991e-01 -5.16237676e-01
-3.52668315e-01 2.16657028e-01 6.60399735e-01 2.34235480e-01
-1.38031960e-01 -5.93663275e-01 -6.68528140e-01 -8.44508708e-01
-1.15129486e-01 -6.17629960e-02 5.56470811e-01 -1.15017660e-01
1.29424378e-01 4.34146404e-01 -1.48870385e+00 5.86004734e-01
4.99740392e-01 1.22326374e+00 8.27283487e-02 4.71804172e-01
-8.32237527e-02 1.26955593e+00 -3.41144204e-01 -2.19196472e-02
1.95407700e-02 -7.70959020e-01 -7.89585054e-01 6.60302579e-01
2.39205226e-01 -4.34818983e-01 -8.00465107e-01 1.02211738e+00
5.70608199e-01 5.39089501e-01 4.71730888e-01 -8.62675428e-01
-6.36573195e-01 5.09556711e-01 -7.46000051e-01 3.89117956e-01
4.73009229e-01 5.85384429e-01 1.10130894e+00 -7.91093886e-01
6.27912581e-01 1.56087554e+00 1.84053436e-01 6.03824079e-01
-7.41166532e-01 -4.02575642e-01 5.78668952e-01 5.05308867e-01
-1.02162731e+00 -3.42857540e-01 1.18685007e+00 -2.10985094e-01
9.91956770e-01 4.45396304e-02 9.32864845e-01 1.13148808e+00
1.16038330e-01 1.31243849e+00 3.68444920e-01 -7.17232702e-03
2.78295912e-02 -1.09340572e+00 -9.65429246e-02 1.12541831e+00
-4.44076866e-01 -2.32719257e-01 -8.15631568e-01 3.00676405e-01
1.21396875e+00 2.94634342e-01 -2.65720695e-01 -2.60508686e-01
-1.41853404e+00 5.39198637e-01 7.79504836e-01 1.50980040e-01
-6.78266704e-01 7.75799394e-01 5.88363290e-01 1.12861104e-01
3.53945643e-01 -2.28567362e-01 -2.89608002e-01 -2.72260666e-01
-4.31391269e-01 -2.00636640e-01 1.43923294e-02 5.57611167e-01
4.72882271e-01 3.00547659e-01 -5.17681003e-01 7.65512824e-01
4.42973703e-01 3.85863215e-01 6.97525859e-01 -1.10989261e+00
6.77301407e-01 1.01075459e+00 -2.11702004e-01 -9.78884280e-01
-4.47759390e-01 -2.33400792e-01 -8.87277246e-01 1.25174791e-01
3.34310144e-01 1.31930172e-01 -1.15814185e+00 1.54819357e+00
2.75461495e-01 2.69795090e-01 -7.82931894e-02 1.16178489e+00
8.51615310e-01 4.35426950e-01 3.44712436e-01 -2.08797336e-01
1.47119200e+00 -1.26412833e+00 -6.45873547e-01 -4.23525214e-01
6.17007375e-01 -4.83095348e-01 1.29064608e+00 2.22970247e-01
-1.02508104e+00 -8.81258726e-01 -8.72334957e-01 -2.84912944e-01
1.24044292e-01 3.49442631e-01 7.09982991e-01 -4.39997204e-03
-6.26954854e-01 7.34154940e-01 -1.36712062e+00 -2.85783976e-01
7.27199554e-01 2.32743189e-01 -3.78634334e-01 -1.17259740e-03
-1.12937856e+00 2.56725222e-01 2.61433929e-01 5.33962786e-01
-9.85176444e-01 1.25199566e-02 -1.10915852e+00 -7.92316124e-02
5.29847860e-01 -7.42653072e-01 8.88603032e-01 -9.76587653e-01
-1.66205144e+00 7.11850286e-01 -6.48160726e-02 -3.22391510e-01
4.63800728e-01 -3.24513495e-01 -3.33469629e-01 6.13028646e-01
8.14844146e-02 6.54772103e-01 9.25124466e-01 -6.09974444e-01
-5.50790191e-01 -5.99464774e-01 -5.42469844e-02 4.68137622e-01
-3.41226250e-01 1.02889553e-01 -6.57481432e-01 -1.05425632e+00
6.14720881e-01 -6.76875651e-01 -3.50134760e-01 2.02586368e-01
-3.22594911e-01 -4.37571138e-01 8.08079302e-01 -8.49097073e-01
1.29439735e+00 -2.31721425e+00 5.90199888e-01 -4.16262448e-03
2.75815893e-02 6.42361119e-02 -3.34632754e-01 9.33917984e-02
-1.67716876e-01 -3.45057040e-01 -5.05145371e-01 -1.81665957e-01
-1.30722135e-01 3.84298354e-01 -8.05755984e-03 5.36767006e-01
3.83494526e-01 1.16806853e+00 -8.81849885e-01 -6.26817465e-01
4.74247664e-01 4.57281142e-01 -3.70946854e-01 1.53364614e-01
-3.53279561e-01 5.97775996e-01 -1.15340841e+00 7.23209500e-01
5.55879250e-02 -2.84458160e-01 -1.92676321e-01 -2.92291105e-01
2.58020312e-01 7.03508258e-02 -1.21964598e+00 2.36426306e+00
-1.54227674e-01 1.21552251e-01 -2.43088588e-01 -1.10333359e+00
7.98986793e-01 8.08778554e-02 8.46172392e-01 -8.78064275e-01
2.03129560e-01 4.20558304e-02 5.60021661e-02 -6.84298277e-01
-1.04974099e-01 1.23516195e-01 -5.92208700e-03 4.65805262e-01
1.08622991e-01 2.66255617e-01 2.21742153e-01 3.93450819e-02
1.26809347e+00 5.21093667e-01 8.08466449e-02 9.77068543e-02
9.94024396e-01 -4.40448850e-01 6.55860960e-01 1.23091914e-01
-3.81927460e-01 7.91936219e-01 5.05499125e-01 -6.77337050e-01
-4.84036684e-01 -1.10583329e+00 3.84370446e-01 1.17438233e+00
2.55332083e-01 -3.45494747e-01 -7.32177675e-01 -9.72157240e-01
-3.15640360e-01 2.41139963e-01 -8.81095588e-01 -5.91120243e-01
-9.40870523e-01 -4.78157103e-01 3.67585868e-01 1.05154395e+00
1.00632942e+00 -1.82025015e+00 -8.29708636e-01 3.04674119e-01
-3.21069688e-01 -1.02194881e+00 -7.16165543e-01 -7.61488602e-02
-9.78638113e-01 -1.13245046e+00 -9.18173134e-01 -7.65621006e-01
6.07398033e-01 9.07118395e-02 6.48885727e-01 1.24389157e-01
-4.13336784e-01 4.17410076e-01 -4.48094964e-01 2.73347020e-01
1.22061089e-01 -2.04066381e-01 -2.15491861e-01 5.91047227e-01
1.86489716e-01 -8.87713909e-01 -1.08088672e+00 4.83774304e-01
-9.44096744e-01 2.76392326e-02 9.37435865e-01 7.73088872e-01
8.95629168e-01 -7.72210658e-02 2.47281596e-01 -4.36348826e-01
2.35197604e-01 7.88045526e-02 3.15885954e-02 2.16917798e-01
2.42335916e-01 2.48667002e-01 5.84054232e-01 -3.35311443e-01
-1.07607615e+00 5.42659402e-01 -1.72178686e-01 -6.54959083e-01
-8.35959241e-02 4.61692303e-01 -4.59340483e-01 1.12814210e-01
5.22788584e-01 5.52221656e-01 1.81539096e-02 -4.63017702e-01
4.58641976e-01 2.08231181e-01 6.78331316e-01 -4.16840017e-01
4.74262387e-01 6.35370076e-01 1.03712305e-01 -7.89992332e-01
-9.48414564e-01 -3.77550662e-01 -7.55626678e-01 -5.67828178e-01
1.35135257e+00 -7.16077209e-01 -6.36251211e-01 7.16429114e-01
-1.02015281e+00 -4.94132608e-01 -4.50850934e-01 5.93066752e-01
-9.79793191e-01 7.80461013e-01 -7.06453919e-01 -6.98515296e-01
-3.38061005e-01 -1.24737680e+00 1.44656444e+00 1.73352942e-01
-5.87790720e-02 -5.93294501e-01 -1.49694353e-01 5.80671847e-01
-2.23591834e-01 4.69453990e-01 7.01513410e-01 -1.42066762e-01
-5.51644862e-01 4.53815097e-03 -2.66823858e-01 4.01560664e-01
2.46517435e-01 -8.77488777e-02 -6.93576276e-01 2.09874325e-02
-6.89681470e-02 -5.58345556e-01 1.35987818e+00 4.30829644e-01
1.44487798e+00 -1.11483335e-02 -7.38217905e-02 6.22798145e-01
7.78296411e-01 1.52597517e-01 8.45875502e-01 6.84889257e-02
1.11556435e+00 5.69959641e-01 6.99179947e-01 5.69816887e-01
8.53919145e-03 5.11756003e-01 6.02960527e-01 3.69763561e-02
-4.02510017e-01 -3.25616926e-01 6.66072667e-01 7.50077605e-01
-6.66866720e-01 1.10006012e-01 -6.36514902e-01 2.01213226e-01
-2.11833715e+00 -9.88857567e-01 -3.38553302e-02 1.88725269e+00
5.51714897e-01 3.99381310e-01 2.24937499e-01 2.04109684e-01
6.59350336e-01 7.30683267e-01 -8.48862469e-01 1.69306502e-01
-1.75647754e-02 2.35334992e-01 3.45846117e-02 1.11878112e-01
-1.29718232e+00 1.08397627e+00 4.66440678e+00 1.05642831e+00
-7.87838697e-01 -1.65789410e-01 5.09516001e-01 -1.06263295e-01
2.47705001e-02 -2.60883838e-01 -1.85252622e-01 3.75503808e-01
3.06205362e-01 2.25559875e-01 2.12078482e-01 7.63009727e-01
4.66042817e-01 4.97445278e-02 -8.51740539e-01 1.03862095e+00
-5.28310351e-02 -9.09229457e-01 4.07121539e-01 -1.66047439e-01
4.12642062e-01 -1.76724762e-01 -3.16954218e-02 1.40332863e-01
1.21686868e-01 -9.50092137e-01 6.61104321e-01 7.74366200e-01
5.48238218e-01 -8.70007515e-01 3.77469301e-01 1.44091710e-01
-1.80049479e+00 -2.31220797e-01 -3.30157340e-01 -1.08520202e-01
3.66488606e-01 2.03629076e-01 2.39511475e-01 6.73301339e-01
7.12005019e-01 1.40104520e+00 -5.61999083e-01 6.23248756e-01
-6.15436554e-01 4.03900683e-01 -1.06327489e-01 3.91833559e-02
5.44611216e-01 -2.34491438e-01 3.66066754e-01 8.68690133e-01
8.49667713e-02 4.73791540e-01 2.81521142e-01 5.56718469e-01
8.64950269e-02 1.08133117e-02 -3.13829362e-01 -2.92139143e-01
-2.92137980e-01 1.03169727e+00 -9.16452885e-01 -1.22321300e-01
-3.63482535e-01 1.57176566e+00 2.83731788e-01 4.68699902e-01
-8.81164908e-01 -3.31979007e-01 5.83945334e-01 -1.63813978e-01
3.61885786e-01 -3.18911195e-01 1.20540045e-01 -1.19840205e+00
3.47104788e-01 -6.89620554e-01 8.55101824e-01 -7.60791183e-01
-1.03170311e+00 2.80827671e-01 -3.55070502e-01 -1.44740546e+00
-1.13841714e-02 -6.04679406e-01 -7.26745248e-01 5.14567077e-01
-1.06765401e+00 -1.27611160e+00 -5.24933457e-01 9.69515145e-01
8.53881180e-01 3.54580395e-02 4.60018277e-01 2.20987335e-01
-7.87337959e-01 3.17349434e-01 -5.52111089e-01 5.34191608e-01
2.98219860e-01 -9.89267468e-01 5.24000227e-01 1.00805771e+00
3.70247930e-01 3.82594317e-01 1.23069681e-01 -7.89580941e-01
-1.36815083e+00 -1.21021688e+00 3.52442652e-01 -1.45136610e-01
7.33809769e-01 3.50332091e-04 -7.73315668e-01 5.89860022e-01
-2.01109365e-01 4.92691368e-01 3.39108139e-01 -4.14392978e-01
-1.84149295e-01 -7.75550157e-02 -5.18995702e-01 6.76361322e-01
1.91309226e+00 -5.05935252e-01 -6.45503640e-01 4.08182144e-01
7.26693690e-01 -2.10690379e-01 -7.48912454e-01 5.03458798e-01
6.17264092e-01 -9.91608560e-01 1.16787386e+00 -8.78528595e-01
7.68239439e-01 -4.51795936e-01 -1.26859218e-01 -8.68717432e-01
-3.76504242e-01 -4.92842317e-01 -2.26739809e-01 8.68717968e-01
6.69445097e-02 -2.04658151e-01 1.08448613e+00 2.02090546e-01
-3.85337651e-01 -1.01699281e+00 -1.00492752e+00 -5.51010013e-01
-4.81915146e-01 -4.69090849e-01 7.05426373e-03 5.51773310e-01
-1.37018412e-01 3.44202012e-01 -3.29039603e-01 -1.05378263e-01
6.35672152e-01 1.33065090e-01 5.81684053e-01 -8.02571297e-01
-4.66219842e-01 -6.39321983e-01 -8.65546703e-01 -1.45331466e+00
1.77024990e-01 -7.26976871e-01 -3.83362733e-02 -1.74321496e+00
3.80420685e-02 3.65589112e-01 -6.49019182e-01 6.07053697e-01
-3.89974326e-01 3.42573524e-01 2.00401805e-02 8.52985755e-02
-8.39329541e-01 1.13913059e+00 1.85267234e+00 -3.41332346e-01
-8.01023990e-02 1.08819287e-02 -1.55681372e-01 1.07949591e+00
3.31072032e-01 -4.22441214e-02 -6.51194155e-01 -4.44913626e-01
-1.64878622e-01 2.21656248e-01 5.74843585e-01 -1.23773086e+00
1.81563914e-01 -2.21651107e-01 5.67769766e-01 -5.92816830e-01
4.56411839e-01 -5.78539193e-01 -1.97611675e-01 7.32699335e-01
-4.38934833e-01 -2.72996962e-01 -3.00473005e-01 8.79682600e-01
-4.31267977e-01 2.88981318e-01 7.83263803e-01 -3.74739021e-01
-1.16239023e+00 8.21074009e-01 -5.17824516e-02 1.02737173e-01
9.21264768e-01 -3.73162538e-01 5.55424429e-02 -1.95329159e-01
-1.12741005e+00 2.56495565e-01 2.95255166e-02 3.42806250e-01
9.89701211e-01 -1.57832146e+00 -5.35835981e-01 1.91716790e-01
2.94798613e-01 9.02048275e-02 7.23394930e-01 1.01082301e+00
-5.12986064e-01 2.16366351e-02 -4.64323312e-01 -5.81519127e-01
-1.05197644e+00 4.23153758e-01 3.88891876e-01 -2.25555941e-01
-1.08958220e+00 1.12170196e+00 4.03559715e-01 5.63198477e-02
4.74167526e-01 -4.89114493e-01 -3.64870131e-01 3.78921367e-02
4.42830145e-01 3.82680625e-01 -2.82350630e-01 -7.73641825e-01
-5.65191567e-01 9.11641836e-01 2.44714260e-01 -1.24975234e-01
1.22455382e+00 9.82406810e-02 -6.81037903e-02 2.81073213e-01
1.14707780e+00 -5.00619590e-01 -1.64572847e+00 -2.94765651e-01
-1.29270419e-01 -3.63096893e-01 -2.44166479e-01 -2.76844233e-01
-1.61603570e+00 1.13990986e+00 4.22144443e-01 -2.30336472e-01
1.35467815e+00 8.44943076e-02 1.01821899e+00 4.52180058e-01
2.05693707e-01 -1.17720175e+00 8.42092097e-01 2.51645923e-01
1.08701313e+00 -9.50308025e-01 8.07935931e-03 -4.23152059e-01
-7.53147840e-01 1.26177323e+00 7.54564226e-01 -3.52600485e-01
5.06617963e-01 -3.09194535e-01 -4.28481959e-02 -4.66643184e-01
-3.11221808e-01 -5.65875053e-01 4.42136854e-01 3.32050979e-01
2.90965736e-01 -1.79067329e-01 -4.69332695e-01 6.55280232e-01
1.80961996e-01 2.38728207e-02 -5.19295409e-02 9.46732581e-01
-5.90396166e-01 -7.85968602e-01 9.96589363e-02 4.21894759e-01
-1.98697016e-01 1.82483763e-01 -5.78673363e-01 6.00116253e-01
-1.81185175e-02 6.90590680e-01 -1.35052189e-01 -5.08037746e-01
6.25485539e-01 6.18237890e-02 5.38618028e-01 -5.53851545e-01
-3.42188001e-01 2.90120512e-01 9.35120583e-02 -1.25799119e+00
-7.33075798e-01 -7.67079651e-01 -1.82475674e+00 3.26414824e-01
2.21443564e-01 -2.74417907e-01 -7.74510056e-02 1.02260852e+00
1.46076173e-01 9.70164359e-01 5.66231251e-01 -8.22633266e-01
-4.92351711e-01 -9.76435840e-01 -6.61584079e-01 7.74746001e-01
3.95978205e-02 -9.66435492e-01 -2.50286520e-01 2.21921846e-01] | [7.886346340179443, 0.4079086184501648] |
79a140aa-7dff-4857-b571-4178ace25c4d | grace-generation-using-associated-code-edits | 2305.14129 | null | https://arxiv.org/abs/2305.14129v2 | https://arxiv.org/pdf/2305.14129v2.pdf | GrACE: Generation using Associated Code Edits | Developers expend a significant amount of time in editing code for a variety of reasons such as bug fixing or adding new features. Designing effective methods to predict code edits has been an active yet challenging area of research due to the diversity of code edits and the difficulty of capturing the developer intent. In this work, we address these challenges by endowing pre-trained large language models (LLMs) of code with the knowledge of prior, relevant edits. The generative capability of the LLMs helps address the diversity in code changes and conditioning code generation on prior edits helps capture the latent developer intent. We evaluate two well-known LLMs, Codex and CodeT5, in zero-shot and fine-tuning settings respectively. In our experiments with two datasets, the knowledge of prior edits boosts the performance of the LLMs significantly and enables them to generate 29% and 54% more correctly edited code in top-1 suggestions relative to the current state-of-the-art symbolic and neural approaches, respectively. | ['Ashish Tiwari', 'Gustavo Soares', 'Arjun Radhakrishna', 'Aditya Kanade', 'Sumit Gulwani', 'Saikat Chakraborty', 'Yasharth Bajpai', 'Avishree Khare', 'Priyanshu Gupta'] | 2023-05-23 | null | null | null | null | ['code-generation'] | ['computer-code'] | [ 2.34392419e-01 2.06327051e-01 -1.76281929e-01 -5.06458580e-01
-6.58903420e-01 -5.38075566e-01 4.68191087e-01 3.97803158e-01
1.77582100e-01 2.68199623e-01 2.33985886e-01 -2.15360820e-01
-3.43000442e-02 -4.28925574e-01 -8.76842082e-01 2.02532277e-01
-4.70052548e-02 7.78723657e-02 1.36414468e-01 -2.74441183e-01
7.05093801e-01 -2.10946247e-01 -1.63632309e+00 4.17254716e-01
1.43626857e+00 4.19964343e-01 6.22742057e-01 7.91573882e-01
-3.78884017e-01 1.08533084e+00 -4.33112979e-01 -6.64701581e-01
7.02687278e-02 -3.38212997e-01 -6.57060862e-01 -3.32107902e-01
4.75876063e-01 -2.01895311e-01 3.78700979e-02 1.16797042e+00
2.37753242e-01 -8.48489702e-02 6.02618277e-01 -1.01115716e+00
-1.06883371e+00 1.01056623e+00 -6.87503874e-01 9.87013206e-02
5.30912697e-01 -4.11231928e-02 1.17305124e+00 -9.38595772e-01
6.34402990e-01 1.08158422e+00 9.03195798e-01 5.46363473e-01
-1.17305040e+00 -4.13408130e-01 1.87058851e-01 7.77034555e-03
-1.08108640e+00 -4.52851921e-01 5.64712584e-01 -1.17962599e+00
1.38413942e+00 9.39655751e-02 2.00208217e-01 1.02541459e+00
4.41597611e-01 4.47809070e-01 5.35024226e-01 -5.42980194e-01
1.56405702e-01 2.21512064e-01 2.97925353e-01 1.06744051e+00
2.25362197e-01 -2.11584583e-01 -4.04676735e-01 -4.25503135e-01
3.64437699e-01 3.28803569e-01 -2.17459902e-01 -1.74460083e-01
-9.66924310e-01 8.39992166e-01 2.14989722e-01 2.34720841e-01
-1.81594685e-01 5.41609824e-01 4.18657720e-01 1.85029179e-01
3.63960266e-01 1.05549753e+00 -6.64706826e-01 -8.19298089e-01
-1.06802273e+00 3.18131484e-02 8.29679787e-01 1.25762320e+00
9.51843500e-01 -1.32237166e-01 -3.65784198e-01 9.01456416e-01
4.30781513e-01 1.20768219e-01 6.90940738e-01 -7.27477670e-01
8.63372266e-01 1.13881063e+00 6.08345941e-02 -1.04730415e+00
7.65017420e-02 -5.96745253e-01 -3.27842414e-01 1.08499326e-01
-1.82495669e-01 -4.27710451e-02 -6.55716062e-01 1.71980977e+00
-3.42522740e-01 1.81489829e-02 -3.13060075e-01 1.26096323e-01
2.99557865e-01 4.14759338e-01 -2.68766850e-01 8.59591663e-02
9.98283505e-01 -1.23745108e+00 -3.81549805e-01 -7.45730758e-01
6.89454436e-01 -8.86114836e-01 1.40916765e+00 2.20338970e-01
-8.89274538e-01 -6.27788901e-01 -9.76403534e-01 -9.58432630e-02
-8.90903845e-02 7.96064138e-01 6.64376795e-01 4.09596771e-01
-9.22297716e-01 8.01315188e-01 -1.20889878e+00 -2.97165751e-01
4.74535346e-01 1.47394255e-01 1.20324353e-02 -8.91262144e-02
-6.43934965e-01 8.43345404e-01 -1.02291785e-01 -2.08181158e-01
-1.14819384e+00 -9.41394925e-01 -7.18819499e-01 4.10279125e-01
2.76472539e-01 -4.56379145e-01 1.49370885e+00 -8.37967217e-01
-1.19889021e+00 5.07921875e-01 -2.63174832e-01 -2.13813752e-01
4.72958714e-01 -7.15367913e-01 7.30272336e-03 -6.09981537e-01
3.66580158e-01 3.96517247e-01 8.23626459e-01 -7.90109634e-01
-4.59955812e-01 2.70225368e-02 4.52581197e-01 -3.57058674e-01
-6.06113613e-01 1.33857146e-01 -5.05184412e-01 -7.19089627e-01
-6.46057010e-01 -1.07774496e+00 -2.34140784e-01 -1.26516789e-01
-3.86331052e-01 -4.77620102e-02 3.83334517e-01 -9.67755258e-01
1.80720115e+00 -2.10761905e+00 4.93810207e-01 -2.21654102e-01
3.31327796e-01 1.49888679e-01 -3.72535437e-01 7.27651536e-01
9.77250263e-02 3.40358585e-01 -3.86773318e-01 -4.64076400e-01
1.30347624e-01 -3.23597454e-02 -3.84491771e-01 -7.22586289e-02
4.06161815e-01 9.26422000e-01 -1.00172949e+00 -1.99888870e-01
-3.63569885e-01 2.94420898e-01 -1.03522313e+00 3.72049510e-01
-4.90899682e-01 3.84805128e-02 -4.61874515e-01 4.59543437e-01
1.76173359e-01 -5.30672014e-01 -9.41079184e-02 3.42858762e-01
-1.50365695e-01 4.53477204e-01 -7.28858232e-01 2.02849793e+00
-9.20809388e-01 8.43010902e-01 -4.43699867e-01 -4.33639973e-01
9.65673387e-01 7.68568739e-02 -2.08372995e-01 -5.03936887e-01
-2.58659005e-01 2.04522908e-01 1.66396111e-01 -7.92170227e-01
5.66410959e-01 5.26022494e-01 -1.78823635e-01 8.72988462e-01
-8.16455409e-02 1.51524514e-01 3.67744654e-01 2.96759725e-01
1.51776755e+00 2.36735567e-01 4.06411976e-01 -1.56283289e-01
3.15369755e-01 -2.84904480e-01 3.84061158e-01 8.92045975e-01
2.75736690e-01 4.32660997e-01 7.40874648e-01 -2.04804569e-01
-9.03734922e-01 -5.05200744e-01 2.39389524e-01 1.38803923e+00
-2.77165800e-01 -9.14449751e-01 -9.22795534e-01 -8.20591688e-01
-3.79018835e-03 9.73678291e-01 -9.04855669e-01 -6.31705821e-01
-5.69853723e-01 -4.33809608e-01 5.31064749e-01 6.80937707e-01
1.86413210e-02 -8.36114168e-01 -8.24313104e-01 2.44568378e-01
-3.96799110e-02 -5.81772745e-01 -7.70230830e-01 1.42556131e-01
-7.89688230e-01 -1.08009994e+00 -2.88551241e-01 -6.04085743e-01
1.06682777e+00 -1.39461439e-02 1.40921021e+00 4.96409088e-01
-6.64870799e-01 1.38252392e-01 -5.44585049e-01 -2.45023072e-01
-9.26522195e-01 4.63990062e-01 -2.62343287e-01 -3.81502211e-01
2.47728318e-01 -7.18453705e-01 -1.87708080e-01 5.29569425e-02
-6.41697586e-01 2.50304401e-01 8.39788496e-01 8.41469407e-01
2.87696030e-02 -2.87051409e-01 4.45615262e-01 -1.26494730e+00
9.60746229e-01 -6.90538168e-01 -7.47492552e-01 6.76311791e-01
-8.07900190e-01 5.69184721e-01 6.61251307e-01 -3.87582481e-01
-1.12096965e+00 -4.03685644e-02 2.71150819e-03 -3.51563729e-02
2.58130193e-01 9.01151717e-01 3.66095215e-01 -1.58890098e-01
9.63002145e-01 4.15303707e-02 -3.52510571e-01 -7.32765496e-01
2.68650919e-01 6.91087067e-01 3.45979273e-01 -7.25666881e-01
7.18847215e-01 -2.38753155e-01 -4.08709496e-01 -1.13317929e-01
-7.69001901e-01 -1.66662216e-01 -6.46746576e-01 1.59990713e-01
5.58024526e-01 -8.16558599e-01 3.48358229e-02 2.57434189e-01
-1.48845315e+00 -1.82494417e-01 7.44948387e-02 1.08163901e-01
-3.33780587e-01 4.41495538e-01 -4.89824742e-01 -6.06611788e-01
-4.65489447e-01 -1.68488050e+00 1.05720294e+00 7.92135373e-02
-5.58837533e-01 -8.60770941e-01 4.29989934e-01 7.08517879e-02
8.39221060e-01 2.76912332e-01 1.40246141e+00 -5.00323057e-01
-8.69928956e-01 -3.51558894e-01 -7.34814852e-02 3.56289357e-01
3.91980767e-01 4.17985409e-01 -8.06434095e-01 -1.95636213e-01
-1.88667357e-01 -1.81460351e-01 6.59094691e-01 4.07254696e-02
9.86951470e-01 -2.78380901e-01 -4.52546746e-01 4.44723278e-01
1.38231719e+00 1.44598112e-01 2.31362343e-01 1.28317744e-01
7.41132140e-01 2.50878602e-01 6.14860475e-01 8.40598464e-01
4.18891847e-01 7.73627341e-01 6.85438871e-01 5.12218237e-01
4.56495918e-02 -2.73701638e-01 5.85140169e-01 1.11156476e+00
5.67635372e-02 1.05018184e-01 -1.22349060e+00 6.98968887e-01
-1.96698260e+00 -6.35859370e-01 -1.49067000e-01 2.13253307e+00
1.30907619e+00 8.98650140e-02 -4.13230836e-01 -2.91230142e-01
6.18904829e-01 -1.72093093e-01 -5.93051374e-01 -4.20790017e-01
6.48335755e-01 1.12366520e-01 3.15192491e-02 4.75194454e-01
-7.33609259e-01 6.07607007e-01 5.75487089e+00 5.37075281e-01
-8.81778598e-01 2.67446339e-01 3.49066436e-01 -1.14279933e-01
-4.61383492e-01 2.98337936e-01 -9.60643411e-01 7.51915276e-01
1.00535119e+00 -3.85718882e-01 8.49336386e-01 1.39672410e+00
-2.11330488e-01 4.91400696e-02 -1.71917462e+00 6.83465958e-01
2.57940412e-01 -1.34189939e+00 -1.74091667e-01 -1.59128159e-01
1.14365029e+00 2.38319576e-01 -1.15784720e-01 6.99861288e-01
4.77018803e-01 -1.00633132e+00 8.74871492e-01 8.57296228e-01
7.93288112e-01 -4.62892562e-01 5.70003748e-01 5.91290891e-01
-9.98011827e-01 -2.84386516e-01 -5.61558783e-01 -2.88462073e-01
-1.05562262e-01 6.08543277e-01 -9.24439073e-01 1.58069685e-01
5.57945907e-01 1.04755104e+00 -1.28195024e+00 9.58988488e-01
-4.32237625e-01 6.39919639e-01 7.06199855e-02 -9.65496004e-02
-1.40777573e-01 1.64161235e-01 3.04232299e-01 1.35437942e+00
5.94375372e-01 -4.88630086e-01 3.90183665e-02 1.51371622e+00
-3.02643359e-01 -2.05486044e-01 -3.65565896e-01 -6.09547496e-01
6.62077606e-01 1.25665355e+00 -2.74909228e-01 -2.01487958e-01
-5.04843116e-01 8.86936545e-01 6.72314107e-01 1.29632965e-01
-9.78300393e-01 -9.27405059e-01 6.85581326e-01 -1.74913127e-02
4.09000337e-01 -1.52114391e-01 -2.16625914e-01 -1.28948510e+00
3.43307346e-01 -9.68631804e-01 -2.63262868e-01 -6.68851435e-01
-9.27019119e-01 8.44530404e-01 -1.92059979e-01 -1.12432575e+00
-4.62676495e-01 -3.56132001e-01 -9.45041418e-01 8.55122507e-01
-1.43531358e+00 -9.43854272e-01 -6.94618106e-01 -2.62244731e-01
7.98244774e-01 -4.74944860e-01 7.20200181e-01 4.39533383e-01
-5.78774214e-01 8.76431823e-01 1.22800790e-01 -1.05790801e-01
6.88365400e-01 -1.34833825e+00 1.04873502e+00 1.19531965e+00
9.93201882e-02 1.48294365e+00 7.44011521e-01 -7.35008240e-01
-1.43446112e+00 -1.31548393e+00 9.86983538e-01 -9.15968895e-01
6.43158555e-01 -6.40100360e-01 -9.25774038e-01 8.17538023e-01
1.99609622e-01 -3.00833076e-01 6.36676908e-01 1.76782817e-01
-5.50928056e-01 1.95671454e-01 -7.03252912e-01 3.78757179e-01
9.73932803e-01 -8.05490375e-01 -6.12959981e-01 2.14504495e-01
7.82968879e-01 -4.65530038e-01 -8.13281000e-01 -4.61553335e-02
3.82358700e-01 -1.10127270e+00 6.67134523e-01 -5.35245597e-01
1.13941061e+00 -2.26801574e-01 1.30637079e-01 -1.49731779e+00
-3.86360675e-01 -6.87853754e-01 -2.00921685e-01 1.65571260e+00
5.02590895e-01 -3.45487446e-01 2.49208614e-01 7.32534826e-01
-4.29022044e-01 -9.05140281e-01 -2.96507955e-01 -5.12625515e-01
-3.64910394e-01 -1.84881136e-01 6.61425889e-01 8.96404803e-01
1.58734232e-01 1.64384127e-01 -3.84055942e-01 -1.13836288e-01
1.63981184e-01 2.11131349e-01 8.05085540e-01 -1.40885019e+00
-1.00014734e+00 -4.82237220e-01 -1.96287528e-01 -8.89199317e-01
3.13074917e-01 -1.11616683e+00 9.62528437e-02 -1.46249783e+00
6.29223585e-01 -3.71073782e-01 7.86010325e-02 8.23830485e-01
-5.26565850e-01 -3.85674477e-01 -3.81865725e-02 1.63916916e-01
-5.81018269e-01 4.17794853e-01 4.57304060e-01 -1.61219507e-01
-1.20775156e-01 7.94976503e-02 -9.01863396e-01 6.61388397e-01
4.39087659e-01 -8.30601096e-01 -6.35668159e-01 -9.96187210e-01
1.05359018e+00 -2.57591736e-02 6.23681350e-03 -9.12625551e-01
2.67419517e-01 -2.56900620e-02 -1.49721757e-01 -1.35850444e-01
-1.74045309e-01 -4.28173512e-01 2.74605036e-01 4.78573352e-01
-7.18284965e-01 4.33898568e-01 1.85675859e-01 6.49225235e-01
-2.02492252e-01 -8.12463403e-01 5.90958536e-01 -1.84795588e-01
-5.48483431e-01 -7.40561634e-03 -1.48442775e-01 2.93983877e-01
8.83646727e-01 -6.70542568e-02 -5.95710039e-01 3.72532266e-03
-1.76550284e-01 6.51807040e-02 8.14939737e-01 1.03074372e+00
4.08598959e-01 -1.02449107e+00 -4.99392807e-01 1.76102787e-01
4.72005039e-01 -2.65005261e-01 -2.31396891e-02 8.57352257e-01
-4.44023132e-01 3.57851505e-01 -2.52905011e-01 -3.42288077e-01
-1.19312906e+00 3.14889073e-01 8.99181440e-02 -3.91318023e-01
-2.36269549e-01 1.15272593e+00 1.77032202e-01 -5.65409362e-01
1.74671248e-01 -7.44963408e-01 -3.49699371e-02 -2.60986060e-01
4.76956427e-01 5.24981618e-01 1.63457453e-01 -9.49759036e-02
-3.59623551e-01 7.02090621e-01 -5.06766677e-01 5.87280989e-01
1.66631007e+00 2.41156161e-01 -4.98648643e-01 4.33655113e-01
1.04631197e+00 2.47465506e-01 -1.17201674e+00 4.63717356e-02
4.54284459e-01 -6.53896213e-01 -2.10547522e-01 -1.06982660e+00
-8.47445548e-01 1.22296119e+00 3.08195174e-01 -5.51555343e-02
6.70210898e-01 -2.84967618e-03 5.01791954e-01 6.53323114e-01
6.47886217e-01 -6.73004568e-01 3.00901353e-01 6.15489900e-01
9.64328885e-01 -1.21141577e+00 -1.75196171e-01 -2.23738045e-01
-5.27309179e-01 1.18414867e+00 8.96957159e-01 -5.87498993e-02
2.64023602e-01 4.11345899e-01 -3.28192294e-01 -2.04997763e-01
-1.15899539e+00 5.67381024e-01 3.80973399e-01 3.25022042e-01
9.42000091e-01 -2.42278874e-01 -1.10033326e-01 8.99748743e-01
-5.15152588e-02 1.43963844e-01 8.74622285e-01 1.10991871e+00
-3.41505170e-01 -1.33282149e+00 2.13293493e-01 7.55168498e-01
-3.64826798e-01 -4.80357349e-01 -4.92237389e-01 2.14091375e-01
9.62515250e-02 5.83600640e-01 -3.98945183e-01 -4.09181148e-01
1.93414524e-01 6.13959059e-02 2.21330941e-01 -1.28341091e+00
-8.85526240e-01 -5.79303443e-01 -1.39785409e-02 -5.80489814e-01
1.36770681e-01 -6.46884859e-01 -1.20443034e+00 1.71198741e-01
-5.79606414e-01 5.79866432e-02 6.66202188e-01 7.39153028e-01
1.06636405e+00 7.96009660e-01 3.09087247e-01 -7.09150553e-01
-1.03791606e+00 -1.04913318e+00 -3.33245732e-02 3.81426811e-01
3.05430770e-01 -7.77547836e-01 -2.10044935e-01 4.53200877e-01] | [7.714548587799072, 7.846083641052246] |
d1c73a1b-1e6b-4d1a-b7ea-1fb18f945c80 | sentiment-predictability-for-stocks | 1712.05785 | null | http://arxiv.org/abs/1712.05785v2 | http://arxiv.org/pdf/1712.05785v2.pdf | Sentiment Predictability for Stocks | In this work, we present our findings and experiments for stock-market
prediction using various textual sentiment analysis tools, such as mood
analysis and event extraction, as well as prediction models, such as LSTMs and
specific convolutional architectures. | ['Xingyou Song', 'Jordan Prosky', 'Michael Zhao', 'Andrew Tan'] | 2017-12-15 | null | null | null | null | ['stock-market-prediction'] | ['time-series'] | [-5.33682406e-01 -1.65437222e-01 -2.96776444e-01 -6.55681789e-01
-7.77437761e-02 -5.84465206e-01 6.37225688e-01 4.56510514e-01
-4.53489184e-01 9.20250177e-01 6.33985579e-01 -6.15067720e-01
4.01741594e-01 -1.06560838e+00 -1.70538977e-01 -8.97031948e-02
-3.04512411e-01 -4.31490950e-02 3.16331498e-02 -6.12935483e-01
5.99892557e-01 5.22262752e-01 -1.10623038e+00 4.64512110e-01
-3.02001387e-02 1.89682961e+00 -7.17549324e-01 6.05607450e-01
-6.79447591e-01 1.97500980e+00 -8.15610588e-01 -6.56295300e-01
-7.87580237e-02 1.27805546e-01 -5.33437669e-01 -4.83879417e-01
-2.74508506e-01 -2.65945822e-01 -4.33508635e-01 9.01527405e-01
2.53138721e-01 1.31354347e-01 3.18964183e-01 -9.79169190e-01
-8.43640804e-01 1.19804049e+00 -4.31124419e-01 6.58844411e-01
1.96741506e-01 -1.98215649e-01 1.17807496e+00 -9.26764727e-01
4.85549539e-01 8.16481352e-01 9.01031792e-01 1.99426785e-01
-4.73473936e-01 -9.68183219e-01 1.25488669e-01 1.27761677e-01
-3.84092778e-01 -4.87656862e-01 9.85430539e-01 -4.29641962e-01
1.63210285e+00 -1.21863127e-01 8.11171293e-01 1.24998176e+00
1.09098637e+00 1.20398247e+00 1.11478949e+00 -1.96021333e-01
2.45389208e-01 3.57696563e-01 4.42672879e-01 5.13215959e-01
-2.51633953e-02 -5.59108816e-02 -1.08520031e+00 -2.43972257e-01
5.44037938e-01 2.11205527e-01 3.57753426e-01 6.70760334e-01
-1.00865877e+00 1.17949224e+00 3.19500715e-01 3.47184747e-01
-1.02808583e+00 1.99427724e-01 1.04899919e+00 6.26899362e-01
1.30831754e+00 7.33018219e-01 -1.33499658e+00 -1.46803737e-01
-1.38558042e+00 1.36373192e-01 1.27662945e+00 4.27911758e-01
4.37281281e-01 7.18577206e-01 -8.58118460e-02 3.79546165e-01
4.89433408e-01 3.37022215e-01 1.33990276e+00 -7.30973929e-02
2.43487254e-01 5.59367120e-01 -1.43334391e-02 -1.26809680e+00
-1.05703378e+00 -4.11016554e-01 -8.08185577e-01 1.13443680e-01
-2.67478287e-01 -1.17594612e+00 -7.75003195e-01 1.20185697e+00
-2.79664785e-01 4.01631504e-01 4.40592170e-01 2.31485292e-01
1.32141387e+00 7.23816335e-01 1.58531025e-01 -3.86239409e-01
1.40628624e+00 -9.98558044e-01 -1.01988411e+00 -4.76609945e-01
5.99933147e-01 -7.85733461e-01 4.09530073e-01 2.50128359e-01
-1.40279615e+00 -2.12476477e-01 -8.91523838e-01 3.11282396e-01
-1.19573784e+00 9.92442593e-02 9.32023108e-01 6.36978924e-01
-1.04355395e+00 7.23401010e-01 -8.69873703e-01 -9.12894234e-02
3.27676177e-01 3.06343317e-01 1.57184303e-01 1.24009645e+00
-1.67989719e+00 1.21668565e+00 4.19915795e-01 1.81177139e-01
-2.15217724e-01 -5.31325817e-01 -8.50102246e-01 3.12847793e-01
-3.16785127e-01 -2.83219874e-01 1.75021613e+00 -9.56342936e-01
-1.96356535e+00 4.88273591e-01 -1.28335804e-01 -1.39290237e+00
-2.33565450e-01 -4.07070279e-01 -7.52971649e-01 -1.47400096e-01
-1.92400575e-01 1.99640945e-01 7.42866457e-01 -1.45462556e-02
-8.00399840e-01 -2.30699942e-01 -8.51393640e-02 -2.57495731e-01
-8.08974743e-01 7.98654139e-01 6.19922280e-01 -9.72865343e-01
-2.32952610e-01 -5.85066497e-01 -4.75721151e-01 -9.31399107e-01
-5.25410771e-01 -4.66297030e-01 8.05283844e-01 -9.57119942e-01
1.10076296e+00 -1.82204735e+00 -6.41223967e-01 3.26533288e-01
9.94421542e-03 -4.35495265e-02 2.56821483e-01 6.24276102e-01
-3.70947570e-01 1.73228502e-01 6.42705142e-01 -4.85330731e-01
4.17537004e-01 -1.21928036e-01 -1.11444604e+00 -2.87339687e-02
4.84301805e-01 1.39452803e+00 -3.87085766e-01 -2.12407038e-01
2.05622926e-01 1.35050222e-01 1.22759439e-01 2.25579347e-02
-6.30751312e-01 -2.59853601e-01 -5.86674869e-01 7.34337986e-01
1.76324487e-01 -3.96873623e-01 -2.36011520e-01 1.35016099e-01
-4.69148487e-01 1.03810561e+00 -4.69686657e-01 9.24241066e-01
-6.96015596e-01 1.22096992e+00 -5.68035901e-01 -7.97844827e-01
1.30338299e+00 8.43995869e-01 2.39197388e-01 -7.65138805e-01
5.60911238e-01 2.58172661e-01 -3.23210388e-01 -1.37467742e-01
1.07140923e+00 -3.77561837e-01 -1.14091821e-01 8.32094967e-01
2.53177792e-01 3.02864164e-01 3.57625693e-01 -5.04517742e-02
8.80735219e-01 -1.12584792e-01 4.76381809e-01 -2.31704372e-03
4.98991877e-01 -9.36471298e-02 1.03443384e-01 3.93242031e-01
-1.14389472e-01 1.19916022e-01 7.26404965e-01 -1.03247130e+00
-5.96137345e-01 -3.87589693e-01 -4.93024401e-02 1.20083857e+00
-6.64806426e-01 -3.46496344e-01 -2.64009148e-01 -6.00977123e-01
-1.67150516e-02 7.96965897e-01 -7.77195275e-01 3.03939674e-02
-2.78492719e-01 -1.08515871e+00 5.23167908e-01 1.04208755e+00
5.31224310e-01 -1.96100962e+00 -7.88471639e-01 5.95084727e-01
3.41731220e-01 -1.00819218e+00 1.57512292e-01 9.09000576e-01
-8.84158075e-01 -5.85624218e-01 -3.17736298e-01 -7.33387530e-01
-3.73944849e-01 -5.39223850e-01 1.30800235e+00 -4.76438373e-01
2.92459160e-01 -1.19605146e-01 -2.64456123e-01 -1.18600953e+00
1.51967719e-01 5.19889653e-01 -1.51962817e-01 4.14459920e-03
8.75809371e-01 -6.23106599e-01 -4.63074774e-01 -4.78244931e-01
-8.82679939e-01 -5.28396547e-01 4.84208316e-01 3.05990070e-01
-5.93410134e-02 5.83621860e-02 1.28358507e+00 -7.93940246e-01
1.28167868e+00 -7.49042809e-01 -6.57067358e-01 -1.74031351e-02
-7.76907206e-01 -2.13922814e-01 6.91547573e-01 -1.71005264e-01
-1.28611767e+00 -1.42402843e-01 -4.11943823e-01 -1.79054718e-02
-7.55998120e-02 1.53982604e+00 8.56544495e-01 2.18862608e-01
5.26794493e-01 4.32577819e-01 -4.32382107e-01 -3.36665958e-01
2.16300935e-02 7.18832672e-01 8.62782225e-02 3.53362888e-01
3.85125518e-01 4.06819493e-01 -4.44016486e-01 -7.03441322e-01
-1.31326497e+00 -2.85235167e-01 -4.22788471e-01 -1.94715902e-01
7.10518062e-01 -1.03763103e+00 -6.62960649e-01 8.44250381e-01
-1.12725604e+00 -3.89853157e-02 -2.88296759e-01 7.82693446e-01
-2.64966577e-01 -4.28950816e-01 -1.57654870e+00 -1.09719610e+00
-1.00415432e+00 -5.55524766e-01 6.95009410e-01 6.06365144e-01
-7.63593197e-01 -1.53945208e+00 4.50283617e-01 -2.19708726e-01
9.07011330e-01 3.41842055e-01 6.46280050e-01 -1.45911264e+00
1.11326545e-01 -5.68987191e-01 4.25456427e-02 3.54830503e-01
-9.94891487e-03 1.60835341e-01 -1.08810008e+00 7.74606690e-02
1.03367954e-01 -7.11555481e-01 1.18613636e+00 7.57643163e-01
6.21292055e-01 -2.63489157e-01 -7.97494277e-02 2.80776799e-01
1.05401945e+00 5.16216338e-01 5.48141956e-01 9.15503800e-01
2.58700281e-01 4.16884333e-01 1.94600582e-01 8.44463170e-01
4.03349191e-01 -2.84858793e-01 1.30454391e-01 -1.01306744e-01
7.46466398e-01 1.06354885e-01 6.65506780e-01 1.00717163e+00
2.41853774e-01 -1.01519845e-01 -7.27949917e-01 3.55026484e-01
-2.00543284e+00 -1.01407397e+00 -7.85599947e-02 1.17258465e+00
8.62398684e-01 6.15797222e-01 2.51705498e-01 9.03202519e-02
4.22514588e-01 9.28496540e-01 -5.35485506e-01 -8.91392410e-01
-2.55809873e-01 8.93334210e-01 5.57390511e-01 -7.64375851e-02
-1.49658668e+00 1.24057758e+00 7.62619781e+00 2.78252870e-01
-1.63326740e+00 -1.41211495e-01 7.72667825e-01 -3.52327228e-01
-3.07749510e-02 -3.73303771e-01 -8.79470646e-01 4.54844743e-01
1.60402298e+00 -2.69559652e-01 -2.71843582e-01 1.07415700e+00
2.62175322e-01 1.78131223e-01 -7.79446900e-01 3.88645411e-01
-1.07623018e-01 -1.82733262e+00 -1.66897520e-01 -2.12626815e-01
7.38295794e-01 6.04125381e-01 2.19289795e-01 4.65765506e-01
4.70040560e-01 -8.12732756e-01 8.69808614e-01 5.63089669e-01
-3.77167732e-01 -9.74973261e-01 1.28103244e+00 -1.02711506e-01
-9.35954392e-01 4.91975285e-02 -2.04582214e-01 -5.98496675e-01
1.84387609e-01 7.99633980e-01 -5.68750262e-01 2.71332830e-01
9.04015720e-01 1.45479238e+00 -4.37905520e-01 5.14425755e-01
-4.88527745e-01 1.04218400e+00 -1.42261297e-01 -6.84496164e-01
5.99882662e-01 3.14632170e-02 -1.04496650e-01 1.46731520e+00
1.07408613e-01 -1.68354269e-02 -9.08980072e-02 6.02068484e-01
-1.84784934e-01 3.51483852e-01 -5.16090095e-01 -3.67400140e-01
6.98103234e-02 1.53106272e+00 -1.05522907e+00 -6.40654325e-01
-9.32442188e-01 4.26869184e-01 1.15314387e-01 4.03978914e-01
-6.87879562e-01 -7.62558937e-01 6.98161900e-01 -3.79707932e-01
4.67656642e-01 -5.50857186e-03 -7.36816823e-01 -1.51557481e+00
-8.12221840e-02 -3.84547621e-01 4.07090038e-01 -9.51360226e-01
-1.40096843e+00 8.21830571e-01 -5.37636578e-01 -8.80920589e-01
-7.19746411e-01 -9.39577878e-01 -1.29522514e+00 6.17183924e-01
-1.95900500e+00 -8.72544765e-01 6.73298657e-01 5.82534134e-01
4.23942775e-01 -8.16216230e-01 7.03767240e-01 1.16676062e-01
-8.68662655e-01 4.64988314e-02 2.84433868e-02 6.13804519e-01
2.75087088e-01 -1.40255463e+00 1.04699910e+00 5.27294219e-01
2.31327757e-01 3.43685776e-01 5.03525972e-01 -5.22017539e-01
-8.25979233e-01 -1.05591953e+00 1.23150945e+00 -1.49335012e-01
1.79769361e+00 -4.15704511e-02 -5.00987411e-01 1.23253345e+00
7.46093988e-01 -5.11326969e-01 7.98888981e-01 2.94747025e-01
-1.93653300e-01 1.14098571e-01 -8.15247536e-01 4.93216366e-01
6.77873672e-04 -6.41837835e-01 -8.14491451e-01 3.01904052e-01
6.89370096e-01 -2.79134870e-01 -1.01569545e+00 1.27399936e-01
5.95247447e-01 -1.01740599e+00 7.56488025e-01 -8.12931299e-01
8.78389359e-01 3.59521776e-01 1.69098362e-01 -1.53581893e+00
-1.92772433e-01 -4.22073573e-01 -4.78851646e-01 1.08377707e+00
1.05946922e+00 -1.08518410e+00 8.85886133e-01 6.30661726e-01
8.04905221e-02 -6.06175363e-01 -6.68913782e-01 -2.50665903e-01
4.41935062e-02 -5.99867523e-01 5.75585723e-01 1.23628247e+00
5.87532461e-01 7.58643389e-01 -3.55454654e-01 -1.63810886e-02
-1.68638110e-01 5.45286953e-01 1.71166062e-01 -1.52226639e+00
2.31804535e-01 -7.12758541e-01 -2.08663106e-01 -3.74697953e-01
7.30214655e-01 -3.73977661e-01 -3.55022281e-01 -1.41482115e+00
-3.38971138e-01 5.21428823e-01 -9.24518526e-01 4.95608091e-01
3.97844881e-01 1.50222972e-01 -2.04760451e-02 -4.27284949e-02
-5.08904457e-01 3.91575783e-01 4.63258117e-01 -6.46776184e-02
-2.61886328e-01 2.01425567e-01 -6.51974380e-01 1.11183536e+00
1.46700919e+00 -4.47336346e-01 7.44967386e-02 -4.28646244e-02
1.15482175e+00 2.69044757e-01 -1.96385402e-02 -5.69834888e-01
4.25137550e-01 1.16694599e-01 9.30878460e-01 -1.17528176e+00
2.90812403e-01 -1.38967350e-01 -6.56225920e-01 5.15024722e-01
-5.84530532e-01 5.13706326e-01 5.30959427e-01 1.50679037e-01
-8.30408990e-01 -2.60981888e-01 2.72628993e-01 -3.56675744e-01
-6.14086807e-01 3.89289297e-02 -1.03977299e+00 -2.52160013e-01
8.10780764e-01 1.71607494e-01 -5.27290583e-01 -8.05139244e-01
-7.37192333e-01 4.10260558e-01 -5.37391126e-01 6.05297267e-01
7.56375074e-01 -1.11878848e+00 -7.46831000e-01 7.79499188e-02
-3.94320637e-01 -7.76724339e-01 -3.26114327e-01 6.93396091e-01
-2.43092164e-01 8.96505058e-01 -2.86714554e-01 3.31130177e-01
-8.44242275e-01 5.00933349e-01 3.23959589e-01 -6.01124346e-01
-2.56681681e-01 8.03965867e-01 -1.49569690e-01 -2.38784060e-01
1.80351660e-01 -9.65284526e-01 -1.07853711e+00 9.04765546e-01
6.50172412e-01 1.36346012e-01 3.53626400e-01 -1.97359025e-01
-3.14091325e-01 1.40031472e-01 -2.40444303e-01 -1.31925628e-01
1.73755419e+00 2.14220360e-01 -4.13279146e-01 8.73696148e-01
9.16115761e-01 -3.44550103e-01 -5.06142616e-01 -1.90460041e-01
8.25265825e-01 3.70009154e-01 5.17651975e-01 -7.15278149e-01
-1.32161677e+00 6.43093109e-01 -8.78651142e-02 1.21745396e+00
8.31908882e-01 -1.67918310e-01 1.46032345e+00 8.11463416e-01
-9.85769033e-02 -1.51728976e+00 -2.72064954e-02 1.06857479e+00
4.98759270e-01 -1.11684954e+00 -3.05765897e-01 5.58121026e-01
-6.39814436e-01 1.39194202e+00 3.16114753e-01 -6.00184321e-01
1.47087014e+00 5.31790912e-01 5.52850008e-01 -6.36748612e-01
-1.55050027e+00 -2.30687633e-01 6.24307208e-02 -9.25983563e-02
9.45417345e-01 -1.85037479e-01 -3.94774824e-02 7.55105555e-01
-8.22831333e-01 2.37004399e-01 8.32143486e-01 9.60400164e-01
-4.36318040e-01 -5.37508786e-01 -1.55899599e-01 9.12012279e-01
-1.34692132e+00 -6.82637155e-01 -8.76661837e-01 5.98027408e-01
-6.23053253e-01 8.30327809e-01 5.73276937e-01 -5.15106916e-01
3.58970374e-01 5.32792628e-01 -4.48603868e-01 -5.90191424e-01
-1.50705767e+00 -9.05193314e-02 4.04819340e-01 -1.73401460e-01
-6.85499847e-01 -6.72323883e-01 -1.30246711e+00 -3.72901589e-01
-2.49881551e-01 5.15276194e-02 7.14468300e-01 1.11770034e+00
1.32615969e-01 7.94401228e-01 8.47215354e-01 -6.95781171e-01
-3.53090852e-01 -1.47719622e+00 -1.01094687e+00 -2.49155506e-01
5.92240036e-01 1.02012567e-02 -3.30425948e-01 -7.60712698e-02] | [4.4321794509887695, 4.28432035446167] |
45f98af3-2753-4bb1-ab1c-cc8d91d5dcbe | a-survey-on-deep-learning-and-explainability | 2010.10563 | null | https://arxiv.org/abs/2010.10563v2 | https://arxiv.org/pdf/2010.10563v2.pdf | A Survey on Deep Learning and Explainability for Automatic Report Generation from Medical Images | Every year physicians face an increasing demand of image-based diagnosis from patients, a problem that can be addressed with recent artificial intelligence methods. In this context, we survey works in the area of automatic report generation from medical images, with emphasis on methods using deep neural networks, with respect to: (1) Datasets, (2) Architecture Design, (3) Explainability and (4) Evaluation Metrics. Our survey identifies interesting developments, but also remaining challenges. Among them, the current evaluation of generated reports is especially weak, since it mostly relies on traditional Natural Language Processing (NLP) metrics, which do not accurately capture medical correctness. | ['Daniel Capurro', 'Claudia Prieto', 'Cristian Tejos', 'Marcelo andía', 'Sergio Uribe', 'Cecilia Besa', 'Alvaro Soto', 'Denis Parra', 'Pablo Pino', 'Pablo Messina'] | 2020-10-20 | null | null | null | null | ['medical-report-generation'] | ['medical'] | [ 4.80596572e-01 5.53383708e-01 -1.82931855e-01 -3.74630094e-01
-7.30172753e-01 -2.69046694e-01 4.66274321e-01 7.60496378e-01
-2.71868438e-01 9.88269746e-01 2.96943188e-01 -2.92917937e-01
-2.79723287e-01 -8.08455944e-01 -4.04399097e-01 -3.23866159e-01
-5.54945767e-02 6.32433534e-01 -3.29766601e-01 1.09426342e-01
2.07753167e-01 4.12596881e-01 -1.43773055e+00 5.74742138e-01
7.86651194e-01 1.07515335e+00 -9.84752625e-02 8.56034398e-01
-1.54478833e-01 1.41253436e+00 -9.11331236e-01 -6.89777672e-01
-4.10544574e-01 -8.00726056e-01 -9.58313704e-01 2.96102583e-01
4.31007802e-01 -2.73071945e-01 -9.16244611e-02 1.07395875e+00
3.53758514e-01 -3.56176168e-01 7.69272983e-01 -1.05466783e+00
-9.38507318e-01 7.02558279e-01 -2.00024843e-01 3.14657718e-01
3.13931435e-01 2.05181614e-01 8.90556455e-01 -7.67152309e-01
9.78372335e-01 9.37845707e-01 4.95522588e-01 6.26201570e-01
-9.25666749e-01 -1.77790537e-01 5.39504848e-02 2.79479146e-01
-1.33726919e+00 -2.05265790e-01 5.85955322e-01 -6.48551226e-01
9.30627823e-01 4.49539810e-01 4.94341850e-01 1.05178547e+00
4.24312651e-01 8.42385411e-01 9.69341159e-01 -4.04469192e-01
3.33535045e-01 5.21407008e-01 2.41662160e-01 7.59490967e-01
6.68547213e-01 -2.52098441e-02 -3.92869174e-01 -4.57693115e-02
6.33580267e-01 -2.71007597e-01 -4.25653487e-01 -6.62617087e-02
-1.49061394e+00 1.07099962e+00 3.92987430e-01 6.88696504e-01
-6.87889576e-01 -7.95844123e-02 3.63616318e-01 2.27941453e-01
5.14294624e-01 8.15634727e-01 -5.70945799e-01 1.76183701e-01
-9.84302819e-01 6.41431153e-01 8.90749395e-01 9.34628427e-01
2.98303694e-01 1.83480635e-01 -5.27231157e-01 4.68918294e-01
6.76137954e-02 2.94574469e-01 5.44612467e-01 -7.01216280e-01
3.35926801e-01 6.48152649e-01 -1.26093611e-01 -1.41068876e+00
-7.55859852e-01 -6.49281919e-01 -1.23178923e+00 4.41293865e-02
1.41773550e-02 -1.19998641e-01 -7.88451374e-01 1.34622240e+00
-1.12109557e-01 -2.60028511e-01 2.86196530e-01 8.00889254e-01
1.62516832e+00 4.37073737e-01 -4.20077750e-03 -5.93986988e-01
1.62171459e+00 -9.02504504e-01 -1.08347499e+00 -1.37965783e-01
6.17792010e-01 -5.80357373e-01 6.13705754e-01 5.00495374e-01
-1.52135587e+00 -4.85042512e-01 -9.50891078e-01 6.72861114e-02
-3.31811547e-01 3.62039894e-01 4.99896049e-01 4.25560385e-01
-1.36323094e+00 3.28658640e-01 -4.08024192e-01 -4.02292162e-01
4.86203581e-01 3.18235159e-01 -2.54307479e-01 -3.19914967e-02
-1.04790390e+00 9.95008588e-01 5.88269174e-01 -2.28501871e-01
-5.42798102e-01 -8.64178598e-01 -1.05367482e+00 1.05973192e-01
4.74723458e-01 -1.08254826e+00 1.31649292e+00 -8.84458542e-01
-1.25033474e+00 1.13742137e+00 8.50073025e-02 -8.44075024e-01
4.98839617e-01 1.12662219e-01 -4.19154495e-01 3.35724741e-01
-2.32440643e-02 9.56834555e-01 4.84959930e-01 -1.29464555e+00
-7.41191745e-01 -1.38541430e-01 -4.83812056e-02 -6.87232688e-02
-2.76094288e-01 -8.15816149e-02 -3.00019532e-01 -9.51880276e-01
-2.22463563e-01 -6.70179784e-01 -4.88902181e-01 2.04775408e-02
-7.32608855e-01 -3.22442263e-01 3.21991593e-01 -4.66441184e-01
1.45549691e+00 -1.78993928e+00 3.64065021e-02 -9.14119706e-02
6.73570395e-01 2.87852854e-01 5.53128086e-02 2.28880242e-01
-2.07596302e-01 1.84232309e-01 -5.28804481e-01 -3.00149173e-01
-1.94255382e-01 3.72068994e-02 -2.79767781e-01 4.88150977e-02
7.16964900e-01 1.04973483e+00 -6.79619074e-01 -8.88058007e-01
2.69662112e-01 2.38441870e-01 -3.62407804e-01 3.08681488e-01
-3.46720517e-01 3.52858275e-01 -4.00118947e-01 5.53396344e-01
2.80045539e-01 -6.16618872e-01 5.22841178e-02 -1.74442261e-01
4.26606089e-02 2.25532383e-01 -7.46801615e-01 1.38902903e+00
-3.09698373e-01 6.18511677e-01 -3.24315012e-01 -1.11674476e+00
8.88614476e-01 6.87370896e-01 7.91992664e-01 -5.19396603e-01
2.49885470e-01 3.75696905e-02 9.99947786e-02 -8.13503683e-01
5.42610943e-01 -1.78626105e-01 -8.90360447e-04 5.33291161e-01
2.23177224e-01 -8.66205394e-02 4.57281262e-01 1.66735783e-01
1.29896009e+00 -4.37092632e-01 7.82476902e-01 -1.12648070e-01
5.19227922e-01 4.17200744e-01 2.89096594e-01 7.45511711e-01
-1.78722054e-01 9.75180387e-01 4.80744243e-01 -1.02178836e+00
-1.13339841e+00 -8.49614143e-01 -1.95679620e-01 2.95268774e-01
-1.45241782e-01 -2.92111099e-01 -9.85049665e-01 -9.61598754e-01
-2.34180868e-01 6.77016675e-01 -7.26117432e-01 8.93100798e-02
-5.24488151e-01 -8.23665679e-01 4.21429396e-01 5.81367493e-01
8.28941315e-02 -1.55459750e+00 -8.40844274e-01 4.15435702e-01
-4.04515773e-01 -1.47146118e+00 -8.94485936e-02 -7.44357035e-02
-1.11574769e+00 -1.17177105e+00 -9.38615918e-01 -6.32654309e-01
8.03334653e-01 -7.24125579e-02 1.72469783e+00 4.13312554e-01
-4.90314245e-01 4.29999590e-01 -4.29834038e-01 -1.01044798e+00
-6.88033402e-01 2.27307156e-01 -1.85630888e-01 -1.33531332e-01
4.03288037e-01 -1.57561049e-01 -4.27613854e-01 -1.71645954e-01
-1.25374198e+00 2.05210790e-01 1.01046097e+00 8.53092194e-01
5.65378189e-01 7.99494833e-02 6.14617348e-01 -1.07272208e+00
8.07205200e-01 -3.05012405e-01 -2.74545521e-01 2.42713541e-01
-7.55651057e-01 -3.44137773e-02 4.85104442e-01 -4.30757254e-02
-7.49943554e-01 7.94206187e-03 -2.55110115e-01 -2.52470791e-01
-5.77938378e-01 7.38994420e-01 3.18604857e-01 4.19838965e-01
9.17230248e-01 2.16057524e-01 -5.98278083e-02 -1.05238840e-01
2.01623097e-01 3.27622116e-01 6.44092321e-01 4.31064293e-02
4.41413134e-01 5.24790108e-01 -1.11887865e-01 -6.78700089e-01
-9.60891068e-01 -3.35274935e-02 -4.22147125e-01 -1.78205773e-01
1.09331489e+00 -5.94694018e-01 -5.92006624e-01 -2.29473472e-01
-1.63101804e+00 2.58724749e-01 -4.88574117e-01 7.42587090e-01
-6.10449970e-01 1.12410441e-01 -8.79601598e-01 -6.89564705e-01
-7.62455761e-01 -1.27545512e+00 1.00891125e+00 -3.32066752e-02
-8.11561465e-01 -9.87133086e-01 1.26603143e-02 4.71016854e-01
2.79348522e-01 5.65468550e-01 1.27018595e+00 -6.24714792e-01
-4.52495277e-01 -3.29460859e-01 -3.96544933e-01 2.91071743e-01
6.88627213e-02 -6.03082813e-02 -9.56395388e-01 2.14499552e-02
1.63213521e-01 -2.44825095e-01 7.07993627e-01 8.56694698e-01
1.29684961e+00 -7.40226507e-01 -2.89120674e-01 1.63020238e-01
1.23144603e+00 1.91794977e-01 5.50606251e-01 8.37042630e-02
4.21313941e-01 9.60007429e-01 5.22966564e-01 4.52950358e-01
4.80627477e-01 5.02990842e-01 5.21458805e-01 -3.32988143e-01
-2.69919008e-01 9.00637656e-02 -8.07746779e-03 1.05477321e+00
-1.26120687e-01 -4.63291973e-01 -9.12841082e-01 6.37484729e-01
-1.87661934e+00 -7.47619331e-01 -2.28933513e-01 1.71430886e+00
7.03566134e-01 1.65270060e-01 2.07254607e-02 2.89311349e-01
6.36812568e-01 -4.76444028e-02 -2.85812199e-01 -4.07293588e-01
-1.30528107e-01 2.52484530e-01 5.24529740e-02 1.65478110e-01
-1.07927799e+00 4.50857848e-01 7.45639753e+00 5.51299095e-01
-1.13304210e+00 1.33801550e-01 1.15583801e+00 9.41165760e-02
-2.52133250e-01 -6.46957397e-01 -4.19498414e-01 2.95792371e-01
8.58532250e-01 -1.09411135e-01 -1.94646224e-01 9.50362325e-01
1.37012899e-01 1.32304117e-01 -1.29279828e+00 1.04522729e+00
6.17593646e-01 -1.82397592e+00 3.84948164e-01 1.93019047e-01
8.58029604e-01 -3.46194059e-01 1.93845540e-01 -2.81824190e-02
6.34573177e-02 -1.31847477e+00 6.41425252e-01 5.76911688e-01
7.45117188e-01 -6.37302518e-01 1.14544582e+00 9.36631560e-02
-6.75076544e-01 9.15759727e-02 -1.17990144e-01 1.01680204e-03
2.04601616e-01 9.90088344e-01 -1.20494783e+00 6.96584404e-01
6.89509571e-01 5.34990430e-01 -3.23751330e-01 9.71908450e-01
-2.56521493e-01 5.98218322e-01 1.23359300e-01 -1.53666303e-01
1.96475402e-01 2.52917111e-01 3.76988977e-01 1.50086439e+00
5.30192375e-01 9.57057029e-02 7.09587857e-02 1.23883545e+00
-2.38785416e-01 1.76221758e-01 -9.12323236e-01 -1.00179434e-01
-8.63843635e-02 1.25523233e+00 -1.02058697e+00 -6.25339389e-01
-3.71272385e-01 6.35818839e-01 3.00957561e-02 -8.70379806e-02
-6.36996746e-01 -9.23267975e-02 3.55338752e-01 2.02931970e-01
-8.21180642e-02 7.46602416e-02 -6.66084051e-01 -9.44061279e-01
2.69704312e-01 -9.83974278e-01 5.21210432e-01 -8.42192292e-01
-1.21615076e+00 1.16535616e+00 -1.42686129e-01 -1.31892037e+00
-6.07165396e-01 -6.36219263e-01 -1.43435895e-01 3.58068496e-01
-1.47351003e+00 -9.83404279e-01 -3.64082694e-01 1.41504347e-01
8.11747611e-01 -2.90687799e-01 1.13431978e+00 4.03567642e-01
-3.07440192e-01 4.70568091e-01 -5.29504478e-01 1.00272812e-01
4.94128644e-01 -1.24372399e+00 2.83318281e-01 5.43343663e-01
4.90592808e-01 2.15072021e-01 7.59784043e-01 -4.78711039e-01
-1.00969517e+00 -1.40398049e+00 1.26282096e+00 -6.39889061e-01
2.84118444e-01 2.74588615e-02 -8.45385134e-01 4.77229774e-01
4.05618519e-01 -2.59344298e-02 8.09304118e-01 -1.42110273e-01
7.67636299e-02 4.18978930e-02 -1.21908605e+00 5.23168266e-01
6.02855742e-01 1.28999650e-02 -3.12979072e-01 6.00286186e-01
9.02532339e-01 -5.14227271e-01 -9.31810558e-01 6.39284432e-01
3.61343503e-01 -9.21479702e-01 7.20514834e-01 -7.23680139e-01
1.05032980e+00 -1.75490007e-01 2.85490990e-01 -1.08279645e+00
-4.94275421e-01 -2.07862318e-01 -2.33601511e-01 8.99343073e-01
7.88304567e-01 -5.64151444e-02 8.67173970e-01 4.60409790e-01
-1.05641574e-01 -1.17747343e+00 -5.53152144e-01 -3.04440945e-01
-2.06388846e-01 -5.88696063e-01 5.36678910e-01 1.09754705e+00
-4.44258191e-02 4.47054207e-01 -5.18163502e-01 4.38868813e-03
2.52219319e-01 -6.23433478e-02 4.86055523e-01 -1.14540553e+00
-9.64960977e-02 -6.63084388e-01 -6.83090925e-01 -4.27645057e-01
-2.66085237e-01 -5.85867286e-01 2.55479306e-01 -1.99912012e+00
4.53986883e-01 4.14895192e-02 -2.10407764e-01 3.80751461e-01
-1.57383561e-01 4.81694490e-01 2.06738457e-01 2.00234130e-01
-7.60217667e-01 1.16501473e-01 1.13832283e+00 -3.53450179e-01
9.20107812e-02 -1.14873961e-01 -8.22981894e-01 9.50773597e-01
7.52918780e-01 -6.36584580e-01 -2.26592332e-01 -5.27790248e-01
3.94910872e-01 2.60067165e-01 2.72495687e-01 -1.13481057e+00
1.70106471e-01 -1.61248669e-01 3.48461568e-01 -6.67748570e-01
3.68529893e-02 -7.74552703e-01 5.07157966e-02 7.82101572e-01
-7.49501169e-01 5.19943058e-01 4.98933829e-02 3.09764117e-01
-5.76165497e-01 -3.98169726e-01 5.13268948e-01 -5.46919048e-01
-3.78044516e-01 3.34224522e-01 -5.46336949e-01 -1.71740636e-01
1.02605772e+00 3.15331817e-02 -2.39934832e-01 -4.62445766e-01
-6.97964847e-01 -8.88819918e-02 2.05234662e-02 3.88265461e-01
9.01864886e-01 -1.27890885e+00 -1.20337474e+00 -2.33299166e-01
5.27307212e-01 2.34970510e-01 3.14522773e-01 9.09001887e-01
-8.08084667e-01 8.09895337e-01 1.26605779e-01 -6.52783275e-01
-1.24843967e+00 9.15344357e-01 2.40232702e-02 -8.96282852e-01
-7.53882051e-01 5.34676909e-01 4.20399725e-01 -1.35922477e-01
3.31617713e-01 -6.59795761e-01 -5.63948512e-01 -1.09960668e-01
8.63826752e-01 -4.94030714e-02 3.91922116e-01 -3.18537444e-01
-2.52190351e-01 2.37640619e-01 -1.97008133e-01 -4.02029566e-02
1.31683648e+00 1.88241571e-01 -1.17611602e-01 3.65013242e-01
7.44547665e-01 -5.22467196e-01 -3.53447914e-01 -1.61411524e-01
2.13869840e-01 -3.16342004e-02 -6.73171654e-02 -1.00481045e+00
-1.23766994e+00 8.38877797e-01 4.61994141e-01 6.41827226e-01
1.21242726e+00 1.67387500e-01 7.80161738e-01 4.13251370e-01
1.32066011e-01 -1.00078642e+00 2.88955688e-01 1.51389346e-01
1.19903862e+00 -1.43039978e+00 1.12726167e-01 -4.63706523e-01
-8.59166324e-01 1.11387682e+00 4.40481246e-01 7.34143239e-03
4.38500285e-01 4.89603549e-01 1.77243799e-01 -4.75738764e-01
-9.46396708e-01 -1.14239767e-01 4.08000052e-01 6.61605120e-01
8.99321854e-01 9.84491631e-02 -6.20683610e-01 6.95790589e-01
-2.56816119e-01 3.27212095e-01 6.56590044e-01 8.38353336e-01
-2.36572132e-01 -8.43406856e-01 -6.22410834e-01 7.51104057e-01
-7.60992527e-01 -4.54802401e-02 -4.97038901e-01 6.83996677e-01
3.29532772e-01 9.12852585e-01 -2.55143829e-03 -2.59034008e-01
3.16492379e-01 -4.24022317e-01 3.02132845e-01 -8.93362641e-01
-5.66697717e-01 -3.30024719e-01 2.37205833e-01 -2.93148458e-01
-5.27092934e-01 -4.92404342e-01 -9.67333376e-01 -1.40869319e-01
-7.56445974e-02 7.79944360e-02 6.59353197e-01 9.33057904e-01
4.71643180e-01 1.00900626e+00 1.37059972e-01 -3.79098654e-01
-2.23468691e-01 -1.12700140e+00 -3.52508962e-01 4.94211167e-01
2.87054330e-01 -3.08723420e-01 1.76822454e-01 4.48729634e-01] | [15.04098129272461, -1.4057430028915405] |
4d413151-3357-4edc-8277-e92f2603fb12 | deep-evolution-for-facial-emotion-recognition | 2009.14194 | null | https://arxiv.org/abs/2009.14194v2 | https://arxiv.org/pdf/2009.14194v2.pdf | Deep Evolution for Facial Emotion Recognition | Deep facial expression recognition faces two challenges that both stem from the large number of trainable parameters: long training times and a lack of interpretability. We propose a novel method based on evolutionary algorithms, that deals with both challenges by massively reducing the number of trainable parameters, whilst simultaneously retaining classification performance, and in some cases achieving superior performance. We are robustly able to reduce the number of parameters on average by 95% (e.g. from 2M to 100k parameters) with no loss in classification accuracy. The algorithm learns to choose small patches from the image, relative to the nose, which carry the most important information about emotion, and which coincide with typical human choices of important features. Our work implements a novel form attention and shows that evolutionary algorithms are a valuable addition to machine learning in the deep learning era, both for reducing the number of parameters for facial expression recognition and for providing interpretable features that can help reduce bias. | ['Emmanuel Dufourq', 'Bruce A. Bassett'] | 2020-09-29 | null | null | null | null | ['facial-emotion-recognition'] | ['computer-vision'] | [ 4.52788830e-01 1.72789231e-01 1.30399242e-01 -6.74205542e-01
-6.41383290e-01 -5.36477983e-01 2.32159525e-01 -2.26014689e-01
-6.77395165e-01 6.69122279e-01 -2.69183189e-01 3.61495353e-02
-4.00030881e-01 -4.54271734e-01 -5.71965158e-01 -9.22605991e-01
-1.06444836e-01 5.45401275e-01 -4.31826681e-01 -3.70890886e-01
2.62940258e-01 8.36384892e-01 -2.06946921e+00 2.19526902e-01
7.73862123e-01 1.43389904e+00 -1.92881197e-01 3.47453803e-01
6.70262203e-02 7.75008261e-01 -5.14291346e-01 -7.09000647e-01
-1.62745845e-02 -3.38061512e-01 -7.21916497e-01 4.49583046e-02
4.55780745e-01 -8.94922316e-02 1.89631671e-01 1.00756621e+00
6.35888577e-01 2.40558848e-01 6.06507599e-01 -1.29032886e+00
-2.24789768e-01 9.58038419e-02 -4.75149542e-01 8.68637636e-02
-8.91252905e-02 1.06012933e-01 9.84013796e-01 -7.88660645e-01
5.86088598e-01 1.16045105e+00 7.44924188e-01 9.86191094e-01
-1.10043561e+00 -7.30910778e-01 -4.99576814e-02 3.34272146e-01
-1.44114554e+00 -1.02311277e+00 7.57212996e-01 -3.67496103e-01
9.66937304e-01 4.71719027e-01 6.44108057e-01 9.61326897e-01
-4.69502993e-02 5.15693486e-01 8.99904668e-01 -6.22922778e-01
3.15285474e-01 5.03697634e-01 -1.80675134e-01 9.74456847e-01
-2.05590770e-01 2.14446727e-02 -6.39136434e-01 -3.61102521e-01
5.26490629e-01 -2.59497076e-01 -1.41173571e-01 -2.71283120e-01
-4.79925185e-01 1.00342834e+00 2.01925904e-01 3.45033973e-01
-4.58774149e-01 2.47132346e-01 4.36976999e-01 4.61795658e-01
4.99946386e-01 7.56835938e-01 -6.23822689e-01 -4.36924636e-01
-6.36020899e-01 3.97596732e-02 6.74266160e-01 5.07191539e-01
9.58939314e-01 1.44945189e-01 2.63969034e-01 1.01606655e+00
-4.93534505e-02 4.80971724e-01 5.54991901e-01 -1.19617641e+00
-5.90757048e-03 6.70719624e-01 -1.32271409e-01 -1.16295850e+00
-4.40375537e-01 -3.86362910e-01 -7.50495791e-01 4.78944123e-01
3.51048172e-01 -3.74499261e-01 -7.09770858e-01 2.09957337e+00
2.87469596e-01 -2.90352374e-01 -2.02823758e-01 8.01074445e-01
3.34233731e-01 4.30671453e-01 6.45900816e-02 -1.84984133e-01
1.36955845e+00 -6.71371937e-01 -4.81845200e-01 -2.55555958e-01
7.14317262e-01 -5.62685490e-01 1.07139218e+00 6.18477643e-01
-1.13096046e+00 -3.42185855e-01 -8.70583415e-01 7.06193447e-02
-3.91157776e-01 2.87785381e-01 1.02087402e+00 9.14203882e-01
-1.10858631e+00 8.87375593e-01 -4.98830795e-01 -1.24503471e-01
7.12958217e-01 9.34213042e-01 -5.95658839e-01 1.25221789e-01
-9.34677660e-01 1.03929484e+00 2.10978478e-01 3.81060421e-01
-4.20165807e-01 -6.10133827e-01 -6.30608499e-01 3.23038697e-01
3.56516093e-01 -4.82266396e-01 1.10112178e+00 -1.89748812e+00
-1.66799819e+00 1.13837123e+00 -1.59326598e-01 -2.41845354e-01
4.59489435e-01 -1.12345234e-01 -2.35467076e-01 1.78652361e-01
-5.50565064e-01 1.00090790e+00 1.22659945e+00 -8.98376763e-01
-3.59001249e-01 -6.29386544e-01 -3.02086502e-01 1.28403930e-02
-7.92553902e-01 2.18697697e-01 -2.14025602e-01 -4.44900841e-01
-2.49780029e-01 -1.19061160e+00 -2.07137376e-01 3.43645036e-01
2.88523704e-01 -3.35435212e-01 7.71073282e-01 -4.63951796e-01
8.01162243e-01 -2.29734898e+00 4.21709120e-01 3.37995827e-01
2.52899617e-01 5.09584785e-01 -1.65215015e-01 -5.74460849e-02
-2.24087164e-01 8.99326429e-02 -2.78272182e-01 -2.68568754e-01
-3.70647684e-02 5.06080091e-01 -7.25222304e-02 3.30070555e-01
5.95529497e-01 9.09629464e-01 -4.75609303e-01 -3.21450055e-01
-1.29304871e-01 6.28193080e-01 -7.36185312e-01 1.72942236e-01
-7.27911443e-02 3.45284522e-01 -3.86403024e-01 4.10055757e-01
4.60758388e-01 -2.91786194e-02 2.42146835e-01 5.56247169e-03
2.43423522e-01 -7.64946789e-02 -1.05869079e+00 1.42652071e+00
-6.82929873e-01 7.73624897e-01 2.86112159e-01 -1.13898873e+00
1.11926639e+00 2.87048578e-01 5.25222540e-01 -8.16088080e-01
5.09795427e-01 2.99485564e-01 6.56464025e-02 -7.26763368e-01
1.08127043e-01 -3.83644432e-01 1.22626260e-01 4.94134396e-01
2.11911231e-01 -6.40188809e-04 -1.05007552e-01 -4.89699841e-01
7.64713943e-01 -9.07707140e-02 1.91600963e-01 -3.89554054e-01
6.06714845e-01 -3.78365427e-01 6.38144672e-01 3.39869022e-01
-2.19168663e-01 2.76693761e-01 8.14525008e-01 -7.02125192e-01
-1.01469648e+00 -5.41363180e-01 -5.95984384e-02 1.35408938e+00
-5.03436208e-01 -1.21156484e-01 -9.52608109e-01 -5.00859439e-01
3.03347241e-02 5.27896643e-01 -1.04591167e+00 -5.99698067e-01
-6.36210680e-01 -8.19601357e-01 6.65197849e-01 5.35775125e-01
1.36856496e-01 -1.21923280e+00 -9.29064751e-01 -9.73103344e-02
5.63146025e-02 -8.70371580e-01 -1.45224938e-02 4.78121698e-01
-7.25304663e-01 -7.26579785e-01 -4.37817633e-01 -6.11482799e-01
8.78654361e-01 -3.66094708e-01 1.17952442e+00 3.87119263e-01
-7.43935466e-01 2.54068673e-01 -2.26001844e-01 -8.84177029e-01
-3.36353630e-01 9.72827524e-02 4.04794216e-02 3.15987021e-01
4.77997661e-01 -6.10041738e-01 -2.27684662e-01 1.40727744e-01
-7.37531185e-01 -2.59875268e-01 6.82991385e-01 9.84395742e-01
3.10686946e-01 1.16935046e-02 5.96749723e-01 -8.94911349e-01
3.65094811e-01 -3.20401937e-01 -4.94664043e-01 9.91254151e-02
-7.26033807e-01 3.33695292e-01 6.10885620e-01 -4.16850865e-01
-8.65159273e-01 1.46569878e-01 -2.61204958e-01 -4.77601886e-01
-5.19362688e-02 9.93274301e-02 -7.53953159e-02 -6.59145892e-01
7.29563296e-01 -6.31324127e-02 5.94141841e-01 -4.89045143e-01
1.48154810e-01 5.70202887e-01 2.02719778e-01 -5.68645835e-01
4.71086204e-01 3.61509144e-01 2.31719971e-01 -9.05392766e-01
-5.60352981e-01 -1.85785666e-01 -7.59776175e-01 -1.64495751e-01
4.66803491e-01 -4.98275280e-01 -9.80390429e-01 4.69943464e-01
-8.91553462e-01 -1.56280264e-01 -4.17318493e-01 1.33877814e-01
-5.89159191e-01 6.16609603e-02 -3.57760042e-01 -9.27945256e-01
-5.36429346e-01 -1.06110895e+00 1.11166704e+00 2.04284385e-01
-5.14793992e-01 -8.65345180e-01 -2.72261083e-01 2.37983286e-01
5.17724633e-01 3.19229007e-01 1.15553784e+00 -5.52603424e-01
-1.26264384e-02 -3.14379781e-01 -6.37704954e-02 5.16289771e-01
-2.08334178e-02 4.22124527e-02 -1.30702877e+00 -2.72143692e-01
1.21623710e-01 -6.10804439e-01 7.33246803e-01 1.63947746e-01
1.33537304e+00 -4.10957575e-01 -4.04681265e-02 7.12301135e-01
1.15117383e+00 3.75030369e-01 6.98659837e-01 2.69025624e-01
3.49747747e-01 1.01026821e+00 3.50213975e-01 6.65921330e-01
-1.75113738e-01 8.60635340e-01 3.77681673e-01 -2.65253186e-01
2.84824431e-01 1.65744379e-01 1.63455620e-01 4.18089062e-01
-2.91084200e-01 3.96545753e-02 -7.09005773e-01 2.24808171e-01
-1.60069811e+00 -8.93417776e-01 4.44628656e-01 2.08865952e+00
8.49626780e-01 -2.49577746e-01 3.14962626e-01 3.27371866e-01
3.32277238e-01 -2.05125377e-01 -6.25855923e-01 -7.82154202e-01
-1.63687050e-01 5.39402485e-01 1.75703034e-01 4.01812851e-01
-8.46073031e-01 8.80450904e-01 6.66804600e+00 7.29336262e-01
-1.52374554e+00 -2.62007028e-01 8.47045243e-01 -3.55395198e-01
-7.46460557e-02 -4.08612788e-01 -5.85815907e-01 3.06100816e-01
1.10416353e+00 -1.27170965e-01 6.34285331e-01 1.14403319e+00
-1.47686917e-02 7.57059753e-02 -1.13671112e+00 1.30947983e+00
2.54356414e-01 -1.16146088e+00 1.04229890e-01 7.54668638e-02
3.91465843e-01 -3.52587104e-01 3.17583442e-01 6.92633167e-02
-1.72071800e-01 -1.54704249e+00 7.48974204e-01 4.25177783e-01
7.77713060e-01 -1.11938477e+00 7.85707593e-01 1.76081598e-01
-5.18015027e-01 -3.58020931e-01 -4.71973032e-01 -1.01699010e-01
-4.37318683e-01 3.08137864e-01 -7.00739920e-01 -8.05203989e-02
9.31466281e-01 3.46509606e-01 -6.30557775e-01 7.27640450e-01
-3.30734365e-02 2.69462168e-01 -4.92152035e-01 -3.65153611e-01
2.04665303e-01 -6.97484016e-02 2.42098987e-01 1.04302120e+00
2.50989944e-01 1.85200557e-01 -3.85063052e-01 6.29097164e-01
-1.26445860e-01 3.14356208e-01 -5.10613024e-01 -1.03891864e-01
2.91849762e-01 1.39300871e+00 -5.18862128e-01 -5.74024767e-02
2.13110745e-01 9.68301654e-01 6.24905229e-01 7.95777515e-03
-6.79282606e-01 -3.27947736e-01 7.68206477e-01 -1.24792032e-01
4.33682024e-01 -6.01467676e-02 -1.77518010e-01 -8.63720655e-01
1.96498558e-01 -1.27898073e+00 3.43032032e-01 -5.42307496e-01
-9.39436018e-01 8.43028605e-01 -3.51187736e-01 -7.12054849e-01
-5.73171258e-01 -9.37162399e-01 -3.32196593e-01 6.49958730e-01
-1.37872124e+00 -9.91268754e-01 -2.25717202e-01 4.62926030e-01
1.73928380e-01 -2.13744715e-01 1.10601115e+00 4.78713185e-01
-6.03130162e-01 1.15537763e+00 1.77836090e-01 -8.42423588e-02
5.22054434e-01 -9.65730190e-01 1.04142856e-02 1.59414351e-01
1.59737110e-01 5.83905458e-01 6.27437055e-01 3.16271067e-01
-1.39670610e+00 -6.25710964e-01 8.84476960e-01 -4.66219544e-01
2.80101985e-01 -5.32901466e-01 -8.16581607e-01 3.65301371e-01
-1.53976619e-01 -2.06933752e-01 9.91739094e-01 4.10504013e-01
-4.59463716e-01 -4.18012530e-01 -1.22320473e+00 5.92983723e-01
8.76680374e-01 -4.92838502e-01 -1.60911083e-01 2.23151729e-01
1.29884273e-01 -1.04680449e-01 -8.10029030e-01 3.58079791e-01
9.04521525e-01 -9.88062382e-01 7.66977847e-01 -8.87959242e-01
3.17115396e-01 2.19240963e-01 4.99469154e-02 -1.22862256e+00
-2.99069017e-01 -8.80387843e-01 1.40673548e-01 1.13367796e+00
5.22458375e-01 -6.72646344e-01 1.06296575e+00 9.55736279e-01
3.11257541e-01 -1.04955399e+00 -1.27983785e+00 -6.33694768e-01
6.93740249e-02 -3.12042326e-01 5.95474064e-01 8.86266410e-01
-2.45813325e-01 3.74606788e-01 -4.77091849e-01 -4.45666164e-01
3.37864250e-01 -2.52665021e-03 7.17746139e-01 -1.40792608e+00
-3.01242113e-01 -8.00835252e-01 -7.37527251e-01 -3.97558957e-01
3.68599862e-01 -6.10758305e-01 -1.47997707e-01 -5.12700796e-01
2.81128138e-02 -5.48472524e-01 -2.63947546e-01 8.32346916e-01
8.59055445e-02 4.29007083e-01 1.15686975e-01 -6.18060045e-02
-2.79762655e-01 5.93900144e-01 8.62649977e-01 7.93005154e-02
-5.67310490e-02 -1.20600067e-01 -8.19102824e-01 9.34028685e-01
6.28989220e-01 -4.95859027e-01 -3.19580466e-01 -4.97540712e-01
2.88177341e-01 -2.78855801e-01 2.27055341e-01 -7.64692783e-01
-4.12502624e-02 -5.40278777e-02 6.47654057e-01 3.52467209e-01
6.13025546e-01 -9.27392840e-01 8.92479792e-02 3.32108438e-01
-4.33326930e-01 3.15670148e-02 5.45356691e-01 2.04541028e-01
-4.83126715e-02 -4.16945368e-01 1.16955900e+00 -1.32688984e-01
-9.18886542e-01 1.52733952e-01 -2.44594261e-01 -1.70959130e-01
1.05605376e+00 -2.68908679e-01 9.30865407e-02 -3.78933161e-01
-7.95474052e-01 -8.77868310e-02 3.94091129e-01 5.46276212e-01
2.88659424e-01 -1.12890708e+00 -5.07364392e-01 5.30962408e-01
-1.16414791e-02 -4.78832543e-01 2.34736383e-01 7.21285462e-01
-5.35686970e-01 2.47826919e-01 -4.81375962e-01 -4.38601553e-01
-1.67610979e+00 3.67953688e-01 5.93198776e-01 6.64137006e-02
-4.50011283e-01 1.28190732e+00 -1.05396017e-01 -2.90559858e-01
3.70610148e-01 1.66401267e-01 -2.43496686e-01 4.38898861e-01
5.90307772e-01 3.01133215e-01 3.31793100e-01 -7.04407394e-01
-4.99265909e-01 8.25469017e-01 -6.33858368e-02 1.22030444e-01
1.59491384e+00 1.73872128e-01 -3.44409019e-01 1.08673498e-01
1.49013567e+00 -2.96301842e-01 -1.22698677e+00 -8.44365656e-02
1.60527095e-01 -5.36631346e-01 2.02650741e-01 -9.19988751e-01
-1.19723177e+00 1.01265538e+00 7.94529378e-01 -8.99858847e-02
1.61421692e+00 -1.95104435e-01 5.85145473e-01 7.83922374e-01
2.50590533e-01 -1.22778451e+00 7.70545378e-02 1.89613149e-01
7.91200638e-01 -1.20037043e+00 -6.52656332e-02 -1.94811881e-01
-6.34063244e-01 1.43079829e+00 5.51064551e-01 -1.12177469e-02
3.79895508e-01 3.62547219e-01 2.34812230e-01 -4.50760037e-01
-9.06539381e-01 7.26317540e-02 2.70716697e-01 5.53603947e-01
3.81846488e-01 -2.11105824e-01 -4.38350663e-02 4.53120887e-01
-3.72641444e-01 -6.90538958e-02 -1.23455459e-02 7.73902774e-01
-5.03545642e-01 -1.07450008e+00 -2.50164479e-01 3.07887346e-01
-4.98775899e-01 1.03567414e-01 -6.33050799e-01 6.64912939e-01
2.54057705e-01 6.45789027e-01 2.60617375e-01 -2.33831316e-01
2.20940694e-01 3.71291637e-01 7.41816819e-01 -1.61955863e-01
-6.11434042e-01 -2.98800856e-01 1.27089918e-01 -4.30130631e-01
-2.96658218e-01 -6.81423306e-01 -8.97242785e-01 -4.51572597e-01
-3.82687867e-01 3.24065298e-01 6.83616579e-01 1.04339635e+00
5.85786164e-01 2.14340284e-01 7.99705923e-01 -9.14795697e-01
-8.45645070e-01 -5.95586956e-01 -4.95310843e-01 3.67759138e-01
2.21338958e-01 -7.59659111e-01 -4.12677079e-01 9.19189230e-02] | [13.488551139831543, 1.6357522010803223] |
25e06e33-c68d-468d-8acb-bbaeec94872b | generating-fast-and-slow-scene-decomposition | 2203.11194 | null | https://arxiv.org/abs/2203.11194v3 | https://arxiv.org/pdf/2203.11194v3.pdf | Test-time Adaptation with Slot-Centric Models | Current visual detectors, though impressive within their training distribution, often fail to parse out-of-distribution scenes into their constituent entities. Recent test-time adaptation methods use auxiliary self-supervised losses to adapt the network parameters to each test example independently and have shown promising results towards generalization outside the training distribution for the task of image classification. In our work, we find evidence that these losses are insufficient for the task of scene decomposition, without also considering architectural inductive biases. Recent slot-centric generative models attempt to decompose scenes into entities in a self-supervised manner by reconstructing pixels. Drawing upon these two lines of work, we propose Slot-TTA, a semi-supervised slot-centric scene decomposition model that at test time is adapted per scene through gradient descent on reconstruction or cross-view synthesis objectives. We evaluate Slot-TTA across multiple input modalities, images or 3D point clouds, and show substantial out-of-distribution performance improvements against state-of-the-art supervised feed-forward detectors, and alternative test-time adaptation methods. | ['Katerina Fragkiadaki', 'Thomas Kipf', 'Gaurav Aggarwal', 'Mehdi S. M. Sajjadi', 'Sjoerd van Steenkiste', 'Sujoy Paul', 'Deepak Pathak', 'Anirudh Goyal', 'Mihir Prabhudesai'] | 2022-03-21 | null | null | null | null | ['scene-segmentation', 'semi-supervised-instance-segmentation'] | ['computer-vision', 'computer-vision'] | [ 3.26651365e-01 1.97175145e-01 -7.24878237e-02 -7.57393241e-01
-8.70787442e-01 -6.22769356e-01 8.63268971e-01 -2.01081783e-01
-2.25424901e-01 3.79188210e-01 9.32134595e-03 -2.56305784e-01
1.14120618e-01 -7.58960545e-01 -1.15955877e+00 -5.04939914e-01
2.50817299e-01 1.02834749e+00 4.10164207e-01 2.74607092e-01
-5.36738411e-02 5.07050574e-01 -1.49423099e+00 6.89352930e-01
6.45099223e-01 8.68494272e-01 2.18166620e-01 7.23431587e-01
-1.93267584e-01 9.66884136e-01 -3.35118949e-01 -3.95879507e-01
2.83177853e-01 -4.44612622e-01 -6.20232284e-01 5.26328683e-01
1.03457499e+00 -2.19056815e-01 -3.64192069e-01 9.69151795e-01
3.68565857e-01 -4.83879074e-02 9.42366004e-01 -1.14924347e+00
-8.21533322e-01 3.13951075e-01 -4.66282010e-01 1.29281297e-01
-1.54465698e-02 3.02676946e-01 1.08421314e+00 -1.41887474e+00
9.31837976e-01 1.20365465e+00 8.79668415e-01 6.20544851e-01
-1.81273258e+00 -4.77232546e-01 5.71476102e-01 -1.98211223e-02
-1.29245555e+00 -5.70464790e-01 9.75709021e-01 -6.55271173e-01
1.52452815e+00 -3.01554538e-02 6.40350282e-01 1.32521701e+00
-5.82194366e-02 1.11330068e+00 1.02711046e+00 -4.57433581e-01
4.92495894e-01 5.60025752e-01 -2.60825187e-01 7.75567234e-01
2.14888617e-01 1.23920785e-02 -6.85653806e-01 1.21926777e-01
8.00910890e-01 -3.01572293e-01 5.57070971e-03 -1.16739821e+00
-1.03697062e+00 8.04852724e-01 7.74568498e-01 -5.90330921e-02
-1.90921754e-01 1.22210100e-01 3.78316641e-01 1.63601846e-01
8.63675416e-01 4.80447292e-01 -3.98868531e-01 3.80260348e-01
-1.11944127e+00 1.66698873e-01 6.08389676e-01 1.10782647e+00
9.00576890e-01 3.05375248e-01 -1.95625141e-01 8.19107652e-01
4.58739460e-01 6.19777083e-01 1.19846664e-01 -8.03233981e-01
4.60815430e-01 5.96138358e-01 -3.00639629e-01 -3.90126884e-01
-2.70841479e-01 -8.44992936e-01 -6.66346550e-01 5.21089077e-01
9.50716659e-02 1.32298395e-01 -1.46575499e+00 1.86769331e+00
4.27591354e-01 -4.36830111e-02 3.08663817e-03 7.66256332e-01
7.54710197e-01 4.96580720e-01 5.04236758e-01 2.16689065e-01
9.12931085e-01 -1.09551942e+00 1.59828022e-01 -7.11465240e-01
3.53000671e-01 -4.66966003e-01 1.18053055e+00 3.98156971e-01
-1.05277014e+00 -8.61697197e-01 -9.77158010e-01 -1.78082317e-01
-4.22470391e-01 3.22491735e-01 6.67503834e-01 6.20843887e-01
-1.12916505e+00 2.70340711e-01 -9.63670790e-01 -5.62872350e-01
9.51637208e-01 3.92344818e-02 -4.35686916e-01 -3.23080271e-01
-4.20132995e-01 8.32210720e-01 2.81726241e-01 -3.11731130e-01
-1.46220171e+00 -1.00754750e+00 -9.95389402e-01 -4.05806154e-02
8.33353698e-02 -1.37127423e+00 1.14957213e+00 -9.77117658e-01
-1.04965103e+00 1.27769446e+00 -1.80137455e-01 -4.81204629e-01
5.18233597e-01 -2.12599039e-01 -2.44278774e-01 3.44991423e-02
3.77145678e-01 1.17686534e+00 1.18927836e+00 -1.71648800e+00
-5.98348200e-01 -3.97804469e-01 8.37781951e-02 5.12746394e-01
-2.28695273e-01 -7.18680739e-01 -4.79478210e-01 -4.31936502e-01
3.17718804e-01 -7.78687119e-01 -2.22608089e-01 2.41042748e-01
-6.32955670e-01 -1.65658653e-01 6.88622296e-01 -1.49584442e-01
5.91421902e-01 -2.27752995e+00 3.17137063e-01 5.40034240e-03
1.50149927e-01 -1.37374625e-01 -1.75654814e-01 6.36789799e-02
-1.98916003e-01 -1.38303116e-01 -4.85057861e-01 -9.86478448e-01
2.51909375e-01 3.45683545e-01 -8.13604772e-01 4.74108547e-01
6.38352573e-01 7.93191373e-01 -7.77562916e-01 -4.96573746e-01
5.72656810e-01 4.40986872e-01 -8.94183695e-01 2.38856778e-01
-6.58475339e-01 2.35539645e-01 -1.49682626e-01 7.74337471e-01
6.00532174e-01 -3.99403691e-01 -4.63815266e-03 -3.85751665e-01
1.76069841e-01 2.74032980e-01 -7.36103833e-01 2.09054184e+00
-4.63173032e-01 8.16318274e-01 -1.21286355e-01 -1.01687324e+00
6.63641870e-01 -1.06136039e-01 3.02204818e-01 -6.50978446e-01
-2.45226368e-01 7.83984363e-02 -3.14723969e-01 -2.01979741e-01
3.71479422e-01 -3.92137378e-01 1.42251894e-01 1.78473666e-01
8.09202373e-01 -5.24982333e-01 1.09618932e-01 2.39981055e-01
1.11880803e+00 6.90963030e-01 -9.75729674e-02 6.00799210e-02
1.20667167e-01 3.31262112e-01 2.78543651e-01 9.78474915e-01
1.27933668e-02 1.04521477e+00 1.49471030e-01 -3.45735073e-01
-1.50421262e+00 -1.65561616e+00 -4.59548354e-01 1.12806344e+00
-1.22906240e-02 -1.88466728e-01 -4.95298505e-01 -8.45003366e-01
2.97923386e-01 1.11239052e+00 -6.90389395e-01 -2.46644869e-01
-8.65666941e-02 -6.55938685e-01 3.99128854e-01 7.96205044e-01
4.61875409e-01 -9.69429731e-01 -5.85509062e-01 6.54456913e-02
2.48379022e-01 -1.15752602e+00 1.52682260e-01 5.80540836e-01
-9.41067219e-01 -8.89228165e-01 -7.50000656e-01 -6.98961914e-01
1.01758897e+00 2.36977547e-01 1.57756686e+00 -4.23116595e-01
-4.68624115e-01 8.19802999e-01 3.82509409e-03 -3.43886405e-01
-3.23033541e-01 1.13608778e-01 -9.40725058e-02 -8.55831131e-02
4.64890391e-01 -8.18013847e-01 -5.33421695e-01 9.60642919e-02
-8.40788007e-01 2.60569125e-01 7.52007723e-01 8.76443446e-01
8.48648906e-01 -1.52017117e-01 1.12165734e-01 -1.25748181e+00
1.94401816e-01 -5.39454699e-01 -3.45048845e-01 3.50893259e-01
-6.39612377e-01 2.08378121e-01 4.29433584e-01 -3.13341081e-01
-1.27336860e+00 2.81762689e-01 -2.12934744e-02 -1.13679540e+00
-4.49890852e-01 2.30111197e-01 -1.29224256e-01 -4.66365404e-02
1.14116013e+00 4.39573914e-01 -4.59643841e-01 -2.98893750e-01
5.65472662e-01 5.25976084e-02 5.89263022e-01 -6.44650280e-01
1.02633893e+00 7.25459754e-01 2.31556818e-02 -6.82093084e-01
-1.10932219e+00 -6.53227568e-01 -7.17653215e-01 -2.01773673e-01
9.26721156e-01 -1.45532501e+00 -4.88481075e-02 2.98568189e-01
-9.42117572e-01 -7.49969542e-01 -7.44874239e-01 2.35724121e-01
-8.68115723e-01 -4.08204943e-02 -3.18616986e-01 -7.22325265e-01
4.32371795e-02 -7.06384897e-01 1.44185317e+00 -3.57300080e-02
-8.60823840e-02 -1.05702519e+00 1.85400888e-01 1.88489735e-01
2.63361126e-01 6.60399199e-02 8.80983412e-01 -3.77490044e-01
-8.64371538e-01 -1.78142920e-01 -3.15430850e-01 5.27533412e-01
-1.92449331e-01 -1.02246456e-01 -1.37360692e+00 -3.87095660e-01
-2.02898294e-01 -7.72342443e-01 1.41519403e+00 4.34263289e-01
1.10381639e+00 8.93299952e-02 -4.96129185e-01 1.09698153e+00
1.61014533e+00 -3.50823790e-01 6.20056152e-01 2.51711577e-01
8.37979019e-01 3.67107630e-01 2.28266478e-01 3.19687933e-01
3.39310288e-01 3.70712340e-01 4.96824652e-01 -2.44127750e-01
-6.52645767e-01 -7.42535591e-01 2.65485525e-01 2.72980213e-01
2.02198133e-01 -4.26512450e-01 -9.30216551e-01 8.73839498e-01
-1.62236118e+00 -9.66542065e-01 1.99498147e-01 1.99884808e+00
5.76343358e-01 5.30236900e-01 -4.33178321e-02 -2.92580992e-01
1.65335760e-01 1.83657870e-01 -1.01669049e+00 -1.02204429e-02
-4.39578325e-01 1.13472819e-01 4.60266620e-01 2.99040407e-01
-1.30544889e+00 1.00251544e+00 6.69004774e+00 6.35754466e-01
-1.15098989e+00 1.99061617e-01 8.32983971e-01 -2.17703775e-01
-5.76286852e-01 1.68142766e-01 -7.22527742e-01 3.53846736e-02
6.47479117e-01 3.06372136e-01 2.03525618e-01 1.28219473e+00
-5.42931676e-01 -1.79679126e-01 -1.48491287e+00 1.06753087e+00
3.61959219e-01 -1.38788807e+00 2.11401194e-01 -1.07956558e-01
1.02592981e+00 5.29146612e-01 4.68301564e-01 6.37775242e-01
5.50120533e-01 -8.64006996e-01 1.11865187e+00 5.60069263e-01
9.07350063e-01 -2.53044665e-01 1.21893898e-01 1.90876901e-01
-9.58947420e-01 5.74709065e-02 -5.80118537e-01 2.28745311e-01
1.13281585e-01 5.49714088e-01 -1.16184485e+00 2.69941956e-01
8.56058002e-01 8.89996171e-01 -8.72413993e-01 1.03243780e+00
-3.56253445e-01 8.11580777e-01 -4.12935555e-01 3.60729814e-01
1.54043391e-01 2.11176217e-01 6.90724671e-01 1.29237139e+00
1.55612022e-01 -3.35298419e-01 1.70699924e-01 1.49111402e+00
-8.00012946e-02 -4.67315555e-01 -7.51173735e-01 9.41418260e-02
2.72641480e-01 1.00452197e+00 -6.68700039e-01 -3.99652421e-01
-2.19268546e-01 1.11657465e+00 5.36325216e-01 6.13153338e-01
-5.77439427e-01 1.32063925e-01 5.15065968e-01 3.09548646e-01
7.22254097e-01 -1.47996426e-01 -7.03324914e-01 -1.30625105e+00
5.96656166e-02 -4.22187984e-01 2.43451700e-01 -1.17514956e+00
-1.65517986e+00 5.11744797e-01 1.08940370e-01 -1.39149666e+00
-3.72855008e-01 -8.90600741e-01 -4.00712222e-01 7.26072550e-01
-1.40489542e+00 -1.59044516e+00 -2.28301346e-01 6.19334579e-01
7.26379335e-01 -4.49332625e-01 8.11277449e-01 1.11096121e-01
-2.81947792e-01 4.95832026e-01 5.73881483e-03 -3.76790320e-03
5.86943448e-01 -1.46031117e+00 5.20671070e-01 9.12604928e-01
6.37149215e-01 4.37482357e-01 6.96883380e-01 -4.65667397e-01
-1.17617786e+00 -1.24755323e+00 4.42900032e-01 -8.64633799e-01
3.44733715e-01 -7.69204319e-01 -7.27406204e-01 8.84117186e-01
1.57922268e-01 4.32850003e-01 5.19500077e-01 5.38765073e-01
-9.18793321e-01 -1.92660868e-01 -1.07938015e+00 4.76455450e-01
1.31398058e+00 -8.96552563e-01 -4.39989120e-01 4.85525697e-01
5.50146580e-01 -4.82937843e-01 -4.42019343e-01 4.97772157e-01
2.17070639e-01 -1.19029152e+00 1.14628768e+00 -6.63412631e-01
5.91532707e-01 -3.84839356e-01 -3.91552210e-01 -1.25193739e+00
-6.12183332e-01 3.78003195e-02 -7.36708865e-02 1.00904119e+00
5.37629962e-01 -2.70365328e-01 1.16026306e+00 4.62688059e-01
-5.87200344e-01 -5.35462379e-01 -9.29766953e-01 -5.69729686e-01
-2.65370682e-02 -6.69023335e-01 1.31001454e-02 7.91656494e-01
-6.08759820e-01 7.62848854e-01 6.62941635e-02 2.51503587e-01
9.58287477e-01 1.83489904e-01 1.02156484e+00 -1.00345564e+00
-5.67907512e-01 -5.51595092e-01 -5.59583008e-01 -1.03425360e+00
1.55252382e-01 -8.83655488e-01 2.64036208e-01 -1.66501844e+00
3.38994890e-01 -6.23858869e-01 -2.64831781e-01 5.52677274e-01
1.76913321e-01 3.94933045e-01 1.21927321e-01 2.97794729e-01
-8.10643256e-01 7.48063147e-01 9.68603373e-01 -6.01893604e-01
1.05898686e-01 -1.16359442e-01 -4.94810253e-01 6.20555222e-01
2.78882563e-01 -3.43255222e-01 -8.32181573e-01 -7.28895307e-01
2.40167737e-01 -4.61495578e-01 8.43072295e-01 -1.43033373e+00
2.27035165e-01 5.47687598e-02 8.78273487e-01 -7.18462765e-01
6.89629376e-01 -7.34554231e-01 1.59244359e-01 2.99945287e-02
-3.16629797e-01 -4.23417121e-01 4.18473572e-01 8.48210156e-01
-2.00624302e-01 -2.79203355e-02 6.71089590e-01 -3.26304048e-01
-1.04916739e+00 2.09545955e-01 2.71699224e-02 4.87560108e-02
7.64371693e-01 -5.28720260e-01 -2.90877730e-01 -1.46970272e-01
-8.98624480e-01 -8.76431689e-02 6.03143692e-01 2.87904859e-01
7.02370465e-01 -1.24134290e+00 -6.62752688e-01 3.26791465e-01
5.14585018e-01 4.20285225e-01 5.62078595e-01 4.44221646e-01
-4.21500802e-01 4.02096748e-01 -1.68290347e-01 -1.20787716e+00
-8.36706758e-01 5.18204272e-01 4.96890038e-01 -9.75225940e-02
-5.25289118e-01 1.39698565e+00 8.37832987e-01 -7.31196463e-01
1.86928958e-01 -2.62954742e-01 4.72133398e-01 -2.71260798e-01
-7.60553172e-03 -3.57136101e-01 1.19920559e-01 -3.83873373e-01
-3.27151418e-01 4.17091072e-01 -5.28098047e-02 -2.49495983e-01
1.42358482e+00 1.01245113e-03 2.64612406e-01 6.67139590e-01
1.08308053e+00 -2.57878572e-01 -1.75374043e+00 -3.57661992e-01
-4.17867213e-01 -4.13858086e-01 7.86846876e-02 -9.95645106e-01
-8.24252427e-01 1.02854872e+00 5.81885993e-01 -3.41703370e-02
1.15828955e+00 4.08936530e-01 1.06546842e-02 4.57396120e-01
3.96834821e-01 -9.57328558e-01 2.91279197e-01 4.22770202e-01
8.21689904e-01 -1.41241336e+00 7.61733726e-02 -3.53194892e-01
-6.14641190e-01 7.59774446e-01 9.95248973e-01 -4.62059230e-01
6.35172784e-01 7.75891393e-02 -2.02350974e-01 -3.05764675e-01
-9.89978492e-01 -3.01351309e-01 5.20623684e-01 9.23226118e-01
2.62107521e-01 2.52940580e-02 6.65652096e-01 5.74892350e-02
-6.11034743e-02 -2.45353505e-01 -5.68065122e-02 7.35378504e-01
-3.70507270e-01 -6.78297758e-01 -1.14887863e-01 4.53334332e-01
2.47409627e-01 -1.13303371e-01 -4.22612995e-01 8.88193011e-01
2.33427152e-01 4.00553495e-01 4.03409362e-01 -3.61637801e-01
3.28861833e-01 1.70219392e-01 9.14713919e-01 -8.30470026e-01
-4.77536768e-02 4.11444111e-03 1.25120670e-01 -3.39669019e-01
-4.59096402e-01 -8.35216999e-01 -7.83127964e-01 9.27727297e-02
-7.14247450e-02 -3.33884418e-01 6.11029923e-01 7.70097256e-01
3.89739335e-01 7.45794535e-01 4.25314575e-01 -1.00993729e+00
-4.62414175e-01 -9.67737794e-01 -3.27815682e-01 6.64241493e-01
2.93296248e-01 -7.86856651e-01 -2.24240050e-01 2.36487105e-01] | [8.526506423950195, -3.0636515617370605] |
a214b09d-a438-469e-86fc-95ce0a4411b3 | image-reconstruction-algorithms-in-radio | 2202.12959 | null | https://arxiv.org/abs/2202.12959v2 | https://arxiv.org/pdf/2202.12959v2.pdf | Image reconstruction algorithms in radio interferometry: from handcrafted to learned regularization denoisers | We introduce a new class of iterative image reconstruction algorithms for radio interferometry, at the interface of convex optimization and deep learning, inspired by plug-and-play methods. The approach consists in learning a prior image model by training a deep neural network (DNN) as a denoiser, and substituting it for the handcrafted proximal regularization operator of an optimization algorithm. The proposed AIRI (``AI for Regularization in radio-interferometric Imaging'') framework, for imaging complex intensity structure with diffuse and faint emission from visibility data, inherits the robustness and interpretability of optimization, and the learning power and speed of networks. Our approach relies on three steps. Firstly, we design a low dynamic range training database from optical intensity images. Secondly, we train a DNN denoiser at a noise level inferred from the signal-to-noise ratio of the data. We use training losses enhanced with a nonexpansiveness term ensuring algorithm convergence, and including on-the-fly database dynamic range enhancement via exponentiation. Thirdly, we plug the learned denoiser into the forward-backward optimization algorithm, resulting in a simple iterative structure alternating a denoising step with a gradient-descent data-fidelity step. We have validated AIRI against CLEAN, optimization algorithms of the SARA family, and a DNN trained to reconstruct the image directly from visibility data. Simulation results show that AIRI is competitive in imaging quality with SARA and its unconstrained forward-backward-based version uSARA, while providing significant acceleration. CLEAN remains faster but offers lower quality. The end-to-end DNN offers further acceleration, but with far lower quality than AIRI. | ['Yves Wiaux', 'Chao Tang', 'Arwa Dabbech', 'Matthieu Terris'] | 2022-02-25 | null | null | null | null | ['radio-interferometry'] | ['miscellaneous'] | [ 4.68710631e-01 -8.01118165e-02 5.94570577e-01 -4.74890441e-01
-9.35867012e-01 -2.72660047e-01 3.92650843e-01 -7.87552714e-01
-7.26220846e-01 7.07916439e-01 2.08794370e-01 -3.07520598e-01
-6.64543033e-01 -6.47884369e-01 -9.58946347e-01 -1.19965363e+00
-2.24959806e-01 4.32757616e-01 -4.26639497e-01 -3.48358303e-01
-1.99660063e-01 6.77420497e-01 -1.37796664e+00 -1.91446155e-01
9.92179096e-01 1.18540764e+00 3.13175440e-01 8.72786820e-01
4.23231125e-01 9.74257588e-01 -3.52013469e-01 -1.90244555e-01
7.87904859e-01 -5.36203742e-01 -4.67855573e-01 2.46834174e-01
5.46991229e-01 -5.11622250e-01 -6.37899876e-01 1.14600945e+00
6.35923028e-01 1.22971632e-01 2.08988756e-01 -5.76999843e-01
-4.88910049e-01 2.32764885e-01 -4.75823313e-01 6.55359477e-02
-8.38880241e-02 3.81305486e-01 9.07367826e-01 -9.74559844e-01
5.60822427e-01 8.69600773e-01 1.03506017e+00 2.61864722e-01
-1.44178188e+00 -2.70446718e-01 -2.93565273e-01 2.69880090e-02
-1.21410799e+00 -6.80014670e-01 6.38922393e-01 -2.02771828e-01
8.27027082e-01 4.38556880e-01 5.97160757e-01 7.11086571e-01
-6.82042912e-02 4.18532223e-01 1.25900412e+00 -4.10396963e-01
1.18945323e-01 -1.95749521e-01 -1.95149720e-01 5.97782016e-01
9.34795383e-03 6.46769881e-01 -3.60181242e-01 3.78927030e-02
9.04758573e-01 -2.16095611e-01 -8.56879115e-01 -3.75978559e-01
-9.04298723e-01 7.60104358e-01 8.88870060e-01 9.36674625e-02
-7.22501993e-01 2.21932799e-01 2.85253469e-02 8.74850512e-01
6.25021398e-01 5.28861582e-01 -3.32823128e-01 2.35983223e-01
-1.17521644e+00 2.88636088e-01 7.93741822e-01 4.24843609e-01
9.74721551e-01 5.09105265e-01 6.38982728e-02 7.84866035e-01
2.79903650e-01 8.36776853e-01 2.63487101e-01 -1.32047689e+00
2.96820879e-01 -1.03728063e-01 2.67688900e-01 -7.02351272e-01
-4.88277286e-01 -1.11151290e+00 -1.21547031e+00 8.60291600e-01
3.22845370e-01 -2.74313956e-01 -1.00731122e+00 1.81670249e+00
3.08030188e-01 1.66923210e-01 2.39409491e-01 1.40767431e+00
2.75993884e-01 6.48067892e-01 -5.75101554e-01 -4.41782922e-01
1.02807271e+00 -7.69055843e-01 -5.93805432e-01 -4.48089868e-01
1.15485571e-01 -7.22624183e-01 9.08582509e-01 8.21353555e-01
-1.36207116e+00 -7.08833516e-01 -1.16235483e+00 -2.08899647e-01
1.96730927e-01 1.21908203e-01 3.69584054e-01 5.59434056e-01
-1.35758173e+00 9.72572207e-01 -7.23096073e-01 1.68822676e-01
3.63718241e-01 3.27093899e-01 -3.17308843e-01 -1.43676758e-01
-9.19116974e-01 8.05389583e-01 2.10509345e-01 6.99655890e-01
-1.13406622e+00 -8.81409764e-01 -8.26334536e-01 -6.13210537e-02
3.73314261e-01 -1.14277256e+00 8.56587648e-01 -1.44705296e+00
-1.89322722e+00 8.24194968e-01 5.61055578e-02 -8.90235424e-01
8.07495773e-01 -6.23138785e-01 -3.02526265e-01 1.85643837e-01
-1.38115123e-01 2.30409548e-01 1.38625789e+00 -1.32497239e+00
-2.92300791e-01 -3.38448673e-01 3.33601832e-02 2.36715034e-01
2.68456161e-01 -2.63573557e-01 -3.25613260e-01 -5.72444916e-01
4.36497062e-01 -8.69328141e-01 -4.04664993e-01 1.63710997e-01
-2.19027922e-01 6.64165318e-01 4.93957371e-01 -1.15964699e+00
6.63465679e-01 -2.21296930e+00 4.70777720e-01 4.39051837e-01
2.94054449e-01 1.54083133e-01 -4.14530128e-01 -2.80152392e-02
-5.05846918e-01 -4.80221689e-01 -7.46226788e-01 -6.04460478e-01
-1.81238294e-01 3.57876390e-01 -3.22718769e-01 9.47758853e-01
1.63575381e-01 7.95258820e-01 -7.53952682e-01 1.92654371e-01
3.77151430e-01 6.38078272e-01 -7.28602588e-01 5.61030686e-01
-7.82720596e-02 8.23882520e-01 2.16202112e-03 3.68368566e-01
9.75729823e-01 -7.70328119e-02 8.18066075e-02 -6.20528221e-01
-3.42381477e-01 7.91284889e-02 -1.26180446e+00 1.84612942e+00
-9.12567854e-01 7.35326231e-01 1.03461123e+00 -1.22756946e+00
7.16814339e-01 3.72256152e-02 2.89715618e-01 -8.85733604e-01
9.59644467e-02 4.72479492e-01 1.30114295e-02 -5.48897088e-01
2.70722598e-01 -3.80773634e-01 4.21409458e-01 8.29330385e-02
1.36202738e-01 -4.54238206e-01 -1.05715312e-01 -3.95733723e-03
1.11050236e+00 3.41012746e-01 3.60573456e-02 -1.37114182e-01
6.52413487e-01 -2.32669264e-01 4.27048862e-01 1.03185940e+00
2.21466750e-01 9.47194695e-01 5.20206615e-02 -4.53123033e-01
-1.20911717e+00 -1.17481983e+00 -2.21255317e-01 8.56708825e-01
-2.36356959e-01 2.25154951e-01 -6.44583762e-01 -1.30317420e-01
-2.37026557e-01 5.04508853e-01 -4.43473369e-01 3.62661965e-02
-8.96550715e-01 -1.02398896e+00 1.72388986e-01 -4.32341686e-03
8.80013287e-01 -7.75528610e-01 -3.88469398e-01 2.47876287e-01
-2.68493325e-01 -1.00635111e+00 -1.70560703e-01 3.88343573e-01
-9.70445812e-01 -7.90269971e-01 -5.66480637e-01 -4.55804527e-01
4.13508803e-01 3.37372363e-01 1.28738427e+00 1.45553155e-02
-3.17929804e-01 2.43618488e-01 -4.42475975e-02 2.74451170e-02
-4.80726629e-01 -3.84330064e-01 5.65429404e-02 2.55609989e-01
-6.09482646e-01 -1.29638386e+00 -8.32259119e-01 7.02945217e-02
-9.68850851e-01 -2.49464046e-02 9.12443578e-01 1.27332711e+00
6.21131122e-01 2.58121435e-02 -5.17878793e-02 -7.70356119e-01
2.64377534e-01 -1.10564888e-01 -1.07041395e+00 -1.00780010e-01
-6.93675995e-01 2.27921143e-01 7.32222676e-01 -1.35899475e-02
-1.27550948e+00 1.50249273e-01 -6.01849020e-01 -6.03421748e-01
1.80415601e-01 6.52900517e-01 -2.50998229e-01 -6.08297646e-01
9.72872972e-01 3.32276255e-01 3.43882501e-01 -6.34925961e-01
6.21237695e-01 3.30427080e-01 1.20522535e+00 -2.32004672e-01
1.31962359e+00 8.92580748e-01 1.61982700e-01 -9.37602162e-01
-1.04929626e+00 -4.28834051e-01 -2.39076108e-01 -1.73351973e-01
6.43734396e-01 -1.21613741e+00 -5.79407275e-01 7.22670853e-01
-9.27497804e-01 -5.41617215e-01 -7.25895226e-01 5.51450074e-01
-6.47898138e-01 5.29650211e-01 -6.27078474e-01 -5.84079325e-01
-5.37700117e-01 -8.77539098e-01 8.86302650e-01 9.19610113e-02
4.89825219e-01 -8.36306810e-01 9.19006392e-02 4.73812550e-01
6.67748094e-01 2.03979239e-01 4.76400852e-01 5.90394810e-02
-8.38160872e-01 -7.44640455e-02 -4.33007747e-01 9.89929736e-01
-2.80041635e-01 -5.51239133e-01 -1.29819012e+00 -5.77002347e-01
9.69667733e-01 -3.50880891e-01 1.12824774e+00 7.55791128e-01
1.01095402e+00 -4.83552486e-01 3.62131357e-01 1.58732653e+00
1.84156954e+00 -3.59690994e-01 1.06261766e+00 4.20797646e-01
7.06425846e-01 3.93672198e-01 2.35097140e-01 3.55937719e-01
-1.76675141e-01 4.72886175e-01 8.49242628e-01 -4.15723592e-01
-3.36487144e-01 3.31154615e-01 4.04374182e-01 6.53693557e-01
-3.52046847e-01 -1.49302065e-01 -4.41380978e-01 4.34758842e-01
-1.65507245e+00 -9.73391593e-01 -1.17196046e-01 2.31988239e+00
7.57945478e-01 2.68320483e-03 -2.56739676e-01 8.13279077e-02
1.20027691e-01 4.26213235e-01 -5.54436326e-01 -2.73215249e-02
-4.49574143e-01 6.41509295e-01 9.39869761e-01 1.02215648e+00
-9.87923145e-01 4.79975760e-01 5.27044296e+00 6.43803060e-01
-1.26417899e+00 3.66660088e-01 4.29292083e-01 -9.14814472e-02
-2.77735829e-01 3.15360390e-02 -1.16161004e-01 3.78644615e-02
9.79562700e-01 3.69322777e-01 1.06976187e+00 4.83423322e-01
5.36879003e-01 8.25618282e-02 -7.70495474e-01 1.04417622e+00
-2.58810516e-03 -1.39433467e+00 -3.51165861e-01 1.18295267e-01
6.18564010e-01 6.15015745e-01 7.72356391e-02 6.25079870e-02
1.82832360e-01 -9.22777355e-01 8.23697746e-01 7.69892454e-01
7.34648466e-01 -5.79576135e-01 6.82031572e-01 3.05081159e-01
-6.49348021e-01 -1.53651386e-01 -3.34638029e-01 -9.55943912e-02
3.54650348e-01 1.10556257e+00 -2.94938415e-01 9.45201218e-01
7.09382296e-01 5.84727466e-01 -4.35949154e-02 9.22467053e-01
-4.12601531e-01 6.56308174e-01 -5.22211611e-01 7.28084087e-01
3.10796648e-01 -8.82349253e-01 1.00322413e+00 1.06629026e+00
3.62220079e-01 1.23941869e-01 -2.77297776e-02 9.11304414e-01
-1.94149271e-01 -4.32422668e-01 -3.06870818e-01 5.14764369e-01
-5.19333445e-02 1.34795702e+00 -7.79893845e-02 -1.01258762e-01
-2.11782619e-01 1.25505912e+00 7.48024359e-02 6.09204948e-01
-7.50481129e-01 -3.18065166e-01 7.39066899e-01 1.12839498e-01
5.07445812e-01 -1.55113697e-01 -1.59201428e-01 -1.08762443e+00
2.79485732e-01 -1.06382227e+00 6.27477020e-02 -1.05789864e+00
-1.23799455e+00 7.35012114e-01 -3.92588049e-01 -1.27531660e+00
-2.13934258e-01 -7.56779432e-01 -5.47529161e-01 1.15930104e+00
-1.94171035e+00 -1.07178617e+00 -5.40337265e-01 5.46119034e-01
2.60495752e-01 1.20218493e-01 4.97801006e-01 5.20802557e-01
-2.31739551e-01 1.84822619e-01 6.09020829e-01 -7.70805031e-02
4.10540730e-01 -1.27602553e+00 3.25417191e-01 1.20478690e+00
3.24044935e-02 4.09542531e-01 1.10060751e+00 -1.33244023e-01
-1.50931394e+00 -1.11375642e+00 5.24843693e-01 3.26394327e-02
7.49366462e-01 -1.94760472e-01 -1.03882349e+00 6.24324024e-01
3.29389423e-01 2.55129158e-01 -6.00777715e-02 -1.16144672e-01
-1.92145705e-01 -5.00220776e-01 -1.20870590e+00 2.99882799e-01
1.10494649e+00 -7.04543173e-01 -3.78835678e-01 5.73621631e-01
6.08646691e-01 -6.48675442e-01 -6.72610283e-01 3.30246478e-01
4.04430926e-01 -1.32327521e+00 1.42579186e+00 -1.32575035e-01
3.47689956e-01 -4.77443755e-01 -1.20692044e-01 -1.55930185e+00
-4.38571185e-01 -1.09611416e+00 -1.23800291e-02 7.78831065e-01
3.01407993e-01 -7.60409951e-01 6.63125336e-01 1.38420034e-02
-5.68234622e-01 -2.84968525e-01 -1.09869182e+00 -8.87777925e-01
-2.21764609e-01 -5.37238300e-01 3.23398486e-02 6.84713006e-01
-1.03198922e+00 2.49370098e-01 -7.87869573e-01 7.34854996e-01
1.20339823e+00 6.02521710e-02 7.39998460e-01 -9.34000909e-01
-9.25707579e-01 -1.39609426e-01 -1.08429432e-01 -1.33555698e+00
-1.67380899e-01 -6.56329334e-01 4.70705122e-01 -1.16360450e+00
-2.51081765e-01 -1.98309794e-01 -4.77982163e-02 2.87752151e-02
-8.05284269e-03 4.04891133e-01 9.81708467e-02 3.96482557e-01
-3.79492007e-02 6.16021812e-01 1.12504447e+00 -1.86703622e-01
-2.55370170e-01 4.71449085e-02 -3.45562786e-01 8.85066807e-01
5.09521365e-01 -5.09015560e-01 -2.66423911e-01 -8.41222525e-01
4.47220862e-01 1.90221399e-01 8.21452081e-01 -1.27522290e+00
2.38258913e-01 2.55590558e-01 2.52208382e-01 -1.99448541e-01
5.46756268e-01 -8.54876399e-01 3.85638744e-01 4.60898727e-01
6.74884841e-02 -2.47298971e-01 2.17110873e-03 5.21966100e-01
-2.64575809e-01 -2.48700693e-01 1.17499423e+00 -1.37295976e-01
-5.81665397e-01 1.34894699e-01 -7.38063455e-02 1.03914306e-01
1.11738592e-01 -1.18428841e-01 -4.61609326e-02 -4.73122507e-01
-9.57320154e-01 -8.14002752e-02 3.48993689e-01 -2.41832167e-01
6.16951287e-01 -8.15285146e-01 -1.12571740e+00 4.62776721e-01
-3.06814253e-01 7.79935196e-02 4.28154856e-01 1.16450095e+00
-9.02065635e-01 -3.17341477e-01 1.60420518e-02 -6.19979203e-01
-9.04451907e-01 2.59174526e-01 9.64466572e-01 -4.57492590e-01
-7.79994965e-01 1.05616498e+00 1.12052873e-01 -6.00989640e-01
8.71956423e-02 -2.83911109e-01 3.92811060e-01 -2.47447148e-01
5.45440197e-01 2.79362440e-01 3.19678515e-01 -3.60468298e-01
-6.19306974e-02 6.00397646e-01 2.56354690e-01 -3.41272891e-01
1.70884144e+00 -3.40610504e-01 -3.90309691e-01 -8.76990706e-02
1.33644676e+00 2.44187891e-01 -1.48345518e+00 -4.25578058e-01
-4.27027434e-01 -4.57668632e-01 6.90405726e-01 -8.77464771e-01
-1.38488770e+00 6.10782802e-01 9.81181800e-01 3.22778225e-02
1.62531614e+00 -3.59312266e-01 7.29672253e-01 5.00836968e-01
4.22542281e-02 -8.04351270e-01 -7.41276667e-02 5.67340255e-01
1.14135575e+00 -1.25620353e+00 2.43374780e-01 -1.06741920e-01
-1.13853283e-01 9.52149630e-01 -3.36667635e-02 -3.89857322e-01
5.98631799e-01 2.51169562e-01 2.31830284e-01 -3.03750336e-01
-1.32373348e-01 -2.42038995e-01 1.21010147e-01 4.97205853e-01
-1.44705132e-01 -2.51364052e-01 -1.47228381e-02 1.39995497e-02
-1.84741274e-01 1.07500799e-01 4.10009503e-01 5.72835028e-01
-4.48858857e-01 -7.11995006e-01 -5.73093414e-01 1.43216819e-01
-2.29122370e-01 -4.35761958e-01 1.79298669e-01 7.71835327e-01
2.20795408e-01 7.25606561e-01 -5.71913011e-02 -7.11169168e-02
4.92207229e-01 -3.74457121e-01 5.65188885e-01 -7.45535791e-02
-5.87321758e-01 1.54907793e-01 2.08796546e-01 -7.96956241e-01
-4.46100473e-01 -4.87425297e-01 -7.73539126e-01 -3.54212880e-01
-3.55278611e-01 1.62729830e-01 7.41002917e-01 8.80228996e-01
1.94730729e-01 5.32627046e-01 9.97886717e-01 -1.23704076e+00
-8.18310380e-01 -8.46620202e-01 -6.51993930e-01 2.82250017e-01
8.77118111e-01 -1.03921607e-01 -9.05102730e-01 -6.71414211e-02] | [11.533658027648926, -2.40824818611145] |
b52c7d4a-3abd-4a78-a340-7617d842b526 | deep-exhaustive-model-for-nested-named-entity | null | null | https://aclanthology.org/D18-1309 | https://aclanthology.org/D18-1309.pdf | Deep Exhaustive Model for Nested Named Entity Recognition | We propose a simple deep neural model for nested named entity recognition (NER). Most NER models focused on flat entities and ignored nested entities, which failed to fully capture underlying semantic information in texts. The key idea of our model is to enumerate all possible regions or spans as potential entity mentions and classify them with deep neural networks. To reduce the computational costs and capture the information of the contexts around the regions, the model represents the regions using the outputs of shared underlying bidirectional long short-term memory. We evaluate our exhaustive model on the GENIA and JNLPBA corpora in biomedical domain, and the results show that our model outperforms state-of-the-art models on nested and flat NER, achieving 77.1{\%} and 78.4{\%} respectively in terms of F-score, without any external knowledge resources. | ['Mohammad Golam Sohrab', 'Makoto Miwa'] | 2018-10-01 | null | null | null | emnlp-2018-10 | ['nested-named-entity-recognition'] | ['natural-language-processing'] | [-3.88845235e-01 4.90220010e-01 -1.84725076e-01 -3.43066216e-01
-6.98118329e-01 -5.69422007e-01 3.15782130e-01 4.99421924e-01
-1.01961923e+00 9.67349172e-01 5.50512910e-01 -2.88267285e-01
-5.09048346e-03 -1.09278226e+00 -7.60036945e-01 -3.11518192e-01
-2.22984955e-01 6.11070991e-01 1.33639783e-01 -1.53573513e-01
-5.48428558e-02 3.52725685e-01 -4.99755859e-01 5.22144377e-01
8.37843359e-01 7.17579246e-01 1.59959465e-01 4.97352332e-01
-5.77867210e-01 8.82150471e-01 -6.75531924e-01 -7.83510506e-01
-2.31850833e-01 -8.43279809e-02 -1.33157229e+00 -7.59926438e-01
-1.28952026e-01 -1.48730248e-01 -7.07175016e-01 1.01669085e+00
7.34443784e-01 2.62155473e-01 5.19280136e-01 -4.04103011e-01
-9.63534653e-01 1.13951194e+00 -1.54589102e-01 3.79087776e-01
8.37356374e-02 -4.66756433e-01 1.11472964e+00 -8.66328597e-01
1.03525782e+00 8.45381975e-01 9.86844778e-01 6.20518506e-01
-6.92193508e-01 -5.74886262e-01 8.58683288e-02 -7.53794657e-03
-1.52796853e+00 -3.83673310e-01 1.52319402e-01 -8.09483826e-02
1.53327966e+00 1.67553630e-02 2.19623059e-01 9.65501726e-01
3.28809887e-01 7.17097044e-01 5.82957804e-01 -2.59992063e-01
2.64787339e-02 -1.43087521e-01 5.65410018e-01 8.65892947e-01
2.84383476e-01 -2.35006854e-01 -1.43917784e-01 -3.05263579e-01
7.23062038e-01 -7.98529983e-02 -1.04529068e-01 3.22536141e-01
-1.34179783e+00 6.03546739e-01 8.71883392e-01 7.73143411e-01
-7.24563062e-01 -1.59640864e-01 5.08516192e-01 -2.09228158e-01
3.88312370e-01 6.72830343e-01 -7.99042702e-01 4.20217775e-02
-8.79282236e-01 -1.34047508e-01 8.68750930e-01 8.88297200e-01
5.13244867e-01 -3.35501224e-01 -5.36088347e-01 9.22859311e-01
7.64106959e-02 1.33967578e-01 5.37441015e-01 -4.27201331e-01
6.11681700e-01 8.10110569e-01 -1.55163091e-02 -8.15946043e-01
-1.00386941e+00 -8.22649300e-01 -1.14190888e+00 -8.17564666e-01
2.41037026e-01 -6.39751077e-01 -1.29156172e+00 1.70022988e+00
2.89969265e-01 3.63603413e-01 4.21416879e-01 5.34931779e-01
1.50357068e+00 7.24815786e-01 5.50509393e-01 1.50473401e-01
1.74530423e+00 -8.93415868e-01 -9.01668906e-01 -2.28893265e-01
8.64522159e-01 -5.11286080e-01 2.03473464e-01 -2.53718853e-01
-8.79860222e-01 -3.51013005e-01 -6.63567483e-01 -5.53461075e-01
-8.88605893e-01 3.30280006e-01 6.06606007e-01 3.61581266e-01
-1.08755302e+00 6.59809351e-01 -9.17573452e-01 -3.28555375e-01
3.48545134e-01 5.04130304e-01 -6.79658055e-01 1.07859746e-01
-1.81531131e+00 9.64987636e-01 8.27458441e-01 5.23225844e-01
-7.72863150e-01 -7.07876742e-01 -9.52847004e-01 4.55609173e-01
-1.16472222e-01 -8.41741204e-01 8.83977830e-01 -2.71607995e-01
-8.65290463e-01 9.09655631e-01 -3.52862537e-01 -6.78236902e-01
6.67885244e-02 -2.36635953e-01 -6.79508388e-01 1.32473959e-02
2.58966833e-01 8.41638625e-01 -3.89577478e-01 -7.21577704e-01
-4.65856999e-01 -3.49524826e-01 9.25987139e-02 1.20732173e-01
-3.35832983e-01 -5.75558003e-03 -6.30194664e-01 -5.15528440e-01
-2.43546199e-02 -7.90340424e-01 -5.61896801e-01 -5.84286392e-01
-9.57443476e-01 -5.51698208e-01 1.68574169e-01 -1.06711137e+00
1.46483350e+00 -2.05239677e+00 -1.69382796e-01 4.33117785e-02
3.15296561e-01 2.52502829e-01 -1.35176748e-01 4.05935615e-01
-1.16338365e-01 3.99393082e-01 -6.99790716e-02 -8.16031918e-02
-1.33332023e-02 1.93565458e-01 -9.03143063e-02 2.26122618e-01
1.89899459e-01 1.11641729e+00 -8.93956602e-01 -5.87449729e-01
-2.45101526e-01 7.71490991e-01 -2.21478462e-01 1.16479576e-01
1.23454265e-01 -8.99748504e-02 -6.22691631e-01 4.38917577e-01
5.66260338e-01 -4.28539813e-01 4.98129666e-01 -3.42745036e-01
1.29253548e-02 7.85871744e-01 -9.04604077e-01 1.66596019e+00
-3.49158973e-01 2.90066898e-01 -1.42567813e-01 -8.14795613e-01
7.66277134e-01 7.20496953e-01 2.71465421e-01 -6.26387358e-01
-8.26907065e-03 2.44059980e-01 -9.79532897e-02 -3.37267309e-01
5.37851334e-01 -1.92920879e-01 -3.81747484e-01 -3.32919438e-03
3.25231522e-01 9.24385369e-01 1.11262992e-01 1.79790378e-01
1.28156650e+00 -7.57873878e-02 7.31439114e-01 -2.99134940e-01
3.90916049e-01 2.28228364e-02 9.43317056e-01 8.04682553e-01
-1.83966890e-01 4.48468149e-01 5.34855008e-01 -6.10747516e-01
-8.00519884e-01 -9.75470483e-01 -2.69806892e-01 1.09350026e+00
-1.03952706e-01 -2.39547536e-01 -8.48715723e-01 -1.01021254e+00
-3.90673727e-01 7.07399487e-01 -9.12545979e-01 8.98883045e-02
-8.44208717e-01 -1.03177464e+00 1.27798486e+00 7.78371453e-01
6.99811280e-01 -1.39420319e+00 -2.38996521e-01 3.41861933e-01
-5.91755450e-01 -1.29024231e+00 -3.99586618e-01 3.90124142e-01
-8.34370017e-01 -9.45419371e-01 -9.41366494e-01 -1.08651423e+00
6.25858486e-01 -5.49466193e-01 1.33918273e+00 -1.00825980e-01
-1.16378307e-01 -4.07879680e-01 -1.01329274e-01 -2.86477447e-01
-3.66693549e-02 6.55340135e-01 -3.40896666e-01 -4.91346687e-01
6.43219709e-01 -1.59621745e-01 -7.07273185e-01 1.02094792e-01
-6.33106768e-01 -2.61394326e-02 9.66231346e-01 9.95121181e-01
8.00105274e-01 -1.07876562e-01 8.12829614e-01 -1.33191371e+00
3.71568084e-01 -9.01326418e-01 -7.38454163e-02 4.88466740e-01
-3.08164120e-01 2.18789652e-01 6.14576042e-01 -1.51168510e-01
-1.15274465e+00 -5.51754721e-02 -7.11237133e-01 1.62656009e-01
-5.03206909e-01 7.50943780e-01 -1.59929439e-01 5.95897377e-01
5.39977849e-01 2.97360897e-01 -9.50647712e-01 -6.54796720e-01
4.16208178e-01 6.86188221e-01 5.57229996e-01 -4.09326285e-01
6.56525344e-02 3.64765286e-01 -2.20078662e-01 -5.98203123e-01
-1.17694652e+00 -5.98816156e-01 -6.71054661e-01 4.97146487e-01
1.27638221e+00 -1.01298058e+00 -5.79057455e-01 5.17066456e-02
-1.42124128e+00 -5.74270077e-02 8.43481347e-03 5.53892255e-01
1.49169378e-02 2.01604858e-01 -1.31469285e+00 -3.99291188e-01
-9.44338083e-01 -8.77380610e-01 9.42392886e-01 4.28339958e-01
-1.94960639e-01 -1.11545432e+00 1.59894332e-01 1.75585032e-01
2.94688106e-01 1.62597418e-01 1.11735153e+00 -1.24151731e+00
-1.05972700e-01 -3.07270080e-01 -4.57829744e-01 -2.08631217e-01
-4.68838820e-03 -5.34486413e-01 -8.45452607e-01 1.23535201e-01
-5.56046307e-01 -2.59214323e-02 1.08058870e+00 3.68951887e-01
1.03912759e+00 -4.01144832e-01 -8.72307658e-01 6.15935147e-01
1.43493569e+00 1.82838753e-01 7.20376670e-01 4.75968510e-01
6.41546547e-01 2.72792786e-01 3.31194103e-02 1.62256852e-01
6.00378931e-01 1.37539208e-01 2.30250269e-01 -4.22251880e-01
8.82520247e-03 -2.59336323e-01 -9.69096832e-03 7.35208333e-01
-8.47073197e-02 -4.86942708e-01 -1.10052252e+00 1.09358072e+00
-1.59534681e+00 -9.05875206e-01 6.11971579e-02 1.55702186e+00
1.00815725e+00 5.43285534e-02 -2.89577842e-01 -7.02512205e-01
9.65406179e-01 1.65546872e-02 -5.04539251e-01 -3.37415010e-01
-1.54041141e-01 3.90747160e-01 5.19154727e-01 1.93653345e-01
-1.42051411e+00 1.03853118e+00 6.25437880e+00 6.40435278e-01
-6.92040384e-01 5.51334769e-02 9.56295550e-01 2.35111147e-01
-1.08994432e-01 -3.62629324e-01 -1.22358918e+00 1.90013692e-01
1.36310971e+00 9.13233757e-02 -1.19186863e-01 6.55057073e-01
-2.57819653e-01 5.26298106e-01 -8.78496647e-01 4.80194718e-01
-2.10724667e-01 -1.63042891e+00 1.15725480e-01 1.02328248e-01
6.94692850e-01 6.57353222e-01 -3.48413944e-01 6.80961549e-01
6.72676682e-01 -1.25881994e+00 1.61172241e-01 6.84614480e-01
6.22860610e-01 -7.20891595e-01 1.40408480e+00 3.69314075e-01
-1.25357282e+00 1.21954352e-01 -5.43341756e-01 4.70172465e-01
1.82464048e-01 6.66277766e-01 -9.60556090e-01 8.92756999e-01
7.20719099e-01 3.77032250e-01 -3.15278769e-01 9.85576451e-01
-2.48658046e-01 6.67261660e-01 -4.46255982e-01 -9.89159718e-02
4.55348462e-01 3.20672721e-01 1.78778231e-01 1.83828723e+00
3.56441796e-01 2.70746320e-01 -1.20107587e-02 7.41777897e-01
-8.42012942e-01 3.78003597e-01 -3.40342671e-01 -1.98396981e-01
5.17083287e-01 1.32361865e+00 -8.21336806e-01 -3.87064576e-01
-3.15079302e-01 9.49999869e-01 8.99482667e-01 3.29983264e-01
-8.51613641e-01 -9.43003595e-01 3.57596546e-01 -3.44583333e-01
5.31644881e-01 4.02662568e-02 -2.99487531e-01 -1.10526919e+00
-2.18189687e-01 -3.81756902e-01 1.02626228e+00 -4.42780942e-01
-1.45955789e+00 1.17925715e+00 -4.45807695e-01 -5.13005316e-01
6.61362521e-03 -5.79061151e-01 -4.17909473e-01 8.89319599e-01
-1.39642406e+00 -1.19068146e+00 1.32315487e-01 3.37055057e-01
2.58653879e-01 6.16721064e-02 1.15796494e+00 5.75087607e-01
-7.52833724e-01 7.51661718e-01 2.02172190e-01 1.17057109e+00
6.42284513e-01 -1.23706174e+00 7.60262191e-01 7.03830600e-01
2.45491937e-01 1.22842884e+00 2.41240799e-01 -7.07509279e-01
-8.47781777e-01 -1.30558050e+00 1.77411282e+00 -3.04621667e-01
4.62700158e-01 -2.91656286e-01 -8.60581040e-01 8.97112191e-01
4.46514368e-01 1.35524854e-01 9.02553678e-01 5.81918597e-01
-2.88526326e-01 2.85019308e-01 -1.14858091e+00 3.76158744e-01
1.07483459e+00 -5.08367360e-01 -9.14615095e-01 1.85829863e-01
9.31735516e-01 -4.36979800e-01 -1.37545884e+00 4.20421451e-01
3.33716661e-01 -4.46192473e-01 1.07154250e+00 -1.06874406e+00
3.81721526e-01 -1.51475370e-01 -3.01134549e-02 -1.11632490e+00
-6.29185379e-01 -5.75525425e-02 -1.03265733e-01 1.26980948e+00
1.06338608e+00 -5.11460960e-01 6.14146411e-01 5.09875119e-01
-4.15540129e-01 -9.16449904e-01 -9.37425733e-01 -2.67624378e-01
3.52374822e-01 -3.90018411e-02 6.30566776e-01 1.26350713e+00
1.30682349e-01 4.86645550e-01 -6.16602302e-02 4.01016623e-01
1.56709865e-01 7.61065632e-02 -1.44779518e-01 -9.88178909e-01
1.73887536e-02 -2.16307268e-01 -1.99018285e-01 -8.24737370e-01
4.44378406e-01 -1.03175342e+00 4.30553071e-02 -2.16214895e+00
4.78124350e-01 -4.31158870e-01 -9.66227829e-01 9.97948766e-01
-3.90671998e-01 2.50620872e-01 -1.94112882e-01 -6.37378618e-02
-8.86265337e-01 2.38349512e-01 7.25776017e-01 -2.41363980e-02
-8.23754352e-03 -3.04445297e-01 -8.53557587e-01 6.96837842e-01
6.92325950e-01 -6.23209357e-01 2.08126709e-01 -9.02203143e-01
4.53496188e-01 1.55855194e-01 9.49586369e-03 -7.78811336e-01
4.89019454e-01 1.06947631e-01 7.76188135e-01 -7.55945265e-01
3.17262509e-03 -4.20818806e-01 9.82213020e-02 3.35941851e-01
-6.08643830e-01 1.59655869e-01 2.49273971e-01 6.29968941e-01
-2.77864546e-01 -2.20142677e-01 4.77180451e-01 -4.16486472e-01
-7.04904556e-01 3.67910534e-01 -2.06932604e-01 2.29503646e-01
6.51387453e-01 2.95543134e-01 -7.26364017e-01 1.84713215e-01
-1.16279721e+00 3.20851773e-01 -8.57069269e-02 2.86523968e-01
3.76100302e-01 -1.04840112e+00 -6.55840397e-01 -2.27025047e-01
-4.50709723e-02 1.23644374e-01 5.75086832e-01 5.64332485e-01
-6.74127042e-01 9.00670946e-01 -3.76836956e-02 1.78581644e-02
-8.53794754e-01 5.29248416e-01 6.72530174e-01 -9.52412426e-01
-6.16874814e-01 1.06369543e+00 4.29455429e-01 -9.25431430e-01
1.38188126e-02 -2.04470769e-01 -6.78104937e-01 -8.01340193e-02
4.82913435e-01 2.99748361e-01 2.07573548e-01 -7.19233632e-01
-7.01183558e-01 1.34446457e-01 -2.39344031e-01 2.13409513e-01
1.52711689e+00 2.14488525e-02 -2.91128814e-01 1.63000137e-01
1.24313283e+00 -9.60818827e-02 -4.17852849e-01 -2.17012972e-01
3.51114839e-01 6.16874933e-01 1.12333372e-01 -1.07687604e+00
-1.07395852e+00 8.80158067e-01 4.18175817e-01 -1.52518019e-01
9.11027074e-01 1.57864153e-01 1.16047764e+00 7.78092504e-01
1.91162109e-01 -8.90920579e-01 -7.07812190e-01 9.31325018e-01
2.53743798e-01 -8.24948549e-01 -1.79491028e-01 -3.00742805e-01
-5.00628233e-01 1.04279089e+00 6.03113711e-01 -7.01143816e-02
6.74506187e-01 3.22970033e-01 4.82842000e-03 -3.36548746e-01
-7.61813998e-01 -1.76044196e-01 4.50318873e-01 2.47236833e-01
1.01760447e+00 1.12597130e-01 -4.06169832e-01 1.08999515e+00
-2.11538170e-02 2.08015274e-02 1.04914680e-01 5.23053408e-01
-2.36533627e-01 -8.00051630e-01 9.70912129e-02 4.78281885e-01
-1.35481191e+00 -5.42253435e-01 -2.00998664e-01 6.44599974e-01
3.66148829e-01 6.57923400e-01 5.68866134e-02 -7.11114183e-02
3.72385770e-01 3.52764159e-01 -1.18089244e-01 -5.54117024e-01
-9.79621232e-01 -6.91858158e-02 4.89236951e-01 -2.65124798e-01
-1.34939209e-01 -1.84400678e-01 -1.82460845e+00 5.08007333e-02
-4.54492033e-01 5.41652203e-01 3.77999723e-01 1.07339251e+00
8.01173329e-01 8.47211897e-01 -2.63152830e-02 -1.55862961e-02
-2.11387262e-01 -1.19675052e+00 -3.05360526e-01 4.12003696e-01
1.06883585e-01 -2.49598861e-01 1.98714003e-01 -2.29641289e-01] | [9.046955108642578, 9.0829439163208] |
623c0500-f68b-4791-a383-1580d7f6cb20 | task-space-control-of-robot-manipulators | 2302.04163 | null | https://arxiv.org/abs/2302.04163v1 | https://arxiv.org/pdf/2302.04163v1.pdf | Task Space Control of Robot Manipulators based on Visual SLAM | This paper aims to address the open problem of designing a globally stable vision-based controller for robot manipulators. Accordingly, based on a hybrid mechanism, this paper proposes a novel task-space control law attained by taking the gradient of a potential function in SE(3). The key idea is to employ the Visual Simultaneous Localization and Mapping (VSLAM) algorithm to estimate a robot pose. The estimated robot pose is then used in the proposed hybrid controller as feedback information. Invoking Barbalats lemma and Lyapunov's stability theorem, it is guaranteed that the resulting closed-loop system is globally asymptotically stable, which is the main accomplishment of the proposed structure. Simulation studies are conducted on a six degrees of freedom (6-DOF) robot manipulator to demonstrate the effectiveness and validate the performance of the proposed VSLAM-based control scheme. | ['Jouni Mattila', 'Seyed Hamed Hashemi'] | 2023-02-08 | null | null | null | null | ['simultaneous-localization-and-mapping'] | ['computer-vision'] | [ 3.75587530e-02 1.73294380e-01 -2.08034426e-01 4.25286204e-01
-1.10843100e-01 -5.82285345e-01 3.80922109e-01 -2.55028993e-01
-3.31790775e-01 6.51145637e-01 -4.97834474e-01 -3.99203569e-01
-5.82831621e-01 -1.71366587e-01 -5.10181546e-01 -8.77102137e-01
3.02946776e-01 -1.41167983e-01 -5.90943620e-02 -3.58922362e-01
5.55616736e-01 7.49133766e-01 -8.71077240e-01 -1.06711137e+00
8.23272228e-01 6.90140724e-01 9.42201138e-01 5.03537357e-01
5.64444602e-01 4.29019660e-01 -1.88792214e-01 4.85927254e-01
4.97361392e-01 -3.12329143e-01 -4.03055131e-01 7.02605128e-01
-1.40119061e-01 -2.31323063e-01 -3.38197678e-01 1.39798903e+00
3.59629720e-01 4.78339881e-01 6.72852039e-01 -1.22507143e+00
-3.24123293e-01 -1.24366311e-02 -6.86133981e-01 -6.17835000e-02
9.28013995e-02 2.05313787e-01 5.20680845e-01 -9.51845586e-01
6.30692005e-01 1.28712702e+00 3.86875927e-01 2.65170336e-01
-9.65133309e-01 -3.70837063e-01 4.59778123e-02 2.04041451e-02
-1.75662410e+00 -1.66182637e-01 7.45994389e-01 -4.70892429e-01
2.24635229e-01 -7.41342222e-03 2.81268269e-01 3.90845627e-01
8.71122837e-01 3.15284669e-01 9.43460643e-01 -5.31336606e-01
-6.95280209e-02 1.12759963e-01 8.16553682e-02 1.14678776e+00
6.97764575e-01 7.15746731e-02 3.21655095e-01 -4.67276387e-02
1.60809219e+00 1.84173405e-01 -4.72071111e-01 -9.91084754e-01
-1.47368157e+00 8.00126016e-01 7.00541854e-01 1.56844437e-01
-7.04350352e-01 1.37183979e-01 1.67802833e-02 3.27324837e-01
-2.16004804e-01 3.08382809e-01 4.38240618e-02 2.92999685e-01
1.33431330e-01 3.01089168e-01 5.51866353e-01 1.37319088e+00
4.14755881e-01 4.27640319e-01 3.01228017e-01 4.51540232e-01
8.21438253e-01 6.72611892e-01 1.23843081e-01 -1.14147079e+00
3.59623194e-01 4.38770711e-01 6.00656748e-01 -1.08540022e+00
-3.10280919e-01 -5.04111648e-01 -7.64867365e-01 8.01807106e-01
1.72428384e-01 -5.35422862e-01 -5.61128616e-01 1.49286520e+00
4.62973654e-01 -3.30913603e-01 1.50421530e-01 1.25240636e+00
-1.02253094e-01 7.94927239e-01 -2.69312739e-01 -6.12820804e-01
1.00211608e+00 -6.94652975e-01 -9.59030867e-01 -4.84249853e-02
-6.17712252e-02 -4.30989355e-01 7.06429362e-01 2.02810720e-01
-7.73895562e-01 -6.63284600e-01 -1.32331860e+00 4.35887784e-01
2.24640608e-01 4.83101159e-01 3.42949592e-02 1.14434855e-02
-7.08724737e-01 1.69699028e-01 -8.88321996e-01 -4.86550003e-01
-5.15747368e-01 4.73227471e-01 -4.06640679e-01 5.15149415e-01
-8.47037971e-01 1.27731419e+00 7.11593807e-01 5.77790976e-01
-6.54739976e-01 -2.51331721e-02 -6.69922888e-01 -3.17068994e-01
6.66591763e-01 -7.89184749e-01 1.07203758e+00 -5.86998165e-01
-1.79045951e+00 3.10422510e-01 -1.28140584e-01 1.47737591e-02
5.36354482e-01 -3.92414667e-02 1.85636327e-01 2.79746652e-01
3.42416406e-01 1.43399402e-01 1.08720160e+00 -1.47564828e+00
-6.22643709e-01 -5.10591149e-01 7.68685341e-03 4.86901671e-01
-2.39012334e-02 -3.86436284e-01 -2.84795165e-01 -2.52917260e-01
5.73030114e-01 -1.16372204e+00 -5.05115807e-01 1.35962859e-01
-3.95936936e-01 -2.09685296e-01 7.84679174e-01 -3.13854307e-01
9.23968852e-01 -2.04998469e+00 5.61296523e-01 3.54508787e-01
-1.03085199e-02 8.01295489e-02 1.40628457e-01 5.54945052e-01
1.85802460e-01 -4.73235816e-01 4.17273864e-02 4.57474619e-01
-2.71930367e-01 -1.15944482e-01 -2.13056639e-01 8.16451311e-01
1.04305871e-01 3.05056572e-01 -7.59568512e-01 -3.03044081e-01
5.01003861e-01 2.50603139e-01 8.60597640e-02 4.44956422e-02
2.23386377e-01 6.81261837e-01 -1.10662019e+00 3.21159631e-01
4.22131896e-01 2.17849851e-01 2.42345378e-01 -2.64192075e-01
-7.48917222e-01 -4.56680536e-01 -1.34957933e+00 1.33752930e+00
-4.29559141e-01 3.18997711e-01 8.98568034e-01 -7.22067952e-01
1.27761352e+00 4.74624693e-01 1.88258424e-01 -2.15229794e-01
6.86841726e-01 3.14075470e-01 -1.90293193e-01 -5.30482411e-01
1.56383827e-01 -1.55368388e-01 8.62238854e-02 -3.94736707e-01
-2.29352519e-01 -2.61020899e-01 -1.33359492e-01 -1.88702837e-01
7.90623724e-01 1.89180851e-01 7.98722684e-01 -4.00606632e-01
1.21614742e+00 4.46264744e-01 3.96215916e-01 3.17618817e-01
-3.99516821e-01 -1.78287536e-01 -3.24036814e-02 2.98459232e-01
-1.12630475e+00 -1.05298567e+00 1.07180551e-01 3.45677406e-01
7.68858969e-01 4.58221763e-01 -3.52451563e-01 -2.14318216e-01
2.01330006e-01 3.28660548e-01 -4.41580191e-02 -3.02651286e-01
-6.39401436e-01 1.57530129e-01 -4.74838242e-02 2.11626977e-01
4.24889416e-01 -3.99884492e-01 -9.15772557e-01 2.84852296e-01
1.40597522e-01 -7.54054546e-01 -2.05556214e-01 -8.38527828e-02
-1.00485480e+00 -1.24370623e+00 -8.30769956e-01 -1.45340347e+00
9.38923895e-01 7.46861100e-01 -2.19370276e-01 -2.19765604e-01
-1.04843542e-01 5.34828126e-01 9.46705118e-02 -3.30023140e-01
-4.23534334e-01 -2.41082042e-01 4.36818391e-01 -7.74833411e-02
-3.60547364e-01 -8.13127607e-02 -4.09548372e-01 5.56457102e-01
-3.45663309e-01 -1.04665063e-01 7.77276635e-01 7.47359753e-01
5.22097945e-01 4.29399997e-01 9.09693301e-01 4.25190255e-02
1.02643681e+00 -1.31148040e-01 -1.32737553e+00 -6.07208908e-03
-6.22064650e-01 -2.36746266e-01 7.22285509e-01 -2.88458794e-01
-1.14648044e+00 6.13906801e-01 2.18519822e-01 -6.55003965e-01
7.16714635e-02 4.97956485e-01 -1.98550642e-01 -3.77939612e-01
3.22722048e-01 3.34217966e-01 9.51135635e-01 -3.45197499e-01
3.90526772e-01 1.05115378e+00 1.02688062e+00 -1.25239268e-01
9.90705669e-01 2.48864859e-01 5.49341977e-01 -8.57578397e-01
-1.32944779e-02 -7.76355267e-01 -6.07940376e-01 -4.88332182e-01
6.40623629e-01 -9.57595646e-01 -1.33212876e+00 2.46755674e-01
-1.11381948e+00 1.63342938e-01 4.12889421e-01 7.94202924e-01
-9.75212395e-01 4.29801941e-01 -5.04142582e-01 -1.44698560e+00
-2.81599909e-01 -1.08968568e+00 6.08430266e-01 1.69433817e-01
3.78247388e-02 -7.59532452e-01 -8.65904763e-02 -5.12618246e-03
1.10949457e-01 4.84522194e-01 6.78745568e-01 1.90102115e-01
-5.80837905e-01 -3.02082002e-01 -7.34945610e-02 1.10754840e-01
3.15219522e-01 -1.04225114e-01 -1.51502296e-01 -7.67962098e-01
6.66669309e-01 4.44997288e-02 1.83480859e-01 4.21514034e-01
7.46411607e-02 -2.43169397e-01 -5.77046573e-01 1.18568793e-01
1.91910386e+00 8.63566339e-01 1.46243721e-01 7.56944537e-01
7.51142144e-01 5.29105484e-01 1.35639644e+00 2.38394484e-01
1.46504954e-01 5.77649295e-01 8.54488075e-01 3.13245565e-01
4.88642484e-01 2.50194557e-02 4.82898116e-01 8.09015989e-01
3.33105121e-03 1.59364939e-01 -5.23797274e-01 5.69810629e-01
-2.08341360e+00 -4.27884281e-01 -5.83576679e-01 2.10261941e+00
3.64908278e-01 -2.50530809e-01 -1.53647080e-01 2.87542760e-01
1.33807898e+00 -3.20470124e-01 -5.67054927e-01 -1.79789424e-01
5.40399253e-01 -5.81560612e-01 8.58487189e-01 5.52453637e-01
-9.62320864e-01 4.81081039e-01 5.26105976e+00 6.17448509e-01
-1.21842778e+00 -2.94378608e-01 -3.94672215e-01 6.09794497e-01
3.69113058e-01 -1.31854579e-01 -6.19700372e-01 1.39997482e-01
3.64659876e-01 -5.93297541e-01 4.72322702e-01 1.04098332e+00
7.29216874e-01 -3.01267385e-01 -5.66989779e-01 9.50955570e-01
-1.02038212e-01 -8.02807271e-01 -2.97497958e-01 -1.14089988e-01
4.53173995e-01 -5.60074031e-01 1.72368005e-01 -1.09584212e-01
-5.17249629e-02 -9.19962972e-02 9.05954063e-01 3.51482064e-01
5.14950633e-01 -8.54880095e-01 5.47133029e-01 8.08582902e-01
-1.14669919e+00 -5.14687240e-01 -5.44641793e-01 -2.78325826e-01
3.91549855e-01 -6.92342892e-02 -1.01365483e+00 8.86650741e-01
-2.82433987e-01 4.57785755e-01 -2.44901553e-02 1.31042171e+00
-2.59694427e-01 -1.24297582e-01 -4.82671112e-02 -4.11008060e-01
5.12276113e-01 -5.68778098e-01 1.16904294e+00 4.62051570e-01
3.33637267e-01 5.67448102e-02 3.79827619e-01 8.73321354e-01
5.32352507e-01 -1.17535805e-02 -7.82925963e-01 1.51703015e-01
3.38715643e-01 1.13192785e+00 -4.70143586e-01 -1.04663759e-01
-3.79539393e-02 9.00275707e-01 -1.01596452e-02 3.76132011e-01
-7.07931876e-01 -1.02466702e+00 3.44118178e-01 -3.10411274e-01
2.53462970e-01 -8.40272427e-01 -1.13400042e-01 -6.03069544e-01
5.16859964e-02 -4.01059508e-01 -2.56890476e-01 -9.22601521e-01
-8.41114342e-01 1.71555087e-01 8.50333124e-02 -1.72416234e+00
-3.67410243e-01 -5.90672553e-01 -3.26241314e-01 9.68979180e-01
-1.14827311e+00 -7.36462116e-01 -1.48536429e-01 6.11318588e-01
6.72202170e-01 -1.44101053e-01 4.63381141e-01 -9.98745188e-02
-4.16180342e-01 -3.15126091e-01 4.60449219e-01 -1.33178785e-01
4.73788530e-01 -9.70026374e-01 -3.20367962e-01 8.46107304e-01
-9.04838264e-01 9.87050653e-01 9.61308122e-01 -7.06815541e-01
-2.09930849e+00 -1.15403748e+00 4.83398974e-01 9.25147682e-02
9.27089036e-01 2.26442173e-01 -4.06375378e-01 8.46185505e-01
8.13408792e-02 -3.08895350e-01 -7.12737203e-01 -9.64527428e-01
3.65635335e-01 -1.32773519e-01 -1.17926967e+00 7.29963303e-01
4.98929471e-01 -2.19466001e-01 -8.23883235e-01 2.88282447e-02
7.22082257e-01 -5.97788036e-01 -7.35653102e-01 4.49124515e-01
5.33340335e-01 -3.84495854e-02 7.90276766e-01 -1.16061661e-02
-1.52930960e-01 -9.02596712e-01 1.40118524e-01 -1.30530310e+00
-5.83076417e-01 -7.73316860e-01 2.65569359e-01 8.44721913e-01
-9.20343027e-02 -9.99059856e-01 3.68094891e-01 -8.17355216e-02
-3.48765142e-02 -5.36609709e-01 -8.74891043e-01 -1.19623744e+00
-3.55616391e-01 4.27882522e-01 -3.23957235e-01 5.60162604e-01
4.05401558e-01 6.32279277e-01 -3.21397454e-01 8.43086541e-01
7.40731001e-01 -1.79567352e-01 7.79671252e-01 -9.06395435e-01
1.48900956e-01 -1.01980105e-01 -5.16242802e-01 -1.12067854e+00
2.16535494e-01 -3.59360546e-01 5.91100693e-01 -1.79842675e+00
-2.18861341e-01 -2.50458330e-01 -1.75896987e-01 -1.13611501e-02
1.89938396e-02 -1.05554402e-01 2.36764699e-01 3.68885458e-01
-1.62275225e-01 5.13137877e-01 1.44842458e+00 -1.21987961e-01
-4.80470717e-01 4.93471295e-01 -3.28464001e-01 5.67162693e-01
7.78286755e-01 -1.65117122e-02 -8.78862262e-01 -2.80834734e-01
-4.28017974e-01 8.74400258e-01 5.07137418e-01 -9.24763501e-01
2.13756159e-01 -3.66880834e-01 -1.42070994e-01 -6.46645427e-01
2.88974583e-01 -1.31380045e+00 2.67604917e-01 1.12462234e+00
-9.54143628e-02 8.68874863e-02 -2.70045102e-01 1.00296271e+00
-1.85475916e-01 -3.09551865e-01 8.59129429e-01 1.30548790e-01
-7.90356815e-01 -1.28321305e-01 -6.74187958e-01 -8.73839498e-01
1.40530646e+00 -2.07395434e-01 -1.31488040e-01 -2.59019017e-01
-6.38347328e-01 4.51974094e-01 3.29553187e-01 3.78764153e-01
5.93502522e-01 -1.23982692e+00 -2.38769844e-01 6.13934286e-02
-7.77004361e-02 -2.41319746e-01 -5.44871278e-02 1.08474374e+00
-6.91692650e-01 8.22622299e-01 -4.70652282e-01 -7.23425508e-01
-1.40283871e+00 6.87135577e-01 1.41983926e-01 4.15807843e-01
-4.72700506e-01 2.15827763e-01 -2.89217029e-02 -3.00746471e-01
1.05151705e-01 -2.23601803e-01 -2.08011582e-01 -4.85473543e-01
5.87995686e-02 6.20191514e-01 -3.89410496e-01 -6.25899494e-01
-2.98515618e-01 7.09033489e-01 3.73932958e-01 -4.14927810e-01
1.04876113e+00 -7.36239612e-01 -1.55793071e-01 4.09005553e-01
1.00260174e+00 -7.89586231e-02 -1.30555236e+00 6.25777170e-02
-9.75136906e-02 -4.67164159e-01 -1.53429210e-01 -2.70147741e-01
-5.81015348e-01 2.94396430e-01 7.11884201e-01 -2.53672767e-02
7.07087874e-01 -4.63604420e-01 4.04930383e-01 6.09887302e-01
9.35757339e-01 -8.85113239e-01 -1.65752426e-01 5.96950889e-01
1.03819942e+00 -9.30624902e-01 -1.78969670e-02 -8.34791124e-01
-5.09270430e-01 1.36790776e+00 7.69499123e-01 -6.06529355e-01
3.00185889e-01 -1.11396700e-01 1.65539369e-01 1.85740262e-01
-4.34673548e-01 -2.84795165e-01 -1.19147100e-01 4.63525206e-01
-4.86478694e-02 -1.22235015e-01 -9.73098934e-01 -8.46702009e-02
4.54538494e-01 1.09741770e-01 6.95960522e-01 1.36068165e+00
-1.02743185e+00 -6.23981953e-01 -8.20894837e-01 -3.28633964e-01
-1.65946603e-01 7.32921183e-01 3.15378457e-02 1.08903790e+00
-3.60868931e-01 1.06760538e+00 -1.87933236e-01 -1.73794910e-01
6.57149553e-01 -3.89190137e-01 5.63643873e-01 -4.27774757e-01
1.66568849e-02 4.02704120e-01 -2.42346689e-01 -2.72318333e-01
-2.18004182e-01 -2.47207716e-01 -1.53323042e+00 2.74037540e-01
-8.11306477e-01 1.83033705e-01 9.74475920e-01 7.22192466e-01
1.05854683e-01 4.28624451e-01 9.96911287e-01 -8.56618345e-01
-1.17249560e+00 -8.01618338e-01 -6.40043974e-01 -1.32304788e-01
4.44058418e-01 -1.09958816e+00 -3.98938477e-01 -8.58160108e-02] | [5.202285289764404, 2.3103692531585693] |
9a4346cd-8834-4aa6-864b-bca733cfc284 | aqua-a-benchmarking-tool-for-label-quality | 2306.09467 | null | https://arxiv.org/abs/2306.09467v1 | https://arxiv.org/pdf/2306.09467v1.pdf | AQuA: A Benchmarking Tool for Label Quality Assessment | Machine learning (ML) models are only as good as the data they are trained on. But recent studies have found datasets widely used to train and evaluate ML models, e.g. ImageNet, to have pervasive labeling errors. Erroneous labels on the train set hurt ML models' ability to generalize, and they impact evaluation and model selection using the test set. Consequently, learning in the presence of labeling errors is an active area of research, yet this field lacks a comprehensive benchmark to evaluate these methods. Most of these methods are evaluated on a few computer vision datasets with significant variance in the experimental protocols. With such a large pool of methods and inconsistent evaluation, it is also unclear how ML practitioners can choose the right models to assess label quality in their data. To this end, we propose a benchmarking environment AQuA to rigorously evaluate methods that enable machine learning in the presence of label noise. We also introduce a design space to delineate concrete design choices of label error detection models. We hope that our proposed design space and benchmark enable practitioners to choose the right tools to improve their label quality and that our benchmark enables objective and rigorous evaluation of machine learning tools facing mislabeled data. | ['Artur Dubrawski', 'Chalisa Udompanyawit', 'Arvind Srinivasan', 'Arjun Choudhry', 'Vedant Sanil', 'Mononito Goswami'] | 2023-06-15 | null | null | null | null | ['benchmarking', 'benchmarking'] | ['miscellaneous', 'robots'] | [ 2.82480359e-01 -1.61073133e-02 -5.42636693e-01 -7.67297387e-01
-9.35509980e-01 -8.40097129e-01 3.88354093e-01 7.01121315e-02
-5.30483961e-01 6.34282470e-01 -5.69975257e-01 -5.18183172e-01
9.21495035e-02 -3.89145344e-01 -7.05182850e-01 -3.38837862e-01
4.57650900e-01 5.69132388e-01 7.66952187e-02 3.88914764e-01
3.37205261e-01 3.08856517e-01 -1.82272530e+00 3.97857279e-01
9.54380631e-01 1.17757618e+00 -1.61221191e-01 4.50952619e-01
-1.27672300e-01 1.22471058e+00 -8.56650352e-01 -5.21390617e-01
2.23781541e-01 -2.70939887e-01 -1.02350616e+00 7.53252879e-02
1.04710102e+00 -1.25962317e-01 3.56952965e-01 1.04339576e+00
6.28944635e-01 -2.97823101e-01 7.75829375e-01 -1.76409316e+00
-6.73802912e-01 5.24059713e-01 -4.26434353e-02 -1.72813553e-02
-7.09830821e-02 5.19907951e-01 9.89179909e-01 -1.04582775e+00
7.64357567e-01 1.04795408e+00 1.04567087e+00 8.61890733e-01
-1.32126784e+00 -8.31271827e-01 6.15123808e-02 2.88139194e-01
-1.29035342e+00 -5.04065692e-01 4.38126773e-01 -7.24146068e-01
6.39140546e-01 3.28882188e-01 1.57852277e-01 1.33589196e+00
-8.59664679e-02 8.23773861e-01 1.57146478e+00 -6.18633211e-01
4.29383874e-01 5.43984115e-01 6.22461379e-01 8.49766850e-01
4.27978396e-01 1.97661579e-01 -4.76054907e-01 -6.29468076e-03
1.23678692e-01 -2.22213745e-01 -1.28996715e-01 -3.20786655e-01
-1.04137397e+00 7.77730346e-01 3.76935989e-01 1.46425217e-01
2.08357293e-02 1.10052869e-01 3.99106115e-01 4.49468344e-01
3.97654951e-01 1.09652078e+00 -6.03117049e-01 2.73403842e-02
-9.64178741e-01 1.10412568e-01 8.94502401e-01 1.06872880e+00
8.59491110e-01 -2.41169944e-01 -3.36895376e-01 9.88543689e-01
3.19823384e-01 3.95862877e-01 2.87322402e-01 -1.19113505e+00
1.62089303e-01 8.08577955e-01 8.02143887e-02 -7.87510753e-01
-5.59851527e-01 -7.46863008e-01 -4.81162906e-01 6.56559408e-01
6.39397323e-01 -1.29737541e-01 -1.00123775e+00 1.77356267e+00
1.06538944e-01 3.99487047e-03 -2.06091836e-01 6.86598957e-01
1.02311623e+00 1.65374689e-02 3.66220564e-01 1.08763832e-03
1.05547464e+00 -1.12365520e+00 -6.56868696e-01 -4.24056381e-01
1.34776413e+00 -7.77190149e-01 1.45248127e+00 5.17684996e-01
-8.67369056e-01 -6.13060653e-01 -1.18377995e+00 -1.01408819e-02
-4.05771345e-01 2.98289627e-01 5.06127000e-01 6.72770202e-01
-9.45041239e-01 6.88129961e-01 -6.10501051e-01 -3.60790372e-01
6.95611358e-01 2.08279818e-01 -1.98192105e-01 -3.11745316e-01
-9.41905916e-01 1.30092061e+00 3.74220133e-01 -5.26587814e-02
-1.01691031e+00 -8.50519359e-01 -6.15696907e-01 -4.00888115e-01
3.59783232e-01 -5.13790071e-01 1.72782815e+00 -1.16790795e+00
-8.73083293e-01 1.31939518e+00 1.67907938e-01 -2.59320289e-01
7.71786809e-01 -3.20188105e-02 -3.97474527e-01 -2.70500034e-01
3.08266282e-01 8.89151990e-01 4.85963851e-01 -1.60864365e+00
-8.98062825e-01 -2.93551952e-01 3.13572964e-04 9.98966768e-03
-2.85461217e-01 -1.03574144e-02 -8.94167647e-02 -3.16912383e-01
4.51549254e-02 -1.06912541e+00 -9.34408158e-02 1.50609061e-01
-4.98153895e-01 -3.82209688e-01 6.59629941e-01 -1.15791045e-01
1.39778137e+00 -1.94044852e+00 -6.04544222e-01 2.99312584e-02
3.83884579e-01 3.14309537e-01 -1.18582577e-01 3.22058983e-02
1.03701964e-01 7.25213051e-01 -1.51717961e-01 -4.91245687e-01
8.23178291e-02 2.76473790e-01 -4.42475788e-02 4.59064603e-01
3.44706595e-01 6.10191584e-01 -9.78054106e-01 -7.12421715e-01
1.31117672e-01 1.19909994e-01 -4.60165262e-01 4.14819002e-01
-3.00668448e-01 3.80654484e-01 -3.73790413e-01 9.62400377e-01
5.16475141e-01 -7.08563387e-01 -1.42951623e-01 -2.89912492e-01
2.57301871e-02 2.58350223e-01 -1.12398052e+00 1.29226768e+00
-3.87633830e-01 6.14389837e-01 -2.33345836e-01 -6.52073860e-01
8.81176472e-01 1.82718530e-01 2.69145697e-01 -7.55768061e-01
1.40019163e-01 5.86777747e-01 8.73662084e-02 -7.09799707e-01
1.63081989e-01 -5.64610548e-02 8.62419307e-02 6.08590722e-01
1.77617922e-01 -1.30759358e-01 3.05786967e-01 -3.10992058e-02
1.43410683e+00 -1.41054720e-01 -4.75454442e-02 -1.53835073e-01
1.18313953e-01 4.58200425e-01 7.72657335e-01 1.17274165e+00
-5.80188572e-01 6.99680269e-01 1.20526224e-01 -6.32414460e-01
-1.00068915e+00 -7.49889076e-01 -6.18155539e-01 1.36407804e+00
-2.23113913e-02 -2.36978337e-01 -7.55468309e-01 -1.25440061e+00
-1.34056360e-02 8.76104832e-01 -6.89495146e-01 -2.53257453e-01
-1.12449042e-01 -8.22060883e-01 8.61754656e-01 4.25721824e-01
4.87309992e-01 -1.31212163e+00 -5.52037895e-01 4.53348756e-02
-1.66205287e-01 -1.07208908e+00 -1.29466772e-01 5.34211636e-01
-7.51963973e-01 -1.51622498e+00 3.11797168e-02 -8.59281719e-01
8.38803530e-01 1.50807127e-02 1.83898985e+00 5.42680860e-01
-1.31200492e-01 3.87638718e-01 -5.63836217e-01 -7.13210642e-01
-1.04095876e+00 2.82556951e-01 -1.02844015e-01 -2.87439287e-01
6.69491351e-01 -1.62083954e-02 -5.28282762e-01 7.98518658e-01
-9.47692394e-01 6.49048388e-02 5.56634963e-01 7.93672085e-01
6.40261769e-01 -1.13121487e-01 7.13813365e-01 -1.38863719e+00
6.50271297e-01 -5.90465069e-01 -4.87153590e-01 7.07107246e-01
-1.38224506e+00 4.09567878e-02 4.33376163e-01 -4.21689093e-01
-6.71548247e-01 -1.27655387e-01 -6.29089475e-02 -1.86953992e-01
-3.48240227e-01 5.02854466e-01 -4.04147170e-02 -1.46203831e-01
1.24997747e+00 -4.78910357e-01 -1.36601552e-01 -5.82835555e-01
1.03742823e-01 8.31165135e-01 3.17094177e-01 -7.00962365e-01
3.18416923e-01 1.24859646e-01 -1.52611360e-01 -1.15874127e-01
-1.30084586e+00 -4.05091852e-01 -4.90628719e-01 -3.80618244e-01
6.50721967e-01 -7.47099519e-01 -3.89154345e-01 4.59154218e-01
-9.93674219e-01 -5.39703786e-01 -1.41301364e-01 3.39335889e-01
-4.60215688e-01 -1.85539484e-01 -5.33339500e-01 -5.34501493e-01
-1.78595230e-01 -1.58676565e+00 9.14225459e-01 1.62200764e-01
-5.17376482e-01 -1.15040410e+00 2.90757660e-02 6.38429165e-01
3.48229349e-01 2.04548180e-01 8.43378127e-01 -9.90288794e-01
-3.01672608e-01 -1.75364718e-01 -2.60500640e-01 7.82333136e-01
-3.44340727e-02 3.98999810e-01 -1.43662298e+00 -3.54401082e-01
-1.91208869e-01 -8.86932373e-01 6.57454014e-01 1.05659790e-01
1.29414809e+00 -1.09810621e-01 -3.55490357e-01 4.02983904e-01
1.32103384e+00 3.02308295e-02 3.31366897e-01 6.06400609e-01
7.22377598e-01 6.40747905e-01 8.11181664e-01 -4.16093618e-02
2.24124864e-01 5.68641245e-01 5.28463662e-01 -2.56583184e-01
-3.94876719e-01 -1.67551875e-01 1.02699779e-01 7.57782996e-01
4.65734273e-01 -2.01849207e-01 -1.34692693e+00 3.82215410e-01
-1.68613100e+00 -6.04133606e-01 -3.01993281e-01 2.25899124e+00
1.23966432e+00 2.28936642e-01 -2.61371821e-01 1.11478485e-01
6.58273339e-01 -3.88771713e-01 -7.29226589e-01 -2.25255549e-01
-7.76198208e-02 -4.36978266e-02 5.39996743e-01 3.35123420e-01
-1.12904322e+00 8.87204587e-01 6.94443750e+00 8.17330718e-01
-1.07314563e+00 1.72888443e-01 9.13390458e-01 2.04985157e-01
-2.22489953e-01 5.80038987e-02 -1.03271401e+00 5.42005181e-01
9.34736729e-01 3.26379925e-01 3.33759859e-02 1.18908703e+00
-1.14467184e-04 4.48983647e-02 -1.62782001e+00 9.92800117e-01
-8.94181803e-03 -1.20029438e+00 -2.27510557e-01 -1.27978399e-01
9.56696212e-01 1.75740868e-01 1.20384231e-01 7.28435695e-01
6.94302380e-01 -1.39832294e+00 8.65637541e-01 3.78381222e-01
7.49871612e-01 -2.87782550e-01 8.57450068e-01 4.13346559e-01
-4.01146680e-01 -9.95872319e-02 -3.39373678e-01 -1.45993438e-02
-3.20313036e-01 7.86002219e-01 -1.36129761e+00 -3.26619223e-02
7.98371553e-01 5.64847112e-01 -1.39787388e+00 1.30773032e+00
-3.69424134e-01 1.09525108e+00 -1.44715175e-01 5.04811481e-02
1.26073584e-01 3.42578888e-01 1.48330228e-02 1.24243867e+00
7.53900111e-02 -4.63938445e-01 5.33104181e-01 9.38380599e-01
-4.02484953e-01 1.40436530e-01 -6.77359283e-01 1.27439559e-01
8.05856764e-01 1.25241542e+00 -6.26024544e-01 -2.40652055e-01
-3.61665875e-01 2.78192431e-01 4.99754101e-01 3.32611620e-01
-7.20182240e-01 2.47253910e-01 4.16620940e-01 1.05652608e-01
-5.25630891e-01 2.58614659e-01 -7.13997781e-01 -9.42474365e-01
-1.55338533e-02 -1.37363935e+00 5.01803815e-01 -7.13517427e-01
-1.82467520e+00 5.97390413e-01 -2.76595384e-01 -1.30281150e+00
-1.11542068e-01 -6.99242651e-01 -1.72601208e-01 5.12804389e-01
-1.41521192e+00 -1.05008852e+00 -6.19207323e-01 1.84678763e-01
4.25296247e-01 -1.33224219e-01 8.59435439e-01 3.83090705e-01
-7.03080595e-01 9.72070456e-01 -5.08351661e-02 2.89453745e-01
1.24628794e+00 -1.35213459e+00 8.82991627e-02 5.56235254e-01
2.07694486e-01 5.28636754e-01 6.93893552e-01 -5.19133925e-01
-8.95942748e-01 -1.40275443e+00 5.99909008e-01 -1.10638404e+00
3.20908010e-01 -1.68283001e-01 -1.00640595e+00 7.96758533e-01
-8.85429084e-02 3.40297073e-01 9.87503707e-01 3.01687717e-01
-6.75042987e-01 -4.06690389e-02 -1.33220720e+00 4.05595362e-01
9.62399006e-01 -3.91667396e-01 -3.54111403e-01 4.06288296e-01
4.71059650e-01 -2.45386586e-01 -8.91391933e-01 9.57791150e-01
4.63535577e-01 -1.07392669e+00 5.50076127e-01 -7.00473368e-01
3.81622225e-01 -3.91217321e-01 -1.69083998e-01 -1.35145462e+00
-1.49493337e-01 9.86473933e-02 2.36529499e-01 1.44239974e+00
8.44463050e-01 -5.55156887e-01 7.38834441e-01 9.17279541e-01
-2.54752874e-01 -7.83799052e-01 -4.14568692e-01 -7.92165160e-01
1.63785860e-01 -7.53631711e-01 3.97990406e-01 1.33117259e+00
-5.04688799e-01 4.44261312e-01 3.03839594e-02 2.22403323e-03
7.05450416e-01 -2.05502346e-01 8.12182546e-01 -1.45606112e+00
3.21287774e-02 -5.71962118e-01 -3.03731024e-01 -5.00741780e-01
2.10707039e-01 -1.11808383e+00 3.13152373e-01 -1.37572575e+00
3.11511934e-01 -1.29764152e+00 -5.23762286e-01 7.83204019e-01
-3.74123812e-01 5.16643763e-01 9.42004398e-02 4.59723651e-01
-1.04555643e+00 1.00954182e-01 1.12193429e+00 -2.29181722e-01
1.30065277e-01 -1.91184524e-02 -6.90086484e-01 8.28319073e-01
8.31157148e-01 -8.30209136e-01 -4.21025932e-01 -5.37064135e-01
5.32535136e-01 -6.60334885e-01 4.26007301e-01 -1.22651267e+00
1.57013968e-01 -1.69367597e-01 3.86489749e-01 -2.39214584e-01
-2.58492917e-01 -9.05127823e-01 1.04873843e-01 1.59680992e-01
-9.07387793e-01 1.03218712e-01 1.86053365e-02 1.16055034e-01
-1.43348187e-01 -6.62779272e-01 9.28035319e-01 -1.49851531e-01
-8.81418526e-01 2.61039704e-01 -5.13230357e-03 5.46992660e-01
9.25955355e-01 -9.71226841e-02 -7.17313886e-01 4.70835279e-04
-6.05596662e-01 4.53216493e-01 8.77371550e-01 4.80481207e-01
2.50141054e-01 -1.34000480e+00 -7.73387611e-01 1.13216378e-02
6.92577064e-01 5.99737652e-02 -1.35287657e-01 7.16693580e-01
-5.93082905e-01 6.76203817e-02 -1.70148075e-01 -9.13401186e-01
-1.22863746e+00 4.44615781e-01 5.97280324e-01 -3.38811338e-01
-7.39629567e-02 8.72382164e-01 -1.58502441e-02 -9.37496722e-01
6.50690258e-01 -2.83307612e-01 -6.29790202e-02 -9.33748018e-03
5.46670794e-01 3.57408822e-01 4.64301318e-01 -3.53692204e-01
-2.69287527e-01 2.05058590e-01 -1.48681700e-01 2.02188134e-01
9.24602985e-01 5.92272282e-02 5.01642376e-02 7.28389263e-01
1.23770285e+00 -4.00367081e-01 -1.19062030e+00 -9.52397212e-02
4.90944356e-01 -3.74039203e-01 1.09749615e-01 -1.40638936e+00
-8.26178491e-01 8.37911189e-01 9.43230689e-01 3.06968540e-01
8.13044190e-01 -7.05637708e-02 2.20228359e-01 4.09722805e-01
4.81400460e-01 -1.42871106e+00 2.68275946e-01 4.12302107e-01
6.72017872e-01 -1.80703008e+00 -3.10698986e-01 -3.81540000e-01
-6.11422658e-01 9.11732674e-01 9.80647445e-01 2.94011384e-01
4.85586941e-01 3.77209336e-01 6.76134765e-01 -3.26283544e-01
-8.51869702e-01 -1.41129985e-01 2.27360576e-01 6.16373479e-01
7.09966898e-01 1.04308873e-01 -1.79861873e-01 3.97756606e-01
-1.62247792e-01 2.34576106e-01 4.17888194e-01 1.04990077e+00
-3.62692118e-01 -1.28277230e+00 -3.45466882e-01 6.54912531e-01
-5.69365919e-01 7.66888186e-02 -5.09154260e-01 8.18860769e-01
5.52066743e-01 1.35090995e+00 -2.63106734e-01 -4.78812099e-01
5.25776625e-01 3.85017723e-01 3.61567318e-01 -1.01692855e+00
-7.77577519e-01 -6.29914999e-01 2.42591500e-01 -4.62259769e-01
-4.20894951e-01 -3.22014064e-01 -1.05739534e+00 -2.99768984e-01
-5.13728619e-01 7.13544115e-02 8.04125011e-01 9.51348662e-01
2.73271531e-01 4.50349271e-01 5.00393391e-01 -1.72818646e-01
-9.18791056e-01 -1.12246180e+00 -3.38348061e-01 8.82583857e-01
1.13104515e-01 -9.09302652e-01 -5.83949149e-01 7.00001493e-02] | [9.39620590209961, 4.035164833068848] |
8a11704a-d527-4012-9a31-05ff75e70233 | 05-petabyte-simulation-of-a-45-qubit-quantum | 1704.01127 | null | https://arxiv.org/abs/1704.01127v2 | https://arxiv.org/pdf/1704.01127v2.pdf | 0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit | Near-term quantum computers will soon reach sizes that are challenging to directly simulate, even when employing the most powerful supercomputers. Yet, the ability to simulate these early devices using classical computers is crucial for calibration, validation, and benchmarking. In order to make use of the full potential of systems featuring multi- and many-core processors, we use automatic code generation and optimization of compute kernels, which also enables performance portability. We apply a scheduling algorithm to quantum supremacy circuits in order to reduce the required communication and simulate a 45-qubit circuit on the Cori II supercomputer using 8,192 nodes and 0.5 petabytes of memory. To our knowledge, this constitutes the largest quantum circuit simulation to this date. Our highly-tuned kernels in combination with the reduced communication requirements allow an improvement in time-to-solution over state-of-the-art simulations by more than an order of magnitude at every scale. | ['Thomas Häner', 'Damian S. Steiger'] | 2017-04-04 | null | null | null | null | ['image-outpainting', 'image-relighting'] | ['computer-vision', 'computer-vision'] | [ 1.09856658e-01 -2.68754750e-01 4.44856614e-01 -9.05737206e-02
-7.65473187e-01 -7.81581283e-01 4.59001839e-01 3.44711930e-01
-6.32941604e-01 9.33086276e-01 -5.22028983e-01 -9.51150179e-01
-5.07377796e-02 -1.09642851e+00 -4.05970335e-01 -7.61952400e-01
-1.96243554e-01 8.28902245e-01 2.66858518e-01 -5.36720932e-01
4.06048536e-01 5.84952414e-01 -1.39479280e+00 7.03339800e-02
7.91134834e-01 7.14750767e-01 -1.29113495e-01 8.02458167e-01
4.11896765e-01 2.84958601e-01 -3.59599799e-01 -1.25681058e-01
2.29759201e-01 -6.28024876e-01 -8.81821215e-01 -7.72345066e-01
-9.07465070e-02 -1.97121322e-01 -7.38806963e-01 1.03826654e+00
6.03832841e-01 1.53484881e-01 1.73060343e-01 -8.37421238e-01
3.91159505e-02 5.92016578e-01 -8.56300443e-02 2.95339227e-01
1.56925365e-01 5.44624031e-01 8.02868724e-01 -1.81975607e-02
6.42001688e-01 6.80103242e-01 4.85177577e-01 3.03903729e-01
-1.61742175e+00 -7.30247676e-01 -8.74883294e-01 2.73404811e-02
-1.71388102e+00 -4.43897843e-01 1.52441457e-01 -1.71027556e-02
1.55658150e+00 1.55725658e-01 8.22914124e-01 4.16377664e-01
7.89372563e-01 -4.64424342e-01 1.41649854e+00 -6.50931299e-01
5.29270172e-01 3.02573144e-02 8.94331187e-02 5.18574357e-01
4.54661101e-01 3.92913818e-01 -2.78166085e-01 -5.17529428e-01
4.91918981e-01 -5.51256716e-01 1.29540250e-01 -8.20941404e-02
-1.45762277e+00 7.13477790e-01 4.03790653e-01 5.17065465e-01
-2.14001074e-01 6.75548434e-01 5.09292543e-01 3.19198519e-01
-1.84324700e-02 9.75839019e-01 -4.22563106e-01 -5.69554150e-01
-8.89637113e-01 5.08341551e-01 9.36648369e-01 8.03426445e-01
6.47439837e-01 -1.92111149e-01 1.60484090e-01 -1.10958457e-01
-1.76380515e-01 7.77744234e-01 -1.77856550e-01 -1.06823623e+00
7.70749003e-02 1.32806793e-01 1.36706933e-01 -2.15573326e-01
-8.04671705e-01 -3.07144940e-01 -8.30252707e-01 3.45764637e-01
4.45722520e-01 -2.55546093e-01 -6.59712434e-01 1.31314850e+00
2.62065172e-01 -3.20597328e-02 1.21962599e-01 8.39222252e-01
1.35908782e-01 7.14980841e-01 -2.38051057e-01 -1.14201292e-01
1.42240703e+00 -3.63226414e-01 -2.16058671e-01 2.50625640e-01
1.07307029e+00 -8.93417656e-01 4.87953842e-01 4.37441766e-01
-1.05201733e+00 -3.10477555e-01 -1.49127805e+00 2.55476274e-02
-2.61277884e-01 -4.53590602e-01 1.37867427e+00 9.80349064e-01
-1.06292093e+00 1.18483007e+00 -1.18516695e+00 -2.01969191e-01
-1.67246595e-01 6.69253647e-01 -1.86019450e-01 -4.27644281e-03
-1.27631903e+00 1.10350299e+00 6.01132512e-01 -1.09846823e-01
-6.00862503e-01 -7.59048760e-01 -3.40726286e-01 1.55933693e-01
9.05837789e-02 -9.14452791e-01 1.12917113e+00 -2.48167917e-01
-1.64015841e+00 7.50025153e-01 1.18577741e-01 -5.78633428e-01
-4.77718115e-02 7.86472976e-01 -4.01264340e-01 1.84280410e-01
-1.17208205e-01 1.10261522e-01 1.86622292e-01 -3.78755957e-01
-1.56674609e-01 -2.53090262e-01 1.66669950e-01 -1.44634634e-01
1.48967072e-01 5.27448654e-02 1.37751000e-02 4.09921467e-01
2.49001861e-01 -1.40495980e+00 -5.60230434e-01 -6.40551031e-01
-1.16739027e-01 2.14965343e-01 1.56251743e-01 -1.09808989e-01
9.07358229e-01 -1.98267639e+00 2.06496716e-01 4.38136071e-01
1.55308798e-01 -6.41951431e-03 2.04963997e-01 8.57299149e-01
8.52980465e-02 -2.04743773e-01 4.72947583e-02 1.80476382e-02
1.52932256e-01 7.06572384e-02 -1.26844198e-01 7.47665465e-01
-1.78593934e-01 8.11508954e-01 -8.31410527e-01 -1.20716721e-01
2.55884200e-01 2.49935091e-01 -6.74199522e-01 -2.01324463e-01
-1.09457970e-01 6.46955729e-01 -5.00732243e-01 2.38776430e-01
7.13197351e-01 -4.08759832e-01 4.12801445e-01 -5.24912514e-02
-5.40151417e-01 6.50536299e-01 -1.10326076e+00 1.90652335e+00
-3.71569812e-01 4.46996957e-01 3.92703772e-01 -6.66366100e-01
4.77779657e-01 7.75401518e-02 3.14880699e-01 -9.53474462e-01
5.06987572e-01 6.28945768e-01 6.42044663e-01 1.24131151e-01
9.13676023e-01 -7.02883899e-01 -5.14769852e-01 7.16734350e-01
5.42651303e-03 -9.18423533e-01 5.23644328e-01 6.20465100e-01
1.39038336e+00 -1.85808912e-01 -3.00231297e-02 -8.60011756e-01
2.44073376e-01 3.06993753e-01 2.62414038e-01 9.59937036e-01
-1.65506110e-01 9.15902331e-02 8.18277717e-01 -4.20549601e-01
-1.72950172e+00 -7.12008119e-01 -6.74881876e-01 5.83527386e-01
2.46643558e-01 -8.86138260e-01 -7.41620541e-01 3.94658476e-01
9.93824843e-03 8.01183105e-01 -1.11400932e-01 -1.21980876e-01
-2.68070132e-01 -1.18164921e+00 7.37482548e-01 9.30572897e-02
2.49128208e-01 -5.80028236e-01 -4.75591063e-01 3.90078038e-01
6.43126190e-01 -1.11885262e+00 3.10669482e-01 6.15506589e-01
-7.38949358e-01 -7.44785845e-01 -4.34907451e-02 -1.28654793e-01
4.86467808e-01 -9.79560092e-02 1.09206605e+00 2.15598121e-01
-7.34355628e-01 -2.76820809e-01 -9.34943557e-02 1.41939804e-01
-6.49469197e-01 2.67466366e-01 4.81738448e-01 -9.61841047e-01
7.29358718e-02 -8.63469362e-01 -5.15812933e-01 -2.28364870e-01
-5.55105090e-01 1.62495822e-01 4.87003356e-01 9.35290873e-01
4.01661068e-01 5.64692497e-01 -7.46447071e-02 -7.86243558e-01
3.78840744e-01 -2.15227112e-01 -1.49010503e+00 -5.25020771e-02
-8.20708275e-01 6.29577100e-01 1.04283321e+00 1.46746859e-01
-6.00891054e-01 6.27445942e-03 -2.04759464e-01 3.39751124e-01
1.33112341e-01 2.55801558e-01 4.33980256e-01 -7.97417581e-01
8.00818443e-01 -2.62038093e-02 -2.30595142e-01 1.50811985e-01
4.89329785e-01 5.83428681e-01 2.90486038e-01 -9.74279583e-01
7.15265274e-01 3.52904409e-01 9.41825390e-01 -6.75197244e-01
-4.20087665e-01 -1.43675268e-01 -5.34280658e-01 2.26716235e-01
7.18240499e-01 -8.40519905e-01 -1.48727798e+00 3.55093420e-01
-9.13408875e-01 -3.74542832e-01 5.32159023e-02 6.19430661e-01
-3.71241063e-01 2.43191436e-01 -9.12535965e-01 -8.09138417e-01
-3.13298136e-01 -1.39688647e+00 9.96601701e-01 3.22714120e-01
3.59761305e-02 -6.19188130e-01 2.03491941e-01 3.58149976e-01
8.67415428e-01 1.94720134e-01 8.14918280e-01 -5.95742166e-02
-1.10133421e+00 -2.10039958e-01 -2.82926410e-01 -1.92005545e-01
-7.00641990e-01 2.15868466e-02 -8.32116187e-01 -7.10337162e-01
-1.19541846e-01 -5.70427239e-01 4.94285852e-01 -1.03143014e-01
8.50947678e-01 6.57524645e-01 -3.58788878e-01 7.10325420e-01
1.57821560e+00 -1.72640812e-02 7.63696313e-01 1.78074852e-01
2.81904608e-01 2.12571421e-03 3.53029519e-01 4.29015487e-01
1.21308535e-01 6.96715593e-01 9.08182710e-02 4.86926764e-01
5.34243226e-01 1.81213275e-01 -1.39020592e-01 1.08828139e+00
-2.40642935e-01 2.77540118e-01 -1.15711606e+00 -2.60036271e-02
-1.37781560e+00 -9.55146730e-01 -5.44113636e-01 2.44258165e+00
5.96023381e-01 6.52594209e-01 -3.54136676e-01 -3.95533293e-02
2.66700655e-01 -1.44825414e-01 -3.90675336e-01 -7.66185105e-01
2.08307371e-01 9.89135921e-01 1.07238185e+00 6.17285252e-01
-6.46210790e-01 1.01283371e+00 6.79285526e+00 9.26970243e-01
-1.09075296e+00 2.95972854e-01 4.15546626e-01 -1.89670503e-01
-1.94036469e-01 8.93152535e-01 -7.02380359e-01 5.33250809e-01
1.85298896e+00 -4.18329209e-01 1.20093524e+00 7.36611605e-01
-1.32514238e-01 -7.69014657e-01 -1.05538237e+00 1.06343472e+00
-4.89592522e-01 -1.55407369e+00 -7.59720862e-01 2.75131017e-01
8.83113921e-01 3.85779858e-01 -3.54377538e-01 5.89464247e-01
1.32603303e-01 -1.10698318e+00 4.76250470e-01 3.87522697e-01
9.65690196e-01 -1.14501345e+00 9.15257633e-01 4.67991233e-01
-9.01298344e-01 4.46577996e-01 -6.52104855e-01 -7.90270984e-01
3.30381870e-01 6.94218457e-01 -4.47208434e-01 6.00640237e-01
2.92773694e-01 -8.39569271e-02 -4.03639644e-01 6.85971916e-01
2.27201749e-02 5.27393341e-01 -8.77671838e-01 -5.45608342e-01
3.47577840e-01 -5.98406136e-01 1.06126331e-01 7.16138124e-01
3.50223273e-01 5.61994731e-01 -9.20967981e-02 9.92884934e-01
-1.49948046e-01 -3.74330133e-01 -3.96506310e-01 -3.02014500e-01
6.76014721e-01 1.50851846e+00 -1.01995313e+00 -3.98440003e-01
-1.59892946e-01 9.04286623e-01 3.28322828e-01 -1.59771353e-01
-8.27166140e-01 -7.46471941e-01 5.62045693e-01 -1.44337222e-01
-3.80522013e-02 -8.76402080e-01 -5.44081151e-01 -1.12971485e+00
-2.54246235e-01 -6.02955699e-01 -1.85703114e-01 -6.54384553e-01
-8.81997943e-01 5.31420648e-01 -1.73127204e-01 -5.14698148e-01
-3.68746728e-01 -7.87447095e-01 -3.95389348e-01 1.13968241e+00
-9.63167489e-01 -5.07814050e-01 -1.97173245e-02 4.70509417e-02
-7.40599275e-01 1.34211019e-01 1.35251212e+00 1.87156931e-01
-3.51611763e-01 2.87368029e-01 8.48383248e-01 -3.98142427e-01
4.17265743e-01 -1.03283834e+00 6.44900382e-01 6.50105119e-01
-1.78911433e-01 8.72197747e-01 1.05529892e+00 -4.85497415e-01
-2.40254521e+00 -3.68617177e-01 5.40061653e-01 -5.87417364e-01
1.16638219e+00 -8.17445099e-01 -5.06428480e-01 4.43378597e-01
1.88554630e-01 1.07351579e-01 4.38702762e-01 5.75984001e-01
-2.72728093e-02 -1.48805797e-01 -9.28690791e-01 3.54127407e-01
7.78443396e-01 -9.30187762e-01 -9.72735211e-02 7.58747160e-01
4.30488855e-01 -8.33994150e-01 -1.15407360e+00 1.52384192e-01
5.22321463e-01 -1.04526865e+00 7.01304555e-01 -1.93167791e-01
4.24237922e-02 -3.11857074e-01 -6.25182167e-02 -9.11003530e-01
-3.67448717e-01 -1.10138249e+00 3.99390846e-01 7.47470975e-01
4.45937634e-01 -8.77178848e-01 6.61770523e-01 8.98657799e-01
-6.62920326e-02 -3.61351788e-01 -1.34915209e+00 -7.38123894e-01
5.01987457e-01 -4.96256471e-01 6.22800827e-01 7.14408219e-01
6.58879817e-01 5.05684197e-01 -1.45230770e-01 7.97098428e-02
7.58944333e-01 4.77343440e-01 6.56295002e-01 -8.37433934e-01
-7.77008593e-01 -3.36760610e-01 -8.57402205e-01 -5.18109441e-01
1.15027703e-01 -1.06247890e+00 -1.48057237e-01 -8.20146203e-01
5.04181981e-01 -7.40675569e-01 5.96040278e-04 3.72679047e-02
1.84370041e-01 4.96191323e-01 7.71160051e-02 -1.33121982e-01
-8.10306013e-01 4.59651440e-01 9.27155495e-01 3.31177622e-01
2.31274992e-01 -4.63667959e-01 -3.29145104e-01 2.09371686e-01
7.40425408e-01 -5.83261847e-01 -2.35826280e-02 -1.85370103e-01
7.46968687e-01 3.43796045e-01 2.40450576e-01 -1.39395332e+00
4.63402987e-01 3.74538116e-02 1.49243757e-01 -3.26892197e-01
5.03142953e-01 -2.92270929e-01 6.61173940e-01 7.47587860e-01
9.98042822e-02 -1.15384832e-02 4.13416833e-01 7.94226378e-02
8.98371562e-02 -3.88179183e-01 9.45359051e-01 -1.67559907e-01
-3.74929905e-01 5.40939011e-02 -5.67943990e-01 -1.04167052e-01
1.15150797e+00 5.04157960e-01 -5.91665506e-01 -4.62751947e-02
-3.73009980e-01 7.38356560e-02 1.08087289e+00 -4.42058772e-01
-2.09365606e-01 -1.04929733e+00 -3.90735149e-01 2.51124710e-01
5.65266572e-02 -3.06618303e-01 5.19511580e-01 8.54811966e-01
-1.39325702e+00 9.22804475e-01 -3.61300081e-01 -4.49851364e-01
-8.47912252e-01 6.19378388e-01 2.47670799e-01 -4.57671672e-01
-5.75034559e-01 5.15441597e-01 -5.08804858e-01 -3.68918508e-01
-6.50076568e-01 -2.71104544e-01 8.51059973e-01 -6.97194993e-01
5.22279382e-01 2.97976196e-01 4.51316565e-01 -3.80500704e-01
-5.40809810e-01 2.44194344e-01 1.51200909e-02 -3.94225985e-01
1.12029946e+00 3.86811644e-01 -7.03256965e-01 6.13408834e-02
1.00991213e+00 -7.05122873e-02 -7.55155921e-01 1.79777682e-01
-2.80448943e-01 -2.25780234e-01 4.13349748e-01 -3.70772541e-01
-3.39222789e-01 9.20691550e-01 3.40032667e-01 3.50858748e-01
7.67790556e-01 -3.55580896e-02 8.97085607e-01 8.13160717e-01
1.42122710e+00 -1.13699961e+00 -6.48537576e-01 7.58488238e-01
-9.79377478e-02 -9.00779188e-01 4.85485673e-01 -1.50515094e-01
1.09266434e-02 1.25031292e+00 1.27185374e-01 -3.01850438e-01
3.20132017e-01 7.55849957e-01 -5.13688982e-01 -2.84918159e-01
-8.34302664e-01 -7.74823427e-02 -3.64738703e-01 -3.61916013e-02
4.28008527e-01 5.61548531e-01 -5.50732493e-01 4.28561494e-02
-5.72289586e-01 -9.18401033e-02 8.07866812e-01 1.07436800e+00
-3.82490069e-01 -1.61392617e+00 -4.47279990e-01 3.41212153e-01
-2.11580053e-01 -4.08143938e-01 1.69389561e-01 6.33885741e-01
-1.03924625e-01 8.96883309e-01 -5.72688552e-03 -3.87190819e-01
8.03696737e-02 9.12865698e-02 1.08267772e+00 -5.35286665e-01
-7.17679679e-01 -4.57629502e-01 3.10418606e-01 -6.94431365e-01
2.82439813e-02 -4.57774520e-01 -1.56484282e+00 -1.41565585e+00
-5.20915866e-01 5.39858341e-01 1.04745793e+00 8.64596546e-01
5.14940262e-01 6.59732163e-01 3.15052807e-01 -1.22868216e+00
-9.46893334e-01 -8.18832695e-01 -8.88777435e-01 -4.77891006e-02
-2.21011311e-01 -4.55676675e-01 -2.76771694e-01 -8.06939960e-01] | [5.57776403427124, 4.927721977233887] |
d254d099-caf9-4a45-8a22-6c521f001b71 | self-supervised-deformation-modeling-for | 1911.00735 | null | https://arxiv.org/abs/1911.00735v2 | https://arxiv.org/pdf/1911.00735v2.pdf | Self-supervised Deformation Modeling for Facial Expression Editing | Recent advances in deep generative models have demonstrated impressive results in photo-realistic facial image synthesis and editing. Facial expressions are inherently the result of muscle movement. However, existing neural network-based approaches usually only rely on texture generation to edit expressions and largely neglect the motion information. In this work, we propose a novel end-to-end network that disentangles the task of facial editing into two steps: a " "motion-editing" step and a "texture-editing" step. In the "motion-editing" step, we explicitly model facial movement through image deformation, warping the image into the desired expression. In the "texture-editing" step, we generate necessary textures, such as teeth and shading effects, for a photo-realistic result. Our physically-based task-disentanglement system design allows each step to learn a focused task, removing the need of generating texture to hallucinate motion. Our system is trained in a self-supervised manner, requiring no ground truth deformation annotation. Using Action Units [8] as the representation for facial expression, our method improves the state-of-the-art facial expression editing performance in both qualitative and quantitative evaluations. | ['Dimitris Samaras', 'Zhixin Shu', 'ShahRukh Athar'] | 2019-11-02 | null | null | null | null | ['facial-editing'] | ['computer-vision'] | [ 3.02447021e-01 2.71543771e-01 7.95044154e-02 -6.91341579e-01
-5.78928709e-01 -3.26205820e-01 6.41444266e-01 -7.11556792e-01
-1.36285588e-01 6.09296679e-01 2.60554463e-01 1.46761805e-01
5.47768354e-01 -7.78714001e-01 -9.24984097e-01 -7.66882420e-01
4.38275605e-01 2.65868008e-01 -3.21876526e-01 -3.48288596e-01
-2.40947798e-01 6.71706378e-01 -1.32748413e+00 3.55721831e-01
6.08834565e-01 9.04743314e-01 -1.16188250e-01 6.57784760e-01
-1.35780737e-01 8.84861648e-01 -5.02611101e-01 -4.27427053e-01
1.09365918e-01 -8.09088171e-01 -7.02011526e-01 4.14621651e-01
5.78780532e-01 -6.64262712e-01 -3.93087357e-01 9.07994688e-01
6.13551438e-01 1.05257928e-01 5.80700517e-01 -1.24414194e+00
-9.95214164e-01 4.05155085e-02 -7.55711317e-01 -6.42544806e-01
2.98726946e-01 2.32943684e-01 4.87826645e-01 -1.09162831e+00
9.55985487e-01 1.41130841e+00 5.12755036e-01 1.22311497e+00
-1.64123964e+00 -6.80745184e-01 -7.81847984e-02 -1.81830540e-01
-1.28889108e+00 -7.91236699e-01 1.13229251e+00 -6.24763846e-01
6.56318247e-01 2.68299550e-01 9.53092992e-01 1.29667377e+00
1.60458267e-01 7.05172718e-01 1.11245739e+00 -2.72775292e-01
1.50690764e-01 -2.26160616e-01 -8.29136729e-01 7.74499655e-01
-5.00300527e-01 2.61903524e-01 -5.34938633e-01 1.37940124e-01
1.35649669e+00 -1.18279614e-01 -1.47827968e-01 -2.59388536e-01
-1.03655827e+00 6.89912796e-01 3.04684788e-01 -6.35789633e-02
-4.30989236e-01 7.07540154e-01 3.18325818e-01 1.57371730e-01
8.64719391e-01 2.00884268e-01 -4.64355126e-02 -9.63803977e-02
-1.09175408e+00 4.41920877e-01 5.55606008e-01 7.80479252e-01
7.47857451e-01 5.22577047e-01 -3.85461986e-01 1.00158107e+00
2.77762353e-01 5.32560587e-01 1.79035455e-01 -1.20166695e+00
9.63338837e-03 3.18083614e-01 2.91615993e-01 -9.80943978e-01
-2.03424722e-01 6.04449166e-03 -9.93293226e-01 7.34366894e-01
2.49195799e-01 -3.55366111e-01 -1.20568240e+00 2.19008684e+00
4.85151231e-01 1.28294185e-01 -1.54681355e-01 1.09819949e+00
8.36382747e-01 5.38002133e-01 3.80541950e-01 -1.36512905e-01
1.29191506e+00 -1.05400765e+00 -1.02726984e+00 -4.74548489e-02
4.59210992e-01 -8.58006716e-01 1.13031816e+00 1.79958165e-01
-1.48251987e+00 -5.26069283e-01 -6.64146483e-01 -4.00344789e-01
1.19550757e-01 4.28539842e-01 6.57168031e-01 1.52649358e-01
-1.22332692e+00 6.30606890e-01 -9.66056287e-01 -1.17651112e-01
5.47218442e-01 1.53670132e-01 -7.14130759e-01 4.70486283e-01
-1.09305692e+00 9.64614034e-01 -3.28518540e-01 4.73362207e-01
-1.08060741e+00 -7.70021856e-01 -9.74890888e-01 -6.86086863e-02
4.95861378e-03 -1.06856775e+00 1.37987471e+00 -1.59675241e+00
-2.24969888e+00 1.14332855e+00 -4.07286942e-01 1.68485492e-01
8.61059010e-01 -2.25358605e-01 -2.09605381e-01 1.22404099e-01
-7.28809759e-02 1.15735364e+00 9.86056745e-01 -1.43704021e+00
9.98151153e-02 -1.71424985e-01 -1.82317510e-01 2.48756573e-01
5.66706285e-02 1.17643647e-01 -5.74865460e-01 -1.12927413e+00
-2.08553046e-01 -1.10273468e+00 -1.26890004e-01 7.95365810e-01
-2.09362760e-01 6.70896098e-02 9.99086916e-01 -6.99508727e-01
9.33389485e-01 -1.98455489e+00 4.87574100e-01 -1.38636544e-01
1.72725514e-01 2.03977853e-01 -3.20817947e-01 3.38540435e-01
-2.93636173e-01 5.53845689e-02 -1.78253710e-01 -9.07848418e-01
-7.07199648e-02 3.20320278e-01 -3.13946635e-01 3.21199417e-01
5.16866744e-01 1.07288206e+00 -8.09004545e-01 -3.32561374e-01
2.00801641e-01 9.57638621e-01 -8.22992861e-01 3.34087759e-01
-4.00264442e-01 9.36820030e-01 -2.85538107e-01 5.91014266e-01
6.59705520e-01 -1.22761112e-02 1.29299492e-01 -5.30068338e-01
1.61558799e-02 -9.27312225e-02 -7.54925311e-01 2.13942599e+00
-7.58023381e-01 8.04755390e-01 3.11966270e-01 -5.35643518e-01
8.88387442e-01 5.38902700e-01 5.02285302e-01 -5.63694358e-01
3.68399858e-01 -2.60344776e-03 -3.60980600e-01 -6.40840292e-01
3.74373764e-01 -6.11944318e-01 7.77293891e-02 4.96698350e-01
2.02954281e-02 -5.48354685e-01 -2.68412799e-01 -2.03668818e-01
5.74754000e-01 8.80908787e-01 -1.49697438e-01 2.74412613e-02
1.59562334e-01 -1.99099883e-01 4.82225627e-01 -7.24326968e-02
5.66460788e-02 8.99734199e-01 5.67113101e-01 -4.58502024e-01
-1.19345582e+00 -1.01587832e+00 2.36629412e-01 9.96149600e-01
-4.57561761e-02 -1.09467708e-01 -1.17469370e+00 -2.70744473e-01
-9.52892825e-02 5.93363404e-01 -1.05638719e+00 -3.20452303e-01
-6.12694979e-01 -5.33286929e-01 7.82578945e-01 7.07367361e-01
5.55565834e-01 -1.29227436e+00 -4.73248243e-01 2.46312916e-01
-2.77068198e-01 -1.01541376e+00 -8.53151321e-01 -4.39795077e-01
-5.14865160e-01 -5.26134789e-01 -8.84808183e-01 -6.94005668e-01
1.00255346e+00 -1.31751537e-01 8.89412344e-01 5.60751706e-02
-4.96384501e-01 5.14816418e-02 2.72513032e-02 -3.30296308e-01
-5.02017379e-01 -5.60992599e-01 -1.00515746e-01 3.76184493e-01
-2.23220408e-01 -7.47207224e-01 -8.76113296e-01 3.45992029e-01
-1.02967095e+00 5.98506808e-01 4.34890628e-01 9.02436614e-01
6.97386563e-01 -6.28894329e-01 4.41424221e-01 -6.61570013e-01
5.83636701e-01 -8.42627436e-02 -2.23236501e-01 6.74066171e-02
-1.28431737e-01 1.18890643e-01 5.08837223e-01 -8.26931953e-01
-1.39005566e+00 3.34632933e-01 -4.06854779e-01 -9.41543877e-01
-5.82896657e-02 2.54962116e-01 -3.17376107e-01 -2.42352739e-01
5.76310158e-01 1.74556300e-01 4.07385796e-01 -3.15205425e-01
5.87623894e-01 2.28043318e-01 6.44953191e-01 -7.17549801e-01
6.88200414e-01 7.90123761e-01 1.54920623e-01 -7.28711009e-01
-6.58613503e-01 3.16896945e-01 -6.05825901e-01 -5.14743924e-01
1.16995502e+00 -9.80803430e-01 -8.85462463e-01 8.26273561e-01
-1.41602230e+00 -7.12939262e-01 -3.90457571e-01 1.87392905e-01
-8.46014559e-01 1.75124750e-01 -7.24959373e-01 -4.32673216e-01
-3.67954999e-01 -1.20970976e+00 1.48511219e+00 1.93877205e-01
-5.83611190e-01 -9.44593906e-01 1.44691214e-01 2.60820389e-01
5.32373071e-01 9.24238265e-01 6.79837704e-01 3.90816152e-01
-3.73721540e-01 -8.17791373e-02 -1.77534670e-01 4.44340825e-01
3.07823926e-01 3.41524571e-01 -1.07723117e+00 -2.09839232e-02
-2.94852853e-01 -4.54875827e-01 5.04171193e-01 2.34697178e-01
1.34348404e+00 -4.09382463e-01 5.81173226e-02 9.66138005e-01
1.03047848e+00 1.19860165e-01 9.20198262e-01 -2.24090353e-01
1.01637030e+00 6.70494497e-01 2.34530672e-01 3.72554511e-01
3.70121121e-01 9.79606748e-01 2.45731086e-01 -6.86617672e-01
-5.32990754e-01 -5.26711822e-01 3.65688354e-01 4.13148224e-01
-4.15254444e-01 -2.55906358e-02 -4.90564764e-01 3.52623850e-01
-1.84366739e+00 -9.83689249e-01 9.32629853e-02 1.80428183e+00
1.22845054e+00 -3.83991927e-01 -3.51018310e-02 -3.77680540e-01
4.25269425e-01 2.04087406e-01 -5.37846506e-01 -6.17701590e-01
1.06048398e-01 4.40226406e-01 -1.04494533e-02 7.10478485e-01
-7.99715281e-01 1.29845738e+00 6.07047844e+00 6.60830021e-01
-1.74114537e+00 7.48058185e-02 6.28252268e-01 -3.29956889e-01
-5.73169231e-01 -8.13609287e-02 -3.08497787e-01 3.49269748e-01
4.95118022e-01 1.59257084e-01 3.51624936e-01 6.40156746e-01
8.30203235e-01 5.80467433e-02 -1.11975789e+00 9.25869763e-01
9.31287929e-02 -1.51502120e+00 4.62316006e-01 -4.50756997e-02
7.57889926e-01 -6.02072477e-01 1.56925499e-01 -7.17377141e-02
1.99427754e-01 -1.30350256e+00 1.15186334e+00 9.58913326e-01
1.42051923e+00 -5.92294693e-01 1.18996277e-01 -9.36526731e-02
-1.01744926e+00 6.30401969e-01 1.33312225e-01 1.43956169e-01
5.76214910e-01 3.21775734e-01 -4.04408783e-01 1.71490714e-01
4.04832572e-01 4.64372367e-01 -1.76930521e-02 2.31462821e-01
-5.17405629e-01 3.00494432e-01 7.51523068e-03 3.17116857e-01
1.70996170e-02 -3.93227011e-01 3.70687753e-01 1.18183351e+00
3.16673696e-01 2.74269015e-01 -1.97920948e-01 1.30411339e+00
-3.11610013e-01 -1.14107423e-01 -4.92801398e-01 -1.59147039e-01
1.59206361e-01 1.27220416e+00 -3.99544656e-01 -3.31803948e-01
-1.05591640e-01 1.51808512e+00 3.66726190e-01 5.21937013e-01
-1.11170137e+00 -3.70915502e-01 9.63409245e-01 2.96189308e-01
-4.14886624e-02 -2.94750482e-01 -1.89204350e-01 -1.15995753e+00
-8.15998763e-02 -7.39494741e-01 -4.69577909e-01 -1.28531075e+00
-8.56785834e-01 6.20224237e-01 -8.68588686e-02 -1.03942096e+00
-4.36771452e-01 -3.92248482e-01 -7.47150362e-01 1.06890345e+00
-1.12323534e+00 -1.64862394e+00 -6.62744701e-01 5.95541537e-01
4.26996052e-01 2.77894586e-01 9.35754061e-01 4.03644770e-01
-4.14063662e-01 6.71269178e-01 -3.72497231e-01 2.57385910e-01
8.22622895e-01 -8.57256770e-01 3.87802541e-01 5.52760839e-01
-1.67616010e-01 4.46867645e-01 7.42730081e-01 -5.25585294e-01
-1.30694878e+00 -1.15838611e+00 8.34898770e-01 -2.53363520e-01
3.07931155e-01 -4.98433471e-01 -8.30690145e-01 7.06516206e-01
9.52181816e-02 3.15705687e-01 5.52771449e-01 -4.15290236e-01
-3.97698939e-01 -1.34153530e-01 -1.16933513e+00 9.96893048e-01
1.24017751e+00 -7.81648219e-01 -1.53681085e-01 2.15360150e-01
4.17698056e-01 -7.48834491e-01 -9.20432210e-01 3.74371409e-01
9.09336686e-01 -7.53913701e-01 8.41970623e-01 -7.13207781e-01
8.91405642e-01 -3.78866583e-01 2.48346820e-01 -1.46775627e+00
-1.52588814e-01 -9.87438142e-01 9.79930460e-02 1.02792740e+00
2.15312243e-01 -2.43408129e-01 8.54446232e-01 6.73615515e-01
-1.11647159e-01 -8.04282784e-01 -6.51043117e-01 -4.02702808e-01
6.01206198e-02 -1.36129797e-01 5.40532231e-01 1.17640650e+00
-2.26532236e-01 4.45487089e-02 -7.95453012e-01 -2.43668839e-01
3.46430540e-01 1.33455291e-01 9.74017203e-01 -7.22745776e-01
-3.02054316e-01 -4.66273099e-01 -8.03576931e-02 -1.03206873e+00
3.60813856e-01 -6.55770957e-01 1.75291166e-01 -1.39917886e+00
7.23220482e-02 -1.40176222e-01 4.58232075e-01 7.79011428e-01
4.53713909e-02 5.11084259e-01 1.55520231e-01 9.29623917e-02
5.40692732e-02 8.95860553e-01 1.95126724e+00 2.05211237e-01
-1.31666288e-01 -4.21785861e-01 -5.64998269e-01 8.80414665e-01
5.07483065e-01 -1.72870904e-01 -4.62107807e-01 -6.91730022e-01
1.31845877e-01 3.61849844e-01 6.52240276e-01 -4.97048020e-01
-6.56981170e-02 -4.56848115e-01 5.33220172e-01 -3.01326662e-02
7.04365849e-01 -4.98280406e-01 6.11742377e-01 2.04032779e-01
-3.71788621e-01 5.45513742e-02 3.60509664e-01 2.67358065e-01
-2.45433509e-01 3.68574500e-01 1.08046544e+00 -2.84087099e-02
-3.60806674e-01 5.03232539e-01 -2.59627074e-01 -1.94196135e-01
1.02393675e+00 -1.90775767e-01 1.69484485e-02 -8.16145122e-01
-1.19286048e+00 -1.23664744e-01 6.12421334e-01 4.36812907e-01
6.47824109e-01 -1.59594905e+00 -7.39716709e-01 3.44501168e-01
-1.51113883e-01 1.46982610e-01 4.43657786e-01 7.79610753e-01
-8.24855924e-01 -2.79891580e-01 -5.10476351e-01 -4.61559445e-01
-1.23992515e+00 3.38588431e-02 6.56551182e-01 -7.02577597e-03
-3.88099313e-01 8.73138905e-01 5.50244570e-01 -3.58862638e-01
-5.25191538e-02 -2.33656615e-01 2.22333983e-01 -1.30817264e-01
2.59773612e-01 3.02446168e-02 -1.83915481e-01 -7.93115675e-01
-1.59473363e-02 8.01677287e-01 2.29270697e-01 -4.02500391e-01
1.19504356e+00 -3.03119570e-02 -1.38508558e-01 1.31674096e-01
1.31664300e+00 -2.80231256e-02 -1.68671441e+00 1.62640929e-01
-7.24535704e-01 -3.71493101e-01 -5.84777035e-02 -8.85480464e-01
-1.29688573e+00 1.05380666e+00 2.85478085e-01 -5.55349410e-01
1.23718631e+00 -3.19098711e-01 8.73989403e-01 -1.23351015e-01
2.08742425e-01 -1.05232584e+00 3.25733095e-01 3.72526616e-01
1.46095312e+00 -9.56547499e-01 -2.14961305e-01 -4.70798850e-01
-8.08979571e-01 1.03653252e+00 7.40987837e-01 -2.42291152e-01
5.67196667e-01 5.34319460e-01 2.19144925e-01 -1.55476943e-01
-6.90120697e-01 2.37145931e-01 4.63237584e-01 4.47090656e-01
6.56476736e-01 1.25475660e-01 -1.71905831e-01 2.73111999e-01
-2.57236689e-01 3.66976559e-01 2.26086751e-01 7.37179697e-01
1.05811916e-01 -1.06072652e+00 -4.57617939e-02 -2.10252464e-01
-2.55732596e-01 3.75888273e-02 -5.72803915e-01 9.00844634e-01
1.59606203e-01 4.39654410e-01 2.76122659e-01 -3.11396927e-01
4.65340316e-01 -2.96610631e-02 8.59414399e-01 -5.38125634e-01
-3.90556037e-01 3.17202836e-01 1.96065441e-01 -8.65373015e-01
-4.46403533e-01 -3.09881538e-01 -1.35588491e+00 -5.54493427e-01
1.36169121e-01 -3.14448833e-01 6.92997873e-01 7.50199974e-01
5.47268569e-01 6.20935977e-01 4.93229985e-01 -1.32256055e+00
-2.25876734e-01 -8.78095686e-01 -3.93867701e-01 7.05837250e-01
2.96111435e-01 -6.84906900e-01 -1.09545700e-01 4.94748503e-01] | [12.74233341217041, -0.42162564396858215] |
5dc7e187-b0a2-48c3-a55f-4bd75bd6346f | lightts-lightweight-time-series | 2302.12721 | null | https://arxiv.org/abs/2302.12721v1 | https://arxiv.org/pdf/2302.12721v1.pdf | LightTS: Lightweight Time Series Classification with Adaptive Ensemble Distillation -- Extended Version | Due to the sweeping digitalization of processes, increasingly vast amounts of time series data are being produced. Accurate classification of such time series facilitates decision making in multiple domains. State-of-the-art classification accuracy is often achieved by ensemble learning where results are synthesized from multiple base models. This characteristic implies that ensemble learning needs substantial computing resources, preventing their use in resource-limited environments, such as in edge devices. To extend the applicability of ensemble learning, we propose the LightTS framework that compresses large ensembles into lightweight models while ensuring competitive accuracy. First, we propose adaptive ensemble distillation that assigns adaptive weights to different base models such that their varying classification capabilities contribute purposefully to the training of the lightweight model. Second, we propose means of identifying Pareto optimal settings w.r.t. model accuracy and model size, thus enabling users with a space budget to select the most accurate lightweight model. We report on experiments using 128 real-world time series sets and different types of base models that justify key decisions in the design of LightTS and provide evidence that LightTS is able to outperform competitors. | ['Christian S. Jensen', 'Chenjuan Guo', 'Tung Kieu', 'Bin Yang', 'Miao Zhang', 'David Campos'] | 2023-02-24 | null | null | null | null | ['time-series-classification'] | ['time-series'] | [ 3.53386849e-01 -5.96291125e-01 -1.15183592e-01 -4.06467915e-01
-6.14545286e-01 -5.93324959e-01 6.04995191e-01 3.11843395e-01
-3.43734175e-01 6.58771813e-01 -2.29146689e-01 -4.96420443e-01
-6.38977945e-01 -6.56899095e-01 -2.16436356e-01 -7.16941953e-01
-3.57431471e-01 6.30318224e-01 -2.08915338e-01 -1.69418320e-01
4.62149471e-01 4.82007295e-01 -1.92862976e+00 4.04089481e-01
1.17867553e+00 1.33466744e+00 -8.20958689e-02 9.66020584e-01
-1.14402257e-01 4.97222751e-01 -8.90934348e-01 -3.36011857e-01
4.57742035e-01 -2.74254888e-01 -1.78874522e-01 -2.97088474e-01
2.02198982e-01 -6.23479001e-02 1.15480728e-01 3.41544688e-01
6.24055743e-01 1.74559832e-01 6.65774465e-01 -1.62588060e+00
-4.63532731e-02 6.71802938e-01 -2.16029376e-01 4.56230253e-01
-5.08911768e-03 2.30535999e-01 9.06010509e-01 -5.42348385e-01
1.72560558e-01 8.66658092e-01 8.08086514e-01 3.83824140e-01
-1.37909830e+00 -9.37628448e-01 3.67466241e-01 2.07046300e-01
-1.26472723e+00 -6.74903452e-01 4.90904748e-01 -2.80432433e-01
1.06891000e+00 6.93932116e-01 6.61491334e-01 1.16672635e+00
5.91937661e-01 5.86831093e-01 1.25786805e+00 -3.97017539e-01
5.82903981e-01 -2.68667676e-02 4.05028984e-02 -1.30541269e-02
5.28116167e-01 -1.80851012e-01 -6.81536019e-01 -4.93278772e-01
3.87259960e-01 2.24961013e-01 -1.61229372e-02 -3.95334996e-02
-1.08730185e+00 3.46110135e-01 -1.86122417e-01 3.85309428e-01
-5.30173361e-01 1.54279992e-01 5.45037091e-01 6.31311476e-01
6.96047783e-01 7.85795093e-01 -9.12272036e-01 -5.60929596e-01
-1.09818614e+00 2.90861368e-01 9.33336139e-01 7.93952644e-01
1.69375658e-01 1.21949269e-02 -2.65522718e-01 5.98639488e-01
-6.69282079e-02 4.72470075e-01 5.99255145e-01 -8.59413207e-01
4.94903892e-01 6.11591935e-01 1.60069138e-01 -5.28968215e-01
-2.95517445e-01 -8.33845139e-01 -8.77754390e-01 7.40517825e-02
3.38904321e-01 -1.86766535e-01 -7.68956363e-01 1.43545592e+00
1.68324202e-01 4.45437253e-01 -1.22761708e-02 2.91968524e-01
-5.40316030e-02 5.45075595e-01 2.43253574e-01 -5.47812819e-01
9.39820409e-01 -4.97409523e-01 -5.66455126e-01 4.08377722e-02
6.01400495e-01 -6.09846115e-01 7.20929325e-01 9.02752757e-01
-8.64963531e-01 -5.88100314e-01 -1.14610481e+00 6.25708759e-01
-2.45368168e-01 -1.74996257e-02 5.94127536e-01 8.72364342e-01
-8.03194165e-01 1.09894598e+00 -1.03733599e+00 -2.31437087e-02
4.40056503e-01 6.13142014e-01 5.54481819e-02 2.08284348e-01
-9.26267266e-01 9.88556743e-01 4.04105395e-01 -2.34672483e-02
-5.06324351e-01 -9.18356121e-01 -2.68448234e-01 6.43042400e-02
1.47297412e-01 -7.82855451e-01 1.29514325e+00 -1.00737309e+00
-1.27818978e+00 1.47451520e-01 -1.59628704e-01 -7.04826057e-01
7.95597196e-01 -3.23453695e-01 -9.40355301e-01 -2.98954427e-01
-3.36109608e-01 -4.76057343e-02 1.15104210e+00 -1.08125079e+00
-1.04847908e+00 -4.62028563e-01 -3.03508013e-01 2.71958206e-02
-7.56268084e-01 -2.46929914e-01 1.83559105e-01 -6.48775399e-01
-6.48743883e-02 -1.00782490e+00 -4.71067160e-01 -4.39769417e-01
-7.18400534e-03 -2.93317139e-01 9.89592433e-01 -4.02795166e-01
1.83263314e+00 -1.86548507e+00 -2.87780203e-02 5.18502593e-01
3.31924647e-01 5.61083890e-02 -6.41747043e-02 5.24396539e-01
4.85008061e-02 2.78731585e-01 6.47148266e-02 -4.07422602e-01
-2.07557529e-02 2.03480631e-01 -4.21217859e-01 1.49023294e-01
7.60593265e-02 3.25720459e-01 -7.50984311e-01 -2.15612069e-01
2.68822759e-01 2.46085197e-01 -1.31970122e-01 1.19794659e-01
-1.78271845e-01 3.67616951e-01 -4.70022947e-01 6.72383010e-01
3.97716790e-01 -3.82033616e-01 3.14332962e-01 -1.51988611e-01
-1.22583084e-01 1.62605733e-01 -1.23998177e+00 1.18093789e+00
-9.02317941e-01 3.83589476e-01 -3.08250695e-01 -7.91402817e-01
1.07661927e+00 2.08029121e-01 7.55267978e-01 -4.20556992e-01
1.68974608e-01 5.10846913e-01 3.04695457e-01 -4.61167507e-02
4.42823738e-01 1.06590703e-01 -1.25236630e-01 7.64068425e-01
-1.41949505e-01 -5.50148897e-02 3.77123386e-01 -2.04173893e-01
1.19529307e+00 2.22723428e-02 3.50240976e-01 -3.31141889e-01
3.70824873e-01 -3.72706264e-01 3.67377847e-01 8.21128964e-01
-7.35672340e-02 8.08537006e-02 6.26898631e-02 -7.72919536e-01
-1.16072929e+00 -8.54549289e-01 -1.73994169e-01 1.51808274e+00
-1.74453229e-01 -5.05877376e-01 -4.29362744e-01 -5.91410220e-01
2.34506443e-01 9.57748234e-01 -7.11912036e-01 -1.95091844e-01
-4.28363860e-01 -8.79108489e-01 4.12107766e-01 6.10847592e-01
3.28636110e-01 -6.39004111e-01 -1.06773388e+00 4.98803169e-01
1.54029399e-01 -9.35917556e-01 -1.53187528e-01 4.72329408e-01
-1.27555490e+00 -7.85433233e-01 -2.45551452e-01 7.26067647e-02
2.93635428e-01 2.87541356e-02 1.33051586e+00 -8.66493508e-02
1.85511168e-02 2.95291513e-01 -4.74825293e-01 -1.00654757e+00
-4.72401589e-01 3.74828488e-01 4.82160628e-01 2.74885204e-02
3.88779849e-01 -7.80383408e-01 -5.76296687e-01 3.83053631e-01
-6.55375361e-01 2.02183332e-02 5.45516789e-01 6.19860232e-01
4.64495659e-01 4.50855345e-01 7.26886094e-01 -5.19659996e-01
8.56965244e-01 -6.67966425e-01 -4.73980844e-01 5.20962179e-01
-1.15439498e+00 2.68551648e-01 8.08203220e-01 -7.84577549e-01
-8.60772550e-01 -3.25585902e-01 2.23596483e-01 -4.81846780e-01
1.38808936e-01 3.05671394e-01 1.90722078e-01 1.33974671e-01
6.46579266e-01 1.79592058e-01 -3.45732011e-02 -2.67542273e-01
3.03891469e-02 8.47405553e-01 1.92987636e-01 -7.95825303e-01
3.73863637e-01 2.09340498e-01 1.45768085e-02 -5.62862575e-01
-5.05144238e-01 -2.50885010e-01 -4.02641863e-01 -4.98252720e-01
1.46768540e-01 -7.19332814e-01 -7.19547689e-01 3.96400690e-01
-7.58711517e-01 -3.47965777e-01 -2.83399910e-01 3.76314491e-01
-5.53331196e-01 -3.18716317e-01 -2.98226148e-01 -1.26735747e+00
-7.61706889e-01 -8.82302642e-01 1.00714862e+00 1.05807118e-01
-7.71057963e-01 -8.69360924e-01 -5.73822074e-02 9.59101915e-02
6.06701016e-01 3.58951151e-01 7.24776566e-01 -1.11344659e+00
-2.03450099e-01 -4.50423867e-01 3.18260878e-01 2.03411847e-01
2.03063682e-01 2.64330298e-01 -1.09662974e+00 -4.77114737e-01
-4.62637506e-02 1.70343876e-01 5.16391277e-01 4.13383514e-01
1.61422074e+00 -1.46377012e-01 -4.84310627e-01 4.10820693e-01
1.18192649e+00 5.76168418e-01 4.14847314e-01 4.33515787e-01
4.32055473e-01 3.75510961e-01 5.52112818e-01 1.02650642e+00
1.90789342e-01 5.10925710e-01 1.31677672e-01 4.15370405e-01
5.10564387e-01 5.93585372e-02 2.56678641e-01 9.21253085e-01
-5.49184084e-01 -3.78671229e-01 -1.06371248e+00 2.40813613e-01
-1.83504546e+00 -9.99023020e-01 1.74012020e-01 2.55806398e+00
7.56704390e-01 5.27418196e-01 2.45121688e-01 5.81497848e-01
4.67766613e-01 -1.18417561e-01 -8.48977566e-01 -4.87172216e-01
1.53510720e-01 4.45723563e-01 5.41013122e-01 -1.80137083e-01
-1.06089485e+00 1.66216165e-01 6.73994112e+00 8.53590429e-01
-1.25003994e+00 -8.22660923e-02 9.71005857e-01 -5.63730896e-01
-2.28862569e-01 -3.46804440e-01 -7.64772713e-01 8.66368115e-01
1.60980713e+00 -8.23366165e-01 2.99500316e-01 8.22062135e-01
3.29632759e-01 9.64268297e-02 -1.37937069e+00 1.16647923e+00
-3.79058450e-01 -1.31723893e+00 -8.23502392e-02 1.97098523e-01
9.88629222e-01 -1.18515976e-01 6.49546906e-02 4.96456355e-01
4.55473214e-01 -1.00441372e+00 7.27492869e-01 5.79360962e-01
6.08330071e-01 -9.85946357e-01 7.55185008e-01 4.48087722e-01
-1.22952402e+00 -5.08601844e-01 1.90846816e-01 -1.80002764e-01
-1.46541566e-01 9.00755882e-01 -7.83042252e-01 6.63599610e-01
7.23714888e-01 5.53861022e-01 -4.50641364e-01 9.24473464e-01
4.45225924e-01 7.09998608e-01 -5.36283612e-01 -1.64451033e-01
-7.70065859e-02 7.38515258e-02 3.86670321e-01 1.16637635e+00
8.83272052e-01 9.37321037e-02 1.50716677e-01 2.20533818e-01
3.62797007e-02 8.94074365e-02 -4.59592074e-01 -1.75415620e-01
1.02192903e+00 1.13804972e+00 -7.78886735e-01 -5.01706541e-01
-1.16478698e-02 5.66215336e-01 -1.01705022e-01 7.29650185e-02
-7.08191872e-01 -1.03305920e-03 8.10366333e-01 3.33123170e-02
6.90448955e-02 -2.76312143e-01 -7.60407329e-01 -8.68249357e-01
-7.63589516e-02 -1.29088378e+00 6.02988899e-01 -3.68372947e-01
-1.54798019e+00 7.68398285e-01 -1.03662662e-01 -1.68323898e+00
-4.78486091e-01 -4.87268120e-01 -5.98377407e-01 8.96181643e-01
-7.31238008e-01 -7.86287963e-01 -5.28946877e-01 2.22449571e-01
7.69093215e-01 -2.88832337e-01 8.05790246e-01 6.73218742e-02
-4.87226009e-01 5.71889937e-01 4.05871630e-01 -5.54657161e-01
8.36976171e-01 -1.19940436e+00 5.33468068e-01 5.46597004e-01
-7.96514750e-02 5.55466175e-01 9.48074222e-01 -5.28521955e-01
-1.44889665e+00 -1.01925111e+00 5.25952101e-01 -7.17273712e-01
6.92386687e-01 -1.28753334e-01 -8.60324442e-01 2.52785742e-01
-9.31582302e-02 -1.46271974e-01 1.13390553e+00 4.15382713e-01
-2.43324861e-01 -4.66338784e-01 -1.14872265e+00 6.43960118e-01
9.15430367e-01 -2.81361461e-01 -2.12930754e-01 -1.00016408e-01
2.77877599e-01 -1.88358352e-01 -1.30760002e+00 5.99317133e-01
1.01757646e+00 -7.86992192e-01 6.58175170e-01 -6.34003282e-01
4.03061450e-01 -9.61717218e-02 -2.64006674e-01 -1.59299338e+00
-1.13103256e-01 -7.34876215e-01 -7.38371551e-01 9.89354193e-01
4.59025800e-01 -8.14319432e-01 4.49222237e-01 9.18362200e-01
8.31101313e-02 -1.03457463e+00 -7.93479025e-01 -9.73184526e-01
-1.07657865e-01 -7.62798965e-01 1.14430916e+00 1.05238760e+00
-2.38108665e-01 1.45953104e-01 -1.97436303e-01 -2.05471948e-01
7.43391216e-01 1.71733394e-01 7.65851319e-01 -1.70744860e+00
-2.89046437e-01 -7.33431280e-01 -3.46538335e-01 -5.03445923e-01
-1.21245518e-01 -4.68838155e-01 -2.56089419e-01 -1.06444716e+00
-1.76591203e-01 -1.03266883e+00 -8.03122461e-01 2.94418365e-01
-2.70747691e-01 2.49870922e-02 2.26111144e-01 4.31936026e-01
-5.98722577e-01 2.58553416e-01 8.73180032e-01 -5.81110939e-02
-4.74536896e-01 2.92248040e-01 -6.98672831e-01 5.67492485e-01
1.04815137e+00 -2.60788411e-01 -5.83983958e-01 -1.53384000e-01
1.66042596e-01 8.01502913e-02 -6.33798614e-02 -1.23330331e+00
1.86941728e-01 -2.83902109e-01 7.74756134e-01 -5.65904081e-01
1.30364522e-01 -9.85768020e-01 5.21331728e-01 4.76105362e-01
-4.69699323e-01 4.23039764e-01 3.83054882e-01 5.96805155e-01
1.63072750e-01 1.32809002e-02 4.67367917e-01 2.18717262e-01
-6.83515549e-01 3.14297885e-01 -1.72473356e-01 -2.79255986e-01
1.25497878e+00 -3.71137470e-01 -5.69447018e-02 -2.23442480e-01
-6.66198790e-01 3.62750798e-01 3.08923811e-01 6.82993591e-01
1.95323929e-01 -1.12245953e+00 -8.11016679e-01 2.41703883e-01
1.68571338e-01 -3.46747011e-01 2.35804155e-01 7.69505382e-01
-1.71778649e-01 2.28332564e-01 -2.60073870e-01 -6.40642643e-01
-1.43169820e+00 2.64992356e-01 2.45978788e-01 -5.71567118e-01
-2.96293765e-01 4.55862939e-01 -5.10343909e-01 -8.13974999e-03
3.30959889e-03 -2.56421119e-01 3.52224074e-02 2.72299618e-01
7.01547146e-01 8.87643158e-01 6.48558557e-01 3.63955162e-02
-3.06933165e-01 5.61146326e-02 -2.61344612e-01 -4.12477776e-02
1.21555507e+00 5.85799105e-02 1.17928013e-01 7.53092349e-01
7.34407961e-01 -2.57085621e-01 -1.21390188e+00 3.27037461e-02
2.75344461e-01 -4.27548230e-01 9.29350182e-02 -7.92780876e-01
-5.67950547e-01 4.13799703e-01 8.47182214e-01 6.10877514e-01
1.58389914e+00 -5.48958182e-01 5.32063246e-01 3.65599304e-01
8.03524852e-01 -1.33982658e+00 -1.16614632e-01 4.10500526e-01
4.95796502e-01 -1.07140172e+00 1.77178651e-01 4.95008864e-02
-5.66964269e-01 1.27034819e+00 5.17839134e-01 5.56998886e-02
5.43785810e-01 7.60612488e-01 -8.70881602e-02 2.59403795e-01
-1.49636662e+00 1.52000800e-01 2.65509993e-01 4.06819314e-01
4.36166495e-01 3.82809907e-01 -3.44177037e-01 6.71544492e-01
-1.98981732e-01 1.28727347e-01 1.67185783e-01 1.04361975e+00
-2.75784403e-01 -1.14713883e+00 -6.22869909e-01 1.20273530e+00
-5.02503574e-01 2.92301737e-02 2.57070754e-02 5.45207560e-01
2.01719135e-01 1.02436543e+00 4.26720202e-01 -7.46196449e-01
3.73106897e-01 2.33206987e-01 4.16194648e-01 -7.39296302e-02
-7.99402773e-01 -1.16751909e-01 2.35076562e-01 -3.64005893e-01
-1.67892188e-01 -7.85792530e-01 -7.76791096e-01 -6.28795445e-01
-2.42246494e-01 2.06151396e-01 7.50951648e-01 1.00659585e+00
5.49213290e-01 8.26474547e-01 9.08326745e-01 -9.98355985e-01
-9.71618235e-01 -9.82340336e-01 -2.94482797e-01 2.04183117e-01
1.23235047e-01 -7.58986175e-01 -3.27803284e-01 1.35914817e-01] | [7.269883632659912, 3.0792715549468994] |
6399a3c1-98e2-448a-86bb-95381979334b | bronchoscopic-video-synchronization-for | 2303.11258 | null | https://arxiv.org/abs/2303.11258v1 | https://arxiv.org/pdf/2303.11258v1.pdf | Bronchoscopic video synchronization for interactive multimodal inspection of bronchial lesions | With lung cancer being the most fatal cancer worldwide, it is important to detect the disease early. A potentially effective way of detecting early cancer lesions developing along the airway walls (epithelium) is bronchoscopy. To this end, developments in bronchoscopy offer three promising noninvasive modalities for imaging bronchial lesions: white-light bronchoscopy (WLB), autofluorescence bronchoscopy (AFB), and narrow-band imaging (NBI). While these modalities give complementary views of the airway epithelium, the physician must manually inspect each video stream produced by a given modality to locate the suspect cancer lesions. Unfortunately, no effort has been made to rectify this situation by providing efficient quantitative and visual tools for analyzing these video streams. This makes the lesion search process extremely time-consuming and error-prone, thereby making it impractical to utilize these rich data sources effectively. We propose a framework for synchronizing multiple bronchoscopic videos to enable an interactive multimodal analysis of bronchial lesions. Our methods first register the video streams to a reference 3D chest computed-tomography (CT) scan to produce multimodal linkages to the airway tree. Our methods then temporally correlate the videos to one another to enable synchronous visualization of the resulting multimodal data set. Pictorial and quantitative results illustrate the potential of the methods. | ['William E. Higgins', 'Rebecca Bascom', 'Jennifer Toth', 'Danish Ahmad', 'Patrick D. Byrnes', 'Qi Chang'] | 2023-03-20 | null | null | null | null | ['video-synchronization'] | ['computer-vision'] | [ 3.94335926e-01 -2.39211395e-01 -4.41920668e-01 2.30426550e-01
-8.79249454e-01 -9.28599358e-01 4.59255099e-01 3.13190550e-01
-2.46523291e-01 3.86110216e-01 -3.83877382e-02 -7.54049659e-01
4.90993224e-02 -6.91471517e-01 -2.03587219e-01 -8.41039240e-01
1.49745777e-01 3.01564515e-01 7.67941773e-01 2.73009956e-01
-8.30455944e-02 9.60165441e-01 -1.21016622e+00 4.54292983e-01
4.10845101e-01 5.86002648e-01 6.36964619e-01 1.32771516e+00
-3.54421675e-01 6.46235883e-01 -4.70593303e-01 -2.34343231e-01
2.42776796e-02 -6.04670703e-01 -7.29789317e-01 2.82428116e-01
3.58882189e-01 -5.55418730e-01 -2.34183148e-01 8.85912001e-01
2.51327932e-01 -1.52877957e-01 5.17669678e-01 -8.30969870e-01
1.47181362e-01 -1.97723687e-01 -5.73549986e-01 6.74818456e-01
7.00866401e-01 1.63022906e-01 5.19027650e-01 -7.30720758e-01
8.55517745e-01 9.13301229e-01 4.72296745e-01 7.50190735e-01
-8.83078933e-01 -2.04633847e-01 -1.54597655e-01 2.55298406e-01
-8.01620185e-01 -1.08436473e-01 5.06680846e-01 -4.09414709e-01
6.21833444e-01 8.57745409e-01 1.03148472e+00 8.49246204e-01
1.48896471e-01 5.08380055e-01 9.08517838e-01 -6.32901847e-01
-1.94868937e-01 3.58044505e-01 -1.06857561e-01 1.03271103e+00
3.51711482e-01 1.56604230e-01 -3.67201298e-01 -3.33486944e-01
7.26326108e-01 8.08558941e-01 -9.38988626e-01 -1.93759337e-01
-1.36193371e+00 2.68152118e-01 2.99902201e-01 5.88315487e-01
-3.90069842e-01 1.36591360e-01 2.44381651e-01 1.85185432e-01
5.53841405e-02 1.05036430e-01 3.61761719e-01 -1.75956756e-01
-6.86449051e-01 -3.95943850e-01 6.91248119e-01 5.03627241e-01
3.31730843e-01 -5.40177584e-01 1.37352407e-01 5.94808996e-01
6.27887189e-01 4.57032263e-01 4.97381270e-01 -7.29106784e-01
2.88071930e-01 5.33272088e-01 6.55865595e-02 -7.63854861e-01
-1.36999190e-01 2.25162342e-01 -5.56952477e-01 2.59627014e-01
8.11790764e-01 2.81204104e-01 -8.41304123e-01 7.49386489e-01
6.97514236e-01 1.52654931e-01 -2.69205838e-01 9.47495997e-01
8.54688287e-01 5.07213295e-01 1.86317712e-01 -4.58468020e-01
1.49005330e+00 -8.80816758e-01 -8.09340179e-01 3.37771147e-01
8.32159460e-01 -1.04573035e+00 1.03075743e+00 3.96700531e-01
-1.17767191e+00 -2.69370288e-01 -9.38733816e-01 1.03751548e-01
-1.97667584e-01 -6.75407723e-02 6.38802946e-02 7.79850125e-01
-8.57407510e-01 1.03449024e-01 -1.29390454e+00 -6.03983760e-01
1.17823869e-01 2.85967290e-01 -5.66210866e-01 -3.67081642e-01
-6.44767582e-01 7.06246138e-01 -1.43655896e-01 1.02367653e-02
-5.05123854e-01 -6.39585376e-01 -2.78503776e-01 -1.63282588e-01
5.22520304e-01 -8.89755785e-01 1.49731827e+00 -5.62813938e-01
-1.35544145e+00 1.01043820e+00 -5.58611989e-01 -4.46183495e-02
4.49884355e-01 1.12585776e-01 -4.13388103e-01 1.06134868e+00
-3.93623382e-01 3.29764277e-01 7.43106246e-01 -1.28083050e+00
-1.18338501e+00 -3.58850569e-01 -4.09572199e-02 1.64598048e-01
-2.63696611e-01 8.19876418e-02 -8.11750472e-01 -3.84750187e-01
6.75546974e-02 -9.39279079e-01 -1.77462518e-01 4.34047908e-01
-2.78995752e-01 -1.53766707e-01 1.45797527e+00 -6.47497356e-01
1.29250002e+00 -2.19267654e+00 -1.25193879e-01 2.33474076e-01
4.64249492e-01 5.44810534e-01 2.34331369e-01 4.45664465e-01
7.02967867e-02 3.54748517e-01 2.55750358e-01 -1.17634773e-01
-7.30416417e-01 2.62747407e-01 -8.63240361e-02 5.63612998e-01
-2.78504282e-01 7.99434245e-01 -1.08339620e+00 -1.02135158e+00
6.44435883e-01 6.62934303e-01 -5.69234341e-02 4.25921947e-01
-4.11126576e-02 7.97145009e-01 -5.64543486e-01 9.56052601e-01
1.98337719e-01 -4.32570279e-01 4.39111531e-01 -3.10216486e-01
-2.43054450e-01 9.11629573e-02 -7.95043468e-01 1.23107660e+00
-4.75813150e-01 5.30812263e-01 4.80913788e-01 -4.78835940e-01
3.91968608e-01 8.95610750e-01 5.82399011e-01 -2.14167774e-01
-1.75744459e-01 4.27317262e-01 -2.09366992e-01 -1.29604292e+00
-1.00172624e-01 -3.30732375e-01 7.51228690e-01 4.03470486e-01
-4.66169506e-01 -3.75581831e-01 3.51371646e-01 8.27175751e-02
1.19196463e+00 -2.94966757e-01 4.78918910e-01 3.82539779e-01
7.34652221e-01 2.59687752e-01 -1.61426544e-01 3.74765635e-01
-2.58743525e-01 6.31307542e-01 2.14377850e-01 -4.10149127e-01
-7.27889240e-01 -1.23058307e+00 -1.38509959e-01 4.56375897e-01
2.36537963e-01 -3.44170958e-01 -3.80273551e-01 -1.01030612e+00
-9.49087366e-02 1.41837597e-01 -2.77221143e-01 4.36584711e-01
-8.46444964e-01 -2.12851003e-01 -1.60144828e-02 3.20244461e-01
1.04545735e-01 -5.73778570e-01 -9.68486011e-01 7.04046711e-02
-2.49297157e-01 -6.58534706e-01 -3.49774927e-01 -1.25633448e-01
-1.17662263e+00 -1.43722987e+00 -1.00117624e+00 -8.19444954e-01
8.16326439e-01 1.06124699e+00 8.53359163e-01 5.49431622e-01
-8.44115615e-01 9.06384528e-01 -2.77217746e-01 -1.56269744e-01
-8.79977882e-01 -2.97588110e-01 -4.39207345e-01 -2.06949845e-01
-7.39355013e-02 -2.87342966e-01 -8.87732446e-01 4.97974455e-01
-1.08604074e+00 1.32594099e-02 4.61744905e-01 6.75407708e-01
1.01967871e+00 -1.35862142e-01 6.05407171e-02 -9.15911436e-01
5.18548429e-01 -5.73769212e-01 -5.12648642e-01 5.79300582e-01
-1.67798966e-01 -6.29176557e-01 7.44897187e-01 -3.96352172e-01
-1.02048600e+00 3.12260445e-02 -1.18846893e-01 -8.42074335e-01
-4.45452422e-01 3.47655535e-01 5.73034942e-01 -4.10179198e-02
5.94522417e-01 1.43081779e-02 1.42028853e-01 -3.98638099e-01
1.27224952e-01 8.78466070e-01 6.93856120e-01 1.17084116e-01
5.93844414e-01 9.36632097e-01 2.60433912e-01 -1.09581637e+00
-6.15212917e-01 -1.15767455e+00 -6.20680153e-01 -7.82412469e-01
1.03285372e+00 -3.71011704e-01 -6.88721538e-01 -1.50731087e-01
-1.01773787e+00 6.00749180e-02 -3.50120127e-01 8.39894116e-01
-2.15044469e-01 7.56782651e-01 -4.57075089e-01 -8.03089619e-01
-1.30887166e-01 -1.14839339e+00 1.12584889e+00 1.95462257e-01
-3.14585716e-01 -1.27164924e+00 2.10129410e-01 5.21727085e-01
2.50410646e-01 3.70012790e-01 1.07408118e+00 -2.72185683e-01
-8.45886588e-01 -5.36242068e-01 -8.91147703e-02 -1.83072593e-02
4.39820051e-01 5.62238753e-01 -7.87596226e-01 -1.56937078e-01
3.07918966e-01 6.47728220e-02 6.24831617e-01 4.33511049e-01
1.22225893e+00 7.96893761e-02 -9.70436275e-01 5.62220216e-01
1.19672596e+00 7.49642491e-01 1.99894145e-01 4.12423387e-02
6.62158370e-01 7.69860864e-01 5.84273279e-01 -8.00747499e-02
-1.87376067e-01 6.02374256e-01 6.09057486e-01 -4.31416690e-01
-5.90015054e-01 -1.35815730e-02 1.03553370e-01 7.79886842e-01
-3.38887095e-01 -5.66266477e-01 -1.13678014e+00 3.90972704e-01
-1.32914472e+00 -1.05294836e+00 -6.84907496e-01 2.34734750e+00
5.25847673e-01 -2.65151978e-01 1.62313685e-01 1.76943481e-01
7.41755188e-01 -2.09549546e-01 -1.33116618e-01 -5.05877845e-02
4.32988197e-01 -2.26830319e-02 1.42885879e-01 3.81332457e-01
-8.48245323e-01 7.65052158e-03 6.68826437e+00 6.08201563e-01
-1.65278399e+00 4.62917462e-02 4.66983229e-01 -2.21968949e-01
-5.20751119e-01 -3.13741058e-01 -5.69030941e-01 2.95613289e-01
7.45564699e-01 -1.00966021e-01 1.52274564e-01 5.37254393e-01
3.65682632e-01 -5.72063267e-01 -1.07275832e+00 9.71735597e-01
-1.93098590e-01 -1.44727421e+00 -1.10909097e-01 2.27934867e-01
3.14757198e-01 -2.30200924e-02 -2.89044213e-02 -4.15349334e-01
-3.91234756e-01 -8.57592285e-01 3.06995567e-02 5.16027451e-01
1.27338552e+00 -3.21058065e-01 3.02344739e-01 3.76137733e-01
-1.32369494e+00 -3.48031372e-02 6.29980862e-03 6.51227415e-01
4.83973294e-01 4.37948972e-01 -1.65435195e+00 3.74565661e-01
5.37046254e-01 4.58835900e-01 -4.30073500e-01 1.33601737e+00
-6.47276416e-02 6.91903114e-01 -3.76903087e-01 -8.71572718e-02
5.33895642e-02 -1.49241403e-01 8.54956567e-01 1.05134845e+00
6.91176891e-01 6.40648454e-02 4.27883156e-02 4.20957297e-01
8.15433189e-02 2.32185632e-01 -8.31414759e-01 -6.13528080e-02
3.98558408e-01 1.53436923e+00 -1.03790045e+00 -4.22852308e-01
-8.99861336e-01 6.68878555e-01 -2.95046210e-01 3.11198056e-01
-6.15328074e-01 7.95476660e-02 -3.66965123e-02 6.11914337e-01
5.06146625e-03 2.05547772e-02 1.00158118e-01 -7.80768991e-01
-1.71058297e-01 -6.68023288e-01 6.29580617e-01 -7.62297630e-01
-8.90342712e-01 5.43446720e-01 5.95420338e-02 -1.43018138e+00
-3.72059226e-01 -5.85610747e-01 -6.71721697e-01 7.43288994e-01
-1.47694731e+00 -8.99702668e-01 -6.83075190e-01 6.42746389e-01
5.97504735e-01 2.56732076e-01 9.83601272e-01 1.72024414e-01
-4.00081247e-01 -1.55472443e-01 1.91433713e-01 -4.56630379e-01
6.98211312e-01 -1.47298467e+00 -1.66253790e-01 5.23005545e-01
1.15651861e-01 4.40068901e-01 3.56711596e-01 -5.90933800e-01
-1.53988421e+00 -7.39447176e-01 6.50614083e-01 -4.39893752e-01
3.55225891e-01 1.92613870e-01 -8.96783412e-01 3.30187201e-01
2.88891494e-01 2.34597430e-01 9.32319045e-01 -6.20697498e-01
3.82519215e-02 1.03773601e-01 -9.79916453e-01 7.48457015e-01
5.70281506e-01 -4.44269776e-01 -4.30175483e-01 7.09331274e-01
2.37316921e-01 -4.70827520e-01 -9.43416119e-01 2.05101803e-01
6.70239568e-01 -1.18243682e+00 1.10105801e+00 -2.24640951e-01
5.51637411e-02 -3.49746257e-01 3.37706596e-01 -8.31376433e-01
1.71653003e-01 -5.38685262e-01 -7.12530985e-02 6.04629517e-01
2.33352184e-01 -5.75108707e-01 8.31051230e-01 3.41830462e-01
-1.29574895e-01 -1.01890957e+00 -8.80456865e-01 -2.65389353e-01
-5.57882786e-01 -2.68276751e-01 3.74687389e-02 6.11612797e-01
1.64933771e-01 -2.55844593e-01 2.20485032e-01 1.88273862e-02
1.92562044e-01 2.12023586e-01 7.88254797e-01 -1.04086077e+00
-3.64040703e-01 -4.03619379e-01 -2.15597078e-02 -9.56469119e-01
-5.47993541e-01 -8.59216154e-01 -2.78798699e-01 -1.68285048e+00
2.19621807e-01 -1.61083803e-01 8.10456201e-02 6.25325963e-02
-1.81384757e-01 3.10854554e-01 6.66337758e-02 7.05781519e-01
-1.90862700e-01 -4.24659461e-01 1.87989557e+00 1.75913170e-01
-1.17671981e-01 3.81807119e-01 -4.47892398e-02 8.41761410e-01
6.64350510e-01 -5.08676291e-01 -4.97301131e-01 1.83495339e-02
3.71333025e-02 7.01156735e-01 3.72156322e-01 -7.27313340e-01
4.36207891e-01 -6.26900047e-02 1.68995917e-01 -9.58896220e-01
4.13860619e-01 -1.19888282e+00 3.86997104e-01 9.86867905e-01
-4.55413647e-02 1.49275407e-01 -3.31086293e-02 9.51240599e-01
-5.40235937e-01 -5.79598904e-01 8.24139297e-01 -3.88299257e-01
-3.23555380e-01 1.42468154e-01 -9.45110977e-01 -2.96364278e-01
1.38727117e+00 -4.97164041e-01 -4.40628976e-01 -2.51308590e-01
-8.10516775e-01 -1.12017374e-02 5.74399352e-01 -1.79138362e-01
7.33165801e-01 -8.07634294e-01 -1.72286719e-01 3.83297771e-01
-5.84914908e-02 2.58596450e-01 3.26580942e-01 1.53984046e+00
-1.16529739e+00 5.64794719e-01 1.85584605e-01 -1.04715693e+00
-2.08776569e+00 5.98461509e-01 6.12746060e-01 -5.44201374e-01
-6.69032276e-01 8.77679884e-01 3.71429652e-01 2.82412201e-01
3.24283928e-01 -4.21644181e-01 -2.15622097e-01 -4.66676541e-02
5.36633492e-01 5.94929218e-01 1.58238992e-01 -3.27387631e-01
-1.75987706e-01 5.78374207e-01 3.52148190e-02 -8.72555226e-02
8.21035922e-01 -4.35731024e-01 -8.44021663e-02 4.67183471e-01
1.17177951e+00 3.68511468e-01 -7.25019753e-01 8.55202675e-02
-1.85666189e-01 -7.00170100e-01 1.48189878e-02 -6.08291209e-01
-7.89239526e-01 1.12076521e+00 3.90064657e-01 8.95276845e-01
1.28752363e+00 2.18076780e-02 8.61128151e-01 1.71924070e-01
-3.53219174e-02 -5.95450878e-01 2.72274286e-01 -2.83578753e-01
5.78381658e-01 -1.11046278e+00 -8.50087926e-02 -9.24076498e-01
-2.87077069e-01 1.72521687e+00 2.05043539e-01 3.80252093e-01
6.86216593e-01 4.30752665e-01 4.69713539e-01 -3.66550624e-01
-9.28605139e-01 -9.91687402e-02 4.42874640e-01 5.47724068e-01
6.29341841e-01 -2.12355629e-01 -3.45289856e-01 -3.09445053e-01
5.24876654e-01 -1.41793666e-02 3.46791357e-01 1.08326066e+00
-4.74221021e-01 -1.25740910e+00 -9.30862665e-01 4.44201976e-01
-9.05068040e-01 3.37258637e-01 -3.87384415e-01 1.12658203e+00
-1.40345186e-01 8.98913085e-01 -1.01547174e-01 1.44009888e-01
2.12888598e-01 1.04080096e-01 6.57098711e-01 -6.93080485e-01
-7.04600871e-01 6.84117854e-01 3.58306691e-02 -5.16127884e-01
-7.11564064e-01 -5.95066309e-01 -1.09412229e+00 5.27102053e-02
-3.90710056e-01 1.06214499e-02 7.64292240e-01 5.24821877e-01
-1.41240194e-01 4.97800797e-01 6.13541722e-01 -6.60166442e-01
-2.72677869e-01 -3.96584123e-01 -4.43973154e-01 4.93181169e-01
5.85423768e-01 -3.08161855e-01 -5.84249735e-01 4.76216227e-01] | [15.268305778503418, -2.1613807678222656] |
e2024bf1-86ff-48e8-a5aa-f8aa94641e3f | visual-attention-consistency-under-image | null | null | http://openaccess.thecvf.com/content_CVPR_2019/html/Guo_Visual_Attention_Consistency_Under_Image_Transforms_for_Multi-Label_Image_Classification_CVPR_2019_paper.html | http://openaccess.thecvf.com/content_CVPR_2019/papers/Guo_Visual_Attention_Consistency_Under_Image_Transforms_for_Multi-Label_Image_Classification_CVPR_2019_paper.pdf | Visual Attention Consistency Under Image Transforms for Multi-Label Image Classification | Human visual perception shows good consistency for many multi-label image classification tasks under certain spatial transforms, such as scaling, rotation, flipping and translation. This has motivated the data augmentation strategy widely used in CNN classifier training -- transformed images are included for training by assuming the same class labels as their original images. In this paper, we further propose the assumption of perceptual consistency of visual attention regions for classification under such transforms, i.e., the attention region for a classification follows the same transform if the input image is spatially transformed. While the attention regions of CNN classifiers can be derived as an attention heatmap in middle layers of the network, we find that their consistency under many transforms are not preserved. To address this problem, we propose a two-branch network with an original image and its transformed image as inputs and introduce a new attention consistency loss that measures the attention heatmap consistency between two branches. This new loss is then combined with multi-label image classification loss for network training. Experiments on three datasets verify the superiority of the proposed network by achieving new state-of-the-art classification performance.
| [' Song Wang', ' Hongkai Yu', ' Xiaochuan Fan', ' Kang Zheng', 'Hao Guo'] | 2019-06-01 | null | null | null | cvpr-2019-6 | ['multi-label-image-classification'] | ['computer-vision'] | [ 5.33910871e-01 4.82426994e-02 -2.49011397e-01 -6.93898559e-01
-3.21652949e-01 -4.06635553e-01 3.83365482e-01 1.45504355e-01
-5.37589788e-01 5.25264621e-01 -2.18036294e-01 -1.24962211e-01
5.24736680e-02 -5.46841502e-01 -8.87655616e-01 -8.20677221e-01
6.10355794e-01 -1.92560442e-02 3.37189883e-01 1.19134583e-01
1.94419518e-01 2.75951445e-01 -1.53579986e+00 4.67969358e-01
7.98422158e-01 1.36530972e+00 1.44224957e-01 3.34648669e-01
-6.96902648e-02 7.99091458e-01 -4.68821108e-01 -4.24818516e-01
2.67921656e-01 -5.81948400e-01 -1.14801753e+00 7.37194270e-02
8.45965326e-01 -4.34383340e-02 4.13912274e-02 1.34663844e+00
2.95372456e-01 2.02839941e-01 7.09335744e-01 -1.62580776e+00
-1.23893547e+00 2.43206099e-01 -7.49205709e-01 1.97259292e-01
-1.01165049e-01 -1.78072929e-01 1.06085896e+00 -8.07617128e-01
4.42962319e-01 1.29829323e+00 6.77755237e-01 4.76403028e-01
-1.09560382e+00 -6.67348564e-01 4.78506297e-01 5.22977233e-01
-1.42171216e+00 3.39950137e-02 8.14820468e-01 -3.12943399e-01
6.47600710e-01 3.08707774e-01 3.53887707e-01 8.13991666e-01
4.96041358e-01 5.91136098e-01 1.41964352e+00 -5.26041687e-01
-1.24968939e-01 3.37906152e-01 1.11260004e-01 6.43142045e-01
9.39866304e-02 -2.48549327e-01 -1.75014332e-01 2.60774314e-01
5.58453381e-01 2.11490393e-01 -3.26174110e-01 -4.64569300e-01
-1.23437607e+00 7.45612204e-01 1.00914037e+00 4.23091620e-01
-2.56808847e-01 1.87517494e-01 4.40498203e-01 4.30194050e-01
5.74366093e-01 1.87635407e-01 -4.05327588e-01 6.37669146e-01
-5.51221073e-01 1.09057799e-01 1.64325032e-02 1.08460891e+00
8.98050308e-01 -2.93465286e-01 -4.83373165e-01 9.77680147e-01
2.06481561e-01 2.49243468e-01 7.21019626e-01 -5.34691274e-01
4.68101412e-01 7.46006310e-01 -2.78124601e-01 -1.12560236e+00
-5.11555016e-01 -7.19935000e-01 -1.33998466e+00 1.87281027e-01
4.01107550e-01 3.69085848e-01 -9.21222091e-01 1.99279130e+00
4.30154890e-01 2.55319864e-01 -9.26929861e-02 8.20601761e-01
5.29185355e-01 4.67858851e-01 3.00728351e-01 -1.54962778e-01
1.55972803e+00 -1.35805988e+00 -9.53288913e-01 -3.18870157e-01
5.15783608e-01 -6.41511798e-01 1.20549786e+00 1.35596082e-01
-1.00061405e+00 -1.05521643e+00 -1.25507236e+00 -2.12003157e-01
-6.82779968e-01 1.00487180e-01 2.44894341e-01 4.81482238e-01
-9.42753494e-01 5.23730636e-01 -4.65274334e-01 -3.67440164e-01
6.50411725e-01 1.53303757e-01 -3.81485194e-01 -2.70890623e-01
-1.15895808e+00 1.04621923e+00 4.53669399e-01 4.94992994e-02
-6.02335811e-01 -6.03495598e-01 -7.37883985e-01 6.29120991e-02
2.14427095e-02 -4.16400909e-01 1.06771564e+00 -1.31138170e+00
-8.77956808e-01 1.12145066e+00 -6.73502265e-03 -4.44321446e-02
4.79808539e-01 8.38248730e-02 -5.96361578e-01 5.16362712e-02
4.33709770e-01 9.50061798e-01 1.00600088e+00 -1.50291550e+00
-8.95541370e-01 -4.66344804e-01 2.61181593e-03 2.51346558e-01
-6.88461602e-01 -1.28066437e-02 -2.36378402e-01 -8.45922589e-01
5.44281065e-01 -1.03694892e+00 1.16570815e-01 3.23757410e-01
-5.84848702e-01 -2.32912570e-01 9.65638041e-01 -5.03246784e-01
1.02920210e+00 -2.18487024e+00 1.05896495e-01 1.84923530e-01
2.01458205e-02 -3.92828919e-02 -3.57517302e-01 -2.05785677e-01
-5.72048485e-01 3.08201402e-01 -1.50067165e-01 -4.27185059e-01
-2.20815688e-01 2.05979243e-01 -2.87581772e-01 6.07161105e-01
5.38774550e-01 9.76247787e-01 -5.98641455e-01 -5.88929832e-01
4.62976769e-02 4.16348934e-01 -3.52941930e-01 1.59639284e-01
9.20550078e-02 5.66326499e-01 -1.67764321e-01 5.47117352e-01
9.51483548e-01 -5.64834297e-01 -2.12042052e-02 -6.70080066e-01
1.03598252e-01 -2.02198863e-01 -1.02826142e+00 1.65358138e+00
-5.08712053e-01 4.24639970e-01 -1.87179595e-01 -1.20575976e+00
8.67551684e-01 2.73125321e-01 2.52151817e-01 -8.60081613e-01
2.47369900e-01 -2.03808844e-02 -4.35280316e-02 -4.51748312e-01
3.27868521e-01 -2.63263732e-01 7.74189606e-02 6.32850289e-01
8.80981460e-02 1.71575308e-01 -1.07351407e-01 -2.71037608e-01
4.31744099e-01 -3.02525703e-02 2.83242732e-01 -3.37197244e-01
6.54100776e-01 -2.41275817e-01 6.51159823e-01 5.83868325e-01
-4.12991673e-01 7.26222336e-01 4.13507879e-01 -7.00697839e-01
-1.21313179e+00 -5.48312545e-01 -3.54070336e-01 1.47721744e+00
3.67759645e-01 1.98066562e-01 -7.49146819e-01 -9.37247157e-01
-1.92932319e-02 3.34577233e-01 -1.08769572e+00 -4.95235503e-01
-5.13234079e-01 -8.48856866e-01 6.44381583e-01 6.81214869e-01
1.00977576e+00 -9.36916769e-01 -5.69995999e-01 -2.82095093e-02
-4.25610453e-01 -1.09534526e+00 -6.17183983e-01 2.76347935e-01
-6.70249104e-01 -1.11250663e+00 -8.43551219e-01 -1.27279866e+00
9.99937594e-01 3.94433767e-01 7.86143303e-01 3.01725328e-01
-9.00987908e-02 -6.72164112e-02 -3.59798431e-01 -2.27728948e-01
-2.90232927e-01 4.60701361e-02 -9.18550119e-02 4.78495747e-01
6.91685379e-02 -4.39871550e-01 -6.48394287e-01 6.11070514e-01
-1.06082475e+00 2.24490568e-01 6.21486962e-01 1.01209772e+00
7.33604848e-01 1.25367507e-01 6.34060442e-01 -7.95902371e-01
4.97211933e-01 -3.24306220e-01 -8.76441225e-02 7.59212375e-01
-6.83866620e-01 1.08276367e-01 7.86146045e-01 -7.07155526e-01
-8.06268036e-01 2.39815749e-02 4.51401994e-02 -5.73243260e-01
-2.77680665e-01 2.35533446e-01 -2.41415113e-01 -3.79233986e-01
4.86260891e-01 1.97141930e-01 -5.25854193e-02 -2.62590438e-01
3.86441648e-01 5.91396928e-01 4.78468567e-01 -3.12907487e-01
6.41805351e-01 4.73019809e-01 1.44973382e-01 -3.45199436e-01
-1.14789069e+00 -2.67062783e-01 -8.30706716e-01 -2.60324121e-01
1.18721211e+00 -5.95452964e-01 -7.58300364e-01 7.21315563e-01
-1.30442536e+00 1.09289167e-02 4.11529280e-02 2.32450023e-01
-3.51250857e-01 2.15223685e-01 -4.18934166e-01 -3.79383892e-01
-1.82653084e-01 -1.33024323e+00 9.39824998e-01 1.61453456e-01
1.24633558e-01 -1.02802503e+00 -1.72421798e-01 3.26677650e-01
4.93197948e-01 2.79783934e-01 1.40370822e+00 -6.84683740e-01
-2.84003377e-01 9.09873564e-03 -6.44456744e-01 5.54267287e-01
2.53572434e-01 -3.73341084e-01 -1.28716660e+00 -5.10617554e-01
6.88412786e-02 -5.52341998e-01 9.34185147e-01 3.00813466e-01
1.55013072e+00 -4.18999761e-01 -4.24829215e-01 7.51772881e-01
1.55440426e+00 2.71471322e-01 5.19747019e-01 4.13082331e-01
8.81341398e-01 7.09797025e-01 6.08834863e-01 -2.69455425e-02
3.04433614e-01 6.82405472e-01 6.96515501e-01 -4.32123959e-01
-2.10465565e-01 -3.19203213e-02 -2.66497403e-01 7.04804301e-01
1.69056728e-01 -2.63774037e-01 -8.13949406e-01 3.58144522e-01
-1.68050027e+00 -7.96413839e-01 7.50751570e-02 2.04437709e+00
7.99948573e-01 9.17224139e-02 -2.15841502e-01 3.14459473e-01
1.05068099e+00 2.10464686e-01 -6.70143664e-01 -2.40496561e-01
-2.26070523e-01 7.00638965e-02 5.32036841e-01 3.49083096e-01
-1.45026875e+00 6.12329960e-01 5.70295954e+00 7.74819076e-01
-1.38239288e+00 4.12033260e-01 1.05715978e+00 2.41698176e-01
-8.93943310e-02 -2.32743844e-01 -6.67444527e-01 3.98249924e-01
3.69082689e-01 2.42742538e-01 2.47449145e-01 6.31772697e-01
-1.07488513e-01 1.07825361e-01 -1.02855170e+00 8.96746278e-01
3.72356683e-01 -9.88927305e-01 3.25839937e-01 -1.39094800e-01
7.40594327e-01 -4.15878087e-01 5.00204086e-01 1.77563831e-01
-1.68953136e-01 -1.05269647e+00 9.08861339e-01 3.68091911e-01
1.11938822e+00 -6.43548548e-01 7.92564213e-01 9.82119218e-02
-1.36468399e+00 -2.77514637e-01 -4.20575082e-01 1.45421252e-01
-1.08888142e-01 1.80381671e-01 -6.19166076e-01 6.64251864e-01
6.78530872e-01 7.39979625e-01 -1.10464931e+00 8.63893926e-01
1.40870893e-02 1.42460838e-01 1.84462681e-01 1.72801480e-01
3.43590587e-01 -1.99356247e-04 -1.36431351e-01 9.37933445e-01
2.93534011e-01 -1.16743684e-01 1.03934340e-01 8.13039482e-01
-1.52549431e-01 1.91836759e-01 -4.79648322e-01 4.94348288e-01
4.05719906e-01 1.25819182e+00 -8.84252548e-01 -3.44789237e-01
-4.87655252e-01 1.21593928e+00 6.04298890e-01 4.52054203e-01
-1.08097959e+00 -4.29336876e-01 4.39682484e-01 -1.77910000e-01
1.67785302e-01 3.18641245e-01 -6.18235886e-01 -8.36412072e-01
9.83456746e-02 -6.78522110e-01 3.92168283e-01 -8.29563677e-01
-1.16684783e+00 8.37520182e-01 -9.28771943e-02 -1.41001868e+00
3.18354368e-01 -6.64998591e-01 -6.49803519e-01 8.22194278e-01
-1.72076058e+00 -1.62053597e+00 -7.10936844e-01 7.27239549e-01
3.78830612e-01 -5.98784424e-02 7.29366601e-01 5.21237016e-01
-6.39169991e-01 1.02356815e+00 4.58152257e-02 1.25709862e-01
8.67347419e-01 -1.14097869e+00 1.03600755e-01 7.02795982e-01
-6.72332570e-02 3.66116107e-01 3.11972797e-01 -3.60221803e-01
-6.50978506e-01 -1.55965412e+00 8.14262807e-01 -5.19673489e-02
2.69796669e-01 -2.20121309e-01 -1.17542267e+00 7.48084605e-01
4.57753211e-01 4.05439109e-01 5.81502378e-01 -2.53661454e-01
-6.11369193e-01 -3.39041978e-01 -1.18573380e+00 3.20436805e-01
8.94206524e-01 -5.04995644e-01 -3.95435035e-01 4.92056996e-01
7.39243150e-01 -2.46953920e-01 -9.01897609e-01 4.61605400e-01
5.02976716e-01 -6.76632762e-01 9.90876257e-01 -6.43263400e-01
5.79069793e-01 -3.85088235e-01 -8.30540210e-02 -1.41394329e+00
-6.86839521e-01 2.55023867e-01 5.65762341e-01 1.22529042e+00
4.19500828e-01 -6.89726710e-01 2.86710262e-01 2.05376461e-01
-2.80885160e-01 -8.17858100e-01 -1.05318904e+00 -7.21767604e-01
2.93657303e-01 2.65362170e-02 6.45448148e-01 1.47040844e+00
-2.51871616e-01 3.63292217e-01 -2.66760260e-01 1.92201585e-01
5.60911596e-01 -9.07131191e-03 2.01696917e-01 -1.22070146e+00
1.96436316e-01 -5.76832652e-01 -3.93823117e-01 -8.10423672e-01
2.86427706e-01 -1.06678998e+00 -1.07849464e-01 -1.40174806e+00
3.78609896e-01 -7.33975291e-01 -6.29988074e-01 8.40039253e-01
-2.60861903e-01 6.00473940e-01 1.93446234e-01 2.91982651e-01
-6.51799381e-01 6.14726067e-01 1.72921956e+00 -3.50557148e-01
2.46570989e-01 -1.67952165e-01 -6.51293755e-01 4.31060761e-01
8.28289807e-01 -4.94224697e-01 -4.04072613e-01 -4.87774640e-01
1.65090337e-01 -3.96870762e-01 5.17107546e-01 -1.16288316e+00
3.00700575e-01 -1.51476890e-01 5.64365923e-01 -4.59324569e-01
1.75340936e-01 -1.15748954e+00 1.07161149e-01 6.17807329e-01
-7.38009632e-01 4.05879706e-01 2.61860311e-01 5.78059077e-01
-3.40924740e-01 -2.29864731e-01 1.18509185e+00 2.77979989e-02
-6.48045242e-01 3.32846254e-01 1.30792528e-01 -2.36390326e-02
1.27631950e+00 -3.59091282e-01 -5.73423207e-01 9.57887061e-03
-5.66697657e-01 1.08877726e-01 3.26486379e-01 6.55508339e-01
6.38009548e-01 -1.85106194e+00 -6.07160866e-01 4.48575318e-01
4.45566922e-01 -2.78790500e-02 3.64704549e-01 8.66256118e-01
-3.94615650e-01 3.20088863e-01 -7.35486150e-01 -6.14962637e-01
-1.36909842e+00 8.39977324e-01 6.09350204e-01 -1.88437462e-01
-2.95622408e-01 7.20033526e-01 5.56265771e-01 -4.26987082e-01
1.97595701e-01 -6.97293937e-01 -3.76335710e-01 1.13102421e-01
5.14588654e-01 6.66566640e-02 1.53980538e-01 -8.30082834e-01
-3.30454201e-01 1.01246810e+00 -2.87997007e-01 2.50363648e-01
9.54669297e-01 -1.63673505e-01 -2.92947739e-01 4.71391827e-01
1.61011231e+00 -6.68926656e-01 -1.07514954e+00 -4.09936607e-01
-2.86300182e-01 -5.38859010e-01 -9.26235393e-02 -7.06443250e-01
-1.36037171e+00 1.00605094e+00 9.76226389e-01 3.25233698e-01
1.26719165e+00 -1.77538618e-01 4.33478147e-01 4.10711169e-02
-5.67358499e-03 -1.07473302e+00 3.85704011e-01 3.49231094e-01
1.04150462e+00 -1.36880863e+00 -2.48574495e-01 -4.01889056e-01
-6.09877884e-01 8.36328983e-01 9.73834932e-01 1.29399374e-01
6.37940109e-01 -2.44574219e-01 1.03760734e-01 -7.56291971e-02
-5.08045316e-01 4.22867462e-02 4.49367315e-01 5.30375600e-01
3.67366016e-01 -1.61278486e-01 -2.14084655e-01 2.58187979e-01
1.92893520e-01 -4.10813957e-01 1.54687881e-01 7.38760650e-01
-4.59344208e-01 -6.28263891e-01 -4.76992548e-01 3.36365163e-01
-3.75803441e-01 -1.44322580e-02 -1.63371228e-02 6.81142688e-01
4.91384298e-01 7.36987650e-01 3.74923915e-01 -5.05753219e-01
3.96168083e-01 2.47572288e-01 3.61118376e-01 -3.37518692e-01
-6.98251843e-01 -2.72682875e-01 -5.46885073e-01 -2.87698120e-01
-5.88633120e-01 -3.90607089e-01 -9.88366783e-01 -4.79836725e-02
-4.19947714e-01 -1.21551156e-01 5.79197884e-01 8.14092755e-01
1.48433939e-01 9.33781564e-01 7.83374608e-01 -6.33266330e-01
-6.39037251e-01 -1.23773706e+00 -5.32883763e-01 9.56290901e-01
4.46569115e-01 -9.02980983e-01 -3.27953726e-01 1.48856953e-01] | [9.847466468811035, 3.9186007976531982] |
294bbfdc-22da-4da1-83da-2f3d21ff6b9c | qasr-qcri-aljazeera-speech-resource-a-large-1 | null | null | https://aclanthology.org/2021.acl-long.177 | https://aclanthology.org/2021.acl-long.177.pdf | QASR: QCRI Aljazeera Speech Resource A Large Scale Annotated Arabic Speech Corpus | We introduce the largest transcribed Arabic speech corpus, QASR, collected from the broadcast domain. This multi-dialect speech dataset contains 2,000 hours of speech sampled at 16kHz crawled from Aljazeera news channel. The dataset is released with lightly supervised transcriptions, aligned with the audio segments. Unlike previous datasets, QASR contains linguistically motivated segmentation, punctuation, speaker information among others. QASR is suitable for training and evaluating speech recognition systems, acoustics- and/or linguistics- based Arabic dialect identification, punctuation restoration, speaker identification, speaker linking, and potentially other NLP modules for spoken data. In addition to QASR transcription, we release a dataset of 130M words to aid in designing and training a better language model. We show that end-to-end automatic speech recognition trained on QASR reports a competitive word error rate compared to the previous MGB-2 corpus. We report baseline results for downstream natural language processing tasks such as named entity recognition using speech transcript. We also report the first baseline for Arabic punctuation restoration. We make the corpus available for the research community. | ['Ahmed Ali', 'Shammur Absar Chowdhury', 'Amir Hussein', 'Hamdy Mubarak'] | 2021-08-01 | null | null | null | acl-2021-5 | ['dialect-identification', 'punctuation-restoration', 'speaker-identification'] | ['natural-language-processing', 'natural-language-processing', 'speech'] | [ 1.51301488e-01 2.76677907e-01 1.35009795e-01 -7.74584293e-01
-1.69526029e+00 -6.91843510e-01 3.03057432e-01 6.69192374e-02
-3.79202753e-01 3.39824855e-01 7.23991990e-01 -5.85101128e-01
2.33218700e-01 -2.15697512e-01 -5.46874106e-01 -6.29608691e-01
-1.18805356e-01 7.36952603e-01 9.59389210e-02 -6.50598526e-01
1.19688615e-01 2.02215210e-01 -1.10128140e+00 5.68462908e-01
7.99875200e-01 6.66569352e-01 4.33984488e-01 8.36972356e-01
-6.82600914e-03 6.85743988e-01 -9.70297217e-01 -4.76915240e-01
-1.99772626e-01 -4.28019762e-01 -1.30148804e+00 3.74070078e-01
3.16299379e-01 -2.02905715e-01 -1.80250049e-01 6.75989747e-01
7.23455012e-01 9.06274468e-02 4.44207460e-01 -8.22874129e-01
-5.77439904e-01 1.37796247e+00 -5.52254505e-02 3.57805878e-01
5.51049531e-01 -2.03628555e-01 9.43129897e-01 -1.13537931e+00
5.83959699e-01 1.60246289e+00 4.57564294e-01 6.22152030e-01
-9.40443635e-01 -3.52572978e-01 8.93008634e-02 2.61037201e-01
-1.54815423e+00 -1.43285656e+00 4.61183012e-01 3.81413326e-02
1.19310355e+00 3.77690226e-01 -1.49662361e-01 1.31039393e+00
-5.49173415e-01 1.05511284e+00 7.51947284e-01 -9.85496342e-01
1.49255976e-01 -3.45589183e-02 2.49649644e-01 5.34979463e-01
-6.56581521e-01 -4.55807418e-01 -8.68196964e-01 -8.15945566e-02
6.23264313e-02 -1.03706729e+00 -4.82324272e-01 6.19143128e-01
-1.27499831e+00 6.91512704e-01 -3.09495956e-01 2.73723572e-01
-3.05780202e-01 -3.65843117e-01 6.33881569e-01 6.65417016e-01
4.68633562e-01 1.33986743e-02 -7.04639018e-01 -4.34412628e-01
-7.31941164e-01 -2.48521730e-01 8.27308178e-01 1.17133522e+00
3.60070050e-01 5.05591452e-01 1.64357275e-01 1.60566759e+00
6.16944313e-01 9.95811939e-01 8.47194850e-01 -9.72619474e-01
7.44909048e-01 -9.99585763e-02 -1.14134349e-01 -3.13796610e-01
-3.04497033e-01 1.89081937e-01 -2.38712728e-01 -3.89397115e-01
6.22280478e-01 -3.57291728e-01 -1.03475821e+00 1.50363266e+00
2.44856656e-01 -3.77590716e-01 6.24281466e-01 8.20694029e-01
8.94733489e-01 1.33098865e+00 -2.21707642e-01 -2.54322201e-01
1.58412802e+00 -1.10282302e+00 -8.81049216e-01 -4.56237853e-01
5.65666556e-01 -1.35112429e+00 1.35928595e+00 6.79093480e-01
-1.31153297e+00 -3.13454568e-01 -7.55218089e-01 -1.15280248e-01
-3.27839494e-01 3.64693582e-01 -1.10124886e-01 1.26302779e+00
-1.28199041e+00 -2.19584808e-01 -8.36103499e-01 -4.73629951e-01
-1.77055925e-01 -2.11233255e-02 -3.40220183e-01 -1.11318536e-01
-1.35002089e+00 9.14512277e-01 7.21675158e-02 8.60893354e-02
-9.65157211e-01 -8.03325996e-02 -1.18567991e+00 -2.42395088e-01
-7.64149502e-02 4.91454899e-01 1.79643261e+00 -9.38296795e-01
-1.88070107e+00 9.73127365e-01 -5.18694580e-01 -6.87009931e-01
-1.22110732e-01 -3.94970365e-02 -9.59449410e-01 2.49129593e-01
8.41423869e-02 4.92296964e-01 8.51056635e-01 -1.00406659e+00
-8.38575184e-01 -5.13385415e-01 -6.66028976e-01 3.53077173e-01
-1.96266040e-01 8.43344629e-01 -2.90626585e-01 -8.60202134e-01
3.32382590e-01 -7.54967630e-01 7.48402774e-02 -9.69717383e-01
-4.44815427e-01 -2.50611097e-01 8.42296362e-01 -1.46965921e+00
1.21050918e+00 -2.28269887e+00 3.90068926e-02 1.89391255e-01
-8.32093596e-01 1.92606360e-01 -3.83818388e-01 5.78765094e-01
3.23607475e-02 -2.58164164e-02 -4.24194723e-01 -6.76316440e-01
6.28944784e-02 2.72689044e-01 -5.89872479e-01 4.98761117e-01
4.51972514e-01 4.42838639e-01 -5.57543635e-01 -8.55937302e-02
-4.00453955e-02 5.24607301e-01 -6.44574538e-02 5.84267266e-02
3.93538326e-02 4.23902690e-01 2.10418835e-01 1.04213119e+00
5.32007694e-01 7.46527135e-01 1.09752104e-01 2.66927332e-01
-1.95510253e-01 1.36145604e+00 -1.06320643e+00 1.72756159e+00
-7.20422089e-01 6.55791521e-01 6.76731288e-01 -9.08947647e-01
9.13624585e-01 8.61025453e-01 -1.52565628e-01 -5.69353223e-01
1.18450917e-01 5.40191650e-01 -5.35720140e-02 -1.78372741e-01
8.17863584e-01 8.06596652e-02 -4.33610648e-01 4.93243814e-01
3.48687440e-01 -3.58740538e-01 8.67270529e-02 1.56964600e-01
8.51109505e-01 -4.26905125e-01 1.47259101e-01 -2.90013283e-01
7.61764348e-01 2.04120725e-01 1.70956448e-01 5.41927934e-01
-2.95478791e-01 8.85926068e-01 4.92911078e-02 2.29047820e-01
-7.59663880e-01 -1.13356209e+00 -3.56851906e-01 1.70483625e+00
-4.34600502e-01 -4.11922693e-01 -1.27109444e+00 -4.79040653e-01
-4.78639305e-01 1.00428927e+00 6.16769195e-02 2.22782284e-01
-1.10473990e+00 -6.24743283e-01 1.41523468e+00 1.70569226e-01
2.52963364e-01 -1.37512112e+00 4.18060392e-01 5.78445673e-01
-7.86283672e-01 -1.16506612e+00 -9.28580582e-01 3.17853034e-01
-3.60112607e-01 -6.81621075e-01 -7.11090982e-01 -1.60066795e+00
8.28611329e-02 1.29528165e-01 9.17775095e-01 -2.64027804e-01
2.08243191e-01 5.10371506e-01 -7.86870182e-01 -3.41102362e-01
-1.38667560e+00 3.24592918e-01 2.61105865e-01 -1.14769693e-02
3.71847034e-01 -2.04278976e-02 7.46960044e-02 5.41326880e-01
-6.65024161e-01 -6.93705976e-01 2.42777467e-01 7.91756034e-01
3.72961909e-01 -3.14390451e-01 1.14750648e+00 -5.22763312e-01
6.68233693e-01 -3.30599457e-01 -3.78609508e-01 1.64601460e-01
-1.25773717e-02 -2.20849335e-01 5.53765893e-01 -1.97788551e-01
-1.46091270e+00 2.93409199e-01 -1.18178546e+00 5.40523887e-01
-6.00702941e-01 6.63179815e-01 -6.81281567e-01 3.83899480e-01
9.47252810e-01 4.94934738e-01 5.98766878e-02 -7.31404662e-01
5.73269248e-01 1.79397142e+00 9.75380838e-01 -4.08304602e-01
2.25399122e-01 -2.32306160e-02 -1.17827559e+00 -1.56627238e+00
-4.20239300e-01 -7.55846977e-01 -5.82605541e-01 3.07839494e-02
5.58093250e-01 -1.20002985e+00 -3.02332312e-01 9.87082839e-01
-1.27465284e+00 -4.73166734e-01 -1.04194008e-01 1.79834291e-01
-6.01956844e-01 4.85957026e-01 -1.18598402e+00 -8.59366119e-01
-4.15740430e-01 -1.24037576e+00 1.20238328e+00 -3.36656034e-01
-2.51585603e-01 -7.33390391e-01 -3.63225788e-02 7.77379453e-01
2.37820327e-01 -7.30661094e-01 5.58591783e-01 -8.85100126e-01
-3.99531052e-02 1.46706060e-01 3.65284562e-01 6.49509907e-01
3.94447118e-01 -6.64435923e-02 -1.23328626e+00 -2.73575306e-01
-3.29583809e-02 -5.93324423e-01 6.29088283e-01 3.44985038e-01
3.73175681e-01 -5.64612627e-01 2.66555607e-01 2.94491220e-02
4.12255287e-01 3.67208302e-01 6.68859482e-01 2.86520422e-01
3.63376647e-01 8.99380267e-01 7.17056215e-01 2.37614900e-01
8.12086642e-01 4.65384483e-01 9.21837636e-04 2.94180602e-01
-3.65970731e-01 5.75421797e-03 1.28310108e+00 1.69829595e+00
7.21450448e-01 -4.97426599e-01 -1.37125432e+00 1.06992972e+00
-1.31078804e+00 -6.29225552e-01 -3.07436287e-01 2.02851725e+00
1.47985649e+00 -2.28492111e-01 4.03188974e-01 4.36603993e-01
9.39648211e-01 8.99673700e-02 2.45784238e-01 -7.48559415e-01
-4.33382511e-01 2.17036784e-01 3.82605612e-01 1.09670711e+00
-1.17292380e+00 1.52658260e+00 6.26785231e+00 1.04685390e+00
-9.38708842e-01 4.01878327e-01 6.14970386e-01 3.49180877e-01
-1.20749809e-01 -2.28165135e-01 -1.08912444e+00 3.02557081e-01
1.95656431e+00 2.15675682e-01 6.18154705e-01 6.36970580e-01
3.10918808e-01 9.65296756e-03 -6.91159427e-01 7.55609512e-01
3.21428329e-01 -9.30194855e-01 -1.99078154e-02 -5.36674023e-01
3.59766811e-01 5.83935380e-01 -1.52892634e-01 3.07197630e-01
3.28303427e-01 -8.83096576e-01 1.25356019e+00 -2.01308340e-01
7.58044243e-01 -1.22171915e+00 5.93241334e-01 2.94040561e-01
-9.37526882e-01 2.70565927e-01 -1.93183526e-01 3.25281620e-01
5.18725395e-01 1.00387476e-01 -1.46931899e+00 3.40528250e-01
6.56437218e-01 3.65890831e-01 -5.87604523e-01 7.53396630e-01
-3.84428322e-01 1.64701796e+00 -4.26246673e-01 9.10854936e-02
2.29382291e-01 -2.75094472e-02 8.26655507e-01 1.78471577e+00
2.13875815e-01 -9.58859548e-02 7.84286261e-02 -6.45691901e-02
-2.52282321e-02 5.05463362e-01 -1.82639793e-01 -1.53836980e-01
7.78820932e-01 9.58797932e-01 -7.44437218e-01 -2.63294816e-01
-2.58979201e-01 1.18409801e+00 1.32728353e-01 3.77192855e-01
-3.98548245e-01 -8.01891863e-01 7.81807065e-01 -1.60278663e-01
3.35116178e-01 -5.75708628e-01 -1.29954487e-01 -8.62183392e-01
-2.17725374e-02 -1.34432507e+00 3.90402853e-01 -6.33719742e-01
-1.35022402e+00 1.13531172e+00 -5.58246732e-01 -7.36785710e-01
-7.36451149e-01 -7.44890749e-01 -2.02565491e-01 1.02802205e+00
-1.61458576e+00 -1.04922962e+00 2.64781475e-01 5.18011868e-01
1.11830711e+00 -5.15089393e-01 1.28154480e+00 4.49695766e-01
-5.35318851e-01 6.72950327e-01 2.71900862e-01 5.75924456e-01
1.12913001e+00 -1.28294361e+00 9.84915495e-01 9.75921750e-01
4.38280195e-01 2.60780454e-01 6.23833001e-01 -4.11696821e-01
-1.15614140e+00 -1.14347923e+00 1.22566032e+00 -5.68766654e-01
8.71353090e-01 -6.45647824e-01 -1.09740615e+00 8.86866927e-01
6.42421126e-01 -5.18773079e-01 7.13884354e-01 1.65942311e-02
-1.02325134e-01 -1.60105646e-01 -1.04253244e+00 5.38749278e-01
6.78996921e-01 -7.56814778e-01 -8.22832584e-01 3.43153417e-01
1.03525043e+00 -5.64366102e-01 -6.37213588e-01 -1.48791239e-01
3.87099870e-02 -3.22928429e-01 6.98841274e-01 -4.27372187e-01
-2.68815845e-01 -2.16187909e-01 -5.05507708e-01 -1.79043305e+00
2.16496363e-01 -8.90810490e-01 5.44053137e-01 1.74219155e+00
9.84258950e-01 -5.14162421e-01 2.42026851e-01 9.30084847e-03
-7.94847369e-01 2.60137677e-01 -1.27313447e+00 -8.62734377e-01
2.67908096e-01 -8.73626590e-01 4.47957009e-01 9.41524565e-01
4.25999969e-01 4.60135788e-01 -7.23597780e-02 6.30084157e-01
1.92896053e-01 -4.02394772e-01 3.37524801e-01 -5.52797019e-01
-5.05661704e-02 -1.15104526e-01 -2.41576850e-01 -1.13797915e+00
4.17369992e-01 -9.09381330e-01 8.33779037e-01 -1.31647253e+00
-8.27843726e-01 -4.61051494e-01 3.95523936e-01 8.07611406e-01
1.53034359e-01 2.96686262e-01 -1.87931225e-01 -1.45379409e-01
-2.86617041e-01 6.30697310e-01 4.94894981e-01 -2.34989017e-01
-5.04418969e-01 1.56039447e-01 -3.68702441e-01 5.04131019e-01
1.02155125e+00 -5.44615209e-01 -1.21387735e-01 -6.66224301e-01
-4.56328869e-01 3.27054292e-01 -2.10149050e-01 -5.81465185e-01
1.93677112e-01 1.22674637e-01 -1.50692508e-01 -6.96244776e-01
3.64876360e-01 -3.20685387e-01 -5.43145716e-01 6.55791834e-02
-2.11867914e-01 1.02370165e-01 4.39099044e-01 -1.71503320e-01
-5.88733375e-01 -5.21731019e-01 7.47558236e-01 7.57817775e-02
-7.27922320e-01 -2.82125682e-01 -1.56676233e+00 3.84438157e-01
3.43974441e-01 1.20006777e-01 -5.14179885e-01 -7.27089345e-01
-8.70165348e-01 1.03369243e-01 4.86230180e-02 7.82366097e-01
5.55473387e-01 -9.99229848e-01 -1.16325867e+00 5.32129586e-01
1.23324066e-01 -8.60137418e-02 -1.12142764e-01 6.14776969e-01
-6.31407320e-01 4.07055348e-01 1.87330514e-01 -4.82334852e-01
-1.36729598e+00 -1.07485964e-03 2.31714189e-01 6.46090984e-01
-2.27298498e-01 9.52257097e-01 -5.22576869e-01 -1.00036311e+00
4.81659949e-01 -2.77194262e-01 -1.34173185e-01 3.00786972e-01
8.81919920e-01 3.55369031e-01 8.30546856e-01 -1.35817826e+00
-7.01499999e-01 -3.19413543e-01 -1.78579435e-01 -8.97390425e-01
1.11370885e+00 -8.27528119e-01 -1.72511503e-01 5.59191823e-01
9.23940420e-01 7.05059052e-01 -7.87739575e-01 -1.68017358e-01
5.64749658e-01 9.19594318e-02 5.31110317e-02 -1.11126339e+00
-5.03852308e-01 7.74397552e-01 2.75305450e-01 3.87078792e-01
9.55747783e-01 1.25026822e-01 9.41605747e-01 6.98378503e-01
2.27934927e-01 -1.46403921e+00 -2.59800643e-01 1.33844876e+00
1.19132328e+00 -1.25581598e+00 -9.28541899e-01 -4.35089052e-01
-1.01877820e+00 1.01900136e+00 2.67862976e-01 4.16291654e-01
6.67300045e-01 3.91185075e-01 1.02773416e+00 2.88042396e-01
-3.42988074e-01 -2.91162223e-01 2.80700862e-01 9.27477419e-01
6.67299509e-01 2.74517084e-03 -4.03560400e-02 8.31349075e-01
-9.47384238e-01 -1.05597794e+00 8.70426297e-01 8.87612760e-01
-7.40878701e-01 -1.29016614e+00 -7.51676202e-01 -1.57525912e-01
-5.67179203e-01 -5.63515365e-01 -5.70652127e-01 4.00190532e-01
-6.89614058e-01 1.68038309e+00 1.69636175e-01 1.28392220e-01
4.35627967e-01 5.49733341e-01 1.09898321e-01 -7.10224807e-01
-5.35058975e-01 4.65627819e-01 7.46050596e-01 -2.54740804e-01
-1.84395745e-01 -1.06872094e+00 -1.61687219e+00 -6.60287812e-02
-3.58818799e-01 4.07872707e-01 9.89981055e-01 8.93061996e-01
9.61874425e-02 1.30506635e-01 8.18997979e-01 -7.65005827e-01
-4.17650521e-01 -1.39462864e+00 -6.70712590e-01 -1.65615767e-01
5.69798410e-01 1.55489087e-01 -4.61764663e-01 3.76155883e-01] | [14.420191764831543, 6.782005786895752] |
3ff837ac-1d63-48c3-9396-3e60d6db1212 | photon-field-networks-for-dynamic-real-time | 2304.07338 | null | https://arxiv.org/abs/2304.07338v1 | https://arxiv.org/pdf/2304.07338v1.pdf | Photon Field Networks for Dynamic Real-Time Volumetric Global Illumination | Volume data is commonly found in many scientific disciplines, like medicine, physics, and biology. Experts rely on robust scientific visualization techniques to extract valuable insights from the data. Recent years have shown path tracing to be the preferred approach for volumetric rendering, given its high levels of realism. However, real-time volumetric path tracing often suffers from stochastic noise and long convergence times, limiting interactive exploration. In this paper, we present a novel method to enable real-time global illumination for volume data visualization. We develop Photon Field Networks -- a phase-function-aware, multi-light neural representation of indirect volumetric global illumination. The fields are trained on multi-phase photon caches that we compute a priori. Training can be done within seconds, after which the fields can be used in various rendering tasks. To showcase their potential, we develop a custom neural path tracer, with which our photon fields achieve interactive framerates even on large datasets. We conduct in-depth evaluations of the method's performance, including visual quality, stochastic noise, inference and rendering speeds, and accuracy regarding illumination and phase function awareness. Results are compared to ray marching, path tracing and photon mapping. Our findings show that Photon Field Networks can faithfully represent indirect global illumination across the phase spectrum while exhibiting less stochastic noise and rendering at a significantly faster rate than traditional methods. | ['Kwan-Liu Ma', 'Qi Wu', 'David Bauer'] | 2023-04-14 | null | null | null | null | ['data-visualization', 'data-visualization'] | ['methodology', 'miscellaneous'] | [ 1.30257383e-01 -4.16645557e-01 4.41571563e-01 -3.79252076e-01
-6.52426600e-01 -5.89582741e-01 4.96995091e-01 3.17709655e-01
-3.70422184e-01 7.18463719e-01 -1.72541335e-01 -7.65402973e-01
1.40098721e-01 -1.08452356e+00 -6.72278702e-01 -4.60182488e-01
-4.08360362e-01 3.95617545e-01 4.79006261e-01 -1.23107294e-02
2.03169286e-01 9.67988312e-01 -1.65720356e+00 2.69543022e-01
7.96716154e-01 9.29456532e-01 -1.43212089e-02 1.02060783e+00
-5.07331729e-01 5.54176688e-01 -6.50646567e-01 5.82640618e-02
1.30053192e-01 -2.69819587e-01 -5.49535155e-01 -6.21483088e-01
5.69691837e-01 -6.88471496e-01 -1.82306767e-02 5.18688798e-01
5.91481268e-01 3.61486524e-01 4.17658627e-01 -9.80196238e-01
-1.53291658e-01 -1.99186519e-01 -6.32787168e-01 2.97638118e-01
4.65959668e-01 7.10933685e-01 4.27796185e-01 -8.05555642e-01
8.25355232e-01 1.34775770e+00 7.29295254e-01 3.65773052e-01
-1.50326025e+00 -7.97714055e-01 -7.95658678e-02 -2.12965325e-01
-1.22786665e+00 -1.41927809e-01 5.94988644e-01 -4.65585619e-01
9.92015064e-01 5.93120396e-01 1.07655108e+00 6.52538836e-01
5.32511234e-01 4.86956872e-02 1.48398221e+00 -2.02454582e-01
3.95026743e-01 9.63785127e-02 -8.05661380e-02 9.15582836e-01
-2.95762736e-02 4.89542902e-01 -7.83544779e-01 -3.33274662e-01
1.30088902e+00 -4.33210641e-01 -4.15844977e-01 -1.58466443e-01
-9.70441997e-01 6.37895286e-01 6.73739254e-01 -2.37361982e-01
-1.47508353e-01 6.52975261e-01 2.48539299e-01 7.34654255e-03
7.52102256e-01 5.03325999e-01 -9.46861655e-02 -4.17830080e-01
-9.02968168e-01 3.40117216e-01 7.94722795e-01 5.96032381e-01
7.89738119e-01 1.71482518e-01 -2.63643384e-01 3.90798748e-01
1.84890240e-01 6.65287435e-01 -2.75755703e-01 -1.35093045e+00
-1.66363597e-01 3.50828201e-01 1.29295975e-01 -1.01030302e+00
-6.27809107e-01 -3.72656405e-01 -7.65991092e-01 1.27862775e+00
4.02197421e-01 7.59104192e-02 -1.03129184e+00 1.32791007e+00
6.95478737e-01 2.52424449e-01 -4.26764905e-01 9.61807191e-01
9.44191754e-01 8.36335778e-01 2.61285633e-01 -5.18888272e-02
1.28155184e+00 -4.23122942e-01 -5.76437414e-01 1.97002798e-01
4.30568337e-01 -7.07400262e-01 1.35137403e+00 6.69339538e-01
-1.36278605e+00 -2.78542429e-01 -9.54223633e-01 -4.11180854e-01
-1.71339691e-01 -5.83172083e-01 8.76212001e-01 6.84686005e-01
-1.29435658e+00 8.87936354e-01 -1.27686608e+00 4.25639004e-02
7.40045071e-01 2.39640743e-01 2.18521729e-01 1.75813939e-02
-5.13278723e-01 5.95241845e-01 -6.33654669e-02 -1.44891888e-01
-8.80660951e-01 -1.46187294e+00 -4.83161062e-01 3.74376029e-02
-1.74108803e-01 -8.56826365e-01 1.18317056e+00 -5.39312124e-01
-1.63748193e+00 4.07337993e-01 -3.22616637e-01 -3.14841904e-02
7.10009754e-01 -2.88148057e-02 -1.27687380e-01 3.98294359e-01
-2.70314574e-01 6.10785902e-01 3.64256203e-01 -1.54908085e+00
-2.56267726e-01 4.56235036e-02 1.64556727e-01 1.87746003e-01
-7.24658594e-02 -5.99628873e-03 -4.21921790e-01 -2.77511775e-01
8.61895755e-02 -5.09499609e-01 -3.04824948e-01 1.05129004e+00
-2.57393837e-01 1.45383701e-01 1.00328958e+00 -5.20019174e-01
6.98841035e-01 -1.92342949e+00 -5.70866227e-01 4.74876374e-01
4.68833327e-01 -5.10993451e-02 2.33887702e-01 9.01866853e-02
1.40197471e-01 1.36017218e-01 -3.83748174e-01 -5.64675212e-01
-3.31499785e-01 1.31406501e-01 -2.72250414e-01 4.11452919e-01
-8.37421939e-02 6.81913733e-01 -1.00295794e+00 -4.67466861e-01
5.24953783e-01 1.27877581e+00 -7.33906627e-01 1.85760990e-01
-5.34188271e-01 1.02248144e+00 -7.91302472e-02 5.18040061e-01
9.16828930e-01 -6.53207004e-01 6.31479099e-02 -3.76360148e-01
-4.08572674e-01 3.38811338e-01 -1.08891845e+00 1.74373472e+00
-8.76120985e-01 1.11094844e+00 3.26529533e-01 -5.68294572e-03
6.00269556e-01 5.49675971e-02 4.98377770e-01 -1.15664816e+00
1.48964331e-01 8.63125697e-02 -2.61411548e-01 -1.76758006e-01
6.10097647e-01 -1.89192742e-01 7.05362439e-01 7.53493547e-01
-5.07989407e-01 -5.59673727e-01 -3.03309467e-02 2.78241873e-01
1.05920196e+00 4.63259041e-01 -3.53480935e-01 -3.86335105e-01
-1.97936788e-01 8.22949037e-02 6.36311620e-02 6.32972717e-01
3.28763008e-01 7.04337835e-01 3.57862383e-01 -5.29616594e-01
-1.03105366e+00 -1.41638339e+00 -3.56856406e-01 8.72480452e-01
2.17415079e-01 -3.90960634e-01 -4.56571013e-01 -5.56969531e-02
-9.82429460e-02 9.01857197e-01 -5.58060408e-01 3.18971187e-01
-7.94428051e-01 -6.85935438e-01 2.71275073e-01 4.75836486e-01
2.86929429e-01 -1.03885806e+00 -1.33624470e+00 2.95958579e-01
1.87790006e-01 -8.82832944e-01 -2.50578541e-02 7.26979673e-02
-1.09769714e+00 -1.04518139e+00 -4.41674143e-01 -8.27253982e-02
6.62119746e-01 2.54543304e-01 1.48566842e+00 4.35998678e-01
-8.19300354e-01 4.41895366e-01 1.89778209e-01 -3.51471215e-01
-4.71648395e-01 -4.77925152e-01 -4.87949610e-01 -6.47274792e-01
-3.26565117e-01 -1.10740900e+00 -1.18459642e+00 1.65447995e-01
-8.52671742e-01 4.68026489e-01 -3.17122638e-02 3.30081731e-01
7.90331423e-01 -3.19798321e-01 -1.70869574e-01 -9.15362060e-01
5.14614403e-01 -2.34537348e-01 -9.65423226e-01 -1.35008588e-01
-5.56359529e-01 -1.12825848e-01 5.99695086e-01 -3.26461017e-01
-1.25593162e+00 -3.48205626e-01 -2.01979458e-01 -4.31142598e-01
3.74719389e-02 3.30134451e-01 3.70577574e-01 -6.40155554e-01
1.02798653e+00 -1.91150904e-01 -1.84836298e-01 -3.71242106e-01
2.92839199e-01 -1.18898906e-01 5.13698697e-01 -9.34416175e-01
7.19896257e-01 1.02731180e+00 5.15330553e-01 -8.04375470e-01
-3.42974037e-01 -8.36115777e-02 -1.79056868e-01 -4.58039969e-01
6.62382960e-01 -4.84358907e-01 -1.19510460e+00 2.07299918e-01
-1.40148473e+00 -8.12635481e-01 -4.59605604e-01 3.63021582e-01
-3.49625826e-01 1.32732406e-01 -6.06311560e-01 -8.54571164e-01
-3.44137311e-01 -1.24525511e+00 9.41795588e-01 3.71701330e-01
-2.22847462e-01 -1.18487728e+00 1.05934449e-01 -2.68472850e-01
8.37433636e-01 7.20440626e-01 1.03713787e+00 4.34649646e-01
-1.18242657e+00 4.37112689e-01 -7.42663503e-01 -1.77197739e-01
-4.89515886e-02 3.56749475e-01 -1.33567202e+00 -2.21313596e-01
-2.73717403e-01 -2.23313302e-01 5.02026856e-01 5.56920707e-01
1.70130587e+00 -1.15568094e-01 -5.24357915e-01 1.34623718e+00
1.78271258e+00 1.98823318e-01 5.43153405e-01 8.01917538e-02
8.84002626e-01 5.28699934e-01 8.33325088e-02 4.81540173e-01
1.49957657e-01 4.56560731e-01 5.89835525e-01 -6.23044491e-01
-4.60529625e-01 2.68649170e-03 -3.90657872e-01 5.00819147e-01
-3.04613978e-01 -4.52987075e-01 -9.64732051e-01 1.03454843e-01
-1.10961950e+00 -6.20677173e-01 -4.58920151e-01 2.36055589e+00
8.66892517e-01 2.52303332e-01 -1.29397020e-01 -1.72925353e-01
-4.93631251e-02 1.61402658e-01 -5.54074168e-01 -7.11410522e-01
2.24428028e-02 7.37149060e-01 5.83396554e-01 8.14475894e-01
-5.26523471e-01 4.56136644e-01 6.65618086e+00 5.35156727e-01
-1.40155935e+00 3.13918889e-01 8.83826196e-01 -4.96104896e-01
-9.97144163e-01 -3.03793065e-02 -3.11509579e-01 2.39509702e-01
9.52362299e-01 1.13527276e-01 4.97024268e-01 4.38801169e-01
5.69259107e-01 -5.44302821e-01 -1.03412580e+00 9.74557102e-01
-3.26370895e-01 -1.78793478e+00 -4.16767597e-02 9.93818194e-02
5.74829221e-01 8.59896466e-02 3.24854814e-02 -1.81061327e-01
5.95702469e-01 -1.37839317e+00 5.04055381e-01 5.21734595e-01
1.42020571e+00 -8.02354455e-01 -1.42620742e-01 1.26671046e-01
-1.22332811e+00 4.74158943e-01 -7.18661165e-03 1.30282164e-01
5.66745698e-01 8.47963631e-01 -7.05992460e-01 3.36514622e-01
8.93857300e-01 6.43914565e-02 -3.68512362e-01 1.19880509e+00
6.11672597e-03 6.89758003e-01 -8.27407897e-01 -1.12367943e-02
-3.08209937e-02 -2.83674389e-01 4.23033327e-01 1.34965515e+00
3.83086801e-01 2.69992262e-01 3.41311209e-02 1.35768270e+00
7.44635239e-02 -5.96053638e-02 -3.00156146e-01 4.19689894e-01
2.80223519e-01 1.29174221e+00 -1.08814311e+00 -2.15438172e-01
-1.91455483e-01 7.66880631e-01 2.78363317e-01 6.73940420e-01
-8.22002470e-01 -1.07065268e-01 6.19468212e-01 4.58775491e-01
-2.09919587e-01 -6.09930754e-01 -7.25424588e-01 -4.36779320e-01
-1.17729247e-01 -3.25098813e-01 -1.17474556e-01 -1.09548223e+00
-8.20001364e-01 7.54541039e-01 1.58921763e-01 -8.39212358e-01
6.16545454e-02 -6.33443773e-01 -7.47886598e-01 1.27112615e+00
-1.62770116e+00 -9.23783183e-01 -7.61560321e-01 4.10066068e-01
7.55120888e-02 5.87396562e-01 8.44403446e-01 3.49765837e-01
-2.79682199e-03 2.37880245e-01 1.35188416e-01 -3.26287866e-01
3.33176583e-01 -1.19176066e+00 6.15321100e-01 5.62319815e-01
-1.98904917e-01 5.50646305e-01 8.31578910e-01 -7.33346105e-01
-1.39644790e+00 -7.80184150e-01 5.86620532e-02 -2.92537630e-01
2.00992018e-01 -4.38667506e-01 -1.20096421e+00 3.26192468e-01
1.79599315e-01 4.37469184e-01 4.84492511e-01 9.21152905e-02
-3.76157880e-01 1.01894133e-01 -1.28779495e+00 6.66710615e-01
1.01942468e+00 -5.11581063e-01 4.53256428e-01 4.88642335e-01
7.46895969e-01 -8.81287396e-01 -6.95428371e-01 1.62773609e-01
7.51220107e-01 -1.36069822e+00 1.18972743e+00 1.45542072e-02
4.42104340e-01 -3.32539856e-01 2.23366857e-01 -1.23470807e+00
-5.41146025e-02 -7.98308134e-01 -2.48472854e-01 7.86079526e-01
-5.11801876e-02 -6.72924519e-01 8.77541125e-01 6.53905094e-01
-2.41901547e-01 -8.62630308e-01 -1.02332664e+00 -5.66402435e-01
-7.53929690e-02 -8.09346020e-01 5.49481392e-01 7.06333399e-01
-6.47820592e-01 -2.45756924e-01 2.37565771e-01 2.17425838e-01
8.83765340e-01 1.89074978e-01 5.82958817e-01 -1.23196483e+00
-3.85138243e-01 -5.42360961e-01 4.35853973e-02 -1.03212953e+00
-3.60859692e-01 -6.27290964e-01 7.74599910e-02 -1.78423560e+00
-1.41028211e-01 -1.01219153e+00 1.01915732e-01 2.09747180e-01
-4.23959503e-03 6.04073405e-01 -3.19188125e-02 -3.34795006e-02
-1.59274377e-02 2.89294928e-01 1.63266170e+00 1.54918537e-01
-3.83094192e-01 -3.20280463e-01 -1.43817797e-01 8.36193919e-01
7.38076210e-01 -3.66948336e-01 -6.77247584e-01 -7.00940371e-01
4.36520249e-01 6.21590987e-02 8.70550036e-01 -1.22834265e+00
2.19459340e-01 -1.80511624e-01 7.29404390e-01 -7.68621981e-01
8.18910122e-01 -6.24860108e-01 3.69543195e-01 3.43227953e-01
-2.55365036e-02 1.94992721e-01 7.34682858e-01 2.47634634e-01
4.33876812e-01 3.10805202e-01 8.82690787e-01 -2.25941956e-01
-3.40328395e-01 4.22122926e-01 -1.39579043e-01 1.71293363e-01
6.12796545e-01 -3.90099496e-01 -4.45955127e-01 -4.73919421e-01
-4.63126153e-01 -1.44260839e-01 7.78479636e-01 -1.45167395e-01
8.50786030e-01 -1.04259169e+00 -4.80623096e-01 2.95955241e-01
-2.67047495e-01 4.43014860e-01 4.79234755e-01 5.87262452e-01
-1.27583611e+00 -1.70134857e-01 -7.69579858e-02 -1.00615335e+00
-1.01502931e+00 2.08820298e-01 6.25886679e-01 -4.33245711e-02
-1.07410169e+00 1.02970827e+00 5.26571333e-01 -2.05733404e-01
1.32820681e-02 -4.79580373e-01 3.69182527e-01 -4.65344429e-01
5.65172136e-01 5.92989743e-01 1.87668487e-01 -3.18210758e-02
-2.50628293e-01 6.45140350e-01 3.57251346e-01 -5.19572556e-01
1.15825605e+00 9.37272385e-02 -5.58141880e-02 5.38047731e-01
1.20975459e+00 1.18103057e-01 -1.64295793e+00 1.95538908e-01
-7.19891906e-01 -7.67488241e-01 3.13370168e-01 -1.18652451e+00
-1.08053625e+00 1.16526866e+00 9.10261035e-01 1.30167469e-01
9.37931836e-01 -3.79759967e-01 9.14218128e-01 -1.00336909e-01
4.51592207e-01 -7.10532546e-01 -9.98292267e-02 2.11491287e-01
7.33893991e-01 -9.10560012e-01 3.57988685e-01 -7.65303314e-01
2.21504793e-01 1.19032240e+00 6.09573185e-01 -3.44797187e-02
7.53273129e-01 9.75934446e-01 3.33045125e-01 -4.55359906e-01
-4.59448546e-01 4.86909717e-01 1.98517546e-01 6.72827005e-01
5.02190053e-01 -1.51173204e-01 2.61973768e-01 -5.81954896e-01
-2.90467948e-01 6.41768053e-02 4.27077830e-01 1.03135514e+00
-2.78548867e-01 -7.83830047e-01 -4.51358706e-01 4.97682452e-01
-1.85840562e-01 -1.97128132e-01 3.12839210e-01 7.15144038e-01
-8.28266218e-02 5.89674354e-01 4.61815476e-01 2.18296632e-01
1.88210800e-01 -4.64273542e-01 7.38634109e-01 -3.69814694e-01
-7.71583438e-01 9.27154422e-02 -1.15120281e-02 -1.12283111e+00
-2.42948472e-01 -2.08167166e-01 -1.57401669e+00 -6.35783672e-01
1.52211741e-01 -8.67927074e-02 1.11693120e+00 4.71826822e-01
3.54582638e-01 1.02221143e+00 2.50501305e-01 -1.22918606e+00
1.73380136e-01 -3.81788403e-01 -2.92655349e-01 1.82768986e-01
4.86397952e-01 -4.75581884e-01 -3.52925658e-01 -1.45219013e-01] | [9.430990219116211, -3.1617398262023926] |
49084ef2-a50f-4b43-bb06-fc5ec231fe85 | being-right-for-whose-right-reasons | 2306.00639 | null | https://arxiv.org/abs/2306.00639v1 | https://arxiv.org/pdf/2306.00639v1.pdf | Being Right for Whose Right Reasons? | Explainability methods are used to benchmark the extent to which model predictions align with human rationales i.e., are 'right for the right reasons'. Previous work has failed to acknowledge, however, that what counts as a rationale is sometimes subjective. This paper presents what we think is a first of its kind, a collection of human rationale annotations augmented with the annotators demographic information. We cover three datasets spanning sentiment analysis and common-sense reasoning, and six demographic groups (balanced across age and ethnicity). Such data enables us to ask both what demographics our predictions align with and whose reasoning patterns our models' rationales align with. We find systematic inter-group annotator disagreement and show how 16 Transformer-based models align better with rationales provided by certain demographic groups: We find that models are biased towards aligning best with older and/or white annotators. We zoom in on the effects of model size and model distillation, finding -- contrary to our expectations -- negative correlations between model size and rationale agreement as well as no evidence that either model size or model distillation improves fairness. | ['Anders Søgaard', 'Laura Cabello', 'Terne Sasha Thorn Jakobsen'] | 2023-06-01 | null | null | null | null | ['sentiment-analysis', 'common-sense-reasoning'] | ['natural-language-processing', 'reasoning'] | [-1.66459121e-02 8.71536851e-01 -4.75363165e-01 -7.18609035e-01
-3.57822180e-01 -5.86747468e-01 6.56214654e-01 5.60056925e-01
-4.24781352e-01 7.33954370e-01 1.27233911e+00 -4.24903959e-01
-1.20355397e-01 -1.82627410e-01 8.19548368e-02 -2.62913764e-01
8.80415618e-01 5.84082544e-01 -3.27524811e-01 -2.24583209e-01
6.80315614e-01 -3.97711128e-01 -1.17862177e+00 4.15941745e-01
1.10677302e+00 3.90334547e-01 -5.85497737e-01 3.82468194e-01
2.64795609e-02 1.14891553e+00 -3.10593963e-01 -1.32568252e+00
5.41167371e-02 -2.50377685e-01 -8.62572491e-01 -5.31682849e-01
7.47657895e-01 1.15701355e-01 2.16699257e-01 7.13459194e-01
5.27663827e-01 -3.17468137e-01 1.12786102e+00 -1.45253968e+00
-1.14203656e+00 1.15152609e+00 -6.64061069e-01 1.25776321e-01
5.14762521e-01 1.69250801e-01 1.40047526e+00 -5.11735141e-01
9.55208540e-01 1.24522555e+00 1.42152274e+00 7.87286043e-01
-1.24390769e+00 -8.44147623e-01 1.92000642e-01 -6.62672594e-02
-1.05726075e+00 -6.01406097e-01 5.75424671e-01 -1.07277191e+00
7.63339639e-01 4.84926522e-01 4.80120629e-01 1.31521034e+00
-6.54853359e-02 1.04890093e-01 1.49476719e+00 -3.67924154e-01
2.02957228e-01 3.89071167e-01 2.84587204e-01 3.17476362e-01
7.69222736e-01 -4.02816683e-01 -7.45216250e-01 -6.09821320e-01
2.62585342e-01 -3.13851923e-01 -5.76832183e-02 -1.61191791e-01
-1.30365944e+00 9.95304704e-01 2.81683266e-01 1.93980649e-01
-3.06421220e-01 1.33924931e-01 2.74925172e-01 7.07396269e-02
6.27214611e-01 9.12098169e-01 -9.14413631e-01 -3.70466262e-01
-9.58818614e-01 5.67968965e-01 1.13279259e+00 4.37124789e-01
4.29989606e-01 -1.40550151e-01 -2.51492858e-01 1.01482272e+00
5.28262377e-01 4.82385784e-01 5.35489202e-01 -1.27259445e+00
5.70391893e-01 8.80722106e-01 7.18651533e-01 -1.27845991e+00
-7.86750674e-01 -2.26554692e-01 -5.18435895e-01 1.54544994e-01
7.97171950e-01 -3.79166424e-01 -3.41236591e-01 2.19777870e+00
-9.93869156e-02 -7.07030416e-01 -4.84746620e-02 7.98432887e-01
7.89581418e-01 -9.57948118e-02 5.94831824e-01 -2.90495068e-01
1.60912156e+00 -5.74794590e-01 -5.35738170e-01 -6.91187263e-01
9.92707014e-01 -9.88931417e-01 1.15942872e+00 9.88597870e-02
-1.01346076e+00 -3.22666198e-01 -5.40364087e-01 -1.03893653e-01
-5.50715588e-02 6.11965582e-02 8.01840901e-01 1.07876039e+00
-9.60688591e-01 4.71003830e-01 -2.82278985e-01 -6.66744888e-01
4.21207786e-01 1.53992906e-01 -4.48544204e-01 3.54345620e-01
-1.01517773e+00 1.44421065e+00 -1.24491109e-02 -3.40951532e-01
2.49283478e-01 -9.96653438e-01 -6.10520065e-01 -1.16360806e-01
-2.51753479e-02 -1.13180578e+00 1.38952005e+00 -1.26579773e+00
-7.66794741e-01 1.33230412e+00 -2.06583872e-01 -3.30487907e-01
8.43482077e-01 -2.78316051e-01 -4.79262471e-01 -6.94041908e-01
5.70860147e-01 7.90985703e-01 2.49763638e-01 -1.13693058e+00
-5.39159238e-01 -2.78639287e-01 8.27541128e-02 2.82526225e-01
-2.85063952e-01 4.08405095e-01 3.16170067e-01 -5.69469213e-01
1.25861973e-01 -1.21799016e+00 -3.37820381e-01 -1.61922365e-01
-4.94647473e-01 -4.42641497e-01 1.15292378e-01 -7.30789661e-01
1.70809531e+00 -1.62456334e+00 -2.35156596e-01 1.87919542e-01
5.44326961e-01 -2.60502338e-01 4.97400969e-01 5.27111769e-01
-4.84182149e-01 8.48664939e-01 6.81753829e-02 -2.48074770e-01
4.81177121e-01 2.30068862e-02 -3.25957566e-01 4.08651143e-01
-1.92253605e-01 7.45212793e-01 -5.68913400e-01 -6.42843664e-01
-2.71500647e-01 2.10292444e-01 -8.67993891e-01 -4.15479660e-01
2.74414301e-01 2.29243517e-01 -2.56726027e-01 3.02001387e-01
3.06145757e-01 -6.09426618e-01 4.30944085e-01 -2.01954946e-01
-3.81147891e-01 5.62481880e-01 -8.71863186e-01 1.11371565e+00
-2.60474999e-02 5.56146145e-01 -5.80258481e-02 -2.43078455e-01
9.85001087e-01 2.41324589e-01 3.48496176e-02 -5.11627197e-01
2.19003841e-01 5.96581161e-01 6.14191830e-01 -5.06795228e-01
6.01324499e-01 -4.55490053e-01 -3.66040647e-01 7.26737499e-01
-8.46911073e-01 -2.55490094e-01 1.90950289e-01 2.71782637e-01
8.01704526e-01 -9.68526900e-02 7.12825835e-01 -7.05324829e-01
2.07811728e-01 1.93340585e-01 9.02870357e-01 8.27813804e-01
-2.56209522e-01 7.08840668e-01 7.19018996e-01 -8.06136370e-01
-1.29465151e+00 -6.21963441e-01 1.34611025e-01 1.05053926e+00
-2.15557247e-01 -7.21275032e-01 -6.17853940e-01 -5.75485706e-01
5.24681322e-02 1.10973799e+00 -1.10539401e+00 4.70460318e-02
-2.12402955e-01 -7.33194888e-01 4.12545919e-01 6.62369907e-01
2.27740049e-01 -7.43675172e-01 -1.03061831e+00 -1.82437003e-01
-4.10266548e-01 -7.50249863e-01 -2.46729374e-01 -1.44436672e-01
-8.03864181e-01 -1.13888347e+00 -3.57670009e-01 -1.22327730e-01
5.62464952e-01 -2.68688858e-01 1.53490269e+00 7.18926072e-01
2.71217078e-01 2.48032555e-01 -1.33010894e-01 -6.56701028e-01
-4.91310686e-01 2.20877841e-01 1.73900634e-01 -5.39889276e-01
5.04125059e-01 -4.35236663e-01 -5.53129315e-01 2.26682991e-01
-4.08042908e-01 5.54769278e-01 4.77113545e-01 5.59554040e-01
-2.53078729e-01 -5.22370279e-01 4.30862457e-01 -1.51619637e+00
8.84128511e-01 -4.52181369e-01 2.93420911e-01 2.23826602e-01
-1.19469976e+00 1.32032439e-01 2.38180563e-01 -1.01331837e-01
-1.10610378e+00 -4.69678640e-01 8.85030106e-02 4.73138005e-01
-1.56301960e-01 3.87298226e-01 2.08497062e-01 4.80967849e-01
1.05124307e+00 -9.81767356e-01 -1.29020140e-01 -1.86074883e-01
2.71315366e-01 5.64014852e-01 3.23698938e-01 -8.57129395e-01
9.46281552e-01 3.48999470e-01 -6.12067699e-01 -1.80360605e-03
-1.31463623e+00 -1.80420130e-01 -3.84568870e-01 -2.35809341e-01
1.07323182e+00 -9.61826742e-01 -8.82762611e-01 1.33416876e-01
-1.17767954e+00 -4.55935359e-01 -4.20641266e-02 6.33334816e-01
-4.69259024e-01 -1.77211761e-02 -4.54725623e-01 -9.40161943e-01
-4.31694031e-01 -8.61434519e-01 5.80132842e-01 3.26728016e-01
-1.72160316e+00 -1.14508820e+00 1.78969294e-01 9.21226799e-01
6.27341032e-01 2.24006444e-01 1.15195584e+00 -1.09715390e+00
4.65685993e-01 2.86563896e-02 -4.44026530e-01 -2.99870163e-01
3.60272080e-02 2.25821882e-01 -9.08916056e-01 3.51468652e-01
-2.08781838e-01 -2.21639425e-01 5.14730871e-01 3.68714988e-01
5.75894892e-01 -6.59123898e-01 -4.36801076e-01 -1.79615945e-01
1.32134831e+00 -3.17608356e-01 3.74840051e-01 5.64384222e-01
7.89355636e-01 1.02978313e+00 4.27596509e-01 5.19179702e-01
1.04135835e+00 6.82608783e-01 2.14455158e-01 -1.20130040e-01
2.11906359e-01 -2.81015247e-01 1.21345468e-01 4.63235587e-01
-4.00250196e-01 -4.48218845e-02 -1.55068755e+00 4.63795692e-01
-2.09716630e+00 -1.09473538e+00 -7.68493772e-01 1.89736319e+00
8.62669826e-01 3.72844249e-01 1.65927619e-01 6.80685788e-02
7.77361572e-01 1.79223031e-01 -2.97414362e-01 -7.80527771e-01
-3.79332975e-02 -2.26176873e-01 4.80615228e-01 6.82036281e-01
-6.36019707e-01 5.69219291e-01 6.76812363e+00 2.62880653e-01
-6.66841686e-01 3.51442397e-02 9.90317106e-01 -3.90078016e-02
-1.10239828e+00 4.89782065e-01 -3.00661445e-01 4.07341301e-01
8.13022256e-01 -1.74586102e-01 -5.89515455e-03 7.96578348e-01
2.58625090e-01 -6.92560747e-02 -1.15275669e+00 8.37407470e-01
7.12901950e-02 -1.18212163e+00 -3.78573179e-01 -9.50164348e-03
1.00373244e+00 -3.36580575e-01 1.96441989e-02 2.67842412e-01
9.32910323e-01 -1.19358897e+00 1.43110788e+00 4.38304275e-01
2.89569795e-01 -2.04195872e-01 8.52110326e-01 1.83610946e-01
-5.52956045e-01 -3.69161338e-01 3.25013548e-02 -8.50859463e-01
1.54796049e-01 5.78032911e-01 -8.75703394e-01 1.03171691e-01
8.50655198e-01 6.76108420e-01 -9.42056656e-01 4.67871189e-01
-3.93437266e-01 5.85653543e-01 -4.79466245e-02 5.15070967e-02
-2.15145871e-01 7.42034391e-02 1.19722085e-02 1.02899969e+00
3.40431660e-01 7.04443976e-02 -2.36141816e-01 6.15376234e-01
2.18274239e-02 2.71260500e-01 -4.32497144e-01 -3.01004620e-03
7.41768062e-01 1.21669781e+00 -9.71434355e-01 -3.72758597e-01
-4.92318302e-01 5.01813471e-01 2.86294401e-01 5.28681315e-02
-8.50298822e-01 3.94637525e-01 4.90401745e-01 3.07615519e-01
-3.55439365e-01 1.55143663e-01 -1.20907068e+00 -1.12601447e+00
-2.82578737e-01 -9.12414670e-01 6.32191241e-01 -1.40085530e+00
-1.44198179e+00 1.90036073e-01 -1.45326525e-01 -7.10627079e-01
-4.53858152e-02 -3.91966969e-01 -5.69308221e-01 8.78767312e-01
-1.10540760e+00 -1.07216001e+00 -4.74673271e-01 6.39540479e-02
4.18490767e-02 1.71320468e-01 9.09448445e-01 -6.16576150e-02
-3.41078848e-01 3.76295209e-01 -5.92860699e-01 -1.53052911e-01
1.30248725e+00 -1.39737296e+00 3.46670002e-01 3.94906133e-01
-1.62560549e-02 1.11091244e+00 1.44344974e+00 -7.80750155e-01
-3.64488095e-01 -1.88219830e-01 1.53861201e+00 -1.15893579e+00
7.81570733e-01 9.89421085e-02 -5.64393163e-01 8.07453036e-01
6.15308583e-01 -5.14603972e-01 1.33350015e+00 8.23309124e-01
-8.51812124e-01 2.10081264e-01 -1.14203906e+00 9.38440800e-01
1.22704268e+00 -3.72319996e-01 -8.80372703e-01 1.36417449e-01
2.60010242e-01 -2.43611738e-01 -8.62475812e-01 2.58052319e-01
1.07599318e+00 -1.40800524e+00 6.91669405e-01 -7.83386052e-01
8.57752919e-01 -5.27015254e-02 -1.19732194e-01 -1.18274891e+00
-5.16303301e-01 -4.33789670e-01 6.51126027e-01 1.52784145e+00
8.87376070e-01 -6.12330496e-01 8.51269782e-01 1.69149446e+00
-7.59987459e-02 -5.47753096e-01 -6.71500862e-01 -5.95723130e-02
2.73847848e-01 -4.12427455e-01 6.83101714e-01 1.51961923e+00
2.22266719e-01 5.73497057e-01 -2.17930660e-01 -2.48363271e-01
1.07362747e-01 7.61476951e-03 7.97979951e-01 -1.82542825e+00
1.51012868e-01 -8.38006914e-01 8.35731104e-02 3.44977789e-02
2.42810220e-01 -6.10135734e-01 -2.59424627e-01 -2.14166665e+00
5.17507792e-01 -7.09056258e-01 -8.96621197e-02 9.03949738e-01
-5.76254427e-01 1.80266038e-01 3.55473399e-01 5.63527167e-01
-5.62420905e-01 -1.46309540e-01 6.94648862e-01 1.76665738e-01
-6.88507333e-02 -3.61476600e-01 -1.74029481e+00 1.23751581e+00
9.06859100e-01 -6.77231193e-01 -4.75579023e-01 -4.58724111e-01
1.25348401e+00 -2.01600656e-01 3.93462181e-01 -8.72041166e-01
8.10109675e-02 -5.41427910e-01 4.92958337e-01 4.96657155e-02
2.69715898e-02 -6.53265178e-01 7.07218349e-01 6.32893145e-01
-7.88193762e-01 5.58489799e-01 -4.10859240e-03 1.65724337e-01
4.21105564e-01 -2.55166650e-01 2.92473465e-01 -1.62795529e-01
-2.99378306e-01 -3.42965782e-01 -2.55992085e-01 4.51114863e-01
6.17164254e-01 -4.08109903e-01 -7.85016954e-01 -5.08439243e-01
-6.11983240e-01 -1.54569987e-02 1.12468863e+00 5.10065019e-01
-1.95503980e-01 -1.28786993e+00 -9.28046346e-01 -5.44482708e-01
4.73553658e-01 -6.99288607e-01 1.59485772e-01 1.26771343e+00
-2.22319767e-01 2.37415895e-01 -1.19722918e-01 1.15630552e-01
-1.28476715e+00 1.02127664e-01 3.98458429e-02 -3.37522805e-01
-1.35464624e-01 9.09820914e-01 1.65331185e-01 -5.21147549e-01
-5.07300913e-01 -2.67618328e-01 -3.85912657e-01 5.08876324e-01
1.44310817e-01 4.22949016e-01 -4.34995949e-01 -7.24253893e-01
-5.80051363e-01 5.11949539e-01 4.40845154e-02 -2.30230734e-01
1.33849967e+00 -1.71358287e-01 -2.32506096e-01 6.44331753e-01
3.54404241e-01 8.39086175e-01 -8.62748206e-01 2.53787875e-01
3.49341661e-01 -3.59959662e-01 -6.61480427e-01 -1.07103038e+00
-6.34322941e-01 5.12060583e-01 4.15052995e-02 4.67393786e-01
4.15451080e-01 -5.54115772e-02 5.41044539e-03 -5.10792509e-02
1.48466527e-01 -1.33658600e+00 -8.90458897e-02 2.81952977e-01
8.75247777e-01 -1.10417676e+00 4.54928160e-01 -2.36655146e-01
-1.26234233e+00 9.19557035e-01 9.01915431e-01 2.41823107e-01
2.70811021e-01 -1.96746916e-01 4.31747526e-01 -3.74599844e-01
-9.38620269e-01 1.94236189e-01 2.09593490e-01 5.12130022e-01
1.09573507e+00 2.65253574e-01 -8.74804080e-01 1.11079884e+00
-1.07669079e+00 -1.49350569e-01 8.92386496e-01 2.86250830e-01
-2.71611840e-01 -1.11788416e+00 -4.88889039e-01 7.55092919e-01
-7.15637326e-01 -2.11102456e-01 -9.50365186e-01 9.08174217e-01
2.40439326e-01 1.10515094e+00 -7.80555606e-02 -4.64596033e-01
5.10375910e-02 3.17049205e-01 7.62646198e-02 -7.02989221e-01
-1.00028944e+00 -5.79200983e-01 9.19410229e-01 -1.96143344e-01
-7.23645031e-01 -9.18117225e-01 -1.05737054e+00 -7.00003445e-01
-2.99633205e-01 4.23513740e-01 3.59589338e-01 1.12353563e+00
2.57706821e-01 1.98266506e-01 -1.90635681e-01 -1.18392661e-01
-2.79893041e-01 -1.00789261e+00 -7.40467012e-02 6.93593919e-01
-5.20024151e-02 -6.50278628e-01 -4.39451635e-01 6.93162158e-02] | [9.265551567077637, 9.853100776672363] |
8e06ab4f-3288-4730-89f9-553388a7585f | learning-generative-structure-prior-for-blind | 2303.14726 | null | https://arxiv.org/abs/2303.14726v1 | https://arxiv.org/pdf/2303.14726v1.pdf | Learning Generative Structure Prior for Blind Text Image Super-resolution | Blind text image super-resolution (SR) is challenging as one needs to cope with diverse font styles and unknown degradation. To address the problem, existing methods perform character recognition in parallel to regularize the SR task, either through a loss constraint or intermediate feature condition. Nonetheless, the high-level prior could still fail when encountering severe degradation. The problem is further compounded given characters of complex structures, e.g., Chinese characters that combine multiple pictographic or ideographic symbols into a single character. In this work, we present a novel prior that focuses more on the character structure. In particular, we learn to encapsulate rich and diverse structures in a StyleGAN and exploit such generative structure priors for restoration. To restrict the generative space of StyleGAN so that it obeys the structure of characters yet remains flexible in handling different font styles, we store the discrete features for each character in a codebook. The code subsequently drives the StyleGAN to generate high-resolution structural details to aid text SR. Compared to priors based on character recognition, the proposed structure prior exerts stronger character-specific guidance to restore faithful and precise strokes of a designated character. Extensive experiments on synthetic and real datasets demonstrate the compelling performance of the proposed generative structure prior in facilitating robust text SR. | ['Chen Change Loy', 'WangMeng Zuo', 'Xiaoming Li'] | 2023-03-26 | null | http://openaccess.thecvf.com//content/CVPR2023/html/Li_Learning_Generative_Structure_Prior_for_Blind_Text_Image_Super-Resolution_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Li_Learning_Generative_Structure_Prior_for_Blind_Text_Image_Super-Resolution_CVPR_2023_paper.pdf | cvpr-2023-1 | ['image-super-resolution'] | ['computer-vision'] | [ 1.01766670e+00 -1.89931870e-01 2.97678821e-02 -2.18933627e-01
-5.56673646e-01 -6.79750562e-01 5.92757463e-01 -5.58638871e-01
1.03555247e-01 7.23519623e-01 5.79805017e-01 -6.56203367e-03
1.96633279e-01 -6.13609552e-01 -5.96976757e-01 -9.50855672e-01
6.36056066e-01 5.56326434e-02 9.97444391e-02 -3.29621792e-01
5.70694029e-01 7.42014289e-01 -1.56549394e+00 5.69724262e-01
1.24545825e+00 6.09304428e-01 6.06106281e-01 7.56319106e-01
-3.36779237e-01 6.98260307e-01 -8.43101680e-01 -4.09208536e-01
4.34650391e-01 -5.43851435e-01 -2.54415184e-01 6.38094306e-01
7.29693472e-01 -5.54494202e-01 -4.83897090e-01 1.34636521e+00
4.47387993e-01 -5.18737324e-02 5.79659283e-01 -6.12904847e-01
-1.06596303e+00 4.91402239e-01 -7.96214223e-01 -4.60210517e-02
4.47670758e-01 1.48766726e-01 7.90745616e-01 -9.78980660e-01
5.77054560e-01 1.42698038e+00 4.42516804e-01 6.83530092e-01
-1.25620055e+00 -6.35369897e-01 3.48145545e-01 -1.59533620e-01
-1.26185131e+00 -7.03235865e-01 9.72606540e-01 -2.03804076e-01
3.50786418e-01 4.25024539e-01 3.75282586e-01 1.34336567e+00
5.19210771e-02 9.01595712e-01 1.16555166e+00 -3.35417122e-01
9.34345126e-02 2.26630475e-02 1.13126459e-02 4.84721273e-01
2.91912615e-01 4.41691615e-02 -7.23241448e-01 -4.02586497e-02
1.05992460e+00 -1.11185528e-01 -5.49683094e-01 -1.47953898e-01
-1.02548265e+00 4.67618227e-01 -1.13615869e-02 3.65876332e-02
-1.02593869e-01 -1.15379900e-01 -6.82618320e-02 8.32761228e-02
2.80388027e-01 1.34875745e-01 3.45722660e-02 -1.04566395e-01
-1.22070467e+00 7.71757588e-03 4.81528074e-01 1.06807184e+00
5.57582617e-01 5.70899546e-01 -4.66949284e-01 1.17651939e+00
6.19474389e-02 6.47544086e-01 3.28541785e-01 -9.17293668e-01
5.06888509e-01 2.94357002e-01 1.78746283e-01 -1.07199919e+00
2.56351739e-01 -5.53299189e-01 -1.30855560e+00 4.11639392e-01
1.86976045e-01 1.80352539e-01 -1.15510619e+00 1.59746194e+00
8.62347856e-02 1.56939477e-02 -4.32843389e-03 9.72483337e-01
5.68512022e-01 7.77749300e-01 -4.38042164e-01 -1.75265014e-01
1.30034828e+00 -7.30083764e-01 -1.01422358e+00 -3.07541817e-01
-3.42518300e-01 -1.07707477e+00 1.33162713e+00 6.17465377e-01
-1.16377616e+00 -7.63615251e-01 -1.27476108e+00 -1.17465064e-01
1.94275022e-01 4.58528727e-01 1.21094629e-01 8.83589268e-01
-9.80697572e-01 4.09079492e-01 -5.16372740e-01 -5.92543408e-02
3.90981197e-01 7.26540834e-02 -1.10114291e-01 -3.20360541e-01
-8.73455167e-01 5.27712703e-01 7.99574330e-02 1.83526903e-01
-8.34434867e-01 -4.89224523e-01 -6.88470185e-01 6.05386980e-02
2.07571864e-01 -5.66598952e-01 7.11261034e-01 -9.70588326e-01
-1.99591327e+00 5.52547395e-01 -2.46561855e-01 -6.24595881e-02
7.97941029e-01 -3.27609777e-01 -5.62417507e-01 2.84735501e-01
-1.45624816e-01 4.14440036e-01 1.65688872e+00 -1.73091900e+00
-5.39709687e-01 -1.78264529e-01 -1.38435200e-01 4.28291947e-01
-5.87547541e-01 9.82169285e-02 -8.98481846e-01 -1.23357534e+00
2.95010567e-01 -6.16267264e-01 4.93427478e-02 2.02445179e-01
-6.64429307e-01 4.22104746e-01 1.13553119e+00 -8.95826936e-01
1.12736440e+00 -2.24815202e+00 3.06920290e-01 1.09076038e-01
1.18459441e-01 2.39265069e-01 -1.90139920e-01 2.07879454e-01
3.68464664e-02 -2.52873786e-02 -5.21038771e-01 -5.40713847e-01
-1.09088212e-01 3.21519494e-01 -6.90246761e-01 4.53843981e-01
3.83055776e-01 3.73898357e-01 -4.83204812e-01 -3.44891906e-01
6.31037354e-02 8.10210407e-01 -5.76757610e-01 1.93804026e-01
-2.66068690e-02 5.61773896e-01 -4.92174864e-01 8.23759556e-01
1.08879447e+00 -7.41718858e-02 8.08795989e-02 -4.01308477e-01
-1.26248151e-01 -8.79836679e-02 -1.58357286e+00 1.46813846e+00
-1.76520064e-01 5.53323865e-01 4.22805697e-01 -5.99438846e-01
1.28525138e+00 -8.27526301e-02 1.20705746e-01 -6.07023835e-01
-2.58391678e-01 6.94887666e-03 -2.07843691e-01 -9.16260779e-02
9.56768453e-01 6.15864135e-02 1.30575418e-01 3.44663560e-01
-4.47648674e-01 -2.33948216e-01 8.90086442e-02 1.86645687e-01
8.26550484e-01 2.98435062e-01 -1.07343681e-01 -1.89967275e-01
7.67858922e-01 -4.35002983e-01 7.46693969e-01 8.67774248e-01
1.19454354e-01 1.16563880e+00 3.06657851e-01 -1.37905136e-01
-1.60823941e+00 -1.10449433e+00 -2.79719353e-01 8.59433055e-01
2.37729669e-01 -2.10418522e-01 -7.28640378e-01 -3.35640252e-01
-2.49544099e-01 5.73413014e-01 -3.26929808e-01 -2.16975622e-02
-9.73650396e-01 -7.79762506e-01 5.56200147e-01 3.57228398e-01
8.65770221e-01 -8.33641291e-01 -3.57041538e-01 9.75440741e-02
-9.13187712e-02 -1.28064585e+00 -8.91506791e-01 -1.51417851e-01
-6.56215310e-01 -7.29400635e-01 -9.78652298e-01 -8.47350180e-01
9.52070832e-01 2.96857297e-01 8.35235834e-01 -4.23770286e-02
-3.04387093e-01 2.59508967e-01 -4.63172287e-01 2.44893640e-01
-6.97863579e-01 -3.91148925e-01 7.17834830e-02 4.43039209e-01
-3.11457872e-01 -6.06884062e-01 -6.02639258e-01 2.85821438e-01
-1.20358121e+00 3.48785758e-01 7.11227357e-01 1.14539528e+00
6.67720795e-01 2.99156219e-01 1.26944870e-01 -7.95512676e-01
6.84262216e-01 2.72989459e-02 -6.28567934e-01 3.21822047e-01
-4.64407176e-01 1.29307315e-01 9.62640584e-01 -6.35590494e-01
-1.52139711e+00 1.67224705e-01 3.65387201e-02 -4.15061235e-01
-9.61907357e-02 9.14129168e-02 -6.18973613e-01 -1.06376760e-01
4.51199293e-01 8.30225527e-01 -2.70470120e-02 -7.57974863e-01
4.68546540e-01 6.82977378e-01 8.91682863e-01 -8.26398551e-01
1.29735374e+00 6.19713664e-01 -8.09535086e-02 -1.06304955e+00
-4.86398458e-01 1.46794647e-01 -5.72497368e-01 5.58838109e-03
6.80263996e-01 -8.96116793e-01 -2.59355158e-01 7.37719059e-01
-1.04273748e+00 -9.09107625e-02 -2.78971046e-01 1.43712061e-02
-5.43790996e-01 1.03072882e+00 -8.06432366e-01 -7.97484756e-01
-3.02584112e-01 -1.18817782e+00 1.09812546e+00 2.94353962e-01
1.97825253e-01 -5.38510323e-01 -1.31569028e-01 2.26391315e-01
5.56598008e-01 1.00464463e-01 9.20737743e-01 5.91509454e-02
-7.46901274e-01 8.98468681e-03 -4.20478612e-01 5.64064205e-01
4.34968889e-01 2.18222588e-01 -8.58397126e-01 -5.20005405e-01
9.59947854e-02 -7.92673454e-02 9.11706448e-01 1.07956290e-01
1.21187961e+00 -4.10185695e-01 2.30207797e-02 1.01563132e+00
1.40670228e+00 2.20800728e-01 9.07601118e-01 2.84332037e-01
9.64645505e-01 5.21348238e-01 4.50743854e-01 7.66061366e-01
-2.60307044e-02 6.98187292e-01 1.88924700e-01 -2.54648149e-01
-5.94806552e-01 -4.11515504e-01 5.70802152e-01 6.20980620e-01
1.33362472e-01 -4.92159337e-01 -5.42219758e-01 1.33194685e-01
-1.43338299e+00 -8.78308177e-01 8.95373225e-02 2.06808519e+00
1.14779294e+00 2.26859469e-02 -3.14411402e-01 2.28209913e-01
1.09130692e+00 4.40212250e-01 -6.66910350e-01 -1.05980672e-01
-9.48009372e-01 -6.63353652e-02 4.28967029e-01 5.14407992e-01
-7.20886946e-01 1.00496793e+00 6.30593491e+00 1.07470763e+00
-1.01365280e+00 -4.32555258e-01 6.04302883e-01 1.47986248e-01
-6.12883568e-01 2.08923817e-02 -1.05199480e+00 5.99525750e-01
2.94797778e-01 3.66143323e-02 6.87394917e-01 2.98805892e-01
2.60058433e-01 7.31538087e-02 -6.85212612e-01 1.07760406e+00
3.24770719e-01 -1.19592929e+00 5.76756656e-01 8.03176500e-03
9.20729160e-01 -6.53313339e-01 5.58277369e-01 -2.15143263e-01
2.43655741e-01 -9.79099214e-01 8.77202570e-01 7.03375161e-01
1.23377013e+00 -6.35917306e-01 1.09753743e-01 1.51482493e-01
-1.10468447e+00 -1.42372459e-01 -5.50689042e-01 3.32964778e-01
2.06921190e-01 5.68035543e-01 -4.01993573e-01 5.48205853e-01
5.64635694e-01 8.03171813e-01 -5.82476854e-01 7.18610704e-01
-2.48942479e-01 4.12481308e-01 -1.34282142e-01 5.20846248e-01
-9.05213282e-02 -4.31409270e-01 9.03056622e-01 1.19778430e+00
5.33643663e-01 1.18757837e-01 1.03611916e-01 1.04214525e+00
8.35694671e-02 -1.12974882e-01 -3.66910666e-01 -1.54195189e-01
4.70581353e-01 1.06825948e+00 -5.82718134e-01 -3.60685885e-01
-3.62570703e-01 1.53976917e+00 3.09820101e-02 7.14842439e-01
-5.87068439e-01 -2.69677401e-01 6.43311858e-01 1.06953718e-01
5.85255742e-01 -3.89655232e-01 -6.45787895e-01 -1.36023867e+00
2.22839698e-01 -1.33827591e+00 1.77355558e-02 -7.79355526e-01
-1.33294964e+00 7.75171280e-01 -3.14168304e-01 -1.50938761e+00
5.28737009e-02 -5.36892653e-01 -5.08241773e-01 1.08255458e+00
-1.72014928e+00 -1.27536058e+00 -4.09944862e-01 8.35383296e-01
8.11635733e-01 -3.88834685e-01 4.62308437e-01 1.62269890e-01
-7.66414344e-01 8.09361339e-01 4.28063333e-01 -1.02180175e-01
9.54266071e-01 -1.14305782e+00 3.97116840e-01 1.42719150e+00
-1.89970255e-01 6.45846248e-01 9.15808320e-01 -1.05706501e+00
-1.55307531e+00 -9.84479964e-01 2.19348818e-01 -1.70245811e-01
3.94717872e-01 -4.64562595e-01 -1.02947867e+00 2.62224615e-01
1.37406498e-01 -1.10388264e-01 3.40234697e-01 -4.73671854e-01
-4.83597815e-01 -6.42305166e-02 -1.16138852e+00 6.99043155e-01
1.14766550e+00 -5.60109496e-01 -4.06159133e-01 3.26612294e-02
5.16773701e-01 -5.17518759e-01 -5.82564533e-01 3.37891042e-01
4.53076929e-01 -9.85790133e-01 1.07685888e+00 -2.38449901e-01
5.80851316e-01 -7.61480093e-01 -3.82041395e-01 -9.86010969e-01
-4.17655766e-01 -9.09422636e-01 -2.30644628e-01 1.59345078e+00
5.95572591e-02 -2.77551740e-01 8.51564229e-01 4.60645944e-01
-2.46867031e-01 -1.72209382e-01 -6.13604665e-01 -7.08647907e-01
-1.20596275e-01 -2.51900032e-03 6.88675523e-01 8.48421574e-01
-6.00991011e-01 -3.78683768e-02 -1.06177378e+00 4.44255948e-01
1.00583601e+00 2.01777607e-01 6.71855748e-01 -8.76640618e-01
-4.77733403e-01 -4.37589705e-01 -4.66619954e-02 -1.42359829e+00
9.03668627e-03 -4.22472775e-01 1.87312573e-01 -1.25490272e+00
3.37826014e-01 -4.18158233e-01 6.24856278e-02 8.77779871e-02
-5.42773724e-01 3.39807361e-01 3.06292653e-01 4.59877759e-01
-1.85891494e-01 7.55578160e-01 1.55639350e+00 -2.89674520e-01
-1.84146851e-01 -1.31720617e-01 -8.11031759e-01 5.58491588e-01
6.64832711e-01 -6.98444620e-02 -3.15872014e-01 -6.37627363e-01
7.27460533e-02 1.07755721e-01 1.27635017e-01 -7.19459891e-01
3.78107786e-01 -4.88849543e-02 7.93196082e-01 -7.46435702e-01
4.40336168e-01 -6.41521394e-01 1.37005836e-01 2.04325974e-01
-2.74823725e-01 -1.85576171e-01 6.38380870e-02 7.81966507e-01
-2.43061543e-01 -9.68143344e-02 1.12376595e+00 1.62252132e-02
-5.27459621e-01 2.56825954e-01 -3.79244983e-01 -1.81533992e-01
4.51433808e-01 -7.82609522e-01 -4.33792621e-01 -4.30495024e-01
-5.10901093e-01 -9.04397443e-02 8.98869932e-01 3.95101994e-01
1.01887822e+00 -1.20413971e+00 -9.74391639e-01 6.14245474e-01
-1.55955434e-01 -2.46709567e-02 5.50782144e-01 2.41911948e-01
-4.62441802e-01 -4.09474149e-02 -4.57405061e-01 -5.25693715e-01
-1.24954796e+00 5.14237046e-01 1.62684843e-01 3.42113078e-02
-1.08751249e+00 7.53047109e-01 5.34817934e-01 9.55587775e-02
3.66691768e-01 -3.17450278e-02 -3.70458603e-01 -1.50571078e-01
8.38025331e-01 2.36739412e-01 -1.96683288e-01 -6.70664787e-01
1.01918735e-01 9.92257297e-01 -3.61130953e-01 -1.48606017e-01
1.24499488e+00 -6.30953908e-01 -5.85493520e-02 -9.28815641e-03
6.80940151e-01 5.52746296e-01 -1.93650436e+00 -5.16531169e-01
-2.68714607e-01 -9.25414562e-01 3.20296548e-02 -7.52312660e-01
-1.05611980e+00 6.51872635e-01 6.26944423e-01 -1.65246934e-01
1.35619164e+00 -5.28479993e-01 6.67784274e-01 1.54798865e-01
1.15096554e-01 -1.07597077e+00 3.57444644e-01 4.52192843e-01
1.07993102e+00 -9.01754141e-01 1.35906279e-01 -5.60132742e-01
-7.80136466e-01 1.39562082e+00 5.12543738e-01 -8.28826278e-02
1.10452518e-01 5.06788194e-01 -5.02907559e-02 1.87786967e-01
-4.00821984e-01 2.79371925e-02 3.35860312e-01 6.64425969e-01
1.57150120e-01 -2.76878536e-01 -5.19730523e-03 4.19110060e-01
-2.77060568e-01 -3.33004504e-01 8.53425145e-01 8.19451571e-01
-5.10147333e-01 -1.23950958e+00 -7.58872747e-01 9.19484198e-02
-4.64426219e-01 -3.28542471e-01 -3.38249087e-01 1.98686987e-01
-1.30965412e-01 8.45040083e-01 -1.86245479e-02 -1.94332361e-01
1.94861978e-01 -3.42499077e-01 4.15386021e-01 -4.27540720e-01
-1.98171705e-01 4.83034223e-01 -1.13850698e-01 -4.42977607e-01
-1.48442850e-01 -6.92122817e-01 -8.25599372e-01 -3.06431919e-01
-1.17632963e-01 -2.74678111e-01 4.61675525e-01 4.99633074e-01
1.90449089e-01 5.22976756e-01 9.00706768e-01 -7.98125505e-01
-5.74040294e-01 -6.84358418e-01 -7.61145651e-01 3.78384888e-01
5.41804910e-01 -3.24167699e-01 -4.87367451e-01 3.63624752e-01] | [11.3684720993042, -1.7171335220336914] |
eda7b0da-993c-4b74-b30d-ca03729bc9e9 | hey-human-if-your-facial-emotions-are | 2008.07426 | null | https://arxiv.org/abs/2008.07426v1 | https://arxiv.org/pdf/2008.07426v1.pdf | Hey Human, If your Facial Emotions are Uncertain, You Should Use Bayesian Neural Networks! | Facial emotion recognition is the task to classify human emotions in face images. It is a difficult task due to high aleatoric uncertainty and visual ambiguity. A large part of the literature aims to show progress by increasing accuracy on this task, but this ignores the inherent uncertainty and ambiguity in the task. In this paper we show that Bayesian Neural Networks, as approximated using MC-Dropout, MC-DropConnect, or an Ensemble, are able to model the aleatoric uncertainty in facial emotion recognition, and produce output probabilities that are closer to what a human expects. We also show that calibration metrics show strange behaviors for this task, due to the multiple classes that can be considered correct, which motivates future work. We believe our work will motivate other researchers to move away from Classical and into Bayesian Neural Networks. | ['Matias Valdenegro-Toro', 'Maryam Matin'] | 2020-08-17 | null | null | null | null | ['facial-emotion-recognition'] | ['computer-vision'] | [ 1.09568425e-01 2.69867957e-01 1.80848598e-01 -1.14925742e+00
-5.93398750e-01 -2.85485983e-01 4.50979263e-01 -4.88355011e-01
-4.18220878e-01 8.55812609e-01 -1.12168752e-01 -1.58808772e-02
-3.95482183e-02 -2.54631639e-01 -6.41186118e-01 -7.72683561e-01
8.27706605e-02 4.59738582e-01 -2.09429041e-01 2.69392729e-01
3.25209312e-02 6.29843056e-01 -1.72827697e+00 3.28930348e-01
5.29386103e-01 1.20878339e+00 -5.35965443e-01 7.27763355e-01
-6.03708997e-02 7.01330364e-01 -5.70848763e-01 -9.02863085e-01
-5.73176891e-02 -5.06515503e-01 -5.23895144e-01 4.46869247e-02
7.62339830e-01 -2.60827661e-01 6.84012100e-02 1.40823424e+00
3.06461602e-01 5.22490703e-02 1.17907894e+00 -1.61836207e+00
-5.82500577e-01 3.68092984e-01 -5.27634144e-01 -9.36266035e-02
-1.44466534e-01 -9.23139080e-02 7.77186036e-01 -8.04107308e-01
3.45780283e-01 1.70412910e+00 7.23579824e-01 1.05111527e+00
-1.35098088e+00 -8.35765779e-01 2.21092641e-01 1.62593499e-01
-1.50923741e+00 -6.73911333e-01 6.44400835e-01 -4.07930911e-01
7.96754777e-01 1.07818834e-01 1.82572335e-01 1.58419394e+00
2.70057529e-01 6.33203804e-01 1.42550790e+00 -3.39055896e-01
5.17067194e-01 4.87189800e-01 2.34225765e-01 5.85014045e-01
1.42321706e-01 3.67242455e-01 -5.35407484e-01 -1.14064343e-01
5.55872917e-01 -1.96067646e-01 -1.73885718e-01 -1.64471880e-01
-3.01609486e-01 9.14732754e-01 1.78468794e-01 1.62609443e-01
-2.54581779e-01 5.08146346e-01 7.58738741e-02 2.91502982e-01
5.53964198e-01 3.17502588e-01 -5.05137622e-01 -3.50372165e-01
-1.07072699e+00 -3.59953456e-02 1.08365309e+00 6.67326629e-01
5.32014728e-01 3.07730585e-01 1.84076890e-01 7.05524325e-01
3.94831598e-01 3.87158096e-01 1.28974989e-01 -1.50183916e+00
-3.26194197e-01 -3.43279392e-02 1.29878849e-01 -9.97321963e-01
-4.97649878e-01 -1.53755024e-01 -7.67802477e-01 9.94100809e-01
7.11870372e-01 -4.93318409e-01 -1.14270425e+00 2.08073068e+00
-1.98050529e-01 2.00142205e-01 -7.35638961e-02 9.01459038e-01
6.14153028e-01 4.90927190e-01 2.84501463e-01 -2.09795803e-01
1.34010887e+00 -3.81620705e-01 -9.43457246e-01 -1.84325278e-01
1.95775568e-01 -6.25057340e-01 6.95606649e-01 9.56988990e-01
-9.04016674e-01 -2.72195965e-01 -1.03109169e+00 2.58723676e-01
-2.78596640e-01 1.47452027e-01 8.83370996e-01 1.24987566e+00
-1.04358220e+00 8.84136140e-01 -9.44110274e-01 -2.43480936e-01
7.92196631e-01 5.11498630e-01 -4.53607500e-01 9.10659432e-02
-1.01983488e+00 1.20039833e+00 2.06930920e-01 3.83830667e-01
-7.10266590e-01 -3.91499937e-01 -7.89607942e-01 8.42211396e-02
2.53207117e-01 -3.03259850e-01 1.32778800e+00 -1.76429081e+00
-1.56106436e+00 6.93648160e-01 -2.83522546e-01 -2.34863877e-01
4.55311596e-01 -1.73977539e-02 -3.56273502e-01 -1.67668555e-02
-7.16360748e-01 1.16068637e+00 1.19077110e+00 -1.44336987e+00
-4.41202879e-01 -6.25980139e-01 -2.75888294e-01 -1.57844201e-01
-9.61732864e-02 3.52815509e-01 -3.12622301e-02 -4.05121863e-01
5.20381518e-02 -1.01726508e+00 -9.64034423e-02 1.30516022e-01
-1.68188304e-01 -3.49762529e-01 5.52537739e-01 -4.18879688e-01
7.18675554e-01 -2.10976601e+00 1.48915844e-02 3.30866069e-01
1.29733905e-01 -5.12779988e-02 -1.25640228e-01 -3.24022830e-01
-2.51816243e-01 4.87877160e-01 -2.48531014e-01 -6.14006937e-01
4.27075595e-01 4.96826828e-01 -2.39269897e-01 5.42153418e-01
6.15628779e-01 6.23142719e-01 -4.53613102e-01 -5.15642345e-01
-1.07524790e-01 9.73083854e-01 -4.40420359e-01 -1.27378285e-01
-1.79556102e-01 3.86181809e-02 -4.30121422e-02 5.99641562e-01
9.42773044e-01 -9.34590623e-02 1.13124721e-01 -2.43788943e-01
2.67203629e-01 -2.44759381e-01 -1.23583007e+00 1.14070332e+00
-2.13566512e-01 9.50777888e-01 2.85411716e-01 -8.50097299e-01
7.90087342e-01 3.66255552e-01 1.07451186e-01 -1.28076047e-01
4.35217559e-01 8.96782503e-02 2.71574557e-01 -3.59476924e-01
2.11510807e-01 -6.66013718e-01 2.89034188e-01 2.66804099e-01
5.31434655e-01 -2.59453863e-01 -2.39927083e-01 -1.53661206e-01
7.24724710e-01 1.95876598e-01 -2.31597573e-01 -2.89605588e-01
7.06848223e-04 -5.17545879e-01 6.20369315e-01 8.56752694e-01
-4.73562032e-01 7.93104947e-01 1.10324478e+00 -3.95329982e-01
-8.19130659e-01 -1.10590601e+00 -5.24721265e-01 8.83652866e-01
-4.01332438e-01 -7.79237077e-02 -9.41354752e-01 -8.01049113e-01
-5.39400280e-02 9.26954985e-01 -9.96538281e-01 -3.20127696e-01
7.91253895e-02 -1.13748753e+00 5.55864513e-01 6.66889071e-01
6.61589354e-02 -9.47890699e-01 -5.44491112e-01 -6.91967383e-02
1.86566070e-01 -9.69939053e-01 -1.74736753e-02 4.26503420e-01
-7.68301547e-01 -7.58516967e-01 -6.68555200e-01 -2.40080804e-01
5.65205514e-01 -4.86360937e-01 1.16542351e+00 -1.75090462e-01
-4.04172540e-01 5.57482600e-01 -6.10583425e-02 -8.83439600e-01
-3.40612262e-01 -4.89042819e-01 1.91343218e-01 2.71260142e-01
9.11446810e-01 -5.49161494e-01 -3.36622298e-01 2.53000051e-01
-9.02082324e-01 -4.13722336e-01 3.96562725e-01 8.42114210e-01
2.78074503e-01 2.44630143e-01 5.11285365e-01 -7.67994225e-01
5.96794605e-01 -3.38253915e-01 -6.46436334e-01 2.43358150e-01
-6.43028736e-01 1.88474819e-01 1.54627517e-01 -6.56295657e-01
-1.33247232e+00 2.46357337e-01 -1.61960766e-01 -5.86595714e-01
-5.33569217e-01 1.85854673e-01 -1.73562746e-02 -2.08762154e-01
7.78767526e-01 -4.76537317e-01 1.75670683e-01 -2.44775102e-01
1.78276062e-01 6.36239648e-01 2.39327997e-01 -7.03252792e-01
1.40820622e-01 4.30518746e-01 2.40720272e-01 -7.36468375e-01
-8.18834603e-01 3.27680618e-01 -4.95484143e-01 -4.33354288e-01
9.53176677e-01 -6.30138636e-01 -1.01854932e+00 3.25442761e-01
-1.41141748e+00 -1.87455654e-01 -1.55243486e-01 7.45958447e-01
-5.09893715e-01 8.44444036e-02 -6.99612796e-01 -1.44698071e+00
2.61637479e-01 -1.22995365e+00 9.40081120e-01 5.60190022e-01
-4.37734157e-01 -8.08656096e-01 -2.41303727e-01 -8.06481615e-02
4.19440269e-01 1.18495345e-01 6.89306617e-01 -7.48053610e-01
-2.99412817e-01 -1.81240201e-01 -3.30236048e-01 7.36732602e-01
-1.44087985e-01 5.63315928e-01 -1.51609623e+00 1.62277803e-01
2.19435930e-01 -8.06038022e-01 1.16592586e+00 6.09080195e-01
1.28111327e+00 6.52922392e-02 3.05273794e-02 4.05055135e-01
1.17407596e+00 2.16119647e-01 7.65634537e-01 -4.26075310e-01
2.30029508e-01 1.09271860e+00 5.80160804e-02 2.91801721e-01
1.07995115e-01 4.58356917e-01 5.75199425e-01 9.07014012e-02
9.07333195e-02 8.34504068e-02 3.46610069e-01 1.37166396e-01
-1.16966188e-01 -1.94180727e-01 -8.37358057e-01 6.33894429e-02
-1.73551917e+00 -1.07271218e+00 -6.57518432e-02 1.96937358e+00
7.80591667e-01 1.01845123e-01 -7.84911662e-02 -9.59555134e-02
6.37551546e-01 -2.37959161e-01 -5.03229320e-01 -9.04259264e-01
-2.07484096e-01 4.33118343e-01 9.19846594e-02 6.48556232e-01
-9.93510604e-01 8.86213481e-01 7.31541920e+00 9.83589053e-01
-1.02216244e+00 -8.09347909e-03 1.29260409e+00 -1.95705578e-01
-9.48105305e-02 -2.12973014e-01 -8.60113144e-01 2.97867835e-01
1.17888176e+00 3.84557068e-01 4.94813710e-01 7.56178439e-01
-1.86579481e-01 -4.48238701e-01 -1.26067734e+00 1.16002262e+00
4.46115345e-01 -7.57375121e-01 -2.79077470e-01 1.93421450e-02
5.88131309e-01 -2.88815737e-01 3.26586217e-01 3.38342786e-01
4.13135588e-01 -1.68736005e+00 4.65838939e-01 8.37175667e-01
5.21559834e-01 -9.62342322e-01 8.56373310e-01 8.02355856e-02
-3.44528854e-01 1.20025404e-01 -5.05980611e-01 -4.36871611e-02
-1.09905496e-01 7.05886543e-01 -4.72817838e-01 -1.86025694e-01
7.68540919e-01 1.74478710e-01 -5.57238162e-01 9.04283822e-01
-2.12566346e-01 6.97360516e-01 -6.41757905e-01 -3.13090324e-01
9.32250395e-02 -1.71170592e-01 2.29826704e-01 1.20104563e+00
3.35258275e-01 1.20423630e-01 -3.33864957e-01 1.14368367e+00
-1.52006790e-01 -1.39879376e-01 -4.99203473e-01 -9.99258831e-02
-8.40244070e-02 1.43455100e+00 -8.00979614e-01 -1.88258082e-01
-2.50484884e-01 9.58080590e-01 4.11284953e-01 5.47317207e-01
-8.03568006e-01 -2.94624686e-01 6.85755372e-01 -5.90200007e-01
1.76113486e-01 9.39330435e-04 -3.08616877e-01 -9.54864800e-01
-1.15220606e-01 -8.53386760e-01 3.15230310e-01 -1.14265823e+00
-1.60413480e+00 8.15323591e-01 5.53758219e-02 -4.40875649e-01
-3.27122271e-01 -1.21396887e+00 -3.15453172e-01 7.91798770e-01
-1.18317699e+00 -6.58305824e-01 9.88132209e-02 2.87085921e-01
1.63984969e-01 6.35238215e-02 1.00703979e+00 1.73677988e-02
-5.12149394e-01 6.90374970e-01 -1.30291343e-01 2.96789333e-02
8.95164132e-01 -1.26836133e+00 -3.31330359e-01 4.02977914e-01
3.59061092e-01 5.14929593e-01 1.01200843e+00 -2.93786168e-01
-8.55252564e-01 -6.14747941e-01 8.33528697e-01 -8.01440895e-01
4.75140214e-01 -3.91869545e-01 -9.30313766e-01 6.56169415e-01
3.98454040e-01 1.38152897e-01 7.96427548e-01 4.40497577e-01
-6.75353289e-01 -8.37427601e-02 -1.44881964e+00 6.25241756e-01
6.28679574e-01 -5.52138746e-01 -5.08782029e-01 1.10505886e-01
2.07265779e-01 -6.28149807e-02 -6.08267248e-01 4.98019934e-01
9.67156470e-01 -1.31259286e+00 5.30061364e-01 -9.93726254e-01
3.88389498e-01 7.29080439e-02 -2.40508318e-01 -1.38056946e+00
1.20304763e-01 -5.71060479e-01 1.42827809e-01 1.36088240e+00
5.90093136e-01 -5.86898506e-01 1.02651572e+00 1.32848775e+00
3.68856817e-01 -5.10805607e-01 -1.26417589e+00 -6.62334263e-01
4.44502324e-01 -8.64198148e-01 3.03796977e-01 7.13211834e-01
-1.45520553e-01 1.49945617e-01 -4.30479527e-01 1.66865468e-01
8.41881096e-01 -3.18028063e-01 2.75003046e-01 -1.38507450e+00
-6.92107677e-02 -7.64722347e-01 -5.47151983e-01 -5.05902827e-01
6.86379790e-01 -4.81589913e-01 3.32701862e-01 -7.23955214e-01
2.52545804e-01 -5.45701869e-02 -2.85833895e-01 4.45825100e-01
8.34202096e-02 4.48284805e-01 5.69400229e-02 -4.07306731e-01
-4.60926145e-01 5.38033068e-01 8.41639400e-01 -9.91959777e-03
1.41367033e-01 -1.24135939e-02 -6.95457757e-01 1.13035631e+00
1.05033004e+00 -8.10959518e-01 -1.66857481e-01 -1.33006155e-01
3.71764094e-01 -4.91611473e-02 5.80369949e-01 -8.85405660e-01
6.55465573e-02 -1.38302371e-01 8.57869267e-01 -1.30029738e-01
8.53929818e-01 -1.02467513e+00 8.62575918e-02 9.91191342e-03
-3.81183684e-01 -1.89934760e-01 3.61364722e-01 4.32205975e-01
-1.26484588e-01 -7.62574553e-01 8.76236320e-01 -1.00664094e-01
-3.49135429e-01 2.70614415e-01 -6.04309201e-01 -1.00499541e-01
6.33887947e-01 2.83470564e-02 -5.87770492e-02 -8.38650882e-01
-1.26563525e+00 -8.38383362e-02 2.93647885e-01 2.03352258e-01
5.18454611e-01 -1.22854817e+00 -6.71888769e-01 1.00342795e-01
-1.72044769e-01 -5.79303265e-01 2.68332005e-01 7.71857321e-01
-1.01738252e-01 1.37735948e-01 -2.30734497e-01 -6.76746786e-01
-1.33006656e+00 2.30053961e-01 7.11965144e-01 3.00789118e-01
6.43100142e-02 1.10952580e+00 4.94902208e-02 -2.14949325e-01
5.60420334e-01 -1.24446616e-01 -3.60944904e-02 1.94810480e-01
5.64658880e-01 1.42824203e-01 -1.29475281e-01 -5.34891069e-01
-3.06284189e-01 5.30921102e-01 8.87185782e-02 -5.02281308e-01
1.11736476e+00 1.05930775e-01 -1.32170007e-01 5.47850907e-01
1.16417670e+00 -3.06469589e-01 -1.55695534e+00 3.30170155e-01
-6.98917080e-03 -4.09063309e-01 2.34734133e-01 -1.01621020e+00
-1.14166486e+00 1.40300846e+00 9.48625326e-01 8.82792324e-02
1.09862626e+00 -6.25367835e-02 -2.24559665e-01 5.56813538e-01
1.46099359e-01 -1.14865386e+00 -4.62093353e-02 4.15172994e-01
8.77346933e-01 -1.46443522e+00 -9.61202160e-02 -2.05034688e-01
-8.14646423e-01 1.37137008e+00 7.57497609e-01 -1.51375920e-01
9.51315284e-01 5.03680587e-01 1.48075342e-01 -2.94518527e-02
-9.42547977e-01 -1.52857959e-01 2.27807060e-01 7.79717147e-01
5.19443929e-01 -8.92159194e-02 1.80211850e-02 9.50700700e-01
4.24719378e-02 1.84849665e-01 5.56128800e-01 4.15422201e-01
-2.66426444e-01 -9.76601005e-01 -5.30733347e-01 4.78751034e-01
-7.32710123e-01 -9.03821513e-02 -5.86891890e-01 8.11717212e-01
1.57062858e-01 1.11566901e+00 2.68651009e-01 -1.86968476e-01
-7.25997537e-02 6.63148105e-01 9.60303426e-01 -1.73117921e-01
-3.04457664e-01 6.16221242e-02 1.95721775e-01 -4.87408280e-01
-4.43815768e-01 -7.14268982e-01 -1.11262631e+00 -1.98470011e-01
-4.31407690e-01 2.52645522e-01 9.31672156e-01 8.00057590e-01
2.36557886e-01 2.75928646e-01 3.12770158e-01 -9.38226342e-01
-7.86838591e-01 -9.61864889e-01 -8.39877486e-01 2.25009665e-01
2.07595870e-01 -8.78921032e-01 -8.94805908e-01 1.38161611e-02] | [8.6558837890625, 4.5988383293151855] |
557fb0f2-0f27-4c23-8493-9b9519cb840e | weakly-supervised-anomaly-detection-in-the | 2305.03761 | null | https://arxiv.org/abs/2305.03761v1 | https://arxiv.org/pdf/2305.03761v1.pdf | Weakly-Supervised Anomaly Detection in the Milky Way | Large-scale astrophysics datasets present an opportunity for new machine learning techniques to identify regions of interest that might otherwise be overlooked by traditional searches. To this end, we use Classification Without Labels (CWoLa), a weakly-supervised anomaly detection method, to identify cold stellar streams within the more than one billion Milky Way stars observed by the Gaia satellite. CWoLa operates without the use of labeled streams or knowledge of astrophysical principles. Instead, we train a classifier to distinguish between mixed samples for which the proportions of signal and background samples are unknown. This computationally lightweight strategy is able to detect both simulated streams and the known stream GD-1 in data. Originally designed for high-energy collider physics, this technique may have broad applicability within astrophysics as well as other domains interested in identifying localized anomalies. | ['Jack H. Collins', 'Matthew R. Buckley', 'David Shih', 'Benjamin Nachman', 'Sowmya Thanvantri', 'Mariel Pettee'] | 2023-05-05 | null | null | null | null | ['supervised-anomaly-detection'] | ['computer-vision'] | [ 1.10047296e-01 -3.68508130e-01 6.86674118e-02 -1.67397156e-01
-3.05404752e-01 -6.27206504e-01 1.35575879e+00 6.04483902e-01
-3.28110635e-01 5.62284350e-01 -5.49947202e-01 -7.80477464e-01
1.16131552e-01 -7.57302046e-01 -4.72197652e-01 -1.14101589e+00
-1.83433712e-01 8.74955535e-01 5.39557934e-01 1.24333590e-01
4.22937721e-01 9.37084198e-01 -1.74826252e+00 4.55971450e-01
5.08719206e-01 1.24039018e+00 -2.13487282e-01 8.76649261e-01
-4.85981554e-01 8.28218758e-01 -5.96714139e-01 3.03943872e-01
3.35375011e-01 -7.54421115e-01 -3.75041634e-01 -2.72178590e-01
5.28417885e-01 1.20234653e-01 -1.94581151e-01 1.06201172e+00
1.48477197e-01 -1.14976972e-01 7.84118772e-01 -1.29520357e+00
3.75468135e-01 1.10354774e-01 -5.35703599e-01 1.14182830e+00
-1.06572350e-02 5.73049843e-01 7.17890978e-01 -7.78656960e-01
3.17812979e-01 9.36974585e-01 5.30815601e-01 1.92317635e-01
-1.34923112e+00 -7.50332415e-01 -1.66829079e-01 3.06322038e-01
-9.91175890e-01 -4.94245291e-01 6.24947071e-01 -7.42959440e-01
1.06178439e+00 4.88087714e-01 7.35948026e-01 9.00163889e-01
5.69478124e-02 4.99243259e-01 1.16284573e+00 -5.58902562e-01
7.22890854e-01 1.41632482e-01 5.73748946e-02 5.03498793e-01
5.40078580e-01 6.28528655e-01 -7.54642785e-01 -7.16145933e-01
4.00089830e-01 -3.09920371e-01 7.19468966e-02 -6.25364363e-01
-1.39668393e+00 8.44621420e-01 -2.85928369e-01 4.09398615e-01
-3.94945815e-02 9.68057755e-03 7.18449235e-01 4.64999586e-01
6.47033155e-01 8.68492305e-01 -5.56111336e-01 -6.94318190e-02
-1.03320289e+00 5.52296519e-01 8.17973435e-01 4.70140696e-01
5.56177616e-01 5.34419835e-01 1.90632582e-01 3.64161283e-01
4.24279660e-01 6.25448346e-01 6.30052805e-01 -6.28880739e-01
1.48855168e-02 4.55270678e-01 1.60986722e-01 -5.46181262e-01
-3.66739362e-01 -4.00967658e-01 -5.29125929e-01 6.76654696e-01
8.90584350e-01 2.36227870e-01 -6.89461470e-01 8.95303965e-01
7.34365940e-01 4.64289039e-01 6.89993128e-02 8.36904585e-01
5.91687083e-01 5.28154492e-01 2.54833661e-02 -1.47574097e-01
1.10852230e+00 -5.41777909e-01 -5.89378737e-02 -2.29359791e-01
6.38146400e-01 -5.91108203e-01 6.20731056e-01 6.59581661e-01
-6.53111219e-01 -1.39470890e-01 -9.42984581e-01 6.07318997e-01
-4.60388124e-01 -3.40925515e-01 7.92007089e-01 7.55424142e-01
-4.75052625e-01 7.36947834e-01 -1.05646122e+00 -4.69154447e-01
3.48446786e-01 -3.93218920e-02 1.40581310e-01 3.90484422e-01
-5.36053181e-01 5.03014266e-01 3.15846890e-01 -2.93869704e-01
-1.22607040e+00 -8.59145939e-01 -5.74915409e-01 -1.36267215e-01
2.89644778e-01 -1.55129150e-01 1.48638940e+00 -8.98440957e-01
-9.18268144e-01 1.06291533e+00 -3.23126346e-01 -6.70933664e-01
3.11494470e-01 2.68891901e-01 -8.08187366e-01 3.24896693e-01
-5.19409813e-02 -2.19825879e-01 1.19617188e+00 -9.41941440e-01
-8.79333496e-01 -4.69902843e-01 -9.18605924e-01 -4.47096974e-01
1.61386728e-01 5.53050518e-01 4.38206822e-01 -7.42426217e-01
5.11728823e-01 -4.19474065e-01 -1.99283049e-01 3.82987894e-02
-6.90907389e-02 -4.01582360e-01 1.25177324e+00 -3.91424686e-01
5.06332278e-01 -2.09195924e+00 -3.53435785e-01 6.99088871e-01
2.76379704e-01 4.07567412e-01 2.29553059e-01 7.46960267e-02
-3.59391421e-01 -1.08609013e-01 -3.92009169e-01 2.37082139e-01
-1.91329136e-01 2.81086028e-01 -4.44082022e-01 8.60313416e-01
4.09872860e-01 4.54494745e-01 -1.20061302e+00 -3.32281403e-02
2.22705498e-01 -5.28647482e-01 -2.74905503e-01 3.88056159e-01
-6.15708113e-01 8.92726421e-01 -3.69012356e-01 1.08667910e+00
6.70528591e-01 1.70327220e-02 -2.50720918e-01 4.01435286e-01
-4.52624351e-01 5.28254390e-01 -1.04410279e+00 1.10902488e+00
1.21756345e-01 5.93056262e-01 3.38391364e-01 -1.60308206e+00
1.06067324e+00 5.85015416e-02 6.83004856e-01 -8.85968924e-01
-4.96789888e-02 5.53930163e-01 1.78191796e-01 -5.08050382e-01
2.67122746e-01 -4.35468435e-01 1.91397116e-01 6.55191004e-01
6.33137673e-02 -8.99322703e-02 5.50630614e-02 1.10717729e-01
1.65370882e+00 -1.45991027e-01 1.33817524e-01 -5.35970449e-01
5.09177029e-01 2.98305064e-01 5.97696722e-01 9.79664981e-01
-2.33103573e-01 3.81083995e-01 4.68407691e-01 -6.70827091e-01
-1.41165650e+00 -1.31925893e+00 -4.34456289e-01 8.05359840e-01
-1.70885518e-01 -3.08144778e-01 5.33536635e-02 -7.74690092e-01
4.37787414e-01 6.75216377e-01 -1.64311919e-02 -2.72742242e-01
-4.96342629e-01 -9.27618086e-01 5.16369164e-01 2.41110682e-01
1.54172823e-01 -1.05074346e+00 -7.33010709e-01 4.35443409e-03
1.95039049e-01 -9.53872323e-01 3.82317275e-01 5.56208849e-01
-9.43744779e-01 -1.28545356e+00 -1.62028715e-01 -3.77330691e-01
4.86527711e-01 -9.16157439e-02 1.39178109e+00 5.30079976e-02
-9.05021310e-01 3.89006257e-01 -4.53902453e-01 -7.71643817e-01
-7.72110641e-01 -3.69011760e-01 3.68113607e-01 -2.91204620e-02
9.78585482e-01 -3.88441890e-01 -2.41829202e-01 4.00166720e-01
-5.22582948e-01 -7.52233267e-01 1.06572747e-01 7.10696638e-01
4.01665658e-01 1.49528205e-01 5.52551985e-01 -6.02947593e-01
-3.00137643e-02 -9.85755801e-01 -1.14183176e+00 -1.43108070e-01
-6.98604882e-01 8.05040076e-02 5.68368435e-01 -4.97145683e-01
-7.15761542e-01 -9.54310223e-02 -1.51611436e-02 -5.63219607e-01
-8.38948488e-01 -7.67929405e-02 1.94107424e-02 -3.06836069e-01
8.49164069e-01 2.21026242e-01 1.38113350e-02 -8.54487360e-01
-7.64243603e-02 6.42871737e-01 9.28786695e-01 -7.08444893e-01
9.17941213e-01 5.37585080e-01 1.36850312e-01 -1.15934014e+00
-5.35962284e-01 -1.11589634e+00 -4.17885900e-01 -2.67719865e-01
6.26200438e-01 -7.52355158e-01 -2.62385368e-01 4.73412961e-01
-8.48176897e-01 -9.25596952e-02 -7.82693088e-01 6.35851324e-01
-3.26760560e-01 5.61106026e-01 -3.93351912e-02 -1.19231749e+00
-6.57712743e-02 -3.80940378e-01 9.43230033e-01 1.64886877e-01
-2.68402040e-01 -6.17785215e-01 1.98435038e-01 -7.22847581e-02
3.10511917e-01 1.95465833e-01 9.58136976e-01 -1.43446755e+00
-4.95400876e-01 -1.00382432e-01 -6.35264500e-04 2.12560326e-01
-3.52072753e-02 -8.31715390e-03 -1.16733730e+00 -4.24685866e-01
4.70739543e-01 -1.56428948e-01 9.29283857e-01 -1.45697504e-01
1.50458920e+00 -6.53064698e-02 -4.22769308e-01 5.00062883e-01
9.49078262e-01 4.56812322e-01 3.20480615e-01 5.28632641e-01
4.27219957e-01 5.66551387e-01 4.98202026e-01 7.18476176e-01
-4.98269230e-01 3.77428234e-01 3.62458497e-01 5.40351346e-02
2.80581951e-01 1.65256523e-02 3.40158284e-01 3.75000775e-01
2.08516896e-01 1.20479144e-01 -1.17606556e+00 6.97120905e-01
-1.57238829e+00 -1.21937168e+00 -6.46820486e-01 2.56810474e+00
4.09957796e-01 1.91922814e-01 3.34090233e-01 4.87064272e-01
5.34684896e-01 -7.87429437e-02 -7.81647742e-01 -6.15658700e-01
-1.23952881e-01 6.44792140e-01 4.97947425e-01 -1.50145873e-01
-1.13933897e+00 2.07386732e-01 7.11971664e+00 6.12653673e-01
-1.01998973e+00 9.31320116e-02 5.50448537e-01 -3.69531959e-01
-2.16225833e-01 9.65257064e-02 -7.81422853e-01 6.91919982e-01
1.33084273e+00 1.16426945e-01 2.93710470e-01 8.15315902e-01
1.82818696e-01 -5.84446132e-01 -1.22495425e+00 8.44143927e-01
-2.86299288e-02 -1.09334671e+00 -5.08342922e-01 -5.65695018e-02
4.14574027e-01 3.33599746e-01 -4.25030679e-01 2.28888839e-01
2.49517232e-01 -7.02413023e-01 5.59396386e-01 5.18474579e-01
4.03248101e-01 -6.02990985e-01 4.87157881e-01 5.68587780e-01
-8.19861650e-01 -4.81686667e-02 -5.00696063e-01 -2.98110902e-01
-2.25328773e-01 1.09018016e+00 -9.91195142e-01 2.68666863e-01
1.07236099e+00 5.00049710e-01 -7.27706254e-01 1.45955956e+00
2.39234924e-01 1.25874603e+00 -8.43457282e-01 1.24199539e-02
7.06901923e-02 -3.35433394e-01 8.68915260e-01 9.87357438e-01
5.46044290e-01 -2.69197106e-01 4.57369015e-02 9.79191482e-01
3.61745059e-01 -8.38680640e-02 -9.48164403e-01 -3.62504184e-01
8.46138820e-02 1.20836508e+00 -8.47284377e-01 -4.53564614e-01
-5.56964278e-01 3.66216958e-01 -9.92300883e-02 5.35233878e-02
-3.14521521e-01 -1.35157824e-01 8.32011163e-01 5.50741374e-01
5.46486139e-01 -4.17791873e-01 -4.32999730e-01 -1.30101871e+00
-1.66586012e-01 -9.55750227e-01 5.51815510e-01 -5.00467241e-01
-1.67884159e+00 -3.84960622e-02 -2.89787222e-02 -1.19699204e+00
-4.33556199e-01 -8.61013651e-01 -1.22482824e+00 7.49558866e-01
-1.27601421e+00 -5.40556014e-01 -2.47628987e-01 3.07551116e-01
3.09507728e-01 -9.17749941e-01 4.83639657e-01 6.55338094e-02
-3.51648510e-01 1.42856315e-01 6.10098720e-01 -2.28639275e-01
6.40058935e-01 -1.45741034e+00 4.38711673e-01 9.49389935e-01
4.88119781e-01 -1.35626733e-01 1.11508834e+00 -8.90305936e-01
-1.08435857e+00 -1.08445871e+00 7.16738701e-01 -4.26146388e-01
9.34349239e-01 -5.44713497e-01 -1.30471992e+00 1.58807725e-01
-8.87256041e-02 5.75231671e-01 4.74038094e-01 7.72284940e-02
-4.55209792e-01 -1.11505471e-01 -1.37765181e+00 -6.95248470e-02
7.02546299e-01 -5.56579232e-01 -5.52561760e-01 5.38069487e-01
-5.86034032e-03 3.75696830e-02 -7.58391559e-01 5.03789604e-01
7.46271983e-02 -8.04654539e-01 9.05631065e-01 -9.39618766e-01
6.41136318e-02 -4.88477945e-01 -3.39522958e-02 -1.10885847e+00
7.41840824e-02 -4.71472204e-01 -4.77466226e-01 1.13672936e+00
1.99350029e-01 -7.70398438e-01 9.49898124e-01 2.86337703e-01
-4.71311212e-02 -1.39180884e-01 -1.19174170e+00 -1.06969428e+00
2.35393018e-01 -3.70746762e-01 4.09588873e-01 1.19919717e+00
-6.15179129e-02 -1.02897830e-01 7.58855268e-02 2.96933949e-01
8.97672415e-01 2.73472011e-01 6.52352154e-01 -1.70762706e+00
-5.70719838e-01 -3.66698146e-01 -6.18217826e-01 -4.47928816e-01
2.30801888e-02 -1.05695844e+00 1.68420389e-01 -4.84594852e-01
-3.37500930e-01 -9.08155859e-01 -2.89187640e-01 2.68143266e-01
2.80869633e-01 1.16010144e-01 -3.32863927e-01 3.42218339e-01
-4.28470522e-01 4.10665780e-01 4.17603463e-01 -1.26326635e-01
3.14233601e-01 3.06571573e-01 -7.70482197e-02 8.65910947e-01
1.01450539e+00 -6.99146152e-01 2.00840443e-01 2.93860286e-01
1.13695286e-01 -3.28341335e-01 7.09339261e-01 -1.29442298e+00
1.66246071e-01 -1.35592669e-01 6.38340831e-01 -7.90281713e-01
-2.66957551e-01 -4.84444082e-01 -2.07210630e-01 4.38144356e-01
-1.27872571e-01 3.09890341e-02 3.25383663e-01 7.28521287e-01
-1.15704559e-01 -8.58662784e-01 1.01601303e+00 -4.64371085e-01
-6.67348981e-01 2.09178422e-02 -1.07554221e+00 1.55562326e-01
1.36201704e+00 2.44581178e-01 -1.59567803e-01 1.12400442e-01
-5.71741939e-01 1.33461490e-01 4.93245751e-01 2.82524198e-01
2.90271789e-01 -1.14866447e+00 -4.53290701e-01 7.83972383e-01
3.60893965e-01 1.02847703e-01 -4.21965569e-01 6.73027933e-01
-5.48341453e-01 3.12814116e-01 7.51530100e-03 -1.11709619e+00
-1.20151746e+00 6.76496983e-01 5.32362163e-01 -4.22722884e-02
-7.90871620e-01 4.59364444e-01 -2.98832268e-01 -4.71447736e-01
3.37458029e-03 -2.91590542e-01 -1.06767041e-03 -2.52237525e-02
7.15510786e-01 3.82350236e-01 5.53182125e-01 -2.32409075e-01
-1.87175766e-01 -7.94599503e-02 5.46595529e-02 2.25050896e-01
1.12672627e+00 2.77311653e-01 -3.16840291e-01 8.58353138e-01
6.88995242e-01 -9.63374600e-02 -7.53236353e-01 -5.06892145e-01
7.70371258e-01 -7.77928054e-01 7.05985427e-02 -6.28266752e-01
-6.99589074e-01 9.63078558e-01 9.42028165e-01 6.04996204e-01
7.38932908e-01 5.73445082e-01 4.31861371e-01 6.15916073e-01
2.81197727e-01 -9.25354481e-01 9.40840039e-03 4.73980606e-01
4.16100651e-01 -1.36829567e+00 -1.72818273e-01 7.65042156e-02
-5.09673841e-02 1.11504471e+00 8.96399617e-01 -8.14258680e-02
4.85205203e-01 5.06746411e-01 -1.24479808e-01 -4.48497027e-01
-9.63874817e-01 -2.34124318e-01 -8.40680450e-02 6.42412066e-01
-1.70295760e-02 -2.90621459e-01 -1.17709674e-01 6.09136634e-02
3.35918218e-02 -4.97781813e-01 4.81623858e-01 1.11435592e+00
-8.92836809e-01 -1.07859445e+00 -9.20303524e-01 1.26669776e+00
-3.93779427e-01 1.84790626e-01 -4.44569856e-01 3.10756028e-01
2.16860846e-01 7.80824423e-01 7.22220719e-01 8.76792669e-02
9.89783555e-02 6.42215908e-01 1.78391591e-01 -5.16860783e-01
-6.33618772e-01 6.84244037e-02 2.80752033e-01 -5.52189589e-01
-3.00217330e-01 -1.21151841e+00 -1.02970123e+00 -1.15186676e-01
-2.01403454e-01 4.50651854e-01 7.87165463e-01 1.08298981e+00
-6.36935607e-02 3.41002852e-01 7.40013003e-01 -8.26511741e-01
-6.12694561e-01 -7.62757778e-01 -7.57562101e-01 3.39562118e-01
4.75846916e-01 -7.75104821e-01 -6.90172911e-01 -2.34521315e-01] | [7.624627590179443, 2.7111496925354004] |
4180d9d8-3ed9-45d3-b405-fa6f34d428e1 | a-multimodal-sensor-fusion-framework-robust | 2210.10972 | null | https://arxiv.org/abs/2210.10972v2 | https://arxiv.org/pdf/2210.10972v2.pdf | A Multimodal Sensor Fusion Framework Robust to Missing Modalities for Person Recognition | Utilizing the sensor characteristics of the audio, visible camera, and thermal camera, the robustness of person recognition can be enhanced. Existing multimodal person recognition frameworks are primarily formulated assuming that multimodal data is always available. In this paper, we propose a novel trimodal sensor fusion framework using the audio, visible, and thermal camera, which addresses the missing modality problem. In the framework, a novel deep latent embedding framework, termed the AVTNet, is proposed to learn multiple latent embeddings. Also, a novel loss function, termed missing modality loss, accounts for possible missing modalities based on the triplet loss calculation while learning the individual latent embeddings. Additionally, a joint latent embedding utilizing the trimodal data is learnt using the multi-head attention transformer, which assigns attention weights to the different modalities. The different latent embeddings are subsequently used to train a deep neural network. The proposed framework is validated on the Speaking Faces dataset. A comparative analysis with baseline algorithms shows that the proposed framework significantly increases the person recognition accuracy while accounting for missing modalities. | ['Yasutomo Kawanishi', 'Vijay John'] | 2022-10-20 | null | null | null | null | ['person-recognition'] | ['computer-vision'] | [ 3.01834166e-01 -2.35324010e-01 1.14743806e-01 -5.75675130e-01
-9.02201533e-01 -6.70270994e-02 6.48550451e-01 -2.81640142e-01
-2.73928523e-01 4.63416874e-01 5.27350247e-01 4.45795625e-01
-5.16561838e-03 -4.11125064e-01 -5.11882126e-01 -9.95226085e-01
5.33845544e-01 -9.89039913e-02 -5.38253427e-01 2.70802945e-01
-7.36416578e-02 1.46019459e-01 -1.77342296e+00 2.70190686e-01
7.93360353e-01 1.33913529e+00 -1.45548046e-01 2.85038561e-01
1.79675728e-01 5.75551033e-01 -3.43874723e-01 -6.56142354e-01
1.09760068e-01 -9.38756168e-02 -9.66995135e-02 3.02553684e-01
6.91460192e-01 -6.86983407e-01 -5.43593526e-01 9.17818010e-01
8.21317971e-01 1.88471854e-01 5.20690501e-01 -1.59037113e+00
-6.85552478e-01 4.31179404e-01 -4.54439908e-01 -2.84199923e-01
7.37470984e-01 4.91580516e-02 9.13712859e-01 -1.00080979e+00
-1.85002834e-01 1.48487115e+00 6.34629786e-01 5.94555140e-01
-1.08503914e+00 -7.17250109e-01 2.60374397e-01 4.85188395e-01
-1.42729020e+00 -7.77464509e-01 1.04069507e+00 -4.12139833e-01
6.68612957e-01 9.84906331e-02 4.15305346e-01 1.48086309e+00
-8.53351951e-02 9.73922491e-01 8.76132429e-01 -4.17074323e-01
-7.87167996e-02 2.85586745e-01 2.00711161e-01 5.55493891e-01
2.61795297e-02 2.49526333e-02 -7.91205406e-01 -3.05497319e-01
2.41997018e-01 6.66442990e-01 -3.15222651e-01 -2.39165321e-01
-1.01716673e+00 5.44256389e-01 1.92922607e-01 -1.05942376e-01
-4.94547009e-01 -3.13141034e-03 5.32050967e-01 -8.68582577e-02
3.40797633e-01 -3.41973156e-01 1.33680418e-01 -3.89031484e-03
-8.43448222e-01 -7.38503337e-02 3.28556985e-01 6.76793754e-01
5.45113027e-01 1.86287999e-01 -2.91000873e-01 1.00982320e+00
9.22081053e-01 7.82774568e-01 4.22064245e-01 -8.38503182e-01
8.40009451e-01 8.59213650e-01 1.35447949e-01 -1.17458391e+00
-1.91544667e-01 -1.16687879e-01 -8.92960846e-01 -5.45645878e-02
-2.90156435e-02 -2.06042245e-01 -7.28337467e-01 1.97319496e+00
2.59056211e-01 3.51179093e-01 2.90878087e-01 9.89191294e-01
8.23830605e-01 5.98175049e-01 1.15550645e-01 -2.58852076e-02
1.34285808e+00 -9.08179998e-01 -1.11537945e+00 -1.32904857e-01
-6.31287619e-02 -5.51676929e-01 7.57497489e-01 2.83336848e-01
-9.98342276e-01 -6.74154401e-01 -1.17371809e+00 -1.11878246e-01
-3.34353834e-01 5.28457284e-01 2.74907619e-01 8.13134491e-01
-7.65416026e-01 -2.59720925e-02 -9.47139978e-01 -3.67733777e-01
1.42814517e-01 4.57804769e-01 -5.65627158e-01 -5.16237736e-01
-1.22828388e+00 6.97263420e-01 1.40479386e-01 6.36835575e-01
-9.89304304e-01 -3.17443043e-01 -1.16580558e+00 2.31409147e-01
3.69600616e-02 -8.06663275e-01 7.04670429e-01 -9.39171791e-01
-1.70199263e+00 4.09435242e-01 -3.52886677e-01 -5.93857616e-02
3.77657264e-01 -3.50273937e-01 -5.43423116e-01 3.79022270e-01
-9.75082368e-02 5.23652375e-01 1.27011132e+00 -1.12956285e+00
-4.02481943e-01 -7.62952685e-01 -9.50496197e-02 4.97950286e-01
-8.91925991e-01 7.07629370e-03 -3.68853897e-01 -5.05242288e-01
-3.37404646e-02 -6.59791827e-01 4.58314836e-01 -4.05354872e-02
-4.71400887e-01 -1.75506905e-01 1.00470448e+00 -9.62074637e-01
9.15437877e-01 -2.35086560e+00 6.89719319e-01 1.90082997e-01
8.01705122e-02 -1.22075513e-01 -1.60885379e-01 2.69841611e-01
-1.25097074e-02 -4.60566610e-01 -1.37901440e-01 -1.15143442e+00
4.17316914e-01 8.52979720e-02 -2.42919102e-01 4.94043887e-01
1.11841127e-01 6.53268099e-01 -2.78535962e-01 -2.84400582e-01
5.06131947e-01 1.15189314e+00 -1.91978976e-01 4.22426313e-01
4.55100685e-01 2.32223615e-01 -1.04158700e-01 9.15447056e-01
8.33351493e-01 5.34608476e-02 7.06481859e-02 -4.83276665e-01
3.19381692e-02 -2.77950287e-01 -1.14900577e+00 1.86937022e+00
-1.90651551e-01 4.05545443e-01 2.70954102e-01 -1.01131225e+00
9.46304560e-01 7.59551108e-01 4.07580763e-01 -5.67926407e-01
3.17894489e-01 -1.83864553e-02 -4.98577535e-01 -5.91972351e-01
3.81198317e-01 -1.00340925e-01 -5.04691377e-02 3.13065469e-01
2.96433270e-01 9.10787940e-01 -2.94013709e-01 6.88539073e-02
7.79833615e-01 8.11618939e-02 -3.34516734e-01 4.18916911e-01
7.56759226e-01 -6.59575880e-01 5.85175216e-01 3.49094242e-01
-3.76709789e-01 5.27951300e-01 1.05501488e-01 -1.38178140e-01
-8.40714693e-01 -1.14563918e+00 8.98079947e-02 1.04681540e+00
2.29132965e-01 -2.48955697e-01 -6.15667939e-01 -3.58576804e-01
1.21835709e-01 3.63715708e-01 -6.32326305e-01 -3.80477101e-01
-1.19399957e-01 -6.04473650e-01 6.18826389e-01 6.14606917e-01
7.32111216e-01 -5.65067828e-01 -4.18975085e-01 -6.16760775e-02
-5.02070546e-01 -1.26862133e+00 -4.04835522e-01 -4.18294221e-01
-5.74894786e-01 -7.71206379e-01 -9.44198668e-01 -4.96517360e-01
6.55365288e-01 3.80246878e-01 1.34130806e-01 -3.94934863e-01
-1.36693105e-01 1.10568678e+00 -2.57264286e-01 -4.96725701e-02
3.02795351e-01 -2.63645172e-01 4.89487886e-01 9.55094993e-01
6.49517596e-01 -4.51890588e-01 -5.51706135e-01 1.06303506e-01
-7.10702419e-01 -1.10648036e-01 4.94066358e-01 1.06755912e+00
2.21373618e-01 -3.47617716e-02 4.53698128e-01 -3.56927179e-02
4.47679400e-01 -4.64067847e-01 -1.41449481e-01 5.07659376e-01
-2.51361340e-01 -3.26462872e-02 4.38776046e-01 -5.54715514e-01
-1.42791915e+00 8.10859427e-02 8.19227919e-02 -7.27676809e-01
-3.02243054e-01 5.00335872e-01 -9.20110524e-01 -4.80056591e-02
-1.35748133e-01 4.47101414e-01 1.25691742e-01 -6.17963135e-01
2.94897944e-01 8.85222673e-01 5.35882473e-01 -4.26087350e-01
6.99763238e-01 5.62828779e-01 -3.40751946e-01 -7.78975725e-01
-3.59157830e-01 -3.23539317e-01 -4.63436186e-01 -4.57661182e-01
9.69252229e-01 -1.18243027e+00 -8.58462870e-01 8.77764940e-01
-1.21753538e+00 4.49992269e-01 2.21474007e-01 8.37772846e-01
-3.33571315e-01 6.43694341e-01 -5.52243114e-01 -1.28996587e+00
-3.14356089e-01 -1.29597247e+00 1.24223006e+00 3.65329862e-01
1.36431843e-01 -9.45870936e-01 -1.73051193e-01 9.05832231e-01
3.06421608e-01 3.02094251e-01 5.59397817e-01 -3.90551478e-01
-4.33240861e-01 -6.27820969e-01 -2.96100140e-01 5.20506918e-01
2.54599959e-01 -2.57294595e-01 -1.33329284e+00 -5.42498827e-01
-3.65221351e-02 -4.02937919e-01 1.01311886e+00 2.47920543e-01
8.41442645e-01 -2.94848323e-01 -2.68796355e-01 5.37990928e-01
1.12448597e+00 6.36845157e-02 5.30522645e-01 3.49070989e-02
9.86073613e-01 5.97612560e-01 9.11635458e-02 6.58187032e-01
5.64355850e-01 6.54626369e-01 3.11394304e-01 1.36777744e-01
2.63154954e-01 -2.31710210e-01 8.45247567e-01 9.32877898e-01
3.49582694e-02 -2.08132327e-01 -6.01301193e-01 4.05734450e-01
-1.94253457e+00 -1.13886452e+00 5.53309500e-01 2.07114792e+00
3.18809777e-01 -2.17428789e-01 9.27084014e-02 3.37642014e-01
9.00206506e-01 9.66798812e-02 -5.66996694e-01 -2.61261854e-02
-1.66243568e-01 -3.12241375e-01 -7.98914861e-03 4.98791069e-01
-1.12166178e+00 2.89200306e-01 5.69085884e+00 3.91470373e-01
-1.21147275e+00 2.52744615e-01 3.44202109e-02 -1.98540956e-01
-1.95633039e-01 -2.60813385e-01 -8.15818369e-01 7.04941392e-01
7.65455425e-01 1.83356687e-01 3.84770066e-01 5.43033481e-01
2.80382574e-01 2.49234468e-01 -1.27214777e+00 1.49806988e+00
8.16240191e-01 -5.71913064e-01 2.50035763e-01 2.05781639e-01
1.14334218e-01 -4.51894671e-01 6.29826963e-01 1.76652804e-01
-3.56905460e-01 -9.15996790e-01 6.29697323e-01 1.13432026e+00
6.42527044e-01 -7.96591163e-01 8.30525100e-01 2.31605753e-01
-1.20760298e+00 -5.57393074e-01 -1.53227299e-01 5.37096001e-02
1.98676616e-01 2.10260853e-01 -2.35572815e-01 8.26771796e-01
6.28311813e-01 9.13473547e-01 -5.37258685e-01 8.18463624e-01
6.40210286e-02 4.05238181e-01 -3.09634000e-01 4.82308835e-01
-2.47586563e-01 -1.07551992e-01 6.30364299e-01 9.20278013e-01
4.95721608e-01 -1.96685687e-01 2.03515217e-01 8.69675875e-01
-8.74273255e-02 -1.51130766e-01 -5.23117900e-01 -7.96601176e-02
5.29204309e-01 1.24287641e+00 1.14676058e-01 -1.99001059e-01
-6.90631509e-01 1.26782942e+00 1.82511657e-01 6.75599635e-01
-8.64027619e-01 -4.10610229e-01 4.28383946e-01 -3.27566385e-01
1.84256360e-01 -1.08328216e-01 -7.76719376e-02 -1.61199391e+00
3.75918925e-01 -6.15694940e-01 5.11648834e-01 -8.21066558e-01
-1.61276662e+00 3.46775770e-01 4.45367843e-02 -1.22614610e+00
1.07617173e-02 -5.88602483e-01 -5.37043989e-01 1.00036764e+00
-1.53685570e+00 -1.71567953e+00 -4.92148846e-01 7.87205517e-01
2.09187254e-01 -5.65788567e-01 8.26874018e-01 7.71140099e-01
-1.07070231e+00 1.20130420e+00 1.46439180e-01 1.61993608e-01
7.69469619e-01 -8.46490085e-01 -5.16520679e-01 8.62062335e-01
-4.37034100e-01 8.32945645e-01 3.68952751e-01 -3.61253530e-01
-1.61406636e+00 -9.76792991e-01 6.95623875e-01 -1.51419967e-01
2.52824873e-01 -4.34429020e-01 -7.93230355e-01 7.54283547e-01
4.13822204e-01 -2.02301353e-01 1.21964455e+00 5.89749357e-03
-7.31023669e-01 -5.55330396e-01 -1.19668078e+00 1.67278111e-01
3.85514647e-01 -8.99536550e-01 -7.41090059e-01 -8.04577395e-02
6.01738870e-01 7.04322606e-02 -9.66659427e-01 2.83756435e-01
1.06882775e+00 -5.84518790e-01 1.00860405e+00 -3.73162359e-01
1.45459875e-01 -2.56456137e-01 -7.72975564e-01 -1.03975081e+00
-2.09266692e-01 -1.95162892e-01 -4.92181808e-01 1.57706726e+00
3.84669304e-02 -7.17719615e-01 5.15241802e-01 1.13117933e+00
4.02284600e-02 -1.47015557e-01 -1.31142473e+00 -5.14589012e-01
-4.32757556e-01 -1.85286328e-01 5.13053954e-01 9.54034030e-01
1.72669679e-01 3.70267242e-01 -9.59511161e-01 4.64836895e-01
1.17950261e+00 -2.27311760e-01 4.84524637e-01 -1.09108531e+00
-2.25803018e-01 7.49162361e-02 -7.27089584e-01 -9.79656339e-01
3.59514177e-01 -6.91460609e-01 -1.55637532e-01 -1.26226604e+00
5.32601953e-01 2.71309406e-01 -7.60435224e-01 5.35230041e-01
-1.98163345e-01 1.60165086e-01 2.76725143e-01 1.57501400e-01
-6.27969086e-01 1.23991990e+00 5.79366088e-01 -5.78254402e-01
6.03659563e-02 -2.32843563e-01 -5.32458484e-01 5.20119846e-01
5.50996959e-01 -1.16065647e-02 -2.77706712e-01 -7.90012300e-01
-2.33230844e-01 6.13816567e-02 7.75627732e-01 -1.24696887e+00
5.62461615e-01 2.21616969e-01 6.53120399e-01 -6.89611495e-01
1.10892987e+00 -1.19136906e+00 -2.11328212e-02 3.06555089e-02
-5.24622321e-01 -1.50400370e-01 1.12658694e-01 8.04696262e-01
-3.30697387e-01 2.75290519e-01 5.48234463e-01 2.78210163e-01
-3.67800415e-01 2.96293437e-01 -2.35568315e-01 -6.96560919e-01
9.51704025e-01 -4.07055616e-01 -1.98682725e-01 -2.81220913e-01
-9.96099830e-01 3.36096466e-01 5.32029942e-02 5.60410678e-01
1.14834392e+00 -2.01333618e+00 -6.14426017e-01 3.13436627e-01
2.57063150e-01 -5.42611480e-01 8.39613020e-01 9.43221927e-01
2.90399522e-01 2.90246129e-01 -3.57660860e-01 -6.33870304e-01
-1.49055350e+00 4.55472112e-01 3.95665377e-01 3.14817399e-01
-3.29972237e-01 5.74326992e-01 -2.72257347e-02 -5.35316110e-01
6.33566916e-01 5.18825762e-02 -3.97981286e-01 2.37065271e-01
7.55461454e-01 5.17934322e-01 -2.30521008e-01 -1.17494226e+00
-5.42777061e-01 5.81325591e-01 -4.93223406e-02 -3.69524240e-01
1.21711624e+00 -4.84297693e-01 -1.04148202e-01 6.11248553e-01
1.40282023e+00 -2.83825278e-01 -1.23319304e+00 -5.05838215e-01
-4.85969841e-01 -5.28086960e-01 1.04903340e-01 -5.34747005e-01
-1.01030636e+00 1.37457025e+00 1.10321784e+00 -3.00824255e-01
1.23816323e+00 -4.95230526e-01 8.63601565e-01 1.37815580e-01
-4.92999330e-02 -1.01662481e+00 1.31436318e-01 2.16531068e-01
6.56279027e-01 -1.31919003e+00 -1.44429773e-01 -3.51496078e-02
-5.64483643e-01 9.97273862e-01 6.86924458e-01 2.90335059e-01
4.52370405e-01 -1.23210251e-01 -1.61349878e-01 1.60918444e-01
-6.45064056e-01 1.22111104e-01 3.62896442e-01 6.18635535e-01
6.34280369e-02 9.11987349e-02 1.57562807e-01 9.92398798e-01
3.12030375e-01 3.08535583e-02 1.34213284e-01 8.79928648e-01
-3.04052293e-01 -8.76074433e-01 -7.97201037e-01 2.16878101e-01
-2.14957595e-01 1.73569798e-01 -3.40271950e-01 2.02938188e-02
2.82254308e-01 1.19359028e+00 -5.48925921e-02 -7.72861660e-01
2.59250373e-01 4.85014617e-01 4.44799632e-01 -1.63583741e-01
-1.16467260e-01 8.45769271e-02 -2.93771327e-01 -3.18308681e-01
-7.79602587e-01 -7.43234158e-01 -7.84234524e-01 -2.08947852e-01
-3.32209915e-01 1.53851837e-01 5.40622413e-01 1.09912336e+00
4.28742528e-01 2.88507015e-01 7.15667486e-01 -9.75687146e-01
-6.09426916e-01 -1.02809477e+00 -5.42185903e-01 4.96416658e-01
5.68823516e-01 -1.01782644e+00 -4.94341791e-01 5.87308183e-02] | [13.225430488586426, 4.921758651733398] |
16bf4ac8-0800-4d87-980f-ba5672a2c67b | cochlscene-acquisition-of-acoustic-scene-data | 2211.02289 | null | https://arxiv.org/abs/2211.02289v1 | https://arxiv.org/pdf/2211.02289v1.pdf | CochlScene: Acquisition of acoustic scene data using crowdsourcing | This paper describes a pipeline for collecting acoustic scene data by using crowdsourcing. The detailed process of crowdsourcing is explained, including planning, validation criteria, and actual user interfaces. As a result of data collection, we present CochlScene, a novel dataset for acoustic scene classification. Our dataset consists of 76k samples collected from 831 participants in 13 acoustic scenes. We also propose a manual data split of training, validation, and test sets to increase the reliability of the evaluation results. Finally, we provide a baseline system for future research. | ['Jeongsoo Park', 'Il-Young Jeong'] | 2022-11-04 | null | null | null | null | ['scene-classification'] | ['computer-vision'] | [ 3.73401940e-02 -1.38177291e-01 7.90474117e-01 -1.00401413e+00
-1.01118767e+00 -7.78093100e-01 3.79778206e-01 1.98092356e-01
-7.85634339e-01 2.80637890e-01 4.40953732e-01 1.99043900e-01
4.64695156e-01 -2.89622962e-01 -5.20902872e-01 -4.42096889e-01
-9.43809003e-02 3.64601672e-01 8.40308785e-01 -2.59202659e-01
1.40528709e-01 2.35176757e-01 -1.56746614e+00 4.69916731e-01
1.71345636e-01 9.93625224e-01 1.23853557e-01 1.24493337e+00
1.48804858e-01 6.85498238e-01 -1.33903122e+00 -5.32838225e-01
2.33102039e-01 -2.69673496e-01 -7.21221209e-01 1.09314986e-01
6.26587212e-01 -3.58641207e-01 -2.20629454e-01 5.50775945e-01
1.37520051e+00 6.05199754e-01 1.57661483e-01 -1.54273748e+00
-5.04560709e-01 4.47868198e-01 4.13267575e-02 1.35836080e-01
8.81231904e-01 3.21366131e-01 8.48046720e-01 -1.08561695e+00
5.32904901e-02 1.03610098e+00 7.81121492e-01 7.66363740e-01
-5.95891297e-01 -8.08425784e-01 -2.19529882e-01 3.30967188e-04
-1.56692410e+00 -1.06051552e+00 5.88106155e-01 -6.04821146e-01
9.58278716e-01 4.24215645e-01 8.08959603e-01 1.02535772e+00
-5.10362744e-01 9.03668523e-01 1.16158009e+00 -4.93581712e-01
7.14924574e-01 2.50678211e-01 2.96426475e-01 3.57445121e-01
-2.31440559e-01 -9.74512324e-02 -1.17731059e+00 -7.48328328e-01
1.82847649e-01 -7.76047349e-01 6.45302050e-03 3.07120699e-02
-6.39143407e-01 5.09324014e-01 1.77424982e-01 -1.25858262e-01
1.24975257e-01 1.42363518e-01 4.36394930e-01 -2.14587688e-01
4.53811049e-01 2.74409980e-01 -1.13920256e-01 -4.17452782e-01
-7.33984292e-01 4.68333840e-01 9.01433349e-01 1.34198594e+00
4.68560219e-01 7.39703923e-02 -1.96506530e-01 1.23592055e+00
3.97631019e-01 8.29739332e-01 4.17238206e-01 -9.65905130e-01
4.41912502e-01 1.63568988e-01 5.07381141e-01 -7.36153483e-01
-5.83745658e-01 3.60424042e-01 1.00347944e-01 -2.85151422e-01
3.14511865e-01 -3.84523481e-01 -7.74261475e-01 1.01632416e+00
4.29604888e-01 1.51731566e-01 -1.67392299e-01 1.20048797e+00
1.40507245e+00 1.64585397e-01 2.85714209e-01 2.90594727e-01
1.23428023e+00 -7.72752821e-01 -7.45632768e-01 -2.64676869e-01
3.53738844e-01 -8.65506828e-01 1.36461294e+00 3.35064203e-01
-9.06277001e-01 -5.51173747e-01 -7.86595821e-01 -1.81017756e-01
-2.61135668e-01 1.07061200e-01 3.17762822e-01 1.11944294e+00
-1.19042051e+00 -3.33123393e-02 -5.86875081e-01 -4.07985598e-01
3.63948494e-01 3.11650246e-01 -2.75417626e-01 2.48105407e-01
-1.01456034e+00 4.19056296e-01 -1.34857312e-01 3.24848175e-01
-9.40194905e-01 -1.56885877e-01 -9.28860307e-01 -6.57903492e-01
-9.18076094e-03 1.56525061e-01 1.90594471e+00 -2.16671497e-01
-1.56274021e+00 8.80181670e-01 -4.80412364e-01 -2.86860049e-01
4.16311234e-01 -3.53076637e-01 -7.06517577e-01 5.41589782e-02
2.45007619e-01 6.13444507e-01 4.31840956e-01 -1.40862846e+00
-7.25592852e-01 -1.18994065e-01 -7.25397468e-02 2.37434819e-01
-1.42571822e-01 6.07745171e-01 -7.33828664e-01 -4.77012157e-01
-6.07176125e-02 -1.07287145e+00 -2.47615486e-01 -3.89967859e-01
-4.87148076e-01 -1.92490295e-01 2.29143992e-01 -7.07503200e-01
8.92768919e-01 -2.56519032e+00 -7.40936100e-01 2.13939637e-01
3.06013525e-01 6.66325614e-02 -6.81249499e-02 3.81848574e-01
4.05958474e-01 2.30510995e-01 -1.62642419e-01 -9.88151610e-01
8.16088617e-02 1.60885993e-02 -2.74333239e-01 6.00081861e-01
1.08488806e-01 6.16900504e-01 -1.04710841e+00 -4.94716614e-01
1.34290531e-01 7.86407888e-02 -2.42205292e-01 4.27177399e-01
2.30475232e-01 5.71875930e-01 -2.44033173e-01 7.38427520e-01
6.85644567e-01 4.89466935e-01 -2.04257831e-01 7.95653164e-02
-8.74850608e-04 3.50238889e-01 -1.38300693e+00 1.51365161e+00
-1.96022063e-01 9.77177739e-01 1.88549906e-01 -1.83959939e-02
9.89950180e-01 3.79239351e-01 2.82715648e-01 -7.18821049e-01
3.52204219e-02 2.78649658e-01 -4.17245418e-01 -8.72260511e-01
1.04924476e+00 -1.33050227e-04 -4.65082407e-01 4.95473623e-01
7.39140203e-03 -6.89163685e-01 5.77334426e-02 1.32443056e-01
1.01122248e+00 -1.87086612e-01 9.04590338e-02 -2.64490321e-02
7.09903613e-02 2.53904730e-01 4.24769163e-01 1.02579594e+00
-9.07854617e-01 9.56539333e-01 -2.13618636e-01 -3.53045046e-01
-8.31873775e-01 -9.22769010e-01 -2.34668329e-01 1.32294822e+00
2.22307086e-01 -3.62503767e-01 -8.26552033e-01 -4.84338462e-01
-1.10957652e-01 3.22418690e-01 -5.08176565e-01 4.83284473e-01
-4.52951461e-01 -4.16345626e-01 1.26478970e+00 6.98346555e-01
5.37905037e-01 -1.26798892e+00 -4.89914179e-01 -9.89543796e-02
-4.30968463e-01 -1.58864951e+00 -4.84659433e-01 -1.17232703e-01
-5.10670319e-02 -9.91292894e-01 -3.51299703e-01 -8.08657765e-01
2.92760402e-01 5.62682450e-01 1.07520473e+00 2.27976948e-01
-2.04930976e-01 6.83180809e-01 -7.48826802e-01 -1.12389255e+00
-2.76097417e-01 -2.29064360e-01 5.12096047e-01 -7.32371509e-02
7.26185083e-01 -4.32194099e-02 -4.60937142e-01 7.05703139e-01
-5.19272804e-01 -5.59918582e-01 -1.66961879e-01 9.96865034e-02
2.56436169e-01 -3.19026023e-01 3.36482167e-01 -4.29657698e-01
8.96941543e-01 -3.02134037e-01 -4.08658385e-01 5.22373877e-02
1.77257374e-01 -6.83558226e-01 1.40113115e-01 -1.66103259e-01
-7.55611479e-01 4.04228717e-01 -3.70388776e-01 2.26315543e-01
-6.52819335e-01 -1.65994316e-01 -3.72233689e-02 -2.10343480e-01
1.08349586e+00 -1.67138670e-02 -2.53484040e-01 -4.69431579e-01
2.24705175e-01 1.45484996e+00 4.54807371e-01 -2.93631673e-01
5.73003352e-01 5.68273723e-01 -8.36245060e-01 -1.38867915e+00
-4.85188872e-01 -9.33542073e-01 -7.99242973e-01 -5.37614405e-01
9.11012352e-01 -1.21973920e+00 -8.71016979e-01 7.07222581e-01
-1.03002226e+00 -6.47297144e-01 -3.47954303e-01 5.85951924e-01
-5.04692793e-02 2.73831636e-01 -4.42372829e-01 -1.46370518e+00
-7.77944550e-02 -1.04588449e+00 1.61920857e+00 1.63324341e-01
-4.45110083e-01 -5.42951167e-01 3.67110759e-01 7.58353293e-01
1.91664860e-01 -1.86503291e-01 -4.10197705e-01 -8.90498638e-01
-8.08438435e-02 -5.22763968e-01 2.77329504e-01 1.51242629e-01
-1.32896304e-01 2.10510343e-02 -1.77842450e+00 -5.22664338e-02
-2.24943340e-01 -7.74628341e-01 4.00817364e-01 2.10495487e-01
9.09408271e-01 4.75043207e-02 -1.00447275e-01 -1.55745982e-03
6.92173302e-01 1.90373212e-01 4.33513492e-01 1.88300416e-01
6.50598824e-01 8.84317338e-01 6.00748599e-01 6.17157638e-01
8.24509203e-01 7.21394181e-01 -5.92643619e-02 -7.31707662e-02
9.69332904e-02 -2.07001612e-01 2.80751199e-01 7.37188160e-01
1.51150391e-01 -3.28069508e-01 -1.13053548e+00 7.03653634e-01
-1.32891047e+00 -7.33708620e-01 -3.74885321e-01 1.95084631e+00
6.41303599e-01 -2.05746993e-01 7.44328976e-01 3.08783919e-01
6.16640627e-01 -8.04852974e-03 -1.79892942e-01 -3.65127325e-01
-3.89428250e-02 9.56466869e-02 4.21384335e-01 8.47271919e-01
-1.23322880e+00 9.21291709e-01 7.96909952e+00 5.57072937e-01
-6.10200167e-01 1.30959615e-01 1.42378196e-01 -2.57805824e-01
-1.14920158e-02 -2.90580720e-01 -8.86335373e-01 3.09116542e-01
9.56763744e-01 3.78778934e-01 4.02813703e-01 6.15183473e-01
4.94883537e-01 -5.52948058e-01 -7.35434413e-01 8.69086862e-01
1.80978298e-01 -6.86517119e-01 -6.50560796e-01 -2.39926100e-01
2.56224245e-01 4.38947618e-01 -5.43356359e-01 2.49477088e-01
6.20866776e-01 -6.76759541e-01 1.25259221e+00 1.23125128e-01
6.70623779e-01 -1.61460549e-01 7.09246457e-01 2.44507104e-01
-1.21512794e+00 -4.31671785e-03 -4.05286729e-01 -3.81066978e-01
4.08616185e-01 5.44680297e-01 -1.30327284e+00 1.93547562e-01
1.21463442e+00 1.01151288e-01 -1.13131380e+00 1.32000601e+00
-2.28503108e-01 9.32616353e-01 -4.30110395e-01 -5.49472988e-01
-3.92284691e-01 4.42839026e-01 4.47624713e-01 1.58162844e+00
-1.52748913e-01 2.40961477e-01 4.77529556e-01 1.63072065e-01
1.16220586e-01 1.66979730e-01 -7.67124414e-01 3.45645607e-01
1.02525830e+00 1.17196679e+00 -6.48690999e-01 -1.89041138e-01
-7.32909366e-02 7.00058997e-01 2.48072311e-01 4.16812807e-01
-7.05438137e-01 -4.44959253e-01 4.52015281e-01 -6.45634234e-02
-2.58366168e-01 -6.14784360e-01 -3.54062140e-01 -6.94524705e-01
4.06650007e-01 -6.96202993e-01 -7.73651293e-03 -8.32131028e-01
-1.28021836e+00 7.61946201e-01 1.96691602e-01 -1.30402255e+00
-1.23734372e-02 -3.19834352e-01 -3.36830348e-01 8.06915283e-01
-8.11487377e-01 -8.95982385e-01 -8.80560815e-01 3.24727118e-01
5.44570625e-01 -1.57803074e-01 8.96927476e-01 3.02699178e-01
-3.78373206e-01 7.48859346e-01 -3.01022589e-01 6.21755898e-01
8.46612692e-01 -1.22895086e+00 1.06013107e+00 6.22335494e-01
1.65122867e-01 4.80556190e-01 7.28842139e-01 -8.15236449e-01
-9.93823051e-01 -9.18889999e-01 7.77008474e-01 -1.01755047e+00
5.23723185e-01 -1.03521669e+00 -5.96425056e-01 3.48536998e-01
3.21737528e-02 2.21605316e-01 1.27624512e+00 -6.23587379e-03
1.29784038e-02 4.98801330e-03 -1.25141239e+00 3.40932250e-01
1.04601514e+00 -8.77743185e-01 -1.94579139e-01 4.18020666e-01
7.81554222e-01 -7.29894578e-01 -6.75127685e-01 -4.26769964e-02
8.71153235e-01 -7.34347999e-01 4.55998272e-01 -2.53239781e-01
-1.72393546e-01 -5.76909423e-01 -4.97594893e-01 -1.17439175e+00
-3.00939120e-02 -5.90063453e-01 3.27639252e-01 1.34346485e+00
6.13115847e-01 -2.71152854e-01 6.42390132e-01 1.08081758e+00
-2.34723389e-01 -1.44759923e-01 -9.75532472e-01 -5.21136582e-01
-3.13748419e-01 -1.24365222e+00 8.11003029e-01 6.32446110e-01
9.15563479e-02 2.51851290e-01 -4.35520381e-01 4.44868982e-01
4.14358824e-01 -6.22131467e-01 1.30540025e+00 -7.65821457e-01
-2.72189319e-01 2.02871814e-01 -6.33004785e-01 -8.63334835e-01
-1.48965716e-01 -3.60250026e-01 8.33403885e-01 -1.45861173e+00
-1.15962878e-01 -5.58175504e-01 3.42678279e-01 4.37473297e-01
-3.04854661e-01 8.34533572e-01 2.37636492e-01 3.03516835e-01
-7.69428730e-01 4.63964820e-01 7.77767777e-01 1.09595962e-01
-3.77976060e-01 2.20703006e-01 -5.64278841e-01 4.20163184e-01
1.02624321e+00 -3.75298142e-01 -2.20089853e-01 -7.82414675e-01
-1.47306174e-01 -3.04536402e-01 4.14822787e-01 -1.34366035e+00
5.04614294e-01 -9.10935178e-02 2.82951415e-01 -4.44678664e-01
6.71334982e-01 -5.25901318e-01 -2.73656785e-01 -1.25027567e-01
-4.33175892e-01 4.01626341e-02 2.67129064e-01 5.76920092e-01
-3.65408845e-02 -2.40205497e-01 4.34474409e-01 2.85008946e-03
-8.09014797e-01 -1.88752457e-01 -6.05581701e-01 1.94712237e-01
7.61409938e-01 -1.37976021e-01 -4.38639879e-01 -4.98820424e-01
-7.92599618e-01 4.47025478e-01 2.97879368e-01 5.34385622e-01
6.29908144e-01 -1.20023692e+00 -6.94831252e-01 2.66783506e-01
4.59916919e-01 -4.83652111e-03 9.13567245e-02 4.13781166e-01
-5.81766605e-01 -5.98628968e-02 2.80245841e-01 -8.00084472e-01
-1.45335996e+00 -1.56143367e-01 4.75174099e-01 6.70984328e-01
-2.25115001e-01 1.12071955e+00 -3.06791604e-01 -9.11569655e-01
4.89482224e-01 -2.79927850e-01 -3.70366186e-01 -1.51102334e-01
8.20841789e-01 7.00966895e-01 4.62320566e-01 -1.00234807e+00
-7.82325029e-01 1.77061632e-01 5.42571068e-01 -8.14017773e-01
7.56140113e-01 -3.08864594e-01 6.25682026e-02 8.29842627e-01
8.77491772e-01 5.27797222e-01 -1.00494289e+00 -1.65241137e-01
1.15373163e-02 -5.69861352e-01 -5.08882284e-01 -5.16115487e-01
-3.99197876e-01 6.47127569e-01 9.17007267e-01 4.47759926e-01
7.31029153e-01 1.64635390e-01 6.14913523e-01 5.06422281e-01
6.99133456e-01 -1.44832146e+00 -8.40703100e-02 5.28738737e-01
9.60194409e-01 -1.46231318e+00 -4.75662015e-02 -4.86881763e-01
-1.06845987e+00 6.14144862e-01 7.13274002e-01 1.48634419e-01
7.93819726e-01 4.84569192e-01 6.57825828e-01 -4.10944164e-01
-3.01806539e-01 -3.77789736e-01 2.95808107e-01 1.09354842e+00
6.63226426e-01 4.01323646e-01 1.47343084e-01 8.99373293e-01
-9.56162930e-01 -1.09787621e-01 5.16434669e-01 1.40412366e+00
-6.18605614e-01 -7.24853039e-01 -6.27811551e-01 2.19461769e-01
-2.92373419e-01 1.48517057e-01 -1.01940680e+00 4.56194729e-01
1.05689295e-01 1.97319019e+00 -1.59796596e-01 -9.93627071e-01
1.00018430e+00 -5.27059771e-02 1.12610906e-01 -8.95437479e-01
-9.01495576e-01 -2.72652693e-02 4.44938391e-01 -5.22208333e-01
-5.66424191e-01 -6.30976021e-01 -1.26337385e+00 -7.51174316e-02
-5.74774265e-01 3.45581710e-01 9.12480474e-01 9.52172637e-01
2.56543189e-01 2.04603776e-01 7.98974514e-01 -1.09225249e+00
-1.43801883e-01 -1.33107543e+00 -5.90468526e-01 3.51597875e-01
3.98485750e-01 -4.35193896e-01 -3.09500575e-01 2.33127177e-01] | [14.929625511169434, 5.246989727020264] |
8b7e387d-6b4f-4508-9e41-da3d1a1316d8 | emowoz-a-large-scale-corpus-and-labelling | 2109.04919 | null | https://arxiv.org/abs/2109.04919v2 | https://arxiv.org/pdf/2109.04919v2.pdf | EmoWOZ: A Large-Scale Corpus and Labelling Scheme for Emotion Recognition in Task-Oriented Dialogue Systems | The ability to recognise emotions lends a conversational artificial intelligence a human touch. While emotions in chit-chat dialogues have received substantial attention, emotions in task-oriented dialogues remain largely unaddressed. This is despite emotions and dialogue success having equally important roles in a natural system. Existing emotion-annotated task-oriented corpora are limited in size, label richness, and public availability, creating a bottleneck for downstream tasks. To lay a foundation for studies on emotions in task-oriented dialogues, we introduce EmoWOZ, a large-scale manually emotion-annotated corpus of task-oriented dialogues. EmoWOZ is based on MultiWOZ, a multi-domain task-oriented dialogue dataset. It contains more than 11K dialogues with more than 83K emotion annotations of user utterances. In addition to Wizard-of-Oz dialogues from MultiWOZ, we collect human-machine dialogues within the same set of domains to sufficiently cover the space of various emotions that can happen during the lifetime of a data-driven dialogue system. To the best of our knowledge, this is the first large-scale open-source corpus of its kind. We propose a novel emotion labelling scheme, which is tailored to task-oriented dialogues. We report a set of experimental results to show the usability of this corpus for emotion recognition and state tracking in task-oriented dialogues. | ['Milica Gašić', 'Carel van Niekerk', 'Michael Heck', 'Hsien-Chin Lin', 'Christian Geishauser', 'Nurul Lubis', 'Shutong Feng'] | 2021-09-10 | null | https://aclanthology.org/2022.lrec-1.436 | https://aclanthology.org/2022.lrec-1.436.pdf | lrec-2022-6 | ['emotion-recognition-in-conversation'] | ['natural-language-processing'] | [-6.25991002e-02 5.39509356e-01 1.20173305e-01 -6.93981826e-01
-4.64695752e-01 -8.45685542e-01 6.14486992e-01 2.35277295e-01
-3.79102588e-01 7.74267614e-01 4.97175455e-01 -1.74436316e-01
3.25437039e-01 -2.77434975e-01 2.56312102e-01 -2.79819638e-01
-1.09139688e-01 7.16199577e-01 8.07117950e-03 -8.67353201e-01
8.47910270e-02 1.13208257e-01 -1.42168915e+00 5.47598720e-01
4.30339962e-01 9.79908884e-01 -5.26673496e-02 8.92081439e-01
-3.07579160e-01 1.17694366e+00 -9.29871798e-01 -5.69326043e-01
-2.02037320e-01 -5.96873164e-01 -1.66005850e+00 2.52689362e-01
-3.59778166e-01 1.18652843e-02 4.00338881e-02 5.03662825e-01
7.70808220e-01 4.79885250e-01 5.36420941e-01 -1.58321464e+00
-6.41851351e-02 3.37189823e-01 1.82595938e-01 -5.95721453e-02
7.07238674e-01 -4.04181005e-03 1.13210511e+00 -3.77437770e-01
1.05456364e+00 1.34950340e+00 4.79469657e-01 9.98592615e-01
-7.21547306e-01 -2.90783405e-01 -5.78101724e-02 -1.83980241e-01
-6.58999979e-01 -6.85784817e-01 8.01675439e-01 -4.96548057e-01
1.51558900e+00 4.28249270e-01 7.20510423e-01 1.37320948e+00
-1.59829319e-01 9.10372019e-01 1.31218493e+00 -7.22114563e-01
1.71689793e-01 4.73205447e-01 2.36971855e-01 3.69529366e-01
-8.74657214e-01 -5.75650811e-01 -6.34930253e-01 -4.66860980e-01
3.22381616e-01 -5.55965006e-01 -2.48652026e-01 1.39724463e-01
-1.11293125e+00 1.02689302e+00 -3.08144242e-01 6.57258630e-01
-3.17298055e-01 -3.47252041e-01 1.31224465e+00 7.14448869e-01
1.01453936e+00 7.51609266e-01 -9.28999960e-01 -1.22725737e+00
-1.14635348e-01 2.26514295e-01 1.58653271e+00 8.77291739e-01
4.93039399e-01 -2.12487802e-01 -1.24527946e-01 1.53769588e+00
-3.08536869e-02 -8.23416114e-02 5.20749688e-01 -1.01988375e+00
2.67199516e-01 8.41751456e-01 1.25203177e-01 -7.47088194e-01
-7.48666167e-01 5.32991469e-01 -6.14099920e-01 -6.97671324e-02
6.45971835e-01 -7.77272820e-01 -3.14504281e-02 1.78219020e+00
6.26361012e-01 -5.40834188e-01 5.86390316e-01 7.11108387e-01
1.16274524e+00 7.14237273e-01 3.27006355e-02 -3.29531580e-01
1.84046340e+00 -8.62289608e-01 -1.14152956e+00 -1.17906377e-01
9.70542908e-01 -8.01889777e-01 1.15591156e+00 4.61804718e-01
-8.48235846e-01 -6.76902533e-02 -4.80430454e-01 -1.68954730e-01
-6.81508780e-01 -2.68462449e-01 9.45120871e-01 8.11437845e-01
-8.85372639e-01 1.10152029e-01 -2.44839072e-01 -7.59144068e-01
-1.15501270e-01 -1.63397137e-02 -5.65916121e-01 4.82811660e-01
-1.70635164e+00 1.25200617e+00 3.08968574e-01 -9.61613208e-02
-1.95479363e-01 -2.30053037e-01 -1.02623546e+00 -2.54717380e-01
6.17354453e-01 7.81436414e-02 1.90270734e+00 -9.84444857e-01
-2.06260729e+00 1.20096385e+00 -2.20086798e-01 -1.59258589e-01
2.65741795e-01 5.01610292e-03 -5.08931220e-01 1.47033989e-01
-1.46007255e-01 5.20944476e-01 3.89805108e-01 -8.66468787e-01
-6.75117612e-01 -2.08718717e-01 2.97083944e-01 3.36596757e-01
-5.15973747e-01 6.91532969e-01 -4.04728472e-01 -1.89308837e-01
-5.90402246e-01 -9.36902583e-01 -2.58445501e-01 -5.84421277e-01
-3.21720779e-01 -9.23730314e-01 8.15841496e-01 -4.52509463e-01
1.15535212e+00 -2.09001923e+00 -7.30408542e-03 -3.62133175e-01
3.47823381e-01 4.86966521e-02 4.08759043e-02 9.64609623e-01
6.57863319e-02 2.03541547e-01 4.50828075e-02 -4.73836303e-01
3.81877065e-01 4.57787603e-01 -5.07993437e-02 1.87292963e-01
3.02249074e-01 8.05708826e-01 -1.08622539e+00 -6.66411877e-01
1.91766590e-01 1.31302938e-01 -3.53439182e-01 6.94864571e-01
-3.19382578e-01 5.12509286e-01 -4.92534518e-01 3.24427426e-01
-4.19199914e-02 5.49374036e-02 2.55639285e-01 -5.44298266e-04
-2.46433109e-01 5.75920343e-01 -5.19316673e-01 1.65358627e+00
-7.95867920e-01 9.84698176e-01 3.29663068e-01 -9.50929224e-01
1.10236788e+00 1.07415736e+00 5.84740698e-01 -4.26169693e-01
5.39531112e-01 5.39146289e-02 7.63505846e-02 -8.54832113e-01
9.44825709e-01 -4.66206908e-01 -8.37107897e-01 8.36678207e-01
3.35922360e-01 -5.84247708e-01 4.41351026e-01 2.47827053e-01
1.17547584e+00 -2.39451677e-01 5.33539355e-01 -7.88841862e-03
3.61852348e-01 2.45967790e-01 5.09801388e-01 2.69380271e-01
-6.08038068e-01 1.34110391e-01 1.03067529e+00 -4.24386173e-01
-8.45496774e-01 2.40712799e-03 -1.77926242e-01 1.62696946e+00
-4.11376536e-01 -5.73801577e-01 -7.92092502e-01 -6.40545547e-01
-5.22203863e-01 5.46328366e-01 -6.26307070e-01 2.39905819e-01
-1.52758777e-01 -5.73455095e-01 1.00735974e+00 -6.71064183e-02
5.11006474e-01 -1.70475090e+00 -9.33556974e-01 4.75217938e-01
-6.84958875e-01 -1.47256565e+00 -1.13985583e-01 4.95563626e-01
-1.41826451e-01 -1.27106249e+00 -4.84413385e-01 -7.39558697e-01
-2.95992475e-02 -3.81622612e-01 1.56454289e+00 -3.27969879e-01
-2.26866603e-01 6.90140486e-01 -7.96669900e-01 -6.56776726e-01
-9.12996352e-01 1.68704972e-01 -1.83995634e-01 -1.99230045e-01
6.71438694e-01 -2.08571017e-01 -4.77541126e-02 4.06764060e-01
-5.82027137e-01 9.48397256e-03 -1.19247049e-01 8.98435950e-01
-3.29978853e-01 7.21930340e-02 9.50374186e-01 -1.05095530e+00
1.43536663e+00 -5.41702569e-01 3.19161452e-02 3.75700705e-02
6.07426651e-02 -4.00732845e-01 4.47182477e-01 -4.91936684e-01
-1.38192821e+00 -1.65751964e-01 -3.62265706e-01 1.66596040e-01
-7.66473353e-01 4.54097241e-01 -5.57642616e-02 4.47662354e-01
4.82476383e-01 -1.83240891e-01 8.36944506e-02 -2.37176925e-01
4.98023689e-01 1.39302063e+00 4.47009116e-01 -8.15695584e-01
-1.84925660e-01 -6.35702461e-02 -5.60235202e-01 -1.29871678e+00
-5.95089257e-01 -8.54166389e-01 -4.73583251e-01 -6.46414578e-01
1.06504238e+00 -6.63375437e-01 -1.33869779e+00 6.17894471e-01
-1.31128442e+00 -8.43343019e-01 -3.04964513e-01 7.74700344e-02
-6.11446559e-01 2.86625683e-01 -1.06643617e+00 -1.44921005e+00
-3.58903825e-01 -9.07091796e-01 9.43972409e-01 -3.91513184e-02
-1.05403054e+00 -1.31063032e+00 2.48066828e-01 3.84654403e-01
2.01278254e-01 3.91972154e-01 5.52674413e-01 -1.14771974e+00
7.45711505e-01 -2.17488721e-01 8.86125490e-02 3.22906792e-01
1.80724323e-01 -1.41835809e-01 -1.20850801e+00 1.52998164e-01
1.36979312e-01 -1.35766172e+00 1.87359929e-01 -2.80380875e-01
5.76625884e-01 -3.12122256e-01 7.24013671e-02 -4.06840324e-01
5.75154901e-01 5.13010859e-01 4.67455059e-01 3.43731642e-01
1.17438599e-01 1.35636640e+00 8.98452044e-01 8.47271502e-01
7.26386547e-01 6.67944252e-01 1.22848131e-01 -2.52496839e-01
5.87954223e-01 2.84983873e-01 2.58338422e-01 1.05684876e+00
2.69450694e-02 -4.81497169e-01 -1.04389334e+00 7.78935969e-01
-1.85819292e+00 -9.13790107e-01 -2.48237208e-01 1.48140860e+00
1.42279768e+00 -4.74867374e-02 3.15794826e-01 2.46318161e-01
6.78394198e-01 4.04240608e-01 -2.22482711e-01 -1.26137006e+00
8.04831907e-02 5.21603860e-02 -3.43540311e-01 5.69214106e-01
-1.14884365e+00 1.12563729e+00 5.78859854e+00 7.18188524e-01
-7.85427809e-01 2.76396424e-01 7.45490372e-01 3.24683636e-02
1.74370170e-01 -1.35480225e-01 -5.03042281e-01 2.71829367e-01
1.10010827e+00 4.13578674e-02 3.64897847e-01 9.07507360e-01
2.63013065e-01 -2.91374862e-01 -1.08395898e+00 8.71558607e-01
3.25464420e-02 -7.82663584e-01 -8.83761585e-01 -6.91500679e-02
2.17066437e-01 -3.48972976e-02 -4.98156369e-01 7.50042081e-01
6.02849603e-01 -9.15245891e-01 4.71553802e-01 -1.38216645e-01
7.54062295e-01 -7.21237481e-01 9.19817150e-01 5.38412511e-01
-8.79738390e-01 3.25173974e-01 -4.28268909e-02 -5.93290746e-01
3.83879274e-01 4.97952938e-01 -1.09873438e+00 2.19224855e-01
7.38081455e-01 6.59225047e-01 -4.01475243e-02 2.22208411e-01
-3.67320850e-02 5.24904191e-01 -2.51079470e-01 -5.37553906e-01
4.52082664e-01 -1.86405614e-01 3.44001591e-01 1.72904372e+00
-2.59457797e-01 4.65609610e-01 2.52211779e-01 2.76395828e-01
-1.31619453e-01 3.60264212e-01 -8.40269566e-01 -4.91477251e-01
5.07310152e-01 1.67983282e+00 -7.04552233e-01 -4.57971245e-01
-4.16513771e-01 1.25016522e+00 3.56044739e-01 9.74260345e-02
-4.12593246e-01 -6.33202136e-01 9.39284980e-01 -6.19955242e-01
-3.40799451e-01 1.26145808e-02 1.92584217e-01 -9.75762367e-01
-2.34322429e-01 -1.23031509e+00 3.02379608e-01 -6.98325455e-01
-1.68037939e+00 1.07627368e+00 -1.40890688e-01 -8.26061547e-01
-7.46243000e-01 -5.89783549e-01 -5.11421502e-01 7.49938011e-01
-1.05803299e+00 -8.34879816e-01 -2.03114033e-01 6.67352259e-01
8.64279270e-01 -7.97852576e-02 1.42984092e+00 2.98436638e-02
-6.04686916e-01 2.45256722e-01 -2.49277666e-01 4.37693566e-01
1.12154925e+00 -1.42826951e+00 2.12742999e-01 -8.28084648e-02
-4.59264845e-01 3.28531861e-01 8.24725986e-01 -3.77090722e-01
-1.25261414e+00 -5.71004033e-01 1.19237220e+00 -5.74855328e-01
8.83004010e-01 -7.44730353e-01 -8.36186767e-01 6.27241492e-01
7.62875080e-01 -4.13294047e-01 1.05762160e+00 7.08539605e-01
-2.16549978e-01 6.33012056e-01 -1.17345548e+00 6.50109708e-01
7.07298815e-01 -8.11077416e-01 -8.25271428e-01 3.92745286e-01
6.17093980e-01 -7.26554394e-01 -1.24068797e+00 1.88011840e-01
4.71693605e-01 -1.04028475e+00 4.01504487e-01 -7.73349345e-01
5.12830257e-01 4.34131682e-01 8.20755884e-02 -1.63769150e+00
3.90675157e-01 -1.15021312e+00 3.00276577e-01 1.76920104e+00
2.82939225e-01 -7.69247591e-01 3.79904747e-01 1.13164639e+00
-2.45995641e-01 -7.48196721e-01 -9.52935398e-01 -3.40306848e-01
1.46837711e-01 -8.16074848e-01 4.45768118e-01 1.41575229e+00
1.13737953e+00 1.00472510e+00 -4.80899453e-01 -5.97582042e-01
-2.21712038e-01 -7.19529763e-02 1.01607680e+00 -1.33624375e+00
-1.01293474e-02 -5.06754279e-01 -1.53844938e-01 -7.88689733e-01
5.62717199e-01 -4.55591857e-01 3.78743201e-01 -1.29789627e+00
-1.93710148e-01 -5.46240807e-01 4.86841410e-01 8.60736072e-01
-5.13388216e-02 7.26669133e-02 -4.71200049e-03 -1.18773878e-01
-8.45198631e-01 5.47337115e-01 1.02818501e+00 8.52526054e-02
-4.01569963e-01 -3.24059814e-01 -4.99660969e-01 8.83511662e-01
1.10777736e+00 -1.43461570e-01 -3.86669517e-01 2.80654758e-01
2.64482528e-01 3.53622079e-01 -1.47806585e-01 -2.74166524e-01
-7.67335072e-02 -2.64404446e-01 -2.83395350e-01 -2.17206970e-01
6.49073839e-01 -6.80602133e-01 -2.76251107e-01 -7.66863078e-02
-6.72102094e-01 -2.46438131e-01 4.02037024e-01 1.53795972e-01
-4.63156760e-01 -3.22553337e-01 5.01061618e-01 -2.58118868e-01
-7.04232633e-01 -1.78430021e-01 -1.39254081e+00 6.12784564e-01
9.76133525e-01 3.38723361e-02 -3.44378889e-01 -7.90325046e-01
-6.21971309e-01 3.78256202e-01 2.74106026e-01 7.05242872e-01
2.24930376e-01 -8.75056922e-01 -5.83779514e-01 -2.31466010e-01
4.10509676e-01 -1.02223352e-01 1.58046439e-01 4.79888916e-01
7.93222245e-03 3.72913063e-01 -2.31124178e-01 -1.70022130e-01
-1.52418458e+00 1.92583248e-01 2.05250233e-01 -5.76408505e-01
-5.41685343e-01 6.69541597e-01 -1.00581639e-01 -9.89719570e-01
3.27112794e-01 -1.66360274e-01 -5.32556415e-01 5.49899459e-01
4.83173609e-01 1.28853768e-01 8.64513218e-03 -8.43534648e-01
-2.62567669e-01 -2.01799870e-01 1.78837568e-01 -4.64582145e-01
1.21731365e+00 -3.70337486e-01 -4.28445548e-01 1.06404352e+00
1.12675261e+00 -9.07752216e-02 -7.42448688e-01 -9.74159539e-02
1.40316561e-01 -9.82819200e-02 -1.67465106e-01 -9.01508272e-01
-4.84548301e-01 8.78655136e-01 2.40762401e-02 1.00098062e+00
9.66477871e-01 2.04113662e-01 9.03058112e-01 5.49830258e-01
3.45953733e-01 -1.40274787e+00 3.39947075e-01 1.19365144e+00
9.15840924e-01 -1.34744060e+00 -6.00982726e-01 -3.97325873e-01
-1.41369224e+00 1.03470325e+00 7.48211026e-01 5.53151846e-01
3.39073420e-01 3.10191751e-01 6.37756884e-01 -5.88871598e-01
-1.19046736e+00 -3.19529116e-01 -2.69358754e-01 5.18995345e-01
9.29743350e-01 -1.28282774e-02 -1.81881294e-01 8.37129414e-01
-4.19821471e-01 -4.54649888e-02 4.78948474e-01 1.10313559e+00
-2.49441057e-01 -1.17516768e+00 -2.65712470e-01 1.55569211e-01
-6.18187904e-01 2.79415213e-02 -1.00906193e+00 7.69745409e-01
-2.87430674e-01 1.74781740e+00 -3.56523544e-02 -1.48453698e-01
5.16998231e-01 6.93006992e-01 1.15827389e-01 -6.82330728e-01
-1.21595311e+00 -1.13416716e-01 1.16106641e+00 -3.67498785e-01
-7.17562079e-01 -3.92747849e-01 -1.23110318e+00 -3.90455604e-01
-3.82025898e-01 7.20752478e-01 5.89766026e-01 1.00352335e+00
1.96129426e-01 4.93887544e-01 6.09484971e-01 -9.91271973e-01
6.54348433e-02 -1.42453504e+00 -7.93097317e-01 6.06492281e-01
-1.47161754e-02 -5.34417450e-01 -2.89305925e-01 -1.05817188e-02] | [12.97579574584961, 6.399018287658691] |
be87cd25-6237-482f-a356-85ebaaafd788 | selective-structured-state-spaces-for-long | 2303.14526 | null | https://arxiv.org/abs/2303.14526v1 | https://arxiv.org/pdf/2303.14526v1.pdf | Selective Structured State-Spaces for Long-Form Video Understanding | Effective modeling of complex spatiotemporal dependencies in long-form videos remains an open problem. The recently proposed Structured State-Space Sequence (S4) model with its linear complexity offers a promising direction in this space. However, we demonstrate that treating all image-tokens equally as done by S4 model can adversely affect its efficiency and accuracy. To address this limitation, we present a novel Selective S4 (i.e., S5) model that employs a lightweight mask generator to adaptively select informative image tokens resulting in more efficient and accurate modeling of long-term spatiotemporal dependencies in videos. Unlike previous mask-based token reduction methods used in transformers, our S5 model avoids the dense self-attention calculation by making use of the guidance of the momentum-updated S4 model. This enables our model to efficiently discard less informative tokens and adapt to various long-form video understanding tasks more effectively. However, as is the case for most token reduction methods, the informative image tokens could be dropped incorrectly. To improve the robustness and the temporal horizon of our model, we propose a novel long-short masked contrastive learning (LSMCL) approach that enables our model to predict longer temporal context using shorter input videos. We present extensive comparative results using three challenging long-form video understanding datasets (LVU, COIN and Breakfast), demonstrating that our approach consistently outperforms the previous state-of-the-art S4 model by up to 9.6% accuracy while reducing its memory footprint by 23%. | ['Raffay Hamid', 'Mohamed Omar', 'Linda Liu', 'Xiang Yu', 'Pichao Wang', 'Wentao Zhu', 'Jue Wang'] | 2023-03-25 | null | http://openaccess.thecvf.com//content/CVPR2023/html/Wang_Selective_Structured_State-Spaces_for_Long-Form_Video_Understanding_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Wang_Selective_Structured_State-Spaces_for_Long-Form_Video_Understanding_CVPR_2023_paper.pdf | cvpr-2023-1 | ['video-understanding'] | ['computer-vision'] | [ 4.54865575e-01 -1.73725933e-01 -2.51771182e-01 -1.90893546e-01
-6.92167103e-01 -4.19872403e-01 6.21565640e-01 -3.38954240e-01
-5.57332754e-01 6.08543217e-01 4.08688523e-02 -2.36746535e-01
1.39031082e-01 -2.09298879e-01 -9.74217176e-01 -6.75115347e-01
-4.53970246e-02 3.72426659e-02 5.24073422e-01 5.30569255e-02
3.70003402e-01 4.77231331e-02 -1.65632272e+00 5.42926133e-01
1.16012001e+00 1.01041758e+00 7.82897770e-01 6.32241070e-01
-1.18459716e-01 1.16533983e+00 -4.42093313e-01 -3.01916122e-01
3.04720789e-01 -4.28032875e-01 -8.23363602e-01 1.65667072e-01
7.45196998e-01 -5.31835079e-01 -4.74694669e-01 8.16749334e-01
3.70370358e-01 2.55438209e-01 2.56168514e-01 -9.90888178e-01
-3.92987907e-01 4.73011047e-01 -6.16249979e-01 5.32716155e-01
1.89997494e-01 3.21987063e-01 9.31516409e-01 -1.11837602e+00
6.75166488e-01 1.27428389e+00 4.38142031e-01 5.37882805e-01
-1.04087114e+00 -7.77101517e-01 8.82559955e-01 8.60004961e-01
-1.28843379e+00 -5.24191558e-01 5.38293183e-01 -2.67765105e-01
1.21314311e+00 2.81834513e-01 8.46650064e-01 1.15376294e+00
2.06771404e-01 1.35112095e+00 1.02318895e+00 -3.11202973e-01
6.91842288e-02 -2.64797688e-01 8.27188417e-02 9.05527592e-01
-1.69476829e-02 2.55258251e-02 -9.69471931e-01 1.42960876e-01
7.34855354e-01 -7.58028626e-02 -1.71164900e-01 -3.04978341e-01
-1.39339709e+00 5.37972569e-01 9.30232406e-02 1.55281931e-01
-3.84658098e-01 5.27010083e-01 4.87070709e-01 2.58624196e-01
5.27917325e-01 1.23849958e-01 -5.55490673e-01 -4.96660084e-01
-1.09378445e+00 2.04572797e-01 4.28608984e-01 8.34013939e-01
6.47374749e-01 2.91057676e-01 -3.64325464e-01 7.38984644e-01
5.98360691e-03 3.64794523e-01 4.13809687e-01 -1.15098500e+00
4.48909730e-01 2.63973922e-01 1.02298498e-01 -5.62895298e-01
-1.12667516e-01 -5.09223700e-01 -5.75313568e-01 -1.15568109e-01
3.08642149e-01 2.18543097e-01 -1.04614604e+00 1.82928634e+00
3.03446561e-01 8.57386291e-01 -1.28599733e-01 9.24461126e-01
5.13694465e-01 8.57093751e-01 1.64826199e-01 -3.20286542e-01
1.09715402e+00 -1.36880434e+00 -8.51809442e-01 -3.75832707e-01
6.53669715e-01 -6.40287995e-01 1.16493440e+00 4.86040324e-01
-1.07797575e+00 -6.42889678e-01 -9.46324408e-01 -4.28424180e-02
-5.64830098e-03 1.92293286e-01 7.18262553e-01 3.07618499e-01
-1.08893752e+00 6.83985829e-01 -1.12470853e+00 -2.25511357e-01
4.70888257e-01 3.79052669e-01 -2.07994133e-01 -2.90096015e-01
-1.20709693e+00 7.73379743e-01 3.20526242e-01 1.51982561e-01
-1.02705252e+00 -8.36063743e-01 -1.05731547e+00 2.01439351e-01
8.94101501e-01 -6.13342881e-01 1.21181655e+00 -1.16974187e+00
-1.54328108e+00 5.15542448e-01 -6.58071458e-01 -5.99229991e-01
4.97884989e-01 -6.80679321e-01 5.82280308e-02 3.92668813e-01
5.51210670e-03 1.00425780e+00 1.12945056e+00 -1.02021015e+00
-5.49789011e-01 -1.57790184e-01 2.51438707e-01 3.93984884e-01
-3.23849469e-01 8.95419531e-03 -9.58648086e-01 -9.39380765e-01
-5.15735224e-02 -1.18905866e+00 -1.88439429e-01 -3.15640382e-02
-1.15852192e-01 -2.05914959e-01 8.40653360e-01 -8.17482769e-01
1.49361587e+00 -2.09936714e+00 2.88357824e-01 -1.88900903e-01
-6.00429364e-02 4.85765964e-01 -4.62839782e-01 3.20650429e-01
-6.61372021e-02 9.78330299e-02 -2.10830644e-01 -6.64995134e-01
-1.36169478e-01 5.01708210e-01 -2.36669019e-01 2.65193194e-01
3.56412709e-01 9.78325367e-01 -9.88403141e-01 -6.49882376e-01
3.86564821e-01 3.60367626e-01 -9.10504401e-01 1.90550640e-01
-2.80113429e-01 4.43485081e-01 -3.43062431e-01 6.24498069e-01
5.68798363e-01 -3.83173406e-01 2.04753056e-01 -3.64053279e-01
-1.03425346e-01 1.97530404e-01 -1.05769658e+00 1.84352338e+00
-5.44443905e-01 7.45024741e-01 2.43640924e-03 -1.13124418e+00
3.11186939e-01 2.00963765e-01 6.26017570e-01 -7.93328166e-01
-3.34418356e-01 4.98448405e-03 -1.03003852e-01 -7.80503035e-01
5.69739342e-01 6.81551099e-02 1.29930943e-01 1.77725196e-01
5.78140542e-02 2.22447932e-01 4.39638764e-01 4.78124410e-01
1.01279414e+00 5.71601987e-01 7.79003650e-02 -1.38803720e-01
5.96055746e-01 -2.31800228e-01 9.25636828e-01 9.52436030e-01
-3.89993757e-01 5.36227942e-01 3.62375289e-01 -4.45976973e-01
-8.25347245e-01 -8.95370960e-01 1.35352850e-01 1.21756208e+00
3.32836539e-01 -6.15761936e-01 -7.00676143e-01 -7.84559011e-01
-2.34925434e-01 5.55362701e-01 -5.34583569e-01 -1.55969247e-01
-1.02348161e+00 -5.10973811e-01 3.26180875e-01 5.26989639e-01
5.86704075e-01 -1.12593806e+00 -5.46399176e-01 2.47740909e-01
-5.65668762e-01 -1.44480157e+00 -7.53253460e-01 -1.86294001e-02
-8.74302447e-01 -9.81751800e-01 -5.91611266e-01 -6.20270133e-01
5.59323847e-01 3.61047447e-01 1.01295388e+00 1.00313120e-01
-1.76702052e-01 4.39538807e-01 -5.53794622e-01 -3.93286683e-02
-1.72576189e-01 -1.01466943e-02 -4.69723605e-02 1.76844269e-01
8.18090662e-02 -2.96626955e-01 -7.81482637e-01 3.32851887e-01
-9.76495385e-01 4.62421387e-01 6.68513596e-01 1.16646039e+00
6.02013409e-01 -2.68898427e-01 6.66465104e-01 -7.96470165e-01
3.34727764e-02 -3.09675902e-01 -5.70272505e-01 3.28529537e-01
-5.48099160e-01 1.39937401e-01 6.94699347e-01 -7.02088416e-01
-1.23411953e+00 1.21848918e-01 -6.73996136e-02 -8.49578440e-01
2.48179525e-01 3.59121919e-01 6.65432364e-02 -1.70843631e-01
-2.51045860e-02 5.93369365e-01 -9.32494625e-02 -4.91775006e-01
2.68034160e-01 2.00750500e-01 4.57602054e-01 -5.26085794e-01
5.71053505e-01 5.35734594e-01 -1.70648694e-01 -9.08218861e-01
-9.60526824e-01 -5.21744967e-01 -5.55872619e-01 -3.43552053e-01
8.56633246e-01 -1.04845560e+00 -6.25158072e-01 6.58346951e-01
-1.15673625e+00 -5.80978572e-01 -1.53487116e-01 4.76294816e-01
-6.46167278e-01 7.69659102e-01 -9.57800865e-01 -8.33238542e-01
-1.69456705e-01 -1.29761159e+00 1.13438714e+00 -5.60875684e-02
-2.06473954e-02 -7.45047450e-01 -2.34639332e-01 6.80971742e-01
3.44805568e-01 -1.12135954e-01 7.05509603e-01 -3.41633737e-01
-1.11995971e+00 3.10628712e-01 -1.64385721e-01 4.06269729e-01
-1.36663228e-01 -2.17387170e-01 -7.65838265e-01 -4.15806442e-01
-4.72711474e-02 -3.96154881e-01 1.44253969e+00 5.21483064e-01
1.53992724e+00 -3.95747095e-01 -1.43966109e-01 7.10215509e-01
1.16369200e+00 2.65369296e-01 7.07293093e-01 2.42092237e-01
8.88245523e-01 4.83677149e-01 9.96275961e-01 4.97433126e-01
4.79688138e-01 8.65704238e-01 4.54867750e-01 -4.41681184e-02
-2.16998622e-01 -2.40239978e-01 8.62392485e-01 9.14500058e-01
-1.22488111e-01 -3.24771792e-01 -4.86476660e-01 6.73976362e-01
-2.06657171e+00 -1.14076161e+00 1.67602286e-01 2.02241087e+00
7.11763918e-01 1.60941780e-01 -1.39774442e-01 -6.52531013e-02
5.67715049e-01 5.95293641e-01 -7.71690965e-01 -2.12174594e-01
-6.39725029e-02 1.25068203e-01 3.24830681e-01 4.67236042e-01
-1.09375072e+00 1.35944903e+00 6.08551502e+00 1.20622027e+00
-9.99485850e-01 1.62639365e-01 5.89988649e-01 -5.34224629e-01
-7.60465115e-02 4.07933295e-02 -6.59631789e-01 5.38876951e-01
8.05727899e-01 1.06927708e-01 5.10798454e-01 5.68913162e-01
6.47340953e-01 -3.02037209e-01 -1.03794169e+00 1.16301298e+00
2.40708590e-01 -1.48295164e+00 2.67639309e-01 -1.31097212e-01
6.90041363e-01 -3.64490529e-03 1.37683824e-01 4.46328580e-01
-1.94762006e-01 -8.13658834e-01 9.75646496e-01 2.80660450e-01
8.37415695e-01 -5.38333178e-01 4.29200023e-01 2.77833909e-01
-1.47476768e+00 -2.67666161e-01 -1.59182265e-01 -1.37484232e-02
4.22799885e-01 5.08500338e-01 -3.86743039e-01 4.37831968e-01
7.46492326e-01 1.05991197e+00 -4.43699151e-01 7.64265478e-01
5.14040031e-02 9.17031825e-01 -2.13539124e-01 2.65998483e-01
4.93701667e-01 -1.59452721e-01 7.06640244e-01 1.32787418e+00
2.19312951e-01 2.44371861e-01 3.54098856e-01 5.41771293e-01
4.51566167e-02 -7.42671639e-02 -3.32246959e-01 -4.65048070e-04
2.91547269e-01 9.21774745e-01 -5.68098366e-01 -6.62524998e-01
-6.10337555e-01 1.23571241e+00 3.05453330e-01 5.28251290e-01
-1.03824341e+00 9.74916369e-02 6.52912378e-01 1.18582845e-01
7.92177260e-01 -3.61753285e-01 4.59884293e-02 -1.57328832e+00
2.43903503e-01 -9.61592436e-01 4.36491251e-01 -6.82719648e-01
-8.34997594e-01 5.07675290e-01 1.44021183e-01 -1.21613717e+00
-2.67559230e-01 -2.74823308e-01 -3.62798423e-01 3.14289331e-01
-1.85024273e+00 -1.10552955e+00 -1.30350530e-01 6.14614308e-01
1.29504049e+00 1.02084085e-01 3.07419389e-01 4.04231995e-01
-7.82463253e-01 5.18017650e-01 2.24950369e-02 -2.12748021e-01
6.87042177e-01 -1.02511024e+00 4.50656325e-01 1.04949832e+00
2.00854719e-01 4.55047518e-01 5.74805379e-01 -6.98169410e-01
-1.43089736e+00 -1.15258944e+00 7.59560764e-01 -1.91217050e-01
6.57959163e-01 -4.06197906e-01 -9.83567774e-01 7.65233099e-01
2.22152814e-01 7.55413398e-02 3.39140445e-01 -2.37818867e-01
-2.37978041e-01 -1.41076311e-01 -7.10166276e-01 7.18721449e-01
1.43347514e+00 -5.21713793e-01 -4.00577277e-01 1.91858754e-01
8.06635857e-01 -3.48836690e-01 -5.24963021e-01 4.89577144e-01
6.05624318e-01 -1.10070169e+00 1.01320744e+00 -3.55326355e-01
3.61068487e-01 -2.59022832e-01 5.69601804e-02 -1.01610196e+00
-2.86985934e-01 -8.66150081e-01 -5.92266142e-01 8.31200004e-01
3.90064418e-02 -3.74322236e-01 8.41545939e-01 3.84299487e-01
-2.65428871e-01 -1.08646464e+00 -1.00631011e+00 -9.06801164e-01
-3.35988879e-01 -5.89686632e-01 1.15543835e-01 6.87645197e-01
-1.53165102e-01 5.61883673e-02 -7.95756936e-01 -3.35571989e-02
5.91045082e-01 2.30302036e-01 5.21785736e-01 -6.05137527e-01
-3.70366901e-01 -2.34606609e-01 -1.93143785e-01 -1.82367957e+00
4.46313113e-01 -6.99335277e-01 4.74721342e-02 -1.23229265e+00
5.41394949e-01 -3.96190971e-01 -4.83050019e-01 3.91847461e-01
-5.78752458e-01 3.15859258e-01 6.08914435e-01 1.47130921e-01
-1.08392537e+00 8.25991929e-01 1.38546097e+00 -8.11699256e-02
-4.08990458e-02 -2.29170769e-01 -2.44842678e-01 6.98549688e-01
4.46766466e-01 -3.32032651e-01 -5.00403583e-01 -4.98377413e-01
-6.68668514e-03 1.83673829e-01 4.65856075e-01 -7.67718494e-01
8.21850523e-02 -2.83791125e-01 1.16339527e-01 -8.10927927e-01
5.90024352e-01 -5.20160794e-01 -1.55761500e-03 5.88056982e-01
-3.44230652e-01 1.62228644e-01 2.32620642e-01 7.03329206e-01
-3.86766374e-01 -8.09542462e-03 7.28563011e-01 -1.75718531e-01
-1.20386434e+00 3.75649661e-01 -5.25974095e-01 5.47536789e-03
9.97871876e-01 -3.91615719e-01 -9.29020420e-02 -5.10259211e-01
-6.72924578e-01 4.76946592e-01 4.07588333e-01 5.15339017e-01
7.96399713e-01 -1.10231149e+00 -6.46843910e-01 1.29018277e-01
-3.11286021e-02 -1.96419686e-01 7.17389345e-01 1.01290846e+00
-2.64264762e-01 6.26059711e-01 5.71675785e-02 -8.10417056e-01
-1.39143145e+00 5.98810732e-01 1.96556941e-01 -6.43992066e-01
-7.97498286e-01 8.10672760e-01 7.14896798e-01 1.13563463e-01
2.02432618e-01 -4.31948334e-01 -1.88892320e-01 -1.54575348e-01
5.42095184e-01 3.42957795e-01 -1.75497174e-01 -6.18640482e-01
-4.39116836e-01 5.64670086e-01 -3.04741919e-01 -4.24959622e-02
1.34456789e+00 -4.10333902e-01 2.39490435e-01 2.79605240e-01
1.10007417e+00 -1.69962645e-01 -1.83219290e+00 -1.61135644e-01
-1.77109227e-01 -6.33256495e-01 -1.01770917e-02 -5.73471546e-01
-1.16554129e+00 7.50879228e-01 4.67362374e-01 -2.76995987e-01
1.29919243e+00 -8.03908557e-02 1.10317457e+00 4.27611887e-01
3.56668323e-01 -1.15769541e+00 4.17136341e-01 6.56338632e-01
7.77868927e-01 -1.33510005e+00 -7.10272789e-02 -5.17793953e-01
-7.62221158e-01 8.41174722e-01 8.11537027e-01 -9.01625678e-03
2.46402368e-01 1.17475457e-01 -1.38223857e-01 -2.99079437e-02
-1.19469106e+00 -1.20630242e-01 2.00600982e-01 3.14040065e-01
1.75467253e-01 -3.38414818e-01 -3.19494426e-01 2.35325664e-01
2.65552461e-01 1.13663666e-01 4.87169981e-01 8.86761010e-01
-1.35829344e-01 -1.07554042e+00 -2.47915551e-01 4.22686130e-01
-5.66962540e-01 -2.98752546e-01 1.81635112e-01 6.53744757e-01
6.77322745e-02 7.69122481e-01 8.29255879e-02 -2.78910846e-01
-1.76256727e-02 7.89002031e-02 6.45762086e-01 -4.13152784e-01
-5.28458476e-01 2.24548519e-01 1.24591902e-01 -1.08053064e+00
-7.36721218e-01 -7.02046275e-01 -1.12309480e+00 -1.04142740e-01
-4.63701069e-01 -1.39034063e-01 3.68615538e-01 1.13750553e+00
5.15790045e-01 5.56529760e-01 4.73503828e-01 -1.12403572e+00
-5.31849444e-01 -7.93497324e-01 -3.03061038e-01 5.52251577e-01
4.35935408e-01 -8.23656440e-01 -2.35511884e-01 3.58970582e-01] | [9.231781959533691, 0.2945002019405365] |
3ca3885a-15a1-4bd7-9503-6f13ff212070 | concept-identification-of-directly-and | 2107.00955 | null | https://arxiv.org/abs/2107.00955v1 | https://arxiv.org/pdf/2107.00955v1.pdf | Concept Identification of Directly and Indirectly Related Mentions Referring to Groups of Persons | Unsupervised concept identification through clustering, i.e., identification of semantically related words and phrases, is a common approach to identify contextual primitives employed in various use cases, e.g., text dimension reduction, i.e., replace words with the concepts to reduce the vocabulary size, summarization, and named entity resolution. We demonstrate the first results of an unsupervised approach for the identification of groups of persons as actors extracted from a set of related articles. Specifically, the approach clusters mentions of groups of persons that act as non-named entity actors in the texts, e.g., "migrant families" = "asylum-seekers." Compared to our baseline, the approach keeps the mentions of the geopolitical entities separated, e.g., "Iran leaders" != "European leaders," and clusters (in)directly related mentions with diverse wording, e.g., "American officials" = "Trump Administration." | ['Bela Gipp', 'Karsten Donnay', 'Felix Hamborg', 'Anastasia Zhukova'] | 2021-07-02 | null | null | null | null | ['entity-resolution'] | ['natural-language-processing'] | [-2.58196235e-01 3.72587413e-01 -1.10035583e-01 -1.01966068e-01
-4.59635466e-01 -7.91291773e-01 8.43774259e-01 8.85687888e-01
-7.27139950e-01 7.90452600e-01 1.08634508e+00 -1.48973376e-01
-1.22429915e-01 -7.87353337e-01 -3.01264450e-02 -9.10045445e-01
1.76491529e-01 7.06883788e-01 -5.28832555e-01 -2.54255742e-01
7.11117446e-01 3.87860447e-01 -1.28640342e+00 1.32927015e-01
8.88644040e-01 2.72263914e-01 -6.48116469e-02 1.93892904e-02
-7.07143545e-01 6.77114546e-01 -9.29765224e-01 -4.93192166e-01
-3.05237234e-01 -3.43912244e-01 -1.02592611e+00 2.12944821e-01
1.38553977e-01 8.50304291e-02 -1.40614688e-01 1.30235529e+00
2.92425662e-01 3.83791536e-01 1.14725387e+00 -8.93335521e-01
-6.99625552e-01 1.29646838e+00 -7.35047162e-01 2.70021975e-01
4.92981434e-01 -6.05775476e-01 1.22916806e+00 -1.04929006e+00
1.09003425e+00 1.64945114e+00 4.79918987e-01 5.17540038e-01
-1.41218412e+00 -7.10762680e-01 2.83204615e-01 -1.02833994e-01
-1.95301259e+00 -6.06577873e-01 6.97272837e-01 -8.17992628e-01
9.83093917e-01 3.96215886e-01 2.47285500e-01 9.84888077e-01
-1.77397400e-01 4.49167550e-01 3.96110773e-01 -5.28837860e-01
2.82220781e-01 2.65845358e-01 7.62682140e-01 1.78129360e-01
8.75417233e-01 -7.33318746e-01 -4.64987963e-01 -5.69039941e-01
2.87768785e-02 -7.99272731e-02 -2.99058575e-03 2.25084960e-01
-1.29969370e+00 1.07806933e+00 -1.94171362e-03 8.37951422e-01
-6.24634564e-01 -7.12199509e-03 6.16456985e-01 -2.25954905e-01
9.81169581e-01 6.76282287e-01 -2.34916270e-01 7.29285777e-02
-9.22461152e-01 2.56960720e-01 7.88238049e-01 1.13453376e+00
8.67390096e-01 -3.70281130e-01 -1.17933780e-01 7.26913691e-01
2.71839201e-01 2.77513295e-01 3.76755387e-01 -4.97953832e-01
7.70737529e-01 9.67924535e-01 3.26081157e-01 -1.24378598e+00
-7.05139697e-01 9.38784052e-03 -1.01176000e+00 -6.42290592e-01
1.06609464e-01 -7.30828285e-01 -6.30391777e-01 1.50418794e+00
3.77895325e-01 -5.13685271e-02 4.83283132e-01 4.90310669e-01
1.16301584e+00 7.18187809e-01 7.15131044e-01 -6.51482940e-01
1.89769781e+00 -3.84176463e-01 -9.66520190e-01 1.28293723e-01
6.90533042e-01 -5.91993690e-01 4.38331872e-01 -1.52238086e-01
-8.05109501e-01 -3.63307506e-01 -2.98289448e-01 1.56168252e-01
-7.05049694e-01 1.73947722e-01 4.05896038e-01 6.43630624e-01
-6.34621143e-01 3.96845698e-01 -4.94951904e-01 -9.45144415e-01
2.34185725e-01 2.65651107e-01 -5.12982309e-01 3.57482046e-01
-1.26014495e+00 6.55506313e-01 1.00527763e+00 -3.86002749e-01
-2.48152941e-01 -5.45031667e-01 -9.04679596e-01 2.14335099e-01
5.08480847e-01 -5.16068578e-01 4.89014089e-01 -7.41180658e-01
-6.53906167e-01 1.17606664e+00 -4.80600655e-01 -5.42371273e-01
-1.29765227e-01 -4.24865723e-01 -6.06309175e-01 3.50319862e-01
7.91273892e-01 3.53905439e-01 5.90430260e-01 -1.36417723e+00
-9.76946294e-01 -4.57150102e-01 -8.15928802e-02 3.29916596e-01
-7.28099048e-01 1.00226939e+00 -2.01498210e-01 -9.07279789e-01
3.45661968e-01 -8.91436279e-01 -4.22991216e-01 -1.12341785e+00
-1.24511504e+00 -8.39706719e-01 5.34911752e-01 -7.79337764e-01
1.90375745e+00 -2.12409353e+00 1.70849442e-01 5.06063282e-01
6.93421006e-01 -1.87567025e-01 5.60533464e-01 7.92531908e-01
-4.42075670e-01 9.18950796e-01 4.04554009e-02 -3.15666974e-01
-6.03011735e-02 9.98945092e-04 -2.06557006e-01 4.75910515e-01
1.02770455e-01 6.41592860e-01 -1.04604423e+00 -8.83221090e-01
-5.56103103e-02 8.70253332e-03 -2.28888407e-01 -3.94909382e-01
1.95888042e-01 5.41644871e-01 -7.17996657e-01 5.50868869e-01
2.66498327e-01 -7.44308233e-02 4.57514733e-01 -2.35769391e-01
-5.87062061e-01 4.53741640e-01 -1.30717444e+00 1.10579681e+00
2.05207258e-01 7.39867270e-01 1.72831193e-01 -1.03561926e+00
8.51403773e-01 5.98377943e-01 7.41750658e-01 1.17851987e-01
3.25536013e-01 7.87251256e-03 -1.52387381e-01 -4.86452401e-01
1.03531694e+00 -5.40052988e-02 -7.42663622e-01 2.39414692e-01
-1.11990020e-01 4.79267508e-01 5.63826978e-01 6.95702612e-01
8.76878262e-01 -4.58075851e-01 9.15735483e-01 -8.10511529e-01
6.98672354e-01 3.98117363e-01 7.07583725e-01 5.93551159e-01
1.25567839e-01 3.13376695e-01 5.59947252e-01 -2.04753354e-01
-1.07211375e+00 -7.22878993e-01 -2.59595215e-02 1.08629918e+00
2.88827479e-01 -1.01206899e+00 -7.77063549e-01 -5.96902728e-01
2.94336844e-02 1.06541455e+00 -6.26959980e-01 1.51937231e-01
-8.16867709e-01 -6.24570787e-01 6.62725449e-01 3.30214262e-01
3.35196406e-01 -8.89991879e-01 -2.93123692e-01 2.96488047e-01
-5.01913667e-01 -9.00562406e-01 -1.42579451e-01 3.92949134e-02
-3.46614003e-01 -8.28963399e-01 -5.10308385e-01 -7.50936747e-01
1.05885494e+00 4.76676151e-02 1.21918333e+00 1.27086088e-01
7.75779188e-02 3.04926217e-01 -8.11855078e-01 -5.71593463e-01
-4.54560310e-01 3.41461182e-01 5.21078110e-01 4.53980453e-02
6.93909645e-01 -1.89624503e-01 -3.40961486e-01 1.26544461e-01
-5.98821044e-01 -1.70052812e-01 -1.32491551e-02 4.30285811e-01
2.40393728e-01 3.81042391e-01 6.32739902e-01 -1.22913325e+00
9.34481919e-01 -8.33903372e-01 4.41683307e-02 3.80959660e-01
-4.81406838e-01 5.53325936e-02 4.19120252e-01 -5.47239304e-01
-1.07512927e+00 -1.86347902e-01 1.35932956e-02 1.74895361e-01
-7.41601527e-01 8.23681176e-01 -4.44720477e-01 7.85194755e-01
7.63808846e-01 -7.33462498e-02 -6.24667823e-01 -5.21243751e-01
4.12602782e-01 9.67571378e-01 4.71216023e-01 -5.41589320e-01
8.26817334e-01 5.78205824e-01 -4.24838215e-01 -1.12711835e+00
-3.80349666e-01 -1.24880254e+00 -7.72066295e-01 -7.98088759e-02
1.34046829e+00 -1.09110320e+00 -6.89234972e-01 1.25315890e-01
-1.54054511e+00 5.02800286e-01 -3.39788496e-01 6.45072997e-01
8.96276459e-02 4.70170319e-01 -4.70650673e-01 -9.08137560e-01
-6.82322264e-01 -4.00539994e-01 9.56534266e-01 4.43903744e-01
-9.44438636e-01 -1.04174221e+00 -9.43359435e-02 1.01548359e-01
-1.72092915e-01 5.36635816e-01 1.28303111e+00 -1.54948843e+00
4.42338318e-01 -3.34413275e-02 -1.50600560e-02 -1.41922561e-02
3.95901829e-01 -8.21407661e-02 -2.92273581e-01 -6.94503114e-02
-2.08072782e-01 3.97083819e-01 5.80298722e-01 2.15492547e-01
4.30244327e-01 -8.31723869e-01 -1.06218052e+00 -8.14105794e-02
1.09409678e+00 4.78966504e-01 5.81378937e-01 2.68990248e-01
9.51880217e-01 9.73231852e-01 5.75412095e-01 7.24475205e-01
2.23724172e-01 3.90028030e-01 -2.44305506e-01 5.25576212e-02
2.88482815e-01 -2.02766545e-02 2.07732484e-01 6.47000849e-01
-2.36269161e-01 -4.97593731e-01 -1.40828824e+00 8.54538858e-01
-1.84440541e+00 -1.15325081e+00 -4.41659361e-01 1.69545054e+00
6.52755737e-01 -1.68205351e-01 7.40578473e-02 -3.49113159e-02
1.34982169e+00 2.26196349e-02 -2.21214101e-01 2.26586610e-02
-3.15809809e-02 1.20139621e-01 4.66075778e-01 2.11565897e-01
-1.30808318e+00 1.37062252e+00 5.10273790e+00 9.17013407e-01
-4.90400046e-01 8.70555937e-02 4.36790347e-01 9.66052935e-02
-2.38639340e-01 3.90577614e-01 -1.32317841e+00 5.93430102e-01
7.97197759e-01 -5.95505178e-01 -1.90571308e-01 7.02121377e-01
3.99924815e-01 -1.90028593e-01 -8.28821182e-01 1.00955856e+00
3.85378748e-01 -1.39110756e+00 1.65266961e-01 1.39472261e-01
8.71567428e-01 -6.07798398e-01 -6.10798240e-01 2.63241351e-01
4.23642457e-01 -7.09599078e-01 8.64730299e-01 3.87937903e-01
5.69360793e-01 -8.46299052e-01 7.47376323e-01 4.40899342e-01
-1.32480168e+00 -1.26205996e-01 -4.47247952e-01 1.41923010e-01
5.25362492e-01 7.17369497e-01 -6.42305791e-01 7.47125924e-01
6.52213335e-01 5.39975226e-01 -3.77381057e-01 4.59143132e-01
-3.53018850e-01 7.27579951e-01 -2.61471838e-01 -3.29827756e-01
2.69196659e-01 -5.54459870e-01 8.67982090e-01 1.49472857e+00
3.07027072e-01 5.59007287e-01 1.97241321e-01 5.55626631e-01
-2.45827854e-01 6.71914518e-01 -6.21167064e-01 -1.86993197e-01
7.44053900e-01 1.19760132e+00 -1.18698192e+00 -7.92567372e-01
-5.37746698e-02 5.54726124e-01 2.21769094e-01 4.61308450e-01
-6.53795362e-01 -6.93003416e-01 6.39870346e-01 5.28662503e-01
7.44903758e-02 -2.39442632e-01 -1.58574075e-01 -1.09273291e+00
-3.87735903e-01 -7.06077695e-01 5.84617734e-01 -3.70640278e-01
-1.17804897e+00 5.01187384e-01 4.19567138e-01 -1.07771742e+00
-3.55749756e-01 -1.39051080e-01 -7.39443004e-01 6.66588604e-01
-5.10350645e-01 -9.41677451e-01 -2.91936826e-02 7.40900218e-01
4.81773704e-01 -5.13174236e-01 7.72096157e-01 2.64955878e-01
-7.35667288e-01 3.16533506e-01 1.58651903e-01 7.28820801e-01
6.48669302e-01 -1.08775318e+00 3.33390713e-01 9.09159243e-01
1.17267706e-01 1.12307465e+00 8.78122091e-01 -1.15328896e+00
-5.55144787e-01 -1.07044709e+00 1.67817938e+00 -3.07906985e-01
9.31460381e-01 -5.84250927e-01 -6.50675178e-01 6.46628320e-01
4.28202897e-01 -8.67478907e-01 9.95938897e-01 5.03974736e-01
2.80969702e-02 3.95492136e-01 -1.04159820e+00 9.66853559e-01
1.01008153e+00 -3.50744754e-01 -1.10565603e+00 7.16795206e-01
8.49956214e-01 1.29244789e-01 -8.15286398e-01 -1.74116120e-01
2.56956760e-02 -3.15110147e-01 1.01283789e+00 -9.58131254e-01
1.85760766e-01 -2.07491681e-01 2.01987937e-01 -1.07271469e+00
-5.24914682e-01 -7.21862793e-01 1.52726829e-01 2.19094300e+00
5.07451296e-01 -6.23739898e-01 5.63443661e-01 8.65243852e-01
-1.25056371e-01 1.71520367e-01 -1.11340535e+00 -4.30204272e-01
8.11202675e-02 -7.36313909e-02 4.10539776e-01 1.54287791e+00
4.46345061e-01 8.56735885e-01 -2.47241810e-01 1.32778227e-01
3.52835447e-01 -9.29477885e-02 4.87125486e-01 -1.63109827e+00
5.20712256e-01 -4.17245507e-01 -4.46278304e-01 -7.28141069e-01
6.92497790e-01 -8.31535280e-01 -1.70726404e-01 -1.71368814e+00
2.35478610e-01 -4.25033331e-01 1.91073596e-01 3.20385933e-01
-2.84300119e-01 -3.63866150e-01 2.74465773e-02 5.71356654e-01
-7.27490664e-01 2.27348030e-01 3.65584284e-01 -2.77882278e-01
-7.11745381e-01 -1.46892413e-01 -1.18809128e+00 1.03194690e+00
9.22881484e-01 -8.07481766e-01 1.03482060e-01 -1.10356972e-01
4.44997251e-01 -3.34805191e-01 9.00371149e-02 -6.66802645e-01
4.41112339e-01 -3.22480828e-01 9.18431804e-02 -6.56967163e-01
-3.19368929e-01 -6.69187546e-01 2.69611955e-01 3.11920255e-01
-3.47780436e-01 1.33227557e-01 -1.11723453e-01 3.04357260e-01
-3.23360801e-01 -6.56535685e-01 2.80490279e-01 -2.97142893e-01
-6.61561310e-01 -2.37393007e-01 -8.81368756e-01 2.19239891e-01
1.18178332e+00 -1.81103125e-01 -3.95678341e-01 -2.31191143e-01
-8.65613222e-01 1.82983205e-01 7.33649731e-02 2.41595343e-01
5.15549064e-01 -1.21355009e+00 -1.09539056e+00 -6.06751144e-01
2.34245181e-01 1.89175382e-01 -7.44272098e-02 7.07048535e-01
-3.68414879e-01 2.82517582e-01 2.51226217e-01 2.43986305e-02
-1.49668300e+00 7.28484571e-01 -2.64579564e-01 -4.12407547e-01
-5.91134906e-01 5.36117673e-01 3.68152648e-01 3.51857059e-02
1.26688033e-01 -1.08940519e-01 -1.02771664e+00 1.08596444e+00
5.22059083e-01 5.35297334e-01 -3.02277625e-01 -1.29878092e+00
-7.08164752e-01 3.81258875e-01 -1.91691875e-01 -1.18883610e-01
1.15965092e+00 -5.11571646e-01 -6.90936208e-01 3.77116174e-01
1.06534946e+00 4.06055719e-01 -5.31514138e-02 -2.62085646e-01
7.71857202e-01 9.37576219e-02 -4.07732069e-01 -1.13280952e-01
-6.08899891e-01 2.53698707e-01 4.06187028e-02 5.58386266e-01
7.17352211e-01 6.25756085e-01 2.50652373e-01 5.11644006e-01
2.06652567e-01 -1.48553073e+00 -3.60002041e-01 7.57409036e-01
7.03482509e-01 -8.70633483e-01 3.61054927e-01 -6.63556993e-01
-7.35687733e-01 8.68347228e-01 2.69635856e-01 6.79612532e-02
6.48573339e-01 -3.61040831e-02 -2.22396478e-01 -5.63688517e-01
-2.18908831e-01 -4.72729981e-01 2.21730381e-01 3.20343465e-01
3.90406877e-01 3.20164859e-01 -1.05216968e+00 8.96757782e-01
-2.66399920e-01 -9.66028094e-01 3.19432199e-01 8.12069118e-01
-4.41160232e-01 -6.61136091e-01 -7.38732278e-01 6.34057999e-01
-7.86279023e-01 -6.52884066e-01 -7.83418417e-01 9.66702163e-01
4.59259421e-01 1.40039659e+00 4.11210269e-01 -2.74633586e-01
4.32342440e-01 2.56864280e-01 -4.94122088e-01 -1.04250658e+00
-1.22325122e+00 1.83495775e-01 4.59958613e-01 3.03175569e-01
-8.73840511e-01 -8.81444037e-01 -1.60279644e+00 -4.31736648e-01
-4.80480701e-01 6.63652718e-01 3.82493556e-01 1.04949355e+00
2.59260446e-01 2.21022107e-02 4.52164292e-01 -3.14980954e-01
1.25834540e-01 -1.15818071e+00 -7.55782485e-01 9.53426719e-01
-2.93621898e-01 -5.41648090e-01 -4.07010108e-01 2.64474064e-01] | [9.575508117675781, 9.22384262084961] |
687187a8-99f2-4a69-8766-0ddeaaf8c643 | facial-action-units-detection-aided-by-global | 2210.13718 | null | https://arxiv.org/abs/2210.13718v1 | https://arxiv.org/pdf/2210.13718v1.pdf | Facial Action Units Detection Aided by Global-Local Expression Embedding | Since Facial Action Unit (AU) annotations require domain expertise, common AU datasets only contain a limited number of subjects. As a result, a crucial challenge for AU detection is addressing identity overfitting. We find that AUs and facial expressions are highly associated, and existing facial expression datasets often contain a large number of identities. In this paper, we aim to utilize the expression datasets without AU labels to facilitate AU detection. Specifically, we develop a novel AU detection framework aided by the Global-Local facial Expressions Embedding, dubbed GLEE-Net. Our GLEE-Net consists of three branches to extract identity-independent expression features for AU detection. We introduce a global branch for modeling the overall facial expression while eliminating the impacts of identities. We also design a local branch focusing on specific local face regions. The combined output of global and local branches is firstly pre-trained on an expression dataset as an identity-independent expression embedding, and then finetuned on AU datasets. Therefore, we significantly alleviate the issue of limited identities. Furthermore, we introduce a 3D global branch that extracts expression coefficients through 3D face reconstruction to consolidate 2D AU descriptions. Finally, a Transformer-based multi-label classifier is employed to fuse all the representations for AU detection. Extensive experiments demonstrate that our method significantly outperforms the state-of-the-art on the widely-used DISFA, BP4D and BP4D+ datasets. | ['Xin Yu', 'Zhigang Deng', 'Wei Chen', 'Yu Ding', 'Lincheng Li', 'Wei zhang', 'Zhipeng Hu'] | 2022-10-25 | null | null | null | null | ['3d-face-reconstruction', 'face-reconstruction'] | ['computer-vision', 'computer-vision'] | [ 1.43446892e-01 -2.37222388e-01 -9.61817801e-02 -5.51079750e-01
-8.00017059e-01 -4.62279677e-01 3.94599259e-01 -5.76706946e-01
3.09690982e-02 3.80179375e-01 6.86980709e-02 4.09241199e-01
4.09758985e-01 -6.51700199e-01 -3.83421361e-01 -8.67152035e-01
3.19652706e-01 -1.28523976e-01 -4.21447903e-01 -3.95483762e-01
-4.30756986e-01 5.56000412e-01 -1.66763270e+00 3.19785833e-01
5.12948155e-01 1.72058403e+00 -6.16879046e-01 1.08448066e-01
3.58484983e-02 8.56472611e-01 -4.15948987e-01 -6.15973771e-01
4.72298533e-01 -6.50967896e-01 -3.98303270e-01 4.31088924e-01
5.47538102e-01 -7.21211851e-01 -2.34457389e-01 1.06918132e+00
6.70276403e-01 -1.07825339e-01 6.85139537e-01 -1.56359839e+00
-7.15806782e-01 -8.11949596e-02 -9.82866764e-01 -2.87016004e-01
3.95655930e-01 1.12056136e-01 1.02260196e+00 -1.19926000e+00
4.85956758e-01 1.38270247e+00 7.11460769e-01 8.19071949e-01
-1.15889108e+00 -1.21457350e+00 1.24993011e-01 -5.27710468e-02
-1.70368481e+00 -7.64941931e-01 9.94117320e-01 -4.05823618e-01
6.13490462e-01 9.66580212e-02 4.68797207e-01 1.36565590e+00
-5.31443357e-01 9.91645813e-01 1.20931220e+00 -3.46863806e-01
-2.41520360e-01 8.81340653e-02 -1.37165546e-01 1.04295635e+00
-4.22445863e-01 -1.21763516e-02 -4.53887403e-01 -3.19905788e-01
7.24868536e-01 -7.64950439e-02 -2.31916264e-01 -1.21780327e-02
-4.67794925e-01 7.67972529e-01 2.67821997e-01 1.30988628e-01
-3.79825056e-01 -6.24934882e-02 5.57138503e-01 2.32039824e-01
8.01422358e-01 -2.04474535e-02 -1.39386967e-01 1.42153809e-02
-6.58811152e-01 2.27969155e-01 4.17746872e-01 8.99771571e-01
1.18131793e+00 -2.31203623e-02 -3.13953698e-01 1.45781469e+00
2.14745745e-01 3.29033405e-01 2.41319850e-01 -7.91308165e-01
1.51989415e-01 8.84818554e-01 -1.88160047e-01 -1.16263771e+00
-2.33476967e-01 -2.32124269e-01 -7.99895585e-01 2.77568102e-01
1.62713960e-01 -2.71979928e-01 -5.23273349e-01 2.13839841e+00
4.82640386e-01 3.17867666e-01 -3.49696837e-02 9.57962096e-01
8.25478852e-01 4.06320691e-01 1.29197821e-01 -3.35452929e-02
1.36176932e+00 -9.82145190e-01 -7.43661880e-01 -6.91424906e-02
8.40407908e-01 -5.65095365e-01 7.71910369e-01 1.21009067e-01
-8.86500955e-01 -5.96391797e-01 -9.01252031e-01 -1.55265629e-01
-1.49319112e-01 8.12498808e-01 4.83642220e-01 5.07992685e-01
-9.71732318e-01 1.94204986e-01 -3.69630009e-01 -1.06929526e-01
8.02114785e-01 5.38288593e-01 -8.20206046e-01 -8.59051049e-02
-1.27046883e+00 8.39893222e-01 5.37334159e-02 3.36344004e-01
-8.40506613e-01 -4.56266701e-01 -1.28031075e+00 -1.51847333e-01
2.53614187e-01 -3.09219718e-01 1.14658940e+00 -1.49463725e+00
-1.58918107e+00 1.38013732e+00 -3.48284662e-01 2.15427205e-01
4.15908962e-01 -1.69464294e-02 -4.86478060e-01 1.77669376e-01
1.35036305e-01 6.51284933e-01 1.03023469e+00 -1.25797391e+00
-5.28681099e-01 -6.44083798e-01 7.53328949e-02 1.41328290e-01
-7.15768874e-01 4.21253502e-01 -5.59465110e-01 -5.66218793e-01
-8.40891153e-02 -8.97554219e-01 2.32712775e-01 5.11058986e-01
-4.04692180e-02 -4.61441159e-01 9.61872995e-01 -6.25782847e-01
1.18250489e+00 -2.39861202e+00 6.66313395e-02 1.99782744e-01
4.12818044e-01 2.08656117e-01 -4.41209197e-01 -8.52150694e-02
-2.45010555e-01 -1.29680693e-01 -4.64539789e-02 -9.37946379e-01
3.68902571e-02 2.07451954e-01 5.25273122e-02 5.01049638e-01
7.92984545e-01 8.62498343e-01 -7.95746088e-01 -6.03965104e-01
5.74407540e-02 4.61475164e-01 -4.85482872e-01 3.02933961e-01
9.43812057e-02 2.91277856e-01 -5.28116763e-01 1.22910261e+00
9.31093454e-01 -1.09053254e-01 -1.07309241e-02 -4.43330884e-01
8.75071883e-02 -2.57382423e-01 -9.08629119e-01 1.56331384e+00
-6.58985019e-01 2.63505459e-01 3.80434155e-01 -8.25061321e-01
1.33774340e+00 4.34322923e-01 6.89321458e-01 -5.70939124e-01
6.60001934e-01 3.27090710e-01 -2.79150635e-01 -4.20123518e-01
-2.60547977e-02 -3.62764686e-01 -6.53747004e-03 4.46581095e-01
3.95471394e-01 4.35232401e-01 -1.18572459e-01 -1.32325783e-01
9.70134795e-01 2.67781109e-01 3.75981987e-01 1.35269776e-01
9.63098526e-01 -5.10367930e-01 9.80073929e-01 -7.40526617e-02
-6.26729846e-01 7.27040052e-01 6.80764019e-01 -3.85765314e-01
-6.31364048e-01 -7.90234447e-01 -9.74701419e-02 1.26056421e+00
6.53249398e-02 -5.51796854e-01 -7.89099634e-01 -1.00788164e+00
1.05377801e-01 1.11219414e-01 -1.03812993e+00 -2.97106653e-01
-2.88991392e-01 -8.35676789e-01 9.00493264e-01 6.19869351e-01
7.37048626e-01 -8.34100366e-01 4.98799831e-02 2.29420587e-02
-2.14837298e-01 -1.37511694e+00 -6.02577865e-01 -2.36925498e-01
-1.65143952e-01 -1.01628208e+00 -7.38029242e-01 -7.56323099e-01
8.05967093e-01 1.65047362e-01 6.40944004e-01 2.94956975e-02
-2.04781502e-01 2.18054160e-01 -4.09691960e-01 -3.66727322e-01
-4.04045254e-01 -3.30226719e-01 2.17271432e-01 9.84276295e-01
8.28996539e-01 -6.49423361e-01 -5.37491858e-01 4.33924973e-01
-5.62009931e-01 -1.25536337e-01 6.43909633e-01 9.88935411e-01
5.06532550e-01 -4.27603751e-01 7.34686792e-01 -4.79990453e-01
5.27753532e-01 -3.85146230e-01 -2.65272498e-01 3.31090212e-01
-1.51059330e-01 -3.35111678e-01 4.85531151e-01 -6.21425688e-01
-1.16896963e+00 4.85729307e-01 -3.42756569e-01 -1.13872612e+00
-1.29783154e-01 1.17646195e-01 -5.40632486e-01 -5.14569879e-01
5.38875222e-01 1.66875780e-01 5.05647898e-01 -2.51818657e-01
1.47006571e-01 9.86293674e-01 4.59832072e-01 -6.70918107e-01
5.71806431e-01 5.26062250e-01 -1.98006388e-02 -7.71346509e-01
-9.67681229e-01 -5.42527556e-01 -6.74695075e-01 -4.74998713e-01
8.13561320e-01 -1.26279294e+00 -7.40957141e-01 8.18182349e-01
-1.17941129e+00 5.46387676e-03 9.54304039e-02 1.15147367e-01
-4.68413025e-01 2.99474090e-01 -7.58455873e-01 -8.73210132e-01
-4.77752537e-01 -1.14772487e+00 1.50018525e+00 2.51816422e-01
-4.04157907e-01 -6.41417801e-01 -5.26277535e-03 4.37780440e-01
-4.15903814e-02 5.91171443e-01 4.76180285e-01 -3.46258342e-01
-2.88805980e-02 -3.12305808e-01 -6.22509480e-01 8.34281147e-01
6.36444211e-01 6.91684559e-02 -1.46460676e+00 -1.91487391e-02
-3.68257314e-02 -8.25497270e-01 6.69648230e-01 -1.62741154e-01
1.11614144e+00 -1.92342207e-01 -1.95813999e-01 7.33121991e-01
1.13688779e+00 -6.04838990e-02 3.89862388e-01 -1.75475087e-02
8.85097623e-01 8.14865530e-01 6.93253458e-01 5.88408709e-01
3.00654024e-01 8.14551175e-01 3.46216261e-01 -2.51499176e-01
-9.53493789e-02 -2.07246542e-01 5.21370411e-01 4.78679150e-01
-2.55707949e-01 2.56401837e-01 -5.24872839e-01 4.49388236e-01
-1.75391817e+00 -8.59125793e-01 3.39964718e-01 1.69812965e+00
9.61248398e-01 -4.06067044e-01 2.89589703e-01 -9.74205732e-02
6.06137514e-01 1.98126018e-01 -5.56829393e-01 -2.28895068e-01
-4.02977288e-01 2.82424778e-01 1.84421744e-02 1.46279469e-01
-1.27298105e+00 1.07013083e+00 5.33864069e+00 9.37214375e-01
-1.23545218e+00 2.58432806e-01 6.50296748e-01 -1.75123021e-01
3.59226801e-02 -4.29081053e-01 -9.31392550e-01 3.53848010e-01
4.27666575e-01 -8.59656706e-02 7.86687732e-02 1.12497401e+00
1.36277378e-01 3.51490200e-01 -9.87642825e-01 1.38968647e+00
4.93911386e-01 -8.38333189e-01 8.34958181e-02 9.75212455e-02
6.57086313e-01 -3.83864820e-01 8.03734921e-03 3.85902405e-01
2.29120944e-02 -9.68338490e-01 5.49119711e-01 2.24996209e-01
1.18698633e+00 -7.47292757e-01 6.42066956e-01 6.03007106e-03
-1.27935851e+00 -1.50575891e-01 -1.62691236e-01 1.10916393e-02
-6.59591891e-03 1.10251859e-01 -4.34228241e-01 4.62334722e-01
6.28692269e-01 1.10970187e+00 -3.89155060e-01 2.48486489e-01
-3.05969924e-01 1.72880888e-01 -3.31233978e-01 1.43547848e-01
3.06670934e-01 -4.70546961e-01 7.50904530e-02 1.01731229e+00
2.27036431e-01 4.01004702e-01 8.65020305e-02 9.77140307e-01
-2.94708163e-01 2.56104857e-01 -6.41923249e-01 6.25047460e-02
2.18342036e-01 1.72922111e+00 6.97697997e-02 -7.05283135e-02
-8.89587939e-01 1.34910762e+00 6.47200763e-01 2.09675997e-01
-8.73767614e-01 -5.87929003e-02 1.31838679e+00 -2.34182850e-01
3.37048769e-02 2.66470283e-01 1.68895066e-01 -1.19606864e+00
1.20063238e-01 -1.03494322e+00 3.45279485e-01 -6.58955336e-01
-1.55360115e+00 6.76894367e-01 -3.43687803e-01 -1.32795024e+00
-1.62039280e-01 -8.52004409e-01 -5.16529322e-01 9.93588567e-01
-1.53239536e+00 -1.75146234e+00 -6.67354584e-01 7.80882061e-01
2.42179692e-01 -1.61805004e-01 1.10945475e+00 6.61573052e-01
-1.01676834e+00 1.19935679e+00 -3.67375374e-01 6.50653362e-01
8.37945998e-01 -6.96780741e-01 -2.01141804e-01 5.47905147e-01
-7.30509311e-02 4.09860790e-01 1.27244800e-01 -2.51512945e-01
-1.00440383e+00 -1.18600774e+00 5.72248399e-01 -2.17198804e-01
6.69283450e-01 -5.59438169e-01 -9.30783808e-01 7.66036391e-01
-3.62685740e-01 5.05371690e-01 1.03086853e+00 4.97603118e-02
-6.48510218e-01 -3.07034552e-01 -1.13325548e+00 6.04465902e-01
1.28028226e+00 -8.26268971e-01 -1.54095143e-01 1.42392144e-01
1.51171118e-01 -3.44567001e-01 -9.95363474e-01 6.27516329e-01
8.30069423e-01 -8.99354756e-01 7.14346349e-01 -4.77075011e-01
5.28996348e-01 -1.28896281e-01 -2.33256489e-01 -1.09614861e+00
-2.04244494e-01 -5.29531360e-01 -9.33836848e-02 1.53371227e+00
1.31774828e-01 -5.36368966e-01 9.10151482e-01 5.65950394e-01
6.98638409e-02 -9.86958921e-01 -8.29762340e-01 -5.97992301e-01
-1.94651350e-01 -1.01126783e-01 6.24075353e-01 1.15042579e+00
-7.67365471e-02 4.36391681e-01 -5.50565600e-01 -2.67041624e-02
5.50872326e-01 2.00196192e-01 8.71644974e-01 -1.02881289e+00
-6.11569500e-03 -5.35519183e-01 -6.54748857e-01 -9.43938494e-01
8.07907820e-01 -8.32277000e-01 -1.14852078e-01 -8.28124702e-01
2.69315690e-01 -3.70223373e-01 -3.71659875e-01 9.26495790e-01
-2.70397455e-01 5.66197276e-01 4.67609055e-03 9.98826474e-02
-3.03089112e-01 1.09711528e+00 1.25624108e+00 -1.77457064e-01
-3.01982537e-02 -3.51498909e-02 -7.17132270e-01 7.53592610e-01
6.70210063e-01 -7.09364489e-02 -2.69520134e-01 -1.08146884e-01
-2.73811072e-01 -2.87971735e-01 4.00103599e-01 -6.86569691e-01
-9.70966592e-02 1.35063633e-01 4.58720416e-01 -2.16648728e-01
7.85097122e-01 -7.18675971e-01 -2.27514654e-01 -1.47443369e-01
-1.87435299e-02 -2.39365682e-01 3.23585212e-01 1.91481486e-01
-5.99430263e-01 1.27019107e-01 9.20724928e-01 -2.53164452e-02
-8.58515382e-01 7.34882951e-01 3.15814689e-02 -2.93236256e-01
1.32513249e+00 -2.65231282e-01 -2.53445860e-02 -4.21693742e-01
-6.19631648e-01 4.44200903e-01 3.96284550e-01 6.10373020e-01
5.67080498e-01 -1.79149306e+00 -8.45131934e-01 4.59333569e-01
5.80758035e-01 -1.87626094e-01 3.36040318e-01 8.91643643e-01
-1.79982319e-01 -1.80357158e-01 -4.67606336e-01 -4.89976615e-01
-1.84956264e+00 2.18220755e-01 6.99086607e-01 6.10790588e-02
-7.68408701e-02 1.17095733e+00 5.48775077e-01 -4.96631384e-01
-6.74139559e-02 3.39024037e-01 -1.67544276e-01 4.53196973e-01
7.82349169e-01 1.40586913e-01 -1.96267068e-01 -1.32602394e+00
-3.26129287e-01 8.33716631e-01 -1.33180141e-01 1.94037065e-01
1.10347867e+00 -6.35132641e-02 -4.17053282e-01 1.96650654e-01
1.76223588e+00 -1.25614867e-01 -1.41102600e+00 -4.48064923e-01
-3.99132639e-01 -4.61657107e-01 -1.12893105e-01 -4.46629792e-01
-1.29569256e+00 9.96530116e-01 4.79763448e-01 -4.71750945e-01
1.63472486e+00 5.51418290e-02 7.30761349e-01 -1.41446963e-01
2.62267739e-01 -9.57742393e-01 2.38554627e-01 2.15377778e-01
9.35231626e-01 -1.41986620e+00 -2.79358447e-01 -6.55514359e-01
-6.88081741e-01 1.09544551e+00 1.08043647e+00 2.00349674e-01
5.23633182e-01 2.06596315e-01 4.04405117e-01 -2.11580396e-01
-3.53202432e-01 -4.55874354e-01 2.58871317e-01 4.65265632e-01
2.10933968e-01 -1.63502783e-01 2.62836367e-02 8.97547305e-01
-1.79819502e-02 1.52331159e-01 -6.23875521e-02 7.28454828e-01
1.24704763e-02 -1.21228766e+00 -1.71576396e-01 2.44822651e-01
-5.29151857e-01 1.11745842e-01 -8.11936259e-01 7.50604689e-01
4.67202097e-01 6.84025526e-01 1.58224739e-02 -7.99714506e-01
4.37819213e-01 2.67647803e-01 6.35236800e-01 -4.81949449e-01
-5.25121033e-01 4.00512293e-02 7.91677237e-02 -7.39812255e-01
-3.99899364e-01 -7.21432269e-01 -1.01846242e+00 -1.83459371e-01
-3.58448267e-01 -3.11152071e-01 2.17386052e-01 7.47604489e-01
4.85626966e-01 1.06985748e-01 9.52090919e-01 -7.98585176e-01
-5.16266525e-01 -1.04459894e+00 -7.34807551e-01 7.11770773e-01
3.40074539e-01 -9.91459310e-01 -4.31310147e-01 -1.60944521e-01] | [13.62267017364502, 1.5776262283325195] |
474ae113-3db5-4a50-8341-bd4046d709e6 | qrrt-quality-biased-incremental-rrt-for | 2101.02635 | null | https://arxiv.org/abs/2101.02635v1 | https://arxiv.org/pdf/2101.02635v1.pdf | qRRT: Quality-Biased Incremental RRT for Optimal Motion Planning in Non-Holonomic Systems | This paper presents a sampling-based method for optimal motion planning in non-holonomic systems in the absence of known cost functions. It uses the principle of learning through experience to deduce the cost-to-go of regions within the workspace. This cost information is used to bias an incremental graph-based search algorithm that produces solution trajectories. Iterative improvement of cost information and search biasing produces solutions that are proven to be asymptotically optimal. The proposed framework builds on incremental Rapidly-exploring Random Trees (RRT) for random sampling-based search and Reinforcement Learning (RL) to learn workspace costs. A series of experiments were performed to evaluate and demonstrate the performance of the proposed method. | ['Suril V. Shah', 'Balaraman Ravindran', 'Francis James', 'Nahas Pareekutty'] | 2021-01-07 | null | null | null | null | ['optimal-motion-planning'] | ['robots'] | [ 6.34669587e-02 2.87485331e-01 -4.55703348e-01 3.28857116e-02
-4.69411135e-01 -3.84037256e-01 4.18806762e-01 9.44451522e-03
-3.81978393e-01 1.31496227e+00 -1.79218687e-02 -4.90534812e-01
-7.18628466e-01 -5.61898887e-01 -5.76945186e-01 -6.05935931e-01
-5.81979692e-01 4.27206010e-01 1.31664053e-01 -4.29353386e-01
8.48699331e-01 7.64120758e-01 -1.07588112e+00 -5.69679439e-01
1.07123899e+00 6.03526711e-01 8.71503949e-01 7.46406615e-01
3.87650102e-01 3.84893209e-01 -3.64892125e-01 5.10560632e-01
7.70195067e-01 -4.77633625e-01 -8.50402296e-01 2.50197291e-01
-3.09794456e-01 -8.33218098e-02 -1.50688112e-01 8.99489641e-01
4.69153196e-01 7.75793314e-01 6.21243000e-01 -9.91646647e-01
-1.97635423e-02 2.44798958e-01 -2.62392431e-01 2.51166672e-01
4.39160258e-01 5.02217174e-01 5.64739823e-01 -6.97299957e-01
9.21177745e-01 1.31277132e+00 4.60942179e-01 2.61119306e-01
-8.37037623e-01 -2.03385763e-02 -9.92002562e-02 3.09838444e-01
-1.36385953e+00 1.03982324e-02 7.74305701e-01 -1.03526153e-01
1.12962425e+00 1.17733754e-01 9.94139731e-01 3.56855452e-01
1.11587715e+00 2.21328393e-01 1.21943986e+00 -5.36730111e-01
6.71038747e-01 -2.58760035e-01 -4.64088887e-01 9.83540893e-01
5.51604450e-01 7.32731819e-01 -2.05745190e-01 -3.96936908e-02
1.06981325e+00 -1.21672079e-01 -6.17701486e-02 -1.04469419e+00
-1.06565762e+00 7.96573460e-01 5.90375304e-01 -5.10249883e-02
-7.82082677e-01 2.65184611e-01 2.56897330e-01 4.03742820e-01
-2.51803756e-01 9.65695918e-01 -3.95886540e-01 -1.54912323e-01
-4.25745606e-01 5.65317392e-01 7.42380440e-01 1.07377982e+00
6.77020848e-01 5.47988296e-01 -4.65070829e-02 2.94601649e-01
2.68092215e-01 3.72371942e-01 2.61451691e-01 -1.31557977e+00
4.68212336e-01 4.41169322e-01 7.49427736e-01 -8.60221684e-01
-5.42847097e-01 -3.68484408e-01 -3.38653207e-01 8.76941681e-01
2.01580107e-01 -6.44770443e-01 -7.94271410e-01 1.09288633e+00
6.24408722e-01 -2.36815348e-01 1.14671454e-01 1.06053376e+00
-4.26199317e-01 7.31177986e-01 -3.61144006e-01 -7.15264320e-01
3.61294210e-01 -9.70547438e-01 -8.13606262e-01 8.22825134e-02
5.80664933e-01 -3.64346296e-01 9.06165242e-01 4.71820354e-01
-1.12341797e+00 -6.04177415e-01 -1.37489533e+00 7.47354984e-01
-1.90213248e-01 -3.12582225e-01 2.18989462e-01 4.01681930e-01
-1.03368795e+00 1.10103917e+00 -8.57664049e-01 -1.87773511e-01
-7.93885812e-02 5.70965767e-01 2.01040089e-01 1.79125834e-02
-8.97848308e-01 1.42431736e+00 7.75648296e-01 2.37821147e-01
-1.30043590e+00 -1.22938320e-01 -8.05692911e-01 -4.13855016e-01
8.32404673e-01 -6.75950289e-01 1.24339736e+00 -4.73445266e-01
-1.88898134e+00 -2.89422691e-01 -9.26688686e-02 -4.93327886e-01
5.66955566e-01 -2.89495051e-01 2.14748317e-03 1.42031893e-01
8.07237253e-02 4.05330747e-01 9.21034217e-01 -1.23712027e+00
-5.98966777e-01 -1.06306635e-01 -1.84076309e-01 7.62704670e-01
2.04873085e-01 -6.22311831e-01 1.79698244e-01 -1.81902558e-01
2.10237399e-01 -1.12252748e+00 -1.03135490e+00 -4.50632662e-01
-1.77680224e-01 -2.73484945e-01 6.04379535e-01 -4.62739527e-01
1.18647373e+00 -1.32850683e+00 5.04381299e-01 5.78467488e-01
-4.10822451e-01 -1.85112506e-01 -1.04766060e-02 9.22738969e-01
3.43084604e-01 -2.65024006e-01 -6.57192320e-02 5.97715616e-01
-4.03201967e-01 3.36404085e-01 1.06282741e-01 4.62356299e-01
-5.60582541e-02 8.01911414e-01 -1.37169921e+00 -4.42814022e-01
5.05407870e-01 -1.58545837e-01 -3.16251457e-01 1.00180328e-01
-2.60034770e-01 5.92512786e-01 -7.89932489e-01 5.92759490e-01
1.91155434e-01 4.00301576e-01 3.27029884e-01 2.92835981e-01
-6.10475004e-01 3.48757990e-02 -1.26406145e+00 1.63578427e+00
-7.68789709e-01 3.26111108e-01 1.20223723e-01 -9.37134147e-01
1.29302049e+00 4.60620485e-02 3.95669878e-01 -4.97848064e-01
2.83505976e-01 3.58682334e-01 -1.01475436e-02 -7.49251068e-01
5.94494641e-01 -1.66030992e-02 -2.03484688e-02 1.06021412e-01
-1.77451506e-01 -6.86930299e-01 3.19188274e-02 -3.31593871e-01
1.15829706e+00 3.17621648e-01 6.60106778e-01 -5.12732863e-01
7.76181400e-01 6.37658834e-01 3.37716639e-01 7.34151006e-01
-2.21814558e-01 -2.64653027e-01 -8.75778496e-02 -6.55820727e-01
-1.00382376e+00 -9.17013705e-01 3.63736600e-01 5.35353839e-01
6.32717967e-01 3.89300734e-02 -4.29678023e-01 -5.47813475e-01
-9.58240684e-03 1.07100701e+00 -3.01938564e-01 -9.87213776e-02
-8.39543462e-01 -1.89378589e-01 -4.92136151e-01 2.05598950e-01
2.49128833e-01 -1.10605752e+00 -1.51114154e+00 3.95952910e-01
3.96907181e-01 -3.63932043e-01 -2.91932881e-01 3.02570283e-01
-1.41729748e+00 -1.33896875e+00 -5.88846445e-01 -8.23543012e-01
1.06463540e+00 2.13793606e-01 5.00897288e-01 -2.07964005e-03
-4.44942445e-01 5.99941611e-01 -2.05936655e-01 -4.24454331e-01
-3.64984930e-01 -2.95090992e-02 1.50875077e-01 -6.30800784e-01
-5.71516931e-01 -2.36957684e-01 -6.62093222e-01 4.30059791e-01
-1.78070039e-01 -2.78480083e-01 9.20489013e-01 1.09035432e+00
7.44857371e-01 6.31689429e-01 7.14532197e-01 -3.56188655e-01
1.17696285e+00 -3.99634689e-01 -1.16586626e+00 2.53300786e-01
-1.09397984e+00 4.52543348e-01 7.27243066e-01 -3.78429323e-01
-1.14388704e+00 3.73989493e-01 4.73935217e-01 -3.12389702e-01
1.28801748e-01 4.83346432e-01 2.42110655e-01 -4.20438111e-01
5.94164133e-01 1.83103725e-01 9.66452882e-02 -8.50591436e-02
5.04121780e-01 3.70251566e-01 4.66003686e-01 -4.47945267e-01
7.13425457e-01 3.27206068e-02 7.05139101e-01 -4.72467571e-01
-1.56267285e-01 -5.01631260e-01 -7.38238990e-01 -6.77105844e-01
5.32947183e-01 -2.43903980e-01 -6.91590607e-01 -1.06514074e-01
-8.58438671e-01 -5.38849890e-01 -3.18609148e-01 3.82537127e-01
-1.13195813e+00 6.77425489e-02 3.59683335e-02 -1.57688403e+00
-2.34784588e-01 -9.58827555e-01 4.88116980e-01 3.18048209e-01
-1.86593443e-01 -9.03864443e-01 -7.15576019e-03 -3.42829734e-01
3.61068100e-01 7.30841696e-01 5.74133873e-01 -1.05417483e-01
-8.34052444e-01 -3.24284077e-01 5.04954576e-01 -3.39288116e-01
1.12962998e-01 -5.08770406e-01 2.74606813e-02 -6.20229483e-01
1.65156126e-01 -1.59273520e-01 1.23765208e-01 6.29260898e-01
5.66902220e-01 -6.82752192e-01 -6.09045565e-01 1.24074794e-01
1.91858470e+00 9.10952687e-01 2.34534383e-01 8.31838429e-01
2.36464500e-01 5.87203741e-01 1.55794048e+00 6.03330255e-01
-4.78451252e-02 6.29422367e-01 8.17133546e-01 5.17631471e-01
2.38829508e-01 -2.60601342e-01 1.50002718e-01 3.84491593e-01
-2.82988340e-01 2.73658335e-01 -9.66642737e-01 8.19579482e-01
-1.96359682e+00 -8.74478221e-01 1.18572935e-02 2.28804803e+00
6.19254649e-01 3.22637230e-01 2.42235109e-01 1.04674749e-01
7.70847380e-01 -2.24736899e-01 -7.11038172e-01 -8.69862378e-01
7.07906365e-01 -3.06298882e-02 1.12045062e+00 9.03514206e-01
-5.66130579e-01 7.43382812e-01 7.12309599e+00 5.38118124e-01
-8.94718826e-01 -2.62777060e-01 1.77691668e-01 1.36684522e-01
-6.18289486e-02 2.48247296e-01 -5.60340464e-01 1.06070727e-01
8.36488843e-01 -6.55427396e-01 9.44733560e-01 1.20161891e+00
5.90797007e-01 -5.66034377e-01 -5.66429913e-01 5.11042595e-01
-4.79087174e-01 -1.32295310e+00 -3.82230401e-01 -1.69240341e-01
1.18230510e+00 -3.49836528e-01 -2.26902649e-01 6.02211915e-02
5.77305019e-01 -7.57458329e-01 6.70698047e-01 5.72363317e-01
3.44339758e-01 -1.25349522e+00 7.76384652e-01 8.45164716e-01
-1.13828635e+00 -6.98763132e-01 -6.07454836e-01 -3.85456949e-01
3.88833195e-01 1.82730914e-03 -1.72229290e+00 8.36766005e-01
1.90021411e-01 2.52290905e-01 -9.06184986e-02 1.38789332e+00
-2.90318072e-01 -9.46251377e-02 -6.57157525e-02 -9.77194905e-01
6.13947511e-01 -3.37300897e-01 9.10605133e-01 6.49744034e-01
5.71442664e-01 -6.70193955e-02 4.03460205e-01 7.19534397e-01
8.18847716e-01 -2.57162824e-02 -1.05252075e+00 4.03458595e-01
7.19559610e-01 8.24058592e-01 -8.47162485e-01 -1.47119120e-01
2.10891634e-01 6.78360343e-01 5.53787313e-02 2.48320833e-01
-3.88633370e-01 -7.48078942e-01 -5.85028380e-02 8.92274547e-03
5.28735220e-01 -8.29491556e-01 -3.60673398e-01 8.11652169e-02
-2.36929119e-01 -3.51211160e-01 2.57879227e-01 -5.88059485e-01
-5.27709067e-01 2.68724650e-01 5.60055614e-01 -1.35073864e+00
-7.90258169e-01 -2.81064004e-01 -5.97491860e-01 7.50029206e-01
-1.28436840e+00 -3.08533192e-01 -1.69738084e-01 3.06925029e-01
1.27160287e+00 -3.41761231e-01 4.97668535e-01 -7.63074279e-01
-3.26806940e-02 -7.83840418e-02 2.61371762e-01 -6.24202549e-01
1.70582396e-04 -1.30384922e+00 6.04112707e-02 6.45797789e-01
-5.57968497e-01 4.91286516e-01 1.09284890e+00 -1.12767303e+00
-2.01381111e+00 -8.73016119e-01 3.27531844e-01 -1.04483940e-01
5.33304453e-01 2.45378703e-01 -2.89452672e-01 2.02287987e-01
3.04193437e-01 -2.78983921e-01 -3.52809101e-01 -3.73110652e-01
7.74446428e-01 -8.70390907e-02 -1.17845118e+00 7.84724593e-01
9.27864492e-01 3.70701730e-01 -5.83379388e-01 1.81263134e-01
6.75257742e-01 -6.78622842e-01 -7.39471853e-01 5.31513214e-01
4.30106938e-01 -6.45866096e-01 8.88157427e-01 -3.05519551e-01
-2.57247478e-01 -2.58384526e-01 3.02772939e-01 -1.70800149e+00
-2.84924835e-01 -1.42234898e+00 -1.11732677e-01 3.06436568e-01
2.66486168e-01 -5.36314249e-01 8.30892801e-01 2.01330841e-01
-4.46776181e-01 -1.20761657e+00 -1.09887958e+00 -1.32643723e+00
-2.64828801e-01 1.52326534e-02 3.60710353e-01 4.18900102e-01
3.30728799e-01 9.49683189e-02 -3.25916708e-01 2.02986598e-01
7.38946080e-01 7.62777403e-02 6.50266588e-01 -7.13592768e-01
-7.20247999e-02 -1.00380726e-01 -1.09052606e-01 -7.62998283e-01
-1.44172922e-01 -5.60380280e-01 5.61338902e-01 -1.95130622e+00
-6.04061604e-01 -4.22806114e-01 -1.23879358e-01 -5.86528927e-02
4.91886921e-02 -8.28800857e-01 1.53751627e-01 1.97101474e-01
-6.05498731e-01 6.25886917e-01 1.81981957e+00 1.85234815e-01
-8.54735136e-01 4.17769492e-01 -3.78298871e-02 5.38473070e-01
1.12906444e+00 -4.70921308e-01 -8.39133799e-01 7.51105696e-02
6.81786612e-02 9.76930618e-01 -1.06036171e-01 -1.09024024e+00
2.36255005e-01 -8.12552214e-01 1.94699287e-01 -8.72200608e-01
7.99797177e-02 -1.04214966e+00 5.46092987e-02 1.37469769e+00
-4.49539244e-01 5.98971486e-01 1.25982882e-02 9.78322923e-01
2.26759270e-01 -5.99236727e-01 3.23576719e-01 -3.50111723e-01
-9.84973192e-01 -2.69323021e-01 -5.52264035e-01 -3.61351967e-01
1.41844261e+00 -4.88446414e-01 2.23448977e-01 -4.96663123e-01
-6.90053940e-01 5.03013730e-01 3.17127436e-01 1.45832673e-01
9.44342196e-01 -1.18257928e+00 -2.05682978e-01 -1.51850045e-01
-4.61344093e-01 1.15327118e-03 -2.86406875e-01 7.31365025e-01
-6.57055020e-01 7.07548201e-01 -5.70972502e-01 -4.17450458e-01
-9.78234291e-01 7.48898029e-01 1.88568532e-01 -3.85492682e-01
-4.81329471e-01 3.37742895e-01 -8.43239129e-01 -3.15410823e-01
2.67955929e-01 -2.53890336e-01 4.37937863e-02 -5.78791142e-01
-1.13973774e-01 1.01976597e+00 -2.65161425e-01 6.99211881e-02
-1.84930652e-01 6.31686985e-01 6.63035512e-01 -6.25081778e-01
1.27906859e+00 -2.88015932e-01 2.77073056e-01 4.69168454e-01
6.27998829e-01 -3.57636869e-01 -1.48255610e+00 3.74703646e-01
4.89951909e-01 -8.00849617e-01 -9.08843949e-02 -8.52322996e-01
-2.87521154e-01 3.33329529e-01 5.65767765e-01 1.20261490e-01
1.01294708e+00 -5.49368203e-01 5.40882647e-01 8.33334982e-01
1.02182078e+00 -1.65000582e+00 3.67643118e-01 6.07116282e-01
1.15421772e+00 -8.28731358e-01 2.95458823e-01 -3.36587548e-01
-6.83790803e-01 1.38009763e+00 5.81840277e-01 -6.34288251e-01
4.00150955e-01 3.27088274e-02 -1.80546582e-01 -1.39726788e-01
-8.13862145e-01 -1.07121296e-01 1.86319038e-01 8.49776864e-01
-2.02057704e-01 -7.03537092e-02 -9.51057136e-01 -3.32221061e-01
-7.10124373e-02 5.20827919e-02 5.09379625e-01 1.49560988e+00
-9.92785156e-01 -9.33758020e-01 -7.31488705e-01 1.31368980e-01
2.72569209e-01 5.12639761e-01 -1.60635620e-01 1.16173446e+00
-1.85598552e-01 8.17602813e-01 -3.53448778e-01 -2.80673385e-01
2.92696536e-01 -4.54560667e-02 7.24912047e-01 -4.77711856e-01
-2.82075077e-01 1.09555990e-01 4.17192936e-01 -6.71163738e-01
-6.91823363e-02 -7.44784117e-01 -1.66091526e+00 3.12887609e-01
-3.39842021e-01 4.31403548e-01 9.29909825e-01 6.60946369e-01
1.78725138e-01 5.24324298e-01 1.03338039e+00 -9.97592986e-01
-1.11506140e+00 -6.60756111e-01 -8.72325376e-02 -2.49116182e-01
2.51396865e-01 -9.38484371e-01 -8.99574682e-02 -3.21093887e-01] | [4.769009113311768, 1.5417054891586304] |
94c52a51-2358-40ad-8167-c666f96d53f8 | extending-the-adverbial-coverage-of-a-french | null | null | https://aclanthology.org/L12-1564 | https://aclanthology.org/L12-1564.pdf | Extending the adverbial coverage of a French morphological lexicon | We present an extension of the adverbial entries of the French morphological lexicon DELA (Dictionnaires Electroniques du LADL / LADL electronic dictionaries). Adverbs were extracted from LGLex, a NLP-oriented syntactic resource for French, which in its turn contains all adverbs extracted from the Lexicon-Grammar tables of both simple adverbs ending in -ment (i.e., '-ly') and compound adverbs. This work exploits fine-grained linguistic information provided in existing resources. The resulting resource is reviewed in order to delete duplicates and is freely available under the LGPL-LR license. | ['Matthieu Constant', 'Claude Martineau', 'Elsa Tolone', 'Stavroula Voyatzi'] | 2012-05-01 | null | null | null | lrec-2012-5 | ['prepositional-phrase-attachment'] | ['natural-language-processing'] | [-3.43962610e-01 3.02506000e-01 -5.72085619e-01 -2.45190397e-01
-7.30438828e-01 -1.25365853e+00 1.55747667e-01 9.77357149e-01
-6.45530641e-01 1.19954073e+00 5.40130019e-01 -4.31104600e-01
-3.91254500e-02 -8.07840288e-01 -6.71903729e-01 -1.68900281e-01
3.07944596e-01 3.90387267e-01 3.68980646e-01 -7.01046348e-01
1.19239591e-01 5.47044277e-01 -9.57764804e-01 6.43985271e-01
5.64329028e-01 1.00751841e+00 3.03963125e-01 2.95971036e-02
-2.67623067e-01 4.72299844e-01 -3.62721473e-01 -9.61537898e-01
1.12349026e-01 -4.40883130e-01 -8.71190310e-01 -2.99610525e-01
-7.57980719e-02 2.55297750e-01 7.03206810e-04 1.03907979e+00
2.88465582e-02 3.78504507e-02 3.71833175e-01 -4.94781017e-01
-7.45922089e-01 1.41805482e+00 1.58775598e-01 7.18033433e-01
7.71288753e-01 -2.91512221e-01 1.55683637e+00 -1.16977799e+00
1.18180096e+00 1.21024048e+00 4.41009343e-01 3.63422573e-01
-9.84272003e-01 -1.68370560e-01 3.00659299e-01 1.65601298e-01
-1.49542606e+00 -5.86184859e-01 5.62213778e-01 -2.66350091e-01
1.53564763e+00 1.58606529e-01 7.76351333e-01 1.00809669e+00
5.19226074e-01 6.29971385e-01 1.24184334e+00 -9.43751156e-01
-1.36428336e-02 3.55317295e-01 4.46609557e-01 4.23705548e-01
5.17823517e-01 1.03461646e-01 -5.69392025e-01 8.34070072e-02
6.13581121e-01 -6.61614776e-01 8.21285397e-02 2.04887405e-01
-1.10320997e+00 6.69268608e-01 3.42296287e-02 8.59016180e-01
-5.34291565e-01 -5.20025313e-01 8.27362597e-01 5.32454729e-01
3.17334533e-01 4.10294235e-01 -9.46866035e-01 -1.07889041e-01
-2.62477487e-01 2.58386314e-01 9.70371783e-01 1.37325037e+00
4.98852104e-01 5.95158711e-02 4.89881814e-01 9.15973186e-01
5.46663046e-01 3.06055784e-01 3.50566775e-01 -4.33917761e-01
4.62958038e-01 6.91265821e-01 2.06265673e-01 -7.09586740e-01
-4.20815289e-01 5.53585812e-02 1.75713122e-01 -6.75673723e-01
3.19168866e-01 -1.06532905e-04 -5.19304156e-01 1.44743812e+00
2.87858844e-01 -8.69503319e-01 3.90299082e-01 5.16656697e-01
1.45867062e+00 5.24588823e-01 4.33007538e-01 -7.10385621e-01
1.74413526e+00 -5.00792086e-01 -1.15857935e+00 -1.16994068e-01
4.02904838e-01 -1.05180705e+00 1.31629086e+00 3.13530654e-01
-1.44854355e+00 -3.21784317e-01 -9.71263230e-01 -3.79472494e-01
-9.64624107e-01 -2.04659216e-02 5.87439835e-01 6.59380853e-01
-5.89322150e-01 1.27225055e-03 -9.75359797e-01 -5.60547829e-01
-9.30607989e-02 1.97766304e-01 -3.55552137e-01 3.24713528e-01
-1.43552828e+00 1.09771037e+00 1.18451452e+00 6.06045537e-02
-5.34900784e-01 -3.27657789e-01 -1.33916688e+00 -5.63070536e-01
8.76315951e-01 3.22995454e-01 1.32176530e+00 -9.00570273e-01
-1.41801965e+00 1.50943124e+00 -2.23731309e-01 -5.35475671e-01
-1.28382176e-01 -5.09510264e-02 -1.14044690e+00 1.59971312e-01
3.68468642e-01 2.90380746e-01 2.89436519e-01 -8.55459154e-01
-8.53249073e-01 -2.36617714e-01 5.52776754e-01 1.82943985e-01
3.32054384e-02 1.14003766e+00 -1.34806365e-01 -1.13094687e+00
1.83598712e-01 -6.34363353e-01 1.92389324e-01 -8.95499706e-01
-2.90269494e-01 -4.63325083e-01 2.54983783e-01 -1.01181471e+00
1.90931737e+00 -1.97212732e+00 1.26652151e-01 3.44648361e-02
-1.55065641e-01 -5.48084043e-02 6.28968254e-02 8.12161565e-01
-3.05354863e-01 9.07092616e-02 -7.72182196e-02 1.31080538e-01
1.94192603e-01 7.38090813e-01 -3.17246854e-01 4.55794990e-01
3.35013606e-02 1.17107749e+00 -9.98206675e-01 -4.80882883e-01
1.68326974e-01 -3.02255973e-02 -3.66597384e-01 -4.54340041e-01
-4.69209671e-01 2.68110842e-01 -2.53541172e-01 1.20055306e+00
2.28673458e-01 4.99099493e-01 5.08261800e-01 -2.99223185e-01
-6.92945719e-01 1.48706150e+00 -1.15484047e+00 1.55034578e+00
-5.11708140e-01 1.17508238e-02 1.97849795e-01 -5.02968669e-01
6.27383351e-01 5.58209658e-01 7.21041560e-02 -3.36876929e-01
5.98797798e-01 7.53996134e-01 1.54722884e-01 1.83904208e-02
8.29478800e-01 -3.49825740e-01 -7.81591237e-01 1.62897065e-01
3.52855831e-01 -1.96100265e-01 1.02111399e+00 9.03136190e-03
5.19176185e-01 3.25097322e-01 1.41121960e+00 -8.22587371e-01
9.75476146e-01 3.22957426e-01 8.38661611e-01 1.91918775e-01
4.55159694e-02 -1.45839006e-01 4.02914226e-01 -3.70877475e-01
-7.18522191e-01 -1.32091594e+00 -9.47939932e-01 1.21766448e+00
-1.38599962e-01 -1.22503710e+00 -5.71964860e-01 -8.40882778e-01
-2.36366138e-01 1.21362507e+00 -3.86314005e-01 4.33013082e-01
-8.90801847e-01 -6.58350229e-01 4.29243088e-01 5.28978467e-01
-7.50075281e-02 -1.54918468e+00 -3.35458159e-01 6.42126024e-01
-3.06497335e-01 -1.39562798e+00 -3.10433120e-01 4.31727558e-01
-2.73068637e-01 -9.22366977e-01 3.25835466e-01 -9.16749835e-01
4.41690624e-01 -5.68431497e-01 1.44764602e+00 -1.73386261e-01
2.05311969e-01 1.44981757e-01 -8.42720807e-01 -7.86947727e-01
-9.11426663e-01 -8.75341706e-03 2.68747836e-01 -5.11787236e-01
9.56035554e-01 -2.34826714e-01 3.34992081e-01 9.02981609e-02
-8.44340444e-01 -6.17834389e-01 -7.68461905e-04 5.99605083e-01
1.08370817e+00 -5.27526103e-02 5.91024756e-01 -1.01153386e+00
6.51915669e-01 -2.80964762e-01 -8.47417653e-01 -5.42496815e-02
-1.15640521e-01 -4.88586694e-01 6.84966683e-01 -1.18927032e-01
-9.03381586e-01 -3.57484221e-01 -8.86016428e-01 5.44635415e-01
-4.06487703e-01 1.14442360e+00 -8.83363843e-01 -6.06308505e-03
4.75625455e-01 -3.17955129e-02 -6.38607979e-01 -6.87109947e-01
4.32232291e-01 5.80913007e-01 5.85592151e-01 -7.69974291e-01
2.72001624e-01 3.38636227e-02 -4.27654892e-01 -8.95198941e-01
-9.51534808e-01 -4.11032289e-01 -1.10681570e+00 4.39217919e-03
7.58594871e-01 -1.00185168e+00 -3.76930416e-01 6.11110777e-02
-1.02949703e+00 1.72275871e-01 -8.87862921e-01 4.80791718e-01
-5.03436863e-01 1.73168749e-01 -9.99237180e-01 -3.89506012e-01
7.13749463e-03 -9.28836107e-01 7.14564502e-01 -1.86350539e-01
-6.70179248e-01 -1.31302094e+00 -1.83666542e-01 -2.76626289e-01
-3.92893404e-01 1.31616876e-01 1.08799613e+00 -1.00833535e+00
-1.65538579e-01 -1.92747768e-02 2.68776715e-01 4.43690747e-01
3.77369881e-01 -1.53683186e-01 -1.37951240e-01 -4.28904444e-02
2.22995266e-01 -1.02812067e-01 4.23341513e-01 1.19093485e-01
3.11952010e-02 -6.23289168e-01 -7.17579648e-02 7.14715272e-02
1.76922679e+00 5.42372286e-01 4.44067121e-01 5.55801213e-01
2.31954157e-01 5.47497511e-01 9.41021204e-01 1.66050524e-01
4.85841841e-01 6.20323598e-01 -2.49542110e-02 7.87007987e-01
-7.05380514e-02 -2.53999710e-01 7.39113271e-01 1.60597861e+00
-9.77188870e-02 -3.97562921e-01 -9.84013379e-01 1.01758122e+00
-1.34670281e+00 -4.62989777e-01 -4.15653318e-01 1.75435531e+00
1.27948964e+00 4.87110108e-01 2.07764640e-01 1.10833146e-01
2.23105237e-01 2.31448844e-01 2.59056002e-01 -9.38957989e-01
-6.44379258e-01 6.74304187e-01 4.07836229e-01 9.71888006e-01
-1.07071304e+00 1.72914958e+00 7.06512594e+00 9.78973448e-01
-5.47248542e-01 5.61276674e-01 -4.46808875e-01 2.69353181e-01
-4.16930199e-01 1.55465558e-01 -1.49147606e+00 4.13899660e-01
1.28206825e+00 -2.27561921e-01 2.70487696e-01 6.69905603e-01
2.41261125e-01 -2.46215224e-01 -8.85659158e-01 4.48994249e-01
1.61636427e-01 -1.40793586e+00 1.55577928e-01 -2.09606171e-01
3.62221897e-01 1.22851968e-01 -3.73924226e-01 3.39036822e-01
1.85366586e-01 -4.32444483e-01 1.30555654e+00 2.02319458e-01
9.09751236e-01 -8.37795556e-01 8.42425048e-01 3.64618637e-02
-1.29812384e+00 1.25185952e-01 -5.20277858e-01 -2.42938042e-01
7.06005335e-01 3.64904195e-01 -4.26869839e-01 7.83866286e-01
5.74506044e-01 9.37033594e-01 -6.02776825e-01 5.22451460e-01
-7.99592376e-01 9.38736320e-01 -4.33792770e-01 -2.33329564e-01
2.56094635e-01 -5.79006732e-01 1.22626162e+00 1.48069596e+00
-1.73204407e-01 3.14835131e-01 3.71814936e-01 6.31330609e-01
6.15249202e-02 8.72221231e-01 -2.47571811e-01 -4.87700820e-01
3.66417497e-01 9.30277824e-01 -1.27305293e+00 -2.03515902e-01
-5.90962708e-01 6.01452112e-01 7.67187700e-02 -1.45774141e-01
-7.00610995e-01 -5.22886634e-01 5.37806094e-01 3.69277239e-01
3.18961203e-01 -4.45869565e-01 -1.00404650e-01 -1.08929062e+00
1.58211477e-02 -1.03433537e+00 6.44650102e-01 -4.59269494e-01
-1.52822590e+00 1.00796175e+00 4.68908191e-01 -8.25363457e-01
-4.43924367e-01 -1.02100468e+00 2.22807780e-01 8.15506935e-01
-9.66473103e-01 -1.40798175e+00 6.17087245e-01 4.51678127e-01
5.69626808e-01 -1.85244456e-01 1.21771824e+00 4.29979533e-01
-2.79308856e-01 4.47136223e-01 -1.20783031e-01 2.01169208e-01
4.60579604e-01 -1.32448256e+00 4.71823037e-01 9.75908339e-01
2.48972878e-01 8.44090760e-01 7.06231296e-01 -1.04194140e+00
-7.80562520e-01 -7.41265357e-01 1.79710209e+00 -8.99416625e-01
1.41524839e+00 -5.61022043e-01 -8.35460365e-01 1.36988854e+00
4.97075051e-01 -3.90940905e-01 8.99108768e-01 -4.88663130e-02
-1.36294328e-02 1.39149711e-01 -1.04181480e+00 5.68533897e-01
1.04000640e+00 -5.49689770e-01 -1.37661302e+00 4.83632475e-01
9.07415092e-01 -9.04393017e-01 -1.15691638e+00 3.14192176e-01
1.12168506e-01 -4.27494854e-01 6.32635713e-01 -7.44704902e-01
3.22216898e-02 -4.98903722e-01 -4.28409785e-01 -9.69087899e-01
9.63344425e-02 -7.73392200e-01 1.28224567e-01 1.22403288e+00
7.21054554e-01 -7.68400073e-01 2.19406150e-02 -1.72489762e-01
-7.14991331e-01 -3.77067268e-01 -1.21566272e+00 -6.92825079e-01
1.09269843e-01 -9.37288165e-01 5.41467905e-01 6.11995935e-01
5.65180242e-01 5.51543832e-01 2.22702742e-01 -2.76220709e-01
4.45056222e-02 -1.03636105e-02 -7.21677393e-02 -1.02183926e+00
-2.18286797e-01 -2.73405075e-01 -4.21814859e-01 -8.87066841e-01
5.05770087e-01 -1.33057928e+00 -1.87494695e-01 -1.21910644e+00
-6.64480329e-01 -3.18847030e-01 -1.71883464e-01 7.84099400e-01
3.40903997e-01 4.37805146e-01 9.48266760e-02 -5.00903055e-02
-4.70924616e-01 2.03514278e-01 9.70791698e-01 3.37925404e-01
-5.46871126e-01 -5.63854016e-02 -8.08704078e-01 1.31022036e+00
5.25420010e-01 -7.37551093e-01 1.61208242e-01 -1.30278483e-01
8.01723897e-01 -3.93676907e-01 -6.75768182e-02 -4.60569739e-01
-2.27536336e-01 -3.25567305e-01 -5.63510843e-02 -9.73553121e-01
2.15308100e-01 -7.62082458e-01 1.19153403e-01 2.07018591e-02
1.48072258e-01 5.48666060e-01 6.82515621e-01 -1.08317593e-02
-5.87062418e-01 -7.17993438e-01 6.69696212e-01 -5.21197140e-01
-8.64003479e-01 -7.18461499e-02 -8.93023252e-01 3.09384733e-01
9.84548330e-01 -1.69378236e-01 -4.50235270e-02 2.61488497e-01
-1.19047034e+00 -3.34426492e-01 5.07645190e-01 4.18335080e-01
4.32412088e-01 -1.20829654e+00 -5.33762157e-01 2.43553802e-01
2.78273761e-01 -4.92524564e-01 -1.98309705e-01 9.52040315e-01
-1.03105974e+00 7.25997627e-01 -3.77183110e-01 2.38921881e-01
-9.45558548e-01 8.77389431e-01 -4.86891903e-02 -8.11229944e-02
-6.09465063e-01 7.08713710e-01 -4.41659689e-01 -3.96697015e-01
2.09047850e-02 -6.54685438e-01 -4.07717913e-01 3.42076331e-01
4.35081363e-01 8.68378356e-02 3.33058089e-01 -1.48621321e+00
-7.57829905e-01 8.91313404e-02 -1.05154470e-01 -2.47083545e-01
1.20503747e+00 -5.23000777e-01 -1.14544022e+00 9.69080031e-01
7.82097101e-01 1.33887947e+00 -1.97975617e-02 5.82096539e-02
4.64926898e-01 8.38163868e-02 -3.53920758e-01 -1.08222616e+00
-3.01367700e-01 2.01533765e-01 -2.77494550e-01 2.61976480e-01
1.00382483e+00 2.90517062e-01 8.85525525e-01 2.10326850e-01
5.35133839e-01 -1.26165617e+00 -8.15155745e-01 1.18304396e+00
1.06366479e+00 -5.95289230e-01 -5.05067734e-03 -1.13122201e+00
-6.66504741e-01 9.73256409e-01 9.85828713e-02 -2.41255492e-01
1.04858458e+00 3.93132895e-01 1.08718894e-01 -1.93342656e-01
-3.70849401e-01 -5.06414711e-01 3.46950412e-01 5.29117703e-01
7.36833334e-01 2.78497815e-01 -1.71186483e+00 1.52335072e+00
-8.02217305e-01 -4.05594945e-01 6.42614484e-01 9.47232842e-01
-7.37955198e-02 -1.64406860e+00 -2.32378826e-01 1.94803551e-01
-1.00457609e+00 -6.53431475e-01 -5.93594909e-01 1.24891973e+00
6.16441250e-01 8.44317913e-01 -1.75167806e-02 1.17418498e-01
6.65964603e-01 9.15344283e-02 6.22255087e-01 -1.16147017e+00
-1.03553879e+00 4.58558559e-01 7.47951210e-01 -3.50387454e-01
-8.47257674e-01 -9.81770158e-01 -1.36131430e+00 -4.49547060e-02
-2.59464890e-01 5.12053847e-01 3.88234794e-01 1.07100809e+00
-3.36676478e-01 2.94127196e-01 -3.02882910e-01 -4.18538719e-01
7.13785440e-02 -8.72284055e-01 -9.76854205e-01 -1.78162515e-01
-2.74961472e-01 -7.36372352e-01 -2.05884919e-01 1.00807220e-01] | [10.330694198608398, 9.951729774475098] |
173afcc8-d767-4ba8-9c6d-e908d7c654de | instance-adaptive-self-training-for | 2008.12197 | null | https://arxiv.org/abs/2008.12197v1 | https://arxiv.org/pdf/2008.12197v1.pdf | Instance Adaptive Self-Training for Unsupervised Domain Adaptation | The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such a problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have difficulty in balancing scalability and performance. In this paper, we propose an instance adaptive self-training framework for UDA on the task of semantic segmentation. To effectively improve the quality of pseudo-labels, we develop a novel pseudo-label generation strategy with an instance adaptive selector. Besides, we propose the region-guided regularization to smooth the pseudo-label region and sharpen the non-pseudo-label region. Our method is so concise and efficient that it is easy to be generalized to other unsupervised domain adaptation methods. Experiments on 'GTA5 to Cityscapes' and 'SYNTHIA to Cityscapes' demonstrate the superior performance of our approach compared with the state-of-the-art methods. | ['Jiaqi Zou', 'Shanghang Zhang', 'Chuang Zhu', 'Ke Mei'] | 2020-08-27 | null | https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/5406_ECCV_2020_paper.php | https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123710409.pdf | eccv-2020-8 | ['synthetic-to-real-translation'] | ['computer-vision'] | [ 2.33960286e-01 1.45690441e-01 -3.37807536e-01 -7.73240685e-01
-8.77068818e-01 -5.65643609e-01 4.38295096e-01 -1.31869316e-01
-5.03448248e-01 7.29389131e-01 -1.96250334e-01 -1.44607082e-01
-5.81020750e-02 -6.63014293e-01 -5.75785220e-01 -8.02519083e-01
4.63771969e-01 7.94316411e-01 5.16525269e-01 -4.16396819e-02
9.26973578e-03 2.10241064e-01 -1.40456498e+00 1.70632347e-01
1.34574664e+00 8.77490163e-01 3.05584639e-01 1.73355699e-01
-4.58282918e-01 3.96590650e-01 -5.11941910e-01 -1.94796592e-01
2.12833822e-01 -6.24114931e-01 -1.22616458e+00 6.06811345e-01
3.49326432e-01 2.52914578e-02 2.29808062e-01 1.17930400e+00
4.80156332e-01 2.89218128e-01 9.33974445e-01 -1.15755486e+00
-5.51291525e-01 3.95442396e-01 -5.91041982e-01 6.88087521e-03
-2.84531057e-01 -2.31992930e-01 7.98373282e-01 -7.87674010e-01
8.16524267e-01 1.05599594e+00 7.41313100e-01 8.84097159e-01
-1.22567499e+00 -5.73051751e-01 4.94956851e-01 1.51334211e-01
-1.29061663e+00 -2.26472884e-01 8.61582220e-01 -4.34681803e-01
4.82594550e-01 -1.59454681e-02 3.21562141e-01 1.03287554e+00
-4.99796033e-01 1.04749894e+00 1.35764885e+00 -6.82272434e-01
5.88071108e-01 3.50718141e-01 1.67183235e-01 6.58052385e-01
-8.24076459e-02 -2.40386471e-01 -1.13185212e-01 1.61540732e-02
8.92886996e-01 -8.94234627e-02 1.10704653e-01 -8.26725841e-01
-8.23388278e-01 8.99993420e-01 2.32305318e-01 3.43625277e-01
-3.85398977e-02 -3.26554298e-01 4.00453806e-01 1.37261793e-01
9.25265849e-01 4.73453760e-01 -8.70745957e-01 3.48822437e-02
-9.12790298e-01 1.13962941e-01 5.81387639e-01 1.05320489e+00
7.92888224e-01 4.98953983e-02 -2.24875156e-02 1.53995228e+00
1.96499467e-01 1.85271561e-01 7.27043092e-01 -9.60303843e-01
3.19079310e-01 7.85815656e-01 1.87230170e-01 -3.97785038e-01
-4.46825504e-01 -4.63026196e-01 -6.08176529e-01 1.84977353e-01
6.05691373e-01 -2.59088576e-01 -1.31052375e+00 1.74994862e+00
6.33539259e-01 3.46470594e-01 1.95223019e-01 8.71781409e-01
8.45143557e-01 5.07467985e-01 3.10920477e-01 -1.08419523e-01
1.03548408e+00 -1.44823158e+00 -5.90260267e-01 -3.71339411e-01
7.63372958e-01 -5.83400011e-01 1.22141933e+00 1.51740447e-01
-8.19704890e-01 -7.55657434e-01 -8.45507145e-01 5.14674969e-02
-4.81148720e-01 2.73651361e-01 5.39174616e-01 6.52325273e-01
-7.67040372e-01 5.56623995e-01 -7.75658667e-01 -5.60200810e-01
5.51390469e-01 3.36112171e-01 -1.82691231e-01 -8.32109079e-02
-1.05232620e+00 6.74965560e-01 7.00916052e-01 -3.38159889e-01
-7.11084902e-01 -5.78213692e-01 -8.54840636e-01 -2.51499623e-01
6.21589363e-01 -3.31480503e-01 1.52941799e+00 -1.38885438e+00
-1.87077081e+00 1.20605028e+00 -1.14773773e-02 -3.87396008e-01
4.96367484e-01 -8.80431756e-02 -4.27220434e-01 1.18514590e-01
4.53473568e-01 8.63150716e-01 8.58573973e-01 -1.48306024e+00
-9.12721395e-01 -3.35551262e-01 -2.16817245e-01 4.06554133e-01
-4.67633247e-01 -1.83670998e-01 -6.15079403e-01 -8.17796409e-01
3.23257834e-01 -8.74589622e-01 -4.79153395e-01 -3.28416079e-01
-2.20638096e-01 -5.20942211e-01 6.95917666e-01 -2.94182479e-01
1.05238438e+00 -2.26668596e+00 -3.78051065e-02 1.08813062e-01
7.25922585e-02 5.75205743e-01 -1.79706499e-01 1.44512067e-02
-1.00326382e-01 -1.15650939e-02 -7.40909457e-01 -4.62148279e-01
5.14402660e-03 4.59603667e-01 3.65019888e-02 2.93969840e-01
3.49134833e-01 6.49393141e-01 -1.05462730e+00 -7.29053736e-01
4.45817001e-02 2.01572552e-01 -4.98736441e-01 2.61377275e-01
-5.59321702e-01 8.00547361e-01 -6.48747683e-01 6.48816586e-01
7.97116816e-01 -3.48773062e-01 2.32134610e-01 2.47862965e-01
-1.04526006e-01 2.15692699e-01 -1.17708564e+00 1.90120661e+00
-3.42650801e-01 1.82479635e-01 2.08655018e-02 -1.36068869e+00
1.14592898e+00 1.49178088e-01 5.24987400e-01 -6.99852467e-01
2.30829284e-01 3.43157411e-01 -3.63006681e-01 -5.23404777e-01
3.58924419e-01 -2.83954948e-01 -1.22530676e-01 3.71355683e-01
2.80229330e-01 -1.58104300e-01 2.44073182e-01 -1.13891944e-01
6.88244164e-01 5.68673432e-01 1.52878404e-01 -4.31900173e-01
5.28000593e-01 3.10497373e-01 9.68801439e-01 5.59528112e-01
-4.27580059e-01 8.21709394e-01 2.42249280e-01 -3.68487626e-01
-1.03154969e+00 -9.41710532e-01 -2.39173502e-01 1.37726724e+00
2.62868792e-01 -5.71629032e-02 -1.31210971e+00 -1.25274611e+00
-1.72289014e-01 6.71529949e-01 -5.51108539e-01 -6.11072108e-02
-5.21144390e-01 -8.27701330e-01 2.30001971e-01 6.71502292e-01
9.05142188e-01 -1.07705772e+00 -1.71794876e-01 3.73966038e-01
-3.05103987e-01 -1.26293504e+00 -4.62132663e-01 3.92547727e-01
-1.16786873e+00 -7.41682410e-01 -9.90023196e-01 -1.38640809e+00
9.51921642e-01 1.07205011e-01 1.08483577e+00 -3.30255985e-01
1.12408027e-01 9.99662504e-02 -5.63010871e-01 -3.59883130e-01
-5.26101530e-01 3.80951464e-01 -1.36854336e-01 1.92771420e-01
4.48696643e-01 -3.37514222e-01 -4.76446331e-01 5.88493764e-01
-9.30291235e-01 3.37681808e-02 3.51363063e-01 8.37934017e-01
1.04343700e+00 2.02371806e-01 9.07186508e-01 -1.54348314e+00
3.89498442e-01 -4.40839082e-01 -5.90576231e-01 2.97270030e-01
-8.57419550e-01 1.31186619e-01 7.60741174e-01 -6.00836515e-01
-1.49272609e+00 4.71742630e-01 -2.05250919e-01 -2.83560008e-01
-6.63360000e-01 2.02562228e-01 -4.24500674e-01 1.34292413e-02
7.63224244e-01 -9.15829558e-03 -1.75408706e-01 -8.08374584e-01
5.25349915e-01 7.39943445e-01 5.36732972e-01 -6.88419223e-01
5.18356979e-01 6.21417880e-01 -3.66110146e-01 -5.39987206e-01
-1.09956813e+00 -8.57769668e-01 -9.24098849e-01 -2.28223745e-02
8.60132098e-01 -8.96524489e-01 4.71656658e-02 5.75454414e-01
-6.60953939e-01 -6.73117936e-01 -4.71101433e-01 2.49761730e-01
-6.51362002e-01 3.31634432e-01 -4.93688226e-01 -5.48088491e-01
-1.12372339e-01 -1.05871379e+00 9.80480492e-01 4.51552719e-01
-5.75808808e-02 -1.36136448e+00 1.12785950e-01 4.82256085e-01
1.04076348e-01 1.44157663e-01 6.89356506e-01 -9.05221760e-01
-8.60170275e-02 6.79745376e-02 -2.88152367e-01 6.03485525e-01
2.17076018e-01 -3.47716212e-01 -9.42310750e-01 -1.93491355e-01
-1.38848278e-04 -4.46821421e-01 8.59929204e-01 4.36591327e-01
1.12238181e+00 -2.82393061e-02 -3.76877367e-01 5.70092797e-01
1.27754557e+00 2.43574515e-01 4.64921027e-01 7.80541837e-01
6.50623739e-01 6.72894955e-01 1.10910344e+00 2.52149612e-01
4.82184678e-01 6.33643389e-01 1.14687815e-01 -4.22532111e-01
-2.31619224e-01 -2.02810869e-01 8.86025131e-02 8.66836190e-01
1.02549642e-01 -1.22893583e-02 -9.37711954e-01 8.71487617e-01
-1.96870136e+00 -4.59199369e-01 -1.16823874e-01 1.92525721e+00
1.01055837e+00 1.38647974e-01 3.17507774e-01 1.04296379e-01
8.57213795e-01 -1.32025152e-01 -6.13646328e-01 -3.58733177e-01
-7.76514634e-02 2.64841646e-01 4.36155379e-01 3.15313727e-01
-1.61272645e+00 1.52315903e+00 6.22724628e+00 1.16393721e+00
-9.15855706e-01 3.14126015e-01 7.42057323e-01 3.41664612e-01
-1.78833321e-01 -1.31882474e-01 -9.19633269e-01 3.62289727e-01
7.98650146e-01 3.28423053e-01 2.45152637e-02 1.27898264e+00
1.66696720e-02 -4.47294153e-02 -8.83359730e-01 7.43502975e-01
1.09775275e-01 -9.42719400e-01 -2.06170321e-01 -2.14495182e-01
1.29142535e+00 -1.51505336e-01 5.23651540e-02 4.52035218e-01
5.88194966e-01 -5.44754565e-01 6.12377048e-01 -7.42644221e-02
8.96596551e-01 -8.06980848e-01 5.89117646e-01 4.32605267e-01
-9.71786857e-01 3.42634991e-02 -5.12287378e-01 1.61139995e-01
-2.57018395e-02 4.72253323e-01 -9.78918016e-01 5.38093388e-01
7.58745193e-01 6.88145995e-01 -5.79434931e-01 9.90773559e-01
-4.08957005e-01 8.20644081e-01 -2.02071220e-01 1.21529683e-01
5.52041590e-01 -4.08150673e-01 2.65646666e-01 1.24788582e+00
5.60947880e-02 1.07809603e-02 3.35359514e-01 7.11465359e-01
-1.06466249e-01 3.89869988e-01 -3.83114755e-01 1.91212252e-01
2.63686508e-01 1.03342807e+00 -1.24123323e+00 -4.95259821e-01
-3.81198823e-01 1.16906834e+00 5.00783801e-01 5.02059340e-01
-8.29753041e-01 -1.57371938e-01 3.44382524e-01 3.61516252e-02
4.48895633e-01 1.86089445e-02 -5.83595335e-01 -1.10357738e+00
-1.62636146e-01 -7.69186497e-01 5.79866707e-01 -5.09218454e-01
-1.39652300e+00 6.93741620e-01 4.50935252e-02 -1.31729662e+00
-1.86967507e-01 -4.87521768e-01 -2.46675208e-01 4.73913133e-01
-1.74606740e+00 -1.14288974e+00 -1.15689762e-01 6.75625741e-01
8.96387160e-01 -3.12197447e-01 8.35119367e-01 3.46936852e-01
-6.06680691e-01 6.15495384e-01 5.56436658e-01 1.86115786e-01
9.26432252e-01 -1.42211092e+00 5.28643072e-01 8.54151666e-01
1.80176988e-01 1.37135223e-01 3.80086392e-01 -6.11852765e-01
-4.31176752e-01 -1.31269062e+00 7.33553648e-01 -2.80727565e-01
4.77084428e-01 -3.47910881e-01 -1.02629077e+00 5.20582259e-01
2.97912378e-02 -1.60320383e-02 7.44944334e-01 2.24274024e-01
-3.47540915e-01 -1.39529735e-01 -1.28944743e+00 5.13769805e-01
9.98702288e-01 -1.84216335e-01 -6.45475924e-01 4.27360654e-01
6.69210911e-01 -4.26824212e-01 -6.62832141e-01 6.21173024e-01
7.35394433e-02 -8.34128678e-01 8.33892524e-01 -4.80702937e-01
1.98302075e-01 -2.65011311e-01 2.12423742e-01 -1.36318529e+00
-3.08628559e-01 -4.31826502e-01 2.52644241e-01 1.53763723e+00
4.83781099e-01 -6.30480766e-01 1.20948696e+00 4.70817596e-01
-3.22790295e-01 -5.01205087e-01 -6.92829907e-01 -9.77865040e-01
3.14425260e-01 -3.21542203e-01 4.75655258e-01 1.33004475e+00
-2.23051786e-01 3.83232921e-01 -1.71980873e-01 1.07821837e-01
6.35216415e-01 2.65178919e-01 5.11489749e-01 -1.37789607e+00
-2.29997814e-01 -3.17503184e-01 1.19106183e-02 -1.17997980e+00
2.98465878e-01 -8.92923951e-01 2.63079494e-01 -1.54705608e+00
7.34898821e-02 -8.65818560e-01 -4.52350140e-01 6.33878231e-01
-2.32943162e-01 2.54709691e-01 -1.06130019e-01 2.73477346e-01
-8.88996422e-01 3.82578254e-01 1.52288103e+00 -6.15528710e-02
-4.82149661e-01 2.04909459e-01 -5.37675261e-01 8.65550756e-01
1.14255261e+00 -7.53018737e-01 -6.07763231e-01 -4.94994223e-01
-3.68026078e-01 -2.93571174e-01 -1.01799220e-01 -9.09106970e-01
-3.02673616e-02 -1.45700216e-01 8.93546343e-02 -4.57257152e-01
-1.01981908e-02 -6.91752851e-01 -2.23349795e-01 7.15953186e-02
-3.34679991e-01 -4.25964653e-01 1.51299953e-01 4.64758456e-01
-3.93866241e-01 -5.26646614e-01 1.20817792e+00 -3.05501670e-01
-1.11088204e+00 2.02770218e-01 -3.35482121e-01 3.75359356e-01
1.09874570e+00 -2.54455805e-01 1.06445678e-01 -3.42038088e-02
-9.06432569e-01 3.57103050e-01 5.42175412e-01 2.86285669e-01
4.17465061e-01 -1.22653532e+00 -5.14472365e-01 2.97532111e-01
2.58417070e-01 4.81367558e-01 2.52486140e-01 5.04913509e-01
-5.27605355e-01 2.05102906e-01 -1.73718795e-01 -6.83039963e-01
-1.10486817e+00 5.57687223e-01 2.39435032e-01 -4.33513790e-01
-6.16887867e-01 1.06371224e+00 3.91279548e-01 -7.91330755e-01
4.00282383e-01 -1.09382555e-01 -4.11240458e-01 -4.50058281e-02
3.03769827e-01 2.35055938e-01 -1.76058046e-03 -5.52257299e-01
-2.15158388e-01 6.51751935e-01 -2.50882834e-01 3.22545320e-02
1.27734470e+00 -3.44129741e-01 1.26512215e-01 4.16876674e-01
1.08221245e+00 -3.00654352e-01 -1.64211714e+00 -4.48916703e-01
2.84603626e-01 -2.02607736e-01 -1.84553444e-01 -9.00490284e-01
-1.15565586e+00 8.15994084e-01 7.20219135e-01 9.77330208e-02
1.24083686e+00 1.54597253e-01 7.82811463e-01 1.49285078e-01
2.35332474e-01 -1.68074071e+00 2.34337732e-01 5.84100842e-01
3.91726077e-01 -1.49627006e+00 -2.50831157e-01 -7.40647376e-01
-9.69410658e-01 7.80544519e-01 8.45603883e-01 -1.41096726e-01
6.18591607e-01 4.68305126e-02 5.40703714e-01 9.53777805e-02
-2.81437695e-01 -6.14732087e-01 2.38141179e-01 8.17970335e-01
2.34179661e-01 2.09936779e-02 -4.20502931e-01 6.45085990e-01
1.17081895e-01 2.93732584e-02 1.80623770e-01 1.01178670e+00
-4.08799738e-01 -1.51132643e+00 -3.67177367e-01 3.70933823e-02
-4.92309660e-01 2.85928845e-02 -3.90518814e-01 8.82036746e-01
3.73687029e-01 8.88048768e-01 -6.31343052e-02 -1.71807677e-01
3.88310999e-01 3.88737082e-01 2.70660639e-01 -9.11354125e-01
-3.17088634e-01 6.21943176e-01 1.46035422e-02 -1.88279465e-01
-7.63063490e-01 -6.53976738e-01 -1.50250363e+00 2.60296375e-01
-3.22863549e-01 2.93952942e-01 6.57346845e-01 9.85978186e-01
2.98145980e-01 4.60678548e-01 6.43322945e-01 -4.46030647e-01
-3.15332025e-01 -9.01352167e-01 -7.52743423e-01 7.27825046e-01
-2.58704722e-02 -8.44812751e-01 -1.45033762e-01 3.78996819e-01] | [9.703028678894043, 1.311428189277649] |
1fa70813-47e4-42f5-a03b-e590095de452 | graph-convolutional-network-with-sequential | null | null | https://openreview.net/forum?id=Skz-3j05tm | https://openreview.net/pdf?id=Skz-3j05tm | Graph Convolutional Network with Sequential Attention For Goal-Oriented Dialogue Systems | Domain specific goal-oriented dialogue systems typically require modeling three types of inputs, viz., (i) the knowledge-base associated with the domain, (ii) the history of the conversation, which is a sequence of utterances and (iii) the current utterance for which the response needs to be generated. While modeling these inputs, current state-of-the-art models such as Mem2Seq typically ignore the rich structure inherent in the knowledge graph and the sentences in the conversation context. Inspired by the recent success of structure-aware Graph Convolutional Networks (GCNs) for various NLP tasks such as machine translation, semantic role labeling and document dating, we propose a memory augmented GCN for goal-oriented dialogues. Our model exploits (i) the entity relation graph in a knowledge-base and (ii) the dependency graph associated with an utterance to compute richer representations for words and entities. Further, we take cognizance of the fact that in certain situations, such as, when the conversation is in a code-mixed language, dependency parsers may not be available. We show that in such situations we could use the global word co-occurrence graph and use it to enrich the representations of utterances. We experiment with the modified DSTC2 dataset and its recently released code-mixed versions in four languages and show that our method outperforms existing state-of-the-art methods, using a wide range of evaluation metrics. | ['Suman Banerjee', 'Mitesh M. Khapra'] | 2019-05-01 | graph-convolutional-network-with-sequential-1 | https://aclanthology.org/Q19-1034 | https://aclanthology.org/Q19-1034.pdf | iclr-2019-5 | ['document-dating', 'goal-oriented-dialogue-systems'] | ['natural-language-processing', 'natural-language-processing'] | [ 2.61019528e-01 5.15927434e-01 -8.37097466e-02 -4.16930497e-01
-3.56968701e-01 -7.53882766e-01 7.85269558e-01 5.46843648e-01
-4.46462601e-01 7.68209994e-01 8.74011695e-01 -5.28988957e-01
1.13758720e-01 -8.62114072e-01 -4.83622581e-01 -9.82168019e-02
-2.44319409e-01 7.07372546e-01 2.35484898e-01 -8.93603623e-01
2.49491125e-01 1.24054551e-02 -1.12436402e+00 5.38799465e-01
7.00442314e-01 8.16020012e-01 3.33710462e-01 8.78618479e-01
-6.53940439e-01 1.35532987e+00 -6.07001483e-01 -3.86142850e-01
-1.92211151e-01 -7.06379652e-01 -1.45437181e+00 1.90399274e-01
-1.33865535e-01 -3.16566080e-01 -4.75013405e-01 9.46538806e-01
1.90384224e-01 5.20499706e-01 2.98710257e-01 -1.05714524e+00
-5.10674298e-01 1.10085011e+00 8.39947350e-03 2.37825409e-01
6.24691367e-01 1.99493825e-01 1.22236598e+00 -5.66372037e-01
9.99239564e-01 1.40661597e+00 3.39532077e-01 8.05143237e-01
-9.68218148e-01 -7.26676211e-02 4.50662613e-01 1.04325339e-01
-7.95091331e-01 -4.98672605e-01 7.65095651e-01 -2.82124609e-01
1.49622881e+00 -3.45746204e-02 2.69408315e-01 1.06645072e+00
-1.05051592e-01 7.61726618e-01 7.19068229e-01 -4.96692330e-01
2.03677416e-01 1.90150607e-02 5.01767278e-01 9.88157690e-01
-3.96488547e-01 -3.17062140e-01 -6.32475972e-01 -3.86622697e-01
5.16105652e-01 -4.65327710e-01 -2.34911695e-01 -1.66827396e-01
-1.07472932e+00 1.02258205e+00 2.77400374e-01 5.66276193e-01
-3.46300006e-01 1.08647078e-01 7.27416754e-01 5.68787694e-01
4.64342624e-01 7.61122584e-01 -5.45768261e-01 -4.81161386e-01
-3.43374252e-01 2.49942839e-01 1.50049818e+00 9.89686131e-01
7.22488821e-01 -2.00051412e-01 -2.31402293e-01 9.85612094e-01
1.95409030e-01 -1.84805542e-01 5.50217748e-01 -8.79012287e-01
8.16727519e-01 8.08163106e-01 7.98284709e-02 -7.67160654e-01
-5.65228522e-01 -2.03730434e-01 -3.80321205e-01 -5.05700290e-01
6.48742437e-01 -4.16480631e-01 -6.12441480e-01 2.11565709e+00
1.97785556e-01 1.20700561e-01 3.70122224e-01 7.95378566e-01
1.11259282e+00 6.76635385e-01 1.23964481e-01 -1.55363351e-01
1.36908746e+00 -1.01399934e+00 -6.91309035e-01 -7.41602123e-01
1.03511608e+00 -3.30990702e-01 8.34113300e-01 -1.88255131e-01
-8.63872468e-01 -2.40087211e-01 -9.39378202e-01 -1.88633919e-01
-4.69376713e-01 -4.00333285e-01 6.60974443e-01 3.00338805e-01
-1.11648571e+00 4.79028434e-01 -4.69743401e-01 -5.66893399e-01
-4.03364971e-02 2.81354278e-01 -4.09835905e-01 -3.43295395e-01
-1.57516730e+00 1.03039491e+00 4.78135318e-01 -3.19624804e-02
-9.11388099e-01 -4.28392380e-01 -1.24239314e+00 1.81922853e-01
7.85087764e-01 -5.70137680e-01 1.57080352e+00 -9.90720153e-01
-1.51379311e+00 8.35751712e-01 -1.15849502e-01 -5.35055041e-01
1.05956614e-01 2.41694879e-02 -2.38612160e-01 2.92789731e-02
-1.19232781e-01 3.28894854e-01 4.75373834e-01 -8.96220684e-01
-6.22552514e-01 -4.25894827e-01 1.05666471e+00 5.61681271e-01
-1.09411530e-01 1.69799641e-01 -5.29688120e-01 -1.56672165e-01
-2.75616020e-01 -9.88814473e-01 -3.30177426e-01 -5.09714246e-01
-4.41151679e-01 -4.75655913e-01 6.99795961e-01 -8.12262237e-01
1.24462032e+00 -2.04014063e+00 4.99937505e-01 -3.97793539e-02
1.75375178e-01 2.11417109e-01 -4.08366144e-01 9.19470131e-01
1.26789331e-01 1.96379066e-01 -4.63445455e-01 -4.62049603e-01
7.71101862e-02 5.64359605e-01 -4.45780978e-02 1.82413787e-01
4.20412987e-01 7.70260334e-01 -1.32347143e+00 -3.88612151e-01
-5.47165796e-02 1.52921841e-01 -6.32051289e-01 5.99652827e-01
-8.70642841e-01 5.66350043e-01 -7.33300984e-01 1.12978913e-01
-9.16994642e-03 -3.72120857e-01 7.04423130e-01 2.01192647e-01
-6.06713491e-03 1.17407584e+00 -9.24769759e-01 2.07630014e+00
-8.51356983e-01 4.63890493e-01 2.93650448e-01 -9.81130660e-01
7.04321623e-01 4.75191742e-01 1.09214127e-01 -6.05132818e-01
-6.05227649e-02 4.05495875e-02 2.58772701e-01 -5.57868898e-01
7.61117637e-01 -9.21278074e-02 -2.20510319e-01 7.22352564e-01
4.20088261e-01 -1.62584022e-01 5.06663501e-01 6.23059690e-01
1.42287433e+00 4.45431396e-02 4.00701314e-01 -3.69004935e-01
7.58290887e-01 9.92221832e-02 3.14695418e-01 5.25059462e-01
6.35761991e-02 2.91572839e-01 1.08217394e+00 -2.11484820e-01
-7.68375278e-01 -3.16218495e-01 2.97727823e-01 1.64828396e+00
-5.72664998e-02 -5.69247782e-01 -7.20114410e-01 -1.01935041e+00
-2.00664222e-01 8.95599127e-01 -5.70812881e-01 -2.50152767e-01
-1.00230801e+00 -4.32346016e-01 5.98021030e-01 4.98376310e-01
5.04804432e-01 -1.23034227e+00 -2.52924204e-01 4.62078273e-01
-4.52302605e-01 -1.36930060e+00 -4.94226068e-01 2.30521336e-01
-6.83366776e-01 -1.17151475e+00 -6.88549578e-02 -7.14647472e-01
4.02897745e-01 -1.73087731e-01 1.64988470e+00 4.52667236e-01
2.64118910e-01 6.07112586e-01 -5.41369200e-01 -1.89270601e-02
-9.93155122e-01 1.70888513e-01 -4.55974489e-01 7.70065887e-03
3.01059961e-01 -4.75761533e-01 -2.55766511e-01 -6.55948818e-02
-9.40660119e-01 8.51560161e-02 1.01803176e-01 9.44760144e-01
-1.70846898e-02 -1.77610740e-02 7.69312859e-01 -1.46772671e+00
1.00991845e+00 -9.28755164e-01 -3.99097323e-01 2.18423754e-01
-1.34310946e-01 4.33940381e-01 7.09276915e-01 -1.72321826e-01
-1.30342925e+00 -2.58149654e-01 -2.87696570e-01 2.61415392e-01
-7.42357671e-02 1.14488482e+00 -2.43129015e-01 3.70804191e-01
6.99088454e-01 6.15408793e-02 5.02030812e-02 -4.16540593e-01
5.21592319e-01 6.69428349e-01 5.15355051e-01 -9.46619511e-01
2.97995567e-01 -7.98855722e-02 -1.40371412e-01 -9.55342233e-01
-7.83098519e-01 -6.81504130e-01 -5.60032666e-01 6.69748560e-02
8.47078085e-01 -7.35301256e-01 -4.51015919e-01 2.50939190e-01
-1.48524737e+00 -6.49378717e-01 -5.63122667e-02 1.57005385e-01
-5.85081935e-01 3.33022207e-01 -7.57302403e-01 -7.30228961e-01
-1.47107989e-01 -1.14006519e+00 8.33491385e-01 6.74874932e-02
-3.83402377e-01 -1.42241454e+00 2.30165515e-02 3.76756012e-01
5.00687957e-01 7.49957561e-02 1.54589427e+00 -1.26502752e+00
-3.60005111e-01 3.82425003e-02 -1.14936486e-01 4.27477717e-01
7.46506229e-02 -3.58937532e-01 -8.02355528e-01 -2.09977478e-02
-1.85597613e-01 -5.09455979e-01 5.45083702e-01 -2.08318159e-01
6.41397417e-01 -5.26908100e-01 -9.43134055e-02 6.08124882e-02
1.09835017e+00 1.28100485e-01 5.73052645e-01 -2.39471197e-02
6.30536973e-01 1.08510923e+00 3.75005364e-01 3.85597020e-01
8.70473981e-01 6.62061572e-01 6.40875161e-01 2.26129696e-01
-1.94415420e-01 -3.02664667e-01 3.13189566e-01 9.14471328e-01
6.87826052e-02 -4.41424131e-01 -9.58599210e-01 8.59760702e-01
-2.00665903e+00 -6.24531209e-01 2.21465472e-02 1.91711068e+00
1.26013100e+00 -6.35199621e-02 1.09361745e-01 -4.40834224e-01
5.94199300e-01 6.03351474e-01 -5.10628521e-01 -5.92054486e-01
1.02220900e-01 1.05342254e-01 1.02930486e-01 8.23815584e-01
-9.25058603e-01 1.06659722e+00 5.26286364e+00 2.20416889e-01
-8.30756485e-01 2.11584762e-01 3.85864377e-01 3.47960472e-01
-3.22076738e-01 1.17240474e-01 -6.27691627e-01 1.51779994e-01
1.24800098e+00 -1.95584863e-01 6.36221647e-01 6.25904500e-01
-2.92584628e-01 -2.85362056e-03 -1.43901598e+00 4.32089984e-01
2.61690537e-03 -1.29002905e+00 -2.36713931e-01 -1.03322051e-01
3.69503796e-01 2.41435081e-01 -3.91719341e-01 6.83078051e-01
8.65436614e-01 -1.02825212e+00 4.40668136e-01 1.38315246e-01
6.27113879e-01 -5.03546894e-01 7.72673905e-01 6.02686822e-01
-9.78020191e-01 -1.27583399e-01 -2.50623882e-01 -1.64386019e-01
-1.12876721e-01 1.88242435e-01 -1.18575227e+00 6.66713953e-01
1.23598255e-01 6.70458555e-01 -3.85960490e-01 4.94983852e-01
-5.25226831e-01 5.71653724e-01 -1.07268400e-01 -2.73137480e-01
6.92382157e-01 6.32336587e-02 7.84061849e-01 1.49486995e+00
-1.27320096e-01 2.99852818e-01 2.56848931e-01 8.56094778e-01
-4.86796409e-01 3.36646512e-02 -7.60607898e-01 -5.58935821e-01
4.62472945e-01 1.19372416e+00 -4.39035028e-01 -3.79750073e-01
-7.87116647e-01 8.10383737e-01 4.85577822e-01 4.75511849e-01
-2.75212258e-01 -1.69262767e-01 8.03271830e-01 -1.03029840e-01
1.61960259e-01 -3.62002730e-01 2.76674181e-01 -1.16267347e+00
-1.98753297e-01 -1.04634738e+00 5.65113842e-01 -5.34297526e-01
-1.07478344e+00 7.55212426e-01 6.42535929e-03 -5.45607865e-01
-9.45928931e-01 -5.49839020e-01 -4.16257888e-01 9.62472141e-01
-1.40491688e+00 -1.06068027e+00 6.28401637e-02 6.68909967e-01
7.88115382e-01 -1.68246791e-01 1.17603195e+00 2.68963873e-02
-2.67856359e-01 1.58471063e-01 -3.68664742e-01 5.19241035e-01
3.82682592e-01 -1.45043647e+00 6.17434978e-01 6.63160741e-01
1.99212745e-01 7.30529726e-01 7.46715665e-01 -5.70532441e-01
-1.73804474e+00 -9.55242693e-01 1.17836428e+00 -4.75331217e-01
9.26634073e-01 -6.36267900e-01 -1.12043428e+00 9.31708157e-01
3.49739671e-01 -6.54712915e-02 5.64150453e-01 3.61439854e-01
-4.49580342e-01 4.34455186e-01 -9.55217957e-01 4.65339601e-01
1.27025783e+00 -8.55862737e-01 -8.48344922e-01 4.38328654e-01
1.22761273e+00 -8.20335448e-01 -7.94025958e-01 4.35838290e-02
1.77354753e-01 -5.92434824e-01 5.92414379e-01 -1.15252435e+00
5.67456305e-01 1.49454221e-01 -3.95250946e-01 -1.64227784e+00
-1.03849165e-01 -6.68651164e-01 -2.58111894e-01 1.22449803e+00
6.86594546e-01 -4.24458891e-01 4.39782709e-01 8.81619871e-01
-4.66313541e-01 -5.08385122e-01 -8.99545312e-01 -3.89530480e-01
4.68596816e-02 -3.98080021e-01 6.97103620e-01 1.03699100e+00
4.18500900e-01 1.01055765e+00 -1.46545753e-01 3.96685824e-02
2.18617748e-02 1.78717375e-01 6.37756109e-01 -1.26745033e+00
-5.06755948e-01 -1.70098141e-01 1.58530846e-03 -1.13649929e+00
7.14064896e-01 -1.02608860e+00 2.50194848e-01 -1.79713559e+00
-2.11938526e-02 -4.51322824e-01 -6.09554276e-02 6.47578895e-01
-1.04261562e-01 -4.64191943e-01 6.76020235e-02 -5.94202504e-02
-8.16046894e-01 4.03389335e-01 1.04232299e+00 -2.41211936e-01
-2.58402377e-01 -1.67078763e-01 -8.70822012e-01 6.38594091e-01
6.01774752e-01 -3.11365187e-01 -6.17643833e-01 -5.33443451e-01
3.92596334e-01 6.44632399e-01 2.50797477e-02 -4.32177722e-01
4.04912472e-01 -2.45559067e-01 -4.69395608e-01 1.24841621e-02
3.32948834e-01 -6.65842116e-01 -3.22090507e-01 1.67788535e-01
-6.27800167e-01 -8.52772146e-02 2.60577708e-01 6.14583075e-01
-4.28348154e-01 -6.27932310e-01 4.37354475e-01 -5.30390263e-01
-1.02604198e+00 1.23000808e-01 -4.83454853e-01 4.61604148e-01
3.68380994e-01 2.69019067e-01 -7.91469872e-01 -7.79133320e-01
-5.48732281e-01 4.47472364e-01 3.52316529e-01 7.48089492e-01
4.26387906e-01 -8.27621460e-01 -7.87817717e-01 -7.04387575e-02
2.87116587e-01 1.63579150e-03 1.23788267e-01 5.93829870e-01
-2.14871034e-01 4.10987169e-01 -2.19315141e-02 -7.34326094e-02
-1.16390038e+00 3.63716424e-01 4.29600775e-01 -7.86202133e-01
-4.95815039e-01 8.33054960e-01 4.43204165e-01 -6.83869779e-01
1.22722626e-01 -2.84785837e-01 -5.96637964e-01 3.77017520e-02
4.04206216e-01 -5.54491319e-02 2.81045467e-01 -7.68625736e-01
-3.55491579e-01 -1.57136828e-01 -1.02456607e-01 -2.32551053e-01
1.41028774e+00 -1.25850186e-01 -5.12530327e-01 4.05850947e-01
1.13068318e+00 -5.76517284e-02 -9.54023898e-01 -7.33309090e-01
3.60703468e-01 -1.12793945e-01 -1.32178202e-01 -9.07178164e-01
-8.12313974e-01 7.75456131e-01 -2.44850874e-01 4.79172170e-01
8.55077088e-01 2.16879830e-01 7.49303281e-01 6.39675677e-01
5.84457040e-01 -1.06193948e+00 1.55187011e-01 1.21123910e+00
1.00750887e+00 -1.02902091e+00 -3.29920501e-01 -3.60184759e-01
-7.80788124e-01 1.05915952e+00 4.75748688e-01 2.03228518e-01
3.40838164e-01 1.01834700e-01 -7.62379989e-02 -4.19227690e-01
-1.18271530e+00 -3.77160788e-01 1.49237484e-01 6.67688072e-01
8.05570006e-01 1.64706782e-02 -2.15441972e-01 6.97495878e-01
-1.51149720e-01 -3.70103985e-01 7.38997579e-01 1.11167252e+00
-3.29653919e-01 -1.31015635e+00 1.47434622e-01 2.74067253e-01
-5.85901797e-01 -4.73571777e-01 -8.48274469e-01 7.23683417e-01
-2.49449000e-01 1.37040627e+00 -1.08031277e-03 -2.24336714e-01
3.60713243e-01 5.18590212e-01 3.90130341e-01 -1.35673523e+00
-9.83752251e-01 -3.85236442e-01 1.14620292e+00 -6.17755532e-01
-4.35009241e-01 -3.10184479e-01 -1.62086093e+00 -1.43581897e-01
-1.77867368e-01 4.09856766e-01 7.47764349e-01 1.11765385e+00
3.18339825e-01 6.12067401e-01 2.64077008e-01 -4.44380134e-01
-3.96174729e-01 -1.22215605e+00 -5.45452118e-01 4.77138758e-01
3.96874905e-01 -4.45518225e-01 -1.09113529e-01 -4.36776653e-02] | [12.359253883361816, 8.108255386352539] |
d4f235ac-8c22-4aca-920c-3a85965d1a00 | diverse-sequential-subset-selection-for | null | null | http://papers.nips.cc/paper/5413-diverse-sequential-subset-selection-for-supervised-video-summarization | http://papers.nips.cc/paper/5413-diverse-sequential-subset-selection-for-supervised-video-summarization.pdf | Diverse Sequential Subset Selection for Supervised Video Summarization | Video summarization is a challenging problem with great application potential. Whereas prior approaches, largely unsupervised in nature, focus on sampling useful frames and assembling them as summaries, we consider video summarization as a supervised subset selection problem. Our idea is to teach the system to learn from human-created summaries how to select informative and diverse subsets, so as to best meet evaluation metrics derived from human-perceived quality. To this end, we propose the sequential determinantal point process (seqDPP), a probabilistic model for diverse sequential subset selection. Our novel seqDPP heeds the inherent sequential structures in video data, thus overcoming the deficiency of the standard DPP, which treats video frames as randomly permutable items. Meanwhile, seqDPP retains the power of modeling diverse subsets, essential for summarization. Our extensive results of summarizing videos from 3 datasets demonstrate the superior performance of our method, compared to not only existing unsupervised methods but also naive applications of the standard DPP model. | ['Wei-Lun Chao', 'Boqing Gong', 'Kristen Grauman', 'Fei Sha'] | 2014-12-01 | null | null | null | neurips-2014-12 | ['supervised-video-summarization'] | ['computer-vision'] | [ 5.53770006e-01 -2.88154110e-02 -5.29314101e-01 -3.09152603e-01
-9.01830256e-01 -6.14107668e-01 5.43522537e-01 1.23175852e-01
-4.64541279e-02 8.37515354e-01 9.40883160e-01 1.98285282e-01
-1.07858635e-01 -4.40768898e-01 -6.84684038e-01 -7.83163249e-01
4.21322882e-02 1.53883323e-01 3.59488308e-01 1.14942335e-01
5.44477463e-01 3.97720151e-02 -1.75248754e+00 3.17051977e-01
1.23253441e+00 5.65626502e-01 2.52447814e-01 6.46021307e-01
4.24147956e-02 1.09840536e+00 -6.47203386e-01 -2.08101764e-01
-5.63133061e-02 -9.48935866e-01 -6.33361876e-01 5.26415706e-01
5.23471236e-01 -5.39262116e-01 -5.38811326e-01 1.01568615e+00
5.41680336e-01 4.09507513e-01 8.15003872e-01 -1.28875029e+00
-4.62514222e-01 8.21623027e-01 -5.62352717e-01 1.03168704e-01
7.80575991e-01 4.02106903e-02 1.37962699e+00 -7.27864623e-01
7.36704350e-01 1.11312950e+00 4.74424332e-01 4.77888823e-01
-1.27404439e+00 -3.07089031e-01 2.91474700e-01 1.62388697e-01
-1.02888215e+00 -8.00647497e-01 8.29757452e-01 -5.23483098e-01
3.90768319e-01 5.33138812e-01 6.84556246e-01 1.04332435e+00
-1.15294177e-02 1.53334343e+00 5.33551991e-01 -2.05054298e-01
4.44627881e-01 -2.22220555e-01 3.33949000e-01 5.15503407e-01
4.31766242e-01 -4.94907409e-01 -1.04719198e+00 -4.59521532e-01
4.74830925e-01 1.54375479e-01 -5.66301167e-01 -4.89731312e-01
-1.45468402e+00 6.46821380e-01 -3.47159475e-01 -1.24663293e-01
-7.21484423e-01 7.52822608e-02 5.20037115e-01 1.26760975e-02
5.19282997e-01 3.58358175e-01 2.56425217e-02 -2.88329482e-01
-1.47323346e+00 5.44780433e-01 8.11719418e-01 1.24354756e+00
6.32109404e-01 8.92371461e-02 -7.85501420e-01 7.31551051e-01
2.11401924e-01 4.69528049e-01 4.66051906e-01 -1.43230450e+00
2.55277932e-01 4.39298391e-01 2.24204451e-01 -1.17292583e+00
8.54877532e-02 -2.10561112e-01 -8.40744555e-01 -4.24220115e-01
-1.38336584e-01 -1.33544981e-01 -4.68509138e-01 1.73728824e+00
2.21264246e-03 1.54642269e-01 -2.48225480e-02 5.86741328e-01
9.28576827e-01 9.93252337e-01 1.86572596e-02 -7.82894373e-01
9.53249693e-01 -1.17444956e+00 -7.40511656e-01 2.22520053e-01
1.82378650e-01 -4.92209643e-01 9.78844166e-01 4.94440585e-01
-1.23323858e+00 -4.83717620e-01 -9.32989180e-01 1.70391023e-01
6.46319926e-01 6.90488592e-02 3.04076403e-01 3.92712563e-01
-1.18071389e+00 6.37115240e-01 -7.62175739e-01 -4.61101651e-01
6.35681629e-01 1.39221549e-01 -2.02916518e-01 -4.85686362e-02
-7.11135328e-01 2.33343437e-01 4.89352554e-01 -3.88511360e-01
-9.60134208e-01 -6.10943019e-01 -8.40214550e-01 3.16037983e-01
6.83843732e-01 -1.06828249e+00 1.43968642e+00 -1.01807165e+00
-1.62407267e+00 3.04010361e-01 -6.20754719e-01 -5.95204473e-01
3.66574883e-01 -5.80217242e-01 1.45247638e-01 7.17074037e-01
2.54775375e-01 6.64820433e-01 1.00402737e+00 -1.42836618e+00
-8.41998577e-01 1.07086763e-01 -9.29183960e-02 5.24082661e-01
-5.65364242e-01 -6.53718337e-02 -6.39158130e-01 -9.00218725e-01
-5.03336377e-02 -7.23374963e-01 -3.52408320e-01 -4.14804757e-01
-8.31963658e-01 -3.72579217e-01 6.80849254e-01 -5.85136831e-01
1.62742972e+00 -2.03306675e+00 5.37439048e-01 -2.06927191e-02
5.04286766e-01 1.39812291e-01 -7.72073567e-02 6.92162335e-01
3.26678842e-01 9.30792242e-02 -2.92447180e-01 -4.86532450e-01
1.56331167e-01 4.05192710e-02 -4.41150129e-01 2.59243548e-01
6.21639192e-02 5.35273194e-01 -1.26875806e+00 -7.95340538e-01
2.67021079e-02 3.22351307e-02 -8.26244593e-01 2.88842350e-01
-3.62023801e-01 4.02709842e-01 -6.44331634e-01 4.47743088e-01
4.71291214e-01 -1.59253925e-01 2.61096150e-01 -2.16568321e-01
-2.40324363e-02 1.35671884e-01 -9.82627869e-01 1.59795856e+00
3.31422001e-01 6.64967775e-01 -3.91658247e-01 -9.97572303e-01
7.46508956e-01 3.86720240e-01 8.78523529e-01 -7.50766024e-02
-1.13292694e-01 -2.85481345e-02 -5.55740178e-01 -5.87381303e-01
1.04633653e+00 1.57875255e-01 -2.14514673e-01 6.28657222e-01
6.06733598e-02 -1.16639890e-01 7.69051671e-01 7.08304107e-01
1.20718539e+00 3.38893920e-01 5.53504586e-01 -3.11517626e-01
3.58060569e-01 1.22624628e-01 9.45760012e-01 1.02928400e+00
-2.02280402e-01 1.16019654e+00 1.00999689e+00 -9.55934897e-02
-9.70444441e-01 -1.04160976e+00 3.86429697e-01 9.79153395e-01
2.93858379e-01 -9.43485498e-01 -8.83857548e-01 -7.93457747e-01
-2.92087764e-01 6.60802364e-01 -1.93562061e-01 -7.00995699e-02
-5.72804749e-01 -4.94956821e-01 2.73996830e-01 1.98834524e-01
3.56804132e-01 -9.77861702e-01 -7.10904121e-01 1.53790832e-01
-6.33144438e-01 -9.33252990e-01 -8.79422426e-01 -3.26499462e-01
-8.19240153e-01 -9.92859840e-01 -8.38920772e-01 -6.89323425e-01
6.69019282e-01 7.09283471e-01 1.26340258e+00 -8.20534751e-02
3.32092524e-01 7.16386914e-01 -6.82475209e-01 -3.12490135e-01
-3.79480004e-01 1.22420415e-01 2.50453740e-01 1.84848472e-01
2.52257705e-01 -6.58541560e-01 -6.95929229e-01 1.12646177e-01
-1.07555866e+00 3.37024599e-01 5.08667171e-01 7.09526062e-01
7.75869727e-01 2.73329139e-01 7.71206439e-01 -1.13214326e+00
6.72538996e-01 -6.14423275e-01 -3.69196422e-02 2.78693914e-01
-1.79066792e-01 -1.19360670e-01 7.74622262e-01 -2.94423550e-01
-1.04293704e+00 -4.52745557e-02 2.34348685e-01 -3.24422270e-01
-1.39911883e-02 5.10335565e-01 -2.97691107e-01 5.18122673e-01
3.40681493e-01 6.51491463e-01 1.08570583e-01 -2.78741091e-01
1.83601692e-01 4.58330274e-01 5.96287847e-01 -5.90379536e-01
5.98232269e-01 3.78539413e-01 -2.64243871e-01 -1.18079352e+00
-8.40846956e-01 -5.18126488e-01 -4.87504750e-01 -3.53431344e-01
6.31301641e-01 -9.29261863e-01 -3.85323167e-01 3.27479333e-01
-9.86046314e-01 -5.61929271e-02 -6.08110368e-01 3.60346824e-01
-8.56724203e-01 9.44077611e-01 -4.34215695e-01 -6.94106102e-01
-3.14924717e-01 -1.03927767e+00 1.06348062e+00 4.26659644e-01
-6.16645217e-01 -6.43564701e-01 1.11326061e-01 2.11719751e-01
1.19352050e-01 3.50667477e-01 6.76577449e-01 -7.36075759e-01
-6.42221093e-01 -9.74092484e-02 1.13636523e-01 4.43991631e-01
1.48829609e-01 3.34936291e-01 -4.97284651e-01 -2.67230183e-01
5.82083836e-02 -2.47633636e-01 1.05917823e+00 7.95993865e-01
1.17679060e+00 -5.25855839e-01 -1.80129454e-01 3.21069211e-01
1.17380035e+00 1.17937967e-01 5.18319786e-01 1.85612172e-01
6.84046388e-01 5.95834553e-01 6.61254942e-01 8.20912123e-01
5.17847359e-01 4.55090880e-01 1.20515771e-01 2.66430110e-01
-3.19633633e-02 -5.64631581e-01 6.73656046e-01 1.09527242e+00
-2.99138781e-02 -7.55754173e-01 -5.07005751e-01 5.24155140e-01
-2.26138210e+00 -1.34030604e+00 2.00718474e-02 2.03926229e+00
7.99941719e-01 3.48420106e-02 5.02882063e-01 1.21969998e-01
8.45855534e-01 6.15771890e-01 -4.00432885e-01 3.34398411e-02
-2.96924740e-01 -3.33748162e-01 6.67302012e-02 1.04209334e-01
-1.17959535e+00 7.23489583e-01 6.68214130e+00 9.53068733e-01
-5.02061009e-01 -2.80379474e-01 6.57983899e-01 -3.36727500e-01
-6.40239954e-01 8.87143090e-02 -7.03983724e-01 7.71478593e-01
6.54488206e-01 -5.22047460e-01 5.39097600e-02 6.88316345e-01
6.75763905e-01 -4.04273897e-01 -1.28619444e+00 9.33418274e-01
4.59422261e-01 -1.36586678e+00 6.43350422e-01 -2.26947591e-01
1.14432847e+00 -5.05551219e-01 -8.35708976e-02 1.48033798e-01
2.86494702e-01 -6.40690565e-01 7.62318969e-01 7.56842017e-01
3.79299194e-01 -7.18534827e-01 4.33578759e-01 3.70615125e-01
-9.52177703e-01 6.68170303e-02 -3.61956239e-01 1.18950658e-01
4.39137429e-01 7.41945684e-01 -3.54207873e-01 7.68813908e-01
3.66406411e-01 1.30098629e+00 -4.31579858e-01 1.30623579e+00
-2.14422345e-01 9.91985381e-01 -8.44951943e-02 -1.90861244e-02
8.97568762e-02 -3.70933443e-01 1.09494734e+00 1.35649729e+00
4.86567557e-01 1.17900819e-01 4.58008528e-01 3.39914590e-01
-1.71264276e-01 1.28458962e-01 -6.04937613e-01 -2.11047277e-01
6.84051752e-01 8.15135181e-01 -7.34961152e-01 -6.58757031e-01
-1.91622674e-01 8.93090904e-01 -4.51841950e-02 4.96364683e-01
-7.28553176e-01 -3.55023474e-01 3.04910362e-01 2.54125930e-02
4.33327436e-01 -1.77205831e-01 -2.19021499e-01 -1.37040186e+00
1.35763213e-01 -1.18714023e+00 2.99560130e-01 -5.12445629e-01
-1.09555161e+00 3.66264582e-01 2.95739651e-01 -1.75063229e+00
-2.45525360e-01 1.48828298e-01 -8.93723965e-01 1.68645307e-01
-1.22134769e+00 -9.48255122e-01 -2.95088053e-01 2.80046344e-01
1.14188933e+00 -1.95484474e-01 3.83286327e-01 4.33553979e-02
-7.78267860e-01 2.83265978e-01 3.67528886e-01 -3.28090161e-01
8.88084888e-01 -1.25061917e+00 -4.42808121e-03 1.12987983e+00
3.76045592e-02 5.76279223e-01 1.06096280e+00 -6.29711270e-01
-1.44038844e+00 -1.03876638e+00 8.19181085e-01 -3.26686084e-01
3.10550719e-01 2.65371706e-02 -7.92712629e-01 5.50364435e-01
3.96670282e-01 -5.58450460e-01 9.23474193e-01 -1.71113029e-01
3.92743051e-02 -1.19191192e-01 -7.47994065e-01 7.67712057e-01
1.17390668e+00 -6.27293363e-02 -8.08939695e-01 3.32384139e-01
8.69112134e-01 -1.46535560e-02 -4.81888920e-01 3.34324419e-01
5.20509422e-01 -1.26234531e+00 8.22761118e-01 -4.30616289e-01
9.44342792e-01 -3.95400733e-01 -1.66413665e-01 -1.38639176e+00
-2.99395502e-01 -1.09202027e+00 -4.96981651e-01 1.62924433e+00
6.84572384e-03 -1.76802278e-01 8.94988239e-01 4.05869782e-01
-3.35766464e-01 -5.44119179e-01 -4.10753876e-01 -5.05260170e-01
-5.27759790e-01 -4.63567674e-02 4.62351739e-01 6.23466253e-01
4.01117504e-02 4.00935113e-01 -7.26048350e-01 -9.40861776e-02
8.81659389e-01 2.22809598e-01 1.10800004e+00 -1.06133568e+00
-2.79366672e-01 -6.06462002e-01 -1.95445552e-01 -1.59697723e+00
1.39650777e-01 -5.14927685e-01 3.22574914e-01 -1.76681864e+00
8.58586192e-01 -2.26874258e-02 -1.90065265e-01 1.85082406e-02
-4.91045356e-01 6.16290569e-02 2.36723334e-01 5.77508211e-01
-1.41648400e+00 9.83905256e-01 1.14201343e+00 -5.06336726e-02
-4.35292929e-01 1.32753059e-01 -1.09782326e+00 9.20170903e-01
6.09963655e-01 -3.38540435e-01 -8.19559693e-01 -4.32273477e-01
5.05323410e-02 2.45239258e-01 -1.02321738e-02 -9.98719275e-01
4.79217112e-01 -3.38777065e-01 7.76169673e-02 -1.04216707e+00
1.05774235e-02 -3.85632664e-01 1.12033166e-01 1.66172728e-01
-5.09114087e-01 -1.33336335e-01 -3.44422877e-01 8.46937656e-01
-5.10106504e-01 -2.37869382e-01 4.22936469e-01 7.53769930e-03
-8.03216577e-01 4.24858570e-01 -7.30465353e-01 1.19318865e-01
1.02524960e+00 -4.27593529e-01 -2.29579151e-01 -6.91484034e-01
-3.73197317e-01 5.38538575e-01 6.70461714e-01 8.35078806e-02
7.77816236e-01 -1.36279356e+00 -9.25324559e-01 -9.71541107e-02
2.98769232e-02 2.49738187e-01 4.35851932e-01 8.98722291e-01
-5.80892563e-01 1.27023488e-01 -4.18882705e-02 -6.95488513e-01
-1.23321772e+00 2.44572237e-01 -3.92947733e-01 -1.03290014e-01
-8.21324825e-01 5.92505932e-01 3.71150970e-01 1.90668300e-01
4.02166158e-01 3.25754024e-02 -4.88568604e-01 2.92457610e-01
6.26624227e-01 6.23949885e-01 -4.33389932e-01 -5.38876772e-01
-1.72028248e-03 3.04585338e-01 -1.43903777e-01 6.08946644e-02
1.55030620e+00 -5.41610241e-01 -2.34640896e-01 4.95067984e-01
8.88479590e-01 2.79809743e-01 -1.44009876e+00 -3.07279676e-01
3.98347825e-02 -5.33215404e-01 -2.89440870e-01 -6.56558946e-02
-5.53110421e-01 3.54315728e-01 -2.17100918e-01 3.64563972e-01
1.28422177e+00 -1.67879462e-01 1.03398395e+00 4.69155282e-01
2.77553380e-01 -1.00136733e+00 2.97536224e-01 4.00432557e-01
6.09474719e-01 -1.05088437e+00 3.88006359e-01 -3.60168993e-01
-1.01955974e+00 9.99267876e-01 4.06319916e-01 -3.57479602e-01
1.31826892e-01 -1.40934378e-01 -4.44733381e-01 1.82349458e-02
-9.64605033e-01 1.55719504e-01 2.45655954e-01 4.66109514e-01
2.78447896e-01 -4.37212139e-02 -5.10919869e-01 7.07348883e-01
-1.29429221e-01 1.52245328e-01 8.63411248e-01 1.11432242e+00
-7.92449653e-01 -9.22601521e-01 -1.60697371e-01 7.41655171e-01
-4.34245676e-01 1.11575313e-01 -3.58706146e-01 3.96444291e-01
-3.11470836e-01 9.25981700e-01 1.01627614e-02 -4.21592087e-01
2.14317396e-01 -1.45206049e-01 2.00643227e-01 -8.54414880e-01
-2.67389417e-01 2.68636346e-01 1.10306360e-01 -4.14654702e-01
-8.29580188e-01 -9.98999476e-01 -7.82171667e-01 -3.46535265e-01
-3.71274464e-02 5.07934749e-01 -2.34230198e-02 8.04070473e-01
4.26978201e-01 5.73218822e-01 8.89934301e-01 -1.18241286e+00
-6.71956301e-01 -6.88321471e-01 -6.16814196e-01 4.52361584e-01
4.53468829e-01 -3.77139419e-01 -2.32592642e-01 5.77403843e-01] | [10.501274108886719, 0.4015130400657654] |
138783d1-4b4f-4bb8-829e-a532c67543e2 | slotformer-unsupervised-visual-dynamics | 2210.05861 | null | https://arxiv.org/abs/2210.05861v2 | https://arxiv.org/pdf/2210.05861v2.pdf | SlotFormer: Unsupervised Visual Dynamics Simulation with Object-Centric Models | Understanding dynamics from visual observations is a challenging problem that requires disentangling individual objects from the scene and learning their interactions. While recent object-centric models can successfully decompose a scene into objects, modeling their dynamics effectively still remains a challenge. We address this problem by introducing SlotFormer -- a Transformer-based autoregressive model operating on learned object-centric representations. Given a video clip, our approach reasons over object features to model spatio-temporal relationships and predicts accurate future object states. In this paper, we successfully apply SlotFormer to perform video prediction on datasets with complex object interactions. Moreover, the unsupervised SlotFormer's dynamics model can be used to improve the performance on supervised downstream tasks, such as Visual Question Answering (VQA), and goal-conditioned planning. Compared to past works on dynamics modeling, our method achieves significantly better long-term synthesis of object dynamics, while retaining high quality visual generation. Besides, SlotFormer enables VQA models to reason about the future without object-level labels, even outperforming counterparts that use ground-truth annotations. Finally, we show its ability to serve as a world model for model-based planning, which is competitive with methods designed specifically for such tasks. | ['Animesh Garg', 'Thomas Kipf', 'Klaus Greff', 'Nikita Dvornik', 'Ziyi Wu'] | 2022-10-12 | null | null | null | null | ['video-prediction'] | ['computer-vision'] | [ 3.92614231e-02 2.58592755e-01 -4.35993612e-01 -2.79429555e-01
-5.86577952e-01 -6.22594357e-01 9.46380615e-01 -4.75925878e-02
8.71664360e-02 2.02365085e-01 6.28351867e-01 -1.55420065e-01
-2.67799236e-02 -6.64955318e-01 -9.53913987e-01 -5.41216612e-01
-8.76825899e-02 1.01966381e+00 3.60368192e-01 -9.92719010e-02
4.75831479e-02 3.91504109e-01 -1.58792937e+00 6.53443873e-01
4.17347193e-01 8.67841542e-01 7.22579539e-01 9.81250644e-01
-8.18424523e-02 1.60633194e+00 -5.24233207e-02 -1.78390574e-02
-4.94518355e-02 -3.72282445e-01 -1.09440613e+00 5.67547321e-01
5.72765768e-01 -4.83693987e-01 -7.95351267e-01 5.30445516e-01
-2.57368028e-01 3.30492377e-01 7.69270301e-01 -1.42521739e+00
-7.38915682e-01 4.10790980e-01 -8.04778337e-02 1.31902441e-01
3.03881347e-01 6.02610886e-01 1.34294212e+00 -6.50924206e-01
1.10609913e+00 1.60659814e+00 1.38091843e-03 8.86891484e-01
-1.62385666e+00 -2.91234821e-01 9.49829221e-01 6.89952075e-01
-9.85790849e-01 -6.48408830e-01 8.02226305e-01 -8.86930525e-01
1.27736235e+00 3.04740258e-02 9.15975928e-01 1.33016920e+00
8.54271725e-02 1.33126116e+00 6.68306530e-01 1.57894436e-02
1.46723390e-01 -1.78590521e-01 7.86069185e-02 9.32993829e-01
-3.95545095e-01 1.59651160e-01 -9.05643344e-01 2.26924166e-01
9.29692447e-01 -9.36694816e-02 -2.72864610e-01 -8.61317277e-01
-1.67787504e+00 5.45505822e-01 5.82418859e-01 8.02447088e-03
-5.16753793e-01 8.75973523e-01 9.14038047e-02 2.75369585e-02
3.89901936e-01 4.67778027e-01 -5.39286077e-01 -1.30797118e-01
-7.29688108e-01 5.30910134e-01 5.45728803e-01 1.25228953e+00
6.03270411e-01 2.00701088e-01 -4.80808884e-01 1.64923221e-01
5.65207779e-01 3.98752421e-01 1.27628207e-01 -1.41879714e+00
3.74481261e-01 4.48554844e-01 3.62310618e-01 -8.93370986e-01
-3.31311166e-01 -2.92900890e-01 -5.61808944e-01 5.79146557e-02
4.53332186e-01 4.31198180e-01 -1.23547542e+00 1.99698222e+00
1.48879826e-01 6.55636668e-01 2.57131513e-02 1.02279007e+00
6.63407087e-01 1.17594898e+00 3.19664359e-01 -3.62515211e-01
1.21558797e+00 -1.36131537e+00 -6.92344487e-01 -3.59947383e-01
5.41063547e-01 -2.37553135e-01 1.05527222e+00 5.60538888e-01
-1.14992619e+00 -6.43442392e-01 -5.17854691e-01 -2.67714471e-01
6.76289247e-03 2.41614748e-02 9.36157107e-01 -8.14071000e-02
-1.31679308e+00 4.04692978e-01 -1.55998516e+00 -3.73201102e-01
5.17483175e-01 1.45500407e-01 -3.51426035e-01 -7.41933733e-02
-4.60674435e-01 8.31457138e-01 3.72467458e-01 3.16974521e-02
-1.82405925e+00 -8.28967869e-01 -1.05290568e+00 1.66165978e-01
6.43675148e-01 -1.08371449e+00 1.66288102e+00 -7.29114354e-01
-1.44530106e+00 6.09797835e-01 -6.71284854e-01 -6.79336369e-01
1.97318852e-01 -2.27947071e-01 2.22504493e-02 1.36887655e-01
3.97743611e-03 1.08796155e+00 7.97099769e-01 -1.42138243e+00
-5.16730249e-01 -3.04783881e-01 3.55842948e-01 3.15844953e-01
-2.19989438e-02 -4.09692049e-01 -8.22990596e-01 -3.61397773e-01
3.43509197e-01 -9.52159047e-01 -5.02589107e-01 3.04195285e-01
-2.01808333e-01 -3.60264033e-01 8.65237832e-01 -5.47141612e-01
8.92055690e-01 -1.85104299e+00 7.75071323e-01 -4.03113037e-01
3.91132861e-01 -4.47682478e-02 -4.37244207e-01 4.66461152e-01
5.28825335e-02 -6.23511970e-02 1.99087650e-01 -7.78023601e-01
5.03641963e-02 5.13789654e-01 -7.06665218e-01 3.74580383e-01
5.57122707e-01 1.41121268e+00 -1.18001270e+00 -4.73706752e-01
4.71995652e-01 2.04935744e-01 -9.44932997e-01 3.54609430e-01
-1.30678844e+00 7.70733178e-01 -5.64857006e-01 5.35465181e-01
-3.63296010e-02 -7.68036127e-01 2.66239196e-01 -3.16980869e-01
6.47321641e-02 3.43344718e-01 -7.63365567e-01 2.08906269e+00
-5.57939589e-01 9.43463266e-01 -1.44168437e-01 -1.16233885e+00
4.89863306e-01 2.83407271e-01 5.53369761e-01 -7.39078939e-01
-2.44623974e-01 -3.73650193e-01 -1.90545857e-01 -7.50519931e-01
5.40108800e-01 -1.72762156e-01 -9.13817156e-03 3.00902843e-01
4.33938742e-01 -2.96217382e-01 2.04629362e-01 6.99850202e-01
9.98788774e-01 7.28102505e-01 -1.64214000e-02 2.85045542e-02
1.32776663e-01 3.95980328e-01 4.49937761e-01 8.01356375e-01
-1.67378783e-01 6.70721769e-01 5.33975422e-01 -4.39536303e-01
-9.89288747e-01 -1.15985107e+00 2.98065245e-01 1.10772777e+00
4.03252304e-01 -6.32282794e-01 -1.42712668e-01 -5.51904321e-01
-1.33177102e-01 1.03118193e+00 -6.95764184e-01 -1.84771433e-01
-7.37321496e-01 -3.17890435e-01 -9.09592211e-02 6.45588934e-01
-1.08393587e-01 -1.21098363e+00 -6.91682577e-01 4.13103670e-01
-5.67639410e-01 -1.27952313e+00 -3.17977160e-01 -8.64223987e-02
-8.66136491e-01 -1.14733267e+00 -3.38884324e-01 -5.93432426e-01
3.90081584e-01 3.20651472e-01 1.48291922e+00 -7.85172060e-02
-1.75875440e-01 1.03890097e+00 -2.17033699e-01 -2.08966240e-01
-4.85980242e-01 -2.63055861e-01 -6.00879416e-02 1.05677791e-01
-1.62206963e-01 -6.08980238e-01 -5.28883874e-01 9.39655900e-02
-6.51970983e-01 6.77412093e-01 2.65994251e-01 7.20867515e-01
6.62265956e-01 -2.86885023e-01 1.69311181e-01 -6.47228181e-01
-3.49580720e-02 -4.99827385e-01 -7.09281266e-01 3.53406221e-01
-3.58623475e-01 3.89664441e-01 3.88769865e-01 -5.55109560e-01
-1.24918938e+00 2.90805727e-01 3.05734783e-01 -8.37866068e-01
-9.75814536e-02 3.81719977e-01 -6.55342937e-02 5.31029940e-01
5.42125821e-01 4.89104778e-01 -9.74972248e-02 -4.09237683e-01
6.91652238e-01 -2.60297686e-01 7.33970225e-01 -5.68328500e-01
6.65140331e-01 7.65723526e-01 7.52922148e-02 -5.52480996e-01
-1.11789083e+00 -5.86707473e-01 -5.13112962e-01 -3.82418364e-01
1.20182359e+00 -1.19574690e+00 -1.03392565e+00 2.23136410e-01
-1.52266121e+00 -7.88292348e-01 -3.30675274e-01 4.13573921e-01
-1.16157043e+00 8.57633725e-02 -5.42579830e-01 -1.01628435e+00
3.50623220e-01 -1.06701910e+00 1.41873991e+00 -2.58882772e-02
-1.50707662e-01 -1.11439025e+00 2.87271682e-02 4.53106433e-01
2.56039016e-02 1.49092913e-01 9.58112478e-01 -1.18960500e-01
-1.56981254e+00 2.91125923e-01 -1.42851202e-02 -1.41103536e-01
-2.62892485e-01 5.24614975e-02 -6.92827523e-01 -1.47447631e-01
-1.57608360e-01 -5.87597489e-01 1.11413074e+00 5.52836001e-01
1.16824317e+00 -2.97546029e-01 -5.98288953e-01 4.23746854e-01
1.18563342e+00 1.35929734e-01 4.18169379e-01 -7.57596921e-03
7.80153453e-01 6.69780850e-01 8.67204010e-01 4.18530762e-01
8.75973105e-01 1.06176925e+00 1.01516259e+00 2.64470905e-01
-4.64251608e-01 -7.10654557e-01 5.20466268e-01 6.06260359e-01
5.43730371e-02 -6.74002111e-01 -1.18686187e+00 8.26223731e-01
-2.34895992e+00 -1.18440974e+00 -3.03532302e-01 1.53604650e+00
3.98494244e-01 -4.44408581e-02 1.99678838e-02 -4.81313676e-01
1.31528378e-01 4.18506414e-01 -8.02646995e-01 2.89834827e-01
1.95949189e-02 -2.59894818e-01 -5.42824098e-04 6.88969076e-01
-1.02013040e+00 1.40021622e+00 6.17675304e+00 4.16266054e-01
-8.43880832e-01 2.65553474e-01 5.03555238e-01 -3.57761830e-01
-4.94335175e-01 4.69940662e-01 -7.84163058e-01 1.86368823e-02
7.57443905e-01 -1.43396735e-01 5.46541691e-01 7.77153194e-01
4.16609287e-01 -1.74026057e-01 -1.54901123e+00 1.03591430e+00
1.00778073e-01 -1.79498041e+00 3.82289976e-01 9.43680555e-02
6.68294489e-01 -7.76329488e-02 1.09599374e-01 5.78888118e-01
6.62926137e-01 -1.14028585e+00 1.27751637e+00 9.78566706e-01
2.57560462e-01 -2.23667920e-01 -6.31443411e-02 8.70248675e-01
-1.21828878e+00 -2.50009596e-01 -2.10463643e-01 -2.23848015e-01
7.32565582e-01 9.48928744e-02 -8.77651930e-01 3.98000896e-01
4.90786672e-01 1.22209251e+00 -5.01153648e-01 8.08103621e-01
-1.00523658e-01 7.49431193e-01 -1.16575196e-01 1.59377187e-01
2.94506580e-01 -8.30445141e-02 7.17792273e-01 7.64176309e-01
1.55058146e-01 2.19610259e-01 4.89952207e-01 1.08956242e+00
3.29794586e-01 -3.78879696e-01 -5.83825946e-01 -3.97532582e-01
4.12396602e-02 9.87684786e-01 -5.37528455e-01 -5.67759752e-01
-1.21890247e-01 9.24402118e-01 6.04789674e-01 5.89317024e-01
-9.80640948e-01 7.02337861e-01 8.08995068e-01 1.21677637e-01
3.88706058e-01 -7.14473307e-01 1.00219421e-01 -1.59616780e+00
-1.19132280e-01 -6.93929136e-01 2.06679925e-01 -1.29701757e+00
-8.28109264e-01 4.20953155e-01 2.32239738e-01 -1.18985760e+00
-6.04361594e-01 -7.47221470e-01 -2.29087830e-01 4.34820771e-01
-1.20589328e+00 -1.66320324e+00 -2.31628537e-01 5.98862231e-01
1.12117553e+00 5.27734794e-02 6.12980306e-01 -1.69398665e-01
-2.62882441e-01 -2.50796646e-01 -4.75960821e-01 -2.48506531e-01
2.69144714e-01 -1.24187911e+00 3.86202693e-01 8.64532888e-01
9.11193967e-01 2.46027455e-01 9.22011197e-01 -6.81878209e-01
-1.77219510e+00 -1.28267229e+00 7.61230409e-01 -1.10448194e+00
7.73191929e-01 -6.43401504e-01 -7.45526254e-01 1.14283419e+00
-2.06488930e-02 1.43315196e-01 5.77848256e-02 2.30021581e-01
-4.16339010e-01 2.24219665e-01 -2.94852763e-01 8.60668719e-01
1.63457882e+00 -6.24139190e-01 -3.99926037e-01 6.22918010e-01
1.12644207e+00 -6.30550802e-01 -4.76116210e-01 3.18039298e-01
4.85097855e-01 -9.67766225e-01 1.03619850e+00 -1.27626693e+00
6.65252566e-01 -3.68198246e-01 -2.21437559e-01 -1.06092739e+00
-6.34733975e-01 -4.97014612e-01 -7.72313833e-01 9.69900131e-01
2.94079840e-01 9.96843353e-02 9.92216051e-01 6.38368309e-01
-2.53768474e-01 -4.83632535e-01 -5.97483337e-01 -6.66136384e-01
-2.18791813e-01 -8.56073797e-01 2.49206722e-01 5.80595672e-01
-2.78969258e-01 5.45741737e-01 -7.62812138e-01 3.92571568e-01
4.32756931e-01 3.45662892e-01 9.66043651e-01 -9.66194391e-01
-7.33430922e-01 -2.70049453e-01 -5.35552502e-01 -1.77382672e+00
6.35615349e-01 -8.78695607e-01 2.92113453e-01 -1.81165290e+00
3.27113450e-01 -3.16258311e-01 5.86755015e-02 5.46320558e-01
6.98841736e-02 -9.25818309e-02 6.57292187e-01 2.87956923e-01
-1.04577756e+00 9.71013367e-01 1.64825439e+00 -3.60710025e-01
-7.81342313e-02 -6.97505474e-02 -3.25910926e-01 6.83758080e-01
3.88596207e-01 -3.53008479e-01 -9.23411369e-01 -7.43654072e-01
2.52126038e-01 6.97451591e-01 8.72876048e-01 -8.41721177e-01
3.05438221e-01 -6.70713782e-01 7.55377039e-02 -7.38730073e-01
8.82852495e-01 -7.01382399e-01 3.39548081e-01 3.24504256e-01
-5.79830587e-01 -9.48412418e-02 7.64375702e-02 1.16592240e+00
-2.05676779e-01 2.53945142e-01 3.45408499e-01 -3.10562193e-01
-1.06166005e+00 7.22545147e-01 -5.77623844e-01 -1.91390648e-01
1.06268489e+00 3.55954021e-02 -2.88938940e-01 -8.06034923e-01
-1.25642681e+00 6.23937070e-01 3.62156749e-01 7.08627403e-01
6.20754957e-01 -1.26914322e+00 -4.91381079e-01 -1.00353032e-01
2.85456836e-01 9.25171301e-02 4.91075635e-01 7.81390190e-01
-1.12596385e-01 6.82528675e-01 5.73427081e-02 -1.06409216e+00
-1.06670964e+00 8.49396646e-01 2.40843028e-01 -4.37885553e-01
-6.62828684e-01 9.41648543e-01 9.60192442e-01 -2.35929713e-01
1.64439932e-01 -5.11637270e-01 -2.29620278e-01 -1.27159268e-01
3.85096878e-01 -5.63119501e-02 -4.37835932e-01 -7.25039124e-01
-1.96948230e-01 2.69302070e-01 4.99357060e-02 -4.43725169e-01
1.42580926e+00 -2.55566359e-01 1.59888104e-01 8.53690922e-01
9.29820716e-01 -5.29336214e-01 -1.90235889e+00 -2.59252340e-01
-4.59744819e-02 -3.39338511e-01 -2.16862652e-03 -6.67178512e-01
-7.67715633e-01 1.14776957e+00 2.02240884e-01 -1.70240793e-02
8.80613863e-01 5.32271504e-01 3.13843220e-01 5.78133523e-01
6.15155101e-01 -5.29634178e-01 8.46807241e-01 6.12442613e-01
1.19891179e+00 -1.24511743e+00 -3.72412294e-01 -4.51867580e-01
-8.43546629e-01 9.03406024e-01 1.01666737e+00 -8.32115859e-02
4.56350386e-01 -8.02171528e-02 -2.28778929e-01 -3.39423060e-01
-1.73191023e+00 -4.44447875e-01 5.49208879e-01 6.90687597e-01
-4.91194101e-03 -1.14663363e-01 4.96570498e-01 4.03720289e-01
-2.03649476e-02 9.70711000e-03 4.62866634e-01 6.78160369e-01
-3.56467277e-01 -9.74726140e-01 -1.25487214e-02 4.29792434e-01
2.41162121e-01 4.23128158e-02 -5.50439693e-02 6.10073626e-01
-1.30897574e-02 7.94388831e-01 3.95983458e-01 -1.71381891e-01
1.54692486e-01 5.12222163e-02 8.36693108e-01 -9.90656614e-01
-5.65880872e-02 1.62754521e-01 1.52796909e-01 -1.12229216e+00
-7.12643504e-01 -8.25135291e-01 -1.16239107e+00 1.80780306e-01
-4.06386368e-02 -2.22491428e-01 2.89836049e-01 9.98064339e-01
4.22395408e-01 5.53870976e-01 2.07060769e-01 -1.13009787e+00
-3.47586274e-01 -5.74614108e-01 -2.95026928e-01 5.43532908e-01
6.50196612e-01 -9.42564368e-01 4.59044576e-02 7.92843878e-01] | [9.05795669555664, 0.43565845489501953] |
a6a78fa2-ea75-4cea-80e2-388b5dc60d10 | fedbone-towards-large-scale-federated-multi | 2306.17465 | null | https://arxiv.org/abs/2306.17465v1 | https://arxiv.org/pdf/2306.17465v1.pdf | FedBone: Towards Large-Scale Federated Multi-Task Learning | Heterogeneous federated multi-task learning (HFMTL) is a federated learning technique that combines heterogeneous tasks of different clients to achieve more accurate, comprehensive predictions. In real-world applications, visual and natural language tasks typically require large-scale models to extract high-level abstract features. However, large-scale models cannot be directly applied to existing federated multi-task learning methods. Existing HFML methods also disregard the impact of gradient conflicts on multi-task optimization during the federated aggregation process. In this work, we propose an innovative framework called FedBone, which enables the construction of large-scale models with better generalization from the perspective of server-client split learning and gradient projection. We split the entire model into two components: a large-scale general model (referred to as the general model) on the cloud server and multiple task-specific models (referred to as the client model) on edge clients, solving the problem of insufficient computing power on edge clients. The conflicting gradient projection technique is used to enhance the generalization of the large-scale general model between different tasks. The proposed framework is evaluated on two benchmark datasets and a real ophthalmic dataset. Comprehensive results demonstrate that FedBone efficiently adapts to heterogeneous local tasks of each client and outperforms existing federated learning algorithms in most dense prediction and classification tasks with off-the-shelf computational resources on the client side. | ['Wuliang Huang', 'Chenlong Gao', 'Qian Chen', 'Xinlong Jiang', 'Teng Zhang', 'Yiqiang Chen'] | 2023-06-30 | null | null | null | null | ['multi-task-learning'] | ['methodology'] | [-1.42425790e-01 -5.32503903e-01 -1.45219713e-01 -4.16373670e-01
-8.41451108e-01 -1.56270742e-01 3.07936370e-01 -3.54064971e-01
-6.36139289e-02 6.61860168e-01 -1.09125584e-01 -1.12481110e-01
-2.66811609e-01 -5.44154823e-01 -5.21874428e-01 -9.22824562e-01
1.91056579e-01 6.70435309e-01 3.46783131e-01 1.44362822e-01
-1.91935807e-01 2.71735162e-01 -1.96963918e+00 1.21462798e+00
9.92049396e-01 1.50700307e+00 5.98488629e-01 2.49382347e-01
-4.41337049e-01 9.21019197e-01 -3.99179965e-01 -5.13335288e-01
3.63675714e-01 2.79583931e-01 -5.80592215e-01 -7.22713321e-02
4.74404752e-01 -1.13939233e-01 3.03494304e-01 7.57796228e-01
6.78892016e-01 1.64125878e-02 2.95119405e-01 -1.79396856e+00
-2.11195379e-01 2.81398445e-01 -3.12963724e-01 5.03759719e-02
-9.24960375e-02 -8.54500383e-02 7.04019547e-01 -1.38382709e+00
6.18615210e-01 9.52642858e-01 6.75294280e-01 2.66923070e-01
-9.18975949e-01 -8.37004244e-01 5.48021674e-01 6.84558690e-01
-1.30875254e+00 -4.62355256e-01 8.20007682e-01 -4.50016201e-01
1.04015172e+00 6.13355100e-01 4.75801528e-01 9.07851934e-01
5.16207576e-01 9.74277198e-01 1.25187576e+00 1.74683973e-03
2.28001595e-01 6.12162471e-01 1.80392582e-02 5.76635122e-01
8.39394256e-02 -1.94226965e-01 -1.05380702e+00 -6.17710829e-01
4.35688458e-02 6.69514179e-01 -1.97216004e-01 -7.14601636e-01
-9.79859829e-01 5.48920453e-01 2.90928274e-01 9.00792032e-02
-8.09512973e-01 -4.13285851e-01 7.75630474e-01 3.73455733e-01
8.66099179e-01 -3.26514691e-01 -8.77952218e-01 4.59991358e-02
-8.71024251e-01 1.63229123e-01 8.16733479e-01 1.04414725e+00
1.06785119e+00 6.66772481e-03 -3.46784234e-01 8.64564657e-01
1.25309825e-01 3.25807244e-01 8.86106730e-01 -6.13831580e-01
5.70676267e-01 9.92245018e-01 -2.31224835e-01 -6.53365433e-01
-3.81454080e-01 -7.38936067e-01 -7.58345485e-01 3.29443246e-01
-1.02031901e-01 -2.70368487e-01 -2.17847586e-01 1.40191317e+00
9.84695792e-01 1.97128326e-01 7.92490542e-02 1.01194203e+00
6.95560873e-01 5.02441227e-01 -1.77298002e-02 -2.45741859e-01
1.28579485e+00 -1.61063051e+00 -4.71443683e-01 -1.65858150e-01
1.02410555e+00 -7.92819738e-01 1.04132354e+00 5.27292490e-01
-7.49855816e-01 -4.18285728e-01 -7.47662961e-01 1.79631606e-01
-5.82866430e-01 2.08562374e-01 7.25332916e-01 5.96785843e-01
-8.01197350e-01 3.20905060e-01 -4.29551005e-01 -8.26014206e-02
5.66445470e-01 4.98069584e-01 -5.05591989e-01 -3.79349142e-01
-7.86101222e-01 7.24838495e-01 1.55782208e-01 -1.02117181e-01
-9.54470217e-01 -1.02173185e+00 -1.83147803e-01 2.61359781e-01
6.01910353e-01 -8.74304950e-01 1.27829528e+00 -1.17821240e+00
-1.17893744e+00 5.02524316e-01 -1.35573432e-01 -4.17197235e-02
6.17839575e-01 -2.11651370e-01 -4.76993263e-01 -2.60601223e-01
-1.64384082e-01 -1.95821859e-02 9.50052381e-01 -1.13745427e+00
-1.15267289e+00 -9.97103274e-01 -3.16700757e-01 6.79093599e-01
-9.25490677e-01 1.12769581e-01 -2.87545919e-01 -2.53941715e-01
-2.64238477e-01 -8.05509925e-01 -7.61037506e-03 1.99604422e-01
6.67341053e-02 -5.44045925e-01 1.67059386e+00 -4.63830292e-01
1.05127811e+00 -2.07396078e+00 8.62065032e-02 -1.91089749e-01
4.06834662e-01 2.66274899e-01 -1.00740045e-01 3.11815113e-01
8.81394893e-02 -3.73908103e-01 2.86326319e-01 -7.53869891e-01
-6.68304563e-02 1.21184997e-01 3.74847576e-02 3.03546607e-01
-5.12585044e-01 6.06613696e-01 -5.45666158e-01 -9.05484557e-01
3.39235291e-02 4.32140380e-01 -3.28726679e-01 2.59948671e-01
-1.77368969e-01 1.62600309e-01 -7.48818576e-01 9.11043644e-01
8.53203177e-01 -4.41553473e-01 3.47747922e-01 -3.73909831e-01
2.83036660e-02 4.79652034e-03 -1.34351361e+00 1.81955683e+00
-9.25459623e-01 1.04667090e-01 6.32286072e-01 -9.18603420e-01
8.95794809e-01 5.52183688e-01 9.45169568e-01 -4.78178173e-01
-2.83199936e-01 2.93770760e-01 -2.53688812e-01 -4.10979807e-01
2.64883041e-01 1.24939308e-01 1.87778533e-01 8.69653940e-01
5.00600226e-02 4.98090506e-01 -2.08492368e-01 1.35283932e-01
8.79969418e-01 3.23626131e-01 5.70263341e-02 -3.59745532e-01
5.70055068e-01 1.00945979e-01 7.93263912e-01 2.79156953e-01
-2.54811555e-01 1.06005512e-01 -9.01642665e-02 -1.02913415e+00
-6.63098931e-01 -6.55974984e-01 1.74028262e-01 2.00946045e+00
-3.62618826e-02 -6.26112998e-01 -4.41922963e-01 -1.15200961e+00
3.06760162e-01 3.80269170e-01 -3.29756409e-01 -1.43362060e-01
-2.01469421e-01 -8.74915063e-01 1.80268893e-03 3.54377598e-01
4.29440439e-01 -9.87759352e-01 -8.65411758e-01 1.50799572e-01
-2.46816710e-01 -1.08990908e+00 -5.23491621e-01 3.23183626e-01
-9.35855985e-01 -1.19038355e+00 -4.74035203e-01 -6.13256395e-01
3.54461521e-01 6.41554117e-01 1.06543171e+00 -2.16354430e-01
-2.15495512e-01 1.74215481e-01 -2.38450572e-01 -4.08046365e-01
-1.11434944e-02 2.06838191e-01 9.58188698e-02 6.20261788e-01
3.14778686e-01 -6.83275223e-01 -3.68390352e-01 6.59320831e-01
-7.33123899e-01 4.89643246e-01 7.40948439e-01 9.91838753e-01
8.00240278e-01 -1.81143850e-01 6.76706016e-01 -1.22285569e+00
5.69922149e-01 -7.80962467e-01 -3.57129753e-01 8.68840754e-01
-1.14150500e+00 -1.34491161e-01 1.12455988e+00 -7.29401648e-01
-1.40657711e+00 3.28710765e-01 4.96096939e-01 -1.03930509e+00
8.25440362e-02 3.66143644e-01 -4.30028617e-01 -2.57603198e-01
6.16439462e-01 4.88019109e-01 -7.20899478e-02 -8.34272563e-01
1.61797866e-01 1.09174013e+00 8.68685097e-02 -7.32036948e-01
1.48313165e-01 4.33914781e-01 6.61887899e-02 -1.53096020e-01
-5.81007004e-01 -4.71490204e-01 -4.27651167e-01 -5.32910347e-01
2.80375481e-01 -1.08351767e+00 -8.37490082e-01 4.03849661e-01
-9.69733357e-01 -2.47815192e-01 -1.15837142e-01 3.82044882e-01
-4.23206031e-01 -3.80583294e-02 -3.17558467e-01 -6.93389118e-01
-1.02181101e+00 -1.30319190e+00 1.15910351e+00 -4.15410893e-03
4.47038531e-01 -8.28995883e-01 -3.17315869e-02 5.88395476e-01
7.30881751e-01 -2.22881734e-01 8.57595444e-01 -9.84596312e-01
-4.61433530e-01 -1.71681032e-01 -2.07843632e-01 8.07420984e-02
3.78569332e-03 -3.98134291e-01 -1.16081309e+00 -4.89339769e-01
2.65582085e-01 -4.58376139e-01 5.00049949e-01 -5.72980009e-02
1.29284847e+00 -4.01241004e-01 -6.20582759e-01 8.52427661e-01
1.40081978e+00 -1.10253982e-01 -3.65834199e-02 2.53321350e-01
7.90483594e-01 6.36878252e-01 6.55929208e-01 7.88506687e-01
5.05396187e-01 9.41907823e-01 6.00462794e-01 2.28688493e-02
-1.64005011e-01 1.07489616e-01 5.02131045e-01 8.05228353e-01
8.68059993e-02 1.08632408e-01 -8.41140389e-01 2.72020936e-01
-2.21574116e+00 -6.88612401e-01 -5.17348126e-02 2.10838223e+00
4.57282275e-01 -3.55090529e-01 -2.39588786e-02 -1.49092063e-01
8.84285748e-01 2.96813287e-02 -9.97546971e-01 -3.26767504e-01
-6.28528446e-02 -3.32800865e-01 1.39775321e-01 -1.16232850e-01
-8.23073268e-01 7.02077091e-01 4.63570023e+00 1.17553782e+00
-1.33410454e+00 9.04335737e-01 5.91433108e-01 -6.72364295e-01
-6.41711429e-02 -1.29412383e-01 -9.47479904e-01 4.33409721e-01
7.42871404e-01 -5.07250965e-01 5.03997028e-01 1.48755670e+00
-1.25046715e-01 2.39371210e-01 -1.04110897e+00 1.16784823e+00
9.59544554e-02 -1.30618966e+00 1.64735079e-01 1.24963813e-01
6.93716943e-01 4.27869439e-01 8.07792619e-02 4.52280432e-01
2.19178915e-01 -5.31603158e-01 5.94134629e-01 4.19179231e-01
7.50444174e-01 -4.43916798e-01 5.21159291e-01 8.00376236e-01
-1.51243055e+00 -5.00430107e-01 -3.10489714e-01 1.81825757e-01
-1.67187810e-01 6.72919035e-01 -7.00535357e-01 1.05529881e+00
1.15981591e+00 5.36977649e-01 -5.43095469e-01 8.43482137e-01
6.97373211e-01 7.06175417e-02 -3.37082624e-01 1.96734503e-01
-7.20656812e-02 -2.12904930e-01 3.05146217e-01 8.34133983e-01
3.79290611e-01 -3.29081297e-01 5.46174943e-01 3.91344428e-01
-8.83448645e-02 7.39379764e-01 -6.13579750e-01 5.60710430e-01
4.40251738e-01 1.79573154e+00 -5.11796176e-02 -4.94770199e-01
-9.35300648e-01 9.09170866e-01 7.70074785e-01 3.00258100e-01
-6.64525151e-01 2.12359488e-01 7.34166861e-01 -9.73626152e-02
1.91509619e-01 2.57482737e-01 -3.11056346e-01 -1.28761256e+00
3.23333293e-01 -1.01916897e+00 8.60895634e-01 -6.70292079e-01
-1.46730995e+00 1.04407418e+00 -2.80768245e-01 -1.22814918e+00
-2.47277975e-01 -3.37918460e-01 -5.89515448e-01 9.79899764e-01
-1.53579164e+00 -1.63832414e+00 -6.41455591e-01 1.35992503e+00
7.87640274e-01 -4.87832546e-01 9.47430193e-01 5.23737311e-01
-8.76169145e-01 5.47272742e-01 4.69900727e-01 -6.27833188e-01
1.01028168e+00 -6.86681926e-01 -2.58843571e-01 5.34723401e-01
-7.67338695e-03 -4.93270420e-02 8.91049877e-02 -6.05154693e-01
-1.76049674e+00 -1.44920468e+00 7.42199898e-01 -4.81962562e-02
2.81267941e-01 -4.58515972e-01 -8.56338382e-01 6.73009455e-01
-5.56123182e-02 6.98399961e-01 8.33481491e-01 3.25726449e-01
-4.49661106e-01 -8.61641228e-01 -1.28179061e+00 2.08553970e-01
9.47008669e-01 -4.24247652e-01 8.22943971e-02 9.21869099e-01
5.33978343e-01 -1.31785214e-01 -9.73469377e-01 3.56413305e-01
6.85565650e-01 -1.17201269e+00 7.26471186e-01 -7.56438136e-01
6.77246973e-02 1.68497622e-01 -4.72359419e-01 -1.10018396e+00
-3.06883842e-01 -3.70688587e-01 -4.63897914e-01 8.87548745e-01
2.17832968e-01 -9.47364450e-01 1.02962005e+00 7.64233053e-01
-4.34235126e-01 -1.29269886e+00 -1.14482832e+00 -7.42506623e-01
-3.45429838e-01 -3.31534147e-01 9.97250319e-01 9.31225002e-01
-4.96409237e-02 2.12187126e-01 -4.67563450e-01 -5.41581437e-02
7.70396531e-01 7.74018645e-01 8.70944142e-01 -1.59407485e+00
-3.38860393e-01 -2.67719030e-01 9.45180953e-02 -5.13722599e-01
2.46866301e-01 -1.15860510e+00 -5.00637770e-01 -1.19199264e+00
4.82564926e-01 -7.46706307e-01 -4.88848835e-01 7.95349777e-01
-4.70306389e-02 -1.49725571e-01 5.63822687e-01 7.85546899e-01
-9.25704062e-01 7.56259203e-01 1.11274910e+00 -6.23304509e-02
-1.05889760e-01 3.63480449e-01 -4.29325849e-01 5.40019810e-01
5.88177204e-01 -6.80087924e-01 -4.38754469e-01 -5.60983300e-01
-1.11659110e-01 1.35165483e-01 1.18257567e-01 -9.55578804e-01
5.87869167e-01 -3.05305660e-01 3.38614762e-01 -4.05769646e-01
4.48991299e-01 -1.31142795e+00 6.98397636e-01 3.05586725e-01
6.67684898e-03 3.00211787e-01 6.48899004e-02 3.96690190e-01
-6.79563880e-02 1.33368745e-01 4.51101363e-01 -6.53329417e-02
-7.36616313e-01 6.17849648e-01 1.73415244e-01 -3.84806365e-01
1.50459671e+00 -1.91990230e-02 -5.80183208e-01 1.41641172e-02
-6.42216742e-01 3.62823486e-01 3.69253427e-01 4.89648730e-01
5.39411783e-01 -1.34357035e+00 -7.45341420e-01 3.66935283e-01
1.62264884e-01 -6.78045675e-02 5.91795146e-01 1.05247021e+00
9.42055322e-03 3.46681952e-01 -2.97627121e-01 -5.63767970e-01
-1.62499082e+00 8.25346231e-01 4.62058753e-01 -6.98190570e-01
-5.90198755e-01 5.12636840e-01 3.57219338e-01 -6.52228475e-01
3.79462510e-01 3.01429480e-01 3.58888172e-02 1.01939946e-01
4.28189248e-01 6.25523329e-01 6.08612478e-01 -5.98328590e-01
-5.06702006e-01 2.56705701e-01 -1.07967682e-01 3.69112641e-01
1.33966470e+00 -2.02321157e-01 -1.90101936e-01 3.76604438e-01
1.17979288e+00 -3.82903665e-01 -1.25927854e+00 -6.50087178e-01
-2.23503575e-01 -5.36031604e-01 2.63730198e-01 -9.16279197e-01
-1.53660607e+00 8.52925479e-01 8.92618835e-01 -2.14524031e-01
1.44316041e+00 -2.80679226e-01 8.49321187e-01 4.50327277e-01
6.29086852e-01 -1.12558258e+00 -1.08213991e-01 -8.31786660e-04
7.18587697e-01 -1.15684867e+00 3.70670184e-02 -4.60907638e-01
-9.73936260e-01 9.74602580e-01 1.04285717e+00 4.45168048e-01
7.28208244e-01 4.82814223e-01 3.14837582e-02 -1.16060160e-01
-1.57505679e+00 2.47232184e-01 2.47507185e-01 5.05446196e-01
-4.56632264e-02 6.91121519e-02 -6.00272939e-02 1.11253273e+00
2.88584471e-01 3.53172034e-01 -1.26792729e-01 9.78363037e-01
-1.88261926e-01 -1.10616994e+00 -4.97105926e-01 7.49897778e-01
-3.30406100e-01 -1.56890061e-02 1.07370585e-01 2.71327168e-01
3.63256663e-01 8.03731203e-01 1.60344280e-02 -6.82915211e-01
2.09898904e-01 6.38647497e-01 9.78978053e-02 -4.27440882e-01
-1.18273890e+00 -2.81606372e-02 -6.80732206e-02 -9.29226458e-01
-1.94546387e-01 -5.32464206e-01 -8.20284426e-01 -3.10689837e-01
-3.48122030e-01 2.57559091e-01 1.00331199e+00 8.15786183e-01
1.02524018e+00 3.46891165e-01 8.15164745e-01 -9.98092771e-01
-8.92147481e-01 -8.78464580e-01 -7.56222665e-01 4.08168107e-01
-1.45835191e-01 -6.02642119e-01 -1.30911931e-01 -1.05238529e-02] | [5.8280415534973145, 6.284786701202393] |
1299f1a6-3f58-4da9-b8d3-6db0040d8d9a | towards-complete-view-and-high-level-pose | 2209.11577 | null | https://arxiv.org/abs/2209.11577v1 | https://arxiv.org/pdf/2209.11577v1.pdf | Towards Complete-View and High-Level Pose-based Gait Recognition | The model-based gait recognition methods usually adopt the pedestrian walking postures to identify human beings. However, existing methods did not explicitly resolve the large intra-class variance of human pose due to camera views changing. In this paper, we propose to generate multi-view pose sequences for each single-view pose sample by learning full-rank transformation matrices via lower-upper generative adversarial network (LUGAN). By the prior of camera imaging, we derive that the spatial coordinates between cross-view poses satisfy a linear transformation of a full-rank matrix, thereby, this paper employs the adversarial training to learn transformation matrices from the source pose and target views to obtain the target pose sequences. To this end, we implement a generator composed of graph convolutional (GCN) layers, fully connected (FC) layers and two-branch convolutional (CNN) layers: GCN layers and FC layers encode the source pose sequence and target view, then CNN branches learn a lower triangular matrix and an upper triangular matrix, respectively, finally they are multiplied to formulate the full-rank transformation matrix. For the purpose of adversarial training, we further devise a condition discriminator that distinguishes whether the pose sequence is true or generated. To enable the high-level correlation learning, we propose a plug-and-play module, named multi-scale hypergraph convolution (HGC), to replace the spatial graph convolutional layer in baseline, which could simultaneously model the joint-level, part-level and body-level correlations. Extensive experiments on two large gait recognition datasets, i.e., CASIA-B and OUMVLP-Pose, demonstrate that our method outperforms the baseline model and existing pose-based methods by a large margin. | ['Zhenyu He', 'Yunqi He', 'Tingyang Xu', 'Yongyong Chen', 'Honghu Pan'] | 2022-09-23 | null | null | null | null | ['gait-recognition'] | ['computer-vision'] | [ 1.03010952e-01 -1.82054833e-01 1.58000216e-01 -8.20026472e-02
-4.38125342e-01 -4.63768095e-01 3.68589014e-01 -1.06511676e+00
-4.15923670e-02 6.79010749e-01 2.52549052e-01 2.14956641e-01
3.51777285e-01 -9.94511902e-01 -9.24319327e-01 -8.46356690e-01
-1.35653401e-02 3.55182916e-01 1.23652264e-01 -3.34109128e-01
-3.26216042e-01 2.14046165e-01 -1.21623480e+00 1.89755693e-01
6.19298279e-01 7.45520473e-01 -3.04958135e-01 8.40341568e-01
5.41316628e-01 7.06019640e-01 -6.76517606e-01 -7.13864267e-01
4.15686369e-01 -7.21376359e-01 -3.61141682e-01 3.70892763e-01
5.36525965e-01 -5.78990161e-01 -9.74762142e-01 1.07269382e+00
7.84503102e-01 -4.59828321e-03 6.97623491e-01 -1.65069997e+00
-8.23853612e-01 1.55179054e-01 -7.19482601e-01 -1.32033965e-02
7.65450954e-01 6.80695176e-01 4.78128284e-01 -6.42453313e-01
7.35717952e-01 1.51897752e+00 9.45386410e-01 5.74189901e-01
-1.07713234e+00 -9.15272176e-01 1.10333413e-01 3.38537604e-01
-1.34066558e+00 -2.79310290e-02 1.14871180e+00 -5.15745938e-01
4.64015305e-01 2.69867659e-01 1.03666210e+00 1.96009779e+00
4.35116947e-01 6.16553843e-01 1.14374053e+00 1.19402260e-01
-3.35784376e-01 -6.40360892e-01 -2.91704804e-01 9.24215555e-01
5.68401754e-01 3.34669888e-01 -2.94194758e-01 8.17057192e-02
1.28824818e+00 5.77311181e-02 -4.82695967e-01 -5.56173682e-01
-1.41612697e+00 6.55011773e-01 4.93319362e-01 -1.53345466e-01
-2.33075336e-01 3.41213942e-01 5.85205913e-01 2.97566265e-01
-9.03848857e-02 -2.30026484e-01 -1.24863632e-01 1.75228924e-01
-3.68222654e-01 4.21771884e-01 7.22646117e-01 1.01542842e+00
6.72421277e-01 3.84792894e-01 -2.01324776e-01 5.63563704e-01
4.78949755e-01 1.09196317e+00 6.47897482e-01 -6.31218553e-01
9.19414282e-01 4.27864939e-01 -1.11002810e-01 -1.55593765e+00
-3.72414917e-01 -4.72299993e-01 -1.40151298e+00 -3.61339077e-02
2.05809936e-01 -3.72510403e-01 -1.08636475e+00 1.89425945e+00
2.79989392e-01 5.25620162e-01 8.98865908e-02 1.20506740e+00
8.77856374e-01 5.14864564e-01 -1.05942674e-01 2.33900845e-02
1.46474469e+00 -8.04264128e-01 -5.59824467e-01 -4.12214786e-01
2.47892156e-01 -6.05620861e-01 9.11932409e-01 2.02064663e-01
-6.58961058e-01 -9.76364911e-01 -1.35273528e+00 1.08411863e-01
-1.97385728e-01 2.97393084e-01 3.42845619e-01 7.09169090e-01
-5.16327500e-01 4.16805893e-01 -8.86359215e-01 -2.40544513e-01
6.29960373e-03 1.61171138e-01 -7.49962986e-01 -7.21192881e-02
-1.58326638e+00 6.09759688e-01 3.47384155e-01 3.78583610e-01
-9.35389876e-01 -3.14472944e-01 -1.14132512e+00 -2.72542089e-01
3.18251193e-01 -1.33398581e+00 4.25617427e-01 -6.73076749e-01
-1.47559273e+00 9.15933728e-01 4.92687255e-01 -2.04611972e-01
9.63165283e-01 -2.99267858e-01 -6.01246953e-01 -4.49778140e-03
3.11995089e-01 3.40538234e-01 1.06153989e+00 -1.25387418e+00
-1.41619250e-01 -4.42194879e-01 -6.76641986e-02 3.00388753e-01
1.56797767e-01 -4.54911202e-01 -7.51188934e-01 -1.00398207e+00
1.93351060e-01 -1.19907856e+00 -5.73942736e-02 -2.32077658e-01
-6.98975563e-01 4.35924053e-01 7.76307225e-01 -1.14085972e+00
1.16582370e+00 -1.95283175e+00 4.86431092e-01 2.60557115e-01
6.36987463e-02 1.00728616e-01 -8.98635238e-02 3.34832758e-01
-3.92905921e-01 -1.42048120e-01 -2.51748025e-01 -4.63883840e-02
5.59407212e-02 4.85351443e-01 -1.03059329e-01 6.98099434e-01
1.91918075e-01 1.15789390e+00 -8.50521922e-01 -4.59313840e-01
3.63611490e-01 5.31402886e-01 -6.44999385e-01 4.05459225e-01
2.39302367e-01 7.23976970e-01 -4.61273372e-01 4.75106776e-01
8.61144662e-01 -1.03573352e-01 1.15518726e-01 -7.77005613e-01
5.40978372e-01 -3.31020117e-01 -1.62215841e+00 1.86184680e+00
-1.36464328e-01 -7.51180947e-02 -1.87221527e-01 -9.21124339e-01
8.97613347e-01 2.36315921e-01 6.14698887e-01 -4.39814687e-01
1.93105683e-01 1.50316199e-02 3.19623090e-02 -6.15597188e-01
-9.14883520e-03 5.54326251e-02 -4.01218116e-01 -1.65116321e-02
1.74166709e-01 2.25188896e-01 9.78650078e-02 -9.19039026e-02
1.04391468e+00 5.93217432e-01 1.86752260e-01 9.23701525e-02
9.14949954e-01 -5.40548801e-01 8.43657672e-01 2.96743423e-01
-2.58187711e-01 1.06141949e+00 6.54822409e-01 -4.95465428e-01
-1.00438571e+00 -1.43306386e+00 4.22392756e-01 5.16892254e-01
3.40174168e-01 -2.01041475e-01 -8.50982904e-01 -7.81704545e-01
1.61812119e-02 9.42179188e-03 -8.47420692e-01 -7.07935929e-01
-1.08969963e+00 -7.98359394e-01 8.29330206e-01 6.99643433e-01
1.31789863e+00 -8.20971072e-01 -3.81141096e-01 3.50700393e-02
-5.25474966e-01 -1.22982323e+00 -1.00112438e+00 -3.75860453e-01
-4.82827514e-01 -1.37881052e+00 -1.00473547e+00 -6.86874926e-01
5.98376274e-01 -2.13825747e-01 9.21223700e-01 -1.52746886e-01
-2.43528649e-01 3.15028399e-01 -2.52096355e-01 3.35329801e-01
-8.80188644e-02 1.17455199e-02 2.47212157e-01 3.56172532e-01
9.51787904e-02 -1.03067267e+00 -8.98759842e-01 6.11069322e-01
-6.43209279e-01 2.28215948e-01 7.57148504e-01 1.24869955e+00
4.76829886e-01 -3.19955766e-01 2.15750203e-01 -6.55688345e-01
4.71619606e-01 -2.49637648e-01 -1.70845702e-01 1.70098171e-01
-8.81264582e-02 -3.90650928e-02 7.49286771e-01 -5.33409059e-01
-6.66808665e-01 2.03684449e-01 -2.95222610e-01 -9.04784083e-01
-1.05594330e-01 4.06240255e-01 -9.82816696e-01 6.09447099e-02
6.30852759e-01 5.70928037e-01 3.48210931e-02 -1.48380175e-01
5.22525191e-01 1.53466657e-01 1.04544663e+00 -7.15955496e-01
1.34888577e+00 2.11710364e-01 2.25225642e-01 -3.94239932e-01
-4.46179181e-01 -5.16209491e-02 -7.84388125e-01 -3.30730170e-01
1.28239000e+00 -1.13126016e+00 -6.70455813e-01 9.47995245e-01
-1.09722006e+00 -7.37909824e-02 7.34048486e-02 4.75721687e-01
-7.94373453e-01 6.59924626e-01 -6.84402883e-01 -2.01494649e-01
-3.26439947e-01 -1.15520525e+00 1.25545955e+00 9.94655862e-02
6.97767511e-02 -8.09697092e-01 5.89328408e-02 3.93534988e-01
-1.63696513e-01 1.03325260e+00 3.78886163e-01 -2.22207919e-01
-4.61047262e-01 -2.47536451e-01 -9.35111952e-04 4.00876045e-01
1.48283884e-01 -1.60579547e-01 -6.22555554e-01 -5.27819097e-01
-6.96940050e-02 -1.91794962e-01 6.20071948e-01 2.16041252e-01
7.97725260e-01 -4.48594838e-01 -2.01168954e-01 1.15470970e+00
1.18045723e+00 7.02246577e-02 9.80488241e-01 2.53926814e-01
1.41768515e+00 2.20921725e-01 3.03906441e-01 2.86872566e-01
4.83174413e-01 6.79682851e-01 2.02646583e-01 3.37923667e-03
-3.64953458e-01 -7.05218256e-01 5.96015155e-01 1.11923730e+00
-4.28730965e-01 -1.21765226e-01 -7.76150346e-01 1.52119137e-02
-1.82937098e+00 -1.16258323e+00 5.91007546e-02 2.02462554e+00
4.58929121e-01 2.39698350e-01 2.48954415e-01 1.21425495e-01
8.19664419e-01 4.04246271e-01 -7.11733580e-01 2.59790361e-01
-1.52590081e-01 -2.15239078e-02 6.36462569e-01 2.63746291e-01
-1.33427799e+00 7.89823890e-01 5.18538618e+00 6.78972244e-01
-1.00553346e+00 -1.51004970e-01 4.47116941e-01 3.80740643e-01
6.67423680e-02 -3.92225653e-01 -4.70401764e-01 6.89165652e-01
4.29311901e-01 7.57285058e-02 4.12158221e-01 7.44689941e-01
-1.02995753e-01 6.60069525e-01 -1.01107872e+00 1.32981586e+00
3.57053995e-01 -7.36684263e-01 3.77962649e-01 5.04573695e-02
6.03389680e-01 -5.46097159e-01 1.66447788e-01 4.95146304e-01
2.65239328e-01 -9.46561813e-01 5.81179380e-01 5.43783247e-01
1.06245112e+00 -7.53667533e-01 7.34289706e-01 1.49693474e-01
-1.73310935e+00 1.66425601e-01 -3.11668098e-01 1.19425930e-01
2.79620320e-01 5.16427048e-02 -2.80942209e-02 1.21232760e+00
5.51392674e-01 9.52049851e-01 -6.06928051e-01 6.11743033e-01
-3.81739050e-01 3.23194504e-01 -1.32265568e-01 4.52168435e-01
-3.30068767e-02 -4.01375741e-01 6.41484320e-01 9.65317309e-01
3.15359980e-01 9.03890133e-02 5.60162008e-01 8.01400661e-01
7.97529519e-02 -1.84472054e-01 -6.05980337e-01 2.67518133e-01
1.72857717e-01 1.07460499e+00 -4.67428982e-01 -1.84070438e-01
-3.62693578e-01 1.52727783e+00 1.84418019e-02 4.45662409e-01
-1.31911492e+00 -2.80465752e-01 7.16879845e-01 -6.09873906e-02
3.24999899e-01 -2.89232552e-01 -9.37501788e-02 -1.76621568e+00
2.70876467e-01 -1.28263772e+00 4.01586413e-01 -7.51949966e-01
-1.48788702e+00 3.69105816e-01 3.16865519e-02 -1.58568561e+00
-4.14561599e-01 -8.12628031e-01 -6.79392695e-01 9.91007686e-01
-7.89502740e-01 -1.81666648e+00 -6.86788797e-01 9.89040315e-01
3.94916087e-02 -2.36818314e-01 6.67659700e-01 6.35679603e-01
-6.82929933e-01 9.55202997e-01 -3.31204534e-01 1.00842106e+00
8.16212595e-01 -1.02928472e+00 7.79818833e-01 1.05338871e+00
-1.41819149e-01 5.83382428e-01 5.65158010e-01 -1.02796924e+00
-1.65541637e+00 -1.30828559e+00 5.18205315e-02 -5.41132987e-01
5.11273861e-01 -3.26194376e-01 -6.08181775e-01 9.83758092e-01
-1.67830735e-01 2.99883187e-01 3.83153379e-01 -3.54632050e-01
-5.03071904e-01 -1.52280957e-01 -1.00798333e+00 7.42035985e-01
1.55003738e+00 -5.25962293e-01 -6.50171459e-01 4.89658378e-02
6.40193701e-01 -9.54852819e-01 -1.03745890e+00 7.03904927e-01
7.65937209e-01 -8.93937230e-01 1.45527315e+00 -6.79295719e-01
6.75277174e-01 -6.28883302e-01 -2.17040837e-01 -1.35620904e+00
-5.43214440e-01 -3.65605265e-01 -1.95350975e-01 1.08364785e+00
-1.47527710e-01 -7.28806615e-01 1.02058136e+00 1.65938899e-01
-1.71220675e-01 -6.82106018e-01 -9.03279424e-01 -9.08763111e-01
1.21135972e-01 -1.72378868e-02 7.76654482e-01 9.50071335e-01
-5.88128746e-01 4.51656461e-01 -1.02736390e+00 4.11193937e-01
7.97332406e-01 -7.94822574e-02 1.31533003e+00 -7.56849170e-01
-5.97705603e-01 -5.94277419e-02 -1.07599616e+00 -1.11895931e+00
-2.70143826e-03 -6.13019764e-01 -1.70294121e-01 -1.29395878e+00
2.68573947e-02 1.62283018e-01 -1.09949276e-01 1.51146591e-01
-6.10388756e-01 3.32464427e-01 1.94461539e-01 1.05938904e-01
-2.66039103e-01 6.87380850e-01 1.77008975e+00 -3.43105197e-01
2.06223369e-01 -2.36827284e-01 -3.15866083e-01 5.99580586e-01
4.25896406e-01 7.50562549e-02 -5.09198487e-01 -2.19621554e-01
-7.03485534e-02 1.53406709e-01 7.41709054e-01 -1.52171111e+00
2.52821278e-02 -9.93329063e-02 8.65545511e-01 -5.04834116e-01
3.08671266e-01 -7.68787622e-01 8.58344615e-01 8.80643845e-01
1.17157944e-01 2.45308354e-01 -1.31347343e-01 7.26421297e-01
-1.42504483e-01 3.71797055e-01 6.49884939e-01 -2.98831046e-01
-6.50268912e-01 8.89356256e-01 1.07760288e-01 3.66005331e-01
9.64821398e-01 -4.35990512e-01 -2.55410850e-01 -3.67920101e-01
-8.95212829e-01 1.78486079e-01 4.45754051e-01 5.59987545e-01
6.42121136e-01 -2.13577628e+00 -7.55433798e-01 5.89430213e-01
1.41720459e-01 2.23285407e-02 5.55676281e-01 6.27020717e-01
-8.98318231e-01 -7.92237967e-02 -7.21649587e-01 -5.78984559e-01
-1.00925088e+00 6.09074414e-01 5.55579901e-01 -5.96481919e-01
-7.21162021e-01 5.85601747e-01 3.47464800e-01 -6.24625742e-01
-1.49636626e-01 -8.90722200e-02 -1.05062440e-01 -1.71221748e-01
2.00933918e-01 4.70700830e-01 -3.74715179e-01 -1.16486180e+00
-3.19040269e-01 9.67642307e-01 3.96555811e-01 -4.21264209e-02
8.24081421e-01 -3.18094913e-04 1.40326619e-01 2.51873046e-01
1.45205569e+00 -2.50662982e-01 -1.36390519e+00 1.44329712e-01
-6.91634238e-01 -4.47348356e-01 -7.45924950e-01 -4.21290696e-01
-1.41109860e+00 8.39204788e-01 8.89814019e-01 -3.05359453e-01
9.59380925e-01 -5.76942503e-01 1.00589418e+00 1.80631399e-01
4.84617770e-01 -7.87688315e-01 4.35230911e-01 4.44712490e-01
1.00680554e+00 -9.25056636e-01 -1.01221882e-01 -7.35136509e-01
-4.91048425e-01 9.80907202e-01 1.14472115e+00 -6.26221478e-01
5.66364408e-01 6.40416071e-02 6.48170635e-02 -5.42853540e-03
-1.53674200e-01 -9.79543664e-03 4.87221807e-01 1.07198822e+00
1.74107969e-01 2.16810822e-01 -2.73432881e-01 7.87377357e-01
-5.94049692e-01 -6.03065118e-02 6.33188561e-02 5.93843818e-01
-2.00568605e-03 -1.02587211e+00 -6.29833996e-01 3.01536947e-01
-1.85156897e-01 2.06206679e-01 -2.61354834e-01 8.85834515e-01
5.71399808e-01 4.64810431e-01 -1.78044677e-01 -1.16151357e+00
7.09760487e-01 -9.99016836e-02 6.17064893e-01 -2.61553437e-01
-3.47769231e-01 -6.21199608e-03 -3.18492553e-03 -7.53479600e-01
-3.49624872e-01 -5.96727729e-01 -8.99487019e-01 -4.45211530e-01
3.46671455e-02 -2.37545565e-01 -3.34764153e-01 6.91853344e-01
4.21137102e-02 8.00318420e-01 5.00617802e-01 -1.02188957e+00
-6.31643772e-01 -9.28765476e-01 -5.44275761e-01 1.12712216e+00
-3.53258066e-02 -9.98722851e-01 -1.84367523e-01 3.96448642e-01] | [11.996466636657715, -0.8574856519699097] |
499a0040-58ed-4123-8b9f-62c36ab836f9 | mdgcf-multi-dependency-graph-collaborative | null | null | https://doi.org/10.1145/3511808.3557390 | https://dl.acm.org/doi/pdf/10.1145/3511808.3557390 | MDGCF: Multi-Dependency Graph Collaborative Filtering with Neighborhood- and Homogeneous-level Dependencies | Due to the success of graph convolutional networks (GCNs) in effectively extracting features in non-Euclidean spaces, GCNs has become the rising star in implicit collaborative filtering. Existing works, while encouraging, typically adopt simple aggregation operation on the user-item bipartite graph to model user and item representations, but neglect to mine the sufficient dependencies between nodes, e.g., the relationships between users/items and their neighbors (or congeners), resulting in inadequate graph representation learning. To address these problems, we propose a novel Multi-Dependency Graph Collaborative Filtering (MDGCF) model, which mines the neighborhood- and homogeneous-level dependencies to enhance the representation power of graph-based CF models. Specifically, for neighborhood-level dependencies, we explicitly consider both popularity score and preference correlation by designing a joint neighborhood-level dependency weight, based on which we construct a neighborhood-level dependencies graph to capture higher-order interaction features. Besides, by adaptively mining the homogeneous-level dependencies among users and items, we construct two homogeneous graphs, based on which we further aggregate features from homogeneous users and items to supplement their representations, respectively. Extensive experiments on three real-world benchmark datasets demonstrate the effectiveness of the proposed MDGCF. Further experiments reveal that our model can capture rich dependencies between nodes for explaining user behaviors. | ['Chaoyang Wang', 'Jianjun Li', 'Zhiqiang Guo', 'GuoHui Li'] | 2022-10-17 | null | null | null | cikm-2022-10 | ['graph-representation-learning', 'collaborative-filtering'] | ['methodology', 'miscellaneous'] | [-2.46444300e-01 -3.30899149e-01 -3.56883913e-01 -4.56709325e-01
2.37310156e-01 -4.08162475e-01 3.38236064e-01 6.17970347e-01
-1.02508157e-01 3.18616986e-01 4.86565828e-01 -3.44816595e-01
-6.58703864e-01 -1.20456135e+00 -4.23878103e-01 -5.08800030e-01
-4.65173662e-01 -4.86119166e-02 2.03773737e-01 -2.81385541e-01
3.67483981e-02 1.27409831e-01 -1.22667289e+00 1.85424685e-01
1.22726202e+00 9.24484491e-01 1.17087208e-01 5.78970164e-02
-3.69290978e-01 4.51804310e-01 -1.67289957e-01 -3.99878979e-01
1.90917596e-01 -4.15113240e-01 -3.86091262e-01 2.35076621e-01
-2.63098460e-02 -2.05723301e-01 -6.84071898e-01 1.14670777e+00
1.80000693e-01 3.91984761e-01 5.41547298e-01 -1.06567729e+00
-1.18831396e+00 8.92817557e-01 -6.90677881e-01 3.01028103e-01
4.81903553e-01 5.47997765e-02 1.61436605e+00 -7.79085934e-01
2.24994868e-01 1.20856035e+00 4.32157397e-01 3.43701541e-02
-1.10780656e+00 -7.91141868e-01 9.00435984e-01 2.00492948e-01
-1.45449865e+00 1.77217498e-01 8.74973416e-01 -8.88582915e-02
7.58854449e-01 4.13565367e-01 8.63044143e-01 7.15918303e-01
-1.18192695e-01 8.33465099e-01 6.75587296e-01 -1.71911761e-01
-1.10432647e-01 -1.42990053e-01 5.55857539e-01 7.99540639e-01
5.80765367e-01 -9.72598940e-02 -2.48134106e-01 -2.52815187e-01
1.01730859e+00 6.58472180e-01 -3.11180383e-01 -3.24634284e-01
-9.80038404e-01 8.31836283e-01 1.08712876e+00 4.43335950e-01
-3.15650076e-01 -1.44153088e-01 1.57181576e-01 3.12149018e-01
4.49653953e-01 5.75656891e-02 -3.04209769e-01 3.93604368e-01
-3.79412800e-01 -7.77125061e-02 5.26899517e-01 1.19852638e+00
1.07190490e+00 -2.86755443e-01 -3.29886049e-01 8.47747684e-01
6.19096041e-01 8.37260336e-02 3.55326116e-01 -1.27470344e-01
5.55254996e-01 1.34649599e+00 -4.36974168e-02 -1.59742737e+00
-4.47625935e-01 -9.27066445e-01 -1.18553114e+00 -8.14283967e-01
6.70407563e-02 -2.93134041e-02 -7.52127349e-01 1.71243489e+00
4.04379576e-01 5.47987819e-01 -4.83896673e-01 1.01411378e+00
8.77866328e-01 5.02059519e-01 1.60989955e-01 -3.81007820e-01
1.18096209e+00 -7.32258201e-01 -6.31932199e-01 1.23614974e-01
7.86634564e-01 -3.91391933e-01 1.12737966e+00 5.87545857e-02
-7.10980892e-01 -5.68849146e-01 -7.32232273e-01 2.96535462e-01
-3.45586956e-01 -7.68123269e-02 1.21348381e+00 5.16929865e-01
-5.69118857e-01 5.99708259e-01 -6.20155931e-01 -8.49736482e-02
4.60526109e-01 5.08188188e-01 -1.17056973e-01 -3.17314029e-01
-1.60447562e+00 8.28295872e-02 3.58887911e-01 1.60363629e-01
-2.25415394e-01 -5.45686245e-01 -8.03571761e-01 4.07627940e-01
5.71749449e-01 -5.88170767e-01 4.35131788e-01 -8.67507994e-01
-9.00161684e-01 1.43092513e-01 1.13037974e-02 -1.39572769e-01
7.12868944e-02 -5.04347011e-02 -1.00361121e+00 -2.46404737e-01
-1.20302320e-01 1.41473353e-01 5.62117457e-01 -1.04141593e+00
-7.58749247e-01 -4.57813710e-01 5.20287514e-01 2.89561272e-01
-9.39525306e-01 -4.31619972e-01 -8.05210412e-01 -8.16710532e-01
3.20766091e-01 -6.27381206e-01 -4.40870225e-01 -3.93725455e-01
-3.96531135e-01 -5.88511348e-01 5.35908043e-01 -2.11812168e-01
2.04624462e+00 -2.14760089e+00 6.17307574e-02 8.08242679e-01
6.47574186e-01 1.40692309e-01 -3.29194516e-01 5.25860965e-01
8.02217722e-02 1.91961542e-01 2.55862251e-02 -4.79863547e-02
-1.06045246e-01 4.69263434e-01 -8.75250623e-03 3.42725545e-01
4.41205427e-02 9.79411602e-01 -1.20515144e+00 -2.50674188e-01
1.51319399e-01 4.00123864e-01 -8.42432737e-01 1.32157966e-01
-1.40927583e-01 2.40913317e-01 -9.31013227e-01 4.43958014e-01
8.91274869e-01 -7.16942370e-01 4.64662462e-01 -4.83354211e-01
2.10849896e-01 3.83695394e-01 -1.42402256e+00 1.55088484e+00
-4.69658852e-01 -1.80203050e-01 -5.48506118e-02 -9.91113484e-01
9.39531386e-01 -6.61460310e-02 5.14856935e-01 -7.19326377e-01
1.76200837e-01 3.31370695e-03 2.69491166e-01 -1.66799381e-01
2.33105376e-01 3.20091248e-01 -2.18504500e-02 3.69949430e-01
5.89766279e-02 8.64233553e-01 2.56782204e-01 7.65971422e-01
1.05821598e+00 -2.28908300e-01 2.00667575e-01 -3.89889956e-01
7.67645895e-01 -5.80461502e-01 6.64830923e-01 5.18536389e-01
1.04001686e-01 2.95179605e-01 2.81386018e-01 -4.29530680e-01
-3.46698225e-01 -9.56906557e-01 1.26831189e-01 1.24800396e+00
6.27497733e-01 -1.10224378e+00 -2.61640072e-01 -1.00221109e+00
2.44253740e-01 2.66049266e-01 -8.06945384e-01 -4.24149901e-01
-3.63843858e-01 -9.07666266e-01 -1.05932243e-01 6.19502068e-01
3.94094199e-01 -7.40529418e-01 3.52749795e-01 3.41592193e-01
5.08349435e-03 -6.89193904e-01 -9.01405096e-01 -6.83668330e-02
-7.38706291e-01 -1.18230808e+00 -3.35031569e-01 -7.18609273e-01
8.24313760e-01 8.53809416e-01 1.02990353e+00 8.27931762e-01
1.05535239e-02 2.21181378e-01 -7.78212249e-01 9.91647020e-02
4.39460278e-01 5.08588031e-02 1.22978039e-01 4.65782642e-01
5.21790028e-01 -1.02562463e+00 -1.00139987e+00 6.58103168e-01
-9.99311090e-01 -2.77862027e-02 7.11957932e-01 7.40014434e-01
5.00753105e-01 3.34612876e-01 7.33274281e-01 -1.29797244e+00
8.45679998e-01 -9.59412992e-01 -2.98832089e-01 2.86857963e-01
-8.22483599e-01 -4.18137163e-02 9.24450755e-01 -5.50134659e-01
-7.67398238e-01 -1.46952704e-01 -4.37581129e-02 -5.90304852e-01
8.62895325e-02 1.02421463e+00 -5.22914350e-01 1.32008389e-01
1.99781001e-01 2.62781978e-01 -4.78403300e-01 -5.29605746e-01
6.12084091e-01 5.54326773e-01 1.17409177e-01 -5.26274264e-01
8.07592034e-01 2.43326440e-01 -4.94690984e-02 -5.01632750e-01
-9.81414199e-01 -7.64407158e-01 -5.64653039e-01 6.10717908e-02
5.68064451e-01 -9.11959350e-01 -7.36962199e-01 8.32497515e-03
-6.32806420e-01 3.27140063e-01 -1.80013739e-02 5.20279467e-01
2.09230095e-01 6.05268836e-01 -6.75133348e-01 -7.62215614e-01
-1.66076675e-01 -7.25648403e-01 6.51806891e-01 5.17927647e-01
1.75717965e-01 -1.22714591e+00 -9.15539861e-02 9.06956121e-02
3.96785706e-01 -8.55175108e-02 1.10983682e+00 -8.16729248e-01
-5.88113248e-01 -2.24668592e-01 -5.54706037e-01 3.10040712e-02
6.56147122e-01 -2.17417359e-01 -2.30917096e-01 -4.39061552e-01
-4.93954688e-01 8.74535218e-02 1.01133645e+00 6.86722249e-02
1.35267913e+00 -4.84020770e-01 -5.69236577e-01 6.30082905e-01
1.19783247e+00 -1.05419189e-01 3.12222987e-01 -2.32416436e-01
1.14334393e+00 3.30532491e-01 4.68317062e-01 6.53932989e-01
6.41377926e-01 3.96308511e-01 5.19821465e-01 7.74840591e-04
1.08476661e-01 -6.81987584e-01 -3.50026116e-02 1.17090678e+00
-3.40276122e-01 -3.55986118e-01 -3.03447902e-01 2.93280393e-01
-2.03746080e+00 -5.71545303e-01 -5.10100961e-01 2.24114466e+00
4.65860993e-01 2.00724989e-01 3.40228677e-01 -1.59707330e-02
8.80112886e-01 2.37075657e-01 -4.94857371e-01 2.16226920e-01
-7.49841258e-02 9.29044113e-02 3.49812269e-01 1.18777454e-01
-9.99560773e-01 6.96080565e-01 4.40816545e+00 1.08883882e+00
-7.50941813e-01 -1.15613587e-01 4.51636732e-01 6.55226186e-02
-8.02707970e-01 6.82473183e-02 -5.79211295e-01 6.72385693e-01
4.38644856e-01 -2.08609730e-01 5.55588663e-01 6.26186609e-01
5.24447262e-02 4.04947877e-01 -8.24768841e-01 8.37228894e-01
-1.26633003e-01 -1.17290866e+00 5.16321361e-01 2.53514081e-01
7.38164067e-01 -2.06438631e-01 -7.73738325e-02 5.45512557e-01
6.10941887e-01 -7.60284960e-01 1.43324628e-01 4.57169861e-01
4.78659332e-01 -1.07608783e+00 5.73125303e-01 4.54910487e-01
-1.94912291e+00 -2.68242300e-01 -6.99822187e-01 -1.14570677e-01
-8.07895511e-02 6.84405267e-01 -1.02102719e-01 1.23569989e+00
6.05858326e-01 1.36791170e+00 -7.10008740e-01 1.00156617e+00
-1.01290107e-01 8.15035462e-01 -3.07613373e-01 -1.66689619e-01
4.13833201e-01 -6.98404193e-01 2.08968684e-01 1.03771436e+00
2.38690957e-01 5.57687283e-01 6.65181279e-01 6.72298431e-01
-3.15192044e-01 5.78963339e-01 -3.14390779e-01 -1.75938740e-01
6.03408158e-01 1.58561170e+00 -7.50385165e-01 -1.14187688e-01
-8.04495394e-01 7.77064264e-01 6.77407980e-01 3.04184347e-01
-7.54261732e-01 -3.93737733e-01 6.89051807e-01 2.88130105e-01
4.39243317e-01 -2.78099477e-01 1.59307837e-01 -1.44807553e+00
-6.33410364e-02 -5.50776243e-01 9.25699711e-01 -1.95949689e-01
-1.92874324e+00 4.45369720e-01 -2.38190860e-01 -1.48820770e+00
4.52015311e-01 -1.94149777e-01 -9.74514008e-01 7.78302968e-01
-1.31443107e+00 -1.31572247e+00 -4.23011363e-01 1.05278385e+00
1.23608023e-01 4.95608486e-02 5.64524055e-01 5.36749244e-01
-7.12656975e-01 8.01178396e-01 -3.76832224e-02 3.01728576e-01
2.62299985e-01 -9.51258183e-01 2.21937239e-01 5.48406839e-01
5.99335670e-01 1.25831914e+00 1.52170256e-01 -8.18950236e-01
-1.67755103e+00 -1.30292559e+00 4.39986229e-01 -1.64770737e-01
7.97083914e-01 -4.97153580e-01 -1.22768903e+00 6.32479310e-01
-1.49190068e-01 4.67577368e-01 9.48105872e-01 6.03702903e-01
-6.38475597e-01 -1.54687822e-01 -7.52996624e-01 5.60170829e-01
1.72620952e+00 -3.58650237e-01 -4.07919675e-01 4.45653111e-01
9.55806911e-01 -1.82352141e-02 -9.56885695e-01 4.09891039e-01
4.21753347e-01 -9.39697742e-01 9.03168321e-01 -8.22688639e-01
1.35065138e-01 -4.25276399e-01 -3.02768126e-02 -1.41487300e+00
-1.01989436e+00 -4.04686838e-01 -3.70393634e-01 1.30213583e+00
3.86671454e-01 -7.41658568e-01 7.78095186e-01 2.99888581e-01
-6.43881485e-02 -1.00153112e+00 -5.81282020e-01 -6.29943907e-01
-3.23259026e-01 -2.04866290e-01 1.06034887e+00 1.24225521e+00
1.05657116e-01 6.70437455e-01 -5.28389394e-01 2.87903190e-01
4.11503106e-01 6.42309904e-01 5.39581418e-01 -1.45083368e+00
-4.67951208e-01 -5.31336069e-01 -2.91628152e-01 -1.47647548e+00
-9.23669487e-02 -1.20997846e+00 -5.37204385e-01 -1.64145577e+00
1.83603853e-01 -9.00173903e-01 -1.00353336e+00 2.37721637e-01
-6.36287332e-01 5.07542379e-02 -7.02873096e-02 3.83874416e-01
-9.95357156e-01 6.48833692e-01 1.50883174e+00 -1.86677240e-02
-3.71229768e-01 1.85972452e-01 -9.68308568e-01 5.21212280e-01
3.43951344e-01 -2.03477100e-01 -7.00522780e-01 -4.11465257e-01
5.82959533e-01 -9.88918543e-02 -2.73812395e-02 -7.44175971e-01
3.10438097e-01 -3.46183449e-01 5.43231368e-01 -4.61409777e-01
-9.54756513e-02 -1.02869964e+00 1.66481659e-01 2.46597067e-01
-3.64026576e-01 -1.73599094e-01 -3.29123795e-01 1.27316225e+00
-1.80129260e-01 2.47106507e-01 2.55062640e-01 -3.79485711e-02
-5.93821645e-01 1.01106262e+00 1.44657418e-01 -1.42594159e-01
7.57932246e-01 -5.56176296e-03 -8.82569626e-02 -2.70609319e-01
-7.67073750e-01 6.57251537e-01 2.56480366e-01 5.61857402e-01
6.26515627e-01 -1.70700634e+00 -5.57270050e-01 4.27903205e-01
4.22710776e-01 1.33267855e-02 5.06073534e-01 7.84001529e-01
1.34498045e-01 1.52997285e-01 5.85600063e-02 -3.36718559e-01
-1.04862082e+00 8.35301816e-01 -7.06410706e-02 -4.61593211e-01
-5.55617392e-01 8.84496510e-01 3.88736486e-01 -3.15294653e-01
-3.49512249e-02 -2.25735039e-01 -6.45097852e-01 -3.39651927e-02
4.31724668e-01 1.88846603e-01 -2.91685145e-02 -5.45502305e-01
-3.36710006e-01 2.45337829e-01 -4.02045846e-01 6.74750984e-01
1.35988128e+00 -3.42781335e-01 -1.11905023e-01 1.11071117e-01
1.04927909e+00 3.06835890e-01 -8.62144828e-01 -6.71152234e-01
-8.67554024e-02 -9.17046249e-01 5.04584573e-02 -3.43980581e-01
-1.46378827e+00 6.30234957e-01 1.31544471e-01 6.11641586e-01
1.27685225e+00 -1.30020306e-02 9.51231003e-01 2.55078614e-01
4.84176993e-01 -6.80036426e-01 -1.17805535e-02 4.16980237e-01
3.57802540e-01 -8.71345580e-01 1.35140240e-01 -7.99834430e-01
-3.93337458e-01 8.59985948e-01 8.15760911e-01 -3.53583902e-01
1.16339278e+00 -2.72102624e-01 -5.81552744e-01 -2.07898095e-01
-6.84844196e-01 -4.10535753e-01 7.15415001e-01 3.71497899e-01
5.73776543e-01 3.60280067e-01 -5.86877227e-01 1.23345006e+00
2.38985628e-01 -2.18689859e-01 3.39219696e-03 6.84016824e-01
-4.40804780e-01 -1.29227293e+00 2.72053063e-01 1.06455302e+00
-1.69495955e-01 -3.25565845e-01 -3.31753701e-01 5.34778416e-01
3.18128437e-01 9.31321144e-01 8.27983096e-02 -9.37218606e-01
4.01897281e-01 -5.15641630e-01 1.99427307e-01 -8.24543178e-01
-8.17294538e-01 2.67242968e-01 -1.03897639e-01 -5.48718631e-01
-2.84703255e-01 -3.17369103e-01 -1.33124220e+00 -3.29042375e-01
-7.53379345e-01 5.94081461e-01 2.65857540e-02 8.62498403e-01
6.01818383e-01 5.12153506e-01 1.02897561e+00 -4.24077332e-01
-2.39053309e-01 -9.55621898e-01 -1.09983587e+00 7.77480423e-01
-4.98435907e-02 -8.34990084e-01 -3.41554791e-01 -5.75767219e-01] | [10.210638999938965, 5.631474018096924] |
41dc646b-00cd-4ac1-be8e-48835ada54cb | more-synergy-less-redundancy-exploiting-joint | 2307.00651 | null | https://arxiv.org/abs/2307.00651v1 | https://arxiv.org/pdf/2307.00651v1.pdf | More Synergy, Less Redundancy: Exploiting Joint Mutual Information for Self-Supervised Learning | Self-supervised learning (SSL) is now a serious competitor for supervised learning, even though it does not require data annotation. Several baselines have attempted to make SSL models exploit information about data distribution, and less dependent on the augmentation effect. However, there is no clear consensus on whether maximizing or minimizing the mutual information between representations of augmentation views practically contribute to improvement or degradation in performance of SSL models. This paper is a fundamental work where, we investigate role of mutual information in SSL, and reformulate the problem of SSL in the context of a new perspective on mutual information. To this end, we consider joint mutual information from the perspective of partial information decomposition (PID) as a key step in \textbf{reliable multivariate information measurement}. PID enables us to decompose joint mutual information into three important components, namely, unique information, redundant information and synergistic information. Our framework aims for minimizing the redundant information between views and the desired target representation while maximizing the synergistic information at the same time. Our experiments lead to a re-calibration of two redundancy reduction baselines, and a proposal for a new SSL training protocol. Extensive experimental results on multiple datasets and two downstream tasks show the effectiveness of this framework. | ['Donald A. Adjeroh', 'Gianfranco Doretto', 'Salman Mohamadi'] | 2023-07-02 | null | null | null | null | ['self-supervised-learning'] | ['computer-vision'] | [ 4.06920880e-01 3.71032685e-01 -4.16070938e-01 -6.07789099e-01
-7.44300485e-01 -4.73221809e-01 7.24938571e-01 1.78938225e-01
-4.86040823e-02 6.17155254e-01 5.09958565e-01 5.27794808e-02
-5.49237728e-01 -5.07046282e-01 -5.35226822e-01 -7.72014499e-01
3.14509541e-01 2.21766442e-01 -1.91930249e-01 -5.17618544e-02
2.02228114e-01 3.27104717e-01 -1.63124502e+00 3.69433731e-01
7.53828824e-01 8.37650180e-01 2.50120193e-01 1.40297920e-01
-2.04427466e-01 9.53750014e-01 -4.43555534e-01 -1.69443339e-01
2.64177203e-01 -6.33416116e-01 -8.26654851e-01 3.69132996e-01
1.97129726e-01 1.91597968e-01 1.13312509e-02 9.78572369e-01
4.42445338e-01 -5.64844534e-02 8.14016044e-01 -1.52623093e+00
-3.52504611e-01 6.98560357e-01 -6.29640520e-01 8.86033550e-02
2.59297252e-01 -1.61339477e-01 1.31449151e+00 -1.02437711e+00
6.27986789e-01 1.28745592e+00 6.61776483e-01 3.86368185e-01
-1.47321022e+00 -4.10314977e-01 3.20050687e-01 5.73033802e-02
-1.12594736e+00 -6.23446167e-01 1.01825833e+00 -4.23098296e-01
6.80563867e-01 3.97212297e-01 1.30204648e-01 9.67835128e-01
-1.08244270e-01 1.07754111e+00 1.34996152e+00 -6.66608751e-01
-1.77521016e-02 6.18242800e-01 5.14967561e-01 4.93658930e-01
4.71492589e-01 -4.28625047e-02 -9.57575500e-01 -2.09359284e-02
5.76453626e-01 -1.03165627e-01 -4.59314525e-01 -9.08886015e-01
-1.16726983e+00 7.57396162e-01 1.08662233e-01 5.34650266e-01
-1.07874731e-02 -3.65117162e-01 3.45097274e-01 6.04624927e-01
6.86495006e-01 5.20490706e-01 -7.16857374e-01 2.46909589e-01
-5.86789787e-01 -1.27500251e-01 8.45119953e-01 8.38526845e-01
8.34982514e-01 -1.11122504e-01 -1.02444820e-01 9.66388226e-01
5.22842407e-01 3.02578330e-01 5.99701405e-01 -7.93355465e-01
6.31251276e-01 1.02096677e+00 -2.94900537e-01 -1.07802999e+00
-4.96586412e-01 -5.99589229e-01 -1.00331557e+00 -1.03110317e-02
1.09582968e-01 -7.85921216e-02 -2.96009272e-01 2.04248261e+00
2.03469887e-01 -2.53976792e-01 2.88664639e-01 6.09881878e-01
8.87493312e-01 2.81365305e-01 -3.34749520e-01 -6.02892160e-01
9.88108754e-01 -8.34424555e-01 -9.72777069e-01 -1.45331785e-01
8.54470551e-01 -6.99158192e-01 7.77476013e-01 3.31430048e-01
-8.94009113e-01 -6.98042929e-01 -1.13811564e+00 5.84389083e-02
-3.19754779e-01 3.93365175e-01 5.70484638e-01 7.76639938e-01
-9.43013966e-01 5.20502150e-01 -5.35350561e-01 -2.93628454e-01
6.66946992e-02 3.06931049e-01 -7.31521666e-01 2.04274729e-01
-1.01598644e+00 1.02323675e+00 5.61368525e-01 -8.75282586e-02
-4.12352651e-01 -6.61735535e-01 -9.38535094e-01 -9.89097506e-02
4.65604365e-01 -6.31588995e-01 7.04415202e-01 -1.15509069e+00
-1.10175407e+00 9.70830977e-01 -1.15021877e-01 -4.94267106e-01
3.52522880e-01 -3.75276059e-01 -1.55686811e-01 -2.64677227e-01
2.56723076e-01 5.10351062e-01 7.19853699e-01 -1.62795579e+00
-3.53843391e-01 -7.27797747e-01 -1.56494081e-01 6.12352192e-01
-4.35723901e-01 -1.28399521e-01 -4.60053891e-01 -7.62779117e-01
4.65723753e-01 -7.68707395e-01 -4.43432620e-03 -3.09773982e-01
-3.62365484e-01 -2.57209390e-01 6.13613486e-01 -4.08437639e-01
1.29415131e+00 -2.15180826e+00 5.12044251e-01 1.25317931e-01
2.69478589e-01 1.41967326e-01 -9.89124551e-02 5.72351396e-01
-5.66436529e-01 6.80077150e-02 -4.41808701e-01 -6.12658083e-01
-1.99354082e-01 2.94476181e-01 -2.73597032e-01 3.80551010e-01
2.27392659e-01 5.57796538e-01 -6.92169309e-01 -4.45066094e-01
2.67598063e-01 3.84689480e-01 -3.62660646e-01 2.96839565e-01
2.27715261e-02 6.57017231e-01 -1.97985038e-01 4.20527220e-01
6.79584265e-01 -3.26786488e-01 5.34308374e-01 -6.57816648e-01
-1.77038133e-01 2.54146874e-01 -1.51276624e+00 1.74247384e+00
-3.28956753e-01 4.49590117e-01 -1.63827121e-01 -1.29252791e+00
9.69822049e-01 1.69775739e-01 8.48910391e-01 -5.70301414e-01
8.37628692e-02 -8.71186256e-02 -1.65265396e-01 -2.92731971e-01
1.50036260e-01 -4.48056608e-02 7.46416152e-02 7.00523376e-01
6.11074448e-01 1.45147040e-01 2.50282913e-01 3.49435240e-01
6.98459268e-01 2.74447680e-01 6.39290869e-01 -2.73387879e-01
7.77395487e-01 -4.97753561e-01 5.75587988e-01 6.43899918e-01
5.00306860e-02 6.56409085e-01 6.03444040e-01 -9.74754393e-02
-8.21134865e-01 -8.61697018e-01 -6.09010495e-02 1.01908207e+00
7.02737346e-02 -6.38022006e-01 -5.07783651e-01 -9.77290452e-01
-1.08410910e-01 7.70748198e-01 -6.58403218e-01 -3.94532055e-01
-2.62417048e-01 -9.65203822e-01 2.65714943e-01 3.32317948e-01
5.97726405e-01 -7.22978890e-01 -1.05793141e-01 -1.61735713e-01
-4.40204620e-01 -9.50775683e-01 -2.38459423e-01 5.21254838e-01
-1.14125967e+00 -1.20579994e+00 -3.98659676e-01 -4.68779415e-01
6.55193925e-01 7.58095324e-01 1.23402023e+00 -2.13693410e-01
2.49207746e-02 7.61380494e-01 -4.71983016e-01 -4.92140323e-01
-4.10493731e-01 4.67182510e-02 1.29399210e-01 4.08775687e-01
2.45740294e-01 -5.73862135e-01 -2.14191183e-01 4.87984926e-01
-9.63279724e-01 2.32378751e-01 8.43998969e-01 8.46868396e-01
5.92233896e-01 -4.48613502e-02 5.56411207e-01 -1.09925699e+00
5.25731981e-01 -5.92637837e-01 -2.27718785e-01 4.97507811e-01
-1.05514598e+00 5.35623968e-01 1.58038914e-01 1.89198740e-02
-1.45971119e+00 1.70705184e-01 1.64565921e-01 -3.23539913e-01
3.91865410e-02 6.82209015e-01 -5.77591181e-01 1.67455882e-01
7.05020607e-01 3.48214924e-01 3.08937430e-01 -7.44743168e-01
5.48327923e-01 3.88724148e-01 1.29113466e-01 -4.49623615e-01
4.43148941e-01 4.68869567e-01 1.38682246e-01 -7.05850065e-01
-1.25778782e+00 -8.74776185e-01 -1.10153234e+00 -5.98347895e-02
4.22612995e-01 -9.25338626e-01 -4.95741695e-01 2.74274856e-01
-9.19430912e-01 2.57334441e-01 -5.96514165e-01 3.72854590e-01
-6.64869666e-01 6.65960908e-01 -7.48425350e-03 -8.57123315e-01
-2.60247529e-01 -8.19366932e-01 9.46656585e-01 -8.22046772e-02
6.52215034e-02 -1.11289096e+00 2.70043701e-01 6.03146315e-01
1.13650642e-01 2.34716367e-02 7.34322608e-01 -9.71065998e-01
-2.63812453e-01 -1.33475646e-01 -3.19700897e-01 9.01847005e-01
4.34191048e-01 -4.66936052e-01 -1.16855192e+00 -2.45813653e-01
5.19024253e-01 -3.36198419e-01 1.15561152e+00 2.05430612e-01
8.06500196e-01 -3.06046367e-01 -1.42681256e-01 4.29136634e-01
1.44237030e+00 -2.99257543e-02 4.71079081e-01 5.38944192e-02
8.35832834e-01 9.69102144e-01 7.19503939e-01 5.73031783e-01
4.49224234e-01 5.73866427e-01 4.72923458e-01 -2.09301896e-02
-4.19138938e-01 -2.26768702e-01 4.45079833e-01 1.20464599e+00
-2.06864148e-01 -6.97806254e-02 -6.67441964e-01 3.64433706e-01
-2.01407146e+00 -8.97247791e-01 -1.67440787e-01 2.41984701e+00
7.72803783e-01 -7.41542205e-02 4.05868031e-02 3.47159415e-01
4.69231516e-01 2.03342453e-01 -4.08220559e-01 1.90953240e-01
-3.90031070e-01 -3.04396719e-01 3.60290736e-01 4.27367657e-01
-1.30876803e+00 6.16071045e-01 6.40842581e+00 7.46571481e-01
-6.34179235e-01 5.19801006e-02 5.86329401e-01 1.38859317e-01
-3.22976708e-01 3.71930301e-02 -9.72831368e-01 1.03946947e-01
7.00327992e-01 -7.58928806e-02 1.33713394e-01 7.91326106e-01
-4.40667756e-02 -8.66708606e-02 -1.31646287e+00 1.05473208e+00
5.02924263e-01 -1.01182151e+00 2.31047735e-01 -5.67149930e-03
6.86902463e-01 -1.02577314e-01 2.27691457e-02 2.27554426e-01
2.42763296e-01 -6.54121161e-01 4.07612920e-01 7.88217247e-01
2.87445426e-01 -5.91242909e-01 7.96744585e-01 6.63555086e-01
-1.09175885e+00 2.95608472e-02 -1.89856932e-01 1.34646799e-02
-2.44145125e-01 6.61721408e-01 -8.06551456e-01 9.96434569e-01
3.93768281e-01 1.06978142e+00 -8.34726155e-01 6.00458205e-01
-1.14439644e-01 3.56563210e-01 -7.80990496e-02 3.66535425e-01
-2.19261259e-01 -2.94476569e-01 6.33276403e-01 1.14359570e+00
-3.74100842e-02 -1.83910519e-01 7.76117966e-02 7.04176843e-01
6.46442994e-02 3.85431856e-01 -9.51200426e-01 1.24367371e-01
2.30105743e-01 1.04910553e+00 -4.73289162e-01 -1.16315283e-01
-5.69280922e-01 8.93570364e-01 4.90889221e-01 5.15577644e-02
-4.93353456e-01 2.03082427e-01 3.44476014e-01 -1.76527172e-01
-7.68861175e-02 -1.23857640e-01 -4.20538694e-01 -1.42608368e+00
1.31323352e-01 -1.00565684e+00 6.85286582e-01 -5.10052860e-01
-1.47592139e+00 2.38466352e-01 2.60560483e-01 -1.51249373e+00
-2.60613531e-01 -4.02971387e-01 -5.12833148e-02 6.83322549e-01
-1.44026399e+00 -1.27436519e+00 -2.62452364e-01 6.09148264e-01
7.62007535e-01 -4.23801720e-01 8.81646931e-01 1.75092950e-01
-7.42585123e-01 4.25822705e-01 1.70523182e-01 -2.09854677e-01
8.08183372e-01 -1.35763252e+00 -1.04049523e-03 7.26281703e-01
4.49979246e-01 6.54023945e-01 5.56208551e-01 -5.70163250e-01
-1.40181315e+00 -8.24176252e-01 8.94130468e-01 -7.12034285e-01
4.64064509e-01 -1.25350624e-01 -8.39430273e-01 7.18401015e-01
8.59519914e-02 -1.72761798e-01 1.04914737e+00 3.61868799e-01
-5.81734121e-01 -2.44964525e-01 -9.86082017e-01 2.62070626e-01
1.10592568e+00 -5.36792874e-01 -5.70777059e-01 4.31024849e-01
6.79146647e-01 1.04042329e-01 -9.14174020e-01 6.68129504e-01
4.26374674e-01 -1.32802546e+00 1.03271735e+00 -5.69983244e-01
2.92655975e-01 -2.77324945e-01 -4.63579744e-01 -1.20943010e+00
-2.58333087e-01 -3.73552948e-01 -8.32276195e-02 1.63213885e+00
3.65235358e-01 -4.82862711e-01 6.06369138e-01 5.38070679e-01
-5.00636809e-02 -5.21686792e-01 -7.03254819e-01 -7.95233965e-01
-1.99675560e-01 -5.25246799e-01 1.23422869e-01 1.18689525e+00
5.25358506e-02 6.49361789e-01 -7.27094471e-01 7.54182646e-03
8.72864783e-01 3.32256146e-02 9.04145300e-01 -1.44904864e+00
-3.91055018e-01 -3.21547925e-01 -3.22852522e-01 -8.82823348e-01
1.36907265e-01 -1.16731179e+00 -2.26029143e-01 -1.33340335e+00
5.87266803e-01 -2.76648790e-01 -4.77960348e-01 4.03719991e-01
-9.26424414e-02 -7.66099244e-02 4.32771176e-01 6.81465387e-01
-6.53961003e-01 6.34828389e-01 9.42788005e-01 -6.29111659e-04
-3.17283273e-01 3.01102668e-01 -9.90040362e-01 1.06267750e+00
7.41104543e-01 -4.25305903e-01 -8.39642048e-01 -2.22060144e-01
3.49566847e-01 4.66415435e-02 9.76257771e-02 -8.42309058e-01
1.41617566e-01 2.36418750e-03 1.86336085e-01 -7.38773704e-01
2.50156134e-01 -1.05801642e+00 1.14089027e-01 1.60908207e-01
-6.36722922e-01 -2.20044523e-01 -2.44744532e-02 7.07384884e-01
-3.74394238e-01 -4.59878564e-01 6.65458143e-01 -1.69440314e-01
-6.11526966e-01 -1.65031552e-01 1.19331954e-02 -1.04781054e-01
8.72132778e-01 -1.17031643e-02 -1.49062157e-01 -2.37049788e-01
-1.00498974e+00 2.44522188e-03 9.00668427e-02 5.20887077e-01
4.53602761e-01 -1.35073090e+00 -6.32412434e-01 3.69704604e-01
2.86675692e-01 -3.56642097e-01 2.48075321e-01 9.08693492e-01
2.35524490e-01 6.28917515e-01 -1.74827322e-01 -5.75486422e-01
-1.52354801e+00 6.17902696e-01 1.61656901e-01 -7.34131992e-01
-1.87789634e-01 7.10195243e-01 4.64608699e-01 -6.76804423e-01
4.22744244e-01 -1.00028686e-01 -6.46883607e-01 5.01021326e-01
3.52917880e-01 5.15920937e-01 1.40654519e-01 -8.62621307e-01
-2.68018395e-01 5.94301045e-01 -1.48113921e-01 -9.38256159e-02
1.20606029e+00 -4.99138921e-01 -2.70816803e-01 8.78294647e-01
1.25337911e+00 -2.18861938e-01 -9.15684581e-01 -5.35114169e-01
2.59871632e-01 -3.92247647e-01 2.35620420e-03 -7.16619670e-01
-1.08941412e+00 6.85311198e-01 6.04640841e-01 2.81498849e-01
1.21505153e+00 1.23092636e-01 -1.39119858e-02 3.91785800e-01
2.81563759e-01 -9.49954152e-01 3.24118763e-01 4.20371026e-01
1.29409587e+00 -1.59668183e+00 3.17951828e-01 -7.62691617e-01
-9.08705294e-01 9.23685730e-01 5.49977958e-01 1.64520308e-01
8.53482008e-01 3.87039818e-02 -2.72662282e-01 -2.71854639e-01
-8.83175015e-01 -4.10731435e-01 7.23013103e-01 6.10396981e-01
6.65455878e-01 -1.19708575e-01 -4.37521040e-01 6.15352631e-01
1.97817400e-01 -1.99771702e-01 1.12734266e-01 8.45726371e-01
-3.29486042e-01 -1.28772271e+00 -2.42565081e-01 3.98129553e-01
-2.72082418e-01 7.84982089e-03 -6.16510510e-01 8.22710335e-01
2.52643228e-01 9.56456780e-01 -2.67416090e-01 -3.99813890e-01
3.59917074e-01 1.56841397e-01 4.61774826e-01 -6.54937863e-01
-4.54923302e-01 1.11994036e-01 1.06314130e-01 -4.47822392e-01
-9.46406066e-01 -8.46573353e-01 -7.28010476e-01 2.81515867e-01
-6.20331287e-01 -8.43787342e-02 7.70277202e-01 1.05945539e+00
3.81909519e-01 3.99192452e-01 8.99742246e-01 -6.76564872e-01
-5.87822855e-01 -1.01466167e+00 -4.91831809e-01 6.26552820e-01
1.24704659e-01 -7.41842210e-01 -4.90649909e-01 1.72779173e-01] | [8.523531913757324, 4.313082218170166] |
bfbba482-1709-43d1-8a6d-79447a159752 | cont-contrastive-neural-text-generation | 2205.14690 | null | https://arxiv.org/abs/2205.14690v4 | https://arxiv.org/pdf/2205.14690v4.pdf | CoNT: Contrastive Neural Text Generation | Recently, contrastive learning attracts increasing interests in neural text generation as a new solution to alleviate the exposure bias problem. It introduces a sequence-level training signal which is crucial to generation tasks that always rely on auto-regressive decoding. However, previous methods using contrastive learning in neural text generation usually lead to inferior performance. In this paper, we analyse the underlying reasons and propose a new Contrastive Neural Text generation framework, CoNT. CoNT addresses bottlenecks that prevent contrastive learning from being widely adopted in generation tasks from three aspects -- the construction of contrastive examples, the choice of the contrastive loss, and the strategy in decoding. We validate CoNT on five generation tasks with ten benchmarks, including machine translation, summarization, code comment generation, data-to-text generation and commonsense generation. Experimental results show that CoNT clearly outperforms the conventional training framework on all the ten benchmarks with a convincing margin. Especially, CoNT surpasses previous the most competitive contrastive learning method for text generation, by 1.50 BLEU on machine translation and 1.77 ROUGE-1 on summarization, respectively. It achieves new state-of-the-art on summarization, code comment generation (without external data) and data-to-text generation. | ['Xuanjing Huang', 'Xipeng Qiu', 'Lingpeng Kong', 'Kai Lv', 'Jiangtao Feng', 'Chenxin An'] | 2022-05-29 | null | null | null | null | ['code-comment-generation', 'comment-generation', 'data-to-text-generation'] | ['computer-code', 'natural-language-processing', 'natural-language-processing'] | [ 6.05091393e-01 1.76770046e-01 -1.59543872e-01 -4.15003076e-02
-1.27584553e+00 -4.08193707e-01 1.07064426e+00 -2.94383280e-02
-4.12947565e-01 1.41283941e+00 6.23942554e-01 -5.68392515e-01
3.81639421e-01 -7.62476861e-01 -8.47579062e-01 -6.58962727e-01
6.01403058e-01 5.79308867e-01 -2.44381025e-01 -5.74441016e-01
6.34191036e-01 -1.93558961e-01 -1.13525856e+00 4.27975655e-01
1.38295686e+00 6.38105333e-01 2.88021863e-01 8.72993648e-01
-2.76965618e-01 7.56065190e-01 -1.20255470e+00 -8.18291783e-01
-1.57119364e-01 -1.11965370e+00 -9.02285159e-01 -3.40573370e-01
3.94302070e-01 -1.64974496e-01 -3.87982354e-02 8.66284370e-01
1.09606290e+00 5.42322434e-02 1.17450023e+00 -9.71410513e-01
-1.07284582e+00 1.24560094e+00 -4.24735576e-01 1.58456922e-01
4.31476623e-01 1.24313004e-01 1.05985403e+00 -1.05710757e+00
7.00985253e-01 1.14940667e+00 5.95908582e-01 1.08310378e+00
-1.16036201e+00 -5.79573691e-01 -2.45581329e-01 -6.71737492e-02
-8.94304752e-01 -6.64629281e-01 6.96435809e-01 -3.51547599e-01
1.20309484e+00 3.84568125e-01 3.51247549e-01 1.62707329e+00
4.45428044e-01 9.39002454e-01 8.95554006e-01 -5.73574841e-01
1.27732962e-01 -6.47068322e-02 -2.76871979e-01 4.16648149e-01
2.62211621e-01 6.48220479e-02 -6.43037200e-01 -4.29817103e-02
3.76435041e-01 -7.41707146e-01 -4.17441219e-01 4.08089489e-01
-1.44925761e+00 1.06401467e+00 2.09913179e-01 1.26920477e-01
-3.45240474e-01 3.10630351e-01 7.17421234e-01 4.54200357e-01
7.51833916e-01 8.39128554e-01 -2.71810949e-01 -3.89052868e-01
-1.02812064e+00 5.43376505e-01 7.85368919e-01 1.03554142e+00
3.16983998e-01 6.78527415e-01 -8.58050525e-01 1.02951944e+00
8.39668978e-03 7.59411633e-01 1.09161592e+00 -3.84382546e-01
1.08820534e+00 2.54951745e-01 -9.70042050e-02 -5.60142756e-01
-1.20790876e-01 -5.72929919e-01 -1.34516156e+00 -2.81917423e-01
1.16276532e-01 -7.22628474e-01 -7.52401412e-01 1.59118128e+00
-2.32377514e-01 -2.23325059e-01 3.73616487e-01 4.93762136e-01
1.23246396e+00 9.86711085e-01 -1.96962908e-01 -4.77938771e-01
8.74793768e-01 -1.25440228e+00 -7.86170423e-01 -2.10513636e-01
6.87997520e-01 -1.13663304e+00 1.07155311e+00 2.32552096e-01
-1.52498877e+00 -6.42237902e-01 -1.01301467e+00 -7.49839023e-02
-2.33451948e-01 2.87309229e-01 3.14956814e-01 4.55815941e-01
-1.17802572e+00 7.80159295e-01 -1.69031009e-01 -5.78950681e-02
2.71099597e-01 1.21295683e-01 1.59404855e-02 3.72456789e-01
-1.52783060e+00 9.60839987e-01 6.32361174e-01 -7.11693019e-02
-6.72295690e-01 -5.43596506e-01 -8.00271869e-01 -2.03092750e-02
9.18775871e-02 -1.17341542e+00 1.63765109e+00 -9.45050180e-01
-1.87323916e+00 6.20529234e-01 -6.16131388e-02 -9.08043623e-01
7.92003334e-01 -3.18630278e-01 -2.88755298e-01 -2.37467989e-01
1.31133258e-01 8.63733172e-01 1.05268145e+00 -1.07685506e+00
-4.90969777e-01 3.16435575e-01 -3.68650079e-01 3.06114793e-01
-1.64183497e-01 -1.63302302e-01 -3.71284410e-02 -1.14107382e+00
-5.67585289e-01 -8.18437457e-01 -1.70504376e-01 -7.84182787e-01
-8.88406754e-01 -4.81948763e-01 3.24559182e-01 -8.62125695e-01
1.51750624e+00 -1.52705562e+00 3.18345368e-01 -3.46117914e-01
-1.15660682e-01 6.25155151e-01 -3.52568626e-01 7.67975271e-01
-1.25525251e-03 2.79837459e-01 -4.54745054e-01 -4.98909682e-01
1.56679168e-01 -2.55083501e-01 -7.33123124e-01 -1.53861687e-01
3.79590034e-01 1.38386953e+00 -9.40109432e-01 -5.17157018e-01
-9.03414786e-02 1.99885488e-01 -5.66252768e-01 4.11370546e-01
-4.82889771e-01 2.68628538e-01 -1.49864525e-01 2.61063695e-01
3.38049263e-01 -1.30893141e-01 -2.07561895e-01 2.03478187e-01
-1.68421313e-01 7.06021428e-01 -4.33766633e-01 1.71295869e+00
-5.97464383e-01 8.01573157e-01 -6.45039856e-01 -7.49877214e-01
1.02288115e+00 4.98556644e-01 -1.28252849e-01 -7.41181612e-01
8.35013762e-02 5.04243255e-01 1.51036158e-01 -3.30111325e-01
1.10177267e+00 -1.04054280e-01 -2.11144626e-01 6.61273301e-01
1.56766474e-01 -6.19596004e-01 5.51396966e-01 1.76966712e-01
7.86601007e-01 1.82415292e-01 4.70331103e-01 -1.88029036e-01
5.05663633e-01 -2.33202383e-01 1.23381153e-01 8.37346494e-01
4.12762374e-01 8.93922508e-01 5.44452488e-01 -8.20170119e-02
-1.10856545e+00 -8.80509615e-01 3.03412646e-01 9.30261433e-01
-2.87971169e-01 -4.24773842e-01 -1.10199499e+00 -8.90249431e-01
-4.53066856e-01 1.27379310e+00 -4.86628056e-01 -4.15243596e-01
-7.76658714e-01 -9.84203637e-01 8.03350508e-01 4.14136708e-01
4.26865995e-01 -1.59435654e+00 -2.25990862e-01 4.85524952e-01
-7.90076375e-01 -7.24572003e-01 -8.14454556e-01 2.63900850e-02
-1.03734064e+00 -5.21448672e-01 -1.18322563e+00 -8.37279618e-01
5.03821969e-01 -1.58341806e-02 1.51146567e+00 -2.66265124e-02
1.03697367e-01 -2.37068236e-01 -4.99149531e-01 -6.65115893e-01
-1.17050350e+00 7.46979654e-01 -4.19382811e-01 -4.19934064e-01
-1.51858076e-01 -3.97551984e-01 -4.27892715e-01 -1.53862581e-01
-8.22488964e-01 4.71700668e-01 9.69995797e-01 1.29863715e+00
2.16711670e-01 -5.58018267e-01 1.28053367e+00 -9.30512786e-01
1.45329714e+00 -5.35028815e-01 -2.55742699e-01 2.99935460e-01
-7.93678463e-01 3.81054699e-01 9.31805313e-01 -3.27183753e-01
-1.22495925e+00 -5.96991718e-01 -4.63661343e-01 2.70068347e-01
1.41918734e-01 6.28652811e-01 5.93673624e-02 5.78564107e-01
1.04385102e+00 6.40765250e-01 -2.16661111e-01 -1.26728535e-01
4.80641335e-01 8.18352818e-01 4.07414824e-01 -4.28223670e-01
7.16757119e-01 -2.11684853e-01 -2.18945637e-01 -6.33239508e-01
-8.08914304e-01 5.15584610e-02 -3.14597726e-01 -7.65663385e-03
7.41842687e-01 -8.14864695e-01 7.40412548e-02 6.95557117e-01
-1.70518029e+00 -4.88466680e-01 -4.54189211e-01 1.31502569e-01
-7.70200074e-01 3.18124533e-01 -6.86245203e-01 -5.98725557e-01
-1.24643660e+00 -9.90328968e-01 1.16484046e+00 4.89306599e-02
-4.98042226e-01 -1.02196455e+00 2.75383919e-01 2.79769182e-01
6.71758533e-01 3.31958920e-01 9.72922146e-01 -5.72044253e-01
-1.09126940e-01 4.73115705e-02 -1.01410627e-01 5.89231253e-01
1.52048618e-01 -2.67324410e-02 -8.34786654e-01 -3.93863618e-02
-3.01224411e-01 -3.53066951e-01 1.19600630e+00 3.96404356e-01
1.04946780e+00 -6.32031739e-01 -5.73969707e-02 3.56368482e-01
1.11942732e+00 2.62377560e-01 8.44868362e-01 6.50294870e-02
6.80237651e-01 4.53683466e-01 4.23790365e-01 4.24312145e-01
2.43137717e-01 6.19941115e-01 3.06653708e-01 -1.29534349e-01
-4.02626723e-01 -4.72758621e-01 6.94664478e-01 1.33439457e+00
-1.82412162e-01 -8.37422192e-01 -5.71953595e-01 5.17953455e-01
-1.80622816e+00 -1.21707106e+00 -3.94107282e-01 2.16356921e+00
1.39314997e+00 2.74543285e-01 4.25126813e-02 1.23816527e-01
8.17013919e-01 2.08303079e-01 -3.39028031e-01 -8.81707430e-01
-3.11798632e-01 3.88546973e-01 9.84979793e-02 4.67746556e-01
-9.34112549e-01 1.05794275e+00 5.95422268e+00 1.06596780e+00
-1.20018518e+00 5.64026162e-02 8.01625907e-01 7.00246915e-02
-4.60805088e-01 -3.55682194e-01 -8.56857717e-01 7.99476326e-01
1.24979901e+00 -5.07857680e-01 3.24157894e-01 6.59950614e-01
1.98945671e-01 2.36625165e-01 -1.20578909e+00 9.12670434e-01
4.42742169e-01 -1.57189775e+00 5.62505841e-01 -1.36753693e-01
1.38038576e+00 -2.58438718e-02 1.41696826e-01 5.94478190e-01
1.60541654e-01 -1.13775468e+00 8.49978328e-01 4.57851648e-01
9.11929131e-01 -7.87458777e-01 9.78328407e-01 3.67734134e-01
-6.25737309e-01 2.11514071e-01 -3.40493411e-01 -2.94299703e-02
4.34257865e-01 7.75979936e-01 -1.17162406e+00 6.55181885e-01
-1.00857049e-01 5.45536876e-01 -4.74628687e-01 8.97523463e-01
-4.62784529e-01 7.65828729e-01 3.78585666e-01 -4.51841742e-01
3.86905283e-01 -5.39304130e-02 5.87762117e-01 1.49307072e+00
7.77110457e-01 -4.95186478e-01 -3.28830659e-01 9.12981212e-01
-5.70344508e-01 3.45055282e-01 -6.17641926e-01 -1.23734578e-01
2.46778086e-01 8.66338134e-01 -2.52002984e-01 -5.80329239e-01
2.78373994e-02 1.26042163e+00 2.03954428e-01 2.78762281e-01
-9.37430203e-01 -6.45131409e-01 4.79883924e-02 -5.93212508e-02
2.84177125e-01 4.59607840e-02 -2.12865219e-01 -1.12466943e+00
9.69793051e-02 -1.16645777e+00 -1.34563949e-02 -6.52526081e-01
-1.17799628e+00 9.38801885e-01 6.36638841e-04 -1.24291277e+00
-1.05750227e+00 -3.11012655e-01 -9.68097091e-01 9.68348384e-01
-1.59034395e+00 -9.84723926e-01 -7.74830696e-04 2.02029034e-01
1.12180817e+00 -5.07707536e-01 8.06390822e-01 1.00655571e-01
-4.26652849e-01 8.38452995e-01 3.04486781e-01 -1.43539654e-02
9.10874307e-01 -1.44131243e+00 1.13715804e+00 8.00603628e-01
1.35562927e-01 4.42353398e-01 6.43134117e-01 -5.61764181e-01
-9.66185927e-01 -1.23904920e+00 1.40211272e+00 -2.06240058e-01
4.07321244e-01 -2.96461195e-01 -5.05572498e-01 2.51965106e-01
7.91394174e-01 -7.40320146e-01 5.87088346e-01 -2.39888534e-01
-1.27489073e-02 1.56029582e-01 -8.09490025e-01 1.01460826e+00
9.57621157e-01 -1.39916033e-01 -6.62043691e-01 4.62691963e-01
1.03714967e+00 -4.64327037e-01 -5.06258786e-01 2.58827090e-01
3.52169275e-01 -8.73813987e-01 5.54558158e-01 -5.03308892e-01
1.17831278e+00 1.14265360e-01 2.04207569e-01 -2.02022624e+00
-5.07560410e-02 -1.19409502e+00 -3.89667183e-01 1.48570096e+00
9.09661174e-01 -6.36046112e-01 3.90161723e-01 -2.01432496e-01
-5.31269133e-01 -9.06368494e-01 -7.33728528e-01 -7.37196863e-01
5.99899888e-01 -1.19921476e-01 7.69368172e-01 6.61981702e-01
-1.11110181e-01 1.08688891e+00 -7.01531529e-01 -8.60291719e-01
3.14079076e-01 -3.99616025e-02 9.38103139e-01 -1.03718388e+00
-3.71344835e-01 -9.60806429e-01 2.53389716e-01 -1.29221356e+00
3.14040840e-01 -1.06964755e+00 3.37459207e-01 -1.86191607e+00
6.59943223e-02 -4.25625220e-02 2.28067636e-01 3.36253420e-02
-6.05536461e-01 1.82373628e-01 1.50967851e-01 5.66712804e-02
-2.90102273e-01 9.11451697e-01 1.50363111e+00 -2.55867422e-01
-1.68027356e-01 2.25650370e-01 -1.02460551e+00 3.12948287e-01
1.13126791e+00 -2.91602522e-01 -4.65615153e-01 -5.75949907e-01
4.50601369e-01 1.77897125e-01 -1.00214683e-01 -8.45680654e-01
-1.18008301e-01 5.16614243e-02 1.65273637e-01 -5.60242057e-01
6.47353679e-02 8.73720050e-02 -1.84155688e-01 5.35320342e-01
-8.11922133e-01 3.29250336e-01 1.48993373e-01 2.49876618e-01
-2.29510561e-01 -6.56097531e-01 6.00546062e-01 -2.33768567e-01
-1.08177945e-01 6.75837994e-02 -4.42120463e-01 5.80569148e-01
5.03261566e-01 -1.55010168e-02 -5.42475224e-01 -5.96301973e-01
-1.27668679e-01 -6.93495050e-02 5.31495064e-02 5.34928799e-01
7.01696455e-01 -1.43506289e+00 -1.45492351e+00 -1.87692959e-02
-6.73077628e-02 -1.53310699e-02 2.93477401e-02 6.69213653e-01
-4.56811309e-01 6.27817571e-01 -1.10948794e-02 -2.46433571e-01
-1.08843648e+00 1.63394675e-01 1.04904130e-01 -7.57415771e-01
-2.41688922e-01 8.60726774e-01 4.17348780e-02 -3.60811651e-01
7.80369490e-02 -3.77810419e-01 -1.42412037e-01 2.05769360e-01
4.98178154e-01 5.88707805e-01 2.72974074e-01 -5.02388299e-01
2.97950000e-01 1.81488991e-01 -2.94641167e-01 -3.58570099e-01
1.01785815e+00 1.21452257e-01 -1.79882750e-01 4.36061919e-01
1.02333856e+00 -8.17857608e-02 -8.65204632e-01 -2.75956932e-03
-1.01729259e-01 2.30047721e-02 -3.21306884e-01 -1.07988548e+00
-7.30019629e-01 1.03662658e+00 5.49368374e-03 4.41107392e-01
8.95531178e-01 -3.91973943e-01 1.22085452e+00 4.63336736e-01
-1.39065664e-02 -1.31214058e+00 4.36687469e-01 9.02321041e-01
1.47017050e+00 -1.16710544e+00 -7.28867427e-02 -1.75744807e-03
-7.65043318e-01 1.03062654e+00 5.37965894e-01 2.40605697e-02
1.01277538e-01 -5.42925717e-03 -6.02198429e-02 2.36719370e-01
-1.01364231e+00 1.40747130e-01 5.39545059e-01 6.16744578e-01
9.01848137e-01 1.20024309e-01 -7.10350335e-01 3.35808784e-01
-8.46685767e-01 -3.12841207e-01 7.24390924e-01 4.44637984e-01
-2.85529524e-01 -1.23424101e+00 -1.80825755e-01 6.63089752e-01
-5.96864700e-01 -6.81554198e-01 -7.04675198e-01 6.58857405e-01
-1.34703711e-01 1.05425107e+00 -1.16376050e-01 -2.29964137e-01
1.63601890e-01 1.80317685e-01 4.45902854e-01 -7.42290080e-01
-1.02990770e+00 -1.14102580e-01 4.55724388e-01 1.06817350e-01
-3.06135714e-01 -5.59840679e-01 -9.39408839e-01 -3.23297948e-01
-6.94780290e-01 3.79730165e-01 7.18587339e-01 8.25071871e-01
3.54512542e-01 7.49408960e-01 6.46640658e-01 -8.74022126e-01
-8.74124587e-01 -1.53789258e+00 3.26845199e-02 1.78552002e-01
3.11036766e-01 -1.18111130e-02 -3.77785116e-01 1.99668676e-01] | [11.891698837280273, 9.162307739257812] |
fb23f412-8ad3-4e49-b4ca-59a760074568 | unsupervised-domain-adaptation-on-person-re | 2301.12439 | null | https://arxiv.org/abs/2301.12439v1 | https://arxiv.org/pdf/2301.12439v1.pdf | Unsupervised Domain Adaptation on Person Re-Identification via Dual-level Asymmetric Mutual Learning | Unsupervised domain adaptation person re-identification (Re-ID) aims to identify pedestrian images within an unlabeled target domain with an auxiliary labeled source-domain dataset. Many existing works attempt to recover reliable identity information by considering multiple homogeneous networks. And take these generated labels to train the model in the target domain. However, these homogeneous networks identify people in approximate subspaces and equally exchange their knowledge with others or their mean net to improve their ability, inevitably limiting the scope of available knowledge and putting them into the same mistake. This paper proposes a Dual-level Asymmetric Mutual Learning method (DAML) to learn discriminative representations from a broader knowledge scope with diverse embedding spaces. Specifically, two heterogeneous networks mutually learn knowledge from asymmetric subspaces through the pseudo label generation in a hard distillation manner. The knowledge transfer between two networks is based on an asymmetric mutual learning manner. The teacher network learns to identify both the target and source domain while adapting to the target domain distribution based on the knowledge of the student. Meanwhile, the student network is trained on the target dataset and employs the ground-truth label through the knowledge of the teacher. Extensive experiments in Market-1501, CUHK-SYSU, and MSMT17 public datasets verified the superiority of DAML over state-of-the-arts. | ['Rongrong Ji', 'Yongjian Wu', 'Liujuan Cao', 'Qixiang Ye', 'Pingyang Dai', 'Jiahan Li', 'Qiong Wu'] | 2023-01-29 | null | null | null | null | ['person-re-identification'] | ['computer-vision'] | [ 3.72415222e-02 -1.30553972e-02 -2.56102890e-01 -5.49984872e-01
-3.46278787e-01 -4.87962306e-01 4.39460307e-01 -3.03749889e-01
-7.38574684e-01 1.08693743e+00 6.47680238e-02 2.75796086e-01
1.40737757e-01 -9.04664397e-01 -5.47987103e-01 -8.62208068e-01
5.45528650e-01 6.63912952e-01 7.04031661e-02 1.31235182e-01
-2.82790154e-01 7.67913833e-02 -1.27694786e+00 1.80422530e-01
1.09321368e+00 7.89454043e-01 1.77824609e-02 1.11682430e-01
-8.14264715e-02 9.16216552e-01 -3.89426678e-01 -8.22934508e-01
5.56670606e-01 -4.68393952e-01 -7.38139987e-01 1.24892950e-01
4.76870954e-01 -3.32116723e-01 -8.54281962e-01 1.25788760e+00
7.45402038e-01 2.27003485e-01 9.53168690e-01 -1.43838537e+00
-1.15956163e+00 4.10758615e-01 -6.20047390e-01 1.31652178e-02
-5.35568446e-02 1.84844807e-01 5.99955082e-01 -7.64953732e-01
4.05603051e-01 1.24625373e+00 6.75765812e-01 1.00812829e+00
-1.44413722e+00 -1.18102098e+00 2.58451223e-01 5.34314156e-01
-1.68761694e+00 -2.63014674e-01 9.61787581e-01 -5.77383637e-01
1.32676706e-01 -2.89047301e-01 2.15668574e-01 1.40952206e+00
-6.96471334e-01 9.76935685e-01 1.30012310e+00 -1.93721369e-01
-7.34725744e-02 7.77570426e-01 3.42752159e-01 5.14822721e-01
1.82919249e-01 3.22065204e-01 -5.53753734e-01 -2.88229678e-02
6.77093267e-01 1.61218420e-01 -2.09807038e-01 -7.04033136e-01
-1.06277812e+00 6.78865790e-01 5.46109378e-01 1.27259895e-01
-1.02935158e-01 -4.66205925e-01 3.87367100e-01 3.84822249e-01
4.29384738e-01 -1.14414483e-01 -3.75786752e-01 4.42922235e-01
-6.04586780e-01 -2.40537189e-02 6.73207998e-01 1.09949601e+00
1.11825144e+00 -4.93499562e-02 -2.27122009e-01 8.83119106e-01
2.80678660e-01 7.11648405e-01 6.76326931e-01 -6.54640138e-01
5.48513174e-01 8.06808650e-01 1.15298048e-01 -8.02453220e-01
1.05169386e-01 -5.88439167e-01 -1.02375531e+00 3.04074675e-01
7.59729624e-01 -4.71820027e-01 -7.34177053e-01 2.04981494e+00
4.34602767e-01 6.67792618e-01 3.92505556e-01 9.53583896e-01
8.42728019e-01 3.29025269e-01 3.66808563e-01 2.66032815e-01
1.06995320e+00 -1.03506744e+00 -2.46151641e-01 -2.20722333e-01
5.23827255e-01 -4.22612906e-01 3.33950877e-01 -4.41530673e-03
-4.94226217e-01 -1.03204811e+00 -8.78092408e-01 1.38966739e-01
-4.45730597e-01 5.55945396e-01 7.67621584e-03 5.83594084e-01
-8.26468229e-01 4.54084307e-01 -1.33331940e-01 -3.55116874e-01
7.14180171e-01 3.67159098e-01 -6.78467870e-01 -1.99504241e-01
-1.27711856e+00 8.08722377e-01 6.76304996e-01 -1.69398919e-01
-8.31890047e-01 -7.38249183e-01 -8.21089566e-01 -1.97313800e-01
1.66361749e-01 -7.68258274e-01 7.43327379e-01 -1.37267566e+00
-1.36703467e+00 1.26028764e+00 1.25416797e-02 -5.64577103e-01
8.79495263e-01 -2.27055848e-02 -4.83450115e-01 -1.03461303e-01
5.80330908e-01 8.08174729e-01 6.99887335e-01 -1.43890119e+00
-8.95760298e-01 -6.65564716e-01 -1.71935067e-01 4.38925177e-01
-3.97792101e-01 -4.87372637e-01 -1.15608104e-01 -5.96426070e-01
-9.37931836e-02 -1.03298116e+00 6.75765350e-02 -1.81695390e-02
-3.86429101e-01 -4.61323917e-01 7.85316169e-01 -7.86556363e-01
6.76988125e-01 -2.11442256e+00 2.07195178e-01 2.53596455e-01
2.83086270e-01 4.09357965e-01 -2.01436698e-01 -1.85603961e-01
-3.27865273e-01 -3.14968199e-01 -7.82048795e-03 -3.43481123e-01
-8.73125494e-02 1.92614704e-01 -2.38324001e-01 5.71853340e-01
-2.27242000e-02 7.40458012e-01 -1.08103371e+00 -6.76560938e-01
2.05930650e-01 4.61430013e-01 -1.70710206e-01 3.67724568e-01
5.25493503e-01 8.61927152e-01 -4.85491663e-01 4.14029419e-01
7.31138825e-01 -9.80022401e-02 1.73396111e-01 -6.06819093e-01
1.32436484e-01 -4.32820320e-01 -1.37369442e+00 1.35646439e+00
-2.40507141e-01 3.98752689e-01 -5.56196272e-02 -1.37306762e+00
1.05363846e+00 2.99433291e-01 4.39596385e-01 -7.11986065e-01
1.42364025e-01 8.60475972e-02 -1.68492377e-01 -3.71398032e-01
-1.13905594e-01 -1.70458376e-01 4.38865870e-02 4.41940010e-01
5.29323757e-01 8.42566311e-01 -5.51491752e-02 7.91081190e-02
3.81775826e-01 1.88532084e-01 1.51765481e-01 -1.26763850e-01
8.51719737e-01 -2.12247312e-01 8.83727670e-01 8.12056482e-01
-6.75944090e-01 4.29545760e-01 -1.04687095e-01 -5.82333267e-01
-1.07933939e+00 -1.44484460e+00 -9.49020162e-02 1.24707723e+00
4.54528898e-01 3.01140159e-01 -5.12958646e-01 -1.29257715e+00
2.49976844e-01 6.41627312e-01 -8.67210686e-01 -3.51700008e-01
-3.95434678e-01 -4.33906198e-01 6.72042310e-01 6.84044659e-01
1.18160200e+00 -7.83878863e-01 1.18198559e-01 6.81430055e-03
-3.64487290e-01 -1.04396725e+00 -6.16272271e-01 -2.04815969e-01
-3.87107074e-01 -1.25402880e+00 -1.28936338e+00 -1.12851322e+00
1.02635539e+00 3.97293180e-01 8.42755973e-01 -3.95508498e-01
-1.21079437e-01 5.28359771e-01 -9.16739628e-02 -1.48344830e-01
-2.05710694e-01 -1.38111860e-01 5.50447166e-01 6.43397987e-01
9.76542294e-01 -6.04666233e-01 -4.28601831e-01 6.45055950e-01
-2.89872110e-01 3.88300605e-02 5.40885568e-01 1.01949525e+00
5.00711322e-01 2.27858350e-01 7.32288003e-01 -8.18774939e-01
1.61545962e-01 -6.78688169e-01 -2.99560308e-01 3.92224461e-01
-5.22672117e-01 2.32986197e-01 4.77612913e-01 -8.44985783e-01
-1.47107697e+00 4.05311853e-01 3.20181787e-01 -5.60473144e-01
-5.47011137e-01 -1.48402169e-01 -5.76716363e-01 -7.41414502e-02
6.64725423e-01 5.79431295e-01 7.94963315e-02 -4.78378356e-01
3.88427943e-01 7.21765935e-01 9.71964240e-01 -8.09940636e-01
1.18039680e+00 5.82243443e-01 -3.42577010e-01 -3.35506052e-01
-1.01769686e+00 -5.75137138e-01 -1.04100573e+00 -1.88467234e-01
9.91057992e-01 -1.40512991e+00 -5.50811827e-01 7.97932327e-01
-9.25136626e-01 -1.34340256e-01 -4.31038797e-01 5.19769192e-01
-1.41612321e-01 3.59776974e-01 -2.18818277e-01 -6.77707374e-01
-1.57062709e-02 -9.71678138e-01 7.13159978e-01 7.44281650e-01
2.24661008e-02 -1.04553235e+00 2.23895274e-02 6.01102352e-01
3.93544063e-02 -1.53524904e-02 4.72474724e-01 -9.98224080e-01
-2.44369358e-01 -1.25151768e-01 -6.44131660e-01 6.33564174e-01
5.03530979e-01 -7.23897457e-01 -1.12199628e+00 -3.70259285e-01
-2.48783916e-01 -4.30407256e-01 9.69152749e-01 6.91668764e-02
8.51635158e-01 -3.45787168e-01 -5.12199759e-01 5.27810276e-01
1.20791233e+00 -2.40715723e-02 2.45189205e-01 4.67834949e-01
1.10375714e+00 8.29250455e-01 2.00411603e-01 1.58997148e-01
8.24085474e-01 5.15432537e-01 -3.10111698e-03 -1.66558877e-01
-2.63797641e-01 -5.55369139e-01 3.14857572e-01 4.04449046e-01
-1.67795181e-01 3.27251703e-01 -7.93237865e-01 7.53146946e-01
-1.91216314e+00 -1.17813480e+00 2.42897227e-01 2.39474154e+00
1.06198168e+00 -1.76702470e-01 3.33690852e-01 -2.42881745e-01
1.24489594e+00 -2.62363732e-01 -8.84802759e-01 5.13442695e-01
-3.82570595e-01 -3.00046533e-01 8.01111758e-01 2.68565714e-01
-1.43311179e+00 7.64113605e-01 4.35288286e+00 8.64712775e-01
-8.91736805e-01 2.72801399e-01 7.50734687e-01 6.96519315e-02
2.31597915e-01 -2.09372386e-01 -1.02478170e+00 8.86705577e-01
5.65870464e-01 -3.18473667e-01 2.49338329e-01 1.03863585e+00
-3.15187365e-01 1.90856948e-01 -1.10649979e+00 1.39741266e+00
1.51991561e-01 -9.90049362e-01 1.10793054e-01 1.40003085e-01
9.74714041e-01 -1.45442560e-01 2.29507729e-01 5.84429741e-01
6.53342485e-01 -7.37640023e-01 5.46142280e-01 7.96509743e-01
7.90613234e-01 -9.03331637e-01 9.76239264e-01 4.38532233e-01
-1.29706156e+00 -2.26567537e-01 -4.56436574e-01 1.20668262e-01
-9.23992395e-02 2.25749165e-01 -8.47585976e-01 6.13536656e-01
9.11108077e-01 9.57154036e-01 -7.05176353e-01 8.39074910e-01
-2.25995049e-01 4.80893910e-01 -7.13703558e-02 4.83771116e-01
-6.71836808e-02 -3.27490240e-01 4.52899039e-01 9.43070590e-01
1.62211433e-01 1.21628819e-02 4.89640802e-01 8.89511287e-01
-2.49162033e-01 -8.00566226e-02 -5.75076997e-01 2.51080632e-01
5.18888950e-01 9.57364202e-01 -1.42611563e-01 -5.74010611e-01
-4.72319424e-01 1.35255599e+00 4.67705190e-01 6.25951350e-01
-7.21214354e-01 -8.65463316e-02 6.56317711e-01 -1.46839634e-01
1.61833003e-01 1.89289749e-01 -1.18168727e-01 -1.33817220e+00
-3.05312164e-02 -5.76001108e-01 5.91611743e-01 -3.99160683e-01
-2.19286108e+00 3.45131785e-01 -4.92719114e-02 -1.58828163e+00
-9.65102986e-02 -5.33078790e-01 -5.21765769e-01 1.31533897e+00
-1.67847526e+00 -1.51592886e+00 -4.32824731e-01 1.03364146e+00
2.84447163e-01 -8.91916871e-01 6.80762708e-01 5.81175447e-01
-6.85830593e-01 9.45461810e-01 2.62929142e-01 9.91023481e-01
1.18290687e+00 -1.31924570e+00 -5.61497286e-02 5.34946382e-01
-6.35415316e-02 4.51249421e-01 3.02963912e-01 -7.08458722e-01
-6.24520779e-01 -1.49579883e+00 7.70064890e-01 -4.35717881e-01
4.56351846e-01 -5.14997989e-02 -9.39536095e-01 7.62946546e-01
6.47439016e-03 1.63958818e-01 9.42422152e-01 -3.16825658e-02
-7.11041570e-01 -2.81102210e-01 -1.35792089e+00 4.13332194e-01
9.88955319e-01 -7.66859055e-01 -7.14397490e-01 3.04823637e-01
2.88917214e-01 -1.07388154e-01 -7.23534882e-01 3.07478309e-01
4.92447168e-01 -6.79960251e-01 1.25987351e+00 -6.59809828e-01
6.75129965e-02 -6.15298688e-01 -1.10991903e-01 -1.37998414e+00
-4.55802649e-01 1.02889292e-01 4.38963249e-02 1.75180197e+00
1.41295139e-02 -8.54298949e-01 8.99449885e-01 7.67370820e-01
4.37866688e-01 -2.77481854e-01 -9.01291072e-01 -9.35573578e-01
1.95456043e-01 1.90440476e-01 6.89049125e-01 1.28998721e+00
-4.50559050e-01 4.51348901e-01 -6.05662942e-01 4.12089944e-01
1.30468655e+00 2.03988273e-02 8.98258507e-01 -1.49087036e+00
-9.23271328e-02 -2.23166421e-01 -5.33936501e-01 -9.48332906e-01
7.38926113e-01 -1.18394983e+00 -2.34258130e-01 -9.77217197e-01
5.66650629e-01 -5.75782120e-01 -5.37136376e-01 5.37700117e-01
-3.53511333e-01 3.05262268e-01 2.08715275e-01 4.46295977e-01
-6.60491943e-01 6.97728753e-01 1.03495288e+00 -6.45639300e-01
-3.28251198e-02 1.62195414e-01 -8.20201993e-01 7.69704580e-01
6.73338652e-01 -4.31366652e-01 -5.58869958e-01 -3.81227821e-01
-5.95406532e-01 -5.03477216e-01 8.67149353e-01 -1.21268201e+00
6.47157311e-01 7.68884048e-02 9.75259900e-01 -3.39929879e-01
1.21139504e-01 -9.60083723e-01 -8.96010473e-02 1.02429174e-01
-4.12364244e-01 -4.49057728e-01 -4.92739938e-02 8.19554269e-01
-1.20397627e-01 -1.34701610e-01 1.00501525e+00 -2.19682291e-01
-1.16111279e+00 5.65724194e-01 2.46790782e-01 1.14792421e-01
1.16672993e+00 -4.17906940e-01 -1.96442798e-01 -2.17012212e-01
-9.80272710e-01 4.72488046e-01 5.01368344e-01 4.09756392e-01
4.41889077e-01 -1.65847623e+00 -1.02766228e+00 3.28099072e-01
2.28644982e-01 -2.29029775e-01 6.38059974e-01 4.05597806e-01
2.72747129e-01 1.06549129e-01 -5.39403856e-01 -7.05952168e-01
-1.15694845e+00 5.68149149e-01 6.76162720e-01 -1.97227120e-01
-2.44594947e-01 8.64224613e-01 7.12067246e-01 -9.80619490e-01
1.75082132e-01 7.48240829e-01 -5.06470084e-01 2.28856325e-01
6.68127835e-01 4.75743413e-01 -4.84352469e-01 -1.28438091e+00
-2.85948068e-01 5.64658284e-01 -2.03607768e-01 8.26775730e-02
8.67996395e-01 -3.12718987e-01 1.51218608e-01 1.78311825e-01
1.25575638e+00 -4.40297961e-01 -1.48345542e+00 -9.87905145e-01
-2.34681666e-01 -3.44668478e-01 -2.92235732e-01 -7.97736704e-01
-1.09361172e+00 6.56464696e-01 1.13787913e+00 -4.50987250e-01
7.74191320e-01 -1.74771100e-02 6.78943872e-01 2.98597544e-01
4.92073804e-01 -1.32969069e+00 1.39269188e-01 3.45470399e-01
2.75162399e-01 -1.66542709e+00 -2.83837318e-01 -1.33482307e-01
-8.46235216e-01 8.58765900e-01 1.18340707e+00 -5.39986081e-02
6.89789891e-01 -2.70571619e-01 7.35829920e-02 4.06041861e-01
4.58855890e-02 -4.55211043e-01 3.94909173e-01 1.14619315e+00
-2.83758584e-02 3.56324375e-01 3.63868207e-01 9.55184519e-01
7.21373037e-02 -2.15545036e-02 -1.50065914e-01 5.41015565e-01
-1.65781409e-01 -1.26748204e+00 -4.96061057e-01 2.50020325e-01
6.03249967e-02 1.28025174e-01 -3.78402412e-01 5.24070621e-01
8.23281169e-01 8.29662621e-01 -4.01244499e-02 -4.73587155e-01
2.68052220e-01 1.99676007e-01 3.39272290e-01 -5.33432841e-01
-2.09966004e-01 -5.17074525e-01 -2.62972921e-01 -1.66049957e-01
-4.95008439e-01 -6.74791098e-01 -9.78756070e-01 -1.44336984e-01
3.56147438e-02 2.26851687e-01 8.22630245e-03 1.08856785e+00
3.40585887e-01 2.58681357e-01 6.12032056e-01 -7.18523979e-01
-7.01277077e-01 -8.28187346e-01 -6.58093572e-01 8.57630193e-01
2.27658018e-01 -9.30126071e-01 -2.65368074e-01 4.18215245e-01] | [14.799805641174316, 1.100234866142273] |
69f46333-05a5-491b-ae0d-3bc160aa5c7f | dataset-and-baseline-for-automatic-student | null | null | https://aclanthology.org/2022.lrec-1.219 | https://aclanthology.org/2022.lrec-1.219.pdf | Dataset and Baseline for Automatic Student Feedback Analysis | In this paper, we present a student feedback corpus, which contains 3000 instances of feedback written by university students. This dataset has been annotated for aspect terms, opinion terms, polarities of the opinion terms towards targeted aspects, document-level opinion polarities and sentence separations. We develop a hierarchical taxonomy for aspect categorization, which covers all the areas of the teaching-learning process. We annotated both implicit and explicit aspects using this taxonomy. Annotation methodology, difficulties faced during the annotation, and the details about the aspect term categorization have been discussed in detail. This annotated corpus can be used for Aspect Extraction, Aspect Level Sentiment Analysis, and Document Level Sentiment Analysis. Also the baseline results for all three tasks are given in the paper. | ['Surangika Ranathunga', 'Hashan Maduwantha', 'Kushan Chamindu', 'Missaka Herath'] | null | null | null | null | lrec-2022-6 | ['aspect-extraction'] | ['natural-language-processing'] | [-4.58995700e-02 6.54402018e-01 -4.39914972e-01 -6.59465551e-01
-5.16958535e-01 -1.15418482e+00 6.97591007e-01 1.12171543e+00
-3.74669135e-01 5.96228480e-01 7.32387602e-01 -7.37028897e-01
-1.16835438e-01 -7.93556869e-01 -4.71182540e-02 -6.01107538e-01
2.69752651e-01 4.46944773e-01 1.71329334e-01 -5.90284824e-01
9.04841602e-01 1.93542540e-01 -1.70414209e+00 7.98632503e-01
8.46878231e-01 9.50538516e-01 -4.92101699e-01 8.71495843e-01
-7.97130644e-01 8.21339309e-01 -1.17861879e+00 -9.28992808e-01
-4.36241508e-01 -2.68590271e-01 -1.18588626e+00 4.25516129e-01
6.23886704e-01 3.55827451e-01 7.24222660e-01 1.06677747e+00
5.47939956e-01 2.57051289e-01 1.05021203e+00 -1.02551162e+00
-6.86970413e-01 6.92387581e-01 -3.02438676e-01 2.97614574e-01
8.22683096e-01 -5.45425057e-01 1.36343098e+00 -8.15356553e-01
7.05574274e-01 1.05987048e+00 5.22743106e-01 3.86675984e-01
-7.10550308e-01 -2.00501636e-01 5.60429931e-01 2.83740789e-01
-5.03193319e-01 2.99986333e-01 7.18047917e-01 -7.59554625e-01
1.33769321e+00 4.18758571e-01 1.36087739e+00 6.58003211e-01
4.08358783e-01 1.09185159e+00 1.34631872e+00 -6.44172430e-01
2.40751505e-01 1.00565040e+00 1.25427639e+00 3.78578097e-01
4.03855324e-01 -5.05194128e-01 -7.19329655e-01 -1.39505208e-01
-7.95021430e-02 -4.26276207e-01 -1.95449740e-01 -2.60254055e-01
-5.94103277e-01 7.95503616e-01 -5.77755570e-02 3.24207276e-01
-1.00071326e-01 -7.25761294e-01 7.78568804e-01 8.76600087e-01
8.64283860e-01 7.52970874e-01 -1.19761825e+00 -3.07731003e-01
-4.16458488e-01 1.60023808e-01 1.28951943e+00 1.17659056e+00
5.78110158e-01 -2.39517689e-02 -4.70661849e-01 8.04674745e-01
4.28288251e-01 3.49993259e-01 7.93965459e-01 -5.61813235e-01
3.74388665e-01 1.40095651e+00 -4.12274331e-01 -7.21801162e-01
-2.06845075e-01 -4.50392634e-01 -3.03092420e-01 1.98970921e-03
-3.53121132e-01 -4.04272854e-01 -1.00301683e+00 9.48088527e-01
4.86289144e-01 -8.46780241e-01 5.46346903e-01 2.21132413e-01
1.86592662e+00 3.85723174e-01 1.62617117e-01 -2.48420224e-01
2.24630189e+00 -1.14588284e+00 -1.16569710e+00 -1.01534404e-01
8.25114608e-01 -1.20362055e+00 1.03614426e+00 5.04420757e-01
-1.00876284e+00 -3.70267421e-01 -7.20932543e-01 -9.36905220e-02
-9.92445648e-01 -2.93071102e-02 7.55056381e-01 9.43181276e-01
-1.19815612e+00 -8.78784899e-03 -2.06099540e-01 -4.02678818e-01
3.22764248e-01 2.23516911e-01 -3.94342631e-01 3.90812814e-01
-9.76283371e-01 8.20659876e-01 1.26275122e-01 -6.39010072e-01
-2.45490760e-01 -8.59821558e-01 -1.22417819e+00 1.94160298e-01
-7.42257535e-02 -5.17706811e-01 1.64540577e+00 -8.24615240e-01
-1.27861357e+00 1.13804615e+00 -2.48213515e-01 7.86994100e-02
-3.88021469e-01 -3.78052384e-01 -3.11943114e-01 1.72209725e-01
2.15999588e-01 3.31724405e-01 3.91632706e-01 -1.08484614e+00
-7.30888605e-01 -5.42223692e-01 3.58677030e-01 7.28417575e-01
-7.33736277e-01 2.90319979e-01 -1.86426848e-01 -6.90202773e-01
-6.15296625e-02 -6.49451494e-01 -3.40367705e-01 -9.45983648e-01
-1.01908885e-01 -8.52495790e-01 7.74062574e-01 -1.92119062e-01
1.40438700e+00 -1.78544867e+00 -2.20840037e-01 1.13170452e-01
1.00078605e-01 6.08299077e-02 3.55942212e-02 4.74929065e-01
-2.88610727e-01 3.37253690e-01 2.36132607e-01 -5.95985055e-02
-3.80234458e-02 -7.52605423e-02 -4.13424790e-01 -2.84878254e-01
-8.72769579e-02 8.14087152e-01 -8.91871810e-01 -5.54087698e-01
-2.56193966e-01 2.60111213e-01 -7.31686532e-01 5.08291602e-01
-4.16972637e-02 -5.35949022e-02 -5.68644524e-01 8.88066351e-01
3.12966079e-01 2.25434572e-01 -9.13612470e-02 -1.17388375e-01
-1.24044783e-01 1.04350889e+00 -8.42991054e-01 9.50652421e-01
-6.57662570e-01 8.64176393e-01 -1.01632103e-01 -7.91696668e-01
1.01617885e+00 7.65582561e-01 1.96898967e-01 -3.09831858e-01
2.78534293e-01 5.52915670e-02 -1.05644420e-01 -5.30164540e-01
9.25142705e-01 -3.02743763e-01 -3.61200631e-01 6.92238688e-01
6.38321042e-01 -9.92173731e-01 9.43321347e-01 4.13332045e-01
5.38503408e-01 -7.64817894e-02 8.87371957e-01 -7.01437771e-01
9.20422673e-01 4.07064557e-01 4.02372926e-02 1.60794914e-01
-2.33513325e-01 3.10111135e-01 8.60060871e-01 -5.52422702e-01
-3.31323296e-01 -6.56257331e-01 -3.28955770e-01 1.45072985e+00
-2.90019661e-01 -1.07589948e+00 -4.97429460e-01 -1.05990636e+00
-2.86226153e-01 6.95994318e-01 -7.60467768e-01 4.98685986e-02
-1.65721420e-02 -6.44628346e-01 -1.25444487e-01 4.71747100e-01
2.63100743e-01 -1.23632312e+00 -3.36441398e-01 -1.60920635e-01
1.37272794e-02 -8.43091547e-01 -1.88457564e-01 7.30772614e-01
-1.04837418e+00 -9.83454347e-01 -2.94801533e-01 -1.13517988e+00
9.70521569e-01 1.93004653e-01 1.82133043e+00 1.08438835e-01
2.39857659e-01 9.22459841e-01 -7.45304763e-01 -1.22882330e+00
-2.29219981e-02 2.44749203e-01 -2.26555139e-01 -8.15376997e-01
1.11721444e+00 -3.82105201e-01 -5.00917196e-01 -2.11059570e-01
-8.67844164e-01 -5.30825675e-01 4.86547709e-01 6.30341113e-01
4.83779013e-01 5.47375493e-02 1.67444333e-01 -1.55511236e+00
1.41792703e+00 -9.67632681e-02 -6.64921999e-02 1.06145404e-01
-1.04208159e+00 -1.11204594e-01 2.34139845e-01 -1.71035171e-01
-1.27282917e+00 -5.60669720e-01 -4.71552819e-01 6.96889341e-01
-4.97130603e-01 8.42393219e-01 -1.09094672e-01 -6.68649655e-03
5.90010226e-01 2.50695404e-02 -5.03220439e-01 -1.39698833e-01
3.28594685e-01 9.80118513e-01 -1.99422807e-01 -6.15114629e-01
3.23146820e-01 -9.91268307e-02 -2.79618263e-01 -1.05606687e+00
-1.87825072e+00 -1.03911471e+00 -7.42728472e-01 -3.79674613e-01
7.53395617e-01 -9.35383618e-01 -5.23016691e-01 1.68353856e-01
-9.80416715e-01 2.20757321e-01 -8.29076231e-01 1.99359104e-01
-1.69344842e-01 2.01722711e-01 -8.13888311e-01 -8.57895851e-01
-7.79659510e-01 -1.26449502e+00 9.35945928e-01 6.84111774e-01
-8.17166448e-01 -1.57774436e+00 5.06783605e-01 8.47770393e-01
3.19936514e-01 -2.70491928e-01 1.06053245e+00 -1.25778365e+00
2.50539452e-01 -2.81427026e-01 4.00490433e-01 5.57848990e-01
1.18507199e-01 1.45778999e-01 -9.89580333e-01 1.11160628e-01
4.22197312e-01 -5.56323826e-01 8.04488063e-01 9.00377780e-02
7.71026313e-01 -6.78728580e-01 5.13475686e-02 3.37473415e-02
1.18472838e+00 1.47029996e-01 1.54713437e-01 9.33964789e-01
5.95992386e-01 1.02566993e+00 8.62495303e-01 1.99717265e-02
6.48588777e-01 -4.37576845e-02 -1.75323635e-02 4.32165444e-01
9.85079035e-02 1.99243069e-01 5.70527792e-01 1.70457077e+00
1.93126984e-02 -1.78362891e-01 -7.53976703e-01 1.03618848e+00
-1.26480174e+00 -8.62576783e-01 -5.44885933e-01 1.40105736e+00
1.24125934e+00 3.11393857e-01 1.19210687e-02 3.29069287e-01
-9.03595146e-03 3.52544367e-01 2.10783809e-01 -1.60412729e+00
4.99591045e-02 4.74499285e-01 -1.53404519e-01 6.97527885e-01
-1.17358530e+00 8.41206789e-01 6.94626760e+00 5.72114289e-01
-5.44755220e-01 -9.26330313e-02 7.40957737e-01 3.26955438e-01
-8.57299864e-01 -4.16612290e-02 -1.05646300e+00 -3.04167956e-01
9.31134164e-01 -3.65860194e-01 -6.73984706e-01 1.36305153e+00
-3.76663327e-01 -2.77379990e-01 -6.87742710e-01 2.23221734e-01
4.41644222e-01 -8.09955120e-01 5.96461296e-01 -2.97983915e-01
1.26696587e+00 -3.70654076e-01 2.98539251e-02 7.95190811e-01
4.86130297e-01 -6.41404331e-01 1.37684986e-01 -7.13417381e-02
8.73933882e-02 -9.73113775e-01 1.34001970e+00 -1.39685953e-02
-1.22979438e+00 2.36192316e-01 -2.80818284e-01 -4.25353169e-01
-4.04362828e-01 8.77399623e-01 -6.75598681e-01 5.17008603e-01
1.03727305e+00 7.19001532e-01 -9.34317052e-01 7.94940174e-01
-9.18555081e-01 7.50541806e-01 1.69209421e-01 -6.68167293e-01
2.11639136e-01 -6.12591088e-01 5.06477356e-01 1.40549278e+00
3.76486517e-02 9.22451168e-02 7.27943406e-02 -1.03499308e-01
1.73615947e-01 7.02130139e-01 -6.25494003e-01 -1.23070963e-01
-1.29761491e-02 1.87255478e+00 -9.51541424e-01 -6.63067997e-01
-3.95638674e-01 5.03583610e-01 1.05293743e-01 2.70048648e-01
2.45195359e-01 -7.24752486e-01 8.71626973e-01 -1.94955066e-01
2.96525836e-01 3.38748097e-01 -8.44920874e-01 -1.13919759e+00
-1.14649169e-01 -1.16985512e+00 7.53789842e-01 -5.27006924e-01
-1.17898786e+00 8.19418073e-01 -1.03090173e-02 -1.13169682e+00
-1.80675447e-01 -9.66658473e-01 -1.08142364e+00 5.27999461e-01
-1.44077849e+00 -5.84342659e-01 -1.58245876e-01 2.29089081e-01
8.03793550e-01 -4.33725774e-01 1.01172483e+00 7.43872905e-03
-1.59862265e-01 3.77041131e-01 -6.29613996e-01 5.31555600e-02
8.05392265e-01 -2.12151241e+00 2.97141075e-02 3.86091143e-01
1.73578963e-01 9.73588288e-01 9.69371319e-01 -5.62690318e-01
-7.16155708e-01 -6.96415246e-01 1.64344501e+00 -8.65309238e-01
1.00540376e+00 6.55914098e-02 -7.43076086e-01 6.57669604e-01
1.11842394e+00 -6.94052577e-01 1.73711622e+00 6.86419845e-01
-3.39328229e-01 1.24809235e-01 -8.86902809e-01 6.48987889e-01
3.10568303e-01 -4.93959814e-01 -1.36305702e+00 4.91539776e-01
9.62608218e-01 -3.58225822e-01 -1.12426257e+00 4.67516273e-01
3.21018249e-01 -8.81455600e-01 6.89973831e-01 -9.64895606e-01
6.94792569e-01 -7.94951897e-03 2.03080013e-01 -1.71285868e+00
9.39160993e-04 -1.00680284e-01 -2.94287324e-01 1.68141699e+00
8.93990219e-01 -3.38176161e-01 8.31940711e-01 4.17866588e-01
-3.01107466e-01 -1.25786686e+00 -3.82424682e-01 -8.09820443e-02
3.10213059e-01 -4.84673798e-01 2.39300743e-01 8.54074061e-01
7.93759286e-01 1.32487142e+00 6.36728168e-01 -3.10344428e-01
2.72542983e-01 6.34336472e-01 3.78132820e-01 -1.41331589e+00
7.82051310e-02 -9.07970607e-01 -4.86066520e-01 -8.51970017e-01
1.66871801e-01 -7.34657645e-01 -9.33517069e-02 -2.07815671e+00
3.89829576e-01 3.69427025e-01 -1.00565203e-01 3.04008365e-01
-7.97622144e-01 1.33545414e-01 -2.05284566e-01 -2.22923443e-01
-8.17414165e-01 4.94254231e-01 1.42959464e+00 -2.92548418e-01
5.77363838e-03 4.38743234e-01 -1.33318341e+00 1.15285146e+00
9.92175579e-01 -3.59699309e-01 -6.64513588e-01 -1.37913710e-04
8.36570799e-01 -6.57078564e-01 -7.58348703e-01 -6.06752574e-01
1.50920242e-01 -1.38286561e-01 3.37310582e-01 -1.01081085e+00
2.54404806e-02 -9.70330119e-01 -1.04151607e+00 2.95338929e-01
-6.41440928e-01 4.81550813e-01 1.93832427e-01 6.12561740e-02
-9.42514062e-01 -7.11385727e-01 3.09840053e-01 -2.51684070e-01
-4.81298774e-01 -7.92439729e-02 -9.68313217e-01 3.12571049e-01
9.28160667e-01 6.55412376e-02 -3.74520093e-01 -6.14992321e-01
-7.54086196e-01 4.53170836e-01 8.10381174e-02 4.84034538e-01
4.73544389e-01 -1.26718211e+00 -3.22388798e-01 2.54086070e-02
4.87015724e-01 8.30590203e-02 1.92533601e-02 7.44410276e-01
-2.49486476e-01 6.78946733e-01 4.43528785e-04 -3.68689388e-01
-1.92594016e+00 3.08736771e-01 -5.54193482e-02 -7.04260945e-01
7.17915595e-02 1.12933123e+00 5.76006211e-02 -1.20141423e+00
3.26601833e-01 -4.43295628e-01 -1.53909278e+00 1.03527069e+00
7.11474180e-01 4.32603061e-02 5.22758901e-01 -5.17092228e-01
-1.52150169e-01 6.95942879e-01 -2.43046537e-01 -4.20374013e-02
1.23857963e+00 -2.30550483e-01 -6.25643373e-01 8.71683955e-01
1.14498150e+00 3.70155811e-01 -5.83368465e-02 9.31261014e-03
4.18369025e-01 1.19994931e-01 -5.73865026e-02 -8.73298943e-01
-8.94320965e-01 8.41840088e-01 1.77034646e-01 8.24158788e-01
1.11661911e+00 5.58269843e-02 2.22201467e-01 6.58155620e-01
-2.61903316e-01 -1.22545528e+00 1.56773970e-01 1.29716706e+00
6.68670416e-01 -1.22697031e+00 3.81777138e-01 -6.69534743e-01
-9.86799598e-01 1.16397250e+00 9.46833909e-01 9.47856978e-02
1.05044770e+00 4.15623665e-01 6.98619366e-01 -7.37966120e-01
-1.29903936e+00 -3.48882079e-01 9.42254245e-01 5.54617405e-01
1.44522727e+00 -6.73299655e-02 -8.08473408e-01 8.13096166e-01
-9.91783023e-01 -7.15305030e-01 8.68488967e-01 1.26846564e+00
-7.95571327e-01 -1.22750676e+00 -2.58254886e-01 6.34247959e-01
-1.03504193e+00 -4.88019764e-01 -1.18370533e+00 4.11109388e-01
-2.18147859e-01 1.14783454e+00 -1.27155572e-01 -1.46179363e-01
8.37695360e-01 3.62256616e-01 -4.75067310e-02 -1.27640486e+00
-1.47527015e+00 -1.20919041e-01 5.49943089e-01 -1.51248649e-01
-7.43378937e-01 -6.05925202e-01 -9.46077108e-01 1.47466183e-01
-2.93822914e-01 1.15625894e+00 6.42087042e-01 1.05439532e+00
1.03018329e-01 8.35876584e-01 3.17310840e-01 -2.93772697e-01
-7.79199973e-02 -1.35945106e+00 -3.79838347e-01 2.48576075e-01
2.66029626e-01 -2.45114729e-01 -7.06745684e-01 3.25396992e-02] | [11.304617881774902, 6.802974700927734] |
17d1e310-156a-44eb-a947-6b512f23a17b | co-teaching-for-unsupervised-domain | 2204.01210 | null | https://arxiv.org/abs/2204.01210v2 | https://arxiv.org/pdf/2204.01210v2.pdf | Co-Teaching for Unsupervised Domain Adaptation and Expansion | Unsupervised Domain Adaptation (UDA) is known to trade a model's performance on a source domain for improving its performance on a target domain. To resolve the issue, Unsupervised Domain Expansion (UDE) has been proposed recently to adapt the model for the target domain as UDA does, and in the meantime maintain its performance on the source domain. For both UDA and UDE, a model tailored to a given domain, let it be the source or the target domain, is assumed to well handle samples from the given domain. We question the assumption by reporting the existence of cross-domain visual ambiguity: Due to the lack of a crystally clear boundary between the two domains, samples from one domain can be visually close to the other domain. We exploit this finding and accordingly propose in this paper Co-Teaching (CT) that consists of knowledge distillation based CT (kdCT) and mixup based CT (miCT). Specifically, kdCT transfers knowledge from a leader-teacher network and an assistant-teacher network to a student network, so the cross-domain visual ambiguity will be better handled by the student. Meanwhile, miCT further enhances the generalization ability of the student. Comprehensive experiments on two image-classification benchmarks and two driving-scene-segmentation benchmarks justify the viability of the proposed method. | ['Xirong Li', 'Qijie Wei', 'Kaibin Tian'] | 2022-04-04 | null | null | null | null | ['scene-segmentation', 'unsupervised-domain-expansion'] | ['computer-vision', 'methodology'] | [ 2.01276451e-01 3.68727565e-01 -1.35527849e-01 -3.81261826e-01
-3.81163478e-01 -6.27729893e-01 4.21054989e-01 2.00096384e-01
-2.70970851e-01 7.67284870e-01 -3.22602987e-01 -3.49718809e-01
-2.52075523e-01 -8.76241088e-01 -6.76260948e-01 -9.06751454e-01
5.21192133e-01 6.98132098e-01 7.89165020e-01 -1.82957232e-01
1.04650892e-02 4.52114880e-01 -1.50676787e+00 1.70614034e-01
1.42147136e+00 7.02268243e-01 5.56541026e-01 1.31560534e-01
-5.24172068e-01 5.17072737e-01 -7.08383679e-01 -2.83976316e-01
2.60813057e-01 -5.12779653e-01 -9.29507375e-01 4.21024978e-01
3.12323511e-01 2.11908687e-02 -7.36861005e-02 1.08770704e+00
2.30558023e-01 2.39642709e-01 7.62258232e-01 -1.35890937e+00
-5.30768394e-01 3.60852867e-01 -6.84389353e-01 1.45870432e-01
6.15415769e-03 -4.64741141e-02 6.01187289e-01 -7.61511385e-01
8.13235283e-01 9.51662064e-01 3.85941684e-01 5.51753998e-01
-1.11696732e+00 -6.88679755e-01 5.77339411e-01 2.86541462e-01
-1.26731670e+00 -5.30160777e-02 1.15293527e+00 -4.97194678e-01
2.36900523e-01 -7.73208216e-02 5.04515707e-01 9.54755604e-01
-3.38711500e-01 9.80127931e-01 1.39723051e+00 -5.08178234e-01
4.07954484e-01 7.16933548e-01 1.88356698e-01 2.41583377e-01
2.01006711e-01 5.91474883e-02 -3.72360587e-01 2.16499299e-01
6.54684603e-01 -2.90704072e-01 -2.64682829e-01 -9.61160064e-01
-7.53399909e-01 6.24197781e-01 5.06151140e-01 3.08937460e-01
-3.62048209e-01 -7.23718524e-01 2.52235562e-01 4.51464146e-01
2.97794998e-01 3.96008730e-01 -4.31330979e-01 8.77599791e-02
-8.02002788e-01 6.10646866e-02 6.07984185e-01 1.04307127e+00
9.67425644e-01 4.37749624e-02 1.60247415e-01 9.66474533e-01
4.96041961e-02 6.07894994e-02 6.69855297e-01 -5.28288305e-01
3.33978742e-01 1.06713974e+00 -1.35575056e-01 -6.28388584e-01
-1.09050252e-01 -6.01062357e-01 -5.92807233e-01 4.02405351e-01
6.56914532e-01 -4.68292944e-02 -1.05621707e+00 1.77191317e+00
8.80107045e-01 3.66245270e-01 4.03209686e-01 8.92754436e-01
7.90701210e-01 4.81444627e-01 9.84827206e-02 -1.44891381e-01
1.09562099e+00 -9.41358268e-01 -3.64555687e-01 -3.47891957e-01
6.41893148e-01 -6.38339639e-01 9.41742718e-01 5.46339154e-01
-7.56827295e-01 -9.60998774e-01 -1.02449715e+00 2.91001230e-01
-5.86748004e-01 -7.53917024e-02 1.54372633e-01 5.50845861e-01
-7.23206878e-01 4.27222788e-01 -3.93350184e-01 -5.91521084e-01
3.63183081e-01 1.27814069e-01 -3.35414022e-01 -3.26954931e-01
-1.07353389e+00 6.74060166e-01 7.35199571e-01 -3.52244258e-01
-8.76154065e-01 -7.17408001e-01 -6.04595840e-01 -5.15152216e-02
4.61910903e-01 -3.67797881e-01 1.12978387e+00 -1.37708473e+00
-1.49403071e+00 7.72306025e-01 1.71975046e-01 -2.99597830e-01
7.29533434e-01 1.15008987e-01 -5.15656769e-01 3.40959907e-01
2.15062201e-01 7.39757776e-01 1.03111899e+00 -1.64122927e+00
-9.82759058e-01 -3.53904724e-01 6.08591363e-02 4.28254426e-01
-4.45629328e-01 -4.50904101e-01 -3.56084704e-01 -6.25413656e-01
4.05343145e-01 -8.24906051e-01 1.51562944e-01 -1.22581914e-01
-1.73131317e-01 -5.04853070e-01 1.27212143e+00 -3.57037902e-01
1.05840516e+00 -2.29633832e+00 8.91612843e-02 3.79275262e-01
2.36303046e-01 6.37829840e-01 -1.66594595e-01 2.11686164e-01
-4.95725721e-01 -2.06476480e-01 -4.61165875e-01 -5.47963828e-02
-2.31313363e-01 6.83103979e-01 -3.62008423e-01 2.56338924e-01
2.11632624e-01 3.05247337e-01 -9.29490745e-01 -6.86889470e-01
1.02815464e-01 6.16491735e-02 -4.65987980e-01 4.08469021e-01
-1.83209032e-01 7.63857365e-01 -5.48510849e-01 4.42951977e-01
9.48269248e-01 -2.25331739e-01 4.88504350e-01 -2.61628199e-02
-9.74276215e-02 1.02063283e-01 -1.43683708e+00 1.32455003e+00
-3.52272123e-01 4.07549292e-01 1.31585568e-01 -1.43516958e+00
1.17819226e+00 2.51001209e-01 4.39593256e-01 -7.89079666e-01
-1.41193077e-01 2.79068172e-01 2.43093491e-01 -4.72446978e-01
2.87448913e-01 -1.51244208e-01 2.19263837e-01 2.82633513e-01
2.21892118e-01 1.48790991e-02 1.27009585e-01 1.60016909e-01
6.49149835e-01 3.13061625e-01 2.93341368e-01 -3.00633699e-01
6.62413359e-01 2.53827602e-01 7.58963227e-01 6.93302095e-01
-5.38378298e-01 4.28507209e-01 3.30612391e-01 -1.62431419e-01
-7.74263978e-01 -1.15300691e+00 -9.58477780e-02 1.40917385e+00
4.91802216e-01 2.16771923e-02 -6.69417083e-01 -1.22319996e+00
2.83506997e-02 7.16317713e-01 -5.03897011e-01 -2.69324541e-01
-5.01220465e-01 -2.55779088e-01 1.85195789e-01 5.10966957e-01
8.47292304e-01 -9.31289017e-01 -6.62208021e-01 2.06827059e-01
-6.76873028e-02 -1.14578903e+00 -1.48263171e-01 4.77725118e-01
-8.28020394e-01 -1.21560323e+00 -9.48686004e-01 -1.10181499e+00
9.65945125e-01 4.19902682e-01 8.80684733e-01 -8.05607811e-02
2.00171858e-01 4.89975780e-01 -5.51682234e-01 -3.89173418e-01
-7.57800043e-01 -9.32012647e-02 9.35276821e-02 1.91392630e-01
3.85112762e-01 -7.19234943e-01 -3.54320973e-01 6.52025819e-01
-1.04036343e+00 1.21810481e-01 6.06406927e-01 7.85231709e-01
6.18131578e-01 4.83248830e-01 6.88939393e-01 -1.05199027e+00
4.91650641e-01 -5.17036438e-01 -5.93596399e-01 3.28019172e-01
-8.53117406e-01 -2.39042938e-02 8.33287537e-01 -9.58573937e-01
-1.29513180e+00 1.18227161e-01 1.80092975e-01 -6.65911138e-01
-6.10558629e-01 5.83164454e-01 -4.20311987e-01 -1.51816979e-01
7.20287561e-01 4.50249940e-01 -1.94067135e-01 -5.84585011e-01
6.43907115e-02 5.99665403e-01 6.92698419e-01 -8.46050620e-01
1.00357401e+00 3.58280778e-01 -2.76109636e-01 -7.92378485e-01
-6.59016728e-01 -5.83577693e-01 -9.03160632e-01 -2.88060516e-01
6.43584967e-01 -7.88309515e-01 -8.65198020e-03 4.75267529e-01
-9.67818677e-01 -3.26209754e-01 -5.05537093e-01 3.80913973e-01
-1.62818119e-01 4.14852858e-01 1.14430763e-01 -5.70968091e-01
3.24777603e-01 -1.22845876e+00 4.56624508e-01 5.44101179e-01
-3.31214583e-03 -1.10677314e+00 -8.83856090e-04 3.09535295e-01
7.95757845e-02 5.83362319e-02 1.14998424e+00 -1.27260137e+00
-1.86885685e-01 5.05120121e-02 -3.27930003e-01 5.38144767e-01
2.49810442e-01 -1.70958266e-01 -1.12545156e+00 -2.91952282e-01
6.25194609e-02 -2.47281656e-01 7.03480124e-01 1.55013561e-01
9.74534631e-01 -5.36028994e-03 -3.99443924e-01 2.79639423e-01
1.24963236e+00 5.17656982e-01 4.07252967e-01 6.24084115e-01
6.43385947e-01 8.23921919e-01 7.13159025e-01 1.58982091e-02
4.16288108e-01 5.89925468e-01 3.33495736e-01 -2.70761967e-01
-3.09768736e-01 -3.87874246e-01 3.94537210e-01 6.85584426e-01
2.66036063e-01 -2.18212288e-02 -1.06131017e+00 9.26730037e-01
-1.62646675e+00 -3.32134902e-01 1.15715368e-02 2.14154887e+00
8.06640089e-01 3.75513643e-01 4.34284329e-01 3.01370561e-01
8.74785125e-01 -2.06468090e-01 -7.11690664e-01 -4.41170543e-01
-5.52529953e-02 4.55008373e-02 2.81404525e-01 1.74688250e-01
-9.00347769e-01 8.95593107e-01 5.14707041e+00 1.13886452e+00
-1.34162235e+00 -1.00809075e-02 3.42580497e-01 6.54793262e-01
-1.71489760e-01 4.60687429e-02 -6.42254651e-01 4.77949262e-01
5.85234582e-01 -1.47232726e-01 2.87771150e-02 1.12351823e+00
-9.87358540e-02 -1.96467087e-01 -1.09452975e+00 6.00844622e-01
-2.15889066e-01 -9.03995216e-01 2.71146327e-01 2.20540445e-02
8.01008821e-01 -4.69107687e-01 9.43560973e-02 6.45911634e-01
3.33542615e-01 -5.43010354e-01 5.55048823e-01 -2.09500790e-02
5.71856797e-01 -8.25692654e-01 6.45739853e-01 7.29102790e-01
-1.10709405e+00 -1.45863295e-01 -3.91397923e-01 1.95745766e-01
-4.68815714e-01 4.24843132e-01 -1.22281599e+00 8.75402629e-01
7.25901186e-01 5.57218194e-01 -7.76257694e-01 1.06335032e+00
-3.62317383e-01 7.65878260e-01 -1.81740701e-01 4.49829459e-01
2.92048752e-01 -3.97216588e-01 8.81283402e-01 9.50074852e-01
1.47255287e-01 7.00976029e-02 4.88795489e-01 8.12892973e-01
1.23317875e-01 1.82590317e-02 -5.19645095e-01 5.21873869e-02
5.94191432e-01 9.79526699e-01 -8.45067739e-01 -5.55641353e-01
-3.45523268e-01 9.56920743e-01 3.72023225e-01 4.30217057e-01
-7.07069278e-01 -4.04901117e-01 4.34514105e-01 1.57490849e-01
5.86749673e-01 1.03795610e-01 -3.00285220e-01 -8.41107547e-01
-4.38863449e-02 -8.87854576e-01 7.31177449e-01 -7.18845665e-01
-1.26661873e+00 5.22685528e-01 2.33498991e-01 -1.61002374e+00
-3.87828164e-02 -4.00005132e-01 -6.13235056e-01 7.02452719e-01
-1.86912465e+00 -9.21996891e-01 -4.21560496e-01 9.42570388e-01
5.67897081e-01 -2.09491044e-01 4.65420216e-01 2.78643876e-01
-5.83244741e-01 6.47737324e-01 1.15711667e-01 1.32289439e-01
8.48286867e-01 -1.47203529e+00 -1.43343076e-01 9.28177595e-01
3.86794209e-02 3.17093462e-01 6.58804357e-01 -6.21550024e-01
-7.63069272e-01 -1.31036007e+00 6.08997166e-01 -8.31662863e-02
4.44724977e-01 -1.10750265e-01 -1.53370583e+00 4.52640504e-01
8.23775753e-02 -2.23262176e-01 3.89006883e-01 -8.50807652e-02
-4.91020054e-01 -2.72022814e-01 -1.32226944e+00 4.02407706e-01
6.78243220e-01 -4.47396338e-01 -9.60069299e-01 2.20922872e-01
5.53885698e-01 -4.24491346e-01 -7.90073276e-01 4.76617306e-01
9.23825875e-02 -1.05820894e+00 8.01881731e-01 -5.23912549e-01
4.62812603e-01 -3.90761137e-01 1.82487175e-01 -1.58327079e+00
-1.26007259e-01 -2.63726860e-01 -2.71184347e-03 1.49620223e+00
4.07497175e-02 -6.60682678e-01 7.83799052e-01 3.01600009e-01
-3.32483411e-01 -5.67927957e-01 -9.30464149e-01 -1.23602402e+00
4.20393795e-01 -3.66457105e-01 6.19222701e-01 1.40293741e+00
-2.58272737e-01 2.97866911e-01 2.28925496e-01 5.75357020e-01
4.38378245e-01 4.03799474e-01 7.81424046e-01 -1.50970697e+00
-5.26706614e-02 -4.08192366e-01 -1.81742609e-01 -1.28872824e+00
7.72782266e-02 -8.88937950e-01 4.24430985e-03 -1.34324229e+00
-1.90957367e-01 -6.42226994e-01 -3.86459947e-01 5.22607505e-01
-2.10070327e-01 -1.14915207e-01 1.98034361e-01 3.13951910e-01
-5.31929493e-01 4.65665281e-01 1.60279965e+00 -1.32986844e-01
-5.98002672e-01 7.82846287e-02 -7.32060075e-01 7.99075782e-01
6.57871544e-01 -5.29718220e-01 -6.65812492e-01 -1.88832536e-01
-2.73786455e-01 -5.36430888e-02 3.24008733e-01 -1.16867626e+00
4.04844195e-01 -1.89786211e-01 3.26473564e-01 -4.25624162e-01
3.16342860e-02 -1.17955840e+00 -1.53977185e-01 3.01999897e-01
-2.47318402e-01 -3.70246470e-01 4.45258766e-01 6.36849523e-01
-3.85851353e-01 -3.81500959e-01 1.18111467e+00 4.69880179e-02
-1.18851042e+00 -1.15998216e-01 -2.31601149e-01 2.01593190e-01
1.23221958e+00 -7.80344784e-01 -2.22621545e-01 -2.78332770e-01
-7.90246248e-01 3.00650835e-01 4.03482556e-01 3.40246081e-01
6.22032285e-01 -1.09394276e+00 -5.53959310e-01 4.35821503e-01
3.74765009e-01 4.95433748e-01 3.19302827e-01 8.52207243e-01
-8.77267122e-02 6.39893338e-02 -2.84439772e-01 -8.43402326e-01
-1.18960118e+00 6.13810897e-01 3.87407809e-01 -3.47758740e-01
-5.84052145e-01 7.72202551e-01 7.39789844e-01 -7.18852699e-01
2.99959213e-01 -2.25671411e-01 -3.56558055e-01 1.44592196e-01
2.77943075e-01 2.55789995e-01 1.43398531e-02 -6.04166448e-01
-1.75334662e-01 4.98968810e-01 -3.09190124e-01 2.87334383e-01
1.05623400e+00 -3.32954168e-01 2.99337149e-01 3.21623564e-01
8.68461251e-01 -8.83977637e-02 -1.44049859e+00 -5.37091255e-01
1.60337508e-01 -2.01676503e-01 -9.35614780e-02 -9.59544182e-01
-1.07672226e+00 8.45821917e-01 6.55505598e-01 2.81243235e-01
1.39776981e+00 -2.59837005e-02 4.48159665e-01 1.92232221e-01
1.48555577e-01 -1.26059926e+00 2.17227340e-01 4.71677125e-01
5.93029022e-01 -1.18453896e+00 -5.47898151e-02 -5.01877248e-01
-1.03495419e+00 1.07126558e+00 1.07870293e+00 2.32376847e-02
4.69601244e-01 -1.86068669e-01 1.20415494e-01 -4.27249335e-02
-4.66401815e-01 -2.65329957e-01 3.87565523e-01 9.31569278e-01
-1.08632982e-01 -4.08486053e-02 1.30499676e-01 6.74532712e-01
2.85731815e-02 -3.33764814e-02 4.64263827e-01 1.04786432e+00
-5.28202355e-01 -1.07231688e+00 -6.03058338e-01 -7.91341625e-03
1.47136733e-01 2.54052073e-01 -5.49315393e-01 1.22394979e+00
5.06456792e-01 8.81866097e-01 1.43174484e-01 -3.26133519e-01
4.75350171e-01 3.10510874e-01 3.28858465e-01 -5.79879940e-01
-5.58532834e-01 2.22840607e-01 -3.22244614e-01 -1.37856871e-01
-5.91599762e-01 -2.54842937e-01 -1.31618750e+00 1.28341932e-02
-1.82140768e-01 4.20963407e-01 4.27655578e-01 1.05411482e+00
2.37557337e-01 7.04144061e-01 6.19866431e-01 -2.51038671e-01
-5.07892489e-01 -6.82636023e-01 -6.72924161e-01 5.15185058e-01
2.57410735e-01 -9.85401750e-01 -3.86281163e-01 9.25562829e-02] | [10.227041244506836, 2.824460029602051] |
3292874f-9b6f-4ee4-833d-dccf52d17ac2 | continuous-sign-language-recognition-through-1 | null | null | https://www.mdpi.com/1424-8220/21/7/2437 | https://www.mdpi.com/1424-8220/21/7/2437 | Continuous Sign Language Recognition through a Context-Aware Generative Adversarial Network | Continuous sign language recognition is a weakly supervised task dealing with the identification of continuous sign gestures from video sequences, without any prior knowledge about the temporal boundaries between consecutive signs. Most of the existing methods focus mainly on the extraction of spatio-temporal visual features without exploiting text or contextual information to further improve the recognition accuracy. Moreover, the ability of deep generative models to effectively model data distribution has not been investigated yet in the field of sign language recognition. To this end, a novel approach for context-aware continuous sign language recognition using a generative adversarial network architecture, named as Sign Language Recognition Generative Adversarial Network (SLRGAN), is introduced. The proposed network architecture consists of a generator that recognizes sign language glosses by extracting spatial and temporal features from video sequences, as well as a discriminator that evaluates the quality of the generator’s predictions by modeling text information at the sentence and gloss levels. The paper also investigates the importance of contextual information on sign language conversations for both Deaf-to-Deaf and Deaf-to-hearing communication. Contextual information, in the form of hidden states extracted from the previous sentence, is fed into the bidirectional long short-term memory module of the generator to improve the recognition accuracy of the network. At the final stage, sign language translation is performed by a transformer network, which converts sign language glosses to natural language text. Our proposed method achieved word error rates of 23.4%, 2.1% and 2.26% on the RWTH-Phoenix-Weather-2014 and the Chinese Sign Language (CSL) and Greek Sign Language (GSL) Signer Independent (SI) datasets, respectively | ['Petros Daras', 'Kosmas Dimitropoulos', 'Ilias Papastratis'] | 2021-04-01 | null | null | null | null | ['sign-language-translation'] | ['computer-vision'] | [ 4.98224854e-01 -2.08080038e-01 1.55186981e-01 -4.36380625e-01
-7.78739512e-01 -4.34220731e-01 8.61113012e-01 -1.01338995e+00
-5.99875033e-01 6.05889916e-01 4.82277155e-01 -2.22437367e-01
6.91633150e-02 -6.56603336e-01 -5.74918985e-01 -9.75864232e-01
1.28559530e-01 3.22480559e-01 1.26873667e-04 -1.21019170e-01
-1.10438429e-01 4.46472019e-01 -1.63330591e+00 4.06281620e-01
7.92141497e-01 7.97569752e-01 1.36542274e-02 1.06880653e+00
-5.97836040e-02 1.14456606e+00 -6.76986992e-01 -2.78676033e-01
2.53450692e-01 -9.37919736e-01 -4.40957397e-01 -8.34369063e-02
2.81575799e-01 -6.41590595e-01 -6.86071336e-01 7.40675211e-01
9.44415867e-01 -5.61493859e-02 7.56793499e-01 -1.31341529e+00
-4.66270030e-01 4.25096035e-01 2.36404151e-01 -2.81641066e-01
1.45733163e-01 6.25857532e-01 6.75394773e-01 -5.87216318e-01
9.09464657e-01 1.12982452e+00 3.54118705e-01 8.75223517e-01
-7.34454691e-01 -8.60645771e-01 1.91117883e-01 5.01750708e-01
-1.26348591e+00 -2.91241974e-01 8.69867027e-01 -5.10379493e-01
8.89444888e-01 9.67889428e-02 8.66380155e-01 1.64546430e+00
-8.90096128e-02 9.75815892e-01 1.36748326e+00 -4.39115226e-01
9.35058147e-02 -3.20929259e-01 -5.37747294e-02 5.97348630e-01
-2.73762554e-01 5.94102740e-01 -6.63495719e-01 2.09021881e-01
6.32308602e-01 -1.51503369e-01 -2.65386373e-01 5.75992316e-02
-1.00068557e+00 5.45452893e-01 3.44279528e-01 5.26058853e-01
-4.99477446e-01 1.65999815e-01 2.51475662e-01 3.61194670e-01
1.50401788e-02 -3.12580317e-01 -2.78529804e-02 -3.47230107e-01
-9.78993297e-01 -1.94926432e-03 7.20633805e-01 8.99613321e-01
6.11748137e-02 4.18864638e-01 -4.39871967e-01 4.90182877e-01
6.25978947e-01 1.21740854e+00 7.13278234e-01 -2.96078742e-01
4.66516405e-01 4.37363684e-01 -1.87213391e-01 -4.82964844e-01
-1.91373333e-01 -1.98188558e-01 -8.83311570e-01 4.65042651e-01
4.51617032e-01 -3.36885899e-01 -1.70267308e+00 1.84366906e+00
-9.21767354e-02 3.28272998e-01 3.60605508e-01 1.14712608e+00
9.87244666e-01 5.42662799e-01 1.84701160e-01 1.03393644e-01
1.03205788e+00 -6.79101527e-01 -6.29389405e-01 -9.61347595e-02
2.34486058e-01 -8.03123951e-01 8.54591608e-01 6.97238818e-02
-7.59862661e-01 -3.59154433e-01 -6.67946517e-01 -6.24702349e-02
-3.15139443e-01 3.63320529e-01 8.50572512e-02 6.32219613e-01
-8.58967602e-01 -3.23918909e-02 -1.07371151e+00 -3.55125785e-01
2.52466887e-01 2.91423619e-01 -1.48200750e-01 -2.53633887e-01
-1.12232053e+00 8.60698223e-01 4.52522188e-02 4.17008728e-01
-7.93452621e-01 -1.81091487e-01 -6.94281995e-01 -2.74046212e-01
-2.20716149e-01 -7.29165733e-01 8.76564622e-01 -1.16546917e+00
-2.00922918e+00 7.75349975e-01 -3.73913616e-01 -4.24985975e-01
9.73646998e-01 -1.83090419e-02 -5.79652071e-01 6.77535906e-02
-4.34679419e-01 5.48304141e-01 1.11232352e+00 -9.55225050e-01
-5.16545892e-01 -3.55664909e-01 -2.69206941e-01 5.85356504e-02
2.42350087e-01 1.51269138e-01 -2.96637863e-01 -9.19697940e-01
2.67015509e-02 -1.10117078e+00 2.28969365e-01 -9.20141712e-02
-2.52918005e-01 -5.89315966e-02 8.96063685e-01 -1.26482308e+00
9.27287281e-01 -2.04936361e+00 2.49260381e-01 5.16723335e-01
-3.03303689e-01 5.65774083e-01 -5.77132463e-01 4.47813928e-01
2.32093558e-01 -3.13728750e-01 -4.17196214e-01 -3.25493902e-01
1.98496282e-01 5.66194475e-01 -5.32543004e-01 3.12062740e-01
3.08903098e-01 1.30593419e+00 -7.14292943e-01 -2.15014294e-01
4.43589032e-01 9.87997115e-01 -3.77348542e-01 2.78742641e-01
-1.10509887e-01 7.84089625e-01 -2.03761443e-01 6.12945497e-01
3.66017014e-01 2.36166611e-01 1.15035683e-01 -5.25032990e-02
-7.78380828e-03 4.28500146e-01 -8.98731530e-01 1.35549128e+00
-7.21317887e-01 7.44715631e-01 -7.40407407e-02 -8.07466447e-01
8.65015984e-01 5.43980837e-01 3.11484277e-01 -9.27030265e-01
2.79253513e-01 4.41840976e-01 2.43444979e-01 -6.72608316e-01
-7.91294724e-02 -2.72322923e-01 -2.95277350e-02 4.66003507e-01
3.28416228e-02 -6.22366481e-02 1.50282934e-01 -3.05283934e-01
1.08207130e+00 2.38165021e-01 -2.86540926e-01 5.72543204e-01
4.87967938e-01 -3.15173447e-01 3.34451497e-01 6.20145977e-01
-1.23112343e-01 6.95559204e-01 6.07436970e-02 -1.61620870e-01
-7.64575243e-01 -1.13978386e+00 2.20590174e-01 6.52038693e-01
-1.86951518e-01 1.75145760e-01 -5.25681019e-01 -6.02176785e-01
-1.70600891e-01 7.39648342e-01 -3.89000446e-01 -2.05317736e-01
-8.84022713e-01 -4.58718479e-01 9.90767360e-01 6.28215253e-01
8.48085344e-01 -1.53892541e+00 -6.35419786e-01 1.34507969e-01
-3.78921539e-01 -1.16809237e+00 -4.80823994e-01 -2.12765560e-01
-4.47239250e-01 -1.02226150e+00 -1.09413064e+00 -9.02505994e-01
6.87495232e-01 -6.21706545e-01 3.44429821e-01 -3.40970784e-01
-2.94635892e-01 3.65781188e-01 -5.44007838e-01 -2.54022807e-01
-8.25879216e-01 -2.01079905e-01 -1.40280694e-01 3.99089158e-01
6.20008886e-01 -5.20090044e-01 -3.82415026e-01 3.77394706e-01
-9.79421675e-01 1.84036136e-01 8.48049879e-01 1.22121394e+00
2.12671787e-01 -4.40391600e-01 2.21802667e-01 -9.29263830e-02
3.98650378e-01 7.51722008e-02 -5.56098700e-01 3.26022774e-01
-3.11977357e-01 3.80385756e-01 4.24946070e-01 -7.26532280e-01
-1.00786746e+00 1.71144605e-01 -4.81447965e-01 -3.07926893e-01
-2.88071603e-01 4.00812387e-01 -2.68457651e-01 1.39601529e-02
2.91294515e-01 9.19443667e-01 1.97138444e-01 -3.34704101e-01
2.95224309e-01 9.52294528e-01 6.25728011e-01 2.57189348e-02
9.00500298e-01 4.21312064e-01 -5.36784679e-02 -9.69934344e-01
-8.67273584e-02 -2.12681770e-01 -6.23217583e-01 -3.26433569e-01
9.02698159e-01 -7.07390308e-01 -5.86636007e-01 1.29379416e+00
-1.14630890e+00 -6.05805159e-01 -3.29597741e-01 8.09767663e-01
-7.02548027e-01 1.77038819e-01 -5.47817051e-01 -8.60433042e-01
-3.41811419e-01 -1.12950397e+00 1.02556562e+00 -5.95491715e-02
-1.38518378e-01 -6.62922800e-01 4.10766378e-02 5.20661056e-01
5.83860457e-01 2.44874462e-01 8.32014441e-01 -3.30295414e-01
-9.04199302e-01 -4.63435799e-01 -4.89279814e-02 8.67570519e-01
1.17192477e-01 -1.82389110e-01 -9.76385593e-01 -1.48219079e-01
-2.88207501e-01 -1.64868549e-01 9.02244687e-01 4.04154330e-01
2.82358915e-01 -5.85895717e-01 1.40317574e-01 7.05681741e-01
1.01909363e+00 4.48065788e-01 9.34249699e-01 -1.76807240e-01
6.10529304e-01 2.99985319e-01 2.15440035e-01 2.48735279e-01
3.64905119e-01 6.62772655e-01 3.68474983e-02 7.84353465e-02
-7.32268095e-01 -6.32347286e-01 7.06128359e-01 9.09479558e-01
-3.75248909e-01 -3.91023427e-01 -8.79911840e-01 5.79233587e-01
-1.64326191e+00 -1.24780631e+00 2.81071723e-01 1.99292743e+00
6.13601029e-01 -1.56479865e-01 -7.25254640e-02 4.23815101e-01
4.16796297e-01 1.41963989e-01 -5.80412924e-01 -1.60433173e-01
-4.38115865e-01 4.85049874e-01 5.03153801e-01 6.44282937e-01
-9.83335018e-01 1.08847237e+00 4.87877750e+00 5.20031929e-01
-1.66438413e+00 -1.76747367e-02 -8.66887942e-02 -2.34670624e-01
-1.34015784e-01 -2.60917515e-01 -5.90124011e-01 6.43956900e-01
7.82806575e-01 1.95398986e-01 5.75518847e-01 3.52511257e-01
4.55257714e-01 2.12757066e-01 -8.22753370e-01 9.88968611e-01
3.70501459e-01 -8.24410439e-01 3.00738394e-01 7.29042590e-02
6.25600040e-01 3.16445529e-01 1.36616036e-01 3.61898214e-01
2.59380281e-01 -1.05451083e+00 8.61841440e-01 1.01422489e+00
9.90614116e-01 -4.33559865e-01 9.23659563e-01 4.24572527e-01
-1.10977900e+00 -5.81480823e-02 4.77348179e-01 4.00874689e-02
5.15509903e-01 -6.23334199e-02 -8.36206794e-01 2.01207161e-01
2.48211250e-01 5.20346463e-01 -2.41417304e-01 9.21133101e-01
-8.17534864e-01 1.00443304e+00 -6.74520910e-01 -2.44870394e-01
2.85115093e-01 1.82463918e-02 8.14645350e-01 1.19086337e+00
3.86896700e-01 1.24802046e-01 -1.45008266e-01 7.33549297e-01
1.20410874e-01 -5.74358068e-02 -6.17177606e-01 -1.85482502e-01
-8.13239068e-03 3.40348333e-01 -1.35790318e-01 -1.66703075e-01
-2.42905721e-01 1.25598121e+00 -3.83873999e-01 7.42047131e-01
-6.67686343e-01 -4.25204903e-01 6.18310690e-01 -2.65223421e-02
4.95646954e-01 -4.44263220e-01 -1.82498917e-01 -1.20690024e+00
4.02896851e-01 -8.30909252e-01 1.03899859e-01 -7.49266863e-01
-1.12847519e+00 6.23114884e-01 -2.04514325e-01 -1.43737316e+00
-9.66213644e-01 -7.18235791e-01 -5.09926796e-01 1.11725855e+00
-1.62686062e+00 -1.75949132e+00 -3.57685030e-01 8.11044753e-01
3.03593934e-01 -3.56903225e-01 7.75403619e-01 4.25017208e-01
-1.27543837e-01 8.38316023e-01 1.19337924e-01 7.54414380e-01
5.21497369e-01 -6.88900769e-01 3.62533659e-01 1.12576365e+00
3.13161463e-01 2.37242103e-01 3.49152803e-01 -6.54491961e-01
-1.13442969e+00 -1.18147612e+00 1.35012722e+00 -1.05364852e-01
4.16922659e-01 -1.92811519e-01 -4.13812846e-01 4.73372310e-01
-1.45612836e-01 2.08765883e-02 2.49767467e-01 -6.46881580e-01
-3.93903822e-01 9.83687267e-02 -1.01459539e+00 6.98839307e-01
1.26247966e+00 -9.21433508e-01 -5.88557720e-01 3.61190028e-02
1.31177664e-01 -3.94189060e-01 -4.00193989e-01 4.35999900e-01
1.05190074e+00 -6.60936356e-01 8.61929715e-01 -5.77797055e-01
3.19942057e-01 -2.23918572e-01 -2.34234199e-01 -1.08719385e+00
3.37815076e-01 -4.83562529e-01 5.28613979e-04 8.18969905e-01
2.31617495e-01 -6.52352393e-01 6.81146681e-01 5.58811307e-01
9.21650007e-02 -2.63249665e-01 -1.31208873e+00 -9.50255811e-01
-8.36082026e-02 -7.04485059e-01 4.08835769e-01 4.93050367e-01
-4.63188857e-01 7.19659925e-02 -5.39709866e-01 1.68731868e-01
5.41651011e-01 1.68738365e-01 8.47359836e-01 -7.83237100e-01
-2.27684334e-01 -5.65067410e-01 -8.84349346e-01 -1.12819564e+00
2.93953747e-01 -1.05847716e+00 2.53929883e-01 -1.65821624e+00
-3.86951834e-01 4.54796702e-02 -1.57931507e-01 6.04004562e-01
1.97135150e-01 2.31118500e-01 4.45572913e-01 2.71694269e-02
6.72144368e-02 7.82851338e-01 1.21765184e+00 -4.06355351e-01
-3.22157115e-01 4.03609306e-01 3.18562478e-01 6.77176654e-01
5.38524032e-01 -8.98256823e-02 -1.30669460e-01 -4.29178536e-01
-5.31773210e-01 9.64739099e-02 9.54706788e-01 -1.07539046e+00
2.89085060e-01 -2.09158044e-02 -3.60121690e-02 -6.72764957e-01
4.28157270e-01 -8.75841677e-01 4.60867174e-02 6.24176800e-01
-3.11185449e-01 -3.81475538e-01 -3.04977014e-03 3.39559227e-01
-4.88403231e-01 1.86901689e-01 7.27291524e-01 1.37075469e-01
-7.84176409e-01 1.26998067e-01 -6.53427780e-01 6.05553165e-02
7.03725278e-01 -1.99624702e-01 -1.24514394e-01 -6.63294494e-01
-8.91904533e-01 -1.07127890e-01 -3.12954448e-02 7.16947377e-01
9.21452880e-01 -1.26278734e+00 -8.91856134e-01 7.99272358e-01
2.11463317e-01 -3.95941466e-01 3.38740855e-01 6.90674186e-01
-4.91654396e-01 5.44725716e-01 -2.93294638e-01 -5.01095891e-01
-1.53625453e+00 -1.73702955e-01 5.23712993e-01 -1.88309580e-01
-7.12553442e-01 7.32104599e-01 -4.14383531e-01 -4.29329664e-01
5.30168056e-01 -7.57147431e-01 6.11395054e-02 -1.40244856e-01
2.27481753e-01 1.43622011e-01 -1.66584730e-01 -1.12498820e+00
-3.37563992e-01 7.90656269e-01 4.68925059e-01 -6.02545381e-01
1.11986375e+00 1.25854775e-01 3.21519852e-01 2.70138115e-01
1.25555420e+00 -2.22366080e-01 -1.09682333e+00 -4.44110423e-01
-1.84357688e-01 -1.58160105e-01 3.24068442e-02 -1.33233070e+00
-9.92583513e-01 1.03374398e+00 9.77019906e-01 -6.97140634e-01
1.25859916e+00 -2.30144709e-01 1.04178381e+00 3.64959389e-01
4.20577079e-01 -9.08946157e-01 -2.43261456e-01 8.35478067e-01
1.18632483e+00 -1.17358923e+00 -7.32420266e-01 1.51309162e-01
-6.49869800e-01 9.07249689e-01 1.17570154e-01 -1.61692314e-02
7.08769083e-01 3.33608896e-01 5.47343910e-01 2.39957795e-01
-3.81297439e-01 -6.32393777e-01 6.28482401e-01 6.80896163e-01
7.88092688e-02 2.00800046e-01 -2.71812201e-01 4.33090895e-01
-3.70357066e-01 4.67034519e-01 5.76994792e-02 9.71790731e-01
7.99983591e-02 -1.18518364e+00 -1.98075160e-01 1.35072500e-01
6.66719228e-02 -1.87442943e-01 -4.50481087e-01 6.53324604e-01
2.16604292e-01 8.22686315e-01 -2.78417785e-02 -4.50591713e-01
4.23534960e-01 5.69445968e-01 5.13056159e-01 -9.54577848e-02
-4.19995248e-01 -1.10062465e-01 1.60861723e-02 -3.51873547e-01
-5.94873846e-01 -7.28048265e-01 -1.27141535e+00 1.15481876e-01
1.49521530e-01 -3.75564158e-01 8.44026148e-01 1.13502049e+00
2.29484379e-01 4.05491441e-01 2.88248152e-01 -5.83355725e-01
-5.92959821e-01 -1.18350422e+00 -3.46903443e-01 6.58173680e-01
5.46740890e-01 -3.70516986e-01 -3.97048086e-01 2.96154499e-01] | [9.194379806518555, -6.510060787200928] |
ec5fa778-752b-4ab0-805e-de57008f949e | analytical-engines-with-context-rich | 2212.07517 | null | https://arxiv.org/abs/2212.07517v1 | https://arxiv.org/pdf/2212.07517v1.pdf | Analytical Engines With Context-Rich Processing: Towards Efficient Next-Generation Analytics | As modern data pipelines continue to collect, produce, and store a variety of data formats, extracting and combining value from traditional and context-rich sources such as strings, text, video, audio, and logs becomes a manual process where such formats are unsuitable for RDBMS. To tap into the dark data, domain experts analyze and extract insights and integrate them into the data repositories. This process can involve out-of-DBMS, ad-hoc analysis, and processing resulting in ETL, engineering effort, and suboptimal performance. While AI systems based on ML models can automate the analysis process, they often further generate context-rich answers. Using multiple sources of truth, for either training the models or in the form of knowledge bases, further exacerbates the problem of consolidating the data of interest. We envision an analytical engine co-optimized with components that enable context-rich analysis. Firstly, as the data from different sources or resulting from model answering cannot be cleaned ahead of time, we propose using online data integration via model-assisted similarity operations. Secondly, we aim for a holistic pipeline cost- and rule-based optimization across relational and model-based operators. Thirdly, with increasingly heterogeneous hardware and equally heterogeneous workloads ranging from traditional relational analytics to generative model inference, we envision a system that just-in-time adapts to the complex analytical query requirements. To solve increasingly complex analytical problems, ML offers attractive solutions that must be combined with traditional analytical processing and benefit from decades of database community research to achieve scalability and performance effortless for the end user. | ['Anastasia Ailamaki', 'Viktor Sanca'] | 2022-12-14 | null | null | null | null | ['data-integration'] | ['knowledge-base'] | [-1.79250482e-02 -1.51851878e-01 -6.50647134e-02 -3.48960221e-01
-8.49723339e-01 -6.73250139e-01 1.90760374e-01 6.99200571e-01
-2.14082494e-01 1.72430947e-01 -4.63538663e-03 -6.23148561e-01
-2.32398942e-01 -9.95354831e-01 -5.51827908e-01 9.47300047e-02
-2.60682218e-02 9.07508552e-01 4.78889376e-01 -2.38955989e-01
2.77365953e-01 5.98481417e-01 -1.85534453e+00 5.66701353e-01
7.99989343e-01 1.29611278e+00 1.06850527e-01 7.25818396e-01
-7.62939274e-01 1.09431863e+00 -6.91725016e-01 -4.70323980e-01
4.47089851e-01 -1.47074265e-02 -6.22403562e-01 -2.39917412e-01
2.52312589e-02 -4.46575016e-01 -5.36710210e-02 5.84047854e-01
3.03417623e-01 -2.77978450e-01 -6.77258745e-02 -1.19646430e+00
-2.52262086e-01 5.30333817e-01 -2.38778561e-01 1.31809324e-01
4.58163530e-01 6.75007522e-01 9.34038579e-01 -9.30301309e-01
7.16878772e-01 1.00313509e+00 6.23971283e-01 -2.31974319e-01
-1.25283635e+00 -3.61131757e-01 -5.62553592e-02 2.53314286e-01
-1.23488605e+00 -8.30033004e-01 3.94561946e-01 -3.78363639e-01
1.26320982e+00 6.55647874e-01 7.70344138e-01 4.84195083e-01
-2.37772658e-01 6.84433877e-01 4.14815336e-01 -2.90510744e-01
3.70455623e-01 3.42622578e-01 1.48697942e-01 4.22049791e-01
5.15800297e-01 -3.88735324e-01 -9.14742887e-01 -1.84057489e-01
1.90608755e-01 1.21882580e-01 1.19498812e-01 -2.89091170e-01
-8.80125284e-01 3.29867691e-01 -8.21893662e-02 1.31157592e-01
-7.48323679e-01 -1.11419290e-01 3.16743076e-01 3.75456363e-01
1.24917552e-01 8.17251086e-01 -5.98049521e-01 -6.13270342e-01
-1.44123960e+00 3.31201732e-01 1.21422005e+00 1.09112501e+00
9.32453573e-01 -7.50634968e-02 1.92222856e-02 4.78213429e-01
3.22213948e-01 4.02178645e-01 2.43453354e-01 -1.07316923e+00
5.33220291e-01 1.21500039e+00 4.71163681e-03 -9.93208289e-01
-3.91684383e-01 -3.88699889e-01 -2.96263248e-01 5.57470024e-02
4.49812293e-01 2.83288360e-01 -6.14314318e-01 1.16566706e+00
5.28997481e-01 -3.62547994e-01 -2.11451590e-01 7.61143088e-01
3.88735503e-01 4.04786289e-01 1.79093145e-02 -1.77709714e-01
1.30055523e+00 -3.78497511e-01 -6.12943411e-01 -3.20616484e-01
6.23175442e-01 -8.76431406e-01 1.26822281e+00 9.06248271e-01
-1.42222261e+00 -2.93748915e-01 -1.22731400e+00 -4.11716312e-01
-3.05564314e-01 -3.73784125e-01 5.75990677e-01 2.18185842e-01
-8.27846169e-01 5.57143331e-01 -1.12841952e+00 -1.12325959e-01
3.48866761e-01 2.44108468e-01 -1.29812047e-01 -3.06378424e-01
-6.79269910e-01 9.08097208e-01 2.55701333e-01 1.26704112e-01
-1.93127334e-01 -1.31851876e+00 -3.37301701e-01 3.94910365e-01
7.89574862e-01 -7.15848684e-01 1.26074970e+00 -4.88961607e-01
-1.04604948e+00 2.81023234e-01 -2.42981821e-01 -2.54241407e-01
3.21946502e-01 -1.38705283e-01 -4.82272089e-01 1.94682498e-02
-1.35067806e-01 -1.62162423e-01 5.33527613e-01 -1.10329640e+00
-6.88829422e-01 -6.85450077e-01 -2.87580818e-01 -2.79030681e-01
-3.77797455e-01 1.60765424e-01 -5.48010945e-01 -1.94515160e-03
3.24797422e-01 -5.34056902e-01 4.18532640e-03 -8.65433514e-02
-1.90262184e-01 1.24802254e-01 9.07743990e-01 -8.74490857e-01
1.67169809e+00 -2.02065492e+00 -8.00183713e-02 5.03708065e-01
5.01680911e-01 2.53657699e-01 2.82992095e-01 5.41409492e-01
3.46652418e-01 2.69548595e-01 1.37070388e-01 -2.23955587e-01
2.63244569e-01 1.73879728e-01 -4.47905421e-01 -3.02721858e-01
6.80611312e-01 8.91807437e-01 -7.34664321e-01 -8.79469693e-01
-1.37531951e-01 1.37079790e-01 -7.35198796e-01 5.05422771e-01
-7.38824785e-01 -1.88127495e-02 -3.07445854e-01 9.41330910e-01
3.55276853e-01 -5.71026862e-01 4.84116167e-01 -4.49696273e-01
-2.42614508e-01 4.49085861e-01 -1.47229576e+00 1.49789083e+00
-5.15397668e-01 3.46461833e-01 4.35460001e-01 -7.57226706e-01
8.04668009e-01 -3.71458195e-02 5.54569423e-01 -7.89034963e-01
-1.60182536e-01 4.24391359e-01 6.85897917e-02 -8.07929695e-01
1.03425074e+00 2.19509244e-01 4.06777859e-03 7.35269666e-01
-9.78645831e-02 -1.98626429e-01 5.46321273e-01 3.32334816e-01
1.62138891e+00 7.85368308e-02 3.17315981e-02 2.99076557e-01
-2.19202377e-02 6.13257468e-01 6.09690249e-01 4.69550014e-01
2.28850335e-01 2.18612596e-01 7.58446038e-01 -4.42110717e-01
-1.07336211e+00 -1.05812263e+00 7.20829144e-02 1.15517151e+00
-2.18828738e-01 -8.24366987e-01 -1.76351473e-01 -9.24174264e-02
3.85873139e-01 8.30132961e-01 2.68256664e-01 -1.07131392e-01
-6.68158233e-01 -5.21023631e-01 4.77066100e-01 4.55773473e-01
1.14797549e-02 -5.78552067e-01 -8.98585141e-01 6.50551736e-01
-1.41705528e-01 -1.01685321e+00 -3.19685526e-02 1.86405405e-01
-8.51712942e-01 -8.59566212e-01 4.14429277e-01 2.51206070e-01
1.38689741e-01 1.33778408e-01 1.58498311e+00 1.09224707e-01
-6.27180815e-01 2.15929657e-01 -1.45175233e-01 -7.01153994e-01
-6.33181512e-01 5.84406145e-02 -2.64706761e-01 -2.12281287e-01
6.46549582e-01 -9.32430208e-01 -4.71995473e-01 1.59679770e-01
-8.84118199e-01 1.02287970e-01 7.41926074e-01 3.90674263e-01
6.86569750e-01 -7.99212605e-03 6.53641105e-01 -7.54823208e-01
5.69232047e-01 -9.35176015e-01 -8.71908069e-01 4.59743440e-01
-1.12249875e+00 3.59897196e-01 6.94895029e-01 -3.50683153e-01
-8.80483031e-01 -1.01990208e-01 3.34686846e-01 -7.31747985e-01
2.52277464e-01 9.54731047e-01 -2.01451778e-01 5.81292093e-01
7.92624533e-01 -6.77118525e-02 4.30168718e-01 -6.15175188e-01
5.56227744e-01 8.41495454e-01 7.51691043e-01 -7.11281121e-01
5.44833362e-01 3.06094944e-01 -1.43758357e-01 -6.49128139e-01
-3.51942211e-01 -2.68650740e-01 -3.42220992e-01 -1.08513072e-01
5.11205971e-01 -7.59699762e-01 -8.58132958e-01 -7.02518746e-02
-1.01190484e+00 -1.92698762e-01 -6.50854945e-01 1.47850454e-01
-2.05791086e-01 1.02812164e-01 -3.39228421e-01 -8.91313195e-01
-4.27027345e-01 -1.09265649e+00 8.17621946e-01 1.90000564e-01
-6.48516595e-01 -3.14864546e-01 -1.95879206e-01 8.01912129e-01
8.06869924e-01 1.00369595e-01 1.13097203e+00 -8.49314034e-01
-1.49763870e+00 -7.35585272e-01 -4.26543355e-01 2.13303044e-02
-1.40898302e-01 3.31165642e-01 -9.06738877e-01 1.20909087e-01
-4.37272415e-02 -2.22018108e-01 1.24569759e-01 -3.17904323e-01
1.25268483e+00 -3.40368330e-01 -2.22610697e-01 5.27212799e-01
1.14307976e+00 2.06974462e-01 3.43683183e-01 1.01615518e-01
7.56883264e-01 7.10163176e-01 5.52082717e-01 7.08504081e-01
7.23369718e-01 5.79012334e-01 1.87381759e-01 1.82951301e-01
4.14523967e-02 -2.97724724e-01 -7.16090202e-02 9.52490985e-01
2.45091408e-01 -1.63155459e-02 -1.29239476e+00 4.28208560e-01
-1.93202519e+00 -9.59962368e-01 -3.64087820e-02 2.41886759e+00
1.13203382e+00 3.92608494e-01 2.01650724e-01 2.06674144e-01
1.73740815e-02 -4.85462368e-01 -8.27695847e-01 -4.39427435e-01
2.73693472e-01 3.91886741e-01 4.13163096e-01 1.18442439e-01
-2.39333048e-01 4.28245217e-01 5.58438921e+00 4.68365341e-01
-1.33990777e+00 -8.84444043e-02 3.77756596e-01 -6.96565390e-01
-5.58965921e-01 1.94438279e-01 -7.26591349e-01 6.29847288e-01
1.60308349e+00 -3.56215030e-01 6.22716665e-01 1.01102579e+00
2.61196017e-01 -4.02541459e-01 -1.65917158e+00 9.43790019e-01
-4.01345164e-01 -1.63809276e+00 -3.52512836e-01 3.32815558e-01
6.18705563e-02 2.11717099e-01 -2.54919797e-01 3.16624910e-01
5.11398017e-01 -1.07105517e+00 9.18099105e-01 9.36156273e-01
4.96234745e-01 -4.14825886e-01 4.46882308e-01 4.92822587e-01
-1.01783562e+00 -2.77182102e-01 3.16604525e-02 -4.93368432e-02
2.26809278e-01 8.87540996e-01 -9.88739491e-01 5.88864505e-01
7.74847269e-01 5.82120642e-02 -7.45644391e-01 6.20454431e-01
6.44360304e-01 3.58104348e-01 -7.57196724e-01 1.07436553e-01
-4.38527375e-01 2.90102139e-02 2.11425170e-01 9.58186388e-01
2.11862490e-01 -4.44662496e-02 2.25229934e-01 1.20510089e+00
1.60223544e-01 -1.96649339e-02 -4.80841637e-01 -4.60392773e-01
9.84391987e-01 1.33075821e+00 -3.41684192e-01 -5.48249245e-01
-4.61124718e-01 1.60378180e-02 4.01881486e-01 1.64999291e-01
-3.99353057e-01 -2.82577187e-01 7.04229236e-01 6.61114752e-01
8.55335519e-02 -4.78940159e-01 -8.40283811e-01 -1.02675474e+00
6.28971457e-01 -1.44325519e+00 2.94956446e-01 -6.10962510e-01
-1.09948981e+00 3.56256932e-01 1.30584493e-01 -7.95671821e-01
-7.87031233e-01 -1.29844308e-01 -1.83617756e-01 1.03777635e+00
-9.56592977e-01 -8.68073463e-01 -5.28618336e-01 1.75546736e-01
1.53458998e-01 -4.15970460e-02 5.65594971e-01 5.81669390e-01
-4.95263726e-01 4.01179194e-01 -1.87159792e-01 -1.72225103e-01
4.27445561e-01 -9.25961673e-01 3.24445099e-01 7.85457432e-01
6.09581992e-02 9.15423810e-01 5.06671190e-01 -7.56188452e-01
-2.45005345e+00 -8.30621839e-01 8.11570883e-01 -8.44893456e-01
8.82045865e-01 -4.51896757e-01 -1.42191422e+00 3.40011299e-01
-3.39281082e-01 3.98226976e-02 7.08013773e-01 3.57443213e-01
-5.62571645e-01 -6.38133407e-01 -1.00690758e+00 4.60768402e-01
8.29405367e-01 -7.37537503e-01 -3.47993016e-01 5.06687276e-02
7.81870782e-01 -2.84906596e-01 -1.32469702e+00 2.79396206e-01
6.93310916e-01 -8.05522859e-01 9.61145937e-01 -7.30894148e-01
4.20058519e-01 -3.72405022e-01 -3.82328272e-01 -6.02262259e-01
1.06736220e-01 -8.78487229e-01 -5.15556931e-01 1.27473080e+00
4.85339880e-01 -3.20333034e-01 5.80936730e-01 1.43117952e+00
-1.37148246e-01 -8.05313051e-01 -4.61656988e-01 -5.64151883e-01
-5.24546742e-01 -1.00602877e+00 1.09929049e+00 7.32807636e-01
2.11319938e-01 4.23289955e-01 2.55073518e-01 4.11602072e-02
5.02153814e-01 4.19998080e-01 1.22038138e+00 -1.30615509e+00
-6.82729721e-01 -4.76134956e-01 -2.82812476e-01 -5.63404500e-01
-5.04273772e-01 -7.05334842e-01 1.49351852e-02 -1.48895335e+00
-2.44883820e-01 -1.01565790e+00 2.23350171e-02 4.99159127e-01
-4.30246443e-02 -3.66323411e-01 4.06064957e-01 4.96642768e-01
-4.61484700e-01 -9.07085985e-02 6.86143339e-01 1.93659717e-03
-5.71062684e-01 -2.90159971e-01 -8.71451557e-01 4.10762787e-01
4.06876147e-01 -3.14231694e-01 -5.71573079e-01 -5.72484553e-01
8.32731009e-01 3.44340831e-01 2.35616878e-01 -9.53243017e-01
7.04526365e-01 -1.58320412e-01 1.79559872e-01 -7.75419474e-01
4.28047866e-01 -8.34498465e-01 6.75463915e-01 9.34284404e-02
-1.22776709e-01 3.53899091e-01 1.05538607e-01 2.80326575e-01
-1.81848332e-01 4.70471270e-02 3.96164775e-01 -1.70777574e-01
-2.28377745e-01 6.52130470e-02 1.27463220e-02 3.16290945e-01
6.76232696e-01 -2.64956087e-01 -6.28461599e-01 -1.43366635e-01
-5.15808403e-01 5.04376650e-01 5.19099832e-01 2.15823770e-01
3.26003313e-01 -7.21256912e-01 -4.66303766e-01 5.66225588e-01
4.47060652e-02 5.46495438e-01 1.51301008e-02 8.90383184e-01
-5.69726586e-01 1.56674609e-01 8.95637870e-02 -5.99778056e-01
-8.56657088e-01 7.00858355e-01 -1.82041317e-01 -3.83130848e-01
-2.75496274e-01 3.59821469e-01 -5.31632602e-01 -8.52106139e-03
8.35523680e-02 -4.92433876e-01 5.71399689e-01 3.31581205e-01
4.97938097e-01 4.01280373e-01 5.69644570e-01 2.55106300e-01
-3.05215180e-01 -2.52274662e-01 3.56189278e-03 -1.29629478e-01
1.58516777e+00 4.69821878e-02 -4.03926402e-01 6.93346858e-01
6.87083542e-01 1.28143400e-01 -9.35193419e-01 -3.74930769e-01
5.93745649e-01 -5.72359443e-01 -6.24016151e-02 -7.84206450e-01
-7.28056908e-01 8.20399582e-01 1.06566370e-01 5.62100530e-01
1.12886226e+00 -1.75124537e-02 8.82827759e-01 4.27615404e-01
2.82185137e-01 -1.25973821e+00 -3.27498950e-02 1.98401697e-02
6.23107731e-01 -1.09183645e+00 2.38477156e-01 -1.72547355e-01
-3.08800280e-01 1.00886607e+00 6.20078564e-01 3.82454723e-01
6.42692387e-01 7.57977009e-01 -1.21351205e-01 -2.88940996e-01
-1.35907209e+00 4.44080532e-02 -9.13685374e-03 2.53004700e-01
3.02843750e-01 -7.30597824e-02 1.80045038e-01 8.56990099e-01
-3.49887401e-01 2.96538085e-01 3.37590039e-01 1.27012932e+00
-4.27358568e-01 -1.26177335e+00 -4.07881588e-01 9.40032184e-01
-2.89448231e-01 -4.88604307e-02 -1.23313516e-01 5.86925983e-01
-2.02021170e-02 8.79127145e-01 3.37719172e-01 -5.68125546e-01
5.80414951e-01 5.20266831e-01 7.89565593e-02 -5.37069261e-01
-7.07143366e-01 -2.69887410e-02 3.78757656e-01 -8.10056984e-01
3.39530885e-01 -6.87643170e-01 -1.27709043e+00 -6.57541692e-01
-2.66935434e-02 -1.39693037e-01 1.24443543e+00 8.87367427e-01
1.12817550e+00 4.98851776e-01 3.18928331e-01 -4.38754201e-01
-9.47600842e-01 -7.45272934e-01 7.08421916e-02 1.90264925e-01
1.52393756e-02 -2.80930489e-01 1.46333531e-01 1.95914164e-01] | [9.187161445617676, 7.493495464324951] |
9a8643c7-a3e2-4c3e-820a-b19773ed3ff4 | a-generative-deep-learning-approach-to | 2204.02028 | null | https://arxiv.org/abs/2204.02028v2 | https://arxiv.org/pdf/2204.02028v2.pdf | A Generative Deep Learning Approach to Stochastic Downscaling of Precipitation Forecasts | Despite continuous improvements, precipitation forecasts are still not as accurate and reliable as those of other meteorological variables. A major contributing factor to this is that several key processes affecting precipitation distribution and intensity occur below the resolved scale of global weather models. Generative adversarial networks (GANs) have been demonstrated by the computer vision community to be successful at super-resolution problems, i.e., learning to add fine-scale structure to coarse images. Leinonen et al. (2020) previously applied a GAN to produce ensembles of reconstructed high-resolution atmospheric fields, given coarsened input data. In this paper, we demonstrate this approach can be extended to the more challenging problem of increasing the accuracy and resolution of comparatively low-resolution input from a weather forecasting model, using high-resolution radar measurements as a "ground truth". The neural network must learn to add resolution and structure whilst accounting for non-negligible forecast error. We show that GANs and VAE-GANs can match the statistical properties of state-of-the-art pointwise post-processing methods whilst creating high-resolution, spatially coherent precipitation maps. Our model compares favourably to the best existing downscaling methods in both pixel-wise and pooled CRPS scores, power spectrum information and rank histograms (used to assess calibration). We test our models and show that they perform in a range of scenarios, including heavy rainfall. | ['Tim N. Palmer', 'Peter D. Dueben', 'Matthew Chantry', 'Andrew T. T. McRae', 'Lucy Harris'] | 2022-04-05 | null | null | null | null | ['weather-forecasting'] | ['miscellaneous'] | [ 4.14854348e-01 -3.11584938e-02 4.18387204e-01 -4.00207222e-01
-9.63287055e-01 -7.77269781e-01 1.04533160e+00 -2.01302767e-01
-1.54964566e-01 1.53394997e+00 3.02790761e-01 -3.54886919e-01
-6.09366223e-02 -1.28651667e+00 -5.41818261e-01 -1.03911316e+00
-3.99179995e-01 5.36965668e-01 -3.70338589e-01 -6.50911391e-01
-2.60873765e-01 8.36610854e-01 -1.57123661e+00 -1.33614421e-01
1.13894272e+00 5.15476346e-01 6.26750886e-02 9.39675391e-01
1.90166458e-01 5.27084887e-01 -6.42936587e-01 3.66043337e-02
5.23281097e-01 -6.40832365e-01 -2.45214343e-01 -1.60415024e-01
1.01899028e+00 -3.42966259e-01 -9.33547392e-02 1.11138940e+00
5.83123028e-01 1.66294351e-01 7.85521388e-01 -7.38696516e-01
-5.77435791e-01 3.11437547e-01 -6.13210917e-01 3.35856408e-01
-2.85445035e-01 2.51439184e-01 7.51079619e-01 -7.25905001e-01
3.71482670e-01 1.12254167e+00 1.13814044e+00 1.28615290e-01
-1.81190646e+00 -8.12905729e-01 -2.62870222e-01 -3.59980077e-01
-1.24053669e+00 -3.73326957e-01 2.72786587e-01 -6.25376344e-01
8.50809693e-01 5.65811515e-01 5.48011780e-01 8.64558458e-01
5.20902634e-01 -3.61204773e-01 1.80912209e+00 -1.64385408e-01
1.60057962e-01 -2.60304600e-01 -4.44820225e-01 2.31712535e-02
4.09026027e-01 9.80837464e-01 -1.55174613e-01 -1.77221641e-01
9.37398851e-01 -9.36930552e-02 -3.54639977e-01 3.53668004e-01
-8.81874323e-01 1.19354558e+00 8.29646230e-01 2.68170297e-01
-8.77036691e-01 8.75864327e-02 -2.40669981e-01 3.71830851e-01
1.11709821e+00 7.47012436e-01 -4.52431709e-01 2.39016533e-01
-1.71466410e+00 7.74886906e-01 4.09466326e-01 2.78714031e-01
8.05456042e-01 8.03917587e-01 -4.55394164e-02 4.49228078e-01
1.76883727e-01 1.58840835e+00 1.34888664e-02 -1.13265777e+00
2.33729824e-01 -1.31694213e-01 5.06625712e-01 -1.07218933e+00
-4.52504605e-01 -6.74359858e-01 -1.56166613e+00 8.93119037e-01
1.94057003e-01 -6.16546154e-01 -1.26843095e+00 1.82194602e+00
8.23489577e-02 3.74642700e-01 3.02722305e-01 1.04059327e+00
4.50474709e-01 1.22406864e+00 3.30514520e-01 -3.27314883e-01
1.02634406e+00 -1.69733107e-01 -7.20378160e-01 -4.63620126e-01
-7.42631480e-02 -6.80456400e-01 6.17425621e-01 -1.10098019e-01
-8.97908092e-01 -7.79757023e-01 -9.73409712e-01 5.58412075e-01
-5.77830672e-01 -2.37387419e-01 5.00180483e-01 6.09196126e-01
-1.38137221e+00 9.34196770e-01 -6.91687286e-01 -1.59229085e-01
2.78578371e-01 -1.80624098e-01 -2.57815778e-01 3.13558578e-01
-1.71869242e+00 1.16651022e+00 1.20151401e-01 4.44658488e-01
-7.14419961e-01 -1.27879548e+00 -8.57884407e-01 2.80411839e-01
-4.55692619e-01 -7.74134099e-01 8.10391009e-01 -1.06333840e+00
-1.09605551e+00 5.19164145e-01 6.98832562e-03 -8.10304582e-01
4.55397576e-01 -1.87733188e-01 -5.99217117e-01 5.60424617e-03
2.75195539e-01 7.49530435e-01 9.87666786e-01 -1.46364617e+00
-7.76260555e-01 -3.26729745e-01 -4.46501404e-01 3.41241747e-01
5.59913337e-01 -2.02204198e-01 6.82861209e-01 -9.72885072e-01
-2.65833717e-02 -8.72806609e-01 -6.75988913e-01 -3.26964349e-01
1.79378062e-01 6.07298195e-01 7.44968295e-01 -1.10728776e+00
6.54109120e-01 -1.78203773e+00 5.69264628e-02 3.90862167e-01
2.68804342e-01 3.10137421e-01 -9.26177204e-02 2.69383252e-01
-1.71867609e-01 5.45354307e-01 -9.18307543e-01 -1.17112555e-01
-1.65803164e-01 5.19080043e-01 -1.02098846e+00 4.64733005e-01
6.61843121e-01 8.79119575e-01 -6.62413239e-01 2.52870433e-02
5.76764941e-01 7.80184567e-01 -3.83742899e-02 3.36264461e-01
-2.02456936e-01 1.02338409e+00 1.07719325e-01 1.39219642e-01
1.31328332e+00 1.24321938e-01 -3.76268663e-02 1.96309760e-01
-3.28170925e-01 -1.64391324e-01 -1.07093132e+00 8.61842811e-01
-3.85927230e-01 8.64199579e-01 3.35261673e-01 -5.13280809e-01
1.15874839e+00 2.34530494e-01 1.24406755e-01 -8.69365275e-01
-4.43225771e-01 1.30861849e-01 5.11596873e-02 -1.02240024e-02
6.89171076e-01 -9.09330964e-01 5.76789975e-02 2.59645581e-01
-2.95915097e-01 -8.06309938e-01 -2.86475658e-01 -7.42834955e-02
5.20748198e-01 9.72956419e-02 1.52910426e-01 -4.79102522e-01
2.31372193e-01 2.45279402e-01 2.87429512e-01 9.76834476e-01
1.04505368e-01 9.83259439e-01 1.50268421e-01 -5.16083717e-01
-1.63185763e+00 -1.23332882e+00 -5.03815472e-01 6.77100599e-01
-5.40818393e-01 3.22142839e-01 -5.00603497e-01 -8.54555517e-03
3.06592107e-01 9.29800749e-01 -9.07052398e-01 2.42671520e-01
-3.24933559e-01 -1.39715672e+00 8.72158766e-01 4.22315270e-01
5.81500888e-01 -1.03181887e+00 -6.36078000e-01 3.30900967e-01
5.32741509e-02 -1.03140271e+00 3.40165377e-01 2.78854370e-01
-1.10024714e+00 -5.08213758e-01 -9.12836730e-01 -8.76286477e-02
3.57569993e-01 -1.73148498e-01 1.59139156e+00 -3.46973270e-01
-4.91479002e-02 -3.16663980e-02 -1.99240163e-01 -4.32461053e-01
-6.13133311e-01 -1.01248838e-01 1.49285141e-02 -2.37147972e-01
-4.57111001e-02 -9.85664487e-01 -5.48653662e-01 -2.08529625e-02
-9.35355484e-01 -4.63670455e-02 5.49148977e-01 9.28797424e-01
5.43471813e-01 1.45405293e-01 5.81121504e-01 -8.62055480e-01
5.94871521e-01 -4.77875620e-01 -9.30051327e-01 -9.59947780e-02
-7.12403119e-01 1.30077340e-02 5.99497736e-01 2.01114163e-01
-1.25594008e+00 1.24152573e-02 -1.69460386e-01 -3.30663264e-01
-5.16512513e-01 9.17067051e-01 3.60466570e-01 -1.85320318e-01
1.00224066e+00 3.82386267e-01 -2.53001507e-02 -2.59704471e-01
5.87797225e-01 2.97652721e-01 9.33581233e-01 -3.81875306e-01
1.32155883e+00 4.76992160e-01 4.55601722e-01 -1.01371396e+00
-6.78379893e-01 -3.06309754e-04 -5.35867631e-01 -1.58102453e-01
7.84367323e-01 -1.35446322e+00 1.21343024e-01 5.66935837e-01
-7.58338213e-01 -6.26793683e-01 -5.01232505e-01 2.75483727e-01
-3.63934189e-01 -2.64734845e-03 -3.23850662e-01 -9.60404813e-01
-5.64557493e-01 -4.97789800e-01 9.92436469e-01 3.88095319e-01
2.40518693e-02 -1.14155543e+00 5.94425082e-01 -3.08141470e-01
1.13482988e+00 9.77476716e-01 6.15956843e-01 1.12908758e-01
-2.42212147e-01 -5.62905148e-03 -3.61329794e-01 3.73301089e-01
8.42888132e-02 1.66939586e-01 -1.25121307e+00 -3.11564922e-01
1.30174473e-01 -9.94585156e-02 1.17971885e+00 8.67760181e-01
5.70438147e-01 -4.87425566e-01 1.21260114e-01 9.20512617e-01
1.72865689e+00 -1.47645935e-01 1.04614198e+00 2.16041937e-01
4.26234931e-01 4.87488270e-01 2.62004972e-01 3.60376239e-01
-9.36904773e-02 2.08599910e-01 4.74974602e-01 -6.82075918e-01
-9.51180328e-03 1.04178056e-01 4.38022614e-02 2.24702463e-01
-4.99371469e-01 -8.04289430e-02 -1.15442133e+00 4.70396012e-01
-1.54132879e+00 -1.52451539e+00 -3.16963106e-01 2.10901093e+00
7.25376308e-01 -1.14770979e-01 -3.91102135e-01 -2.51039952e-01
5.72955787e-01 6.13992155e-01 -4.10339445e-01 -3.61859113e-01
-7.09891140e-01 9.99406695e-01 1.19049847e+00 9.47295725e-01
-1.41067672e+00 9.51543450e-01 6.65794516e+00 3.03104490e-01
-1.33969128e+00 1.05308428e-01 7.79236197e-01 2.37989202e-01
-3.82317156e-01 -1.33541897e-01 -5.80812216e-01 2.91761100e-01
1.48656380e+00 -9.24163237e-02 5.37314892e-01 2.68647105e-01
5.47477603e-01 -1.84135631e-01 -3.77601773e-01 5.14068723e-01
-3.33865702e-01 -1.52438283e+00 8.02732781e-02 -2.33406853e-02
1.27168214e+00 3.81169826e-01 2.17097580e-01 3.34415704e-01
8.73710096e-01 -1.70396316e+00 2.26646587e-01 1.02028847e+00
1.20047069e+00 -8.27776611e-01 9.97831941e-01 1.47809133e-01
-1.14210451e+00 4.15724248e-01 -4.95352983e-01 -4.79753703e-01
1.42552540e-01 8.66249740e-01 -3.89897943e-01 6.28300369e-01
8.14067543e-01 6.21469378e-01 -4.10929233e-01 6.16189539e-01
-4.09880877e-01 9.37224805e-01 -5.76633334e-01 7.20072329e-01
5.09965599e-01 -4.37632322e-01 5.73716044e-01 1.11694098e+00
6.29974782e-01 5.39992988e-01 -1.84201837e-01 1.03913534e+00
1.86976120e-01 -2.87553757e-01 -8.14900994e-01 3.51281047e-01
4.11451846e-01 1.26008487e+00 -2.88618654e-01 -3.41618419e-01
1.50156328e-02 5.83991945e-01 -1.40274525e-01 6.79834366e-01
-6.66995287e-01 -5.61076403e-02 1.11245549e+00 6.69623017e-02
4.51920003e-01 -1.82831109e-01 -5.26839674e-01 -8.77058625e-01
-2.88403809e-01 -1.00679660e+00 2.76390743e-02 -1.15306818e+00
-1.40929031e+00 7.05471754e-01 -1.27216265e-01 -1.16837537e+00
-4.56811428e-01 -3.23295891e-01 -7.49639273e-01 1.85600984e+00
-1.84808540e+00 -1.24702263e+00 -6.35973454e-01 1.39186919e-01
3.45594510e-02 -7.25945309e-02 1.21022820e+00 -8.36062133e-02
5.19294739e-02 -1.34125814e-01 7.55959094e-01 -1.04114838e-01
6.42458975e-01 -1.50195420e+00 9.34395850e-01 1.17100346e+00
-9.73313078e-02 1.38056144e-01 1.14795113e+00 -8.14261079e-01
-7.91380167e-01 -1.65339732e+00 8.01226795e-01 -2.88825423e-01
4.85913217e-01 5.89247979e-02 -1.17624390e+00 6.46878719e-01
3.03845882e-01 1.69722006e-01 1.48414657e-01 -8.18190351e-02
-1.25904933e-01 -2.17665449e-01 -1.34852612e+00 2.86911070e-01
3.11563671e-01 -4.99957144e-01 -7.22091973e-01 1.60420388e-01
3.87091786e-01 -5.57090223e-01 -1.01031387e+00 8.36708546e-01
4.05906081e-01 -1.04776585e+00 8.77026796e-01 -6.36842132e-01
9.26830590e-01 -4.89417881e-01 -3.72795671e-01 -1.99974179e+00
-6.61707401e-01 -2.74222553e-01 2.97789216e-01 1.00453079e+00
4.34163511e-01 -8.39716852e-01 4.61335421e-01 2.78307199e-01
1.75509304e-01 -5.32489493e-02 -1.09577644e+00 -5.45272410e-01
7.10110962e-01 -1.65489852e-01 7.19117939e-01 1.18414223e+00
-9.15203810e-01 2.00338930e-01 -5.78943491e-01 9.48417723e-01
9.42233920e-01 2.53979564e-01 6.88454866e-01 -1.57485116e+00
-1.36007247e-02 -5.13168216e-01 -1.79034412e-01 -1.81357875e-01
-3.72510999e-02 -5.02495766e-01 7.22083896e-02 -1.33857560e+00
-1.04400188e-01 -4.74723846e-01 -1.08653612e-01 3.84776056e-01
-3.69032264e-01 5.87566495e-01 2.01538458e-01 3.17313850e-01
5.15282810e-01 6.07097805e-01 1.05600476e+00 -1.78570852e-01
-3.64909172e-02 -2.49623269e-01 -3.55243474e-01 4.10347164e-01
1.06205094e+00 -5.39961338e-01 1.12660125e-01 -2.71865547e-01
3.41148078e-01 1.82615295e-01 6.62037671e-01 -1.34618664e+00
-3.57385308e-01 -3.46005946e-01 1.06454110e+00 -4.91190732e-01
4.53850552e-02 -7.51222193e-01 7.60863662e-01 3.21748674e-01
-2.01732680e-01 5.69603033e-02 7.71391213e-01 1.87375635e-01
-2.69806683e-01 2.59474784e-01 1.05518186e+00 -1.67677984e-01
-7.57218838e-01 2.30727509e-01 -5.03740728e-01 9.24280807e-02
6.62536561e-01 2.20577031e-01 -5.75598717e-01 -7.31100202e-01
-8.07106495e-01 2.04329282e-01 5.78934729e-01 1.10435903e-01
2.44806513e-01 -1.00747299e+00 -1.58624661e+00 5.20911098e-01
-3.22427124e-01 4.13858108e-02 4.66194928e-01 3.24582785e-01
-8.17887545e-01 2.31250420e-01 -5.25470138e-01 -6.69137537e-01
-7.97787488e-01 4.05426100e-02 8.72394383e-01 -4.48862582e-01
-6.10143304e-01 5.09813905e-01 9.53926146e-02 -6.78932190e-01
-7.16246307e-01 -2.86519289e-01 -1.35223329e-01 2.41101757e-01
5.20324290e-01 -2.88650114e-02 6.94576427e-02 -7.65898049e-01
-3.91919911e-02 6.01846993e-01 6.48413777e-01 -4.57194030e-01
1.58280373e+00 -6.46501109e-02 -8.57533440e-02 3.85403663e-01
5.47140598e-01 -1.10797964e-01 -1.55309534e+00 -1.18226893e-01
-5.34876525e-01 -4.12769586e-01 5.73704362e-01 -1.07872760e+00
-1.34307325e+00 9.45297956e-01 1.05239773e+00 2.79755175e-01
1.12962568e+00 -4.50839877e-01 3.22699875e-01 1.51587084e-01
-4.88215685e-02 -6.15272343e-01 -8.10577095e-01 6.92711890e-01
1.10101926e+00 -1.33730733e+00 2.87740976e-01 1.62661925e-01
-4.98047948e-01 9.31829095e-01 1.20933495e-01 -3.95872474e-01
7.03316212e-01 5.25034726e-01 4.63434547e-01 -1.04306035e-01
-4.33708042e-01 -3.23294431e-01 1.54927388e-01 7.86966443e-01
3.13945323e-01 6.11707807e-01 1.17120631e-01 5.10348380e-02
-5.43115020e-01 -9.21267197e-02 5.34336984e-01 4.34038848e-01
-5.47586739e-01 -5.47963262e-01 -1.04946315e+00 6.13094389e-01
-2.88762927e-01 -6.02242291e-01 1.08836532e-01 6.86922431e-01
-4.65965755e-02 6.62834167e-01 4.54529792e-01 -2.98830438e-02
5.71884848e-02 1.85829535e-01 1.59598365e-02 -2.62402892e-01
-4.61186588e-01 -8.05130079e-02 -7.95222297e-02 -3.10674340e-01
-7.41414189e-01 -8.34972143e-01 -6.06017232e-01 -7.35440969e-01
1.48350671e-01 3.45227242e-01 5.33136368e-01 7.42712259e-01
2.42852315e-01 6.70662165e-01 7.10129261e-01 -1.54891574e+00
-5.96199572e-01 -1.32752478e+00 -9.27540720e-01 2.28268847e-01
7.39085138e-01 -4.28515285e-01 -7.57572114e-01 -6.74029719e-03] | [6.601593494415283, 2.9043047428131104] |
311e7e0e-6dd7-44e6-aa96-3d1146d0b4ff | a-survey-of-natural-language-generation | 2112.11739 | null | https://arxiv.org/abs/2112.11739v2 | https://arxiv.org/pdf/2112.11739v2.pdf | A Survey of Natural Language Generation | This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity. | ['Min Yang', 'Ying Shen', 'Junxin Li', 'Miaoxin Chen', 'Haifan Gong', 'Yinghui Li', 'Chenhe Dong'] | 2021-12-22 | null | null | null | null | ['data-to-text-generation'] | ['natural-language-processing'] | [ 4.16359216e-01 5.84029794e-01 -1.25486106e-01 1.23918742e-01
-5.20885527e-01 -5.60815454e-01 1.13675642e+00 -1.77863970e-01
1.46830101e-02 1.10495448e+00 8.19040477e-01 -1.68576062e-01
1.62366658e-01 -1.12111139e+00 -2.42551133e-01 -5.83266854e-01
1.02780700e-01 7.64103293e-01 -1.09111035e+00 -5.60222328e-01
4.82312262e-01 2.38239408e-01 -1.34661865e+00 4.32018131e-01
1.25304770e+00 9.62664068e-01 1.06565818e-01 9.19909716e-01
-6.23175263e-01 7.45946229e-01 -1.24124026e+00 -7.92887866e-01
-1.34962589e-01 -8.53765547e-01 -1.19391131e+00 5.35466410e-02
4.78714257e-01 -1.91730246e-01 -1.43440410e-01 6.17776752e-01
1.04202425e+00 2.88842380e-01 9.03643072e-01 -1.29755819e+00
-1.59836006e+00 8.50350499e-01 6.35230541e-02 1.42660066e-02
5.94660938e-01 4.18583691e-01 1.13420975e+00 -1.00660193e+00
1.01716435e+00 1.20920527e+00 4.27692443e-01 1.08273673e+00
-8.94875944e-01 -4.11119521e-01 1.30766481e-01 -1.69158697e-01
-7.62810707e-01 -4.08113033e-01 7.95492530e-01 -4.89809752e-01
1.38672590e+00 -1.50308073e-01 1.01716721e+00 1.75643826e+00
5.19186437e-01 1.17995226e+00 7.58829474e-01 -6.70527875e-01
4.25512642e-02 -3.49232495e-01 -4.85997856e-01 4.98027086e-01
2.17044950e-01 2.56455362e-01 -9.12156105e-01 1.76391169e-01
6.85831189e-01 -8.10681105e-01 -1.48629740e-01 2.41464764e-01
-1.69360125e+00 1.45975184e+00 4.41377431e-01 7.28459358e-01
-4.64135379e-01 3.51554871e-01 2.46513277e-01 2.18803868e-01
6.42614007e-01 1.24551582e+00 -1.24112017e-01 -2.90283203e-01
-9.85805392e-01 9.57576990e-01 8.03835809e-01 1.33270657e+00
4.01190996e-01 1.04410064e+00 -7.11464882e-01 7.44857132e-01
3.23615111e-02 3.89048487e-01 9.74976122e-01 -6.31346047e-01
7.12271631e-01 2.96563119e-01 -9.63620171e-02 -9.02842343e-01
-3.87560993e-01 -2.06914708e-01 -1.24026668e+00 -2.09326744e-02
7.41245896e-02 -7.46448100e-01 -6.77699447e-01 1.47437239e+00
-3.30167890e-01 -3.68162870e-01 3.28574061e-01 5.43342710e-01
1.82308459e+00 8.31525564e-01 1.68127924e-01 -2.09461376e-01
1.08830500e+00 -1.09701133e+00 -9.87282038e-01 -4.58366811e-01
5.16202748e-01 -8.49090755e-01 1.21067047e+00 2.38965839e-01
-1.49786305e+00 -7.11450934e-01 -8.85102093e-01 -5.73001802e-01
-9.13011730e-01 3.35370362e-01 1.11043298e+00 5.42851925e-01
-1.38884819e+00 6.05484486e-01 -2.50591546e-01 -4.52323109e-01
6.34008229e-01 2.39385348e-02 1.38776153e-01 1.56968355e-01
-1.63041902e+00 9.49726880e-01 6.64774597e-01 -1.35807751e-03
-7.16549993e-01 -7.30504632e-01 -9.34029400e-01 -2.32816935e-01
-2.58364771e-02 -1.41096544e+00 1.56686068e+00 -8.10785949e-01
-1.71189010e+00 1.03984916e+00 5.92833199e-03 -5.67846119e-01
5.95915139e-01 -2.37386152e-01 -4.30945635e-01 -2.08629653e-01
1.19573511e-01 1.23771358e+00 7.58873522e-01 -8.96099508e-01
-4.68596995e-01 -4.66026776e-02 -1.09743364e-01 5.54438174e-01
-1.99595124e-01 -2.34834269e-01 4.47913468e-01 -1.20988655e+00
-5.18827081e-01 -3.94208848e-01 -8.79278556e-02 -6.05867386e-01
-5.55980086e-01 -8.96274865e-01 4.90330458e-01 -5.35903096e-01
1.19253254e+00 -1.37500834e+00 2.71573961e-01 -6.86074495e-01
4.98024315e-01 1.72959998e-01 -4.17707652e-01 1.03091717e+00
3.06521785e-02 4.37421471e-01 -1.98675673e-02 -4.23752964e-01
1.37186319e-01 -1.46079287e-01 -7.83038557e-01 -2.82889038e-01
5.06847739e-01 1.94524157e+00 -1.25441396e+00 -3.00980866e-01
1.55667096e-01 2.48434290e-01 -2.68123951e-02 1.74179271e-01
-8.52098703e-01 3.91365349e-01 -4.20878589e-01 5.48178017e-01
2.55285531e-01 -2.35382825e-01 -1.87014967e-01 1.56598076e-01
-2.40140617e-01 5.81384659e-01 -4.08844590e-01 1.84603381e+00
-5.39076269e-01 1.11788392e+00 -4.48259264e-01 -8.46796691e-01
1.16044450e+00 7.88345516e-01 1.99287504e-01 -5.93936622e-01
7.47996271e-02 4.05515045e-01 -2.01238334e-01 -2.99367130e-01
1.03210378e+00 -2.90796846e-01 -2.53833622e-01 9.37898517e-01
4.63864475e-01 -7.47474134e-01 5.40745676e-01 1.87922642e-01
5.48611760e-01 2.61295259e-01 6.56580150e-01 -1.07235976e-01
2.87144333e-01 1.53812706e-01 -2.78003305e-01 8.87788713e-01
5.92168085e-02 3.92282367e-01 3.38585228e-01 -7.58337677e-01
-1.09116447e+00 -9.56803024e-01 4.56777781e-01 1.08514416e+00
-3.59549910e-01 -2.55791992e-01 -8.56982291e-01 -5.15890658e-01
-1.63065553e-01 1.08999956e+00 -7.91482925e-01 -8.61174688e-02
-4.64963377e-01 -1.06710136e+00 7.61337757e-01 6.52369857e-01
6.50520444e-01 -2.13477039e+00 -3.27439725e-01 3.15419823e-01
-5.98006845e-01 -7.51777053e-01 -3.43534976e-01 -3.90683919e-01
-1.10106242e+00 -6.46929502e-01 -1.04093719e+00 -1.18568671e+00
2.42301330e-01 -9.02831703e-02 1.74328804e+00 -2.52246976e-01
-3.67068231e-01 1.85086459e-01 -5.65689802e-01 -7.83495963e-01
-8.81001949e-01 5.65218925e-01 -3.99782151e-01 -5.77323616e-01
3.52789938e-01 -3.88531685e-01 -2.38466188e-01 -6.32501543e-01
-7.47920513e-01 5.01529455e-01 6.57767475e-01 1.03504372e+00
2.52031624e-01 -2.04490200e-01 1.28783154e+00 -6.58373773e-01
1.86421096e+00 -1.13152921e-01 -2.29111984e-01 1.95848763e-01
-9.20926809e-01 -2.04145834e-01 6.87494099e-01 -1.98800027e-01
-1.20999384e+00 -6.65908039e-01 -8.25049542e-03 3.37213665e-01
-1.41134083e-01 6.93871498e-01 -1.25355944e-01 2.48585433e-01
9.80661750e-01 5.33041477e-01 -1.29095092e-02 -8.09092224e-02
9.48692262e-01 5.96305132e-01 4.32553619e-01 -5.36815584e-01
5.24865627e-01 -5.45423292e-03 -1.04748636e-01 -8.40421736e-01
-7.32929289e-01 2.74980843e-01 -6.34056807e-01 -2.63244063e-01
9.38519597e-01 -5.62510848e-01 -4.17573899e-01 8.05242538e-01
-1.63130379e+00 -6.86614037e-01 -6.28114998e-01 6.86824694e-02
-1.14030862e+00 3.42352106e-03 -8.98399115e-01 -5.46655118e-01
-1.32965422e+00 -7.92933166e-01 1.19478691e+00 4.14424300e-01
-5.21967113e-01 -1.63025105e+00 6.76911920e-02 4.75673288e-01
6.19167566e-01 6.56018794e-01 1.18666720e+00 -5.11030376e-01
-4.04602379e-01 -4.24618647e-02 -5.53536229e-02 8.33197981e-02
1.24696448e-01 -2.54179835e-01 -9.24531043e-01 -3.46376188e-02
-4.13615316e-01 -7.15837061e-01 8.59905958e-01 5.51835537e-01
7.36470282e-01 -5.56771040e-01 -2.32043445e-01 3.75398368e-01
1.05321300e+00 2.87765294e-01 7.22231925e-01 1.11240387e-01
7.26477563e-01 6.22772872e-01 3.89443874e-01 3.78074229e-01
2.91408181e-01 2.56443232e-01 1.13713257e-01 -2.00582743e-01
-7.02568352e-01 -5.14705896e-01 2.63057262e-01 9.01355505e-01
-3.46318871e-01 -1.01430094e+00 -5.84572375e-01 5.01094997e-01
-1.57662213e+00 -1.12973392e+00 -1.33792341e-01 1.65535545e+00
1.00966775e+00 -5.11893213e-01 5.06910263e-03 -1.30142748e-01
6.15439177e-01 6.11344516e-01 -5.23411214e-01 -8.51748884e-01
-6.15437090e-01 5.88957131e-01 -1.95527107e-01 3.67659599e-01
-1.08264720e+00 1.51226878e+00 8.05104828e+00 8.27036083e-01
-1.04623318e+00 -1.94651857e-01 7.72944987e-01 1.01970453e-02
-4.15884197e-01 -5.37618041e-01 -6.10487700e-01 2.94056654e-01
6.23452842e-01 -8.10122728e-01 8.24500740e-01 6.98170602e-01
1.77771464e-01 4.17808592e-01 -1.18170726e+00 9.95533288e-01
5.38293839e-01 -2.00250959e+00 7.00658679e-01 1.20827153e-01
1.55102694e+00 -1.20033428e-01 1.58511296e-01 3.91525328e-01
4.83869761e-01 -1.49185860e+00 6.78293169e-01 3.12866718e-01
9.36761796e-01 -7.41907060e-01 7.58427560e-01 8.39669481e-02
-7.65615642e-01 1.84858054e-01 -2.55598158e-01 -3.12413841e-01
3.74141872e-01 6.68360412e-01 -1.01080048e+00 6.44550800e-01
3.28193188e-01 9.06658232e-01 -2.22784773e-01 5.32297194e-01
-7.62832761e-01 2.04224095e-01 6.08842075e-01 -5.92384219e-01
4.27425355e-01 -2.27003172e-01 5.83630264e-01 1.22696543e+00
5.61001658e-01 -2.67116100e-01 -2.23370284e-01 1.54000831e+00
-4.72994953e-01 2.60298431e-01 -8.29831243e-01 -1.00263703e+00
2.53275722e-01 1.16938078e+00 -3.67250592e-01 -4.41450715e-01
-2.23456353e-01 1.11585343e+00 1.41948294e-02 6.35671020e-01
-3.56306404e-01 -8.83374095e-01 3.15313667e-01 -1.27383128e-01
-1.81556717e-01 -2.49425367e-01 -7.40592062e-01 -9.66309249e-01
-2.94740558e-01 -9.74865615e-01 2.12968230e-01 -1.16908646e+00
-1.62172282e+00 7.81608522e-01 -2.62302607e-01 -8.08560312e-01
-1.09062302e+00 -6.55653954e-01 -7.49012589e-01 1.23502171e+00
-1.20546889e+00 -1.40836859e+00 -4.53068256e-01 2.73156524e-01
8.01945627e-01 -6.04998231e-01 1.22685087e+00 -2.73878306e-01
-9.37367305e-02 5.36258817e-01 1.44319120e-03 1.67505980e-01
5.49750328e-01 -1.37968433e+00 1.39595735e+00 4.04145330e-01
2.15658158e-01 4.20617700e-01 3.09926212e-01 -8.20965052e-01
-1.03969359e+00 -1.18589008e+00 1.62824631e+00 -4.57370490e-01
4.07409102e-01 -4.78289843e-01 -9.46496874e-02 7.01484442e-01
7.89885163e-01 -8.86899769e-01 6.42745316e-01 -1.01573125e-01
1.83833346e-01 3.84331465e-01 -1.10036159e+00 1.03075695e+00
1.19888759e+00 -1.49654046e-01 -4.96163398e-01 6.76647902e-01
9.45968151e-01 -5.46540260e-01 -6.85677648e-01 8.05668607e-02
4.30416167e-01 -7.01064050e-01 6.80727482e-01 -8.63482535e-01
1.20495367e+00 2.39657730e-01 4.89654452e-01 -1.80256438e+00
-4.04045820e-01 -1.14980578e+00 -2.44971618e-01 1.27428377e+00
4.78047758e-01 -7.36522257e-01 8.32214177e-01 4.62451279e-02
-4.99993742e-01 -8.60030651e-01 -5.86160362e-01 -4.44240212e-01
6.52649224e-01 -2.94631809e-01 9.45350945e-01 9.57959890e-01
1.25234365e-01 8.31498384e-01 -4.03539836e-01 -1.04008162e+00
1.27165556e-01 3.89245570e-01 7.85585344e-01 -1.33486819e+00
9.67451334e-02 -1.18480897e+00 3.58644538e-02 -9.62910831e-01
1.69563338e-01 -1.33898592e+00 4.56843637e-02 -2.32206202e+00
-6.17282614e-02 1.97308809e-01 5.54157495e-01 2.68615872e-01
-1.19499557e-01 2.29775921e-01 1.95958495e-01 -6.20902777e-02
-1.12181038e-01 7.52353787e-01 2.02321243e+00 -2.82221407e-01
-3.13427895e-01 -5.11067621e-02 -1.36587334e+00 2.86947012e-01
9.19292033e-01 2.25890487e-01 -6.01292133e-01 -7.29925454e-01
5.58804870e-01 -2.22522855e-01 4.54274975e-02 -5.87692261e-01
-2.29195714e-01 -3.64303678e-01 7.82846093e-01 -5.15871286e-01
9.78290141e-02 1.86270490e-01 -3.30049098e-01 1.77716196e-01
-7.25037634e-01 2.34678492e-01 1.65436313e-01 2.03164652e-01
-1.88639373e-01 -2.98494816e-01 4.36119139e-01 -6.20225549e-01
-6.42528057e-01 4.11311418e-01 -6.73107147e-01 4.14682686e-01
7.18357503e-01 -3.71025413e-01 -6.73078477e-01 -9.71010387e-01
-4.07526582e-01 1.40763924e-01 5.57519402e-03 8.14950585e-01
6.78071022e-01 -1.62375927e+00 -1.11302793e+00 9.35917720e-02
2.50938952e-01 9.11597237e-02 1.01800673e-01 1.82998136e-01
-5.18667221e-01 8.97692323e-01 -6.85784519e-02 1.01359032e-01
-4.57344651e-01 3.81213039e-01 3.00972641e-01 -5.42544663e-01
-4.65576082e-01 1.00434029e+00 7.09835216e-02 -3.63552243e-01
-4.23350595e-02 -1.70044556e-01 -3.61427307e-01 9.59292278e-02
4.59659874e-01 5.75870097e-01 1.69022039e-01 -4.06236887e-01
1.93906754e-01 3.78462464e-01 1.71410635e-01 -2.40957290e-01
1.05520415e+00 1.58505514e-01 -2.05803990e-01 2.91302681e-01
6.97881758e-01 -5.28508902e-01 -5.28425932e-01 2.10027501e-01
-1.62676752e-01 9.56497714e-02 -1.19139925e-01 -1.36520183e+00
-9.88486946e-01 1.24641085e+00 5.80784902e-02 2.80963838e-01
9.69660282e-01 7.21045658e-02 1.19859886e+00 2.46413037e-01
1.46162987e-01 -1.44979560e+00 7.52809703e-01 7.13713586e-01
1.64136958e+00 -9.33911264e-01 -8.41211528e-02 1.40126497e-02
-7.69257486e-01 1.33738852e+00 5.72645664e-01 -1.33826271e-01
1.13594934e-01 -1.17112748e-01 -7.31764594e-03 -2.12589383e-01
-7.54609644e-01 2.54856478e-02 3.67056996e-01 1.25370896e+00
1.08108711e+00 2.23375961e-01 -4.67702299e-01 5.03612578e-01
-1.17545664e+00 3.00366700e-01 5.11159956e-01 4.52717602e-01
-1.38642758e-01 -1.19211018e+00 -1.63363338e-01 6.48772418e-01
-1.30189478e-01 -5.53168893e-01 -1.00862634e+00 6.96989894e-01
1.80620387e-01 1.26631176e+00 3.06607336e-01 -1.85343996e-01
-7.06492960e-02 2.51839906e-01 6.26439929e-01 -7.53703177e-01
-7.71719992e-01 -1.07399702e-01 2.64770627e-01 -1.79067269e-01
-2.88516551e-01 -4.59306270e-01 -9.97004032e-01 -5.62677503e-01
-1.32081419e-01 -3.01832035e-02 6.60689354e-01 8.66642237e-01
5.32634079e-01 7.44239330e-01 9.50471833e-02 -1.02901423e+00
-2.75638431e-01 -1.51599205e+00 -5.22325873e-01 1.38752893e-01
8.03651102e-03 -2.09092408e-01 -2.37593293e-01 2.19616890e-01] | [11.963883399963379, 9.184344291687012] |
0ed66d7f-3693-49cb-bd6f-accb9f4d2634 | a-multi-perspective-architecture-for-semantic | 2005.06980 | null | https://arxiv.org/abs/2005.06980v1 | https://arxiv.org/pdf/2005.06980v1.pdf | A Multi-Perspective Architecture for Semantic Code Search | The ability to match pieces of code to their corresponding natural language descriptions and vice versa is fundamental for natural language search interfaces to software repositories. In this paper, we propose a novel multi-perspective cross-lingual neural framework for code--text matching, inspired in part by a previous model for monolingual text-to-text matching, to capture both global and local similarities. Our experiments on the CoNaLa dataset show that our proposed model yields better performance on this cross-lingual text-to-code matching task than previous approaches that map code and text to a single joint embedding space. | ['JinJun Xiong', 'Lingfei Wu', 'Julia Hockenmaier', 'Rajarshi Haldar'] | 2020-05-06 | a-multi-perspective-architecture-for-semantic-1 | https://aclanthology.org/2020.acl-main.758 | https://aclanthology.org/2020.acl-main.758.pdf | acl-2020-6 | ['code-search', 'code-search'] | ['computer-code', 'computer-vision'] | [-2.26196006e-01 -2.57103831e-01 -3.82348567e-01 -5.00390053e-01
-1.32361901e+00 -6.31819189e-01 6.37171507e-01 3.85106117e-01
-1.55585304e-01 -2.38710687e-01 4.25339311e-01 -2.65177220e-01
-1.12232931e-01 -4.18525457e-01 -5.65909564e-01 1.73494726e-01
1.92453012e-01 4.01321620e-01 -1.25607818e-01 -1.60759017e-01
2.37571806e-01 -1.50439590e-01 -1.44901502e+00 6.89564466e-01
8.71558070e-01 4.72184777e-01 5.43078482e-01 4.06751335e-01
-6.32741749e-01 9.16032255e-01 -6.18607625e-02 -9.28777635e-01
1.67200744e-01 -6.39041588e-02 -8.60332668e-01 -5.73934615e-01
9.36234772e-01 5.26553690e-02 -4.17304695e-01 1.45652509e+00
3.54062349e-01 -3.36444736e-01 5.48782289e-01 -1.30418909e+00
-1.34924221e+00 9.57426310e-01 -5.88076174e-01 -1.45367801e-01
8.77756298e-01 -4.06272441e-01 1.57080305e+00 -1.17692924e+00
8.78981292e-01 1.14446211e+00 1.10430992e+00 4.94880915e-01
-1.26655722e+00 -5.86697280e-01 -4.03352641e-02 2.37692311e-01
-1.42702138e+00 -3.03798795e-01 5.99382639e-01 -9.41658318e-01
1.56221724e+00 -3.22605036e-02 2.26874888e-01 9.84431863e-01
7.41772711e-01 9.26027536e-01 4.05943394e-01 -6.02577806e-01
-4.16885316e-01 4.21558201e-01 1.52166903e-01 1.11305141e+00
1.83104441e-01 -1.39832526e-01 -4.84702349e-01 -6.05660796e-01
1.92843273e-01 6.71809316e-02 -2.04378664e-01 -8.39743018e-01
-1.15420437e+00 9.16132390e-01 3.84117186e-01 8.73720825e-01
-5.57366665e-03 3.71478170e-01 9.53229547e-01 6.07145131e-01
4.31101322e-01 8.05521429e-01 -4.99495506e-01 -1.87096208e-01
-9.78950799e-01 2.80602723e-01 9.12048697e-01 1.59355819e+00
9.49762285e-01 -2.05105677e-01 -1.25528336e-01 1.07271063e+00
7.02031076e-01 4.47983295e-01 1.05405283e+00 -4.51652527e-01
9.14783955e-01 9.67413008e-01 -3.02461356e-01 -1.03219485e+00
-2.93066679e-03 -2.81760931e-01 -3.62277150e-01 -4.01404612e-02
-1.88686755e-02 3.52728099e-01 -1.50422871e-01 1.63162482e+00
-3.59860778e-01 -4.64393824e-01 5.22163473e-02 4.65772182e-01
7.44096220e-01 2.31232554e-01 -1.75011873e-01 6.57661498e-01
1.49312675e+00 -1.19081330e+00 -6.58322632e-01 -6.61200523e-01
9.68735099e-01 -1.15365851e+00 1.10600412e+00 -3.55627954e-01
-8.20739865e-01 -6.86966181e-01 -9.53861952e-01 -3.93373847e-01
-6.36423409e-01 4.95049030e-01 4.05789703e-01 4.36630040e-01
-1.22407067e+00 3.55156302e-01 -6.40394330e-01 -8.61501932e-01
-2.14920491e-02 -1.79489672e-01 -5.04665732e-01 -2.00615808e-01
-9.13324773e-01 1.11433268e+00 2.48042569e-01 -3.93270671e-01
-4.90655869e-01 -7.21016288e-01 -1.38918698e+00 2.37936094e-01
-3.01928334e-02 -6.53749049e-01 1.43895805e+00 -7.80891836e-01
-8.62602413e-01 1.39691591e+00 -3.72584820e-01 -1.71184912e-01
2.52377480e-01 -1.51756093e-01 -3.70371103e-01 -4.40403402e-01
5.58442652e-01 3.75390112e-01 6.21706247e-01 -9.15151417e-01
-2.57512301e-01 -3.70783925e-01 6.30480498e-02 -1.75737828e-01
-6.05363071e-01 5.42120695e-01 -6.61673665e-01 -7.56922841e-01
-1.79803640e-01 -8.25385749e-01 1.30252108e-01 2.38983318e-01
-2.01505944e-01 -5.03414690e-01 3.91032636e-01 -9.41987813e-01
1.34909213e+00 -1.97166824e+00 4.41970259e-01 -1.65322155e-01
3.12559366e-01 -2.19407737e-01 -4.24214065e-01 1.09015512e+00
-3.16500455e-01 3.82590927e-02 -4.41369563e-01 -6.09371603e-01
6.84812188e-01 -1.95199743e-01 -3.14621747e-01 4.48432982e-01
5.94136752e-02 1.24510682e+00 -9.05642331e-01 -7.11434782e-01
-1.79788604e-01 2.49573082e-01 -7.70637333e-01 4.29596722e-01
6.87773675e-02 -4.85616773e-01 -4.09323066e-01 8.87057841e-01
3.39019477e-01 -2.20241576e-01 2.17075095e-01 -6.21528784e-03
-1.68723673e-01 3.33754867e-01 -4.70383853e-01 2.36748409e+00
-1.09942472e+00 1.04361212e+00 5.51602766e-02 -7.83827543e-01
9.22485113e-01 4.67730314e-01 3.81108671e-01 -6.57274306e-01
-1.16042681e-01 4.75210577e-01 -3.85518610e-01 -7.87832081e-01
5.75985372e-01 1.84128016e-01 -6.69243157e-01 8.33877742e-01
3.33777934e-01 -2.07477316e-01 1.71729445e-01 2.92256027e-01
1.15986872e+00 3.76190811e-01 5.22957742e-01 -5.86403191e-01
5.73315263e-01 -2.65103206e-02 7.68404528e-02 7.44016171e-01
5.91155030e-02 4.03849095e-01 2.50806361e-01 -5.54244936e-01
-1.19877744e+00 -8.16108823e-01 -2.06375226e-01 1.28334665e+00
-6.34674057e-02 -8.56817961e-01 -7.42609441e-01 -8.74928236e-01
3.99625868e-01 4.80875194e-01 -6.91845715e-01 -1.35252386e-01
-5.08495033e-01 -9.43246633e-02 9.18071449e-01 5.88110149e-01
-6.12054095e-02 -9.16141450e-01 -3.63657564e-01 2.33962134e-01
-1.75570816e-01 -1.00609910e+00 -1.16131496e+00 2.50171542e-01
-4.86020803e-01 -1.09737909e+00 -7.03611076e-01 -1.37911713e+00
5.05483389e-01 1.23956844e-01 1.50787306e+00 2.79877692e-01
-4.14719373e-01 4.80268449e-01 -3.85616004e-01 -1.14744343e-01
-8.62958372e-01 2.97668576e-01 -1.79952919e-01 -3.95966321e-01
7.92838275e-01 -3.21387231e-01 3.17959152e-02 5.26490808e-02
-8.07683647e-01 -1.51188690e-02 5.39218605e-01 8.57415318e-01
8.13192874e-02 -6.90520883e-01 1.73720941e-01 -6.64128363e-01
1.12873960e+00 -6.27864122e-01 -7.43828833e-01 7.04943359e-01
-8.03336799e-01 4.72413421e-01 7.69698679e-01 -2.92151868e-01
-6.84815109e-01 1.66191772e-01 -1.23110235e-01 -3.07502568e-01
5.82444146e-02 1.06887829e+00 8.89375135e-02 -3.45410615e-01
6.61699057e-01 4.09360290e-01 -2.94551253e-01 -7.71861553e-01
5.02498448e-01 1.08950031e+00 5.39702475e-01 -8.89572740e-01
9.96531546e-01 1.34856403e-02 -7.71367073e-01 -2.29144409e-01
-3.23440552e-01 -8.27513874e-01 -9.64282691e-01 7.13757873e-02
8.25339854e-01 -9.32547331e-01 -2.61230558e-01 1.60056278e-01
-1.57121646e+00 1.18165247e-01 1.79893196e-01 3.61902535e-01
-7.05474854e-01 5.52589834e-01 -6.20470524e-01 -2.57082850e-01
-3.94685239e-01 -1.31599438e+00 1.42652500e+00 -3.76480252e-01
-4.43574220e-01 -1.16717279e+00 6.65263653e-01 9.52380598e-02
7.14206278e-01 -3.45117122e-01 1.29508436e+00 -7.17810750e-01
-3.73333991e-01 -5.95433235e-01 -4.64742064e-01 -5.79129793e-02
1.84548512e-01 7.21010491e-02 -7.69846737e-01 -6.83081925e-01
-3.76023613e-02 -3.61569494e-01 5.30555427e-01 -2.39028707e-01
7.52326548e-01 -2.05180705e-01 -4.51859921e-01 7.42238939e-01
1.83003283e+00 -9.31706652e-02 8.81643370e-02 5.34243762e-01
7.92819202e-01 5.45735657e-01 8.74605104e-02 3.69671792e-01
8.37718368e-01 1.12507844e+00 1.86500594e-01 5.48737915e-03
-7.96789229e-02 -4.69657660e-01 4.92968351e-01 1.49808300e+00
8.66812527e-01 1.97243303e-01 -1.28103888e+00 9.75929677e-01
-1.99913967e+00 -8.53527904e-01 -3.26666348e-02 1.76161456e+00
8.56509626e-01 -3.93299878e-01 -2.92341679e-01 -7.53511727e-01
7.04504192e-01 2.14006137e-02 -3.85197729e-01 -5.99769771e-01
1.17197774e-01 -1.13340933e-02 3.53081137e-01 3.40671003e-01
-9.97613192e-01 8.26639891e-01 6.41154432e+00 7.15725958e-01
-7.86402822e-01 5.88717639e-01 -4.70215082e-01 4.53329414e-01
-5.92571020e-01 8.93258303e-02 -4.30475682e-01 2.27152228e-01
7.72495449e-01 -9.19202268e-01 6.54572666e-01 1.28343642e+00
-5.77515781e-01 4.74166751e-01 -1.76490164e+00 1.09022510e+00
4.34249550e-01 -1.22515059e+00 3.83444503e-02 -3.01391542e-01
7.08534420e-01 4.70278174e-01 -2.39139631e-01 6.94278896e-01
5.05608976e-01 -6.69721365e-01 1.09708858e+00 3.49621296e-01
7.46620059e-01 -2.95490146e-01 7.84797668e-01 2.81046867e-01
-1.76944876e+00 -5.85276149e-02 -4.27011311e-01 3.93502891e-01
-2.16385961e-01 4.49003354e-02 -5.66612184e-01 7.72067368e-01
6.56819761e-01 1.13486588e+00 -9.68903482e-01 1.05134332e+00
-3.39981052e-03 -3.63607436e-01 3.43655884e-01 -2.12542817e-01
2.19361171e-01 2.51029916e-02 4.34348285e-01 1.70464075e+00
6.39189959e-01 -1.00415277e+00 1.95161477e-01 1.74834120e+00
-3.67918342e-01 4.91227955e-01 -1.14322674e+00 -3.61599267e-01
4.73386943e-01 1.01775599e+00 -8.16245750e-02 -3.86502802e-01
-1.03364480e+00 1.17130983e+00 7.35211194e-01 2.08501860e-01
-5.36295593e-01 -8.66270840e-01 8.00753355e-01 -3.74868482e-01
1.64779842e-01 -2.05267802e-01 -4.66897748e-02 -1.62336719e+00
5.56628942e-01 -1.03387976e+00 4.18013513e-01 -8.97641718e-01
-1.65348577e+00 1.04184699e+00 -1.16485715e-01 -1.54314435e+00
-5.38649321e-01 -4.88885432e-01 -4.76583511e-01 1.16983056e+00
-1.49574530e+00 -1.43833935e+00 -7.77603164e-02 4.61968869e-01
7.13152289e-01 -6.34013236e-01 1.23952889e+00 7.27248192e-01
-1.35994494e-01 1.08216262e+00 4.90554571e-01 5.60647488e-01
8.89835894e-01 -1.28242028e+00 1.19018197e+00 9.71638680e-01
4.84597564e-01 1.36437511e+00 4.99928623e-01 -5.12347281e-01
-1.81059706e+00 -9.93776381e-01 1.30230963e+00 -8.55722070e-01
1.23452175e+00 -7.09182620e-01 -1.03645957e+00 8.14673781e-01
6.60930932e-01 -3.10789257e-01 4.41998929e-01 2.02153444e-01
-1.10408068e+00 1.92462802e-01 -9.03217018e-01 4.62218910e-01
7.41266668e-01 -1.68912303e+00 -9.08661544e-01 3.17728728e-01
7.04192936e-01 -2.52009988e-01 -1.26741850e+00 -5.98566756e-02
7.85593092e-01 -6.88094735e-01 7.49667406e-01 -6.03836954e-01
6.56465113e-01 -1.87078834e-01 -4.92473006e-01 -1.31936085e+00
-3.61383498e-01 -4.11264598e-01 4.34175700e-01 1.18375528e+00
5.16869724e-01 -3.83758575e-01 2.71658897e-01 4.52342033e-01
-3.65360290e-01 -3.91550004e-01 -1.01708078e+00 -1.00570524e+00
4.16732043e-01 -5.58915854e-01 6.99714243e-01 1.39174914e+00
7.60485649e-01 -3.52789909e-02 -1.91403225e-01 -1.35189593e-02
5.76033115e-01 6.00900054e-01 6.12383425e-01 -1.18238318e+00
-4.06659991e-01 -9.84212220e-01 -4.94587958e-01 -9.93954122e-01
9.34878886e-01 -1.78880394e+00 2.43753761e-01 -1.38591301e+00
7.18502104e-01 -7.60146156e-02 -6.39676442e-03 4.20941889e-01
-6.48938715e-02 -1.50551379e-01 9.86295640e-02 3.56655568e-01
-5.58141291e-01 5.37452698e-01 4.77847606e-01 -6.61870241e-01
4.27074909e-01 -4.87209231e-01 -5.02602696e-01 2.46808231e-01
2.04593807e-01 -9.54091430e-01 9.00378451e-02 -1.06699038e+00
5.28814197e-01 2.10725993e-01 -5.70874959e-02 -8.38284552e-01
5.75788617e-01 1.57676220e-01 -4.53501463e-01 -8.64849463e-02
-1.16121129e-03 -1.08022439e+00 1.42256881e-03 5.03270626e-01
-7.79798448e-01 6.75322235e-01 4.02090698e-01 4.29849803e-01
-4.73312467e-01 -7.51949549e-01 4.64971811e-01 -1.94286466e-01
-5.79106271e-01 4.05219495e-02 -5.97891212e-01 1.14253119e-01
5.05873621e-01 -1.11057991e-02 -5.17635643e-01 -2.14434445e-01
-1.56967655e-01 2.55091459e-01 9.82685149e-01 1.32221496e+00
5.19923985e-01 -1.68461168e+00 -7.08988428e-01 2.87879437e-01
1.24683797e+00 -1.06407940e+00 -3.57149482e-01 6.35505617e-01
-2.46700630e-01 8.47646713e-01 -2.83612758e-01 -3.91482979e-01
-1.35131145e+00 6.51123405e-01 6.08070850e-01 -1.64500967e-01
-4.20183808e-01 6.49697423e-01 -2.38917693e-02 -1.34506786e+00
1.68884173e-01 -3.55689049e-01 7.27264136e-02 -1.23040579e-01
3.37388277e-01 -1.53940871e-01 3.84978294e-01 -8.75076413e-01
-5.94167054e-01 9.62628722e-01 -6.16429672e-02 1.72118574e-01
1.36745679e+00 -9.88704525e-03 -7.18100905e-01 6.63764596e-01
1.85005713e+00 9.07456055e-02 -2.73179680e-01 -7.89479554e-01
7.77148008e-01 -6.61407411e-01 -8.80161822e-02 -4.53868657e-01
-8.97143543e-01 9.67708886e-01 5.96157730e-01 1.03379384e-01
4.97246712e-01 3.34764868e-01 6.80991292e-01 8.44689369e-01
6.27601385e-01 -8.10529590e-01 -3.46029326e-02 7.47939587e-01
9.69882607e-01 -1.29464447e+00 -4.84343737e-01 1.82094917e-01
-3.35060447e-01 1.52943993e+00 7.21561730e-01 6.33789226e-02
3.67566139e-01 5.00900686e-01 1.20671004e-01 -6.00120962e-01
-1.02559936e+00 -1.33628413e-01 6.12903237e-01 5.68753302e-01
1.14042377e+00 -1.65486768e-01 4.57393155e-02 4.33765948e-01
5.52766770e-02 -2.87809491e-01 5.07430077e-01 1.09452116e+00
-7.34502301e-02 -1.47833657e+00 -8.55748355e-02 4.50215548e-01
-3.92352700e-01 -6.09643519e-01 -7.28087068e-01 6.19096696e-01
-3.08760732e-01 6.57440305e-01 -9.25641656e-02 -5.82016766e-01
4.68801618e-01 3.94356459e-01 2.92417318e-01 -1.00230932e+00
-1.09274900e+00 -3.78726542e-01 -1.74002126e-01 -7.76844144e-01
-1.40212312e-01 -7.39385307e-01 -9.32143211e-01 -9.27593112e-02
-3.99983734e-01 1.52262732e-01 9.54780757e-01 6.59733236e-01
5.59135377e-01 3.65845710e-01 2.52097785e-01 -5.94471574e-01
-5.79751909e-01 -9.61280584e-01 -2.31111690e-01 6.56034291e-01
3.75034988e-01 -2.44750068e-01 -2.02033937e-01 4.14076559e-02] | [7.542616844177246, 8.013815879821777] |
9fd256e0-2c2f-45c2-b0f0-0cf0e63a458d | accurate-brain-extraction-using-active-shape | 1802.01268 | null | https://arxiv.org/abs/1802.01268v3 | https://arxiv.org/pdf/1802.01268v3.pdf | ASMCNN: An Efficient Brain Extraction Using Active Shape Model and Convolutional Neural Networks | Brain extraction (skull stripping) is a challenging problem in neuroimaging. It is due to the variability in conditions from data acquisition or abnormalities in images, making brain morphology and intensity characteristics changeable and complicated. In this paper, we propose an algorithm for skull stripping in Magnetic Resonance Imaging (MRI) scans, namely ASMCNN, by combining the Active Shape Model (ASM) and Convolutional Neural Network (CNN) for taking full of their advantages to achieve remarkable results. Instead of working with 3D structures, we process 2D image sequences in the sagittal plane. First, we divide images into different groups such that, in each group, shapes and structures of brain boundaries have similar appearances. Second, a modified version of ASM is used to detect brain boundaries by utilizing prior knowledge of each group. Finally, CNN and post-processing methods, including Conditional Random Field (CRF), Gaussian processes, and several special rules are applied to refine the segmentation contours. Experimental results show that our proposed method outperforms current state-of-the-art algorithms by a significant margin in all experiments. | ['Pham T. Bao', 'Thu Nguyen', 'Mai T. N. Truong', 'Nguyen A. Triet', 'Khanh T. Tran', 'Duy M. Nguyen', 'Duy H. M. Nguyen', 'Binh T. Nguyen'] | 2018-02-05 | null | null | null | null | ['skull-stripping'] | ['medical'] | [ 4.68424618e-01 8.17197859e-02 2.44280428e-01 -5.26924074e-01
-1.88908145e-01 -1.56377196e-01 2.72944301e-01 2.63283923e-02
-7.46529222e-01 6.12476707e-01 -6.91170618e-02 3.56911346e-02
-9.17693898e-02 -5.52041471e-01 -3.27116191e-01 -8.31889629e-01
-1.90395698e-01 4.79378134e-01 6.41328573e-01 2.60802120e-01
3.13887358e-01 9.58095670e-01 -1.10923624e+00 -1.60532966e-01
1.21396756e+00 8.94371569e-01 3.80667895e-01 2.09802151e-01
-3.34906012e-01 3.72661501e-01 -2.79288024e-01 -1.74073309e-01
2.46328652e-01 -3.04724246e-01 -8.08485627e-01 4.46988821e-01
2.32080817e-02 -2.02208921e-01 -3.78369093e-02 1.43153274e+00
4.66755360e-01 2.00151458e-01 8.79862905e-01 -8.32680106e-01
-4.54653144e-01 4.96710420e-01 -1.07597280e+00 3.71501625e-01
-1.89084098e-01 -2.18515825e-02 -8.58564451e-02 -9.10525084e-01
5.10834932e-01 1.01424253e+00 5.95549583e-01 5.24538279e-01
-1.07053339e+00 -9.28358912e-01 6.58614933e-02 1.40398175e-01
-1.34974146e+00 -3.86185765e-01 8.34035099e-01 -8.74691069e-01
3.90396386e-01 -8.84726346e-02 6.41613543e-01 5.06089926e-01
3.89744669e-01 7.25234747e-01 1.41117251e+00 -4.48669225e-01
2.54013509e-01 -2.48251796e-01 3.41084272e-01 6.44414902e-01
2.56098330e-01 -2.86383867e-01 1.77556109e-02 -1.61526412e-01
1.04679215e+00 1.40180424e-01 -3.93288732e-01 -4.25932318e-01
-1.18483198e+00 5.55032015e-01 3.76800179e-01 4.58373994e-01
-6.33402586e-01 -3.07336390e-01 2.28413448e-01 -3.57325912e-01
5.26766896e-01 -5.59931286e-02 3.92623022e-02 5.15044212e-01
-1.34132278e+00 6.83222711e-03 2.44143948e-01 7.09643960e-01
4.92237270e-01 -4.73193452e-02 -1.03724919e-01 9.53434467e-01
4.01521504e-01 2.97961682e-01 7.61434615e-01 -6.31698549e-01
3.04469839e-02 4.71980572e-01 -2.69026935e-01 -7.47471154e-01
-8.13223720e-01 -3.79752666e-01 -1.18927169e+00 3.99190456e-01
3.00622314e-01 -2.48195335e-01 -1.38776636e+00 1.22883475e+00
5.30362606e-01 2.62190074e-01 -4.46523845e-01 9.61345255e-01
8.35290730e-01 1.98452100e-01 2.15992093e-01 -4.55328435e-01
1.39892030e+00 -8.89132857e-01 -9.10380065e-01 -3.82472984e-02
2.25275695e-01 -6.57315552e-01 5.70116282e-01 4.87058133e-01
-1.30232871e+00 -4.93310332e-01 -1.01346385e+00 1.79638118e-01
-1.92837507e-01 -1.54360831e-01 5.86807013e-01 5.18795669e-01
-1.09901869e+00 6.33544862e-01 -1.22608423e+00 -7.61583373e-02
7.69121587e-01 4.59853083e-01 -4.42373306e-01 1.69439659e-01
-8.43657076e-01 8.22136939e-01 3.84786665e-01 4.16334808e-01
-5.20287633e-01 -6.85061514e-01 -8.27868998e-01 -2.37341046e-01
2.54168481e-01 -5.89062154e-01 1.02482677e+00 -7.52468884e-01
-1.48767984e+00 1.11896145e+00 -1.24245316e-01 -4.28658843e-01
7.23312438e-01 -3.95144373e-02 -2.40474671e-01 5.41808844e-01
-3.98546420e-02 5.82369685e-01 1.00825775e+00 -1.21652961e+00
-3.17575127e-01 -9.08353925e-01 -5.00202417e-01 6.32242337e-02
1.50974408e-01 4.77527857e-01 -4.48589981e-01 -6.73993111e-01
6.51859581e-01 -6.74750388e-01 -5.42268276e-01 2.00458504e-02
-4.29750025e-01 -5.87866455e-02 6.75808847e-01 -1.07928705e+00
8.34899545e-01 -2.03519559e+00 1.39077008e-01 3.79499465e-01
6.70352280e-01 1.72050923e-01 3.60450774e-01 -4.33032483e-01
-1.98315665e-01 9.17005241e-02 -8.98943901e-01 -4.20837551e-01
-4.34529245e-01 4.77222800e-02 2.52124578e-01 7.85195827e-01
5.40557913e-02 6.94344997e-01 -6.42948210e-01 -9.94055510e-01
1.32512689e-01 4.07867581e-01 -1.77618533e-01 1.22636855e-01
3.05902064e-01 9.91849303e-01 -4.90225315e-01 5.84577024e-01
1.25106728e+00 -9.46296193e-03 -2.73833741e-02 -7.19737709e-02
-3.42328995e-01 -3.41171116e-01 -1.12861478e+00 1.63787282e+00
-1.40405118e-01 4.76247445e-02 4.72330540e-01 -1.25279689e+00
9.46543932e-01 4.86948937e-01 7.16832280e-01 -5.30898929e-01
3.96425575e-01 3.49337012e-01 3.62538621e-02 -7.06378818e-01
-1.66748255e-01 -3.28417361e-01 5.09454012e-01 3.80583078e-01
1.49850368e-01 -3.94085526e-01 2.02745050e-01 -1.87493384e-01
6.14308536e-01 1.17004097e-01 2.15266630e-01 -4.46019828e-01
5.93634248e-01 -4.77990359e-01 8.55930150e-01 4.31604117e-01
-5.61323166e-01 8.50897312e-01 2.20594674e-01 -2.55594105e-01
-8.65370929e-01 -1.05886483e+00 -5.49504936e-01 3.02769154e-01
3.31695341e-02 4.21464741e-01 -1.22510183e+00 -5.79239786e-01
-3.37784648e-01 4.59383547e-01 -7.34182656e-01 2.24033028e-01
-8.27149212e-01 -1.13689876e+00 1.76356241e-01 4.45872128e-01
7.69399703e-01 -1.28803003e+00 -7.63202250e-01 3.04189324e-01
-4.71053869e-02 -1.11590576e+00 -3.80023777e-01 1.12203874e-01
-1.27182770e+00 -9.10867810e-01 -1.28135872e+00 -9.38007355e-01
8.79472315e-01 1.02420032e-01 6.97610974e-01 2.57772058e-01
-4.87042487e-01 -9.48959216e-02 -2.60690033e-01 -5.32430232e-01
1.11106213e-03 -1.97826162e-01 -1.47748902e-01 1.96359158e-01
2.32702550e-02 -9.21703875e-01 -6.18971169e-01 2.27828491e-02
-1.05538356e+00 1.50344610e-01 7.53965616e-01 4.86617565e-01
8.09867561e-01 1.73831031e-01 3.65669906e-01 -1.02179301e+00
5.61766505e-01 -2.86687911e-01 -4.57659215e-01 1.69600919e-01
-3.81667256e-01 -3.97425056e-01 3.35269183e-01 -4.37987208e-01
-1.26960456e+00 1.21746637e-01 -1.00766033e-01 -3.54275554e-01
-6.45079732e-01 3.05046320e-01 -4.31983620e-02 -2.38204405e-01
3.57370794e-01 3.46485883e-01 2.78092623e-01 -4.57760125e-01
8.55298415e-02 6.48891091e-01 8.71526301e-01 -2.62595445e-01
6.62811935e-01 8.92765939e-01 -2.38215569e-02 -8.68808091e-01
-6.97948694e-01 -4.61691976e-01 -1.43500614e+00 -3.42398643e-01
1.42521131e+00 -2.71939933e-01 -2.93195426e-01 7.63695061e-01
-1.17967892e+00 -2.44195774e-01 1.43918112e-01 9.42129314e-01
-4.93768483e-01 6.65450513e-01 -8.27493250e-01 -8.70608687e-01
-7.27534771e-01 -1.51074934e+00 6.96307778e-01 7.11077154e-01
1.13155253e-01 -8.82223725e-01 -1.81093141e-01 3.43696833e-01
3.62175852e-01 5.94150603e-01 1.01613855e+00 -6.93127990e-01
-2.43507311e-01 8.29623863e-02 -2.40287572e-01 4.84534472e-01
1.38683021e-01 -2.47967336e-02 -7.99903095e-01 -2.97328252e-02
5.79316378e-01 9.83679444e-02 7.51064420e-01 8.80062282e-01
1.54100502e+00 1.84236079e-01 -3.92518133e-01 8.23830724e-01
1.16317487e+00 7.01264739e-01 8.58009398e-01 3.00692528e-01
4.47016478e-01 9.02088344e-01 1.54584289e-01 2.34765500e-01
1.48917004e-01 3.33859861e-01 2.83808619e-01 -5.98865092e-01
-2.45769799e-01 4.31728870e-01 -1.97994947e-01 9.87066031e-01
-3.29123497e-01 5.07466197e-01 -9.64743912e-01 4.50518698e-01
-1.51656687e+00 -6.48568213e-01 -4.41638440e-01 2.20792270e+00
8.69326055e-01 2.08327100e-01 8.70790258e-02 2.67412979e-02
1.16190982e+00 -2.11739138e-01 -5.69328606e-01 -8.07265788e-02
-2.18880363e-02 5.07925153e-01 4.14568245e-01 3.56784463e-01
-1.15421093e+00 6.46926105e-01 6.11303949e+00 7.53455758e-01
-1.30610931e+00 2.50513703e-01 7.30238795e-01 4.05169278e-01
9.88240764e-02 -1.55675143e-01 -4.35999930e-01 6.10204637e-01
2.15223595e-01 4.30739634e-02 3.14398021e-01 4.03924972e-01
2.46190622e-01 -2.66777784e-01 -5.73754311e-01 9.14909184e-01
1.89524680e-01 -9.29512918e-01 -2.29285464e-01 -1.73900619e-01
5.51817715e-01 -9.60348547e-02 -1.93186164e-01 -6.56618550e-02
-1.04530267e-01 -1.02271974e+00 7.85499513e-01 9.68050301e-01
5.60111403e-01 -7.24805295e-01 8.46345603e-01 4.09952044e-01
-9.86050248e-01 2.41165996e-01 -4.02517855e-01 3.19612831e-01
3.36119324e-01 8.58233154e-01 -6.14661217e-01 7.51700401e-01
7.46488571e-01 2.62575448e-01 -4.16632742e-01 1.61478317e+00
-1.79766059e-01 4.54789817e-01 -1.75402328e-01 3.87168229e-01
9.00288746e-02 -7.43748605e-01 4.87569034e-01 1.26323402e+00
8.68631750e-02 4.56495613e-01 1.83181554e-01 1.19273901e+00
1.78721651e-01 3.64240736e-01 -2.30658725e-01 3.50120574e-01
1.87112674e-01 1.63504076e+00 -1.45950651e+00 -4.74585801e-01
-4.24270988e-01 7.73315310e-01 1.36619851e-01 3.79187673e-01
-5.58021069e-01 -3.79775852e-01 -1.35739714e-01 2.59487540e-01
1.49161043e-02 -3.62599075e-01 -5.40115833e-01 -9.26786423e-01
1.54937720e-02 -3.65166247e-01 2.40930259e-01 -7.71807611e-01
-1.28876400e+00 6.73573673e-01 2.44521886e-01 -7.58087039e-01
2.84140170e-01 -3.02128702e-01 -9.03905809e-01 9.85616982e-01
-1.63885367e+00 -9.76916611e-01 -3.60426396e-01 6.79602385e-01
4.87803489e-01 2.56994486e-01 4.38260019e-01 3.00365835e-01
-5.59369087e-01 1.13097422e-01 -1.36830837e-01 3.83450776e-01
4.75989491e-01 -1.11670303e+00 1.52463138e-01 9.12878811e-01
-4.32659328e-01 7.55322039e-01 3.65846604e-01 -9.07407880e-01
-6.69631839e-01 -9.19180095e-01 5.87047994e-01 2.90463895e-01
6.05931401e-01 -3.03966880e-01 -1.19198513e+00 5.97422063e-01
2.63855189e-01 1.55759975e-01 5.72655737e-01 -3.76303315e-01
1.82368934e-01 2.92047262e-01 -1.49768567e+00 5.23906410e-01
9.10788774e-01 4.68008928e-02 -9.75157380e-01 3.65072548e-01
4.26543236e-01 -4.97154027e-01 -8.94398630e-01 6.47864759e-01
3.21940780e-01 -9.41479385e-01 8.77421200e-01 -3.01656157e-01
1.98964328e-01 -2.47092903e-01 4.93934304e-01 -1.32053268e+00
-4.78497416e-01 -4.60757047e-01 2.99807131e-01 1.05687702e+00
1.91088617e-01 -8.07671785e-01 6.31993413e-01 7.01071382e-01
-5.05666912e-01 -8.45302522e-01 -9.28253710e-01 -6.06315315e-01
4.26366210e-01 -1.61782518e-01 6.11806393e-01 9.99886751e-01
-2.69171357e-01 -6.15246780e-02 1.10927671e-01 1.15719803e-01
1.11222243e+00 1.67138711e-01 2.20476940e-01 -1.57165337e+00
1.62091523e-01 -6.35456920e-01 -3.35628539e-01 -7.35270977e-01
1.68469682e-01 -9.44864511e-01 -6.18952587e-02 -1.73246706e+00
4.69619274e-01 -5.55641174e-01 -2.36567020e-01 3.77072483e-01
-1.52542233e-01 2.67466754e-01 3.77048068e-02 2.99559116e-01
-1.11606799e-01 4.68509912e-01 1.84740555e+00 1.76685583e-02
-1.78272858e-01 2.20652930e-02 -2.79676646e-01 1.14822125e+00
8.33848238e-01 -4.05569613e-01 -1.50148779e-01 -3.27639163e-01
-5.35266638e-01 1.67419121e-01 2.59301454e-01 -1.01463699e+00
4.36019719e-01 -1.46175772e-02 7.03691244e-01 -7.94823468e-01
7.23173544e-02 -6.31506383e-01 -4.41201255e-02 4.48977053e-01
-8.20331722e-02 -4.12209071e-02 5.79198152e-02 1.33401677e-01
-8.39757845e-02 -6.61201715e-01 1.31971610e+00 -3.71790022e-01
-2.34320298e-01 6.69692159e-01 -5.01203835e-01 -9.79900658e-02
1.02768302e+00 -4.45229381e-01 2.36320689e-01 9.86752436e-02
-1.18423855e+00 7.73159787e-02 1.79133162e-01 2.54458059e-02
7.70234764e-01 -1.07555473e+00 -7.45104373e-01 2.81356156e-01
-3.50763261e-01 4.63487417e-01 5.60016334e-01 1.55576885e+00
-6.83840692e-01 1.18869886e-01 -5.07295310e-01 -6.60584211e-01
-1.22364867e+00 4.61198092e-01 5.57954907e-01 -1.24684200e-01
-1.02598763e+00 7.43310988e-01 5.26735961e-01 -4.80323315e-01
9.33986381e-02 -4.22491938e-01 -6.72910929e-01 -6.73153326e-02
7.75207400e-01 9.90330130e-02 2.95482904e-01 -7.49388576e-01
-2.93416142e-01 8.33876729e-01 -1.71534941e-01 -3.25503051e-02
1.46244919e+00 -1.54752344e-01 -4.96215999e-01 8.08726624e-02
9.19930160e-01 -6.82280958e-02 -1.06742299e+00 -3.17647159e-01
-3.64754163e-02 -2.44582057e-01 3.16064030e-01 -5.21022022e-01
-1.41363752e+00 9.51372385e-01 7.27753222e-01 3.15328725e-02
1.09916294e+00 -1.23552978e-01 8.32958639e-01 -3.03933561e-01
4.60532337e-01 -1.01574516e+00 -3.65192980e-01 3.02190393e-01
8.51580083e-01 -8.35764587e-01 -9.90131646e-02 -6.88804805e-01
-4.64373857e-01 1.33599210e+00 5.59142232e-01 -2.87455380e-01
1.00629604e+00 4.66175318e-01 1.09974779e-01 -3.89417619e-01
3.30393836e-02 -1.05467409e-01 2.52715617e-01 7.92698264e-01
3.01115751e-01 3.68901417e-02 -5.50765753e-01 7.06664085e-01
-9.99714434e-02 4.38708030e-02 3.86072159e-01 9.68951285e-01
-6.43556178e-01 -8.03997040e-01 -7.50289857e-01 5.24889827e-01
-6.18206561e-01 -1.06564788e-02 -4.08143327e-02 7.50820935e-01
3.67155254e-01 6.35528564e-01 2.17479229e-01 1.32132113e-01
1.52052686e-01 -5.13835400e-02 6.95924878e-01 -6.56601727e-01
-3.91481549e-01 3.51969391e-01 -4.88961965e-01 -3.02896082e-01
-4.16661859e-01 -7.68395007e-01 -1.83158147e+00 1.31929457e-01
-3.72439444e-01 -9.31125041e-03 7.71843076e-01 1.17346025e+00
-4.87703830e-02 5.32512248e-01 3.74667794e-01 -9.38306689e-01
-2.83803761e-01 -1.09532881e+00 -9.78405833e-01 4.47494566e-01
-8.46956223e-02 -1.14710438e+00 -2.68959224e-01 3.30759346e-01] | [14.250799179077148, -2.3229470252990723] |
ffc79d9c-cef0-4528-b2bb-988d0b51d7a8 | m2fpa-a-multi-yaw-multi-pitch-high-quality | 1904.00168 | null | https://arxiv.org/abs/1904.00168v2 | https://arxiv.org/pdf/1904.00168v2.pdf | M2FPA: A Multi-Yaw Multi-Pitch High-Quality Database and Benchmark for Facial Pose Analysis | Facial images in surveillance or mobile scenarios often have large view-point variations in terms of pitch and yaw angles. These jointly occurred angle variations make face recognition challenging. Current public face databases mainly consider the case of yaw variations. In this paper, a new large-scale Multi-yaw Multi-pitch high-quality database is proposed for Facial Pose Analysis (M2FPA), including face frontalization, face rotation, facial pose estimation and pose-invariant face recognition. It contains 397,544 images of 229 subjects with yaw, pitch, attribute, illumination and accessory. M2FPA is the most comprehensive multi-view face database for facial pose analysis. Further, we provide an effective benchmark for face frontalization and pose-invariant face recognition on M2FPA with several state-of-the-art methods, including DR-GAN, TP-GAN and CAPG-GAN. We believe that the new database and benchmark can significantly push forward the advance of facial pose analysis in real-world applications. Moreover, a simple yet effective parsing guided discriminator is introduced to capture the local consistency during GAN optimization. Extensive quantitative and qualitative results on M2FPA and Multi-PIE demonstrate the superiority of our face frontalization method. Baseline results for both face synthesis and face recognition from state-of-theart methods demonstrate the challenge offered by this new database. | ['Pei-Pei Li', 'Yibo Hu', 'Xiang Wu', 'Zhenan Sun', 'Ran He'] | 2019-03-30 | null | null | null | null | ['robust-face-recognition'] | ['computer-vision'] | [-1.88035429e-01 -5.29001094e-02 -1.54125169e-02 -6.98585451e-01
-8.82647455e-01 -4.83425319e-01 3.96640271e-01 -1.30098832e+00
3.38412791e-01 3.68994325e-01 1.82859063e-01 3.65127504e-01
2.06352845e-01 -5.37770689e-01 -6.18938327e-01 -1.17618775e+00
1.75464094e-01 3.47047031e-01 -5.82198739e-01 -2.26075262e-01
-2.86842704e-01 1.15599084e+00 -1.76562166e+00 7.37758726e-02
2.16251537e-01 1.27230966e+00 -3.32505554e-01 2.46540904e-01
5.06958365e-01 -2.67114997e-01 -4.88856941e-01 -9.80858862e-01
5.13019085e-01 -2.11391985e-01 -2.44767413e-01 5.09829879e-01
1.12924755e+00 -5.34880042e-01 -2.12267354e-01 7.48773992e-01
1.05083323e+00 -2.39573449e-01 4.89774972e-01 -1.41464448e+00
-2.95395404e-01 -1.57418564e-01 -9.62072730e-01 -2.41466433e-01
5.22053838e-01 3.92684788e-01 3.15345347e-01 -1.47689927e+00
6.97539866e-01 1.75970209e+00 7.72175789e-01 8.68555844e-01
-8.15769374e-01 -1.06754053e+00 1.76831156e-01 -3.19204628e-02
-1.55511367e+00 -1.04344046e+00 8.57080996e-01 -3.00455868e-01
5.63290656e-01 2.15455040e-01 6.45910740e-01 1.31864297e+00
1.87443823e-01 3.01699042e-01 1.07200253e+00 -1.63447067e-01
-2.97950059e-01 -3.50641578e-01 -5.26065409e-01 1.13576579e+00
7.95009062e-02 1.43788218e-01 -7.52317429e-01 -1.76484492e-02
8.87049496e-01 -1.10253386e-01 -3.24727088e-01 -1.51651040e-01
-8.12647521e-01 5.76804936e-01 1.05810529e-02 -2.75139838e-01
-2.61097699e-01 -4.77740765e-02 2.67711699e-01 1.32787883e-01
6.78624988e-01 7.21798372e-03 -4.91339743e-01 7.10787177e-02
-9.12562728e-01 2.99255282e-01 4.59657043e-01 1.06438458e+00
5.50571382e-01 4.10603821e-01 -2.70412594e-01 9.40240204e-01
7.63933837e-01 1.27985597e+00 -6.40525445e-02 -9.25538898e-01
3.34530950e-01 2.23729625e-01 -3.00103754e-01 -1.24220717e+00
-4.75228310e-01 -6.41893074e-02 -7.80608416e-01 -1.08365491e-02
2.72403657e-01 -2.07327247e-01 -9.59658861e-01 1.88801861e+00
7.77518213e-01 -7.72843137e-02 -1.60252288e-01 7.76265800e-01
1.20840573e+00 4.31415200e-01 -3.61523926e-01 -6.81897104e-01
1.78513622e+00 -8.15531313e-01 -9.54463720e-01 -1.14025705e-01
-7.68669248e-02 -1.09802485e+00 7.28819013e-01 4.36929345e-01
-1.12212908e+00 -5.28131425e-01 -6.96085632e-01 1.31736785e-01
5.04094400e-02 5.91659725e-01 4.94887799e-01 1.31645072e+00
-1.05613601e+00 -7.64862075e-02 -5.49412668e-01 -3.31689000e-01
8.01539123e-01 5.12341797e-01 -8.05389941e-01 -3.02885264e-01
-7.37537682e-01 5.82311451e-01 -4.45077211e-01 5.47497034e-01
-1.12013793e+00 -8.26247871e-01 -9.26906109e-01 -3.59144419e-01
4.10362363e-01 -5.64801037e-01 9.35337663e-01 -6.93085790e-01
-1.94149268e+00 1.27926159e+00 -5.11434197e-01 3.89436185e-01
4.17171627e-01 -2.35947981e-01 -7.36643732e-01 2.26697609e-01
-9.69794318e-02 7.14122236e-01 1.42360115e+00 -1.13072538e+00
1.16472185e-01 -1.08191407e+00 -4.43584591e-01 1.23839974e-01
-3.15259576e-01 4.42061484e-01 -8.54279339e-01 -6.92698061e-01
1.13986181e-02 -1.16264594e+00 5.03465891e-01 2.88021117e-01
-4.09025490e-01 -6.71450496e-02 1.22101343e+00 -7.85097778e-01
7.82873511e-01 -2.04742360e+00 1.28586665e-01 1.52006671e-01
3.91170792e-02 2.83653259e-01 -3.48684579e-01 9.45872366e-02
-2.17161238e-01 -6.85788393e-02 2.27196768e-01 -5.90158820e-01
-1.54174209e-01 2.43977867e-02 -1.95649371e-01 8.45726728e-01
2.24996328e-01 8.99792075e-01 -1.78553581e-01 -4.32391912e-01
1.24635853e-01 9.05011356e-01 -9.08807278e-01 2.67706752e-01
1.86236441e-01 6.16599143e-01 -3.65909249e-01 1.43501103e+00
1.44590509e+00 2.04062909e-01 2.17240781e-01 -7.81694114e-01
2.02499643e-01 -4.40713823e-01 -9.57483828e-01 1.51824033e+00
-3.68535399e-01 4.87323791e-01 5.26430845e-01 -2.57125795e-01
1.04589653e+00 4.17196453e-01 6.25278711e-01 -4.31006759e-01
3.90086770e-01 1.02830261e-01 -3.21324766e-01 -4.97716695e-01
8.68775398e-02 -1.60118967e-01 1.87538251e-01 -1.09187663e-01
4.28504527e-01 -2.46814713e-01 -1.40554249e-01 -5.65824866e-01
2.63917714e-01 3.80752049e-02 4.63832617e-02 -3.31017554e-01
7.64981806e-01 -1.05968177e+00 7.27580011e-01 -1.50303006e-01
-3.21398884e-01 9.09243941e-01 5.33736110e-01 -5.06420255e-01
-7.52196431e-01 -1.00066054e+00 -4.79998708e-01 8.33840668e-01
-2.40926743e-01 -4.56191301e-01 -1.14783514e+00 -7.03871608e-01
1.45951076e-03 -8.95764977e-02 -6.74387038e-01 3.66166905e-02
-7.34878123e-01 -9.96011794e-01 6.46891236e-01 4.02308315e-01
8.47768068e-01 -8.28908265e-01 -6.15945272e-02 -4.74152923e-01
-7.06563741e-02 -1.41910589e+00 -9.29218829e-01 -7.36564636e-01
-5.15150845e-01 -1.25166738e+00 -7.60438025e-01 -5.59741914e-01
8.94938111e-01 2.44900100e-02 1.10578477e+00 -2.34743252e-01
-4.39061671e-01 5.20430565e-01 -8.83874521e-02 -3.10432196e-01
-2.13172268e-02 -3.52374792e-01 4.73833203e-01 4.44519490e-01
7.20201656e-02 -3.62700194e-01 -8.30781579e-01 1.00791359e+00
-4.53824967e-01 -2.17454657e-01 3.43406439e-01 8.48953426e-01
4.96000439e-01 -2.52261877e-01 5.55981040e-01 -4.34595168e-01
1.46740913e-01 -9.93692130e-02 -7.41499603e-01 3.01987708e-01
-4.22988743e-01 -4.78503823e-01 2.24199012e-01 -6.28459007e-02
-1.26061642e+00 2.88823470e-02 -4.79672551e-01 -6.36485100e-01
-7.66564682e-02 -6.50651827e-02 -1.03223121e+00 -4.94760573e-01
3.18391711e-01 2.87082270e-02 4.43248659e-01 -2.47059077e-01
2.72268236e-01 4.77905393e-01 4.68675733e-01 -5.40092826e-01
8.65720272e-01 4.77385759e-01 3.86784732e-01 -1.12004578e+00
-4.26896513e-01 6.32979870e-02 -5.45496523e-01 -5.75157821e-01
8.43102634e-01 -1.17249191e+00 -1.19486833e+00 1.10184228e+00
-1.08525229e+00 1.65318355e-01 1.77927479e-01 2.63782769e-01
-4.16794330e-01 1.55125812e-01 -3.25627297e-01 -7.72745430e-01
-4.54073757e-01 -1.59226894e+00 1.69224775e+00 4.04367477e-01
3.14131826e-01 -6.10325336e-01 -1.98106766e-01 7.64659822e-01
3.20296705e-01 3.86107892e-01 4.04415488e-01 1.02330826e-01
-3.27965289e-01 -8.05774406e-02 6.02394417e-02 3.84636462e-01
3.92583966e-01 4.86175716e-01 -1.32144678e+00 -7.01236129e-01
-5.01018129e-02 -4.70614314e-01 5.12909591e-01 5.43095648e-01
1.27973092e+00 -4.36856627e-01 -1.36298016e-01 1.26279283e+00
9.76180851e-01 2.78621912e-01 6.75604105e-01 -3.47849011e-01
8.87802362e-01 6.42029703e-01 6.33057296e-01 6.18923664e-01
2.89378285e-01 1.16475153e+00 5.54538190e-01 -9.37013179e-02
-2.17115819e-01 -1.36229008e-01 6.58071458e-01 6.33459568e-01
-3.45740855e-01 -1.38690904e-01 -7.26949334e-01 -2.79865433e-02
-1.12855220e+00 -9.23620939e-01 5.44851899e-01 2.01298785e+00
6.18185103e-01 -7.39329994e-01 2.11568698e-01 -6.11377954e-02
6.94931030e-01 2.84708589e-01 -4.07190591e-01 -1.66905560e-02
-2.02561721e-01 2.67093718e-01 1.31212443e-01 3.04544121e-01
-1.13661075e+00 8.23625922e-01 6.40961504e+00 9.74706411e-01
-1.48404491e+00 5.99117065e-03 1.08335888e+00 -3.36342007e-01
-7.54193440e-02 -7.71292150e-01 -1.44724095e+00 2.91935056e-01
7.11475313e-01 3.65058690e-01 4.20058161e-01 9.21446681e-01
-1.35348579e-02 2.77903199e-01 -1.01024699e+00 1.59083724e+00
6.63617492e-01 -1.17414629e+00 5.11752777e-02 2.43192315e-01
8.09830964e-01 -4.26777720e-01 6.90996945e-01 1.20303407e-01
-5.30423045e-01 -1.39718306e+00 4.44483131e-01 5.16050279e-01
1.50487924e+00 -1.01893115e+00 5.93740940e-01 -3.84738207e-01
-1.29873323e+00 -2.29262095e-03 -1.24609940e-01 6.94471955e-01
2.47646496e-02 3.70480984e-01 -6.30257905e-01 6.99553132e-01
7.54584253e-01 7.80947447e-01 -6.59341753e-01 2.68869191e-01
-1.65835116e-02 2.62307674e-01 -3.81453246e-01 4.30518210e-01
-3.26495737e-01 -2.34903932e-01 6.35397732e-01 8.28225017e-01
6.01559758e-01 5.62762320e-02 -1.68091863e-01 6.25617623e-01
-3.50697219e-01 1.09887011e-02 -6.25031412e-01 4.05146256e-02
5.16981363e-01 1.60240149e+00 -4.09083337e-01 1.66051239e-01
-3.50003749e-01 5.78634858e-01 -3.13798547e-01 2.29042470e-01
-1.00950682e+00 3.88974696e-01 1.19761801e+00 3.37021291e-01
3.92860591e-01 -1.04535758e-01 1.78786218e-01 -1.22544420e+00
2.96593845e-01 -1.39109337e+00 1.54178604e-01 -5.52906156e-01
-1.07108176e+00 9.20358360e-01 2.22065210e-01 -1.05077398e+00
-3.59228849e-01 -9.77455020e-01 -4.43443328e-01 7.42181718e-01
-1.40148973e+00 -1.75107551e+00 -7.33827233e-01 9.42459941e-01
5.51651359e-01 -8.33374202e-01 9.77278590e-01 4.82860565e-01
-9.64483023e-01 1.37953448e+00 -3.20093602e-01 6.44483045e-02
9.44400072e-01 -3.68793309e-01 2.83230662e-01 6.88495696e-01
-1.41603515e-01 5.66327155e-01 3.96721780e-01 -4.12560165e-01
-2.10516214e+00 -1.17570937e+00 2.49121383e-01 -5.85573196e-01
-1.68516472e-01 -6.23152792e-01 -3.51438910e-01 5.70932865e-01
5.24648130e-02 5.80142260e-01 6.24983132e-01 -4.14366722e-02
-5.25807381e-01 -7.49977469e-01 -1.59015143e+00 4.39462215e-01
1.15250373e+00 -4.71442372e-01 1.27881140e-01 4.24037844e-01
1.95345089e-01 -6.88847959e-01 -1.05470610e+00 8.65277886e-01
9.22338426e-01 -1.03517556e+00 1.06978464e+00 -2.21160635e-01
1.75757036e-01 -1.46632805e-01 -3.46112043e-01 -1.20016646e+00
6.50160685e-02 -1.03544271e+00 -1.20167701e-04 1.56281507e+00
-3.91605496e-02 -7.70145476e-01 9.24325228e-01 2.36059859e-01
-3.98775749e-02 -9.07524109e-01 -1.19851470e+00 -6.48449719e-01
-9.25730318e-02 -2.70181503e-02 9.66313779e-01 7.28487432e-01
-6.55286193e-01 -9.90963131e-02 -5.49771547e-01 2.40215316e-01
7.11889803e-01 -1.49477394e-02 1.03242111e+00 -9.51397479e-01
1.32277384e-01 -2.28267223e-01 -5.32846272e-01 -6.90338910e-01
4.32125002e-01 -4.97731447e-01 -2.60046512e-01 -6.09833181e-01
1.16582163e-01 2.40016505e-02 4.56820399e-01 5.16676247e-01
1.31574467e-01 6.40570879e-01 1.13940872e-01 -8.19246471e-02
4.86264639e-02 8.94519448e-01 1.61952949e+00 1.28362998e-02
2.70317256e-01 -6.05494566e-02 -5.05301476e-01 7.55550385e-01
4.18940783e-01 -2.72255763e-02 -4.32103723e-01 -1.79567754e-01
-7.08832070e-02 3.20564836e-01 3.37012887e-01 -7.10926950e-01
-1.39612749e-01 -2.11306170e-01 8.54278326e-01 -5.65317512e-01
9.58830774e-01 -7.35739946e-01 3.28634888e-01 2.53431827e-01
3.38013470e-01 3.71277303e-01 4.26093966e-01 2.35300437e-01
-3.37929070e-01 5.33868194e-01 1.19864464e+00 1.41709924e-01
-3.01036835e-01 9.89602745e-01 1.72651991e-01 1.02156475e-01
1.20908391e+00 -2.40164995e-01 -4.82426614e-01 -3.73165637e-01
-5.69566548e-01 -1.73197597e-01 3.86441827e-01 5.38156927e-01
8.48988473e-01 -1.67280948e+00 -9.82440829e-01 1.02888858e+00
1.11385368e-01 -5.86387627e-02 5.49611449e-01 1.03022933e+00
-4.90389615e-01 4.53254551e-01 -6.75938427e-01 -7.01422930e-01
-1.86355841e+00 1.19317755e-01 5.50995409e-01 2.42708698e-01
-1.90912575e-01 1.10523784e+00 4.60803479e-01 -5.17491400e-01
-4.46161404e-02 4.99984585e-02 -1.17143393e-01 3.11277032e-01
5.77281535e-01 3.25755209e-01 3.12262237e-01 -1.19887722e+00
-7.31375694e-01 1.23625147e+00 3.54410112e-02 1.34504765e-01
1.32734978e+00 9.10072029e-02 -2.03450486e-01 -3.38826656e-01
1.31733704e+00 2.14314401e-01 -1.41638994e+00 2.78377384e-01
-9.05890524e-01 -9.20251250e-01 -1.64018482e-01 -6.00313008e-01
-1.90724599e+00 8.19998682e-01 8.17907810e-01 -6.25545144e-01
1.48982227e+00 -1.54407948e-01 3.94141138e-01 1.20626263e-01
4.25602227e-01 -9.13443029e-01 3.77399296e-01 3.88389051e-01
1.58483922e+00 -1.24753261e+00 7.67160999e-03 -8.95542741e-01
-4.80874836e-01 1.29272342e+00 9.95506406e-01 2.69654602e-01
8.68796766e-01 4.61242676e-01 8.88911039e-02 -2.61328995e-01
-5.16749561e-01 4.31947976e-01 6.22906387e-01 7.53323555e-01
4.55568105e-01 -5.15858121e-02 2.13661611e-01 4.96592045e-01
-5.07309318e-01 -3.78073007e-01 -1.61871202e-02 3.71971250e-01
2.36526102e-01 -8.87488544e-01 -7.45663881e-01 1.97316203e-02
-5.45426726e-01 1.95436656e-01 -2.21572608e-01 9.84295547e-01
1.17915876e-01 7.15540707e-01 3.41155715e-02 -3.89469236e-01
3.69754076e-01 6.41022250e-02 1.10596061e+00 -2.87448108e-01
-4.48438913e-01 3.46180558e-01 3.47757936e-02 -9.03805912e-01
-2.96724647e-01 -7.86625683e-01 -6.03924513e-01 -6.53315604e-01
-1.08052976e-01 -4.25056040e-01 7.61235237e-01 5.30826092e-01
5.30462801e-01 2.22230881e-01 1.08343971e+00 -1.16502535e+00
-5.47545910e-01 -9.68124032e-01 -6.37188077e-01 1.61122903e-01
3.42733175e-01 -1.09308517e+00 -2.97893286e-01 -2.03977935e-02] | [13.172333717346191, 0.34851035475730896] |
d62004b7-406f-4748-9735-0bb9a98d3143 | dtp-net-a-convolutional-neural-network-model | null | null | https://www.sciencedirect.com/science/article/pii/S0010482522006047 | https://doi.org/10.1016/j.compbiomed.2022.105852 | DTP-Net: A convolutional neural network model to predict threshold for localizing the lesions on dermatological macro-images | Highly focused images of skin captured with ordinary cameras, called macro-images, are extensively used in dermatology. Being highly focused views, the macro-images contain only lesions and background regions. Hence, the localization of lesions on the macro-images is a simple thresholding problem. However, algorithms that offer an accurate estimate of threshold and retain consistent performance on different dermatological macro-images are rare. A deep learning model, termed ‘Deep Threshold Prediction Network (DTP-Net)’, is proposed in this paper to address this issue. For training the model, grayscale versions of the macro-images are fed as input to the model, and the corresponding gray-level threshold values at which the Dice similarity index (DSI) between the segmented and the ground-truth images are maximized are defined as the targets. The DTP-Net exhibited the least value of root mean square error for the predicted threshold compared with 11 state-of-the-art threshold estimation algorithms (such as Otsu’s thresholding, Valley emphasized otsu’s thresholding, Isodata thresholding, Histogram slope difference distribution-based thresholding, Minimum error thresholding, Poisson’s distribution-based minimum error thresholding, Kapur’s maximum entropy thresholding, Entropy-weighted otsu’s thresholding, Minimum cross-entropy thresholding, Type-2 fuzzy-based thresholding, and Fuzzy entropy thresholding). The DTP-Net could learn the difference between the lesion and background in the intensity space and accurately predict the threshold that separates the lesion from the background. The proposed DTP-Net can be integrated into the segmentation module in automated tools that detect skin cancer from dermatological macro-images. | ['Malaya Kumar Nath', 'M Vipin Das', 'Justin Joseph', 'Vipin Venugopal'] | 2022-07-12 | null | null | null | computers-in-biology-and-medicine-2022-7 | ['skin-lesion-segmentation'] | ['medical'] | [ 4.48472142e-01 5.51320538e-02 -1.90890536e-01 -4.31912839e-01
-5.42635262e-01 -3.42061967e-01 -2.00792849e-01 3.70903850e-01
-6.10101819e-01 5.29241383e-01 -4.57369208e-01 9.36562642e-02
-1.56989187e-01 -9.04680908e-01 -2.72473991e-01 -1.05948317e+00
2.15853781e-01 1.69521406e-01 6.00764036e-01 2.52570331e-01
3.10608983e-01 4.68287081e-01 -1.43298566e+00 6.42046213e-01
1.06654692e+00 1.43885767e+00 1.40434906e-01 6.72375798e-01
-2.08040118e-01 3.88283432e-01 -4.47285533e-01 -4.23047513e-01
1.27565920e-01 -4.72271025e-01 -3.12509596e-01 1.11734487e-01
5.12402833e-01 -3.01226020e-01 7.66473785e-02 1.35460353e+00
4.82952982e-01 -3.37940216e-01 9.82322454e-01 -9.02573407e-01
-4.74607974e-01 -7.80263245e-02 -8.71432602e-01 1.92997783e-01
1.55189425e-01 1.59360692e-01 4.58421022e-01 -5.54857314e-01
7.40070701e-01 9.40798819e-01 9.39922452e-01 3.61232430e-01
-9.21853006e-01 -2.57079482e-01 -5.17071366e-01 3.02923381e-01
-1.46662378e+00 3.00294697e-01 3.27560246e-01 -4.79256421e-01
5.51195323e-01 6.10017657e-01 8.78235757e-01 6.43830419e-01
8.70322585e-01 4.30727303e-01 1.49537885e+00 -5.36823452e-01
3.49029094e-01 3.14136118e-01 -9.43735987e-02 9.19757783e-01
4.05694067e-01 -1.31848278e-02 1.02323457e-03 3.09039578e-02
1.05554497e+00 5.42974733e-02 -5.72433807e-02 -4.59873378e-02
-8.69229555e-01 6.48086429e-01 3.94611478e-01 6.58815920e-01
-6.18383050e-01 -1.67699292e-01 2.88639605e-01 3.69662978e-02
4.39956427e-01 7.79898688e-02 -1.86124101e-01 1.95636287e-01
-1.20797157e+00 -3.10877085e-01 6.84247315e-01 6.92820251e-02
6.11988127e-01 -2.81456232e-01 -2.76255816e-01 7.50576913e-01
7.39155114e-02 3.81161660e-01 5.25841534e-01 -9.57000613e-01
-1.34437874e-01 1.09992290e+00 -1.86838388e-01 -1.18634975e+00
-4.37834471e-01 7.00291172e-02 -1.12695026e+00 4.98265803e-01
6.93478644e-01 -2.82310605e-01 -1.34162700e+00 9.98671651e-01
4.47256565e-01 -1.94570825e-01 -3.85355502e-01 1.09168386e+00
7.38868296e-01 5.18942475e-01 -3.10117658e-02 -5.35877109e-01
1.35425091e+00 -3.48800033e-01 -8.88398588e-01 1.71412036e-01
2.93234497e-01 -8.34825933e-01 9.18198943e-01 4.83685285e-01
-1.07939553e+00 -5.21901846e-01 -8.28236103e-01 3.01560432e-01
-4.70439821e-01 3.83021086e-01 3.38571280e-01 7.28571653e-01
-1.26167107e+00 6.94493711e-01 -8.20820153e-01 -7.04764783e-01
4.72739100e-01 4.03128237e-01 -4.33257699e-01 1.17696643e-01
-1.02571595e+00 1.07778919e+00 3.88814330e-01 4.60825652e-01
-3.98354203e-01 -3.86675954e-01 -5.24767160e-01 -2.96179038e-02
2.28610411e-01 -3.07901651e-01 7.25363910e-01 -1.33477199e+00
-1.29155910e+00 1.38518536e+00 -1.32034020e-02 -1.60674855e-01
4.50251311e-01 4.56358045e-01 -1.51297033e-01 6.92055881e-01
-1.99922368e-01 6.14454865e-01 6.76437080e-01 -1.10681665e+00
-7.63194263e-01 -5.49048543e-01 -2.27991626e-01 2.95726657e-01
-2.64301836e-01 -3.67054492e-02 -2.88528204e-01 -2.75170267e-01
1.56423137e-01 -4.29659337e-01 -3.71674448e-01 5.35180628e-01
-5.03786981e-01 -1.81754097e-01 6.75340712e-01 -9.50440347e-01
1.23829234e+00 -2.04345489e+00 -3.51304173e-01 5.89593053e-01
5.94111495e-02 4.88128483e-01 2.30995268e-01 3.23825842e-03
1.46744266e-01 2.00543910e-01 -4.20796603e-01 3.97098362e-01
-3.36312234e-01 -4.94362004e-02 6.96679473e-01 6.27680659e-01
-1.03299104e-01 4.61547047e-01 -6.07256770e-01 -1.19863641e+00
6.28945529e-01 4.94853944e-01 5.91286905e-02 -7.70108104e-02
2.06572842e-02 -8.38269293e-02 -9.15718749e-02 1.08432662e+00
8.72021079e-01 1.09281555e-01 1.57586485e-01 -6.48591697e-01
-3.12717021e-01 -8.05712938e-01 -1.14821196e+00 9.19650197e-01
-1.34681180e-01 7.21235216e-01 3.07099670e-01 -8.74207914e-01
9.78021383e-01 3.80376041e-01 8.43941331e-01 -5.53759933e-01
4.96211559e-01 2.70683676e-01 1.03412822e-01 -9.76348579e-01
2.61126664e-02 -3.49416226e-01 2.95970529e-01 9.53569487e-02
-2.68635899e-02 -2.25067317e-01 3.87803853e-01 -3.55059683e-01
7.01552570e-01 -2.95003295e-01 4.61846471e-01 -2.47670747e-02
6.42414868e-01 7.46325627e-02 3.85849863e-01 5.21210194e-01
-6.33242011e-01 7.78820634e-01 7.81467259e-01 -3.87230933e-01
-8.90270591e-01 -1.15003133e+00 -4.54358757e-01 6.44919813e-01
3.08411986e-01 4.56664681e-01 -1.28925598e+00 -6.19687557e-01
-1.83845721e-02 4.03200775e-01 -7.58968353e-01 -6.07586652e-02
-1.81198329e-01 -1.03585756e+00 4.00163591e-01 2.80595332e-01
6.53325140e-01 -1.19513202e+00 -9.02783513e-01 -5.20989522e-02
-1.60175085e-01 -7.69287467e-01 -2.93263942e-01 1.52215824e-01
-7.89280713e-01 -1.32517445e+00 -9.44173455e-01 -9.81139243e-01
9.51381505e-01 -2.98633635e-01 6.37435675e-01 -3.52402776e-02
-8.30703080e-01 1.78328335e-01 -7.35335648e-02 -1.07225783e-01
-2.80183733e-01 -4.79038358e-01 -3.19892943e-01 1.60411626e-01
5.87060511e-01 -1.36468023e-01 -9.35164571e-01 3.46722126e-01
-9.16942358e-01 -3.35129499e-01 9.98974562e-01 6.74441576e-01
1.12664735e+00 3.63020778e-01 5.90091087e-02 -7.20620692e-01
6.87389433e-01 5.07770106e-02 -4.37536418e-01 5.38984120e-01
-4.82035846e-01 -6.42673731e-01 6.35887444e-01 -4.45812881e-01
-1.00369585e+00 -3.94880436e-02 -1.75987959e-01 -3.81706297e-01
-2.83689469e-01 3.96670163e-01 1.83678642e-01 -3.25395346e-01
6.29249394e-01 2.02197209e-01 2.45577216e-01 6.63912445e-02
-9.53603089e-02 1.04893494e+00 6.26815677e-01 9.80949774e-02
1.20016612e-01 6.59612119e-01 1.04588427e-01 -6.54371858e-01
-7.23947406e-01 -6.33775234e-01 -8.48541379e-01 -7.26734579e-01
1.32924914e+00 -1.94657594e-01 -7.33130634e-01 9.40234721e-01
-8.36084187e-01 -3.12414825e-01 -1.51844278e-01 3.91077280e-01
-4.26983446e-01 4.94618624e-01 -7.26887167e-01 -9.52389300e-01
-6.01274967e-01 -1.08437109e+00 8.28974962e-01 9.37255025e-01
-7.25032985e-02 -1.28498006e+00 -1.46667227e-01 2.60507315e-01
2.97332227e-01 7.98320651e-01 1.02867329e+00 -4.94142711e-01
6.09927140e-02 -6.18069351e-01 -4.79690790e-01 8.65145385e-01
4.14589733e-01 6.47079349e-01 -6.32011771e-01 1.02649227e-01
1.40420049e-01 -6.78489953e-02 7.16423690e-01 1.35921407e+00
1.52481997e+00 -1.34732440e-01 -4.46452111e-01 6.06349289e-01
1.85733461e+00 4.09818977e-01 8.01819921e-01 1.09331287e-01
2.94329077e-01 6.47036791e-01 8.11745465e-01 3.30387115e-01
-5.49806878e-02 2.53615320e-01 6.36063278e-01 -7.12123513e-01
-4.77708131e-02 2.18669027e-01 1.76600609e-02 4.33552623e-01
-3.09650898e-01 -4.75337878e-02 -6.73478007e-01 4.84279782e-01
-1.21604490e+00 -1.04796636e+00 -3.25075090e-01 2.32401419e+00
8.33288372e-01 3.19849253e-01 1.50547758e-01 2.92702824e-01
1.40823627e+00 -2.25677446e-01 -7.34893501e-01 -8.17132354e-01
-3.12731564e-02 3.30447972e-01 5.32188356e-01 3.25854063e-01
-1.25188017e+00 6.65757477e-01 5.68261862e+00 9.72869396e-01
-1.44397771e+00 -7.70655051e-02 1.08653414e+00 2.15196878e-01
1.00164987e-01 -4.24682081e-01 -4.85734403e-01 7.72601485e-01
6.43992364e-01 4.09139916e-02 9.90782231e-02 6.72672272e-01
4.49597508e-01 -8.57807457e-01 -6.58299506e-01 9.10097182e-01
8.75755250e-02 -1.00699818e+00 -8.85675102e-02 1.92387924e-01
5.66791594e-01 -5.96914113e-01 2.28018507e-01 -2.55530417e-01
-1.33093059e-01 -1.03504086e+00 1.84924394e-01 8.48064661e-01
1.13613033e+00 -8.13044786e-01 1.37848878e+00 1.03049345e-01
-8.09894800e-01 -6.51133955e-02 -6.67882025e-01 2.51163214e-01
-7.21992031e-02 1.14295757e+00 -8.30951333e-01 2.28999197e-01
6.72891676e-01 1.62911072e-01 -4.79902804e-01 1.29570234e+00
1.13019273e-01 5.04635155e-01 -4.71020013e-01 -2.44326532e-01
4.28132564e-01 -6.52870774e-01 1.86121464e-01 1.19567537e+00
4.03732896e-01 1.12026274e-01 -1.74369693e-01 6.47943854e-01
3.89625430e-01 2.93175906e-01 -1.50399208e-01 9.57691744e-02
3.20167273e-01 1.56090796e+00 -1.36757684e+00 -3.58461559e-01
-1.22514978e-01 8.67043078e-01 -1.72483012e-01 1.71410352e-01
-8.20116103e-01 -5.12084961e-01 1.03051076e-02 2.53913999e-01
2.74437927e-02 3.59487802e-01 -7.98153758e-01 -4.42085147e-01
-6.42380789e-02 -5.33678710e-01 7.01300621e-01 -8.51574659e-01
-1.28854501e+00 3.67397040e-01 -4.46743220e-02 -9.50734138e-01
2.55769640e-01 -8.98926854e-01 -8.83835793e-01 6.77921712e-01
-1.06010497e+00 -8.04478109e-01 -6.25071883e-01 5.34241498e-01
2.25622177e-01 1.22918904e-01 5.81698179e-01 -4.97525595e-02
-5.74025810e-01 4.55268621e-01 4.05064583e-01 9.00448859e-02
6.35092616e-01 -1.58253944e+00 -4.83729154e-01 5.59852362e-01
-5.95504045e-01 1.75386325e-01 4.74303484e-01 -6.53041601e-01
-7.78644025e-01 -8.10351610e-01 6.09449863e-01 1.89601719e-01
4.22161520e-01 1.13959596e-01 -7.38753974e-01 9.51199606e-02
1.99588791e-01 -3.53940949e-02 7.90367424e-01 -5.14521360e-01
4.10546690e-01 -4.27843690e-01 -1.88235974e+00 3.82293791e-01
2.44575977e-01 3.98227498e-02 -3.01358163e-01 5.53579330e-01
-1.37035012e-01 -4.75911677e-01 -1.11834788e+00 4.40968782e-01
8.71442497e-01 -1.42315674e+00 8.22554529e-01 5.20043708e-02
5.61231971e-01 1.88773781e-01 1.93642884e-01 -1.02798963e+00
-8.13690126e-02 1.69184580e-01 3.44047606e-01 1.02972436e+00
1.23044252e-01 -4.14538652e-01 9.22233403e-01 2.95211375e-01
1.07386716e-01 -1.39909971e+00 -1.24189234e+00 -4.00135070e-01
-1.31091103e-01 8.82216394e-02 -1.81027964e-01 7.04136491e-01
-9.00449529e-02 -5.11186659e-01 2.29985446e-01 -4.11870843e-03
9.03913081e-01 -3.05420429e-01 6.93138391e-02 -1.26077247e+00
4.40659970e-01 -5.69769621e-01 -7.12922215e-01 -1.93156168e-01
-2.98504055e-01 -6.82119012e-01 1.51236102e-01 -2.15236378e+00
2.75744170e-01 -7.10870773e-02 -4.11075354e-01 5.67670941e-01
-1.58942223e-01 4.68004823e-01 -1.67809486e-01 4.65660505e-02
-1.56543940e-01 -2.15585202e-01 1.57708216e+00 -1.07214056e-01
-3.55044663e-01 2.24668801e-01 -2.62309641e-01 9.87658024e-01
7.84889996e-01 -2.80599773e-01 3.36832292e-02 1.74422652e-01
-8.75651389e-02 1.03925459e-01 3.33482414e-01 -1.17733407e+00
3.71580303e-01 -5.31757832e-01 8.12210202e-01 -7.99014568e-01
1.45581618e-01 -8.66239727e-01 -1.25225142e-01 7.97188163e-01
-1.92973554e-01 -3.87802124e-01 -1.16810851e-01 1.44395635e-01
-2.64010787e-01 -5.84975243e-01 1.49211466e+00 -5.41409254e-01
-5.75925171e-01 1.83467306e-02 -7.19490826e-01 -3.95988584e-01
1.52537072e+00 -9.79447663e-01 -3.19729745e-01 -1.83056697e-01
-9.53272998e-01 -1.27662271e-01 4.53777283e-01 -5.36580265e-01
8.75448465e-01 -9.15608108e-01 -4.39434618e-01 -8.03425163e-02
-4.95194256e-01 -3.20738852e-02 6.18384540e-01 1.34284067e+00
-1.04192424e+00 1.84549525e-01 -4.95743483e-01 -9.18238699e-01
-1.39659739e+00 2.00177789e-01 8.26201558e-01 -4.48794216e-01
-1.55435398e-01 8.90549302e-01 -1.28178000e-01 -2.25738704e-01
2.08840165e-02 -5.83143115e-01 -2.95984417e-01 1.69018134e-01
2.41543829e-01 6.77782893e-01 1.25447407e-01 -4.65642154e-01
-3.66933316e-01 7.72477448e-01 -2.30740700e-02 8.84238705e-02
9.45899844e-01 -1.90780777e-02 -4.89493251e-01 4.18179572e-01
1.09168065e+00 -4.44026321e-01 -1.01020753e+00 4.29369837e-01
-2.72292435e-01 -4.17240083e-01 3.75003397e-01 -1.26292384e+00
-1.21736932e+00 8.17340076e-01 1.33150136e+00 4.87827599e-01
1.40242815e+00 -1.83841512e-01 7.83634365e-01 -1.05443679e-01
-7.66871423e-02 -1.60983431e+00 7.58162439e-02 -7.89060369e-02
4.49694633e-01 -1.02919722e+00 1.84203655e-01 -5.06543756e-01
-7.73115814e-01 1.49913049e+00 9.85762537e-01 -8.66224319e-02
5.71539342e-01 4.56936568e-01 3.67204607e-01 -1.78274348e-01
-3.83833617e-01 -2.95104563e-01 2.56959766e-01 7.61263251e-01
2.55797088e-01 -8.29110667e-02 -7.43483484e-01 2.99561501e-01
9.87327173e-02 3.25552016e-01 6.02407098e-01 5.90335071e-01
-8.05963457e-01 -3.02112103e-01 -6.76150024e-01 9.81068432e-01
-6.41732931e-01 1.49158850e-01 -5.32461166e-01 8.60587895e-01
6.37469232e-01 8.36669207e-01 4.20301318e-01 -2.11394221e-01
8.14218298e-02 -1.24451734e-01 6.75555646e-01 -3.66821200e-01
-5.58741987e-01 2.24650413e-01 -3.33976239e-01 -3.58094960e-01
-4.22891408e-01 -3.96818876e-01 -1.23892379e+00 -1.19670607e-01
-4.57565993e-01 -7.23726600e-02 8.95520329e-01 8.31565320e-01
-2.61424929e-01 2.36160100e-01 6.15243137e-01 -6.06830716e-01
-3.54294032e-01 -1.02234471e+00 -9.20914710e-01 1.98819488e-01
-1.72590911e-01 -4.27819133e-01 -6.56997025e-01 2.39358827e-01] | [15.606273651123047, -3.0160486698150635] |
163a1a88-76ad-4640-a114-1aa072a8d814 | hd-bind-encoding-of-molecular-structure-with | 2303.15604 | null | https://arxiv.org/abs/2303.15604v1 | https://arxiv.org/pdf/2303.15604v1.pdf | HD-Bind: Encoding of Molecular Structure with Low Precision, Hyperdimensional Binary Representations | Publicly available collections of drug-like molecules have grown to comprise 10s of billions of possibilities in recent history due to advances in chemical synthesis. Traditional methods for identifying ``hit'' molecules from a large collection of potential drug-like candidates have relied on biophysical theory to compute approximations to the Gibbs free energy of the binding interaction between the drug to its protein target. A major drawback of the approaches is that they require exceptional computing capabilities to consider for even relatively small collections of molecules. Hyperdimensional Computing (HDC) is a recently proposed learning paradigm that is able to leverage low-precision binary vector arithmetic to build efficient representations of the data that can be obtained without the need for gradient-based optimization approaches that are required in many conventional machine learning and deep learning approaches. This algorithmic simplicity allows for acceleration in hardware that has been previously demonstrated for a range of application areas. We consider existing HDC approaches for molecular property classification and introduce two novel encoding algorithms that leverage the extended connectivity fingerprint (ECFP) algorithm. We show that HDC-based inference methods are as much as 90 times more efficient than more complex representative machine learning methods and achieve an acceleration of nearly 9 orders of magnitude as compared to inference with molecular docking. We demonstrate multiple approaches for the encoding of molecular data for HDC and examine their relative performance on a range of challenging molecular property prediction and drug-protein binding classification tasks. Our work thus motivates further investigation into molecular representation learning to develop ultra-efficient pre-screening tools. | ['Tajana S. Rosing', 'Niema Moshiri', 'Weihong Xu', 'Jaeyoung Kang', 'Behnam Khaleghi', 'Xiaohua Zhang', 'Jonathan E. Allen', 'Derek Jones'] | 2023-03-27 | null | null | null | null | ['molecular-docking', 'molecular-property-prediction'] | ['medical', 'miscellaneous'] | [ 4.69701231e-01 -4.49184030e-01 -6.37516856e-01 -3.36709052e-01
-1.08750629e+00 -6.23599529e-01 5.78476429e-01 8.74159217e-01
-3.56295317e-01 1.22735071e+00 -3.57311219e-01 -8.36088181e-01
-3.40544999e-01 -8.13238382e-01 -7.86630094e-01 -8.84908557e-01
-5.02924800e-01 6.36619329e-01 1.55505642e-01 1.65908728e-02
6.09380960e-01 9.03223515e-01 -1.38969564e+00 3.05703521e-01
7.45071769e-01 8.63071680e-01 1.33743314e-02 5.93286335e-01
9.84439552e-02 3.32951784e-01 -4.95467186e-01 -2.35569701e-01
-2.71922387e-02 -2.72265971e-01 -7.49489844e-01 -6.87243760e-01
7.20023513e-01 -5.85358702e-02 -2.41819955e-02 7.15173781e-01
8.38305891e-01 2.01764122e-01 9.47151065e-01 -6.12563550e-01
-3.16127837e-01 1.79234579e-01 -2.92643040e-01 1.34566456e-01
6.00187361e-01 1.08420238e-01 9.64148641e-01 -9.02096748e-01
6.32913351e-01 8.66673648e-01 7.78121889e-01 4.90206838e-01
-1.68339992e+00 -6.92513287e-01 -4.07594889e-01 2.59483606e-01
-1.53335583e+00 -3.39213043e-01 2.96816885e-01 -5.32941341e-01
1.59812653e+00 3.61269027e-01 5.44961631e-01 7.68707335e-01
4.52693492e-01 4.03454125e-01 9.71149445e-01 -3.55767399e-01
6.36975706e-01 -2.21644342e-02 1.45851672e-01 9.45489347e-01
6.58948123e-01 1.36346713e-01 -5.75513363e-01 -8.66724670e-01
4.13105667e-01 -2.46898048e-02 -2.96800286e-01 -4.37910110e-01
-8.91478777e-01 1.13814187e+00 4.22537863e-01 -1.64712854e-02
-3.22180271e-01 3.81108820e-01 3.54757905e-01 -1.44292377e-02
1.58820629e-01 1.02484560e+00 -6.70151651e-01 -4.21917439e-02
-9.38116968e-01 4.53844965e-01 1.00048864e+00 5.01735330e-01
7.17993915e-01 -7.55751804e-02 2.33962283e-01 4.89838958e-01
1.78680390e-01 2.05225438e-01 2.82765955e-01 -5.70441544e-01
1.39022768e-01 5.63201725e-01 6.74453750e-02 -9.06572998e-01
-5.41726053e-01 -3.52306545e-01 -6.79697454e-01 1.99170291e-01
3.33484650e-01 1.44989416e-01 -7.50211000e-01 1.40541399e+00
4.22722757e-01 1.08585700e-01 1.07336685e-01 3.69417727e-01
6.57059968e-01 7.10503280e-01 3.47369820e-01 -3.61776322e-01
1.08037996e+00 -3.38527679e-01 -1.96560860e-01 4.31154072e-01
9.63762343e-01 -7.11916924e-01 6.74471855e-01 5.91210365e-01
-7.52184808e-01 -5.43166585e-02 -1.46749568e+00 6.81536570e-02
-7.68258512e-01 -2.53383636e-01 1.37788916e+00 1.03640759e+00
-4.82261926e-01 1.24994946e+00 -8.56183946e-01 7.78309256e-02
7.86311865e-01 1.05689263e+00 -5.17484426e-01 -1.31252214e-01
-9.71626282e-01 9.32382166e-01 4.74053860e-01 -3.13859105e-01
-8.39639366e-01 -1.13716626e+00 -5.45170128e-01 -4.82843518e-02
1.38054146e-02 -5.43172538e-01 8.62791419e-01 -3.40052307e-01
-1.36928260e+00 4.40232843e-01 -1.39900848e-01 -4.72662956e-01
-1.54164925e-01 5.63829504e-02 -1.79398134e-01 2.14175686e-01
-2.06994042e-01 6.74434006e-01 2.96820462e-01 -7.15231478e-01
-2.82120794e-01 -3.67766023e-01 -2.54922003e-01 9.89878178e-03
-1.85521916e-01 -2.51084298e-01 -8.10544714e-02 -4.46202338e-01
-6.76088706e-02 -9.56818163e-01 -5.94813466e-01 -1.45942681e-02
-3.75637114e-01 -9.35915709e-02 5.73871374e-01 -1.36111110e-01
1.16265321e+00 -1.37803531e+00 1.92134693e-01 6.82085633e-01
2.38727301e-01 5.80754995e-01 -1.26369685e-01 8.13110828e-01
-2.07029074e-01 2.34795347e-01 -1.66038841e-01 2.06306234e-01
-3.73450160e-01 -4.62458357e-02 -3.04780424e-01 7.15117574e-01
6.28732070e-02 6.45300210e-01 -8.21006775e-01 -2.62041569e-01
9.75163281e-02 8.16415012e-01 -7.92637229e-01 -2.00979024e-01
-6.09676838e-01 2.80589700e-01 -6.38687611e-01 8.85101914e-01
6.68597460e-01 -5.11156142e-01 5.17782748e-01 -2.54058838e-01
-8.09103251e-02 5.55213928e-01 -7.96425939e-01 1.51043808e+00
-5.05845025e-02 2.25151092e-01 -7.23248243e-01 -9.97384429e-01
8.38648617e-01 3.00570011e-01 7.56218672e-01 -4.84223336e-01
-5.54024279e-02 6.38786972e-01 1.91341504e-01 5.16831540e-02
1.01450749e-01 -3.34906101e-01 1.80819318e-01 2.05956414e-01
8.71386230e-02 -9.02521536e-02 8.55501890e-02 -2.13728622e-02
1.27638137e+00 1.00574657e-01 5.66352487e-01 -2.84695894e-01
5.73974788e-01 3.50940675e-01 3.45539749e-01 5.49437582e-01
1.86927512e-01 8.54958817e-02 3.84502769e-01 -7.35184371e-01
-8.58244717e-01 -7.84329712e-01 -6.99752986e-01 9.27878141e-01
-1.38258845e-01 -7.60521173e-01 -5.91973960e-01 -3.02811891e-01
3.67287129e-01 2.64208347e-01 -3.46223861e-01 -1.73617765e-01
-3.75216961e-01 -1.29466891e+00 6.84039533e-01 2.83994138e-01
-2.79220436e-02 -4.96401459e-01 -3.58968019e-01 5.07834375e-01
5.83133042e-01 -6.73671365e-01 9.18309763e-02 7.24147141e-01
-1.02149856e+00 -1.27731693e+00 -4.76810604e-01 -6.70121074e-01
3.77148747e-01 3.64170969e-02 8.95697713e-01 7.63277262e-02
-7.34846115e-01 -1.75825983e-01 2.49719750e-02 -3.66864979e-01
-3.13890964e-01 1.47644222e-01 3.70483547e-01 -4.69461322e-01
6.65454686e-01 -7.49996841e-01 -8.84423137e-01 5.17135076e-02
-5.33220172e-01 -2.58114368e-01 7.21910775e-01 8.67554128e-01
1.07072592e+00 -9.20356065e-02 6.80775702e-01 -1.12475085e+00
5.77215850e-01 -5.01380920e-01 -8.42545509e-01 2.17265204e-01
-8.47084403e-01 4.29301530e-01 7.58159041e-01 -5.19630075e-01
-4.16304141e-01 5.24496615e-01 -3.31751943e-01 -9.06630233e-02
1.02893271e-01 7.83354878e-01 5.56693673e-02 -7.91941166e-01
8.79580498e-01 1.06255442e-01 -9.34510753e-02 -4.84584659e-01
1.73172906e-01 5.26055813e-01 2.11096123e-01 -1.00367773e+00
4.40694004e-01 1.71482116e-01 8.08378756e-01 -9.71407592e-01
-5.20337462e-01 -5.17753422e-01 -4.56044704e-01 3.33751559e-01
6.74375415e-01 -7.40154266e-01 -1.44543314e+00 -4.97957915e-02
-1.06445146e+00 -1.00107342e-01 2.44379595e-01 7.30365574e-01
-5.69382489e-01 3.47749263e-01 -5.10764539e-01 -5.47159314e-01
-5.09977698e-01 -1.40302920e+00 9.65565741e-01 4.13811691e-02
-3.17747086e-01 -1.12188840e+00 4.81633276e-01 1.35257170e-01
3.34867597e-01 6.60622656e-01 1.57308757e+00 -8.96634817e-01
-8.81240189e-01 -5.52035570e-01 5.48137911e-02 -1.15370549e-01
6.21536747e-02 -1.16510548e-01 -7.98295259e-01 -4.59563196e-01
-4.50659722e-01 -5.74269831e-01 9.13782477e-01 4.02669966e-01
1.29037023e+00 -2.65333712e-01 -7.27298975e-01 8.09144914e-01
1.74490428e+00 5.17468095e-01 7.04756200e-01 1.50411308e-01
5.53332865e-01 1.31948054e-01 4.45353925e-01 4.25725222e-01
-2.82254428e-01 8.82089794e-01 2.54259557e-01 -8.59096721e-02
2.05644011e-01 -2.78042167e-01 3.04254331e-02 2.75984794e-01
-4.29652274e-01 -1.83174938e-01 -8.89433265e-01 -7.55529702e-02
-1.44812918e+00 -1.07758081e+00 -1.23099342e-01 2.64804387e+00
1.42504561e+00 -2.41255201e-03 7.84868300e-02 -1.08342459e-02
2.63213366e-01 -2.94370949e-01 -8.32718015e-01 -5.63700318e-01
2.11368766e-04 1.04681277e+00 7.87211359e-01 5.51398575e-01
-1.14399731e+00 8.19021761e-01 7.22998953e+00 1.10896850e+00
-1.31061220e+00 -4.06609714e-01 8.10681641e-01 -1.25674373e-02
-1.70049906e-01 1.13524415e-01 -1.12035477e+00 2.18594223e-01
1.41488004e+00 -3.24448757e-02 2.16253534e-01 9.01870668e-01
-2.63484772e-02 -2.39404947e-01 -1.50495219e+00 1.08719397e+00
-2.25421384e-01 -2.15381432e+00 3.72792602e-01 4.04428035e-01
7.34121263e-01 1.24016581e-02 2.20296696e-01 -1.31851375e-01
1.19330272e-01 -1.58793485e+00 -9.58223343e-02 3.71980846e-01
1.05503011e+00 -8.99028182e-01 3.77717018e-01 9.54108611e-02
-9.86458302e-01 1.51351273e-01 -6.87737226e-01 4.41065021e-02
-2.88638055e-01 4.55721676e-01 -1.06923997e+00 3.05286527e-01
1.43250659e-01 5.11787474e-01 -5.03122091e-01 1.25695419e+00
3.78883332e-01 4.95491564e-01 -4.49232221e-01 -4.55727220e-01
3.94850105e-01 -2.13953093e-01 1.78749219e-01 1.13840377e+00
1.26808032e-01 3.86429913e-02 2.03000009e-01 4.92894024e-01
-1.81562960e-01 2.74905503e-01 -6.50068581e-01 -3.67492110e-01
5.84159970e-01 9.45725560e-01 -6.46158934e-01 -2.40329370e-01
-2.74734944e-01 6.46929860e-01 3.72077525e-01 1.26218200e-01
-7.20126212e-01 -5.93594849e-01 7.51499057e-01 1.49883226e-01
2.86666930e-01 -3.20101470e-01 -1.81136820e-02 -6.89132214e-01
-3.99414480e-01 -1.11981654e+00 2.98892796e-01 -8.78773704e-02
-1.14479947e+00 2.81547308e-01 -1.76206693e-01 -1.00368750e+00
-4.47870158e-02 -1.17676604e+00 -3.12532634e-01 9.90648210e-01
-1.43619430e+00 -7.37969816e-01 3.02694172e-01 4.64439720e-01
1.52740460e-02 -3.78861994e-01 1.51077664e+00 3.11030805e-01
-4.49635595e-01 5.95559657e-01 6.28915370e-01 -4.25506592e-01
6.09956920e-01 -1.15956521e+00 1.24352276e-01 4.84388992e-02
1.78460628e-01 1.16535616e+00 5.04934013e-01 -6.37769461e-01
-1.90834260e+00 -9.35759187e-01 6.92591846e-01 -4.37234521e-01
4.87378359e-01 -3.27381074e-01 -8.16084504e-01 1.43910676e-01
-3.37198049e-01 -5.84663451e-02 1.55482697e+00 2.76325017e-01
-6.71252966e-01 1.36264469e-02 -9.77775931e-01 3.84990305e-01
5.90045333e-01 -6.23810351e-01 2.88153179e-02 8.39279234e-01
3.59728634e-01 -2.94552356e-01 -1.18961072e+00 5.06436169e-01
7.49157012e-01 -6.41230106e-01 1.32953572e+00 -1.08917344e+00
6.68014288e-02 -3.64171803e-01 -3.40414464e-01 -6.91991031e-01
-2.04215914e-01 -8.60165596e-01 -2.71043420e-01 4.41121846e-01
7.29592443e-01 -4.85908389e-01 1.08604777e+00 5.63227475e-01
9.14695933e-02 -1.37233675e+00 -8.93230557e-01 -7.82940865e-01
4.22866106e-01 -1.11933284e-01 4.64705557e-01 8.75207663e-01
3.54235649e-01 6.56520665e-01 -2.19032392e-01 1.74714644e-02
5.56171715e-01 2.53562540e-01 4.99600947e-01 -1.35831630e+00
-6.47468567e-01 -4.10938650e-01 -8.26791346e-01 -9.25211668e-01
-7.26179928e-02 -1.14150798e+00 -4.57523495e-01 -1.19009972e+00
4.07750547e-01 -6.71827435e-01 -2.50501245e-01 4.67979968e-01
1.87337041e-01 3.17857563e-01 -4.54384625e-01 2.81210095e-01
-4.24369037e-01 2.46603400e-01 8.59057248e-01 -2.38178268e-01
-3.74770343e-01 2.81994715e-02 -6.40329838e-01 3.74908745e-01
8.13055158e-01 -5.31850517e-01 -3.80173296e-01 1.82168901e-01
4.98411268e-01 -1.05504856e-01 1.60896018e-01 -9.83215511e-01
1.77016780e-01 -2.82280713e-01 7.96516120e-01 -5.37577510e-01
5.35531104e-01 -4.64106113e-01 2.56919444e-01 7.72894144e-01
-2.94919848e-01 -2.94956982e-01 3.23714137e-01 7.69549072e-01
1.46463402e-02 -1.59671143e-01 1.00049376e+00 -1.46337664e-02
-3.13171685e-01 5.27399719e-01 -4.82523471e-01 -4.23740774e-01
1.03264105e+00 -2.94147521e-01 -2.77061373e-01 -3.00317053e-02
-4.53997135e-01 -2.60605007e-01 4.41101134e-01 -3.40228319e-01
7.08826005e-01 -1.08139765e+00 -2.29547694e-01 -1.13132715e-01
1.21069923e-01 -4.51043457e-01 -2.43432134e-01 6.59264624e-01
-9.75605190e-01 9.64656472e-01 -2.51435558e-03 -4.58891958e-01
-1.36315608e+00 7.22590327e-01 4.77418065e-01 -2.11214751e-01
-2.85385668e-01 6.70730054e-01 -1.82031602e-01 -2.62510087e-02
1.60067081e-01 -5.05731814e-02 1.13770708e-01 -1.50629893e-01
5.97841799e-01 2.81800926e-01 3.36369604e-01 -4.06804025e-01
-6.48218691e-01 5.74671090e-01 -4.36821818e-01 4.10347849e-01
1.47662866e+00 8.65250170e-01 -2.72117392e-03 -9.22271311e-02
1.62875175e+00 -2.12898791e-01 -8.29398036e-01 1.07217923e-01
3.03151906e-01 -3.74896139e-01 1.96075603e-01 -8.70726109e-01
-3.35180372e-01 8.64240348e-01 7.54029512e-01 -4.14637834e-01
6.54470026e-01 -2.20066756e-02 6.24770582e-01 1.11160493e+00
4.55546528e-01 -8.35228324e-01 5.34580275e-02 2.20989540e-01
4.58682239e-01 -1.03750622e+00 6.84110224e-01 -4.47376072e-01
-5.39319403e-03 1.34801269e+00 9.49526355e-02 6.09255992e-02
6.59439862e-01 1.19198114e-01 -5.95485568e-01 -5.25906980e-01
-7.53029406e-01 -3.53364795e-02 3.72920454e-01 6.45705581e-01
8.73846412e-01 5.98047189e-02 -4.56526399e-01 8.05637464e-02
8.39267746e-02 -1.70142487e-01 1.38200462e-01 1.10783386e+00
-7.02316344e-01 -1.70256639e+00 2.07476560e-02 4.46854740e-01
-6.77237570e-01 -4.29584801e-01 -6.06656611e-01 6.30401969e-01
1.00981575e-02 5.85082471e-01 -2.30994850e-01 -2.31357664e-01
-6.27700463e-02 8.95211250e-02 8.93963397e-01 -6.44887567e-01
-2.93917090e-01 3.25198546e-02 1.06099896e-01 -5.75733960e-01
-5.01111686e-01 -3.80738795e-01 -1.46775270e+00 -5.00346839e-01
-6.12625539e-01 3.68195266e-01 7.71727741e-01 6.72122180e-01
6.41776741e-01 -3.72344777e-02 3.98026288e-01 -9.32309985e-01
-4.95049864e-01 -2.61894554e-01 -3.84414196e-01 5.02951629e-02
8.33198354e-02 -8.14155936e-01 7.30210841e-02 -1.21989086e-01] | [5.108695983886719, 5.6297407150268555] |
00efcb8a-c83f-402b-ab25-b6beb35e8bfd | post-training-model-quantization-using-gans | 2305.06052 | null | https://arxiv.org/abs/2305.06052v1 | https://arxiv.org/pdf/2305.06052v1.pdf | Post-training Model Quantization Using GANs for Synthetic Data Generation | Quantization is a widely adopted technique for deep neural networks to reduce the memory and computational resources required. However, when quantized, most models would need a suitable calibration process to keep their performance intact, which requires data from the target domain, such as a fraction of the dataset used in model training and model validation (i.e. calibration dataset). In this study, we investigate the use of synthetic data as a substitute for the calibration with real data for the quantization method. We propose a data generation method based on Generative Adversarial Networks that are trained prior to the model quantization step. We compare the performance of models quantized using data generated by StyleGAN2-ADA and our pre-trained DiStyleGAN, with quantization using real data and an alternative data generation method based on fractal images. Overall, the results of our experiments demonstrate the potential of leveraging synthetic data for calibration during the quantization process. In our experiments, the percentage of accuracy degradation of the selected models was less than 0.6%, with our best performance achieved on MobileNetV2 (0.05%). The code is available at: https://github.com/ThanosM97/gsoc2022-openvino | ['Raymond Lo', 'Zhuo Wu', 'Alexander Kozlov', 'Adrian Boguszewski', 'Mansi Sharma', 'Athanasios Masouris'] | 2023-05-10 | null | null | null | null | ['synthetic-data-generation', 'synthetic-data-generation'] | ['medical', 'miscellaneous'] | [ 2.63045073e-01 3.01698565e-01 6.33196309e-02 -2.39695713e-01
-7.47666597e-01 -5.64934850e-01 7.41026282e-01 -9.55176875e-02
-7.03111410e-01 8.43812883e-01 -2.18505070e-01 -3.75562608e-01
4.46292818e-01 -1.05297136e+00 -9.98142779e-01 -6.28078759e-01
2.26962775e-01 4.06602055e-01 1.13491505e-01 -1.23556815e-01
3.90444621e-02 3.74791533e-01 -1.32227206e+00 1.85058475e-01
9.67219293e-01 1.18909693e+00 1.51341736e-01 7.34404266e-01
1.90261751e-02 6.65721893e-01 -1.16540205e+00 -5.80538213e-01
4.81063902e-01 -5.52301407e-01 -4.15531665e-01 -7.66014606e-02
4.49105382e-01 -6.19122088e-01 -3.78998876e-01 1.21155643e+00
6.69745505e-01 -1.08773775e-01 5.32058060e-01 -1.43443871e+00
-5.07641733e-01 5.63216209e-01 6.96093142e-02 -1.49529185e-02
-2.24583328e-01 4.46443260e-01 4.90667939e-01 -6.66909814e-01
6.01813078e-01 1.06620347e+00 6.79172635e-01 8.74906003e-01
-1.42291653e+00 -1.14243233e+00 -5.02255380e-01 -3.69334556e-02
-1.62827325e+00 -8.14600050e-01 8.32591176e-01 -4.18967009e-01
5.26859283e-01 -4.00404399e-03 7.21096277e-01 1.45892286e+00
9.94623303e-02 3.13411683e-01 1.03023624e+00 -4.97017354e-01
6.67574108e-01 4.19285506e-01 -3.41560990e-01 3.93347949e-01
3.68305415e-01 2.80874550e-01 -1.61778659e-01 -9.51343775e-02
8.83461475e-01 -2.91866094e-01 -3.52684170e-01 -1.99385583e-01
-7.54029751e-01 1.11063862e+00 5.54841340e-01 1.37335956e-01
-3.31839442e-01 4.57091123e-01 4.01118964e-01 3.64808947e-01
4.74150002e-01 3.15958560e-01 -3.32621098e-01 -1.42358646e-01
-1.18186426e+00 2.40816936e-01 6.56985760e-01 1.07396495e+00
7.60878861e-01 4.69839603e-01 2.23901160e-02 7.55658746e-01
2.73305982e-01 5.41549027e-01 8.93800557e-01 -1.02671778e+00
4.74610806e-01 3.84238541e-01 -5.55513464e-02 -8.99299741e-01
2.45989725e-01 -4.32089657e-01 -8.55492830e-01 3.04350883e-01
4.24783707e-01 -3.05778205e-01 -1.21645296e+00 1.81547666e+00
1.76409453e-01 3.03573847e-01 3.24900329e-01 4.63518560e-01
7.11198807e-01 4.98060077e-01 2.74291337e-02 1.27108142e-01
8.11429560e-01 -9.31833267e-01 -5.86068332e-01 -4.59515490e-02
8.13775718e-01 -5.94318986e-01 1.26259601e+00 2.57664055e-01
-8.93493176e-01 -7.02274680e-01 -1.40447974e+00 1.43623441e-01
-3.88591796e-01 6.16554208e-02 1.70117676e-01 1.03216648e+00
-1.31960404e+00 7.34789968e-01 -8.58779848e-01 -2.44604260e-01
6.68698013e-01 3.34406227e-01 -2.50742406e-01 -8.95576030e-02
-1.43892205e+00 6.33360803e-01 7.84287572e-01 -2.51313984e-01
-9.78207588e-01 -6.49172664e-01 -7.01240480e-01 -2.16572598e-01
-9.46454480e-02 -2.84434557e-01 1.21882939e+00 -1.23864675e+00
-1.51017332e+00 5.86761713e-01 2.90171802e-01 -9.86288488e-01
9.34891701e-01 -1.05964623e-01 -2.77564049e-01 1.94469094e-01
-1.53813839e-01 1.13671494e+00 9.04348016e-01 -1.33456826e+00
-2.87175179e-01 1.06383830e-01 6.96563274e-02 -2.76547998e-01
-5.05373418e-01 -3.94193828e-01 -4.06762779e-01 -7.06184328e-01
-1.87240750e-01 -1.16416144e+00 1.28473192e-02 2.75109913e-02
-1.74009532e-01 2.20197037e-01 9.10210133e-01 -8.17970932e-01
1.03557086e+00 -2.19750285e+00 -5.30452430e-01 2.63061225e-01
1.14569671e-01 6.44682884e-01 -1.99126959e-01 2.84485459e-01
-1.23096988e-01 6.37329340e-01 -4.03139919e-01 -5.51037788e-01
-1.62797093e-01 2.64367968e-01 -3.96052361e-01 2.97519833e-01
2.95665294e-01 9.26090777e-01 -7.55462408e-01 -3.15484554e-01
2.06658393e-01 8.21041822e-01 -5.90478241e-01 2.52929538e-01
-2.32807755e-01 4.02927756e-01 5.97890103e-05 3.71225148e-01
7.16938972e-01 -1.34377733e-01 2.59456839e-02 -1.59160614e-01
2.93587118e-01 3.57439220e-01 -9.97807205e-01 1.50198686e+00
-5.79186976e-01 7.87250102e-01 -2.93884814e-01 -5.58554351e-01
1.04385185e+00 4.10249472e-01 1.57079026e-01 -7.78961182e-01
2.63825148e-01 3.11171860e-01 1.38671845e-02 8.18631425e-02
4.15317655e-01 1.11794233e-01 2.33082369e-01 2.02606112e-01
1.57810405e-01 -3.55226964e-01 2.02302545e-01 1.67703331e-01
9.63381112e-01 -6.02554902e-02 8.70645717e-02 -2.33311858e-02
1.19588226e-01 1.23606496e-01 4.66822118e-01 6.11011446e-01
-1.89920276e-01 7.46598601e-01 3.66133332e-01 -1.28929257e-01
-1.55195081e+00 -7.21480191e-01 -1.76080674e-01 3.48302931e-01
-1.88718945e-01 -4.93895769e-01 -1.22314799e+00 -6.23922408e-01
-3.45372558e-01 1.06831849e+00 -5.89748859e-01 -4.58762437e-01
-4.20187354e-01 -4.71179575e-01 1.08952844e+00 3.47361416e-01
9.95324194e-01 -9.22690153e-01 -6.43438816e-01 1.83051899e-01
-8.71480405e-02 -1.10783553e+00 -2.72269428e-01 1.46556199e-01
-9.23524320e-01 -7.93189824e-01 -7.23617494e-01 -4.23435777e-01
6.19074285e-01 -9.26929712e-02 1.03113806e+00 2.16684401e-01
3.26748133e-01 -4.35556583e-02 -4.94013727e-01 -4.03284371e-01
-1.05132675e+00 2.27033690e-01 5.49974153e-03 -1.80495098e-01
1.18819296e-01 -6.46020293e-01 -5.84631443e-01 1.73139751e-01
-1.20728409e+00 2.75228649e-01 4.64617908e-01 9.58808422e-01
6.05431139e-01 1.04119040e-01 4.33267206e-01 -8.47839892e-01
6.04405761e-01 -4.79695767e-01 -7.62652159e-01 -8.25441070e-03
-7.55303860e-01 3.56899127e-02 8.81326973e-01 -7.84588516e-01
-4.84277844e-01 -7.58788437e-02 -2.75307566e-01 -9.76770878e-01
-8.16538110e-02 3.45963717e-01 -3.38223606e-01 -2.21368805e-01
9.14529502e-01 1.76983595e-01 1.34326652e-01 -2.86271572e-01
2.58330911e-01 8.08598578e-01 2.98432738e-01 -2.45877817e-01
8.47037554e-01 1.70373052e-01 -2.54809290e-01 -6.49150550e-01
-3.15628916e-01 3.62625211e-01 -4.76284385e-01 -5.15081212e-02
6.36103690e-01 -9.72094297e-01 -9.68695506e-02 6.33666933e-01
-1.08617282e+00 -8.35068166e-01 -3.89462054e-01 2.97304541e-01
-3.65037531e-01 7.30420500e-02 -4.41868424e-01 -6.16016746e-01
-5.08434474e-01 -1.28184402e+00 6.96612298e-01 1.23561155e-02
-1.14247836e-01 -1.09066272e+00 -1.11624505e-02 2.37473741e-01
6.17186368e-01 6.07108533e-01 6.56644464e-01 -8.55975449e-01
-4.41208392e-01 -3.01310062e-01 -1.63865909e-02 8.90029728e-01
1.98000669e-01 1.51541546e-01 -1.19414580e+00 -5.34607887e-01
1.69837669e-01 -5.57883799e-01 7.08151877e-01 9.91658308e-03
1.16753387e+00 -5.99801123e-01 5.43221831e-02 7.82559156e-01
1.41518903e+00 3.91368181e-01 8.21205556e-01 4.44705039e-01
7.05929875e-01 1.30993903e-01 4.11534637e-01 2.52195090e-01
1.65745392e-01 6.00520611e-01 6.08542621e-01 -3.93097587e-02
-3.88542354e-01 -5.70996046e-01 2.99567074e-01 8.13359976e-01
3.64939779e-01 -3.97781670e-01 -1.15276814e+00 4.07911241e-01
-1.29245055e+00 -7.55000949e-01 1.81562573e-01 2.34342074e+00
1.09458125e+00 3.80339801e-01 -1.42131940e-01 5.27438402e-01
7.83859909e-01 -3.31556201e-02 -5.32632411e-01 -2.63061196e-01
6.19613379e-03 3.73648077e-01 8.13363016e-01 4.26227450e-01
-1.06621134e+00 9.51653957e-01 5.81141376e+00 1.07708812e+00
-1.53558743e+00 1.94520354e-01 9.44797516e-01 -7.59889185e-02
-2.19898358e-01 -1.62095472e-01 -6.58753037e-01 8.79451931e-01
1.63282859e+00 6.70155436e-02 5.36668718e-01 8.25302243e-01
2.43855596e-01 1.54890046e-01 -9.75022674e-01 9.53475654e-01
-1.40935391e-01 -1.38182724e+00 1.94310859e-01 3.76871377e-01
9.23217177e-01 1.68348208e-01 1.30599976e-01 2.14704290e-01
3.51535022e-01 -1.10690784e+00 1.10009944e+00 2.66043872e-01
1.23564959e+00 -7.89119124e-01 8.32637489e-01 3.04798752e-01
-8.15187514e-01 1.29992977e-01 -4.17038411e-01 2.50165910e-01
-2.72103488e-01 6.47085905e-01 -1.31166208e+00 2.66886234e-01
4.29246545e-01 3.60820830e-01 -8.01145434e-01 7.41446316e-01
-2.50600249e-01 1.05511463e+00 -4.27546561e-01 2.39175707e-01
1.15470402e-01 -3.64134610e-02 9.06264409e-02 8.70391190e-01
5.37019730e-01 -2.98927963e-01 -2.05956027e-01 8.87575686e-01
-4.84079331e-01 -7.30901062e-02 -6.61075115e-01 -1.91774026e-01
9.35792506e-01 7.79468477e-01 -5.24111807e-01 -4.47179288e-01
-1.20946057e-01 8.36115420e-01 1.24259219e-01 2.36358494e-01
-1.11108005e+00 -4.53660727e-01 3.33867580e-01 2.14273274e-01
2.88127542e-01 -1.79075345e-01 -3.59199613e-01 -1.02439225e+00
9.35728922e-02 -1.19575155e+00 -1.28780022e-01 -6.34696484e-01
-8.15185308e-01 8.25494468e-01 -9.23508406e-02 -1.36410546e+00
-4.59559888e-01 -2.65821576e-01 -4.68527108e-01 1.07437634e+00
-1.40924597e+00 -9.62764502e-01 -5.18300712e-01 4.15484339e-01
4.09926027e-01 -2.96862960e-01 8.91695142e-01 3.54991466e-01
-4.46177125e-01 1.00612140e+00 4.98841017e-01 2.89617926e-01
5.36264956e-01 -9.71845806e-01 8.38577092e-01 8.62169027e-01
9.26909745e-02 4.93878067e-01 6.67399168e-01 -6.11943066e-01
-9.30990756e-01 -1.56470490e+00 5.62363863e-01 -1.51113436e-01
4.40008849e-01 -5.25317848e-01 -9.81310606e-01 5.00311613e-01
1.17135502e-01 3.14433388e-02 5.94282508e-01 -6.81375206e-01
-2.55567372e-01 -1.92868710e-01 -1.49825060e+00 5.55840254e-01
7.00527847e-01 -4.79164660e-01 -1.74511194e-01 5.15755787e-02
9.30676520e-01 -4.70794559e-01 -1.10494041e+00 3.24836671e-01
4.42491114e-01 -8.18677425e-01 6.73770010e-01 -9.05980021e-02
5.11687994e-01 -2.01066703e-01 -4.10732687e-01 -1.42747140e+00
1.63117453e-01 -3.73613536e-01 -2.07221702e-01 1.46817648e+00
4.10200357e-01 -7.05190659e-01 8.91638756e-01 6.21364474e-01
1.74863547e-01 -6.05657041e-01 -9.57280695e-01 -8.95244658e-01
2.78825015e-01 -4.60627824e-01 7.10426152e-01 9.54898119e-01
-8.20509732e-01 -1.65396277e-03 -1.91232324e-01 -4.86630052e-02
6.17569625e-01 -6.50812209e-01 1.01521313e+00 -9.25590336e-01
-3.09512317e-01 -7.60304928e-02 -5.37058413e-01 -7.22603738e-01
1.08051606e-01 -8.06437850e-01 -1.77193806e-01 -1.20748675e+00
-3.04875374e-01 -6.29337788e-01 -1.15779154e-01 4.52932060e-01
1.14549704e-01 4.99161452e-01 4.64271486e-01 4.92147446e-01
1.08284369e-01 6.54901564e-01 1.10940135e+00 -2.14103356e-01
-1.47573560e-01 -2.16707766e-01 -5.19064724e-01 3.76822203e-01
1.34806001e+00 -7.48249114e-01 -7.61061311e-01 -5.06363034e-01
-2.21548527e-01 -1.94377825e-01 4.62163985e-01 -1.50438511e+00
-1.02963574e-01 1.37453392e-01 3.95769179e-01 -2.22666070e-01
5.02770722e-01 -7.58432746e-01 5.03914535e-01 7.22944140e-01
-3.21957111e-01 1.99821573e-02 4.01049525e-01 2.85603315e-01
-1.95021927e-01 -3.72680843e-01 1.02144015e+00 2.04615714e-03
-4.10487056e-01 1.43058702e-01 -6.41692206e-02 1.61087394e-01
8.76098692e-01 -3.02504689e-01 -3.55689317e-01 -4.36036170e-01
-4.74691242e-01 -1.81999177e-01 9.33299124e-01 1.50677606e-01
6.72305226e-01 -1.44355428e+00 -6.17064834e-01 2.67156005e-01
-4.51708883e-02 1.97332442e-01 -2.14936107e-01 3.08737934e-01
-8.74628961e-01 3.57631475e-01 -3.13713849e-01 -5.66524267e-01
-1.09137082e+00 4.08935487e-01 5.45743227e-01 -1.32438987e-01
-3.22603554e-01 5.59228957e-01 -1.80608764e-01 -3.58912617e-01
1.48860842e-01 -4.26338971e-01 6.84881806e-02 -2.06632346e-01
3.11838984e-01 1.86801180e-01 3.34062457e-01 -5.52474797e-01
-1.51496738e-01 -5.51206060e-02 6.93280846e-02 -4.10567373e-01
1.08399796e+00 1.80025443e-01 2.58593351e-01 4.21169519e-01
1.37682784e+00 -2.34545901e-01 -1.57477224e+00 -7.55935162e-02
-3.08599591e-01 -3.64444494e-01 1.34152055e-01 -6.86725438e-01
-1.27133834e+00 9.62916315e-01 1.04384148e+00 2.55503833e-01
1.13619304e+00 -4.65846270e-01 6.87058687e-01 2.94015378e-01
4.36197042e-01 -7.28203833e-01 -1.07921787e-01 3.94860923e-01
9.37371552e-01 -1.14388132e+00 -3.16951603e-01 -2.91307736e-02
-4.96414989e-01 8.05399537e-01 5.00547409e-01 -1.72711357e-01
4.95792300e-01 9.92364138e-02 3.16115141e-01 3.04324448e-01
-7.27944672e-01 2.86803812e-01 -9.11026523e-02 6.71184719e-01
2.68557340e-01 -1.07442494e-02 -6.74978718e-02 3.17589521e-01
-6.78696692e-01 4.00445573e-02 6.33683920e-01 9.96003747e-01
-1.87753946e-01 -1.15564859e+00 -4.32223558e-01 4.01590347e-01
-4.87120092e-01 -4.18501139e-01 -3.51625711e-01 8.86402845e-01
3.43678802e-01 9.93532479e-01 1.44492701e-01 -7.46245861e-01
2.11684600e-01 1.47775590e-01 2.03841567e-01 -3.82774144e-01
-5.44163585e-01 -1.71281472e-01 1.02424044e-02 -3.13776314e-01
-2.42993772e-01 -3.94475639e-01 -9.92703676e-01 -5.91509998e-01
-3.22153717e-01 1.11275479e-01 9.69863832e-01 5.67897439e-01
4.46607053e-01 5.50872564e-01 6.31418824e-01 -8.58524859e-01
-6.81721270e-01 -1.18142545e+00 -1.91604301e-01 3.97051990e-01
2.24999592e-01 -5.30981421e-01 -4.25651282e-01 3.31332117e-01] | [8.782267570495605, 2.9094738960266113] |
91cd5b67-acbe-4f27-99bb-61c13930ed0c | prokaryotic-genome-editing-based-on-the | 2305.05093 | null | https://arxiv.org/abs/2305.05093v1 | https://arxiv.org/pdf/2305.05093v1.pdf | Prokaryotic genome editing based on the subtype I-B-Svi CRISPR-Cas system | Type I CRISPR-Cas systems are the most common among six types of CRISPR-Cas systems, however, non-self-targeting genome editing based on a single Cas3 of type I CRISPR-Cas systems has not been reported. Here, we present the subtype I-B-Svi CRISPR-Cas system (with three confirmed CRISPRs and a cas gene cluster) and genome editing based on this system found in Streptomyces virginiae IBL14. Importantly, like the animal-derived bacterial protein SpCas9 (1368 amino-acids), the single, compact, non-animal-derived bacterial protein SviCas3 (771 amino-acids) can also direct template-based microbial genome editing through the target cell's own homology-directed repair system, which breaks the view that the genome editing based on type I CRISPR-Cas systems requires a full Cascade. Notably, no off-target changes or indel-formation were detected in the analysis of potential off-target sites. This discovery broadens our understanding of the diversity of type I CRISPR-Cas systems and will facilitate new developments in genome editing tools. | ['Xue Li', 'Yan Sun', 'Su-Li Cao', 'Qing-Yang Liu', 'Ting-Ting Xia', 'Xing-Wang Yang', 'Yan Zhang', 'Cai-Hua Qiu', 'Xin Xu', 'De-Xiang Yong', 'Wang-Yu Tong'] | 2023-05-08 | null | null | null | null | ['type'] | ['speech'] | [ 1.08717310e+00 -2.43343581e-02 8.49313214e-02 3.54010224e-01
-3.75775278e-01 -1.64748490e+00 4.55698192e-01 6.64083600e-01
-1.57412440e-01 8.82690012e-01 -2.55621105e-01 -6.92467451e-01
-1.52628243e-01 -6.34277701e-01 -1.28488266e+00 -8.66682291e-01
2.15968322e-02 -2.44588912e-01 5.17404795e-01 -5.28676987e-01
7.09181249e-01 5.50174534e-01 -1.16225040e+00 4.76700425e-01
1.19316614e+00 6.10344447e-02 9.50381219e-01 8.91025364e-01
-1.55493960e-01 3.01106423e-01 -7.32712746e-01 1.05120331e-01
1.53017774e-01 -1.05161953e+00 1.11134939e-01 -1.07820332e+00
-2.55966276e-01 -1.56445205e-01 3.39239717e-01 6.86890006e-01
3.48722339e-01 -1.79404706e-01 8.34584713e-01 -8.65314841e-01
-9.22974586e-01 1.08432405e-01 -2.33075261e-01 -4.62573498e-01
7.77602196e-01 6.28231466e-02 1.52403623e-01 -8.57418001e-01
1.20747221e+00 8.99085581e-01 7.61952400e-01 2.44509086e-01
-6.30957246e-01 6.54050782e-02 -3.61513495e-01 -3.59106928e-01
-1.21421170e+00 4.75987680e-02 1.44283712e-01 -9.19309378e-01
1.39442170e+00 4.61697161e-01 1.17684257e+00 6.87704444e-01
9.89471555e-01 -5.31283021e-02 1.13224697e+00 -4.66821223e-01
4.92159337e-01 -4.77516949e-01 -2.76460499e-01 3.60234618e-01
1.04453218e+00 2.27693051e-01 -4.86957997e-01 -4.30905074e-01
1.02278125e+00 4.49067578e-02 -3.31887603e-02 -2.49755844e-01
-1.41509557e+00 6.45588815e-01 -1.69067755e-01 1.63780019e-01
-5.89483678e-01 -3.86937559e-01 6.11284673e-01 -2.15279698e-01
-9.11965966e-01 8.68353426e-01 -3.18448931e-01 -3.93554896e-01
1.74087256e-01 -1.50203884e-01 7.72477806e-01 8.95713151e-01
1.52516440e-01 1.72254816e-01 7.38999099e-02 6.70075774e-01
-1.38492689e-01 6.21233404e-01 2.97231674e-01 -5.18474519e-01
-3.81813824e-01 4.71551418e-01 4.44100529e-01 -6.47683680e-01
-2.03462690e-01 3.67803246e-01 -4.48571295e-01 2.13893175e-01
1.07306218e+00 -4.40298289e-01 -5.39149642e-01 1.44308710e+00
5.80149770e-01 -4.23658639e-01 3.08523148e-01 6.27287507e-01
2.80263990e-01 6.06730700e-01 -3.37295771e-01 -3.22305739e-01
1.41093016e+00 -4.30179656e-01 -5.78232586e-01 5.56787550e-01
3.71772468e-01 -9.34112549e-01 7.84810841e-01 4.85131472e-01
-6.95200503e-01 1.31880939e-02 -1.17080152e+00 1.74039155e-01
-5.24493515e-01 6.18186267e-03 3.26447010e-01 9.22866225e-01
-3.84246767e-01 2.60898858e-01 -8.04613829e-01 -9.48953509e-01
-3.33973378e-01 -6.64523393e-02 -2.13092491e-01 8.97382200e-02
-5.97618401e-01 1.16319072e+00 5.90618014e-01 -1.25143796e-01
-1.44176447e+00 -5.68944275e-01 -1.98908031e-01 -9.82690006e-02
4.70107019e-01 -3.90758455e-01 4.47325915e-01 -2.03135133e-01
-2.16278124e+00 6.46008611e-01 2.59782802e-02 -8.09271261e-02
1.51269272e-01 -2.41142750e-01 -1.51832178e-01 1.78435341e-01
-2.84823421e-02 -1.38734549e-01 5.30191213e-02 -1.08187675e+00
-2.67376482e-01 1.38297640e-02 -9.87127572e-02 -3.98631334e-01
7.03786373e-01 6.13353610e-01 4.40537959e-01 -1.13022768e+00
-2.56520897e-01 -1.04633844e+00 -2.17428520e-01 -3.03875189e-02
-5.27426124e-01 1.32319987e-01 3.12188089e-01 -6.36083603e-01
2.54812241e-01 -2.11408520e+00 -3.19847018e-01 3.08664590e-01
-8.44565749e-01 9.96878624e-01 -6.69904709e-01 1.49781537e+00
-2.03863114e-01 3.83549720e-01 -2.91407943e-01 1.93138301e+00
-1.21173367e-01 -3.00493658e-01 -8.61547738e-02 4.25369322e-01
2.77062684e-01 6.45661891e-01 -1.10710979e+00 4.81043994e-01
2.66016424e-01 7.80685067e-01 -7.34008610e-01 2.62323111e-01
-1.60730883e-01 7.85473645e-01 -4.97027040e-01 6.23714447e-01
6.58690989e-01 1.47289783e-01 8.47477019e-01 1.02458179e-01
-9.66263950e-01 7.46383145e-02 -7.39256620e-01 1.99359488e+00
2.48134017e-01 2.74994254e-01 -2.93277591e-01 -5.54895699e-01
9.05945897e-01 2.29912803e-01 1.30028769e-01 -2.01865390e-01
-1.32030040e-01 2.58258045e-01 1.36267826e-01 -5.48716635e-02
-5.16248643e-02 1.56219289e-01 1.40667796e-01 5.94324209e-02
-2.88080543e-01 2.26522889e-02 2.33887717e-01 3.25332969e-01
1.08557653e+00 6.13126397e-01 9.53287303e-01 -3.89846742e-01
2.07166046e-01 5.86323738e-01 6.82295680e-01 1.46672893e+00
1.34972166e-02 5.51502824e-01 7.46037126e-01 3.41699988e-01
-1.15982628e+00 -1.14632380e+00 -2.22120792e-01 9.86615777e-01
3.04247588e-01 -3.73570591e-01 -1.08720160e+00 1.49130821e-01
-4.41513881e-02 8.23397756e-01 -2.41795033e-01 -1.40977621e-01
-5.20526826e-01 -4.88870949e-01 1.44845355e+00 -4.08916399e-02
-9.43822041e-02 -4.86099541e-01 -8.91447365e-01 5.35248816e-01
-6.60816431e-02 -3.49092036e-01 -2.30951503e-01 2.25114673e-01
1.49771899e-01 -1.92764163e+00 -9.06600833e-01 -8.72649074e-01
4.96384352e-01 3.68973106e-01 -3.04387440e-03 -1.41886976e-02
-5.39376199e-01 2.21278384e-01 -6.65433943e-01 -8.87303770e-01
-6.57931507e-01 -5.73361993e-01 -3.94026190e-02 -9.49474990e-01
-4.86226566e-03 -7.42865726e-02 -3.74864817e-01 2.88041323e-01
-9.40596163e-01 -2.30347395e-01 5.39758503e-01 1.04729760e+00
6.46188319e-01 -6.36199832e-01 1.11673510e+00 -7.47038305e-01
3.14320594e-01 -5.25190890e-01 -9.40816998e-01 7.62462556e-01
-1.08737819e-01 -5.39431334e-01 7.13576615e-01 -3.55941027e-01
-1.85737872e+00 4.76259552e-02 -3.13424468e-01 1.06171346e+00
-3.65994513e-01 6.04801834e-01 -3.88108075e-01 -3.12382519e-01
9.58687603e-01 6.76976681e-01 2.63180405e-01 -2.14942053e-01
5.64456642e-01 3.08073193e-01 7.31070042e-01 -5.83691120e-01
5.13251424e-01 1.20917924e-01 -1.14777964e-02 -1.23958898e+00
-1.14556022e-01 -3.42421472e-01 -4.54454839e-01 4.16104607e-02
1.37363029e+00 -9.43535030e-01 -8.23001921e-01 1.25791490e+00
-1.21427262e+00 -3.38674664e-01 -2.26883247e-01 6.02895439e-01
-7.15992630e-01 4.33884829e-01 -9.41791177e-01 -6.02049589e-01
7.96118081e-02 -9.07636821e-01 6.03255868e-01 4.32197414e-02
1.23488724e-01 -2.05647022e-01 6.31734371e-01 -2.05192462e-01
4.64271665e-01 1.04469812e+00 1.10789347e+00 -9.43507195e-01
-8.32289934e-01 -2.71798228e-04 -4.30370010e-02 1.11191012e-01
6.09458327e-01 5.91848791e-01 -1.94873773e-02 -2.05824915e-02
-2.11915061e-01 -1.94250286e-01 5.82401216e-01 3.63760889e-01
2.03647733e-01 -3.57869118e-01 -2.45074809e-01 3.13118547e-01
1.73515666e+00 1.12925351e+00 6.36979878e-01 6.39618814e-01
7.37462997e-01 -1.25962734e-01 1.24603975e+00 3.31630796e-01
-2.51088828e-01 4.17019248e-01 2.35422224e-01 2.96848923e-01
1.90169021e-01 -2.00532883e-01 6.66620135e-01 3.36833328e-01
-3.35946649e-01 -4.56328005e-01 -9.17003393e-01 2.08567217e-01
-1.21724856e+00 -1.00060904e+00 -6.60610139e-01 2.48924112e+00
9.69767809e-01 -8.22887421e-01 -7.07497373e-02 -1.64267749e-01
8.97684038e-01 -5.53604603e-01 -7.69976556e-01 -5.16976058e-01
-8.58747303e-01 5.45228064e-01 5.26432037e-01 1.56051263e-01
-8.50232482e-01 6.40235186e-01 7.43434715e+00 3.15168679e-01
-8.55942905e-01 -3.03715736e-01 -5.13968945e-01 7.83294812e-02
-2.15535909e-01 5.66613257e-01 -4.40584272e-01 2.66510129e-01
7.16969311e-01 -5.40913880e-01 5.21356046e-01 6.06503546e-01
2.68863320e-01 -3.70582074e-01 -8.25204551e-01 2.41983905e-01
-4.65331934e-02 -2.02995276e+00 -8.79361778e-02 2.46504560e-01
9.34798598e-01 -4.56822105e-02 -5.19370914e-01 -4.95791703e-01
6.24600768e-01 -7.47063279e-01 5.72480321e-01 7.51909733e-01
8.31324041e-01 -7.71400094e-01 4.67518538e-01 3.59753728e-01
-6.76546216e-01 1.29396453e-01 -5.25912941e-01 -7.72043616e-02
3.28409106e-01 8.30385327e-01 -9.03653026e-01 5.77216506e-01
2.64741361e-01 2.19984293e-01 -3.54460441e-03 1.07669771e+00
-6.02150440e-01 5.60926437e-01 -1.71372294e-01 -3.10925245e-01
-3.95689040e-01 -5.81571877e-01 1.03375936e+00 1.41705322e+00
1.00107574e+00 5.93123019e-01 -7.99571201e-02 4.81638551e-01
5.08889258e-01 -2.04969477e-02 -5.84507704e-01 -4.83558416e-01
6.10017657e-01 7.18904316e-01 -6.61450088e-01 -8.01209688e-01
-3.50752443e-01 1.00185621e+00 -1.89915836e-01 5.75725317e-01
-4.37715977e-01 -8.61763418e-01 8.19069505e-01 -3.65490377e-01
5.62850356e-01 -2.47192442e-01 2.36575469e-01 -8.16785336e-01
-5.39455056e-01 -1.28115034e+00 2.83827007e-01 -6.97635114e-01
-9.23499167e-01 -4.68361706e-01 -3.64908695e-01 -6.14890635e-01
-4.72444355e-01 -4.93845552e-01 -4.99700874e-01 6.22137010e-01
-5.49417913e-01 -1.16928697e+00 -3.62906978e-02 1.75175801e-01
6.31790757e-02 8.18123296e-02 1.00019681e+00 -2.81372458e-01
-4.60667521e-01 4.52803820e-02 1.08925104e+00 3.83940935e-02
1.13342559e+00 -1.07981884e+00 4.60025638e-01 1.21724284e+00
-9.98297811e-01 1.29395807e+00 5.10342181e-01 -1.30825603e+00
-2.04143691e+00 -1.29132104e+00 1.46051005e-01 -2.92783499e-01
3.50120068e-01 -2.11158857e-01 -7.01979339e-01 9.06506777e-01
3.87573600e-01 -9.44743991e-01 1.19659448e+00 -6.86984777e-01
-5.75167298e-01 7.71136820e-01 -1.52479017e+00 4.81795818e-01
8.43577445e-01 -3.40965480e-01 -4.27179664e-01 4.18864280e-01
7.45481074e-01 -4.57854748e-01 -1.22507203e+00 4.91146371e-02
9.47663307e-01 -9.76337790e-01 1.15340590e+00 -6.35784566e-01
2.58292615e-01 -1.04877293e+00 -1.97737888e-01 -1.47835171e+00
-3.31773102e-01 -4.76222694e-01 7.53469288e-01 1.32556367e+00
-1.06459357e-01 -9.71842527e-01 -3.02889735e-01 -3.59938353e-01
-6.31177008e-01 4.13190484e-01 -9.90812004e-01 -1.11858714e+00
1.88076541e-01 7.98529983e-01 5.63324690e-01 1.22462976e+00
7.97392488e-01 -2.67284870e-01 -3.69067848e-01 1.42802224e-01
2.65766025e-01 -2.66124219e-01 1.00212908e+00 -5.50227523e-01
-2.23232713e-02 -1.97877645e-01 -1.10589691e-01 -5.46713233e-01
-6.66822970e-01 -8.90200794e-01 1.99856982e-01 -1.37747836e+00
3.84875834e-01 -2.13903531e-01 -1.90942779e-01 2.46382341e-01
-1.71267875e-02 -4.86259013e-01 7.99523667e-02 -2.91805416e-01
-7.43847713e-02 1.06907956e-01 8.59504521e-01 1.61419138e-01
-1.13365375e-01 -7.49216139e-01 -6.97316945e-01 7.02234089e-01
7.50744700e-01 -6.50406480e-01 -1.77060351e-01 2.96086729e-01
7.28928089e-01 4.78114039e-01 2.86033928e-01 -4.94909823e-01
-6.68769181e-02 -1.07567525e+00 5.09893596e-01 -3.54310215e-01
-1.33258551e-01 -1.36388019e-01 9.44402516e-01 1.09587860e+00
-1.25962809e-01 -1.20924167e-01 2.26827830e-01 4.91537362e-01
-4.61166166e-02 2.77376492e-02 6.58971488e-01 -5.45607626e-01
-4.80555236e-01 -4.52149838e-01 -1.86046863e+00 -9.95534062e-02
1.28053439e+00 -4.78581786e-01 -9.48355973e-01 2.77705848e-01
-3.18703741e-01 -9.04136837e-01 1.29515672e+00 2.69327879e-01
4.07135844e-01 -9.85280275e-01 -6.34820938e-01 -2.86546741e-02
5.32489479e-01 -5.82176268e-01 4.71080452e-01 5.89425862e-01
-1.38372314e+00 7.55655229e-01 -6.91287935e-01 -7.90637195e-01
-8.24537098e-01 8.71605515e-01 3.51781040e-01 3.32267135e-01
-1.98957846e-01 6.26789331e-01 4.12265688e-01 -7.42324114e-01
-4.54367012e-01 -9.60758924e-02 -3.81060466e-02 -4.10834521e-01
6.93709612e-01 5.43972075e-01 -3.09690088e-02 -3.83134097e-01
-7.19583571e-01 3.22928071e-01 4.55557257e-01 3.99593830e-01
1.05187345e+00 6.70328215e-02 -8.21077824e-01 3.18919420e-01
6.29536152e-01 5.14270365e-01 -6.10909522e-01 4.46651846e-01
-2.86526740e-01 -8.57252777e-01 -1.02058148e+00 -1.27198017e+00
-1.85953043e-02 2.00152677e-02 7.79496908e-01 -5.05593777e-01
8.13891351e-01 -4.75175083e-01 3.26980114e-01 6.83485687e-01
7.12082446e-01 -9.27156329e-01 -5.25638163e-02 4.60964531e-01
8.92942488e-01 -3.46550435e-01 -7.92002916e-01 -4.53085810e-01
-3.06441247e-01 5.99723518e-01 1.76807448e-01 -2.07242802e-01
-3.38895544e-02 1.86584055e-01 -2.58013047e-03 1.48907840e-01
-7.04359293e-01 4.31939870e-01 -3.99310172e-01 1.34475493e+00
8.69615018e-01 3.55709791e-01 -9.86312270e-01 4.19047087e-01
-1.59984171e-01 3.34082395e-01 1.33699691e+00 1.32731330e+00
-7.03745484e-01 -1.26533377e+00 -7.55492091e-01 3.55367213e-01
-5.67530215e-01 -5.27001917e-02 -6.20054424e-01 4.79929805e-01
-1.60889000e-01 1.48312140e+00 -3.68664533e-01 3.43631864e-01
5.81178784e-01 6.55767992e-02 4.52487171e-01 -1.94659099e-01
-8.75067472e-01 3.89999360e-01 2.63493508e-01 -6.01922989e-01
-1.76203668e-01 -1.04576612e+00 -1.69378364e+00 -2.82137841e-01
-6.74740613e-01 3.40544432e-01 1.14556682e+00 3.82493526e-01
6.80538774e-01 7.84222186e-01 3.52632999e-01 -1.46078438e-01
-1.79350108e-01 -5.11637747e-01 -7.28189647e-01 -6.94590807e-02
8.08456317e-02 -2.68000931e-01 2.22780146e-02 5.40110767e-01] | [4.865823745727539, 5.062830448150635] |
5706794f-be75-4ccd-aece-d59388c9a725 | interpretable-deep-learning-based-forensic | 2112.00849 | null | https://arxiv.org/abs/2112.00849v2 | https://arxiv.org/pdf/2112.00849v2.pdf | Interpretable Deep Learning-Based Forensic Iris Segmentation and Recognition | Iris recognition of living individuals is a mature biometric modality that has been adopted globally from governmental ID programs, border crossing, voter registration and de-duplication, to unlocking mobile phones. On the other hand, the possibility of recognizing deceased subjects with their iris patterns has emerged recently. In this paper, we present an end-to-end deep learning-based method for postmortem iris segmentation and recognition with a special visualization technique intended to support forensic human examiners in their efforts. The proposed postmortem iris segmentation approach outperforms the state of the art and in addition to iris annulus, as in case of classical iris segmentation methods - detects abnormal regions caused by eye decomposition processes, such as furrows or irregular specular highlights present on the drying and wrinkling cornea. The method was trained and validated with data acquired from 171 cadavers, kept in mortuary conditions, and tested on subject-disjoint data acquired from 259 deceased subjects. To our knowledge, this is the largest corpus of data used in postmortem iris recognition research to date. The source code of the proposed method are offered with the paper. The test data will be available through the National Archive of Criminal Justice Data (NACJD) archives. | ['Eric Benjamin', 'Dennis Chute', 'Patrick Flynn', 'Kevin Bowyer', 'Adam Czajka', 'Aidan Boyd', 'Andrey Kuehlkamp'] | 2021-12-01 | null | null | null | null | ['iris-segmentation'] | ['medical'] | [ 1.46216610e-02 1.16022199e-01 7.28532001e-02 -9.56130251e-02
-3.75407040e-01 -3.67274433e-01 3.65315914e-01 1.73079699e-01
-5.10257542e-01 5.29228032e-01 1.25780672e-01 -3.68306190e-01
-2.77029127e-01 -2.33439058e-01 -1.50536686e-01 -7.26421833e-01
-6.21065795e-02 5.68660438e-01 -3.70068252e-01 3.19142729e-01
6.27899408e-01 9.34081435e-01 -1.69417739e+00 2.99257003e-02
9.20780361e-01 8.07111740e-01 -6.88515544e-01 5.90574682e-01
3.02983314e-01 4.04368252e-01 -6.49011195e-01 -7.56787717e-01
4.63241696e-01 -4.22807813e-01 -8.94402862e-01 2.20031843e-01
1.05645466e+00 -6.67898595e-01 -1.74206749e-01 8.63124371e-01
8.00722957e-01 -1.95792094e-02 6.13189518e-01 -5.12024939e-01
-5.84103763e-01 9.00386721e-02 -1.02080393e+00 5.64694583e-01
4.48313236e-01 4.17836070e-01 3.23640078e-01 -5.99919975e-01
6.33525848e-01 7.06862569e-01 6.78981423e-01 7.62663484e-01
-7.97419250e-01 -4.96288687e-01 -6.78669930e-01 2.50763625e-01
-1.32140458e+00 -8.03345859e-01 6.30506098e-01 -7.44233429e-01
1.01525068e+00 2.79997200e-01 8.03431571e-01 8.23071122e-01
6.63062260e-02 6.55464232e-01 1.45939386e+00 -5.86275518e-01
-1.17986962e-01 -2.12394372e-02 2.84894079e-01 8.93454313e-01
4.33548391e-01 6.35450959e-01 -3.60969961e-01 -1.09301284e-01
5.64347208e-01 -1.97406545e-01 -1.70403987e-01 8.95151198e-02
-8.32497597e-01 2.83558071e-01 1.25131393e-02 2.92869478e-01
-5.80962479e-01 -4.80514675e-01 3.75123918e-01 1.20477773e-01
5.43878496e-01 2.73472577e-01 -1.28550768e-01 -4.05859679e-01
-1.51056635e+00 -1.66789323e-01 6.36371255e-01 3.16704661e-01
1.47162780e-01 -1.93267483e-02 -7.78870881e-02 5.40214479e-01
5.52769363e-01 4.00760621e-01 4.72006649e-01 -4.13991630e-01
6.83754906e-02 7.73989558e-01 -9.10560936e-02 -7.33458340e-01
-6.92994833e-01 -2.78932303e-01 -7.29836762e-01 5.38774014e-01
8.02856565e-01 -2.90497959e-01 -9.65474904e-01 7.56631732e-01
7.19428480e-01 2.79891580e-01 -1.10599063e-01 1.06156564e+00
1.13169873e+00 -1.40747041e-01 -9.48990434e-02 -1.87141046e-01
1.51249993e+00 -3.75071943e-01 -5.48804402e-01 2.32580766e-01
2.68859863e-01 -8.15543354e-01 4.73111451e-01 8.48703921e-01
-9.80146706e-01 -2.00250775e-01 -8.84509027e-01 -1.30510122e-01
-3.04924458e-01 5.77855885e-01 5.36725461e-01 1.23116684e+00
-9.29442942e-01 4.70539391e-01 -8.78758609e-01 -9.23965871e-01
8.15627873e-01 6.92215741e-01 -4.92958218e-01 2.45814070e-01
-4.47564989e-01 9.66783404e-01 2.84957793e-03 4.47378635e-01
-4.97583032e-01 -4.17976171e-01 -6.59781158e-01 -4.72598463e-01
-1.23049892e-01 -4.96797621e-01 9.24054682e-01 -8.14308345e-01
-1.38384581e+00 1.83021510e+00 -2.09839880e-01 -6.17422581e-01
6.65024221e-01 -1.32441431e-01 -5.83703756e-01 4.86289561e-01
-2.97926903e-01 2.53968894e-01 9.60688949e-01 -8.67900014e-01
-2.39476040e-01 -1.03511500e+00 -2.51425445e-01 -2.99752355e-01
9.44207758e-02 6.48525119e-01 -5.14024980e-02 -4.90657061e-01
-1.05092585e-01 -6.25493526e-01 2.82846540e-01 -2.85586584e-02
-5.48741341e-01 -1.57812402e-01 7.00911760e-01 -1.32447088e+00
1.16444504e+00 -2.15627217e+00 -3.75717849e-01 3.51897955e-01
4.11276907e-01 7.59332538e-01 1.78219587e-01 2.08523199e-01
-2.57618934e-01 -4.04789485e-02 -2.77861983e-01 -5.67446649e-01
-2.18027145e-01 -3.14525574e-01 1.97981238e-01 1.34713376e+00
-1.73870564e-01 7.42191613e-01 -5.03345490e-01 -6.97274089e-01
3.96751940e-01 6.22476518e-01 1.19127765e-01 -1.29457906e-01
4.40889299e-01 6.82473719e-01 -2.70911437e-02 1.24299538e+00
8.54780972e-01 7.18715116e-02 -2.40902826e-01 -1.35528455e-02
-2.96220869e-01 -1.13793671e-01 -9.95628238e-01 1.41853178e+00
9.74059701e-02 8.22001696e-01 2.57422894e-01 -6.83040977e-01
9.23349857e-01 5.64333320e-01 2.91907936e-01 -6.92718744e-01
5.10886788e-01 7.58929625e-02 -2.58781575e-02 -9.89141107e-01
4.87006515e-01 -3.28900039e-01 6.83405161e-01 6.81054294e-01
-1.89096123e-01 5.77787519e-01 1.35051847e-01 -2.77901351e-01
4.67098683e-01 1.95603624e-01 4.83121574e-01 -3.11610522e-03
7.28180408e-01 -1.09041259e-01 3.64451677e-01 3.24507207e-01
-4.97714341e-01 7.42746174e-01 3.49910975e-01 -9.56832588e-01
-8.47282469e-01 -5.58515847e-01 -7.42272258e-01 2.32196957e-01
-1.24986187e-01 1.59207419e-01 -1.13738108e+00 -5.69086969e-01
-8.99315998e-02 3.28322291e-01 -8.23463678e-01 4.41119224e-01
-3.43242496e-01 -6.60698354e-01 8.06404769e-01 5.97320646e-02
4.43981886e-01 -1.28082407e+00 -9.46725488e-01 -1.10406622e-01
2.76391178e-01 -6.62742257e-01 -2.82433152e-01 -6.55627847e-01
-1.04367161e+00 -1.63413167e+00 -9.61120188e-01 -4.80580956e-01
9.32313800e-01 -3.61161113e-01 8.07703018e-01 4.75869268e-01
-9.82482433e-01 5.21004975e-01 -1.56746864e-01 -4.05162930e-01
-2.08459944e-01 -2.68681765e-01 2.37980694e-01 4.28911656e-01
9.95919824e-01 -3.00887495e-01 -7.36985326e-01 -2.98524946e-02
-7.35195935e-01 -4.47495610e-01 4.29443032e-01 6.16295159e-01
4.07454044e-01 -3.80286634e-01 -1.27255678e-01 -7.11843848e-01
5.50823927e-01 -6.36538342e-02 -7.57320285e-01 2.31833279e-01
-7.88018763e-01 -3.84864002e-01 5.31872548e-02 -1.34933710e-01
-9.62164044e-01 -2.08617941e-01 5.99086322e-02 -2.90279359e-01
-9.76363242e-01 2.78846800e-01 2.62840688e-01 -3.58695507e-01
7.23027170e-01 1.18683338e-01 2.50132889e-01 -7.62023687e-01
-1.83219120e-01 1.12549257e+00 8.91222179e-01 -4.31045026e-01
5.30554414e-01 6.96074069e-01 1.48196116e-01 -1.05466986e+00
-3.15659702e-01 -7.45152533e-01 -9.47022140e-01 -3.42981756e-01
8.98961842e-01 -4.10754561e-01 -8.79327178e-01 1.07371128e+00
-1.08406794e+00 1.22194253e-01 -5.35193533e-02 5.13575196e-01
-1.28349870e-01 8.29446137e-01 -5.90698004e-01 -1.08212316e+00
-8.51508498e-01 -8.68940949e-01 8.72910500e-01 8.05716038e-01
-1.98172361e-01 -9.82879877e-01 3.28695387e-01 8.92310560e-01
2.81010300e-01 5.91669559e-01 4.54383314e-01 -6.90137804e-01
-2.15981364e-01 -5.67375004e-01 -9.17938650e-02 2.19995230e-01
-1.47956666e-02 4.70715135e-01 -1.20993233e+00 -3.43209386e-01
-7.56608844e-02 4.17953730e-02 6.77819610e-01 5.94553471e-01
6.95489764e-01 -1.82678282e-01 -2.52109826e-01 8.49505723e-01
1.28224123e+00 2.48717055e-01 9.84684646e-01 5.75664878e-01
3.32862169e-01 8.15855563e-01 2.27012023e-01 5.52824914e-01
1.07061207e-01 3.33551615e-01 3.51356983e-01 -3.74482930e-01
-2.65991062e-01 2.29334593e-01 -6.17152192e-02 -6.53759465e-02
-8.47177207e-01 1.29993945e-01 -1.31327367e+00 6.57585025e-01
-1.10839546e+00 -1.04442787e+00 -3.77449244e-01 2.50946879e+00
4.64888453e-01 -3.84025782e-01 4.11211491e-01 1.19892851e-01
7.22842693e-01 -3.41910988e-01 -4.34757203e-01 -5.30501187e-01
-1.18600363e-02 6.47959292e-01 3.30770403e-01 3.73402536e-01
-1.17930114e+00 6.33233726e-01 6.06697750e+00 2.81601399e-01
-1.25816786e+00 3.35167833e-02 5.28242350e-01 -3.36580068e-01
3.69090438e-01 -2.80676782e-01 -6.74007475e-01 4.59360242e-01
8.19936514e-01 3.49757761e-01 3.42383713e-01 3.96715909e-01
3.16602528e-01 -3.69781971e-01 -7.93746710e-01 1.26783562e+00
4.13195193e-01 -1.10531807e+00 -5.54471850e-01 5.07927001e-01
3.25976163e-01 2.72950251e-02 3.32076013e-01 -3.81221414e-01
-4.94272500e-01 -1.21911371e+00 2.68434256e-01 9.97691691e-01
1.15427363e+00 -7.80104876e-01 9.85990524e-01 -5.13537712e-02
-5.63165128e-01 -5.92932664e-03 1.10037759e-01 7.00627221e-03
-8.50080624e-02 3.77468407e-01 -8.67942870e-01 3.97541910e-01
6.03635550e-01 6.34327233e-01 -8.15774918e-01 1.62235785e+00
-1.35754719e-01 6.15935922e-01 -1.36658370e-01 4.12955403e-01
-2.10308321e-02 -4.83121186e-01 8.10432017e-01 1.14250851e+00
2.93947220e-01 2.56379485e-01 -6.26833439e-01 7.89435148e-01
2.05504432e-01 2.06625760e-01 -5.04056990e-01 -6.74361736e-02
2.85016708e-02 1.27480412e+00 -7.87015438e-01 3.69862397e-03
-5.45565605e-01 8.22425544e-01 -1.56858265e-01 3.30323100e-01
-3.00381094e-01 -4.59382057e-01 4.85993803e-01 5.36645293e-01
1.24892138e-01 6.05885610e-02 -4.53997105e-01 -1.01210213e+00
6.93749711e-02 -1.11107802e+00 4.60029274e-01 -5.33856511e-01
-1.21754277e+00 4.70376313e-01 -2.33789623e-01 -1.30371070e+00
6.13489039e-02 -6.67427480e-01 -8.06173742e-01 1.11769116e+00
-1.28790188e+00 -1.44816935e+00 -2.02079654e-01 5.56704640e-01
-2.17335559e-02 -7.48001397e-01 7.41485119e-01 2.27837965e-01
-9.93851960e-01 8.85725617e-01 4.67978902e-02 5.40891290e-01
6.43132687e-01 -1.04735339e+00 1.50049239e-01 1.15863621e+00
-3.87195982e-02 9.87051427e-01 4.74017799e-01 -6.36338592e-01
-1.12932277e+00 -3.51729363e-01 1.07158339e+00 -4.10045058e-01
2.95917302e-01 2.76827037e-01 -6.84655368e-01 5.54871619e-01
5.61140358e-01 -9.86610353e-02 1.15494037e+00 2.02182144e-01
-1.14380434e-01 -3.45004536e-02 -1.68652153e+00 6.72637224e-02
3.37560743e-01 -4.56345499e-01 -7.21594214e-01 1.97145641e-01
-4.93366122e-01 -7.83115089e-01 -9.05728817e-01 1.51374042e-01
8.20478380e-01 -1.31149983e+00 7.34750211e-01 -6.11621261e-01
1.71763748e-01 -4.44506168e-01 5.82712531e-01 -4.80908394e-01
9.42488760e-02 -9.23928916e-01 -2.32891008e-01 1.25717783e+00
3.16083163e-01 -7.56208003e-01 8.67528379e-01 9.87564206e-01
2.22316086e-02 -6.31759882e-01 -1.27221549e+00 -3.70006204e-01
-2.41450910e-02 -3.07634976e-02 5.92789829e-01 9.58091259e-01
4.95355614e-02 -3.71528476e-01 -2.63150513e-01 3.15546751e-01
1.03370702e+00 1.06786832e-01 5.98866343e-01 -1.43026137e+00
-8.87263864e-02 -5.29021204e-01 -7.70831466e-01 -4.00902450e-01
-1.57022119e-01 -6.49549782e-01 -6.30468547e-01 -1.32726324e+00
-2.25685555e-02 -1.03839450e-01 -1.60018932e-02 6.24704123e-01
1.66076556e-01 4.38285232e-01 -1.15859434e-01 1.84237748e-01
-9.64791849e-02 -2.03551173e-01 1.13230467e+00 -1.76885113e-01
-2.65365690e-01 1.06346160e-01 -6.68470085e-01 5.64794004e-01
7.50498652e-01 -2.95697600e-01 2.55679667e-01 -1.65626690e-01
6.94775432e-02 2.65743956e-02 6.18420601e-01 -1.01708436e+00
4.36935246e-01 3.72644454e-01 5.50432146e-01 -7.43061483e-01
-3.61967795e-02 -6.42244935e-01 2.00127602e-01 3.59732419e-01
1.70196429e-01 -2.09064692e-01 3.04654300e-01 1.29405111e-01
-2.35506400e-01 -1.93622038e-01 9.47262943e-01 -7.39228204e-02
-4.30206865e-01 3.64699930e-01 -3.99014890e-01 -2.66000718e-01
1.13275087e+00 -9.18347120e-01 -4.39578116e-01 8.17204565e-02
-8.30969691e-01 -6.87301019e-03 7.92296112e-01 1.91848967e-02
7.49701798e-01 -7.71448135e-01 -9.80042517e-01 5.76983571e-01
-1.33912368e-02 -2.57321507e-01 4.95202690e-01 1.67228997e+00
-9.70457852e-01 3.99891019e-01 -4.06008840e-01 -4.66068834e-01
-1.92685807e+00 5.65560937e-01 6.23105288e-01 1.68965012e-01
-8.04988682e-01 8.35513413e-01 -6.22779608e-01 -1.31934017e-01
3.93599957e-01 -1.45845339e-01 -6.54087901e-01 3.70951414e-01
9.90245402e-01 6.77902579e-01 3.69263649e-01 -1.00720990e+00
-3.69142324e-01 8.64607573e-01 -2.65998691e-01 2.51431733e-01
1.23773313e+00 -6.35041967e-02 -4.94200677e-01 -1.25494272e-01
7.06803560e-01 1.93842262e-01 -6.70978606e-01 -2.79600862e-02
-1.27164647e-01 -6.12306774e-01 5.29264547e-02 -9.60866213e-01
-1.23335981e+00 9.40776527e-01 1.18362844e+00 -1.22890109e-02
1.18725324e+00 -1.16587833e-01 6.26403630e-01 -5.60040679e-03
1.87545046e-01 -9.63576853e-01 -7.80658007e-01 6.19648248e-02
4.99787331e-01 -1.25725615e+00 2.21788689e-01 2.80401587e-01
-4.84868854e-01 1.37592924e+00 3.00615251e-01 2.04103053e-01
5.41331172e-01 1.31065682e-01 4.83030587e-01 -4.95808184e-01
2.99896151e-02 -2.86046714e-01 6.72091067e-01 1.00229383e+00
6.93874896e-01 1.08736113e-01 -5.90847671e-01 1.91768229e-01
-6.86135218e-02 2.62418300e-01 4.61103797e-01 5.94806790e-01
-9.31419060e-02 -1.18330956e+00 -8.16652894e-01 5.93351483e-01
-9.15704608e-01 -2.28402123e-01 -6.74601972e-01 7.42082298e-01
4.98114228e-01 9.40342546e-01 6.00698330e-02 -3.86107676e-02
1.65109470e-01 7.19634071e-02 6.25713229e-01 -2.99304426e-01
-9.41685319e-01 2.01296043e-02 8.69501382e-02 -3.11162740e-01
-7.18968689e-01 -1.28381050e+00 -8.96036565e-01 -5.22335708e-01
-9.01113972e-02 -1.43288761e-01 5.48840761e-01 9.87414241e-01
2.47981027e-01 -1.52368933e-01 1.16311595e-01 -6.81837261e-01
-4.92813066e-02 -1.15999269e+00 -1.05170619e+00 1.92217276e-01
8.12380970e-01 -3.87918383e-01 -2.78728694e-01 2.09593624e-01] | [3.7450945377349854, -3.630293369293213] |
80ecccbc-0940-47be-9899-c9761ea9c098 | towards-a-common-understanding-of | 2305.16768 | null | https://arxiv.org/abs/2305.16768v1 | https://arxiv.org/pdf/2305.16768v1.pdf | Towards a Common Understanding of Contributing Factors for Cross-Lingual Transfer in Multilingual Language Models: A Review | In recent years, pre-trained Multilingual Language Models (MLLMs) have shown a strong ability to transfer knowledge across different languages. However, given that the aspiration for such an ability has not been explicitly incorporated in the design of the majority of MLLMs, it is challenging to obtain a unique and straightforward explanation for its emergence. In this review paper, we survey literature that investigates different factors contributing to the capacity of MLLMs to perform zero-shot cross-lingual transfer and subsequently outline and discuss these factors in detail. To enhance the structure of this review and to facilitate consolidation with future studies, we identify five categories of such factors. In addition to providing a summary of empirical evidence from past studies, we identify consensuses among studies with consistent findings and resolve conflicts among contradictory ones. Our work contextualizes and unifies existing research streams which aim at explaining the cross-lingual potential of MLLMs. This review provides, first, an aligned reference point for future research and, second, guidance for a better-informed and more efficient way of leveraging the cross-lingual capacity of MLLMs. | ['Shohreh Haddadan', 'Siwen Guo', 'Fred Philippy'] | 2023-05-26 | null | null | null | null | ['zero-shot-cross-lingual-transfer', 'cross-lingual-transfer'] | ['natural-language-processing', 'natural-language-processing'] | [-8.82262066e-02 6.78481981e-02 -8.55870008e-01 -4.19540018e-01
-1.13733101e+00 -9.15680289e-01 7.02928841e-01 1.82287797e-01
-6.78328812e-01 7.40531266e-01 3.04988950e-01 -9.68744278e-01
-1.97880380e-02 -2.68715411e-01 -7.66973913e-01 -2.38847002e-01
1.49859428e-01 1.63701773e-01 -1.99791491e-01 -1.00444727e-01
1.46598116e-01 3.49624068e-01 -1.49264765e+00 2.44578272e-01
1.08479404e+00 1.44893780e-01 5.13154924e-01 1.01630315e-01
-3.42986703e-01 6.64157629e-01 -3.92194778e-01 -6.89055085e-01
-1.22205876e-01 -5.85099399e-01 -7.24564016e-01 -2.86406465e-02
6.59891009e-01 -3.11880201e-01 3.55967060e-02 6.95317030e-01
4.91355002e-01 -1.03362516e-01 7.36491501e-01 -8.63481820e-01
-1.25736833e+00 6.69278860e-01 -1.56345278e-01 3.05513740e-01
3.06577265e-01 1.21588908e-01 1.06066811e+00 -9.28612828e-01
7.33973861e-01 1.24373126e+00 6.67810738e-01 7.32756615e-01
-1.07624531e+00 -8.55468929e-01 5.84323645e-01 4.44555208e-02
-1.28044796e+00 -8.91308904e-01 2.80842215e-01 -4.65972960e-01
1.30228925e+00 -2.35000610e-01 8.00640404e-01 9.54718590e-01
3.09779346e-01 9.60397720e-01 1.57283270e+00 -8.46986473e-01
-4.06483799e-01 7.19398737e-01 -1.48484811e-01 4.52551842e-01
3.13146144e-01 1.35782853e-01 -6.73534036e-01 2.51308352e-01
5.09418964e-01 -5.66517353e-01 -7.48058185e-02 -7.21640587e-02
-1.00778031e+00 8.97732019e-01 2.33934253e-01 9.81070578e-01
-1.08284593e-01 -3.04921091e-01 5.68992853e-01 4.46228892e-01
4.94434983e-01 4.06405151e-01 -5.16335130e-01 -2.70527989e-01
-1.00876582e+00 -1.94859684e-01 6.16331160e-01 6.88024938e-01
5.92973292e-01 3.23276848e-01 2.97371238e-01 1.08259451e+00
4.60000187e-01 6.20981634e-01 5.90424001e-01 -4.49225992e-01
4.87054676e-01 2.22323090e-01 -7.98894092e-02 -6.46013200e-01
-8.52316171e-02 -3.29093397e-01 -4.41997536e-02 -1.17641173e-01
3.55435610e-01 -2.53835082e-01 -4.28334147e-01 2.09977651e+00
-9.50269774e-02 -2.67965525e-01 8.60308707e-02 6.19899154e-01
5.94474733e-01 4.91633117e-01 6.05610669e-01 -2.80187219e-01
1.22106326e+00 -9.24998701e-01 -6.69308186e-01 -5.31023026e-01
1.08067119e+00 -1.15476787e+00 1.39275134e+00 -9.08112805e-03
-1.18597102e+00 -5.77209234e-01 -1.08852422e+00 -2.35312656e-01
-6.27021730e-01 8.57627541e-02 9.25927043e-01 9.49393868e-01
-1.21706569e+00 1.48985445e-01 -9.40244138e-01 -1.00233877e+00
4.60916646e-02 5.45575134e-02 -3.76455635e-01 -2.00823084e-01
-1.33180416e+00 1.52211010e+00 2.91275203e-01 5.21141384e-03
-4.68025237e-01 -6.10653281e-01 -1.02403736e+00 -5.91061413e-01
-3.37991528e-02 -5.04097760e-01 1.24633181e+00 -1.19485664e+00
-1.41924894e+00 1.29141843e+00 -3.03098977e-01 -2.10884094e-01
9.02230367e-02 -3.69347930e-01 -6.62991703e-01 -1.28638461e-01
2.67435521e-01 8.14902604e-01 2.07538724e-01 -1.17195761e+00
-7.93287277e-01 -2.37309247e-01 -2.98639536e-02 6.72253847e-01
-4.79877710e-01 5.89336812e-01 -3.64769280e-01 -5.37311673e-01
-3.44552666e-01 -8.04831028e-01 2.32188493e-01 -4.23025399e-01
2.59577364e-01 -4.87427026e-01 3.18105042e-01 -6.42594278e-01
1.44890714e+00 -2.08685279e+00 -2.23021135e-01 -4.26998496e-01
-1.64701864e-01 3.45887095e-01 -1.46971807e-01 1.01835191e+00
1.22022234e-01 3.35769862e-01 -5.82611039e-02 -4.34340179e-01
1.62377015e-01 2.96206474e-01 -3.26309711e-01 6.56120718e-01
1.64747074e-01 1.27770090e+00 -9.74083781e-01 -4.40277308e-01
5.12803435e-01 8.40871513e-01 -2.02701852e-01 -7.66471773e-02
2.60773778e-01 3.87824774e-01 -1.25035092e-01 5.25152385e-01
3.84494841e-01 -9.51498076e-02 4.39807594e-01 1.39487267e-01
-7.70935178e-01 8.82389903e-01 -6.44993067e-01 1.56020069e+00
-6.81847692e-01 8.48520756e-01 1.21261016e-01 -7.56734729e-01
7.37985790e-01 5.64588904e-01 1.86898664e-01 -7.35922277e-01
-3.84375639e-02 9.11626816e-01 3.34794015e-01 -2.10708797e-01
3.83061379e-01 -5.87222695e-01 9.71146114e-03 6.79910362e-01
1.12935029e-01 -2.39128798e-01 4.89678420e-02 3.11336834e-02
2.21356019e-01 4.06190783e-01 6.12506211e-01 -4.21467453e-01
6.25616074e-01 -8.49698335e-02 1.26785651e-01 6.62705600e-01
-3.15023750e-01 -1.27942368e-01 -2.30961233e-01 -1.25783548e-01
-8.74678671e-01 -9.96659458e-01 -5.53774059e-01 1.22017622e+00
-4.96443689e-01 -2.91161269e-01 -7.39733577e-01 -4.67437088e-01
-7.18892887e-02 1.16788602e+00 -4.30974782e-01 -2.41613146e-02
-4.92787331e-01 -8.43253911e-01 7.41013587e-01 3.33434314e-01
1.13199085e-01 -1.08993351e+00 -4.24953550e-01 1.97271615e-01
-2.20835984e-01 -1.14358401e+00 -1.97428793e-01 -1.16963370e-03
-9.34326410e-01 -7.72831678e-01 -6.84266210e-01 -1.31507385e+00
5.26582599e-01 5.89770436e-01 1.14209974e+00 8.84728208e-02
2.15407744e-01 7.94116139e-01 -2.53978640e-01 -4.80107605e-01
-6.76451564e-01 3.70897114e-01 3.44660997e-01 -6.04136050e-01
9.82550383e-01 -3.01636189e-01 -1.23370811e-01 -8.23859200e-02
-8.55353594e-01 -1.54899433e-01 8.79219174e-01 5.71128070e-01
3.40404809e-01 -3.52539659e-01 1.03797340e+00 -6.15381241e-01
9.66893315e-01 -6.14136398e-01 -2.51267433e-01 3.01638454e-01
-1.02147031e+00 -4.03654128e-01 4.45199639e-01 -2.03305870e-01
-1.04912686e+00 -6.37132943e-01 -2.25144461e-01 2.64771789e-01
-4.33286101e-01 9.57058191e-01 2.22537801e-01 -2.48874262e-01
3.28776211e-01 3.37826699e-01 3.02927215e-02 -5.40993631e-01
5.71883678e-01 8.95114422e-01 9.38618556e-02 -8.57533395e-01
5.45322120e-01 1.27601087e-01 -6.72368884e-01 -1.09002542e+00
-7.45334744e-01 -2.65065819e-01 -9.25633550e-01 -2.16860399e-01
8.82726014e-01 -1.18244100e+00 -7.48659745e-02 4.78198975e-01
-8.02663922e-01 -6.41078293e-01 4.81552966e-02 9.51240122e-01
-5.40738583e-01 3.14673126e-01 -9.20784116e-01 -7.03515053e-01
-2.91837275e-01 -1.32765770e+00 6.69978380e-01 1.54691145e-01
-5.93334496e-01 -1.66081548e+00 1.74935132e-01 4.88627404e-01
4.38126624e-01 -2.80487269e-01 1.17089307e+00 -6.92167401e-01
-2.78811604e-01 -1.23847879e-01 1.50309959e-02 3.90388846e-01
4.71716970e-01 7.57337660e-02 -9.11693752e-01 -4.76940572e-01
9.54989940e-02 -6.49215519e-01 2.65567690e-01 4.21964228e-01
1.28345147e-01 -6.67092577e-02 -3.13650221e-01 4.09894913e-01
1.40257621e+00 1.94709912e-01 7.90675804e-02 7.31212139e-01
3.47647846e-01 8.76536965e-01 5.50564587e-01 -4.52872992e-01
1.07179928e+00 7.26375222e-01 -3.39426905e-01 -1.33637011e-01
-4.88654494e-01 -3.81485522e-01 7.94854820e-01 1.79558992e+00
9.83739942e-02 3.22071388e-02 -8.51345897e-01 7.52474308e-01
-1.23455036e+00 -5.61640978e-01 1.02113836e-01 2.38366795e+00
9.32770967e-01 -4.01400477e-02 -1.25527503e-02 -3.87180865e-01
5.40346861e-01 1.88608363e-01 -3.33691090e-01 -7.48954058e-01
-3.83339196e-01 -3.76144201e-02 2.95899689e-01 9.12743509e-01
-6.96072519e-01 1.58162618e+00 7.90947628e+00 4.75651532e-01
-1.40758502e+00 1.66016653e-01 3.00435036e-01 -2.05926429e-02
-4.29562360e-01 -7.93773010e-02 -9.50989962e-01 8.00894201e-02
1.19593275e+00 -4.81356144e-01 4.15928930e-01 3.75296235e-01
2.98213542e-01 8.31856281e-02 -9.54869926e-01 4.25102592e-01
3.21014315e-01 -7.42282271e-01 -8.34578276e-03 4.07164395e-02
7.93980479e-01 6.22791827e-01 4.34183151e-01 6.02860212e-01
3.35387915e-01 -9.61359620e-01 7.23709345e-01 -9.62766409e-02
8.30302894e-01 -5.90658903e-01 4.86491978e-01 2.57598281e-01
-1.00347102e+00 3.48306060e-01 -1.88265800e-01 -3.83547574e-01
4.54077601e-01 -3.78504046e-03 -7.64123499e-01 5.20790756e-01
4.29977626e-01 7.30634928e-01 -4.53255802e-01 6.75055742e-01
-4.91109937e-01 8.02055478e-01 -4.42359559e-02 1.17269970e-01
7.10287750e-01 -2.23155409e-01 2.54611999e-01 1.56011641e+00
1.57598406e-01 -3.38861793e-01 1.04681060e-01 4.66184795e-01
2.00721130e-01 8.67447793e-01 -9.58625734e-01 -4.16768223e-01
7.29102194e-01 8.86420310e-01 -5.61296761e-01 -2.18269542e-01
-1.31450403e+00 8.22885334e-01 7.24438131e-01 5.01548886e-01
-4.65103328e-01 -1.01108432e-01 5.79837859e-01 -3.80188152e-02
-7.36022294e-02 -5.88289261e-01 -3.61565948e-01 -1.04376709e+00
-1.37913555e-01 -1.21269178e+00 3.53917629e-01 -5.08161962e-01
-1.21189082e+00 4.59766924e-01 1.24618039e-01 -7.48316288e-01
-3.33123267e-01 -6.42977178e-01 -7.74176419e-02 1.32830989e+00
-1.73296905e+00 -1.48860562e+00 5.30291200e-01 2.63855308e-01
6.92190170e-01 -9.31961462e-02 1.15346873e+00 3.74770582e-01
-5.97650766e-01 7.78324068e-01 1.31046891e-01 -5.80081120e-02
1.15617061e+00 -8.43289316e-01 3.86733711e-01 7.77486622e-01
1.13360673e-01 1.32588279e+00 3.71493876e-01 -8.22236419e-01
-1.32975411e+00 -7.54524052e-01 1.55383861e+00 -5.98816097e-01
9.59076881e-01 -2.34020144e-01 -9.71184492e-01 1.35944951e+00
6.31470382e-01 -8.14080358e-01 1.29884851e+00 3.36523503e-01
-3.32532853e-01 7.72868991e-02 -8.23486447e-01 9.75878716e-01
7.55802333e-01 -8.80802095e-01 -8.82775843e-01 1.97750330e-01
4.96956170e-01 -1.36030287e-01 -1.17373621e+00 3.01306933e-01
7.21837223e-01 -7.51246810e-01 8.36559713e-01 -5.89658797e-01
1.20681629e-01 6.29281178e-02 -8.83680806e-02 -1.27422667e+00
-4.19236004e-01 -4.23986316e-01 3.59984905e-01 1.24877846e+00
5.91587126e-01 -9.76767063e-01 1.75376594e-01 6.19448423e-01
-4.77677494e-01 -7.47022450e-01 -8.29869151e-01 -7.63149083e-01
9.33415949e-01 -6.97144091e-01 2.53588587e-01 1.33047843e+00
2.40142256e-01 3.47127795e-01 -1.94882467e-01 -6.61149472e-02
4.94198382e-01 -2.75614113e-01 6.76338553e-01 -8.00140619e-01
9.06839296e-02 -9.27899718e-01 -7.15871826e-02 -1.06021023e+00
4.54529136e-01 -1.32272518e+00 -2.45370820e-01 -1.74341428e+00
1.82433620e-01 -3.89365971e-01 -3.37333411e-01 4.00106579e-01
-2.90978611e-01 1.95456460e-01 3.04444760e-01 3.90188754e-01
-2.81730086e-01 2.67050743e-01 1.08348608e+00 4.36890304e-01
-2.65244991e-01 -2.59958029e-01 -1.26914024e+00 7.57976413e-01
8.62939179e-01 -2.27433577e-01 -6.76389575e-01 -9.92802739e-01
1.62378117e-01 -4.11432117e-01 -3.66047621e-01 -5.94596207e-01
7.30624795e-02 -2.97774136e-01 3.99835855e-02 -3.97912771e-01
4.89326045e-02 -5.19756615e-01 -1.55547857e-01 3.55556071e-01
-1.18762389e-01 4.54392254e-01 8.65427613e-01 -1.63577154e-01
-2.57838815e-01 -3.25048864e-01 6.75467432e-01 -2.28127494e-01
-8.45567882e-01 -8.70008022e-02 -8.57927680e-01 1.18621163e-01
8.97954404e-01 -1.66345924e-01 -2.09267750e-01 -4.83767837e-01
-2.13534355e-01 1.50567606e-01 7.69030690e-01 9.91697073e-01
1.27701372e-01 -1.38577151e+00 -6.58839047e-01 -1.42306751e-02
2.52083749e-01 -5.97504199e-01 2.52815902e-01 1.02660072e+00
-2.32590631e-01 1.30004573e+00 -9.53303203e-02 -2.31251374e-01
-8.40171695e-01 5.50415874e-01 3.53929073e-01 4.76777292e-04
-4.96814013e-01 6.63313270e-01 2.83960223e-01 -6.78595901e-01
6.26399219e-02 -9.06349439e-03 -2.54685789e-01 1.44085497e-01
4.77470338e-01 1.21280767e-01 -5.37637211e-02 -1.11776006e+00
-5.77744007e-01 6.30126774e-01 -3.16131979e-01 -5.38639545e-01
1.03921747e+00 -6.51113689e-01 -3.13844562e-01 1.11589789e+00
9.80543315e-01 3.89610350e-01 -8.53998184e-01 -2.66136676e-01
2.60667484e-02 -1.09381773e-01 -9.42373797e-02 -9.15518939e-01
-6.80558145e-01 9.55293298e-01 1.82446286e-01 -2.18599766e-01
8.21772993e-01 1.05924331e-01 4.68042493e-01 -7.31940940e-02
4.00976449e-01 -1.18613589e+00 -3.32571328e-01 6.52307212e-01
6.61830068e-01 -1.06703210e+00 -7.28591159e-02 -6.04283921e-02
-6.50981545e-01 8.77609193e-01 5.45001030e-01 3.48127812e-01
5.58863163e-01 2.05621362e-01 5.94245553e-01 3.04089785e-02
-6.81257486e-01 -1.18678138e-01 3.42643768e-01 7.52177835e-01
1.50404191e+00 1.89043418e-01 -1.01042318e+00 3.23272169e-01
-5.85404694e-01 -8.36649165e-03 6.51161149e-02 8.09939027e-01
-4.72541034e-01 -1.55458951e+00 -3.22324336e-01 1.46001220e-01
-6.62776947e-01 -5.58252215e-01 -2.98460454e-01 1.16634429e+00
2.43782010e-02 1.14718878e+00 -1.59147312e-03 -5.12521528e-02
1.24658287e-01 5.67610681e-01 6.45669997e-01 -7.88227558e-01
-5.62358201e-01 1.50228813e-01 1.85357392e-01 -7.20136166e-02
-6.07793510e-01 -1.06736469e+00 -7.52931952e-01 -3.07962686e-01
-8.26353580e-02 1.39592499e-01 7.75005639e-01 1.26643133e+00
1.32176265e-01 2.23581478e-01 -5.98184951e-02 -3.44459355e-01
-3.08669001e-01 -1.06343663e+00 -3.37899566e-01 2.11553983e-02
1.29351601e-01 -4.87794310e-01 -2.63494343e-01 -9.17576924e-02] | [10.880279541015625, 9.859192848205566] |
67d69db5-7081-4b81-a1da-7881ca571051 | high-frequency-stereo-matching-network | null | null | http://openaccess.thecvf.com//content/CVPR2023/html/Zhao_High-Frequency_Stereo_Matching_Network_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Zhao_High-Frequency_Stereo_Matching_Network_CVPR_2023_paper.pdf | High-Frequency Stereo Matching Network | In the field of binocular stereo matching, remarkable progress has been made by iterative methods like RAFT-Stereo and CREStereo. However, most of these methods lose information during the iterative process, making it difficult to generate more detailed difference maps that take full advantage of high-frequency information. We propose the Decouple module to alleviate the problem of data coupling and allow features containing subtle details to transfer across the iterations which proves to alleviate the problem significantly in the ablations. To further capture high-frequency details, we propose a Normalization Refinement module that unifies the disparities as a proportion of the disparities over the width of the image, which address the problem of module failure in cross-domain scenarios. Further, with the above improvements, the ResNet-like feature extractor that has not been changed for years becomes a bottleneck. Towards this end, we proposed a multi-scale and multi-stage feature extractor that introduces the channel-wise self-attention mechanism which greatly addresses this bottleneck. Our method (DLNR) ranks 1st on the Middlebury leaderboard, significantly outperforming the next best method by 13.04%. Our method also achieves SOTA performance on the KITTI-2015 benchmark for D1-fg. | ['Yong Zhao', 'Yitong Yang', 'Jie Chen', 'Yongjun Zhang', 'Huizhou Zhou', 'Haoliang Zhao'] | 2023-01-01 | null | null | null | cvpr-2023-1 | ['stereo-matching-1'] | ['computer-vision'] | [-4.83657643e-02 -1.55301765e-01 1.16051726e-01 -3.66390616e-01
-6.79802835e-01 -4.19723690e-01 7.16565967e-01 -2.12747931e-01
-5.07551968e-01 5.75088143e-01 5.92450202e-01 -5.18578663e-02
1.39121786e-01 -6.92886829e-01 -6.48633659e-01 -5.45286298e-01
2.68723935e-01 -8.21498558e-02 5.07051885e-01 -5.26980102e-01
3.39041322e-01 3.34656298e-01 -1.79146528e+00 4.48875755e-01
1.10105407e+00 9.05402958e-01 2.66781807e-01 3.35670292e-01
-1.22576177e-01 6.64786875e-01 -3.06532055e-01 -3.87036562e-01
8.12410176e-01 -2.28241399e-01 -7.14044571e-01 -9.20956284e-02
1.16552126e+00 -5.39277315e-01 -6.48129702e-01 1.07795262e+00
7.31909871e-01 -1.28063634e-01 2.93433458e-01 -1.08130682e+00
-3.56348127e-01 2.70503342e-01 -1.08383548e+00 2.63473153e-01
1.30338997e-01 2.75814205e-01 9.86936271e-01 -1.20819771e+00
6.78880453e-01 1.24220228e+00 7.87436247e-01 2.58231133e-01
-1.27036929e+00 -9.27896976e-01 1.31931603e-01 2.88130790e-01
-1.34998596e+00 -5.37904978e-01 6.25434458e-01 -4.01409119e-01
1.16337192e+00 4.46507595e-02 7.34863222e-01 7.78958619e-01
1.26036867e-01 7.13688731e-01 1.17335284e+00 -2.59230465e-01
-2.34636948e-01 -2.45472640e-01 -3.66805657e-03 4.32101130e-01
5.67575097e-02 2.49002427e-01 -7.87962198e-01 3.31537843e-01
8.79928410e-01 9.54342447e-03 -4.50172782e-01 -3.51484179e-01
-1.17745972e+00 5.92891872e-01 8.81680608e-01 3.51671040e-01
-2.81196892e-01 -1.41718477e-01 1.95491672e-01 3.37548494e-01
5.60444713e-01 6.80170298e-01 -4.38903064e-01 -6.25178218e-02
-1.13394666e+00 3.62118900e-01 2.96410918e-01 8.76203358e-01
9.75800276e-01 -2.00446963e-01 -4.27144855e-01 9.38735127e-01
-8.55630189e-02 3.19331408e-01 3.29376608e-01 -9.82047915e-01
7.12093711e-01 8.22609723e-01 1.79504119e-02 -9.49159920e-01
-5.28585732e-01 -8.09307635e-01 -9.58329976e-01 4.34405565e-01
4.89255071e-01 -1.45093389e-02 -1.02010608e+00 1.75199342e+00
3.27257514e-01 2.43740976e-01 -2.42688298e-01 1.19609964e+00
8.59974921e-01 3.03924620e-01 -2.46937871e-01 3.63623321e-01
1.15307772e+00 -1.19721246e+00 -5.17796099e-01 -2.53992587e-01
4.36424702e-01 -9.78106916e-01 9.00838137e-01 1.63578674e-01
-9.88346815e-01 -8.34929943e-01 -1.29549539e+00 -5.32892227e-01
-3.00631225e-01 -1.66794494e-01 8.37815702e-01 2.47312874e-01
-1.21219444e+00 6.96253181e-01 -5.65985203e-01 -3.01635265e-01
4.81941581e-01 3.92793447e-01 -5.58797598e-01 -2.02503607e-01
-1.02552223e+00 8.22471559e-01 2.16867253e-01 1.80020362e-01
-3.35365415e-01 -1.14550138e+00 -8.99570584e-01 1.71980355e-02
1.90237164e-01 -8.11877668e-01 9.46372926e-01 -9.08878684e-01
-1.30170608e+00 9.17029321e-01 -3.25075537e-01 -3.81253630e-01
7.61521578e-01 -5.06184220e-01 -1.72176361e-01 -2.30220243e-01
2.54064202e-01 1.16155100e+00 7.08201289e-01 -9.12001789e-01
-1.13380039e+00 -3.67556363e-01 2.78578937e-01 4.13300365e-01
-2.85276264e-01 -3.83219838e-01 -9.14508641e-01 -6.75527930e-01
2.26440758e-01 -8.63751054e-01 -1.68741450e-01 -2.89056357e-02
-3.04017305e-01 1.37141451e-01 5.36296427e-01 -6.50921404e-01
1.27014601e+00 -2.36172295e+00 1.60394624e-01 -3.59448232e-02
5.03402770e-01 2.89865971e-01 -3.22269261e-01 1.90089673e-01
-2.22453803e-01 -2.72625566e-01 -1.72429338e-01 -5.38376987e-01
-2.61171937e-01 -4.71533686e-02 -2.69510686e-01 3.98877621e-01
3.41020942e-01 8.48139167e-01 -7.29144514e-01 -2.27170497e-01
3.05680573e-01 4.50716585e-01 -9.66313720e-01 1.17388003e-01
3.28747451e-01 5.69676638e-01 -3.98264192e-02 4.45318848e-01
1.25786817e+00 -1.24797493e-01 -3.05737376e-01 -4.63275939e-01
-6.74178839e-01 4.12763357e-01 -1.24358165e+00 2.19283533e+00
-4.14419442e-01 8.14516544e-01 1.93435550e-02 -5.63672602e-01
7.36515760e-01 -1.40075773e-01 4.31221932e-01 -1.27502072e+00
-6.69680014e-02 3.54853034e-01 1.33132994e-01 -1.45509273e-01
8.37271750e-01 1.05350211e-01 1.52977139e-01 -1.62361488e-01
4.50446755e-02 -1.06856719e-01 1.96869999e-01 1.81163326e-01
1.11096168e+00 1.94006249e-01 1.98429227e-01 -3.94981325e-01
5.32197654e-01 1.39245531e-02 7.33955085e-01 8.30044508e-01
-2.02217460e-01 1.23141146e+00 2.44666696e-01 -3.78083438e-01
-1.09338331e+00 -9.13660288e-01 -2.94232607e-01 7.62964070e-01
3.71971935e-01 -5.37018538e-01 -5.97961783e-01 -4.30258304e-01
2.33136490e-01 1.42223224e-01 -6.74892306e-01 -1.37209460e-01
-5.72464705e-01 -6.45814061e-01 2.51946986e-01 5.55119812e-01
9.80126858e-01 -6.08551741e-01 -4.47097719e-01 2.80225545e-01
-2.88333952e-01 -1.14221787e+00 -6.26229107e-01 1.88968614e-01
-7.54207194e-01 -1.01530910e+00 -8.72643411e-01 -6.89914525e-01
4.60954398e-01 7.18676627e-01 1.11059880e+00 -3.34086977e-02
-3.43238711e-01 -2.50132084e-01 -2.06340060e-01 -1.72664732e-01
1.79094732e-01 3.45710188e-01 -2.61303335e-01 -4.32811901e-02
2.89793462e-01 -6.53672099e-01 -9.40409958e-01 4.10558850e-01
-7.21095204e-01 6.67118907e-01 4.78238881e-01 1.05605590e+00
4.23994273e-01 -2.19995871e-01 1.94962591e-01 -7.02270985e-01
2.73347408e-01 -2.22565502e-01 -7.02117026e-01 -1.91564605e-01
-4.65471387e-01 2.62770444e-01 5.36775410e-01 -1.34900823e-01
-1.04873312e+00 -9.33375061e-02 -2.01312527e-01 -3.36254209e-01
1.59360081e-01 7.33445510e-02 -1.08822137e-01 -1.75115228e-01
5.75950801e-01 1.84582956e-02 -9.80439112e-02 -6.77953839e-01
2.15008944e-01 5.28984845e-01 8.36833000e-01 -1.99821934e-01
9.87884104e-01 6.70243144e-01 -5.78608438e-02 -5.97622454e-01
-8.84864569e-01 -6.31995618e-01 -5.00531673e-01 7.79700950e-02
7.47572362e-01 -1.42656910e+00 -5.64324439e-01 9.54093039e-01
-1.08396685e+00 -2.06731528e-01 -2.05768675e-01 4.56743181e-01
-9.20818895e-02 1.92156836e-01 -5.19868791e-01 -2.02650025e-01
-2.61368096e-01 -1.15682745e+00 1.10173726e+00 5.15073717e-01
-1.33583307e-01 -4.68450814e-01 1.91073626e-01 1.96186885e-01
8.27236354e-01 5.81588373e-02 5.93535900e-01 -1.44652128e-01
-8.50714982e-01 1.55115113e-01 -7.05340564e-01 2.35161811e-01
2.11649418e-01 -2.25147828e-01 -1.28053856e+00 -4.14312989e-01
-2.32174158e-01 -2.45875935e-03 1.14588082e+00 3.27206224e-01
1.02163291e+00 3.41192812e-01 -1.09939493e-01 1.23031914e+00
1.43944502e+00 -5.92809357e-02 8.44480813e-01 6.70572221e-01
9.64133859e-01 5.79855978e-01 4.01598424e-01 2.76918530e-01
6.94157481e-01 9.89849508e-01 3.98283750e-01 -7.71215200e-01
-6.79156125e-01 -2.52676606e-01 -8.31696764e-03 7.24422634e-01
-1.44742370e-01 2.03464806e-01 -8.24978650e-01 5.30415058e-01
-1.82070041e+00 -8.17339897e-01 -3.14888120e-01 2.07586384e+00
7.30224133e-01 3.36514473e-01 -1.24837101e-01 4.45860066e-02
5.81289113e-01 3.01247388e-01 -5.63188732e-01 -1.26420856e-01
-4.73812670e-01 3.88118237e-01 8.39236856e-01 5.72754502e-01
-1.14997602e+00 1.02867651e+00 5.92883253e+00 8.40797961e-01
-1.26346707e+00 -1.54243141e-01 5.77548325e-01 -1.89909995e-01
-1.91355556e-01 3.12923156e-02 -8.80485833e-01 4.52254951e-01
2.71230578e-01 4.98604886e-02 5.20352125e-01 6.34665608e-01
1.12560317e-01 -4.10779983e-01 -1.08447874e+00 1.18126023e+00
-1.60183445e-01 -1.38634372e+00 -1.84152469e-01 1.30188987e-01
1.01402390e+00 4.64456618e-01 9.96298417e-02 3.60448480e-01
1.30585879e-01 -8.64599764e-01 7.66941130e-01 4.25528139e-01
7.67668724e-01 -7.09900737e-01 7.64015853e-01 8.98555443e-02
-1.30518508e+00 -3.75913572e-03 -3.56683463e-01 -1.96301103e-01
-1.25417382e-01 8.36145699e-01 -5.10944128e-01 7.51658916e-01
9.12878871e-01 1.02957594e+00 -8.17796648e-01 1.41321898e+00
6.09984016e-03 1.29638195e-01 -4.36334401e-01 6.18786991e-01
2.99719393e-01 -1.39024392e-01 5.09928644e-01 1.09327841e+00
3.97243261e-01 -2.81710774e-01 -8.53710473e-02 6.70989990e-01
-1.91911772e-01 -9.47754458e-02 -4.89776820e-01 6.31686568e-01
3.03188741e-01 1.14289331e+00 -3.68765175e-01 -2.14979097e-01
-7.01985717e-01 1.04238749e+00 5.19221902e-01 2.95540243e-01
-6.75307274e-01 -4.44808632e-01 1.12608540e+00 2.15345278e-01
4.75661427e-01 -8.37792680e-02 -5.25745630e-01 -1.30541718e+00
2.49569982e-01 -1.02474010e+00 1.65851668e-01 -5.96847594e-01
-1.14116549e+00 6.88621819e-01 -2.90862501e-01 -1.46450341e+00
-3.81904691e-02 -3.28476131e-01 -4.95503455e-01 1.19570112e+00
-2.02112913e+00 -8.02183449e-01 -6.27790391e-01 6.48740232e-01
5.98362923e-01 -5.41579276e-02 4.50372815e-01 7.08588719e-01
-5.29147744e-01 7.75847197e-01 1.20878713e-02 -1.03341043e-02
1.14218533e+00 -1.12117720e+00 7.73547053e-01 1.12031448e+00
-8.41675028e-02 5.83101213e-01 6.24901772e-01 -3.85669023e-01
-1.12816060e+00 -8.32741022e-01 8.67971122e-01 -2.90578455e-01
5.31692266e-01 -5.58106542e-01 -1.00234103e+00 2.55435139e-01
2.41323829e-01 1.74096256e-01 1.46602362e-01 1.68487757e-01
-5.24693489e-01 -4.47224200e-01 -8.53444219e-01 7.30335474e-01
1.46873713e+00 -6.45716190e-01 -4.50235784e-01 -2.91526794e-01
5.81783116e-01 -7.80006826e-01 -5.16279519e-01 6.07221007e-01
5.51728606e-01 -1.57676649e+00 9.81999040e-01 -1.37536660e-01
6.02304697e-01 -5.29201984e-01 -9.92864743e-02 -1.32407343e+00
-5.32968163e-01 -7.07164049e-01 2.13761315e-01 1.40536797e+00
3.69564056e-01 -7.00466633e-01 7.04869688e-01 4.22928274e-01
-1.63394988e-01 -5.40266752e-01 -1.02932143e+00 -5.01716256e-01
-7.61085227e-02 -3.45522910e-01 7.73755550e-01 8.63451600e-01
-3.17909151e-01 2.16230899e-01 -4.57510710e-01 -8.03100392e-02
4.91407037e-01 2.50344574e-01 1.12135017e+00 -1.01082397e+00
-3.30580413e-01 -5.43487489e-01 -5.33824682e-01 -1.47975707e+00
-2.14915320e-01 -8.14693213e-01 2.90139988e-02 -1.30061400e+00
3.61116171e-01 -4.23269957e-01 -2.97261238e-01 3.02242339e-01
-5.81134140e-01 4.26528931e-01 4.26284611e-01 1.96191981e-01
-3.55246961e-01 5.19388974e-01 1.45881033e+00 -7.19817430e-02
-1.71996698e-01 -3.31459165e-01 -8.77451360e-01 5.61100364e-01
5.56284547e-01 -3.40588480e-01 -2.15131953e-01 -7.67991304e-01
4.07195166e-02 -2.06910804e-01 3.46980065e-01 -1.27527785e+00
2.66542017e-01 2.29657739e-01 4.98473078e-01 -7.96947062e-01
1.78968653e-01 -8.44750404e-01 1.84937954e-01 2.24012122e-01
-1.48873419e-01 1.90426573e-01 3.70020032e-01 1.48594841e-01
-5.31598628e-01 3.97935808e-01 8.50824594e-01 2.29707211e-01
-8.91496718e-01 3.10477614e-01 9.93838608e-02 2.88380474e-01
5.95066190e-01 -3.30256283e-01 -4.59140807e-01 -1.72887325e-01
-2.48542190e-01 5.39449573e-01 8.19559753e-01 6.47532105e-01
1.87250391e-01 -1.38835132e+00 -7.34758258e-01 5.18690407e-01
2.42935658e-01 2.13337362e-01 4.58658695e-01 9.72657740e-01
-4.10752982e-01 3.68432373e-01 -4.72367495e-01 -6.87568605e-01
-9.56701577e-01 1.10117890e-01 4.55377549e-01 -4.86137658e-01
-8.32945824e-01 9.71121371e-01 6.49632931e-01 -1.86910212e-01
1.92711174e-01 -3.52225691e-01 -1.12604186e-01 1.88436553e-01
5.62894166e-01 2.27567345e-01 3.34442377e-01 -6.79158568e-01
-3.51863354e-01 8.71182144e-01 -2.83479303e-01 3.89969088e-02
1.43962002e+00 -2.94452369e-01 6.36353865e-02 3.26976664e-02
1.41613841e+00 1.28660768e-01 -1.77961600e+00 -4.84751076e-01
-1.73137084e-01 -8.75740051e-01 2.32579663e-01 -6.89083874e-01
-1.30618644e+00 7.93589354e-01 7.78180778e-01 -2.47427508e-01
1.25987864e+00 -3.41904789e-01 8.84709537e-01 -1.32911906e-01
3.44363332e-01 -1.08298051e+00 -1.51229575e-01 7.04153419e-01
9.39691663e-01 -1.53533351e+00 -9.56097096e-02 -4.40427542e-01
-3.64972532e-01 9.86779869e-01 7.86048830e-01 -2.07436770e-01
3.74522239e-01 4.85758960e-01 1.23073056e-01 -7.32378364e-02
-5.29268205e-01 -4.79193091e-01 5.81028938e-01 4.47679251e-01
4.24248427e-01 -1.95731074e-01 -1.84915975e-01 2.28376955e-01
-3.70987236e-01 -7.54406722e-03 1.18095584e-01 7.39110112e-01
-2.03648403e-01 -1.04142570e+00 -2.91329294e-01 2.84567386e-01
-3.31506193e-01 -5.25742948e-01 -7.40701482e-02 8.63927245e-01
3.18942189e-01 7.86301017e-01 2.62783259e-01 -4.58928347e-01
7.83350170e-01 -2.46896818e-01 4.15705085e-01 -3.19726735e-01
-8.05711210e-01 1.11622080e-01 4.34062007e-04 -1.00802648e+00
-3.39819640e-01 -4.14016366e-01 -1.02772963e+00 -4.23184842e-01
-1.96731657e-01 -4.13867801e-01 4.94270504e-01 7.07620919e-01
5.84876060e-01 6.51512086e-01 6.70796275e-01 -1.12514412e+00
-1.16840921e-01 -8.97578835e-01 -2.91311324e-01 6.25513256e-01
4.93738234e-01 -7.60188460e-01 -3.35524350e-01 -3.74375552e-01] | [8.813682556152344, -2.2191052436828613] |
848da995-7eec-45de-855d-2ecf650b61e3 | surgical-phase-and-instrument-recognition-how | 2306.16879 | null | https://arxiv.org/abs/2306.16879v1 | https://arxiv.org/pdf/2306.16879v1.pdf | Surgical Phase and Instrument Recognition: How to identify appropriate Dataset Splits | Purpose: The development of machine learning models for surgical workflow and instrument recognition from temporal data represents a challenging task due to the complex nature of surgical workflows. In particular, the imbalanced distribution of data is one of the major challenges in the domain of surgical workflow recognition. In order to obtain meaningful results, careful partitioning of data into training, validation, and test sets, as well as the selection of suitable evaluation metrics are crucial. Methods: In this work, we present an openly available web-based application that enables interactive exploration of dataset partitions. The proposed visual framework facilitates the assessment of dataset splits for surgical workflow recognition, especially with regard to identifying sub-optimal dataset splits. Currently, it supports visualization of surgical phase and instrument annotations. Results: In order to validate the dedicated interactive visualizations, we use a dataset split of the Cholec80 dataset. This dataset split was specifically selected to reflect a case of strong data imbalance. Using our software, we were able to identify phases, phase transitions, and combinations of surgical instruments that were not represented in one of the sets. Conclusion: In order to obtain meaningful results in highly unbalanced class distributions, special care should be taken with respect to the selection of an appropriate split. Interactive data visualization represents a promising approach for the assessment of machine learning datasets. The source code is available at https://github.com/Cardio-AI/endovis-ml | ['Sandy Engelhardt', 'Bernhard Preim', 'Ivo Wolf', 'Benedikt Mayer', 'Lalith Sharan', 'Georgii Kostiuchik'] | 2023-06-29 | null | null | null | null | ['instrument-recognition', 'data-visualization', 'data-visualization'] | ['audio', 'methodology', 'miscellaneous'] | [ 3.37429121e-02 -2.11915374e-01 -2.55617857e-01 -1.76613584e-01
-4.23391312e-01 -6.86329126e-01 1.09246731e-01 1.03310955e+00
-4.49393988e-01 5.46833217e-01 4.83836792e-02 -6.74498320e-01
-6.73232019e-01 -4.53243434e-01 -8.47211033e-02 -7.95109272e-01
-1.65312603e-01 7.99596131e-01 -7.62552768e-02 4.38058861e-02
5.17271101e-01 1.08571625e+00 -1.66916811e+00 5.25402963e-01
8.13260436e-01 7.91035652e-01 2.62418956e-01 6.69600427e-01
-4.73367363e-01 4.11561221e-01 -8.64752293e-01 2.11423635e-01
2.15080947e-01 -6.10217631e-01 -5.71276367e-01 -8.47727731e-02
1.01184830e-01 1.64977729e-01 4.98811305e-01 5.06274402e-01
6.90110147e-01 -2.34534785e-01 6.09994173e-01 -1.02158737e+00
7.61774838e-01 5.25389075e-01 -1.84611320e-01 3.18851829e-01
1.88329563e-01 3.27170044e-01 2.80151308e-01 -5.88405967e-01
8.98016632e-01 5.24538398e-01 3.38565588e-01 2.21109390e-01
-1.39104068e+00 -6.94855273e-01 -1.49649426e-01 2.54761219e-01
-1.23997891e+00 -1.71594396e-01 7.06987381e-01 -1.03433120e+00
2.69080698e-01 7.25328922e-01 1.17688251e+00 7.82894075e-01
3.10979992e-01 2.43873805e-01 1.25003171e+00 -6.41825616e-01
2.44899735e-01 4.23610657e-01 2.39284575e-01 3.65586132e-01
6.92766726e-01 -8.45045671e-02 -4.19999748e-01 -2.50541776e-01
5.22738278e-01 -3.31525169e-02 -3.34953219e-01 -8.58680725e-01
-1.11185002e+00 4.94512826e-01 2.03059956e-01 7.99429178e-01
-4.04505014e-01 -4.36242789e-01 7.16151297e-01 -7.57956505e-02
3.27567905e-02 5.87312579e-01 -6.48553818e-02 -4.52538729e-01
-9.89962161e-01 -9.83460620e-02 7.83467054e-01 3.99317712e-01
3.28273296e-01 -3.89836550e-01 -1.38742656e-01 5.36907375e-01
-6.22284599e-04 -9.05833617e-02 6.82093740e-01 -3.51568967e-01
1.82646096e-01 9.98722553e-01 -6.51726946e-02 -7.63983130e-01
-1.07503605e+00 -6.57958865e-01 -9.47928131e-01 7.38469899e-01
6.45144939e-01 7.60061890e-02 -7.71860838e-01 1.00124681e+00
3.60113472e-01 -6.26422226e-01 -1.86754391e-02 7.08108842e-01
7.78163254e-01 -1.57752395e-01 2.36135438e-01 -4.59158957e-01
1.54561973e+00 -2.84229890e-02 -8.40289772e-01 1.41378522e-01
1.08881021e+00 -8.56683135e-01 1.10564995e+00 5.60714245e-01
-8.52758586e-01 -3.75667006e-01 -9.39631283e-01 3.73456091e-01
-3.82315308e-01 8.02269220e-01 2.88271546e-01 5.84570706e-01
-5.37768424e-01 5.93904018e-01 -1.17589855e+00 -3.78199577e-01
4.25449014e-01 5.10546148e-01 -6.48984969e-01 1.56555206e-01
-5.82355618e-01 1.08585703e+00 4.93212670e-01 4.75205600e-01
-3.61263543e-01 -6.29835844e-01 -6.46552622e-01 -2.89574685e-03
1.78027824e-01 -5.85272312e-01 6.54363394e-01 -7.80890226e-01
-9.84908044e-01 1.16096258e+00 2.12841034e-02 -1.12451710e-01
7.89926469e-01 8.78642574e-02 -1.36233896e-01 3.15254629e-02
-3.74375612e-01 -1.78308889e-01 8.68748724e-02 -1.27674937e+00
-6.14334822e-01 -7.93576360e-01 -2.37030134e-01 8.36155191e-02
-2.47547910e-01 -8.24839398e-02 -1.88386783e-01 -4.58395600e-01
8.53728950e-02 -9.37975645e-01 -3.15125555e-01 1.14707705e-02
-2.89237797e-01 3.21756840e-01 5.51066697e-01 -7.57569730e-01
1.56487620e+00 -2.28092742e+00 8.66154730e-02 5.02210557e-01
3.24942321e-01 1.76079229e-01 5.78148663e-01 4.39220607e-01
-5.10145009e-01 1.45728633e-01 -6.75662979e-02 -3.35806943e-02
-2.38490030e-01 3.57752177e-03 5.16115844e-01 6.27366960e-01
-3.16910177e-01 9.74406675e-02 -4.92389888e-01 -7.75408208e-01
4.23867345e-01 3.07335287e-01 -3.21398884e-01 3.48533660e-01
1.12027064e-01 8.14088821e-01 -7.04303905e-02 4.01090711e-01
7.09368587e-01 2.79853325e-02 7.30479658e-01 -5.17706215e-01
-5.29138207e-01 4.82802689e-02 -1.39760458e+00 1.60182929e+00
-5.33990026e-01 5.02943039e-01 -6.23818953e-03 -7.18743920e-01
1.22894335e+00 3.51713121e-01 8.56612325e-01 -5.67017376e-01
2.70905972e-01 3.88708919e-01 4.78939027e-01 -8.09359252e-01
1.92347929e-01 -2.11106732e-01 3.08758050e-01 2.90222973e-01
-1.74522251e-01 -1.64745659e-01 6.35958612e-01 -1.39507353e-01
7.03899920e-01 -1.03085831e-01 7.64053285e-01 -3.17455292e-01
4.97467428e-01 2.28492901e-01 4.41954911e-01 3.10125887e-01
-8.27064067e-02 5.04095972e-01 1.10200810e+00 -6.00466847e-01
-5.47520936e-01 -6.91670954e-01 -3.37290615e-01 3.31930906e-01
6.97511481e-03 -3.72691482e-01 -4.34330106e-01 -6.64648235e-01
-2.25252867e-01 4.88604963e-01 -8.99480224e-01 -3.11936494e-02
-4.73275334e-01 -7.30452478e-01 9.61751640e-02 1.30341515e-01
-3.63699675e-01 -1.00384617e+00 -1.38564646e+00 -3.69492285e-02
-1.25619993e-01 -4.29776847e-01 1.71933472e-01 5.72994471e-01
-1.10735929e+00 -1.78799307e+00 -4.55211490e-01 -3.70082617e-01
8.76372755e-01 -3.23329240e-01 9.83905911e-01 4.30279784e-02
-9.93182898e-01 1.42680168e-01 -2.93062449e-01 -6.83411956e-01
-7.42986679e-01 3.55484188e-01 -4.21277702e-01 -2.97842085e-01
1.07060626e-01 -1.81972474e-01 -8.96932483e-01 3.91513050e-01
-1.10532463e+00 2.65304834e-01 6.52094781e-01 5.25174081e-01
6.64641917e-01 -2.00780943e-01 -1.43151641e-01 -9.56710458e-01
5.74085534e-01 -4.06259537e-01 -8.26102972e-01 3.35820019e-01
-5.70792139e-01 3.64276767e-02 5.33342540e-01 -1.41471356e-01
-6.62602007e-01 2.24228114e-01 -8.13590884e-02 -2.16463462e-01
-7.33694434e-01 6.25824451e-01 -1.12747811e-01 1.42604768e-01
9.46700275e-01 -2.41347417e-01 5.59316456e-01 -5.45069754e-01
-3.93515438e-01 5.82763433e-01 5.95160834e-02 -2.51894832e-01
1.87440500e-01 3.05360794e-01 2.40774140e-01 -5.13742805e-01
-1.80307820e-01 -6.89838409e-01 -9.52556431e-01 -5.70945740e-01
5.56459069e-01 -1.72341689e-01 -8.49110484e-01 -3.48566025e-02
-7.04410076e-01 -3.17599267e-01 -4.27366197e-01 6.81829512e-01
-4.02439386e-01 7.03643262e-02 7.88261965e-02 -7.30707765e-01
-5.10878861e-01 -1.57718134e+00 3.84684086e-01 1.86314449e-01
-6.12807453e-01 -9.17587996e-01 3.32426846e-01 1.09178200e-01
4.23139542e-01 8.75829875e-01 1.12116373e+00 -9.06440794e-01
-1.89587489e-01 -4.68603879e-01 3.53002757e-01 6.10200837e-02
5.89335859e-01 6.24969423e-01 -5.16478479e-01 -1.30229354e-01
-3.17618400e-01 3.17371398e-01 3.48103881e-01 2.93321371e-01
1.34661412e+00 1.03258848e-01 -4.40489739e-01 3.59200329e-01
1.38587737e+00 4.79429126e-01 3.55084300e-01 5.19277930e-01
2.25028157e-01 7.90197194e-01 1.04880440e+00 8.38139176e-01
2.29188446e-02 8.73277962e-01 7.62600362e-01 -4.21174973e-01
-2.13964377e-02 3.76695067e-01 -3.16304207e-01 1.94877818e-01
-2.74894476e-01 3.17892790e-01 -1.45113873e+00 3.67620379e-01
-1.48645556e+00 -5.69840372e-01 -4.14705813e-01 2.80649281e+00
5.71181655e-01 2.29026094e-01 4.02948529e-01 5.19409418e-01
3.88150603e-01 -1.74451202e-01 -8.14580321e-02 -4.89821255e-01
1.98014602e-01 1.58085957e-01 2.96541333e-01 3.79235625e-01
-9.21447456e-01 6.69009164e-02 4.84599590e+00 3.05703342e-01
-1.62269115e+00 -2.89576650e-01 5.02877772e-01 -4.77760404e-01
-1.65132493e-01 -1.60402596e-01 -5.03980219e-01 5.56318641e-01
7.17998207e-01 -2.78827786e-01 -2.49835312e-01 5.57251751e-01
6.23626590e-01 -4.80662674e-01 -8.70531261e-01 8.79225254e-01
-7.69637004e-02 -1.41580570e+00 -2.70858765e-01 1.32125422e-01
-6.20616861e-02 -3.67448390e-01 -2.34074771e-01 -3.39923620e-01
-3.66155684e-01 -9.37376440e-01 4.83334392e-01 6.80271566e-01
8.83491158e-01 -6.93249404e-01 1.08748710e+00 3.43601964e-02
-6.75966084e-01 -2.24080250e-01 2.69954801e-01 3.73385310e-01
-9.57657862e-03 8.56670618e-01 -1.29319680e+00 7.39016354e-01
6.39673471e-01 3.00289541e-01 -5.84575474e-01 1.70343792e+00
1.84669822e-01 3.22907954e-01 -3.22093666e-01 1.99933439e-01
-5.01004934e-01 2.84446310e-02 4.81607914e-01 1.35070157e+00
3.57758522e-01 -3.07192862e-01 -8.64345804e-02 3.13199043e-01
4.82628435e-01 7.99353480e-01 -4.15777862e-01 1.30651072e-01
1.86926663e-01 1.39877737e+00 -1.08558655e+00 -3.93311232e-02
5.64262532e-02 3.14246982e-01 3.40789594e-02 3.59568335e-02
-4.71510619e-01 -2.70300448e-01 6.23724282e-01 7.44321167e-01
-2.31378421e-01 -9.72887576e-02 -7.81609356e-01 -6.34165883e-01
8.16892236e-02 -9.25018191e-01 9.14643943e-01 -1.86424047e-01
-3.21372539e-01 6.97440088e-01 3.98904532e-02 -1.81228244e+00
-2.77428120e-01 -5.42226613e-01 -3.71254116e-01 8.51871133e-01
-8.87146115e-01 -7.93828249e-01 -9.78243411e-01 2.16242686e-01
5.49540408e-02 2.19994441e-01 1.25206506e+00 2.80869395e-01
-5.34752250e-01 1.61247388e-01 9.96299759e-02 -2.35936850e-01
9.27898526e-01 -1.43318510e+00 -5.19430280e-01 4.78615105e-01
-1.30182356e-01 4.77076590e-01 9.75216508e-01 -4.85680610e-01
-6.88631833e-01 -3.61789137e-01 5.28524220e-01 -1.41009986e-01
2.48269647e-01 -3.08123499e-01 -8.92942488e-01 2.58804172e-01
-8.98127779e-02 -6.65835515e-02 1.42054892e+00 1.33912787e-01
2.80141145e-01 -4.59606171e-01 -8.77869129e-01 3.99722725e-01
3.58267367e-01 1.72346234e-01 -1.28932744e-01 1.78850621e-01
-4.66301411e-01 -8.86535347e-01 -1.27993798e+00 6.88798308e-01
7.60082066e-01 -1.40501130e+00 6.07101023e-01 -4.86219913e-01
3.22462440e-01 -3.39867234e-01 7.10139096e-01 -1.23588789e+00
1.58167377e-01 -1.07062101e-01 3.32240343e-01 7.81761110e-01
4.74389970e-01 -4.34768885e-01 8.55217218e-01 5.98315775e-01
-8.76401514e-02 -9.52936769e-01 -8.34110916e-01 -1.05076067e-01
-2.55860627e-01 -1.77669764e-01 2.78256357e-01 6.28423631e-01
2.72057503e-01 -4.56919342e-01 1.45101547e-01 -4.69139889e-02
2.50995606e-01 5.25323808e-01 1.00776517e+00 -1.35652280e+00
2.47951634e-02 -8.03619921e-01 -6.56466067e-01 2.73403019e-01
-4.64536428e-01 -6.92662001e-01 -2.91438758e-01 -1.91809464e+00
-2.97299996e-02 -7.75111794e-01 -4.30086613e-01 4.23162848e-01
-1.88658889e-02 1.79435655e-01 3.37117165e-01 2.03805730e-01
-7.10424036e-02 -9.02774781e-02 1.09752166e+00 1.31424427e-01
-5.72770417e-01 5.69383919e-01 -4.56914544e-01 3.87646317e-01
9.58238363e-01 -6.87627733e-01 -1.48213685e-01 1.98105767e-01
2.59935498e-01 1.32390395e-01 7.10544661e-02 -1.03995109e+00
3.04875553e-01 -1.37830660e-01 4.67635900e-01 -7.40370393e-01
-5.68791628e-02 -1.08962572e+00 7.36358523e-01 1.04718316e+00
-1.88462421e-01 6.92132264e-02 5.79183578e-01 -1.37537062e-01
-4.69781488e-01 -2.20540240e-01 7.73603261e-01 -1.55126736e-01
-3.20259809e-01 -1.12005830e-01 -5.05307734e-01 -1.71026886e-01
1.23363578e+00 -4.04092968e-01 -1.70165271e-01 3.94588076e-02
-1.19462895e+00 7.97685757e-02 5.70332289e-01 3.45518678e-01
3.75420213e-01 -7.20375478e-01 -6.23294532e-01 1.45242840e-01
4.77975518e-01 2.84061223e-01 9.23181593e-01 1.42753220e+00
-1.08524597e+00 3.56432378e-01 -6.50649488e-01 -6.71542227e-01
-2.02615666e+00 4.50401217e-01 5.89927137e-01 -5.33905685e-01
-4.94832665e-01 2.67848700e-01 3.73050496e-02 -2.54225340e-02
2.43729442e-01 -3.87127906e-01 -7.07506537e-01 5.64160287e-01
4.05427486e-01 3.60421866e-01 6.12340033e-01 -3.15099686e-01
-6.15445614e-01 4.51917201e-01 1.90157950e-01 3.95557046e-01
1.09744322e+00 5.73253445e-02 -2.39113554e-01 6.68810606e-01
8.50727677e-01 3.51837307e-01 -6.84224784e-01 3.88982236e-01
1.11464731e-01 -5.97208500e-01 -4.23399538e-01 -1.16510522e+00
-9.75597203e-01 7.97448218e-01 1.04183030e+00 2.23291948e-01
1.34708321e+00 -2.05146581e-01 -3.34985077e-01 -4.52657819e-01
9.32788104e-02 -8.00702631e-01 -3.30558330e-01 -4.38723937e-02
1.10222542e+00 -1.10588157e+00 1.61013767e-01 -4.30880517e-01
-5.46155512e-01 1.61520863e+00 5.27848482e-01 4.81917530e-01
5.40559709e-01 5.80736578e-01 7.17460990e-01 -3.26832920e-01
-4.17191625e-01 -7.95335621e-02 3.35114211e-01 2.36136556e-01
7.14169681e-01 1.72402635e-01 -9.63756800e-01 5.43128192e-01
-2.84397215e-01 3.26122195e-01 5.35028160e-01 1.01671612e+00
2.05663927e-02 -1.22451413e+00 -6.18671596e-01 6.46510184e-01
-4.93889421e-01 3.09038818e-01 -2.35460594e-01 1.02610993e+00
1.98121324e-01 3.41374427e-01 2.74858139e-02 1.63640231e-02
7.57382691e-01 1.10917084e-01 3.33302140e-01 -4.22477126e-01
-1.01926398e+00 9.22381207e-02 1.13943055e-01 -6.14647448e-01
-2.94959366e-01 -5.27212620e-01 -1.24034357e+00 1.51014119e-01
-1.08208939e-01 3.79587591e-01 1.39079273e+00 5.52077234e-01
3.73875201e-01 9.34069693e-01 2.78642237e-01 -6.65554047e-01
-8.08742195e-02 -9.22850370e-01 -5.36217630e-01 5.29444933e-01
2.46178076e-01 -7.55247116e-01 -4.29100156e-01 -2.50847382e-03] | [14.039698600769043, -3.1536083221435547] |
54cf08de-de0e-46c7-8fd0-7ef6c64197c2 | context-dependent-domain-adversarial-neural | null | null | https://www.isca-speech.org/archive/interspeech_2020/lian20b_interspeech.html | https://www.isca-speech.org/archive/pdfs/interspeech_2020/lian20b_interspeech.pdf | Context-Dependent Domain Adversarial Neural Network for Multimodal Emotion Recognition | Emotion recognition remains a complex task due to speaker variations and low-resource training samples. To address these difficulties, we focus on the domain adversarial neural networks (DANN) for emotion recognition. The primary task is to predict emotion labels. The secondary task is to learn a common representation where speaker identities can not be distinguished. By using this approach, we bring the representations of different speakers closer. Meanwhile, through using the unlabeled data in the training process, we alleviate the impact of low-resource training samples. In the meantime, prior work found that contextual information and multimodal features are important for emotion recognition. However, previous DANN-based approaches ignore this information, thus limiting their performance. In this paper, we propose the context-dependent domain adversarial neural network for multimodal emotion recognition. To verify the effectiveness of our proposed method, we conduct experiments on the benchmark dataset IEMOCAP. Experimental results demonstrate that the proposed method shows an absolute improvement of 3.48% over state-of-the-art strategies. | ['Rongjun Li', 'Zhanlei Yang', 'Jian Huang', 'Bin Liu', 'JianHua Tao', 'Zheng Lian'] | 2020-10-28 | null | null | null | interspeech-2020-10 | ['multimodal-emotion-recognition', 'multimodal-emotion-recognition'] | ['computer-vision', 'speech'] | [ 2.23906547e-01 -2.94316024e-01 9.05084312e-02 -5.65513968e-01
-7.16059446e-01 -5.69790602e-01 3.92473400e-01 -3.87156576e-01
-3.72302175e-01 7.41708279e-01 2.43203178e-01 6.79118261e-02
3.97167981e-01 -3.28974962e-01 -3.78134221e-01 -8.95515025e-01
3.33583266e-01 2.31573619e-02 -2.84956187e-01 -1.75235093e-01
-4.91754115e-02 4.09230232e-01 -1.38668287e+00 3.34514201e-01
9.73436177e-01 1.30425024e+00 -3.46859366e-01 2.44036943e-01
-3.90701562e-01 7.90995538e-01 -8.47695172e-01 -5.42391300e-01
9.76988208e-03 -6.17979825e-01 -5.98421872e-01 8.22025016e-02
1.18386477e-01 -2.23198190e-01 -2.53196269e-01 1.17589474e+00
7.02292979e-01 3.86494488e-01 8.12887788e-01 -1.48470485e+00
-6.41755939e-01 3.85249972e-01 -3.91396582e-01 -1.33848682e-01
2.31530875e-01 -3.26761335e-01 6.54256225e-01 -1.13700581e+00
2.83581018e-01 1.18554664e+00 5.24424434e-01 9.42215323e-01
-7.19147146e-01 -1.04670477e+00 5.57007849e-01 2.44879499e-01
-1.54533827e+00 -6.57254577e-01 1.27642119e+00 -1.66664049e-01
4.04952377e-01 2.79017597e-01 5.66114299e-02 1.44098437e+00
-2.58987308e-01 8.64892364e-01 1.15449369e+00 -4.10665035e-01
2.43304923e-01 3.43862683e-01 8.63107517e-02 4.72504705e-01
-4.34071809e-01 -2.06952170e-01 -3.82656664e-01 -5.96593842e-02
3.81410599e-01 2.65082985e-01 -3.60678017e-01 -1.15252934e-01
-7.16565073e-01 7.29360938e-01 3.59162867e-01 2.84024388e-01
-3.31566155e-01 -3.38887423e-01 5.98973036e-01 3.82490426e-01
6.91042125e-01 -1.07643910e-01 -2.29756579e-01 -2.34759510e-01
-6.59437358e-01 -3.92834723e-01 8.10504615e-01 6.86795771e-01
4.90114152e-01 3.34509879e-01 6.06709346e-02 1.15384257e+00
3.15260917e-01 4.02866542e-01 6.20979667e-01 -4.99934226e-01
5.30850053e-01 6.42143130e-01 5.27912639e-02 -1.11035955e+00
-1.42815545e-01 -3.13199192e-01 -1.11412144e+00 -4.93082888e-02
2.66791582e-01 -6.43840790e-01 -9.27552760e-01 1.84018290e+00
2.74611205e-01 4.49997425e-01 5.45676291e-01 1.05909443e+00
1.05232680e+00 7.69497335e-01 2.48727962e-01 -1.67938441e-01
1.04688168e+00 -1.08206236e+00 -8.83790374e-01 -2.57747114e-01
3.20318818e-01 -8.15761387e-01 9.06631410e-01 3.09136510e-01
-6.61092103e-01 -4.27873164e-01 -9.77321446e-01 2.61684895e-01
-4.30593878e-01 2.60085881e-01 5.48425674e-01 9.82981324e-01
-5.96376538e-01 8.05135667e-02 -6.25428736e-01 -2.57436991e-01
3.61034304e-01 3.19172412e-01 -4.35257554e-01 -2.19558418e-01
-1.31457961e+00 6.27189219e-01 1.23219058e-01 4.32067692e-01
-8.01851213e-01 -1.87099680e-01 -8.56119156e-01 1.54501215e-01
2.47577056e-01 -1.63571924e-01 1.07603109e+00 -1.60181856e+00
-1.85389996e+00 6.29862547e-01 -3.91136587e-01 -9.70619917e-02
4.07291144e-01 -2.27449730e-01 -8.84927273e-01 1.41232535e-01
-3.73817712e-01 4.15232182e-01 8.48410726e-01 -1.48357725e+00
-4.52209026e-01 -4.25391048e-01 -5.69769240e-04 3.44228119e-01
-8.85622740e-01 2.65771329e-01 -5.36816239e-01 -6.20896637e-01
-3.87434140e-02 -1.00074983e+00 1.16017744e-01 -2.39489302e-01
-2.97697961e-01 -8.73504952e-02 9.19740856e-01 -6.07742846e-01
9.49762404e-01 -2.50941420e+00 8.33336264e-02 8.40336531e-02
-1.77454993e-01 3.05483818e-01 -2.31566235e-01 2.67398953e-01
-1.31776497e-01 2.13317424e-01 -2.46183559e-01 -6.20587230e-01
2.18328804e-01 1.59829408e-01 -3.80036891e-01 2.99647123e-01
3.55920106e-01 6.11081779e-01 -4.68715906e-01 -4.56158847e-01
9.61125940e-02 7.38210022e-01 -3.41718048e-01 4.59237158e-01
1.03368789e-01 6.66734219e-01 -5.37913740e-01 8.34645569e-01
8.56820762e-01 1.98782131e-01 1.71185866e-01 -2.28109345e-01
2.01634288e-01 8.01281247e-04 -1.27747321e+00 1.57573664e+00
-5.80171168e-01 4.18043882e-01 3.51566941e-01 -1.25921655e+00
1.17438138e+00 5.10155380e-01 4.00424987e-01 -6.01664722e-01
4.11733001e-01 7.95540512e-02 -1.00092597e-01 -3.99697602e-01
3.16999406e-01 -3.93870980e-01 -3.11576247e-01 3.23795289e-01
2.32227184e-02 2.94570506e-01 -3.23480040e-01 -9.97325778e-02
5.99588811e-01 -1.64598599e-01 -4.91136611e-02 2.61396468e-01
8.46884251e-01 -4.05068070e-01 8.69586170e-01 3.26387942e-01
-6.19823873e-01 5.06328821e-01 2.50588089e-01 -2.46893778e-01
-3.54667723e-01 -8.99140120e-01 4.38688844e-02 1.29929256e+00
2.63934046e-01 3.40028703e-02 -7.80240536e-01 -9.30293083e-01
-3.89528960e-01 5.20132840e-01 -6.36739731e-01 -3.41834992e-01
-2.60579407e-01 -7.02139735e-01 7.70417809e-01 4.93465811e-01
7.06351995e-01 -1.03893387e+00 -1.61501139e-01 1.04884952e-01
-3.60950232e-01 -1.18924379e+00 -5.12795866e-01 3.96639705e-02
-5.93074024e-01 -7.27978170e-01 -9.36279714e-01 -1.05844092e+00
7.25770175e-01 5.12863174e-02 8.26040447e-01 -2.16148928e-01
1.51637375e-01 3.20923507e-01 -5.64617276e-01 -5.64234972e-01
-2.16249585e-01 3.93171795e-03 9.98892188e-02 5.60210168e-01
6.01210415e-01 -5.30004859e-01 -5.07905900e-01 4.93394613e-01
-8.43015790e-01 -3.66394609e-01 4.36448246e-01 1.11155927e+00
3.87956768e-01 1.79768562e-01 1.06003058e+00 -7.71659434e-01
6.93083465e-01 -4.29990590e-01 -1.28982157e-01 2.94673741e-01
-1.94099128e-01 -2.22486332e-01 8.79697025e-01 -8.07098269e-01
-1.49757648e+00 1.87331989e-01 -2.26065859e-01 -5.03194332e-01
-4.56682861e-01 5.91228962e-01 -6.75471902e-01 -1.16193436e-01
1.90513939e-01 3.41312736e-01 -7.17995539e-02 -3.41800034e-01
2.85150290e-01 1.05879819e+00 4.97602820e-01 -6.27701938e-01
4.72631276e-01 3.58957440e-01 -4.36349213e-01 -6.27212882e-01
-7.86446154e-01 -2.99691796e-01 -3.68533731e-01 -2.17046782e-01
7.14484751e-01 -1.09464049e+00 -6.84423685e-01 5.14819682e-01
-1.01910043e+00 4.63133566e-02 1.45039305e-01 5.11929333e-01
-1.81331113e-01 2.93297440e-01 -6.10683203e-01 -1.13038766e+00
-4.01327670e-01 -1.09005809e+00 8.04353893e-01 4.63691503e-01
4.60659862e-02 -1.10917509e+00 -1.31787613e-01 3.89658123e-01
3.74499351e-01 3.41294825e-01 7.00188637e-01 -1.18677640e+00
-2.96062697e-02 -2.34290123e-01 -1.61096931e-01 6.81003332e-01
3.94266576e-01 -2.23791555e-01 -1.26974237e+00 9.79577075e-04
2.26607993e-01 -5.43887317e-01 6.59202635e-01 -1.08216554e-01
1.16531658e+00 -1.17139243e-01 -4.31837551e-02 5.60256720e-01
1.14877391e+00 4.62118387e-01 5.55893600e-01 4.10065763e-02
8.01340640e-01 7.61736035e-01 6.80378020e-01 3.94291848e-01
3.39206666e-01 3.85353118e-01 3.99643987e-01 -2.47746468e-01
1.63951814e-01 -1.29202887e-01 4.61440682e-01 1.03546870e+00
1.37998328e-01 -3.74389470e-01 -8.08872998e-01 4.40740079e-01
-1.74209225e+00 -8.53527844e-01 3.32162768e-01 1.89624739e+00
7.32148409e-01 -2.25714175e-03 -6.86405674e-02 1.36407048e-01
8.89975488e-01 1.98868170e-01 -6.32361114e-01 -6.30510151e-01
-6.09068722e-02 4.71687242e-02 -9.14056301e-02 1.63896516e-01
-1.24713504e+00 9.71688986e-01 5.68856001e+00 7.68577635e-01
-1.45391023e+00 4.90294769e-02 7.33924985e-01 -1.16103217e-01
-1.71751063e-02 -5.26347220e-01 -5.35518289e-01 5.32095194e-01
8.91462207e-01 -1.29811957e-01 4.48988557e-01 8.56803060e-01
7.33454386e-03 3.51611286e-01 -1.00062072e+00 1.21602094e+00
5.04304588e-01 -5.04535258e-01 -9.16044265e-02 -2.08401799e-01
7.54614711e-01 -2.25096017e-01 2.08157271e-01 7.33245730e-01
9.58775803e-02 -1.14504480e+00 4.39439625e-01 4.53695893e-01
6.34446740e-01 -1.21496844e+00 1.08016491e+00 2.84838796e-01
-1.09409988e+00 -3.88342538e-03 -2.86320388e-01 -4.30443659e-02
-1.98098663e-02 4.39713776e-01 -6.28723264e-01 6.59912169e-01
4.71226871e-01 5.08967817e-01 -1.47531629e-01 6.47767007e-01
-1.66060880e-01 7.12926030e-01 -9.80520323e-02 -6.65346831e-02
1.59284100e-01 -1.67253777e-01 2.56200045e-01 1.30023193e+00
3.42885047e-01 1.39447361e-01 3.33192587e-01 5.22871912e-01
-5.85279644e-01 3.85062158e-01 -5.47030032e-01 -1.45193875e-01
4.80016559e-01 1.17837095e+00 -3.76979619e-01 -1.69677645e-01
-4.96313453e-01 1.35686994e+00 2.95452327e-01 5.61883867e-01
-9.86894131e-01 -4.85430121e-01 7.35415876e-01 -6.93725705e-01
3.08276415e-01 -4.02130224e-02 -7.73024634e-02 -1.28306723e+00
7.16121569e-02 -1.10292792e+00 3.42868924e-01 -4.67789769e-01
-1.53901005e+00 7.97521949e-01 -5.33935606e-01 -1.26973462e+00
-2.02627599e-01 -5.33750355e-01 -6.95159256e-01 1.02246642e+00
-1.61117601e+00 -1.22927725e+00 -2.71119356e-01 8.29818785e-01
6.14806592e-01 -2.84167588e-01 1.14194191e+00 5.17733812e-01
-8.86802733e-01 1.00030124e+00 4.01285350e-01 4.98704106e-01
1.12285709e+00 -1.02394855e+00 -1.83176219e-01 8.17242861e-01
8.49948302e-02 5.53231895e-01 4.68149513e-01 -2.68742114e-01
-1.31492710e+00 -1.06213570e+00 6.36369944e-01 -1.24935977e-01
4.17527258e-01 -4.47103709e-01 -1.01008284e+00 4.30099756e-01
2.75666535e-01 1.22145228e-01 1.24017620e+00 2.90881127e-01
-5.31137764e-01 -3.14405531e-01 -1.27467668e+00 6.10230684e-01
6.90210164e-01 -7.93883860e-01 -6.23965502e-01 -8.90710801e-02
4.99465227e-01 -3.09509069e-01 -8.73376787e-01 4.43032086e-01
6.84331238e-01 -7.60946572e-01 7.21980691e-01 -5.59983432e-01
4.07987595e-01 -1.23206191e-01 -2.93461323e-01 -1.54159188e+00
2.41320267e-01 -3.41694385e-01 1.27607301e-01 1.85459042e+00
2.62692630e-01 -7.33992875e-01 6.80687189e-01 8.27662051e-01
-3.06793470e-02 -5.44411242e-01 -9.27467763e-01 -6.42199874e-01
5.00228032e-02 -3.52162510e-01 7.19031453e-01 1.19549072e+00
-2.86140479e-02 5.38981557e-01 -6.12595260e-01 3.46613377e-01
3.10932338e-01 2.61170596e-01 6.84620082e-01 -1.03522992e+00
-8.07636534e-04 -2.20172793e-01 -3.41616780e-01 -9.69773471e-01
7.00301886e-01 -5.84354877e-01 1.85703367e-01 -1.14610267e+00
6.15017898e-02 -2.21908242e-01 -8.14263940e-01 4.19210523e-01
-3.60379875e-01 2.47447670e-01 1.76127687e-01 -2.47940160e-02
-7.65000820e-01 1.00781131e+00 1.03894269e+00 -2.93523729e-01
-1.81356445e-01 -8.40824395e-02 -8.33878398e-01 8.04991782e-01
9.87110436e-01 -4.98000592e-01 -4.83109444e-01 -3.94768387e-01
-4.30432290e-01 -6.58673048e-02 1.56822860e-01 -8.54761660e-01
1.89169720e-01 -7.87384883e-02 5.03003180e-01 -3.33686471e-01
6.42634034e-01 -1.14621270e+00 -2.10936666e-01 -3.05378647e-03
-2.88992971e-01 -2.26535708e-01 4.49532479e-01 5.49046099e-01
-7.13566482e-01 -2.10958719e-01 5.32221496e-01 2.24812314e-01
-7.57011592e-01 2.51570791e-01 -2.77547330e-01 1.02781923e-02
8.87757778e-01 4.36664298e-02 -2.42039010e-01 -6.18878782e-01
-7.65719533e-01 2.27284372e-01 3.31752360e-01 5.34786642e-01
5.98997772e-01 -1.39940643e+00 -5.81019461e-01 1.07322387e-01
2.66413182e-01 -2.04331219e-01 4.84696388e-01 4.93730724e-01
-1.76503602e-02 1.17988601e-01 -2.94049859e-01 -3.23956043e-01
-1.44584489e+00 5.31432986e-01 3.78284544e-01 -8.58689100e-02
-6.28673136e-02 7.48533368e-01 2.97042519e-01 -6.29421473e-01
4.99547899e-01 6.49807751e-02 -4.18872356e-01 1.37413129e-01
5.69775283e-01 2.65153567e-03 -8.09005424e-02 -8.59225690e-01
-5.68481386e-01 3.75739098e-01 -1.73183575e-01 -2.31355846e-01
1.26735485e+00 -3.30268860e-01 1.10523440e-01 5.36182582e-01
1.35586834e+00 2.33495280e-01 -1.06390119e+00 -2.25324079e-01
-3.19662780e-01 -2.81273663e-01 -7.23911030e-03 -9.69504952e-01
-1.15724862e+00 1.14354610e+00 9.22356725e-01 1.30934760e-01
1.56643665e+00 -3.75191480e-01 7.49387145e-01 3.50958586e-01
5.00921123e-02 -1.06556129e+00 9.07236338e-02 5.26971817e-01
7.73762941e-01 -1.47037232e+00 -5.36202252e-01 -4.98446196e-01
-9.54837680e-01 8.78330529e-01 7.37281322e-01 1.94472492e-01
5.14395952e-01 -2.55810674e-02 6.20857954e-01 1.99856505e-01
-4.81181413e-01 -5.50285615e-02 2.57820398e-01 5.79490602e-01
5.31631231e-01 8.17075968e-02 -7.48559684e-02 1.18913174e+00
1.31023884e-01 -1.09965794e-01 1.82115063e-01 8.49025846e-01
-1.46279946e-01 -1.31136024e+00 -4.91661996e-01 -4.69633751e-02
-7.71871746e-01 -3.78174931e-02 -6.76388025e-01 5.11926055e-01
-5.92034124e-02 1.40386891e+00 -8.72681439e-02 -5.35550654e-01
3.95706177e-01 5.33538282e-01 8.43198672e-02 -2.91828781e-01
-4.51683760e-01 8.00030008e-02 1.88294873e-01 -1.27665922e-01
-6.59499764e-01 -3.64573628e-01 -1.16359329e+00 -3.38179134e-02
-1.80160075e-01 3.73439282e-01 7.80585468e-01 8.35232973e-01
4.77422357e-01 6.52923286e-01 1.04647648e+00 -6.12016678e-01
-6.03202462e-01 -1.05994868e+00 -4.70780641e-01 6.48636997e-01
2.33393297e-01 -6.34782970e-01 -5.02708852e-01 1.89188406e-01] | [13.47658634185791, 5.739260673522949] |
83e24dad-bf68-425c-89ad-6b2721b1cd74 | using-integrated-gradients-to-explain | 2106.07349 | null | https://arxiv.org/abs/2106.07349v2 | https://arxiv.org/pdf/2106.07349v2.pdf | Using Integrated Gradients and Constituency Parse Trees to explain Linguistic Acceptability learnt by BERT | Linguistic Acceptability is the task of determining whether a sentence is grammatical or ungrammatical. It has applications in several use cases like Question-Answering, Natural Language Generation, Neural Machine Translation, where grammatical correctness is crucial. In this paper we aim to understand the decision-making process of BERT (Devlin et al., 2019) in distinguishing between Linguistically Acceptable sentences (LA) and Linguistically Unacceptable sentences (LUA). We leverage Layer Integrated Gradients Attribution Scores (LIG) to explain the Linguistic Acceptability criteria that are learnt by BERT on the Corpus of Linguistic Acceptability (CoLA) (Warstadt et al., 2018) benchmark dataset. Our experiments on 5 categories of sentences lead to the following interesting findings: 1) LIG for LA are significantly smaller in comparison to LUA, 2) There are specific subtrees of the Constituency Parse Tree (CPT) for LA and LUA which contribute larger LIG, 3) Across the different categories of sentences we observed around 88% to 100% of the Correctly classified sentences had positive LIG, indicating a strong positive relationship to the prediction confidence of the model, and 4) Around 43% of the Misclassified sentences had negative LIG, which we believe can become correctly classified sentences if the LIG are parameterized in the loss function of the model. | ['Hari Prasad Timmapathini', 'Anmol Nayak'] | 2021-06-01 | null | https://aclanthology.org/2021.icon-main.11 | https://aclanthology.org/2021.icon-main.11.pdf | icon-2021-12 | ['linguistic-acceptability'] | ['natural-language-processing'] | [ 9.09828469e-02 6.51303411e-01 1.31352693e-01 -8.50712061e-01
-8.62314105e-01 -7.11847007e-01 5.48193872e-01 4.55241770e-01
-2.76581347e-01 6.83163643e-01 3.46775681e-01 -7.60175943e-01
8.89701098e-02 -6.98715448e-01 -8.81063700e-01 -2.88779110e-01
-3.40216048e-02 2.61029392e-01 -3.81196737e-02 -3.24650198e-01
1.34967491e-01 1.05241671e-01 -1.39008665e+00 7.61396408e-01
1.29661179e+00 1.22911608e+00 -1.37100056e-01 6.33230865e-01
-1.44198328e-01 9.75570560e-01 -4.08321679e-01 -8.56972635e-01
5.82283027e-02 -4.43165392e-01 -1.15173876e+00 -3.99896801e-01
7.86428690e-01 1.74251154e-01 4.75891590e-01 1.26183677e+00
8.29997286e-02 -7.48903081e-02 8.95804584e-01 -9.48873043e-01
-6.93380892e-01 9.43713367e-01 -1.79773420e-01 2.03481495e-01
5.53469479e-01 3.07657838e-01 1.67758834e+00 -1.04201019e+00
5.18051207e-01 1.71276736e+00 7.76411951e-01 4.81214911e-01
-1.11713600e+00 -4.00343329e-01 4.28633451e-01 1.44553691e-01
-9.01283622e-01 -2.69064635e-01 5.41436255e-01 -5.82528055e-01
1.04843557e+00 4.76150811e-01 5.01358509e-01 1.05239058e+00
7.07195759e-01 6.62848294e-01 1.39120865e+00 -5.33777356e-01
2.94793993e-01 2.01912358e-01 5.30930221e-01 5.52321970e-01
2.83714142e-02 2.34568287e-02 -3.20039183e-01 -8.84064808e-02
-2.13714257e-01 -8.10241640e-01 7.04710698e-03 1.94096267e-01
-8.49384546e-01 1.07292676e+00 6.50184214e-01 2.50978768e-01
-2.65892535e-01 2.34756572e-03 5.39977133e-01 4.42460239e-01
7.59756327e-01 6.15134418e-01 -5.06686032e-01 6.05089851e-02
-3.37791383e-01 1.88734218e-01 7.56482065e-01 5.80198407e-01
6.40923679e-01 -5.62893152e-02 -3.04928213e-01 8.82609665e-01
3.18311840e-01 4.30350423e-01 4.94111210e-01 -7.97907114e-01
8.37756217e-01 7.12915182e-01 -7.11457655e-02 -9.14441645e-01
-5.66406846e-01 -2.01609954e-01 -5.94599009e-01 -9.89435315e-02
6.84490800e-01 -4.68868800e-02 -5.14873028e-01 2.13095808e+00
1.19198605e-01 -5.94535053e-01 2.81133562e-01 6.64274931e-01
8.66400838e-01 8.17232490e-01 5.33357203e-01 -4.73733097e-02
1.37651312e+00 -5.33873439e-01 -3.90425891e-01 -6.28008008e-01
8.96182239e-01 -7.23077357e-01 1.75236642e+00 1.67787805e-01
-1.12338674e+00 -6.55502439e-01 -9.40600336e-01 -2.13947147e-01
-3.95223737e-01 1.19526662e-01 7.49816179e-01 6.43884599e-01
-1.13379955e+00 4.89307553e-01 -3.51667672e-01 -2.42579296e-01
3.64097297e-01 2.98811406e-01 -2.14627907e-01 1.36757448e-01
-1.54354107e+00 1.14321089e+00 2.44830996e-01 3.15914005e-01
-4.79928136e-01 -5.59408545e-01 -9.89215791e-01 1.16278492e-01
-1.28453776e-01 -4.75490302e-01 1.00119436e+00 -1.35937631e+00
-1.05413139e+00 1.18640816e+00 -1.89768061e-01 -4.86297667e-01
3.62324327e-01 -1.79786190e-01 -2.35519856e-01 -2.80205280e-01
3.16220075e-01 8.23094368e-01 5.41463375e-01 -8.52314830e-01
-6.32195532e-01 -4.59369749e-01 1.93390876e-01 1.32105559e-01
-1.49123937e-01 1.36314765e-01 5.49820840e-01 -4.75310057e-01
2.63232648e-01 -8.96317005e-01 8.13394636e-02 -3.89051020e-01
-5.32624960e-01 -8.69630754e-01 2.25314781e-01 -8.76504958e-01
1.05690694e+00 -1.92694390e+00 -6.51984988e-03 1.95828080e-01
7.57445246e-02 5.50320931e-02 -1.50289670e-01 1.93619594e-01
-2.08690584e-01 4.21592712e-01 -4.17174101e-01 -1.93265989e-01
3.04884464e-01 -5.04953451e-02 -6.55349553e-01 2.23534763e-01
6.04546189e-01 8.85517478e-01 -9.66543794e-01 -2.63671070e-01
8.00846051e-03 1.86491594e-01 -5.64821780e-01 9.24955606e-02
-3.02077204e-01 4.02637154e-01 -1.95731387e-01 4.46169734e-01
6.09350801e-01 2.07554996e-01 5.99969327e-02 -8.15695971e-02
-4.42608371e-02 1.04461277e+00 -6.64068699e-01 8.02994788e-01
-7.76414990e-01 6.55248284e-01 -1.28202632e-01 -7.09525287e-01
9.91111577e-01 7.88082555e-02 -3.72676432e-01 -7.84567416e-01
3.62047367e-02 5.09500742e-01 3.84419560e-01 -3.33749443e-01
3.75608146e-01 -2.41407350e-01 -4.67415810e-01 4.62089747e-01
-1.20141082e-01 -3.00464839e-01 2.19331205e-01 2.38077149e-01
8.36935401e-01 -5.75604253e-02 1.78994805e-01 -6.96925521e-01
8.36262763e-01 -3.39797437e-01 6.40707433e-01 6.94583118e-01
-5.34895301e-01 4.63178724e-01 9.71121848e-01 -5.26751280e-01
-7.91843891e-01 -1.22871697e+00 -4.85884279e-01 1.21539795e+00
-2.82062083e-01 -1.95597067e-01 -9.81620967e-01 -8.46898794e-01
-1.09242633e-01 1.30032098e+00 -5.92321992e-01 -4.30435479e-01
-5.94855249e-01 -8.47535551e-01 4.14308101e-01 4.24877405e-01
2.14344963e-01 -1.56208181e+00 -3.26194525e-01 -7.58241862e-02
-2.72221684e-01 -1.00884306e+00 -1.97930306e-01 1.83715850e-01
-5.81964612e-01 -8.83922219e-01 7.21118152e-02 -8.12823772e-01
7.04849482e-01 -3.83534372e-01 1.43430543e+00 1.16743587e-01
8.94243568e-02 7.91395754e-02 -3.21497977e-01 -4.42208976e-01
-9.23665226e-01 -4.65816207e-04 1.42152682e-01 7.94004053e-02
4.32727456e-01 -1.55624330e-01 -3.50598037e-01 3.12916078e-02
-4.56622183e-01 -6.74860105e-02 1.54499054e-01 6.88701928e-01
4.53302264e-01 -3.76111388e-01 9.20491457e-01 -1.11887646e+00
8.92099142e-01 -5.42803705e-01 -5.52410126e-01 2.86549121e-01
-5.71038842e-01 -7.95157719e-03 9.42025542e-01 -8.46566260e-02
-9.94087517e-01 -1.63295239e-01 -5.75011432e-01 5.39323032e-01
-2.49540895e-01 4.57478017e-01 -2.14286640e-01 3.27011347e-01
6.32571995e-01 -3.42306763e-01 -4.25522864e-01 -1.23401672e-01
2.91305453e-01 7.87653387e-01 1.61178216e-01 -6.67201400e-01
3.59771192e-01 3.77383493e-02 -1.56634837e-01 -4.99578923e-01
-1.45373142e+00 1.77171710e-03 -6.35709822e-01 -2.82116443e-01
9.11191046e-01 -5.67539334e-01 -8.00594747e-01 2.05839276e-01
-1.26743090e+00 -2.34202057e-01 -1.51931345e-01 3.41853201e-01
-4.79360372e-01 2.31219232e-01 -7.28818476e-01 -9.83795643e-01
-5.71254432e-01 -1.25102866e+00 1.04658282e+00 8.25362653e-02
-8.07851195e-01 -1.07883775e+00 -2.45388001e-01 4.84975338e-01
3.73370767e-01 1.91227764e-01 1.64744949e+00 -6.55080557e-01
-2.55810153e-02 -1.36646688e-01 -7.32192993e-02 5.97097278e-01
3.41202458e-03 2.09394142e-01 -1.34725738e+00 -1.77841142e-01
2.35466301e-01 -5.89652956e-01 8.78031850e-01 4.81183529e-01
9.70916748e-01 -5.68303168e-01 2.12936193e-01 2.85137653e-01
8.63536537e-01 4.00248729e-02 5.80289423e-01 1.48964047e-01
4.78981256e-01 1.11692727e+00 7.28994727e-01 -2.14661077e-01
5.15623808e-01 5.17777741e-01 3.58484656e-01 1.44599810e-01
-2.01399606e-02 -4.19352978e-01 1.05929804e+00 1.01795518e+00
4.58779454e-01 -2.39074960e-01 -1.02376127e+00 5.22264481e-01
-1.61885381e+00 -6.99722886e-01 -6.22889221e-01 2.32483339e+00
9.62925553e-01 4.70228016e-01 -1.87650234e-01 2.24420965e-01
6.65994883e-01 1.56224117e-01 -3.09829652e-01 -1.39376533e+00
-3.93763870e-01 2.13891670e-01 -1.14192680e-01 1.10871124e+00
-1.18227065e+00 1.25543928e+00 5.57797241e+00 6.81087673e-01
-1.08875048e+00 -1.42778540e-02 1.34142256e+00 2.40269721e-01
-6.20830953e-01 1.53628424e-01 -7.96051264e-01 5.12824357e-01
1.26783466e+00 -3.69594209e-02 2.23233223e-01 7.08367348e-01
2.08318353e-01 -1.76511794e-01 -1.29180467e+00 3.05101007e-01
-7.08255619e-02 -7.92267144e-01 1.37329698e-01 -3.77465814e-01
5.75215697e-01 5.11474870e-02 2.74510026e-01 6.20285094e-01
2.42031246e-01 -1.14421535e+00 1.12867641e+00 1.81415409e-01
5.06191432e-01 -7.52674222e-01 9.33464825e-01 5.15996277e-01
-7.34889507e-01 -1.73108310e-01 -7.10280538e-01 -4.76091921e-01
-2.22415347e-02 8.67056489e-01 -9.35079694e-01 -2.60339584e-02
8.05090964e-01 5.30308187e-01 -9.51319933e-01 1.39127165e-01
-7.36982167e-01 1.15283346e+00 -1.57073513e-01 -2.01652452e-01
2.70853579e-01 -4.03457075e-01 4.68120664e-01 1.16999960e+00
7.05277249e-02 -2.80846447e-01 -2.34655917e-01 1.18896163e+00
-1.58482730e-01 4.39784467e-01 -6.06749594e-01 1.22274004e-01
1.78579152e-01 1.15819907e+00 -6.06286228e-01 -2.10337460e-01
-1.06499493e-01 6.30769670e-01 7.22319305e-01 1.55676454e-01
-6.96717143e-01 -2.85139769e-01 3.63447726e-01 -4.75929379e-02
-6.41397387e-03 2.46655613e-01 -7.50161767e-01 -9.45479870e-01
4.26655143e-01 -6.58025622e-01 3.72612745e-01 -7.32028425e-01
-1.55392134e+00 8.96955311e-01 -3.95907104e-01 -9.82368171e-01
-3.45937103e-01 -8.51799965e-01 -8.48522782e-01 9.04506147e-01
-1.36427367e+00 -1.02176952e+00 4.46787141e-02 -1.01081483e-01
4.41729367e-01 1.13743573e-01 8.85697305e-01 1.67539250e-02
-5.84808528e-01 7.17339814e-01 -1.83223233e-01 4.38651294e-02
5.16885400e-01 -1.41428959e+00 7.09936976e-01 8.79149735e-01
1.44559547e-01 6.60672903e-01 6.37754381e-01 -5.04450321e-01
-9.13305283e-01 -1.09850597e+00 1.82557535e+00 -7.33075678e-01
6.32797360e-01 -5.98677099e-01 -1.02205396e+00 6.66923404e-01
1.54641926e-01 -1.97504669e-01 5.85685134e-01 2.87067145e-01
-5.22735596e-01 -9.10275653e-02 -1.27818263e+00 5.32606781e-01
7.05774367e-01 -6.10093892e-01 -6.55180633e-01 6.25314772e-01
6.97500825e-01 -1.81240797e-01 -5.76327145e-01 4.14760619e-01
2.80864507e-01 -1.32695735e+00 6.78120673e-01 -8.31099391e-01
7.87880540e-01 2.30416823e-02 -2.36420721e-01 -1.43077970e+00
-2.14383706e-01 -7.51570910e-02 2.73931503e-01 1.37593067e+00
9.28488255e-01 -8.58415425e-01 1.26257896e-01 8.49695802e-01
-3.30761343e-01 -1.03935790e+00 -1.33072114e+00 -5.78518808e-01
6.97899640e-01 -7.51555979e-01 5.69101095e-01 7.56895006e-01
7.00896904e-02 6.99514627e-01 1.78105071e-01 -1.13631122e-01
1.85558513e-01 1.16793305e-01 1.33577660e-01 -1.21153152e+00
-7.87716582e-02 -6.11137092e-01 -2.08041251e-01 -6.60555184e-01
6.08966172e-01 -1.44862115e+00 1.36626408e-01 -1.44159031e+00
1.32893667e-01 -6.70709014e-01 -2.36379296e-01 4.30289418e-01
-5.70734382e-01 7.71401823e-02 2.41614923e-01 -5.88356853e-02
-5.22814870e-01 5.95535278e-01 7.78180599e-01 -2.30058998e-01
1.23040237e-01 1.53695256e-01 -8.01553071e-01 1.11446118e+00
8.04580212e-01 -3.37005913e-01 -6.64034337e-02 -5.92524767e-01
6.27696097e-01 -3.07012081e-01 2.83449888e-01 -6.08564854e-01
-4.67771560e-01 -1.92640815e-02 1.90864220e-01 -1.71899959e-01
9.22239199e-02 -3.90191466e-01 -5.26226580e-01 5.63509524e-01
-7.62212574e-01 2.40470394e-01 1.60811827e-01 1.93084970e-01
-2.15567335e-01 -3.99399906e-01 8.56392801e-01 9.19700786e-02
-2.88434446e-01 -1.84252262e-01 -5.00929058e-01 5.05438626e-01
6.67136192e-01 1.30777538e-01 -4.13145274e-01 -5.13404012e-01
-5.05922377e-01 1.07012324e-01 1.90258488e-01 6.60483003e-01
4.21593815e-01 -1.18566215e+00 -8.94383788e-01 1.50538668e-01
1.87113509e-01 -1.10855110e-01 6.93383515e-02 8.75383794e-01
-4.34305459e-01 5.67951143e-01 2.32310370e-01 -5.90477645e-01
-8.81255031e-01 -4.28451085e-03 4.75290060e-01 -2.57500470e-01
-1.64433628e-01 1.15968192e+00 4.53114748e-01 -9.27299678e-01
2.93318350e-02 -6.73319697e-01 -2.78766483e-01 7.99271688e-02
2.67864078e-01 2.21726149e-01 2.39917964e-01 -1.09500062e+00
-5.01258254e-01 4.66765881e-01 -9.51258987e-02 1.93434685e-01
1.15364230e+00 6.33972883e-02 -4.38803881e-01 7.03589380e-01
1.20635903e+00 1.64979547e-01 -7.45311022e-01 1.86871335e-01
3.85201037e-01 -1.73143864e-01 -1.62115708e-01 -9.83729124e-01
-7.35522509e-01 1.31262088e+00 4.18956697e-01 2.57160962e-01
7.01908350e-01 2.88456231e-01 6.47928476e-01 2.05621153e-01
3.35419983e-01 -1.14516568e+00 -3.85351419e-01 9.48582470e-01
1.19600224e+00 -1.32902348e+00 -4.40735787e-01 -4.42911476e-01
-8.77027571e-01 9.79125619e-01 6.53736532e-01 8.78511369e-03
2.10721791e-01 -2.06390917e-01 2.31740415e-01 -6.57627210e-02
-1.00269437e+00 1.80941731e-01 4.33871597e-01 3.68753672e-01
9.72341061e-01 4.57034141e-01 -6.61872923e-01 9.71143246e-01
-8.13024938e-01 -7.49316514e-01 4.62954283e-01 3.83421987e-01
-4.55403745e-01 -8.03940654e-01 -1.53831393e-01 6.60338700e-01
-4.43511486e-01 -4.39646780e-01 -8.60822737e-01 3.09337974e-01
1.37884587e-01 1.18295765e+00 1.15765415e-01 -2.75532991e-01
3.63020390e-01 2.99599916e-01 1.71151757e-01 -6.88404620e-01
-9.94401991e-01 -5.31909525e-01 2.74597406e-01 -4.81186271e-01
2.01323465e-01 -7.11667717e-01 -1.46667433e+00 -6.35715388e-03
-3.44581842e-01 2.17937216e-01 5.67064047e-01 1.04562330e+00
2.51522213e-01 2.45395288e-01 7.18046188e-01 -4.92647767e-01
-8.25528145e-01 -1.16666853e+00 -2.28160366e-01 8.38151395e-01
3.00016433e-01 -4.34948862e-01 -9.40489769e-01 -1.77841216e-01] | [10.67893123626709, 9.510418891906738] |
58d9c0be-9808-4002-a3b1-97d89829c63c | why-a-naive-way-to-combine-symbolic-and | null | null | https://openreview.net/forum?id=JQHqeGx6qFw | https://openreview.net/pdf?id=JQHqeGx6qFw | Why a Naive Way to Combine Symbolic and Latent Knowledge Base Completion Works Surprisingly Well | We compare a rule-based approach for knowledge graph completion against current state-of-the-art, which is based on embbedings. Instead of focusing on aggregated metrics, we look at several examples that illustrate essential differences between symbolic and latent approaches. Based on our insights, we construct a simple method to combine the outcome of rule-based and latent approaches in a post-processing step. Our method improves the results constantly for each model and dataset used in our experiments. | ['Heiner Stuckenschmidt', 'Patrick Betz', 'Christian Meilicke'] | 2021-06-22 | null | null | null | akbc-2021-10 | ['knowledge-base-completion', 'knowledge-base-completion'] | ['graphs', 'knowledge-base'] | [ 1.46928802e-01 4.44351226e-01 -4.32579070e-01 -1.86347976e-01
-3.88758540e-01 -6.16403818e-01 1.08323514e+00 4.56576943e-01
-1.61296979e-01 5.92316210e-01 2.31934413e-01 -4.11590904e-01
-7.57371485e-01 -9.51447785e-01 -4.94743675e-01 -2.92194970e-02
-2.94499815e-01 5.29186904e-01 5.31929493e-01 -2.25864023e-01
1.94366351e-01 3.95651877e-01 -1.67670405e+00 5.24449289e-01
8.59463394e-01 7.48985708e-01 -3.44045907e-01 2.88264602e-01
-2.15134516e-01 1.38670301e+00 -2.95356631e-01 -4.77182209e-01
5.65611050e-02 -2.05007672e-01 -1.06263292e+00 -2.20528096e-01
2.56294847e-01 1.72859840e-02 -3.75795096e-01 7.69481361e-01
5.07855564e-02 2.32332557e-01 5.88563502e-01 -1.27179945e+00
-3.60406488e-01 1.04527283e+00 6.32471815e-02 -1.85334504e-01
9.90228415e-01 -6.89355470e-03 1.05504799e+00 -9.86662805e-01
1.10001302e+00 1.16387653e+00 9.95346785e-01 5.21057248e-02
-1.50698054e+00 -2.63358831e-01 4.51839209e-01 6.16352379e-01
-1.63036263e+00 -6.79215729e-01 8.49802375e-01 -6.07017457e-01
1.44720852e+00 2.38446146e-01 6.67976439e-01 9.80155766e-01
-1.17933705e-01 4.88503695e-01 1.20658350e+00 -8.14253330e-01
2.32302621e-01 -1.42660812e-01 5.21160841e-01 1.02887082e+00
6.82330549e-01 1.47818163e-01 -7.40866184e-01 -3.76921266e-01
5.21964848e-01 -2.82162458e-01 -7.60684721e-03 -6.88282907e-01
-1.32232904e+00 6.66504085e-01 -1.22810692e-01 3.17230493e-01
-2.15997472e-01 1.65460363e-01 2.25045666e-01 3.59042257e-01
4.10837322e-01 4.42701370e-01 -4.20312732e-01 -3.45319927e-01
-1.33144104e+00 4.21830326e-01 1.25740814e+00 1.03816998e+00
8.13807130e-01 -1.87074333e-01 -3.08788598e-01 4.74281698e-01
4.54444408e-01 -3.15503664e-02 -1.95190266e-01 -9.80813503e-01
1.46540970e-01 1.09784639e+00 1.25259236e-01 -1.13439512e+00
-1.20869905e-01 -2.15798974e-01 -1.28591552e-01 1.94065258e-01
4.25607115e-01 7.69528002e-02 -9.88693535e-01 1.28726459e+00
2.95309778e-02 2.88548440e-01 -1.03497515e-02 2.24025592e-01
7.64010727e-01 2.25271598e-01 1.98716973e-03 -4.20779049e-01
9.33878064e-01 -1.21837890e+00 -7.54792154e-01 5.85388578e-02
7.71066546e-01 -3.98187190e-01 9.73029673e-01 6.41071498e-01
-9.62755740e-01 -1.73637778e-01 -1.19675767e+00 1.24520525e-01
-8.77992034e-01 -1.81246966e-01 9.35997009e-01 5.43386221e-01
-9.94967580e-01 8.95324647e-01 -1.01420283e+00 -6.00220442e-01
9.16908681e-02 2.10745975e-01 -4.27595228e-01 -7.10222498e-02
-1.06278014e+00 1.19545579e+00 7.47010052e-01 -1.08595267e-01
-9.33246553e-01 -6.56723559e-01 -9.65433836e-01 -4.59770821e-02
1.20663011e+00 -7.25924492e-01 1.03213656e+00 -1.83777288e-01
-1.74873638e+00 4.73471731e-01 -1.01723604e-01 -5.47275364e-01
4.73017186e-01 -1.96137890e-01 -4.94654000e-01 -8.33680853e-02
-1.91917464e-01 1.56401351e-01 5.05331397e-01 -1.27190781e+00
-4.56389755e-01 1.31204411e-01 4.05555964e-01 -2.54340649e-01
-1.33061975e-01 2.10494891e-01 -6.77189171e-01 -4.90567029e-01
-2.25749701e-01 -5.86961031e-01 -1.44244343e-01 -4.27386582e-01
-4.55862224e-01 -2.81148225e-01 6.35041654e-01 -4.24078017e-01
1.74370992e+00 -1.60431695e+00 4.39706266e-01 4.93125021e-01
1.77583039e-01 2.01420456e-01 -2.00794265e-02 9.69736934e-01
-6.33331314e-02 4.23280537e-01 -3.58576626e-01 -4.88917351e-01
3.17203999e-01 3.85140449e-01 -4.32741076e-01 7.21670166e-02
1.74221903e-01 1.18553162e+00 -1.19752908e+00 -8.24082136e-01
4.00383979e-01 2.54976243e-01 -3.17940265e-01 -9.09272730e-02
-5.60168684e-01 -1.57765940e-01 -2.84960717e-01 8.44341815e-01
2.25340262e-01 -1.07934758e-01 8.32664430e-01 -1.97346643e-01
-6.93368912e-02 4.52234209e-01 -1.35351408e+00 2.06374073e+00
-3.06155443e-01 2.91626096e-01 -4.33781803e-01 -7.62599289e-01
6.69605613e-01 3.42503190e-01 2.92354256e-01 -3.21617603e-01
-1.92232609e-01 1.22909062e-01 -2.39622563e-01 -3.96054834e-01
4.04259264e-01 1.25693232e-01 -6.65057451e-02 4.71340060e-01
2.59742022e-01 -5.43665653e-03 7.15969145e-01 4.48726535e-01
1.43238819e+00 8.66864681e-01 7.29595065e-01 -2.25903660e-01
5.96235216e-01 3.81372273e-01 3.77099276e-01 8.59464526e-01
2.92280585e-01 1.39280513e-01 6.56945825e-01 -3.81828785e-01
-6.82281196e-01 -9.52491820e-01 1.33954272e-01 8.46979141e-01
-2.04274833e-01 -1.35191286e+00 -5.27976930e-01 -1.11288977e+00
1.59494922e-01 1.06810701e+00 -6.46413624e-01 2.11095326e-02
-3.23191941e-01 -3.56427372e-01 8.20830345e-01 4.52061206e-01
1.29111558e-01 -1.00879741e+00 -3.31282586e-01 2.68789321e-01
-6.51378930e-02 -1.18236351e+00 2.48445645e-01 -2.25197989e-02
-9.37716126e-01 -1.15032220e+00 2.69140422e-01 -2.65479088e-01
5.04284263e-01 -1.14613898e-01 1.46265566e+00 2.95967937e-01
8.40830524e-03 6.85143828e-01 -8.04353833e-01 -3.01375449e-01
-5.54767549e-01 4.11194295e-01 -7.17821792e-02 -2.78147191e-01
3.60868663e-01 -9.65179205e-01 -1.04013637e-01 1.76252037e-01
-8.56985688e-01 1.24030545e-01 4.93196219e-01 3.77728879e-01
5.33176005e-01 1.28079548e-01 2.65661508e-01 -1.10413539e+00
8.85381460e-01 -4.05088276e-01 -6.97208822e-01 7.47539699e-01
-1.14419103e+00 4.03874576e-01 3.37946087e-01 -8.30103755e-02
-7.85403669e-01 1.94051296e-01 2.73526251e-01 -3.34488988e-01
-1.50312051e-01 1.20599031e+00 1.19845395e-03 -1.22715704e-01
5.77269554e-01 1.76009198e-03 -9.90909338e-02 -7.20284581e-01
7.05622256e-01 3.77394259e-01 5.01523376e-01 -7.93819726e-01
8.16025257e-01 3.22312266e-01 5.04726619e-02 -4.44880217e-01
-8.25617552e-01 -2.43569136e-01 -7.78517365e-01 -1.94812611e-01
3.39387178e-01 -5.66645920e-01 -7.57138848e-01 2.00521201e-01
-1.07659876e+00 -4.71652091e-01 -6.47917926e-01 2.30380580e-01
-6.58539295e-01 5.45270205e-01 -1.74277216e-01 -8.06845188e-01
8.28189850e-02 -8.45711470e-01 6.18895352e-01 -4.41773355e-01
-4.74800825e-01 -1.34456754e+00 5.50372124e-01 1.42498568e-01
3.10533494e-01 6.06723726e-01 9.85738039e-01 -8.51034403e-01
-5.56102693e-01 -3.77958119e-01 -4.02571633e-02 1.29490122e-01
1.71612084e-01 3.14559966e-01 -8.44621062e-01 -1.72924865e-02
-3.93586695e-01 -3.10757637e-01 8.64784181e-01 -2.18853503e-01
7.57882357e-01 -3.76983792e-01 -5.39464235e-01 3.76614362e-01
1.54244173e+00 -2.87069976e-01 6.79523408e-01 3.35190207e-01
6.95234656e-01 5.09533703e-01 8.31048727e-01 1.14684008e-01
5.96435130e-01 9.49352801e-01 3.76626313e-01 3.78103048e-01
-2.55413949e-01 -5.32772362e-01 4.67264354e-01 9.26341414e-01
-6.63671136e-01 7.17426986e-02 -1.26379037e+00 7.02547193e-01
-2.49291420e+00 -9.06686544e-01 8.38462263e-03 2.08401227e+00
7.78464019e-01 2.03484699e-01 2.20330313e-01 3.76898974e-01
3.12371254e-01 1.68718159e-01 1.54460482e-02 -4.26960588e-01
1.07264541e-01 4.38102722e-01 3.16272020e-01 8.52633774e-01
-7.68928289e-01 1.17484415e+00 8.52323532e+00 1.05956626e+00
-5.92526317e-01 7.46924505e-02 -3.94157618e-01 -1.08705377e-02
-4.95159268e-01 6.27442360e-01 -5.55161953e-01 -3.00353337e-02
9.91619170e-01 -3.08103710e-01 7.24760056e-01 7.55285203e-01
-5.68963587e-02 -1.29442349e-01 -1.58610499e+00 5.41891098e-01
5.77326417e-02 -1.72914183e+00 3.66665959e-01 1.02300867e-02
5.51172733e-01 -1.36499286e-01 -4.60030705e-01 3.56136709e-01
7.45350778e-01 -1.09040201e+00 9.11425114e-01 1.08998489e+00
6.24510944e-01 -5.08165002e-01 6.22393608e-01 2.59436309e-01
-1.24843621e+00 1.14964724e-01 1.98689312e-01 -6.26897514e-01
2.11363375e-01 6.43198490e-01 -7.58597255e-01 1.49192548e+00
2.10542500e-01 9.40712452e-01 -7.04379857e-01 6.93693280e-01
-7.76917577e-01 6.98382795e-01 -4.03176129e-01 2.32997730e-01
-1.29445881e-01 -3.16866003e-02 6.36966407e-01 1.43510747e+00
-5.69630750e-02 -2.98652291e-01 2.76735455e-01 9.70431328e-01
3.04785728e-01 -8.95294696e-02 -8.38086784e-01 -2.24422768e-01
5.33812582e-01 1.20402181e+00 -6.41948164e-01 -5.90477288e-01
-4.60906327e-01 3.73677045e-01 5.82605720e-01 3.75521004e-01
-7.66357124e-01 -5.49622476e-01 2.38573477e-02 1.85814217e-01
4.58661735e-01 -6.61949337e-01 -1.40278429e-01 -1.23595560e+00
5.50234281e-02 -8.76799583e-01 6.41597927e-01 -7.35029221e-01
-9.30229723e-01 3.28862578e-01 8.56794357e-01 -8.42068255e-01
-6.39908135e-01 -4.62548167e-01 -4.08452839e-01 5.32198966e-01
-1.42014122e+00 -1.30435097e+00 -2.31723621e-01 4.96417910e-01
2.37630624e-02 -1.13490922e-02 1.11510944e+00 8.91710818e-02
-5.18521249e-01 4.03930753e-01 -2.69048870e-01 -4.99457568e-02
4.28327262e-01 -1.20001233e+00 5.42543054e-01 1.14042866e+00
5.73393166e-01 1.02379847e+00 7.41624653e-01 -9.15754318e-01
-1.51608968e+00 -9.15963411e-01 9.92425203e-01 -9.02960002e-01
9.96441841e-01 -3.52507949e-01 -5.92352629e-01 1.17947865e+00
1.56728700e-01 -8.61760601e-03 3.96852225e-01 6.16388440e-01
-5.22227943e-01 4.59406972e-02 -8.59337807e-01 5.85880220e-01
1.55221426e+00 -4.61541295e-01 -1.09808350e+00 1.02202967e-01
6.26839578e-01 -1.38208777e-01 -1.23378050e+00 6.22284472e-01
6.93758965e-01 -9.65651274e-01 8.52701902e-01 -7.19870031e-01
2.09641293e-01 -4.99762982e-01 -6.06286153e-02 -1.13857329e+00
-3.28283519e-01 -9.88729656e-01 -6.78952873e-01 1.09264851e+00
5.99536121e-01 -7.98109889e-01 5.41797996e-01 4.21293736e-01
-9.21672955e-02 -8.20257604e-01 -5.37831008e-01 -1.15976644e+00
-2.49285862e-01 -8.12934816e-01 6.03012323e-01 8.56328666e-01
6.53168023e-01 2.65416056e-01 -2.24981368e-01 -1.32426709e-01
6.53913558e-01 3.39627206e-01 9.74500418e-01 -1.50061333e+00
-1.38734221e-01 -2.79052377e-01 -3.91325921e-01 -5.16395330e-01
1.26913741e-01 -1.01373005e+00 -2.53807068e-01 -2.05500102e+00
1.45055324e-01 -1.23370513e-01 -5.06924450e-01 1.16639268e+00
2.09041059e-01 2.26640880e-01 1.72909290e-01 1.50633708e-01
-1.07664728e+00 2.35033333e-01 7.54925847e-01 -8.59909132e-02
-3.60807955e-01 -5.71480751e-01 -6.31529748e-01 8.70885313e-01
5.84177554e-01 -7.45468438e-01 -5.88994205e-01 -2.02349469e-01
8.34851623e-01 -2.78206766e-01 4.00387794e-01 -1.02075589e+00
4.23473239e-01 -5.10143340e-01 -3.95731121e-01 -4.36049402e-01
2.74407029e-01 -6.81322932e-01 5.72158635e-01 5.01006544e-01
1.23094507e-02 -1.82165906e-01 2.30756804e-01 5.33422470e-01
-2.94703186e-01 -1.94851413e-01 -3.00265104e-03 -4.76670302e-02
-8.25603127e-01 -4.25066426e-03 -3.88266414e-01 -2.26704791e-01
9.22304034e-01 -3.94721746e-01 -5.21310329e-01 -3.38226855e-01
-9.62558210e-01 2.96825916e-01 6.04825974e-01 2.53517509e-01
5.05057216e-01 -1.31660128e+00 -6.04960024e-01 -2.09971666e-01
4.53687608e-01 -2.28079811e-01 -3.39941293e-01 1.08620512e+00
-4.89487678e-01 5.81698179e-01 -1.88608393e-01 -2.36119568e-01
-1.00804925e+00 8.46184015e-01 7.44943023e-02 -7.73788750e-01
-6.14349365e-01 8.24670270e-02 -6.46358132e-01 -3.90105844e-01
1.86668321e-01 -5.87067366e-01 -3.11736614e-01 6.32913783e-02
8.04003030e-02 7.75772095e-01 2.69608319e-01 -1.54156417e-01
-8.34277570e-01 5.55142879e-01 -1.77387949e-02 -3.80402952e-01
1.47792137e+00 1.39139995e-01 -2.36108124e-01 7.53651559e-01
4.17623460e-01 3.13320816e-01 -7.82118320e-01 -1.48045197e-01
3.05489391e-01 -1.91317320e-01 1.07159493e-02 -1.00431275e+00
-5.39417684e-01 3.64827573e-01 -9.21468213e-02 5.70398390e-01
8.40298653e-01 -2.36560088e-02 9.44166556e-02 7.04913259e-01
6.00505769e-01 -1.02517211e+00 -3.13717693e-01 6.13184512e-01
8.55867147e-01 -5.40122926e-01 7.45110869e-01 -8.15858006e-01
-3.16257507e-01 1.01135385e+00 2.68909987e-02 -1.48589477e-01
6.87442124e-01 3.69320810e-01 -3.55456293e-01 -5.34521818e-01
-1.13258398e+00 -4.88934666e-01 3.15298885e-01 7.65956104e-01
2.64123470e-01 -8.22448879e-02 -5.02958953e-01 5.86541414e-01
-1.32221758e-01 5.88006973e-01 4.26380426e-01 1.50776076e+00
-2.72858679e-01 -1.78317559e+00 -1.14587761e-01 3.34460348e-01
-1.26330599e-01 -9.08789486e-02 -8.00830901e-01 1.26115596e+00
3.47886607e-02 1.09004557e+00 -3.74766409e-01 -7.24870682e-01
6.15007937e-01 4.63787735e-01 9.12396014e-01 -8.01508665e-01
-4.69134748e-01 -4.40632612e-01 8.79749835e-01 -7.89322674e-01
-8.61931264e-01 -5.92389703e-01 -9.61812139e-01 -3.44867438e-01
-3.99301797e-01 1.52233392e-01 3.29015404e-01 9.99772668e-01
5.25807083e-01 4.89537865e-01 -3.68835106e-02 -6.82746351e-01
-2.67939657e-01 -9.17129099e-01 -3.70701432e-01 2.32853875e-01
-2.58401334e-01 -1.03928781e+00 -2.35976264e-01 1.88579112e-01] | [8.94846248626709, 7.609666347503662] |
25426063-8675-471f-9213-c2add18336d0 | one-class-slab-support-vector-machine | 1608.01026 | null | http://arxiv.org/abs/1608.01026v1 | http://arxiv.org/pdf/1608.01026v1.pdf | One-Class Slab Support Vector Machine | This work introduces the one-class slab SVM (OCSSVM), a one-class classifier
that aims at improving the performance of the one-class SVM. The proposed
strategy reduces the false positive rate and increases the accuracy of
detecting instances from novel classes. To this end, it uses two parallel
hyperplanes to learn the normal region of the decision scores of the target
class. OCSSVM extends one-class SVM since it can scale and learn non-linear
decision functions via kernel methods. The experiments on two publicly
available datasets show that OCSSVM can consistently outperform the one-class
SVM and perform comparable to or better than other state-of-the-art one-class
classifiers. | ['Joao Hespanha', 'Walter Scheirer', 'Victor Fragoso', 'Matthew Turk'] | 2016-08-02 | null | null | null | null | ['one-class-classifier'] | ['methodology'] | [ 7.35575482e-02 -1.86911765e-02 -7.67751575e-01 -5.46645224e-01
-4.56867307e-01 -3.52805734e-01 4.79887187e-01 1.22593239e-01
-2.23885536e-01 1.01658106e+00 -7.82595813e-01 -5.95311999e-01
-7.38846837e-03 -6.10976934e-01 -4.65604514e-01 -9.85587716e-01
5.44748222e-03 3.78284216e-01 1.10589075e+00 9.26988199e-02
3.39235842e-01 7.28589535e-01 -1.63780391e+00 8.59600186e-01
9.15854394e-01 1.23498058e+00 -3.00453037e-01 5.56364059e-01
-5.91141805e-02 5.21379709e-01 -8.01904142e-01 -3.04714870e-02
1.41384870e-01 -3.83134857e-02 -7.60754049e-01 -2.22024977e-01
4.60379153e-01 8.92398059e-02 -2.26837680e-01 9.47071910e-01
-1.60103127e-01 1.63044512e-01 1.07836628e+00 -1.70957780e+00
-5.53365529e-01 -2.73812208e-02 -4.45747823e-01 4.72852767e-01
1.54411808e-01 -6.27667382e-02 7.74715781e-01 -9.90627527e-01
3.37631941e-01 9.62961376e-01 9.34793353e-01 4.25779343e-01
-1.16504943e+00 -8.51787806e-01 4.27923165e-02 3.59958559e-01
-1.30090308e+00 1.21084943e-01 5.05041003e-01 -7.59797752e-01
1.09921515e+00 6.51235461e-01 5.54526567e-01 8.88286889e-01
4.41294014e-01 1.11834538e+00 1.42764103e+00 -3.41140866e-01
5.38029969e-01 8.40997040e-01 8.24679494e-01 6.54371679e-01
1.77795887e-01 2.76169091e-01 -3.02056134e-01 -5.93584061e-01
4.01702464e-01 3.16869058e-02 -1.23895310e-01 -8.21790516e-01
-6.80665553e-01 1.08549201e+00 4.12010670e-01 3.51538748e-01
4.45768945e-02 -7.00150669e-01 4.34456527e-01 1.37309089e-01
6.93126261e-01 4.42103326e-01 -7.19101608e-01 4.94292118e-02
-9.32751179e-01 3.32861245e-02 7.28241265e-01 6.78513885e-01
4.30219293e-01 1.27299011e-01 -2.17442825e-01 8.31156969e-01
-1.44072389e-02 5.07354915e-01 8.05533767e-01 -5.54891583e-03
2.71797925e-01 1.09158230e+00 -2.38426611e-01 -5.75684488e-01
-5.40682554e-01 -7.22505987e-01 -5.18364310e-01 6.02583826e-01
3.86741102e-01 2.15418667e-01 -1.09940398e+00 7.96742857e-01
3.89089108e-01 2.71401793e-01 3.43503386e-01 5.76539755e-01
8.58681738e-01 7.98087597e-01 -1.46949634e-01 -1.49680093e-01
7.23642886e-01 -1.40955114e+00 -3.00161093e-01 -2.43533552e-01
7.86040664e-01 -5.30284703e-01 1.05992067e+00 6.18183792e-01
-3.50504309e-01 -6.16753459e-01 -1.35388708e+00 6.99283421e-01
-8.64533663e-01 3.81539464e-01 6.64390743e-01 1.00080931e+00
-3.01661611e-01 5.93949795e-01 -7.65620351e-01 -1.10438862e-03
5.57909250e-01 4.44031090e-01 -4.63883787e-01 1.31993592e-01
-8.65726233e-01 1.18923414e+00 6.28005087e-01 -2.58535087e-01
-3.22860330e-01 -6.52799547e-01 -7.50664949e-01 3.60455327e-02
9.44461972e-02 3.05649817e-01 9.67613041e-01 -1.07276273e+00
-1.36960435e+00 8.45729232e-01 -1.12260796e-01 -3.33092302e-01
3.60504597e-01 7.42993876e-02 -5.59007764e-01 1.95296202e-02
-2.70458311e-03 2.51230337e-02 7.80754447e-01 -1.11859894e+00
-7.94021308e-01 -3.99314165e-01 -5.64664304e-01 -2.25839123e-01
-3.54335696e-01 -6.05185069e-02 3.65086138e-01 -4.06292409e-01
2.07472399e-01 -9.49027002e-01 1.54158011e-01 -7.28411227e-02
-4.22706127e-01 -5.88868916e-01 1.52543867e+00 -4.23410654e-01
1.17906606e+00 -2.22322559e+00 -1.13881953e-01 3.79429340e-01
2.53350567e-02 9.70005333e-01 1.15379550e-01 4.60113287e-02
-3.32325727e-01 -2.48457730e-01 -3.39206100e-01 3.15766126e-01
-4.54709113e-01 3.15930039e-01 -4.81159955e-01 6.49015129e-01
4.86228555e-01 6.26317024e-01 -6.63921773e-01 -2.01046363e-01
1.97394773e-01 7.30140433e-02 9.39703360e-03 2.74777383e-01
3.05622131e-01 5.30453287e-02 -1.61509216e-01 7.49354124e-01
8.94870996e-01 -4.09299642e-01 -9.22304951e-03 2.74568230e-01
2.23472100e-02 -8.83818045e-02 -1.18625414e+00 5.93833029e-01
1.74896624e-02 8.71025085e-01 -6.80017352e-01 -1.50059283e+00
1.23604524e+00 -7.97991976e-02 -1.11008286e-01 -2.17715114e-01
6.15113042e-02 4.49997872e-01 9.17195901e-02 -3.87167066e-01
-4.54334430e-02 -2.31699303e-01 3.08400482e-01 -3.13466847e-01
3.24738055e-01 1.31022662e-01 -1.61128044e-01 -3.60617071e-01
6.42407060e-01 -2.63441324e-01 6.95936441e-01 -4.19963151e-01
8.63790870e-01 8.37846547e-02 4.94819313e-01 6.39096200e-01
-3.91617596e-01 1.88697711e-01 4.49436396e-01 -7.23398745e-01
-5.81743598e-01 -1.36497748e+00 -9.31643009e-01 1.00943565e+00
2.71095276e-01 1.31463453e-01 -5.08252203e-01 -1.34812522e+00
5.84118485e-01 9.33050036e-01 -7.77791679e-01 -3.71038437e-01
-3.52737039e-01 -9.24754262e-01 3.94045144e-01 8.56098771e-01
2.59233356e-01 -5.65086544e-01 -5.04157126e-01 -1.79589540e-01
4.50069070e-01 -8.94203663e-01 1.92259848e-01 6.66625500e-01
-9.96997833e-01 -1.43830597e+00 -5.92614353e-01 -1.07072985e+00
8.27300906e-01 1.79181859e-01 4.20302689e-01 -8.86305571e-02
-4.80645150e-01 -2.66818643e-01 -3.90633225e-01 -6.04324341e-01
-3.56959522e-01 3.18161368e-01 2.46451363e-01 1.47458211e-01
6.94204152e-01 4.28167433e-02 -9.47137550e-03 7.65250802e-01
-4.10333037e-01 -9.16263089e-02 3.96354556e-01 1.19003558e+00
3.83604765e-01 1.11606196e-01 7.65667975e-01 -9.81560767e-01
3.65034282e-01 -5.22046983e-01 -7.71898985e-01 5.48777699e-01
-1.15348089e+00 -7.96920434e-02 9.74867821e-01 -9.71966028e-01
-7.03002095e-01 4.26560529e-02 1.83571860e-01 -3.41505706e-01
-1.10073432e-01 1.08992241e-01 3.33807021e-01 -6.07091844e-01
9.29032326e-01 5.84024012e-01 -5.82712851e-02 -3.79420340e-01
-1.93399832e-01 1.23356915e+00 3.12556177e-01 -1.54059887e-01
8.97756994e-01 3.44059139e-01 2.01453209e-01 -1.03546488e+00
-9.11126316e-01 -9.59227085e-01 -1.11698592e+00 -1.42795652e-01
4.79306489e-01 -5.12677252e-01 -3.69825274e-01 8.10243905e-01
-7.75363803e-01 -3.54163736e-01 -2.83852011e-01 5.01621783e-01
-2.79441655e-01 1.05476946e-01 -3.66166890e-01 -1.11035097e+00
-2.01532051e-01 -1.05383444e+00 7.48462737e-01 6.06331885e-01
-1.60763320e-02 -9.90240633e-01 -4.71523069e-02 1.74552098e-01
3.39966625e-01 9.03889537e-02 8.51046503e-01 -1.45069122e+00
-1.25897318e-01 -7.99776793e-01 -1.45038798e-01 7.17939436e-01
-1.06133051e-01 2.14021310e-01 -1.19108379e+00 -5.47322810e-01
-2.20322922e-01 -3.08068722e-01 8.27064812e-01 1.63006142e-01
1.22275543e+00 -2.91624129e-01 -7.31527507e-01 5.95287919e-01
1.12530220e+00 7.11322784e-01 5.49824893e-01 7.88115799e-01
2.76036441e-01 2.53710330e-01 8.37223530e-01 1.38123065e-01
-1.34725319e-02 6.62936211e-01 1.29246861e-01 -4.86307770e-01
2.74320513e-01 -3.96885760e-02 1.08154096e-01 4.28115666e-01
2.25963995e-01 2.14776948e-01 -9.85801339e-01 1.72814637e-01
-1.93884277e+00 -8.49077284e-01 -5.61808050e-01 2.14384937e+00
7.60721326e-01 4.42813784e-01 2.97508121e-01 6.20122731e-01
5.73954403e-01 -1.94302008e-01 -6.05273426e-01 -6.24602675e-01
-2.33635455e-01 4.52777117e-01 4.45407897e-01 3.36552680e-01
-1.49422395e+00 8.67598951e-01 7.05200291e+00 9.56810892e-01
-1.48631322e+00 2.03990526e-02 5.83428144e-01 1.10923588e-01
6.39803052e-01 -2.17661589e-01 -1.19985902e+00 3.44444871e-01
7.23519802e-01 -1.45286530e-01 -6.78816577e-03 1.57482898e+00
-5.34576714e-01 -2.79854476e-01 -1.00248492e+00 7.49667764e-01
3.64061296e-01 -1.23587167e+00 -1.35935545e-01 -2.46524453e-01
7.71782815e-01 -2.58545339e-01 7.50427246e-02 6.43606067e-01
-2.63134748e-01 -9.62844551e-01 4.74466205e-01 2.65374273e-01
7.14450777e-01 -7.02625692e-01 1.24073493e+00 6.38379216e-01
-8.71995091e-01 -4.10974920e-01 -5.79720676e-01 -2.38885075e-01
-4.93292034e-01 3.79288018e-01 -1.14671075e+00 2.04568446e-01
7.19037652e-01 4.27666038e-01 -8.76232326e-01 1.43631899e+00
-2.38868609e-01 8.40130091e-01 -9.99595001e-02 -4.54048872e-01
2.39471376e-01 1.29220277e-01 4.21022683e-01 1.32668889e+00
-1.13327459e-01 1.22577995e-01 5.02332449e-01 3.58058959e-01
5.51899254e-01 2.45523110e-01 -3.74746174e-01 2.64374971e-01
1.50825873e-01 9.62812603e-01 -7.96194196e-01 -6.43315971e-01
-3.94514203e-01 8.17016482e-01 3.84188771e-01 2.40906566e-01
-8.81108046e-01 -8.75618279e-01 5.24236798e-01 1.24586120e-01
4.29091871e-01 9.87426415e-02 -6.40617192e-01 -1.24127150e+00
2.41300866e-01 -6.69317007e-01 6.07177079e-01 -4.98034388e-01
-1.38960946e+00 7.55284607e-01 -2.45214459e-02 -1.41292083e+00
1.43715516e-01 -1.23095167e+00 -5.28155565e-01 7.54505217e-01
-1.43815327e+00 -1.09735179e+00 -2.01424643e-01 4.08447176e-01
4.94084150e-01 -6.41747415e-01 9.31190968e-01 -2.13411316e-01
-6.98940575e-01 1.04083276e+00 6.14489317e-01 1.65521577e-01
5.97245455e-01 -1.06494510e+00 9.07261521e-02 6.38917863e-01
-2.71842808e-01 4.13870364e-01 4.19990361e-01 -6.10391617e-01
-8.24365735e-01 -9.34440255e-01 7.95842707e-01 -3.08646500e-01
6.51959121e-01 -2.45182931e-01 -1.31297076e+00 5.71217656e-01
-6.11852288e-01 3.92539144e-01 1.07027936e+00 1.95343018e-01
-6.49635792e-01 -1.51964068e-01 -1.56140411e+00 2.41085663e-02
3.01089793e-01 -3.86235029e-01 -9.23824966e-01 4.61198211e-01
2.70689011e-01 -6.32435977e-01 -8.23231339e-01 6.09913290e-01
7.92944252e-01 -8.28474581e-01 1.10344040e+00 -1.15933251e+00
2.83563137e-01 -2.12899879e-01 -6.51581138e-02 -1.27645302e+00
-4.30210441e-01 1.85758382e-01 -2.95667261e-01 6.18517518e-01
6.05851054e-01 -1.27315724e+00 8.32419634e-01 4.04078990e-01
4.59423289e-02 -1.25886071e+00 -1.26303744e+00 -1.56181991e+00
3.03538471e-01 -2.74652019e-02 3.62056971e-01 1.18605268e+00
3.64576995e-01 8.63174722e-02 -5.93329482e-02 3.64036500e-01
6.64138079e-01 2.13380441e-01 7.25006402e-01 -1.63898003e+00
-3.38805348e-01 -4.36492175e-01 -1.11327529e+00 -5.34442663e-01
2.20488250e-01 -1.13710093e+00 -2.64156848e-01 -1.07799149e+00
2.16875330e-01 -4.83784884e-01 -3.98127407e-01 9.01819229e-01
-3.35222602e-01 2.38534719e-01 -1.99652333e-02 2.43337020e-01
-3.37650746e-01 4.24145550e-01 9.22247469e-01 -2.29279995e-01
-4.75854874e-01 5.77900350e-01 -2.37326443e-01 8.70465100e-01
8.52950156e-01 -6.73785150e-01 -1.72556192e-01 4.33097035e-01
-5.90727687e-01 -1.44222215e-01 3.17013532e-01 -1.26324332e+00
1.25280038e-01 -5.75803459e-01 8.85861635e-01 -6.73930943e-01
1.62515283e-01 -5.48066437e-01 -3.32954466e-01 9.61084485e-01
-4.32175428e-01 -4.07483160e-01 4.84501988e-01 5.58094203e-01
-1.38040885e-01 -4.73854452e-01 1.45733798e+00 4.53894079e-01
-5.62207460e-01 -1.28048167e-01 -5.14642596e-01 -1.35837659e-01
1.68450522e+00 -6.27659261e-01 -5.88410437e-01 4.36823308e-01
-6.21274710e-01 -2.63391230e-02 2.04634830e-01 5.51773012e-01
6.94430709e-01 -1.31064105e+00 -2.84580648e-01 6.73076332e-01
5.25732458e-01 -5.21464884e-01 -1.38959378e-01 7.05028653e-01
-3.08794171e-01 6.85304105e-01 -4.03484762e-01 -9.33429718e-01
-1.79902661e+00 5.70475280e-01 4.39980745e-01 -2.19526425e-01
-5.27981043e-01 9.30020690e-01 1.66435391e-01 -7.05430806e-01
2.40726233e-01 -3.20026189e-01 -3.07821661e-01 -3.08449030e-01
8.10939252e-01 7.16535211e-01 2.32509255e-01 -5.49987495e-01
-6.86924875e-01 2.25133657e-01 -3.25674713e-01 4.82111841e-01
1.29285789e+00 8.38357031e-01 1.98879633e-02 8.13019454e-01
1.53496289e+00 -4.36773568e-01 -9.11410511e-01 -3.25201713e-02
1.57400951e-01 -7.94046223e-01 -1.06190458e-01 -1.05190563e+00
-5.45718133e-01 6.80241346e-01 1.02903068e+00 1.59025982e-01
8.16091359e-01 -2.01612234e-01 5.45519710e-01 4.69724357e-01
3.68274778e-01 -1.10499275e+00 2.17996109e-02 6.02824390e-01
6.48713708e-01 -1.34879541e+00 3.41213867e-02 -8.70989084e-01
-5.79712033e-01 1.63116646e+00 9.90298748e-01 -2.14411855e-01
8.65804851e-01 2.17853650e-01 9.74463075e-02 2.69994527e-01
-5.00840068e-01 1.36135906e-01 9.32289600e-01 7.95879602e-01
6.46113381e-02 4.78776962e-01 -3.63601446e-01 8.92443180e-01
-6.83653206e-02 6.22785464e-02 2.52695829e-01 9.04830515e-01
-7.63414741e-01 -8.50551486e-01 -4.12739307e-01 7.54523098e-01
5.55086285e-02 2.67122626e-01 -5.01930416e-01 7.78989792e-01
-5.97979687e-02 7.65283048e-01 -1.23389058e-01 -7.43122995e-01
4.53621298e-01 4.36165959e-01 1.57181680e-01 -5.55581391e-01
-6.42013311e-01 -5.80694437e-01 -6.49473444e-02 -3.38997751e-01
1.82688788e-01 -4.68376875e-01 -1.15880394e+00 4.52782921e-02
-8.20068657e-01 4.89200577e-02 6.29800677e-01 1.04184997e+00
-3.80230360e-02 2.09658772e-01 7.64635623e-01 -5.00627577e-01
-1.07298481e+00 -6.06304109e-01 -7.58569062e-01 2.22938538e-01
2.78470963e-01 -1.08116460e+00 -6.81418836e-01 -3.77065569e-01] | [8.286130905151367, 3.9888510704040527] |
ec98155b-e904-44bc-b82c-004cc0066af9 | computing-with-subjectivity-lexicons | null | null | https://aclanthology.org/2020.lrec-1.400 | https://aclanthology.org/2020.lrec-1.400.pdf | Computing with Subjectivity Lexicons | In this paper, we introduce a new set of lexicons for expressing subjectivity in text documents written in Brazilian Portuguese. Besides the non-English idiom, in contrast to other subjectivity lexicons available, these lexicons represent different subjectivity dimensions (other than sentiment) and are more compact in number of terms. This last feature was designed intentionally to leverage the power of word embedding techniques, i.e., with the words mapped to an embedding space and the appropriate distance measures, we can easily capture semantically related words to the ones in the lexicons. Thus, we do not need to build comprehensive vocabularies and can focus on the most representative words for each lexicon dimension. We showcase the use of these lexicons in three highly non-trivial tasks: (1) Automated Essay Scoring in the Presence of Biased Ratings, (2) Subjectivity Bias in Brazilian Presidential Elections and (3) Fake News Classification Based on Text Subjectivity. All these tasks involve text documents written in Portuguese. | ['ro', 'Le Balby Marinho', 'Claudio E. C. Campelo', 'Allan Sales', 'Roberta Viola', 'Caio L. M. Jeronimo', 'Adriano Veloso'] | 2020-05-01 | null | null | null | lrec-2020-5 | ['automated-essay-scoring', 'news-classification'] | ['natural-language-processing', 'natural-language-processing'] | [-3.57232302e-01 3.91276240e-01 -6.02716386e-01 -1.78222045e-01
-2.71618754e-01 -9.21456218e-01 1.12862039e+00 6.34011626e-01
-4.98660654e-01 7.05359876e-01 9.10907209e-01 -2.03677833e-01
-8.82877037e-02 -9.01145101e-01 7.44548813e-02 -3.31284016e-01
5.27405560e-01 4.45270330e-01 3.82794277e-03 -9.10631418e-01
6.20645285e-01 1.83794647e-01 -1.48856676e+00 5.32431826e-02
6.71612382e-01 9.49452043e-01 -2.38103151e-01 9.54383388e-02
-2.44442195e-01 1.16033220e+00 -7.85236061e-01 -9.52011645e-01
-1.05900817e-01 -4.29225504e-01 -9.01283801e-01 -2.22434308e-02
2.38646910e-01 1.91808894e-01 3.99147607e-02 1.25403392e+00
2.75074303e-01 -7.21167773e-02 9.67981875e-01 -7.50488579e-01
-1.09336340e+00 6.91104949e-01 -2.72985101e-01 2.50534415e-01
5.90631068e-01 -4.48486954e-01 1.61073208e+00 -9.39323902e-01
1.11056447e+00 1.26899803e+00 4.75034267e-01 4.45109069e-01
-9.44254935e-01 -4.34921861e-01 8.61720145e-02 4.12108973e-02
-9.81773496e-01 -3.04737747e-01 1.04002225e+00 -7.40375698e-01
6.66354895e-01 4.47414875e-01 7.31946111e-01 1.38348949e+00
2.30631292e-01 4.28838879e-01 1.50683212e+00 -6.53683841e-01
1.36699647e-01 9.12946582e-01 6.37585461e-01 7.01381922e-01
3.74634385e-01 -1.59450956e-02 -7.75086880e-01 -2.04565987e-01
5.25053926e-02 -3.23103666e-01 -2.23811716e-01 -4.94327605e-01
-1.22950244e+00 1.46710026e+00 2.38302574e-01 5.87486386e-01
-1.62155628e-01 -1.90522984e-01 8.25376511e-01 5.90590715e-01
8.92121315e-01 1.04210329e+00 -3.73724431e-01 -3.69861946e-02
-7.17949986e-01 2.58596361e-01 1.02082920e+00 5.62935770e-01
5.62614083e-01 -1.54307634e-01 1.71104260e-02 9.61904466e-01
4.26803648e-01 5.01879334e-01 1.06649137e+00 -4.74389434e-01
3.93476158e-01 8.29225719e-01 1.83188438e-01 -1.58505917e+00
-6.24157846e-01 -3.93526137e-01 -3.35826010e-01 -1.17242970e-01
1.85676560e-01 1.54788718e-01 -2.90137589e-01 1.52260268e+00
2.76832372e-01 -1.05010498e+00 2.66710877e-01 8.12637866e-01
1.02042532e+00 5.10144413e-01 -1.95786774e-01 -2.95595139e-01
1.86745393e+00 -7.61407614e-01 -1.12042797e+00 -2.51357913e-01
7.57681787e-01 -7.56276846e-01 1.43689144e+00 1.71830118e-01
-9.92918491e-01 -7.74088055e-02 -1.39616024e+00 -4.51846838e-01
-1.15932393e+00 2.49442644e-02 5.83569586e-01 9.36486244e-01
-7.82997370e-01 1.08440749e-01 -4.24681425e-01 -3.53252292e-01
2.03068957e-01 -1.76756337e-01 -3.34488362e-01 5.32208025e-01
-1.41649711e+00 1.49888456e+00 1.49507314e-01 -5.15670836e-01
-2.16559619e-01 -3.57109070e-01 -9.38472986e-01 -1.38122961e-01
2.51074851e-01 -2.87062109e-01 9.00244296e-01 -1.27389610e+00
-1.52961743e+00 1.53593707e+00 -6.44079223e-02 -2.70000577e-01
3.82576853e-01 9.95551869e-02 -4.85420346e-01 3.10832937e-03
4.46374953e-01 2.00487867e-01 6.66131914e-01 -1.15254521e+00
-1.58673897e-01 -5.22424877e-01 2.30556086e-01 7.16540739e-02
-1.13179874e+00 3.77686262e-01 1.74143389e-01 -9.35318112e-01
2.11933076e-01 -9.00941789e-01 4.26047951e-01 -1.41882494e-01
-1.46001071e-01 -3.87687117e-01 5.74916065e-01 -5.77071488e-01
1.38789570e+00 -2.00023603e+00 3.66853893e-01 3.00493062e-01
4.22537744e-01 -8.30903426e-02 2.53240645e-01 4.38124448e-01
1.40378729e-01 3.13819945e-01 6.48742542e-03 -8.77945423e-02
4.76416379e-01 2.18453899e-01 -5.32696545e-01 5.43947399e-01
1.91770196e-02 9.67409015e-01 -1.00149274e+00 -5.48018873e-01
-4.87580895e-02 1.28418326e-01 -6.13766313e-01 -4.04984713e-01
-1.15462532e-02 9.94657949e-02 -3.35694999e-01 5.19392192e-01
1.93010226e-01 -2.87820011e-01 4.98175561e-01 -4.88983616e-02
-1.42180189e-01 1.08318150e+00 -6.68683589e-01 1.25110686e+00
-9.69407439e-01 9.19899821e-01 -4.42575604e-01 -6.80386722e-01
1.22007906e+00 2.89729536e-01 1.91632822e-01 -9.02741730e-01
4.53423560e-01 4.00172800e-01 -8.33561718e-02 -4.02892798e-01
1.04044175e+00 -5.26047587e-01 -5.82600117e-01 8.59549165e-01
1.51587173e-01 -4.93758708e-01 5.03540814e-01 1.83070257e-01
5.50847888e-01 -3.81765902e-01 8.81514072e-01 -8.40347648e-01
7.35110819e-01 -6.77454937e-03 1.62249759e-01 3.09511989e-01
-1.13044277e-01 3.85221750e-01 8.19121122e-01 -5.95153809e-01
-9.45044398e-01 -8.70635569e-01 -5.01190901e-01 1.21397448e+00
9.39122066e-02 -6.91901982e-01 -3.75294685e-01 -7.84310758e-01
-2.02871069e-01 8.13082635e-01 -9.81278121e-01 -8.37933049e-02
-3.72502685e-01 -9.22929168e-01 4.68959630e-01 1.50513738e-01
2.01416686e-01 -1.04534173e+00 -7.66617656e-01 -5.18094599e-02
-3.68717849e-01 -1.00101376e+00 -2.99206197e-01 2.07691893e-01
-5.51467657e-01 -1.03160310e+00 -4.04146403e-01 -7.60079563e-01
4.86979455e-01 -1.54284745e-01 1.56978071e+00 -4.42847200e-02
2.92112231e-01 3.07436794e-01 -6.96765125e-01 -6.86867893e-01
-6.77512884e-01 2.55855143e-01 4.53992411e-02 -2.04529107e-01
7.41812885e-01 -2.44406849e-01 -6.85628504e-02 1.00993097e-01
-1.06988072e+00 -2.09864691e-01 -6.94624707e-02 1.05156469e+00
1.04933016e-01 -3.95071387e-01 6.86033666e-01 -9.70747590e-01
1.21392238e+00 -4.97653037e-01 -4.63809133e-01 1.49090260e-01
-7.00497210e-01 7.88390189e-02 6.56514704e-01 -4.42419440e-01
-7.65263379e-01 -5.76810002e-01 -7.02360794e-02 5.01678228e-01
5.66877484e-01 7.56350398e-01 1.97798312e-01 6.25755563e-02
1.06184411e+00 4.51202393e-02 -9.82666388e-03 -9.21852961e-02
5.43547213e-01 1.02956629e+00 -4.35611159e-02 -4.05419469e-01
4.44823712e-01 7.92158782e-01 -2.56436408e-01 -7.11755514e-01
-1.19649494e+00 -3.52854282e-01 -5.05819380e-01 -6.89952821e-02
8.07117164e-01 -7.99476266e-01 -5.27336895e-01 -1.68951005e-02
-1.11604404e+00 4.45329845e-01 -5.59754252e-01 3.65153730e-01
-5.57266951e-01 3.18051159e-01 -5.68434179e-01 -6.10101104e-01
-2.79489249e-01 -9.70041394e-01 8.69675636e-01 -2.19541371e-01
-7.95610845e-01 -1.48905241e+00 4.68964845e-01 3.49106431e-01
2.88821340e-01 2.43438646e-01 1.17569864e+00 -7.93313444e-01
3.91219944e-01 -3.42881203e-01 -1.82892889e-01 5.48154771e-01
2.11425200e-01 -2.21956536e-01 -9.49981272e-01 -7.60551989e-02
4.84673470e-01 -5.07573724e-01 6.88777447e-01 -1.23424523e-01
5.53414226e-01 -6.03823304e-01 1.01254925e-01 5.33693358e-02
1.30148685e+00 -2.01863065e-01 3.96743268e-01 7.24396586e-01
3.23954374e-01 9.47914362e-01 3.98278296e-01 3.62888217e-01
7.01396048e-01 9.00927484e-01 2.03927055e-01 2.02248842e-01
-8.07371661e-02 -2.23579839e-01 7.10493565e-01 1.39111924e+00
1.83655709e-01 -1.52760744e-01 -8.76510084e-01 8.36076558e-01
-1.51822662e+00 -8.49503219e-01 -2.94194669e-02 1.76610136e+00
9.86104369e-01 -9.08801239e-03 1.04817860e-01 3.41058016e-01
4.08134729e-01 6.30389154e-01 9.51599479e-02 -9.22522724e-01
-6.15756571e-01 2.49489054e-01 3.55769724e-01 7.04256475e-01
-9.34530199e-01 9.96483803e-01 6.30388975e+00 5.90631425e-01
-1.17279816e+00 5.77264488e-01 7.39761367e-02 -1.27797738e-01
-5.93403518e-01 -6.42578676e-02 -5.52739561e-01 5.20695925e-01
5.81065178e-01 -1.72812000e-01 8.22093859e-02 7.44340241e-01
-8.61995220e-02 5.51709719e-02 -6.98109269e-01 6.37448072e-01
5.27703047e-01 -1.31460690e+00 7.41585940e-02 -9.58845019e-03
1.00033128e+00 -1.04186378e-01 2.83110201e-01 1.58133343e-01
2.22292855e-01 -9.67612207e-01 1.16074264e+00 1.64920747e-01
4.65696603e-01 -5.83192527e-01 9.84486520e-01 8.07165205e-02
-3.93797278e-01 -2.06401363e-01 -4.02294636e-01 -2.54956305e-01
1.12399518e-01 6.91465795e-01 -3.10695857e-01 2.91131675e-01
5.32146275e-01 8.32593083e-01 -7.26274014e-01 1.20320931e-01
-5.69642067e-01 4.22866940e-01 8.34377855e-02 -7.54645646e-01
3.03302139e-01 -1.56131834e-01 6.99817777e-01 1.27483940e+00
5.55321872e-02 -3.63794088e-01 -2.61733323e-01 8.13042343e-01
-3.32755119e-01 6.72004640e-01 -7.06047237e-01 -2.50110954e-01
1.76809549e-01 1.25341415e+00 -8.55700076e-01 -3.64419997e-01
-5.03120959e-01 7.16793835e-01 3.33217889e-01 -1.81172445e-01
-7.48237550e-01 -3.78612101e-01 6.33922756e-01 2.91533452e-02
9.12790224e-02 -1.63564920e-01 -5.98655164e-01 -1.46590042e+00
2.30942458e-01 -1.13538873e+00 2.55514175e-01 -6.06027842e-01
-1.61089861e+00 6.91790760e-01 -2.03636676e-01 -9.92675066e-01
-2.11473301e-01 -9.48536992e-01 -1.47915199e-01 5.52368224e-01
-1.61804283e+00 -1.11602795e+00 3.28262150e-02 3.13361853e-01
1.68476835e-01 -2.90198296e-01 1.09877253e+00 1.29210129e-01
-1.40215173e-01 4.41072792e-01 1.81559235e-01 5.62293343e-02
7.33804643e-01 -1.30120194e+00 2.56542712e-02 4.02341902e-01
4.31446016e-01 7.85406470e-01 8.37451339e-01 -3.48518372e-01
-6.33213639e-01 -4.34622675e-01 1.69817877e+00 -1.02736998e+00
1.22659063e+00 -6.77976966e-01 -5.06839812e-01 5.58768868e-01
2.72920579e-01 -4.10791248e-01 9.06294644e-01 4.88836378e-01
-8.62858772e-01 3.12716365e-01 -1.08105648e+00 7.37086892e-01
7.49821067e-01 -7.78848648e-01 -1.08153808e+00 6.52683973e-01
4.66424048e-01 -1.46451563e-01 -7.52275407e-01 -8.81037489e-02
6.14454031e-01 -8.73004138e-01 8.31929624e-01 -8.52166772e-01
9.17994082e-01 -1.73496261e-01 -3.10081065e-01 -1.35477805e+00
-8.48399028e-02 -2.56831616e-01 6.07330631e-03 9.66318488e-01
5.06384134e-01 -8.64408314e-01 4.28092092e-01 1.00841604e-01
1.55896813e-01 -5.95402837e-01 -1.10988998e+00 -7.40788579e-01
5.08183181e-01 -1.79346144e-01 7.07365155e-01 1.36713624e+00
6.68748379e-01 6.62381232e-01 -3.29292178e-01 -4.37115341e-01
-6.74980059e-02 2.51871854e-01 4.08639908e-01 -1.36384022e+00
1.23072818e-01 -7.54765630e-01 -6.42539263e-01 -7.87022114e-01
6.20819390e-01 -1.28557634e+00 -3.30960155e-01 -1.11203015e+00
2.34100029e-01 -2.82065839e-01 -3.85416448e-02 2.33802900e-01
3.50515731e-02 6.32568240e-01 1.26978680e-01 1.86746955e-01
-4.40030664e-01 7.15647042e-01 1.09723520e+00 -2.19371408e-01
-9.61112976e-02 -5.05927324e-01 -1.16547930e+00 9.55724359e-01
7.82392383e-01 -7.37658918e-01 -1.24839395e-01 -2.56380379e-01
1.18764544e+00 -3.81638944e-01 2.54313767e-01 -3.41632366e-01
-7.34170899e-02 -7.22595379e-02 -9.56875160e-02 -1.02311252e-02
3.73746783e-01 -7.16988742e-01 -4.74426419e-01 3.98737758e-01
-5.01142621e-01 3.34023148e-01 -8.20457265e-02 2.00099111e-01
-4.75203276e-01 -6.54889464e-01 8.05270016e-01 -1.08041793e-01
-4.09822404e-01 -5.49863160e-01 -7.03055561e-01 3.61068219e-01
7.75725961e-01 -6.53849095e-02 -5.71569502e-01 -4.60201174e-01
-4.57971811e-01 -3.20796251e-01 6.43593848e-01 7.76083291e-01
2.18226954e-01 -1.41818261e+00 -6.79814398e-01 -1.53337151e-01
7.59942949e-01 -8.86356413e-01 -3.16430449e-01 9.48919296e-01
-4.52606648e-01 7.45001435e-01 -3.17696542e-01 -1.15316495e-01
-1.06269681e+00 5.05001962e-01 1.74444288e-01 -5.20479202e-01
-2.04312801e-01 4.23872709e-01 9.40159932e-02 -9.28962350e-01
-3.27858925e-01 -1.15632147e-01 -6.13151610e-01 8.76244962e-01
3.23223948e-01 3.21300745e-01 2.92319149e-01 -1.13461161e+00
-4.36580539e-01 5.24529040e-01 -4.29310501e-02 -3.72490674e-01
1.10574615e+00 -3.07881117e-01 -5.61263800e-01 8.44566166e-01
1.19128609e+00 7.98725724e-01 -1.47502601e-01 -1.87452704e-01
3.44937205e-01 -4.14862335e-01 1.81260705e-01 -9.93053257e-01
-7.60071099e-01 6.23678863e-01 2.51256347e-01 6.01621509e-01
6.67982757e-01 3.93258594e-03 4.59056020e-01 2.98452973e-01
2.10623816e-01 -1.44471645e+00 2.43896306e-01 8.26790571e-01
9.61883247e-01 -1.21837699e+00 2.23358005e-01 -1.26468077e-01
-8.55833352e-01 1.10462129e+00 -1.41072636e-02 -4.31937426e-02
6.43432021e-01 -1.97366759e-01 5.75865269e-01 -7.93807745e-01
-4.85914886e-01 -2.46690944e-01 4.66776401e-01 4.38918471e-01
8.94873917e-01 1.11638762e-01 -1.20549285e+00 7.07791984e-01
-8.82382572e-01 -5.53291976e-01 9.17577207e-01 5.51978648e-01
-2.30512261e-01 -9.67346072e-01 -2.20446646e-01 3.60874087e-01
-7.43034482e-01 -1.95106298e-01 -9.20875192e-01 8.62323046e-01
-8.95894840e-02 9.80296016e-01 -3.07168700e-02 -1.37246326e-01
2.08042145e-01 1.03872150e-01 3.11527610e-01 -6.45490527e-01
-9.62318003e-01 -7.92493105e-01 1.76095694e-01 -2.18815461e-01
-6.29697561e-01 -6.04116976e-01 -7.04995453e-01 -2.99591810e-01
-6.50946796e-01 2.20717281e-01 1.03001165e+00 9.33408439e-01
6.91713393e-02 3.21466655e-01 5.04606009e-01 -2.18202874e-01
-5.86178958e-01 -1.04109025e+00 -5.96525550e-01 5.23263872e-01
1.72425449e-01 -8.05299163e-01 -5.87266386e-01 -3.84829700e-01] | [10.40462589263916, 9.01523494720459] |
dd4c2eb1-1b01-4ab5-88ae-41c84d2f551f | fibinet-improving-fibinet-by-greatly-reducing | 2209.05016 | null | https://arxiv.org/abs/2209.05016v1 | https://arxiv.org/pdf/2209.05016v1.pdf | FiBiNet++:Improving FiBiNet by Greatly Reducing Model Size for CTR Prediction | Click-Through Rate(CTR) estimation has become one of the most fundamental tasks in many real-world applications and various deep models have been proposed to resolve this problem. Some research has proved that FiBiNet is one of the best performance models and outperforms all other models on Avazu dataset.However, the large model size of FiBiNet hinders its wider applications.In this paper, we propose a novel FiBiNet++ model to redesign FiBiNet's model structure ,which greatly reducess model size while further improves its performance.Extensive experiments on three public datasets show that FiBiNet++ effectively reduces non-embedding model parameters of FiBiNet by 12x to 16x on three datasets and has comparable model size with DNN model which is the smallest one among deep CTR models.On the other hand, FiBiNet++ leads to significant performance improvements compared to state-of-the-art CTR methods,including FiBiNet. | ['Junlin Zhang', 'PengTao Zhang'] | 2022-09-12 | null | null | null | null | ['click-through-rate-prediction'] | ['miscellaneous'] | [-3.69038403e-01 -4.82030034e-01 -2.76253641e-01 -4.18947376e-02
-5.81979752e-01 -2.68506467e-01 6.63768470e-01 -3.09669793e-01
-6.43704891e-01 5.11268616e-01 4.24033105e-01 -4.19330269e-01
9.42392722e-02 -6.98939264e-01 -2.45639727e-01 -5.76325655e-01
3.43052119e-01 3.33172977e-01 5.38987041e-01 -3.07441473e-01
3.57542008e-01 -1.74001157e-01 -1.21248543e+00 8.28011930e-02
5.88314712e-01 1.00691223e+00 3.44509125e-01 3.93898934e-01
-1.67916894e-01 8.47344816e-01 -4.88607258e-01 -7.26853192e-01
2.48176530e-01 -1.03378229e-01 -3.16432983e-01 -8.63109410e-01
1.55270875e-01 -6.44237697e-01 -9.59635854e-01 8.23400140e-01
8.51970136e-01 6.99412227e-02 6.69051647e-01 -1.10920131e+00
-8.47734928e-01 8.29636097e-01 -1.01287878e+00 4.62332875e-01
-1.93450198e-01 -1.78103466e-02 1.47334921e+00 -8.68034780e-01
2.14831650e-01 1.44955480e+00 6.60241485e-01 3.74975979e-01
-1.12205350e+00 -1.25748992e+00 1.71334833e-01 4.05714005e-01
-1.48973095e+00 1.05612263e-01 5.13759851e-01 -9.48300436e-02
8.65119040e-01 2.49374107e-01 5.43137968e-01 1.35162771e+00
1.32284850e-01 1.12519467e+00 8.61160457e-01 -1.16326571e-01
-7.71177113e-02 7.29304329e-02 3.24271888e-01 4.57447946e-01
1.58460975e-01 4.47576912e-03 -1.53777316e-01 2.57446021e-02
9.25611317e-01 6.22089729e-02 9.09341499e-02 1.80432796e-01
-1.19784296e+00 1.09373629e+00 4.28672642e-01 3.03398907e-01
-2.62862612e-02 4.17437583e-01 6.68852985e-01 2.57140636e-01
5.46836019e-01 1.59351647e-01 -5.94699919e-01 -6.15215361e-01
-4.26541150e-01 3.34735781e-01 5.31747937e-01 9.68057990e-01
2.14288771e-01 1.43520400e-01 -3.35248202e-01 1.29871166e+00
3.33086491e-01 4.80768263e-01 7.31561124e-01 -6.95406199e-01
6.79030418e-01 5.75136900e-01 -2.11542606e-01 -1.17649162e+00
-1.43045470e-01 -6.83721662e-01 -1.20032382e+00 -4.61222917e-01
1.77763447e-01 1.63547158e-01 -5.88391602e-01 1.59962428e+00
1.29021049e-01 2.82640159e-01 -4.35154557e-01 6.49218321e-01
9.83954012e-01 1.05678880e+00 1.47373050e-01 2.74229020e-01
1.16173637e+00 -1.21118677e+00 -6.38857901e-01 -4.66617979e-02
8.02766502e-01 -9.15537238e-01 1.51951969e+00 6.73976958e-01
-5.91226220e-01 -5.91862142e-01 -7.54599988e-01 -3.37851942e-01
-3.01838011e-01 4.42027360e-01 9.38544273e-01 5.25250912e-01
-6.41598940e-01 3.45641136e-01 -5.34326613e-01 2.18850486e-02
4.04778928e-01 1.85457096e-01 -4.49928530e-02 -1.60702348e-01
-1.40388572e+00 6.98683500e-01 1.75061330e-01 2.10663766e-01
-8.47733498e-01 -7.26116121e-01 -3.68062794e-01 1.88645735e-01
3.16870004e-01 -3.46043199e-01 1.46908832e+00 -1.01732880e-01
-1.33035660e+00 2.25299031e-01 -5.09869941e-02 -4.47333962e-01
7.31395066e-01 -4.33415055e-01 -4.45198298e-01 -3.70428860e-01
-1.59294143e-01 6.61992371e-01 7.30366588e-01 -7.36816108e-01
-5.39656639e-01 -1.40718684e-01 8.70625228e-02 -3.31359403e-03
-8.04644525e-01 5.27156331e-02 -9.96534109e-01 -8.26889992e-01
-3.19664001e-01 -9.01055157e-01 -1.81781173e-01 3.38376239e-02
-5.40278971e-01 -6.22175574e-01 9.60983813e-01 -6.34655416e-01
2.08511734e+00 -2.17275167e+00 -9.67123136e-02 -1.21235445e-01
6.62822187e-01 6.51967704e-01 -4.94459778e-01 6.76291347e-01
1.50683880e-01 3.01731378e-01 4.07613248e-01 -5.31188607e-01
1.59569845e-01 2.02388868e-01 -3.37167948e-01 1.47198319e-01
-4.73773122e-01 8.43359053e-01 -4.51488346e-01 -5.15223622e-01
3.47485483e-01 8.58097970e-01 -8.14593077e-01 3.98035906e-02
-1.63875103e-01 2.79731363e-01 -5.51895738e-01 3.26053709e-01
8.78709018e-01 -4.74080265e-01 -5.58012202e-02 -3.09665948e-01
-8.24148357e-02 3.37632835e-01 -1.01693785e+00 1.23189843e+00
-7.30154395e-01 9.05513644e-01 -5.38981080e-01 -7.94179738e-01
9.13762450e-01 2.72411816e-02 4.36303765e-01 -1.12340856e+00
4.27570134e-01 4.96615246e-02 1.79917321e-01 -3.86940002e-01
5.02894461e-01 2.57752776e-01 2.21951813e-01 4.73101318e-01
-4.54679400e-01 4.43388999e-01 2.48008251e-01 4.14166421e-01
1.05322123e+00 -3.78073692e-01 6.67933077e-02 1.02347322e-01
5.15896320e-01 -6.75971031e-01 4.57341850e-01 7.53619850e-01
-3.19498241e-01 6.32431507e-01 4.65684980e-01 -4.38694477e-01
-1.19324827e+00 -9.66373861e-01 -9.22539681e-02 1.08960521e+00
-1.88676938e-02 -6.09747529e-01 -4.70258206e-01 -6.06031775e-01
-3.81732844e-02 6.80835068e-01 -6.73079252e-01 -1.30562246e-01
-6.20653808e-01 -1.10501814e+00 6.88656628e-01 6.90469384e-01
9.99165893e-01 -8.54574263e-01 1.56783268e-01 8.93813297e-02
-6.04594111e-01 -1.01124871e+00 -7.26289511e-01 -3.10309649e-01
-8.60969007e-01 -9.68402922e-01 -7.85982788e-01 -6.14240408e-01
1.05337381e-01 5.34027636e-01 8.19630682e-01 2.04602450e-01
-2.81537592e-01 -4.64679807e-01 -5.26565254e-01 -4.93044227e-01
-6.46096468e-02 5.73938966e-01 -2.06267044e-01 -1.80281952e-01
6.69217348e-01 -3.78095239e-01 -9.59402919e-01 5.54956615e-01
-8.76768410e-01 -3.20376791e-02 7.98758745e-01 7.75473654e-01
3.90463501e-01 3.27628523e-01 6.56275749e-01 -9.79744434e-01
9.24817622e-01 -4.29628313e-01 -5.98621905e-01 -6.57060370e-02
-9.05328155e-01 -1.18189007e-01 7.41965115e-01 -7.52197742e-01
-9.92222369e-01 -6.08928978e-01 -5.96063077e-01 -1.48311973e-01
4.10500050e-01 6.88557506e-01 1.15331300e-01 3.01373661e-01
3.89965206e-01 2.88890719e-01 -1.63760483e-01 -9.61289763e-01
3.86370897e-01 8.28824997e-01 -5.98617941e-02 -1.87900946e-01
7.70353317e-01 2.05954641e-01 -2.44951755e-01 -8.59505117e-01
-1.02631342e+00 -6.35883629e-01 -4.48231190e-01 7.27971420e-02
5.98894358e-01 -1.05160093e+00 -1.00380957e+00 5.52954137e-01
-1.05708504e+00 -1.05292529e-01 3.10563538e-02 5.97425401e-01
-1.34485915e-01 5.05348802e-01 -8.86667371e-01 -6.82206810e-01
-4.89653260e-01 -1.10249519e+00 9.08054769e-01 -5.54022342e-02
3.22986692e-02 -1.01045561e+00 2.00200111e-01 5.80396235e-01
8.11304808e-01 -3.36505115e-01 1.01865506e+00 -4.78023648e-01
-6.23558342e-01 -3.55923235e-01 -8.19701493e-01 6.65856481e-01
-1.20320186e-01 6.56627640e-02 -8.28532517e-01 -3.12705368e-01
-2.65529037e-01 -1.91220477e-01 1.09109306e+00 3.93646717e-01
1.53945458e+00 -2.32886240e-01 -2.78013885e-01 5.06105125e-01
1.50780416e+00 2.71351010e-01 9.32541847e-01 4.76007015e-01
6.20245576e-01 -4.52676378e-02 6.18743002e-01 5.42117476e-01
4.29453045e-01 7.59702504e-01 6.20079339e-01 -2.13906199e-01
-2.04048395e-01 -5.64918578e-01 3.78323883e-01 1.42278838e+00
-1.64415687e-02 -4.20560896e-01 -5.25935709e-01 2.36689255e-01
-1.68184090e+00 -9.81590331e-01 -6.33822739e-01 1.97021484e+00
7.00384974e-01 2.72020727e-01 2.29739338e-01 3.13450873e-01
4.40306664e-01 3.64863575e-01 -4.57492054e-01 -9.23199132e-02
-2.85176206e-02 1.41748905e-01 4.20312583e-01 2.46623069e-01
-9.08327281e-01 1.04802203e+00 6.68608093e+00 1.20267868e+00
-8.48860383e-01 2.96613544e-01 4.72524554e-01 9.46588442e-02
-4.71403413e-02 -1.21989720e-01 -1.21076667e+00 6.00256443e-01
9.20588911e-01 -2.31831163e-01 3.68002534e-01 1.06817269e+00
4.78979558e-01 1.22864574e-01 -8.77106488e-01 1.08647144e+00
-9.62296128e-02 -1.14186966e+00 4.17212963e-01 3.17649841e-01
3.49650800e-01 3.93159717e-01 3.86166811e-01 8.99672329e-01
3.60010564e-01 -9.42339957e-01 3.42428505e-01 1.20039165e-01
7.67374873e-01 -8.29377115e-01 1.01386845e+00 3.30328077e-01
-1.41541743e+00 -3.34555596e-01 -7.99868762e-01 -8.83337110e-02
1.38087556e-01 6.84791863e-01 -6.44119084e-01 1.41673759e-01
8.08989525e-01 1.10478497e+00 -8.00177634e-01 1.26390457e+00
-4.95053679e-02 1.08467352e+00 -2.16138333e-01 -4.97524619e-01
3.16965640e-01 -2.59126663e-01 2.60988325e-01 1.25477731e+00
2.24578261e-01 -1.86234578e-01 -1.18429087e-01 5.74942231e-01
-2.08194733e-01 2.67333210e-01 -5.03975332e-01 -2.01048747e-01
7.17969239e-01 1.15392601e+00 -1.56261384e-01 -2.87614167e-01
-6.50020480e-01 6.32962644e-01 1.90514892e-01 2.15728685e-01
-1.32619631e+00 -5.76085269e-01 6.33792222e-01 2.51655281e-01
3.00703764e-01 -3.62710625e-01 6.10817736e-03 -1.19925559e+00
-1.75810918e-01 -9.87252891e-01 3.41171831e-01 -7.82174826e-01
-1.33161044e+00 5.98223865e-01 -2.01138869e-01 -1.34034574e+00
3.12603325e-01 -6.08111739e-01 -3.35079789e-01 7.39857912e-01
-1.79170275e+00 -1.07354069e+00 -4.35876220e-01 6.32272184e-01
8.26969683e-01 -2.25212693e-01 5.56054354e-01 9.48375642e-01
-9.49602127e-01 9.43231463e-01 6.16999388e-01 4.58160639e-01
6.94573164e-01 -9.26872194e-01 5.58234274e-01 5.03440142e-01
1.26629574e-02 1.03892291e+00 4.84625876e-01 -2.37238064e-01
-1.16763568e+00 -1.13024890e+00 1.03300297e+00 -3.65290225e-01
9.85031426e-01 -4.82096136e-01 -6.89565063e-01 7.19281316e-01
2.42464349e-01 -3.57557029e-01 5.91126680e-01 2.31588945e-01
-7.47701645e-01 -4.79432851e-01 -5.49600601e-01 7.67578542e-01
9.45954800e-01 -4.67884421e-01 -2.12679878e-01 3.71755093e-01
8.13868880e-01 -9.48568806e-03 -9.25815523e-01 1.57873005e-01
8.16013992e-01 -8.88199747e-01 1.10513985e+00 -4.64551836e-01
4.93918836e-01 2.16481667e-02 -3.28898191e-01 -1.17380536e+00
-4.52144891e-01 -4.40719754e-01 -2.71874487e-01 1.27606308e+00
2.91422397e-01 -7.55993545e-01 9.00240302e-01 1.89815477e-01
1.63526833e-01 -7.11761475e-01 -7.90432751e-01 -9.52401280e-01
1.97843894e-01 -5.42338789e-01 4.07072604e-01 6.13365233e-01
-5.26703238e-01 8.54381263e-01 -6.53394341e-01 -4.35814232e-01
4.86070454e-01 -2.88004845e-01 1.19676840e+00 -1.49215221e+00
-1.76498860e-01 -4.50001955e-01 -1.50601462e-01 -1.81165159e+00
-1.04209721e-01 -7.35829055e-01 -4.38382208e-01 -1.64700353e+00
5.91781199e-01 -7.66730726e-01 -3.16677779e-01 4.67404187e-01
-8.98308828e-02 7.91022629e-02 1.97567970e-01 2.05894068e-01
-4.25490797e-01 9.45906460e-01 1.45634687e+00 -3.10090572e-01
-1.12593928e-02 1.47888243e-01 -9.16100919e-01 4.35178250e-01
9.18423235e-01 -5.03717780e-01 -6.98775291e-01 -7.27926791e-01
4.11078036e-01 -3.51478577e-01 -1.60572324e-02 -7.36586332e-01
-1.05938859e-01 5.39505817e-02 1.15413994e-01 -9.33980703e-01
4.95389730e-01 -7.19312966e-01 -1.20286271e-01 5.28612673e-01
-6.09174132e-01 4.93217945e-01 1.71635281e-02 9.06547129e-01
-2.41409257e-01 5.60987601e-03 8.60586643e-01 -2.34638471e-02
-4.87666816e-01 6.39670849e-01 -2.63847142e-01 1.53485745e-01
6.78344250e-01 9.98016372e-02 -7.31964290e-01 -5.97135067e-01
-1.86092377e-01 1.04034461e-01 -2.77868539e-01 8.29268694e-01
5.63072979e-01 -1.30300403e+00 -6.78990006e-01 -5.45857921e-02
8.38510096e-02 -1.04557365e-01 2.81936258e-01 9.29271042e-01
-5.44192791e-01 9.09828722e-01 3.03121090e-01 -4.86426145e-01
-1.48661017e+00 5.01128197e-01 4.74840403e-02 -7.03088999e-01
-7.11165667e-01 8.67011845e-01 4.39257324e-01 -4.22598869e-01
5.52867413e-01 -3.66031617e-01 -4.26749736e-01 -8.84090587e-02
6.73391342e-01 6.89883828e-01 2.11870037e-02 -3.92072856e-01
6.30774274e-02 5.57209790e-01 -7.49528527e-01 -3.19563933e-02
1.41894305e+00 -2.60197163e-01 9.68763083e-02 1.91966474e-01
1.61482847e+00 -1.95585147e-01 -8.89239013e-01 -4.43869352e-01
-3.62053275e-01 -8.29079747e-01 2.65593469e-01 -8.36594522e-01
-1.44095874e+00 1.31737995e+00 5.03318131e-01 -4.20470685e-02
1.01671171e+00 -4.41930622e-01 1.29844999e+00 5.45179248e-01
3.24730575e-01 -1.18543816e+00 5.78167260e-01 6.15981162e-01
8.02184761e-01 -1.31128705e+00 5.24968142e-03 -2.89925456e-01
-5.64434409e-01 7.51684248e-01 8.05361271e-01 1.33173063e-01
9.69988525e-01 -1.25448350e-02 -4.05011475e-02 6.51125982e-02
-1.02182555e+00 1.68208718e-01 5.91544099e-02 3.89502168e-01
6.90104663e-01 -1.59130618e-01 -7.81610966e-01 2.61382431e-01
-1.70161918e-01 3.97335514e-02 4.89826977e-01 4.06540960e-01
-4.00113910e-01 -1.30517590e+00 1.11218244e-01 6.83774948e-01
-5.14378607e-01 -4.61101055e-01 -2.27478385e-01 1.16204953e+00
-4.56404269e-01 9.39236581e-01 -2.85500050e-01 -8.47099602e-01
3.49603802e-01 -5.00215411e-01 8.62030014e-02 -2.50014603e-01
-5.08579671e-01 1.33602709e-01 -2.89165992e-02 -5.10051548e-01
3.69558297e-02 -4.91342574e-01 -8.62513661e-01 -8.04759622e-01
-6.48068011e-01 7.98226595e-02 7.24339783e-01 6.06784046e-01
3.84455740e-01 5.28449357e-01 7.01765656e-01 -2.82471091e-01
-9.32791710e-01 -1.27694464e+00 -5.62065780e-01 1.49047256e-01
1.16685346e-01 -8.15283418e-01 -3.69865268e-01 -3.33759993e-01] | [10.158974647521973, 5.568612575531006] |
b7be5475-e882-45dd-b03b-820fc52c977c | reconfigurable-and-intelligent-ultra-wideband | 2008.06085 | null | https://arxiv.org/abs/2008.06085v1 | https://arxiv.org/pdf/2008.06085v1.pdf | Reconfigurable and Intelligent Ultra-Wideband Angular Sensing: Prototype Design and Validation | The emergence of beyond-licensed spectrum sharing in FR1 (0.45-6 GHz) and FR2 (24 - 52 GHz) along with the multi-antenna narrow-beam based directional transmissions demand a wideband spectrum sensing in temporal as well as spatial domains. We referred to it as ultra-wideband angular spectrum sensing (UWAS), and it consists of digitization followed by characterization of the wideband spectrum. In this paper, we design and develop state-of-the-art UWAS prototype using USRPs and LabVIEW NXG for the validation in the real-radio environment. Since 5G is expected to co-exist with LTE, the transmitter generates the multi-directional multi-user wideband traffic via LTE specific single carrier frequency division multiple access (SC-FDMA) approach. At the receiver, the first step of wideband spectrum digitization is accomplished using a novel approach of integrating sparse antenna-array with reconfigurable sub-Nyquist sampling (SNS). The reconfigurable SNS allows the digitization of non-contiguous spectrum via low-rate analog-to-digital converters, but it needs intelligence to choose the frequency bands for digitization. We explore the multi-play multi-armed bandit based learning algorithm to embed intelligence. Compared to previous works, the proposed characterization (frequency band status and direction-of-arrival estimation) approach does not need prior knowledge of received signal distribution. The detailed experimental results for various spectrum statistics, power gains and antenna array arrangements along with lower complexity validate the functional correctness, superiority and feasibility of the proposed UWAS over state-of-the-art approaches. | ['Bhavani Shankar Mysore Rama Rao', 'Mohammad Alaee-Kerahroodi', 'Sumit J. Darak', 'Himani Joshi'] | 2020-08-13 | null | null | null | null | ['direction-of-arrival-estimation'] | ['audio'] | [ 3.44132066e-01 -1.04242742e-01 -2.98149556e-01 8.82793739e-02
-9.11662877e-01 -7.80031025e-01 2.44146362e-02 -6.74486339e-01
5.77188432e-02 1.08312762e+00 9.96305346e-02 -6.53976202e-01
-1.13262057e+00 -8.78284812e-01 -3.36892396e-01 -8.14759076e-01
-4.05832082e-01 2.45007992e-01 -3.40308666e-01 -2.84401923e-01
-2.28776842e-01 6.68461323e-01 -1.22444880e+00 3.48008603e-01
6.67329490e-01 1.70226753e+00 2.70322859e-01 7.30607867e-01
2.62106061e-01 4.04448807e-01 -7.05838740e-01 1.85494572e-01
6.29368961e-01 -4.89133775e-01 -2.25026920e-01 -2.21261363e-02
-3.69021446e-01 -3.42405140e-01 -3.57339270e-02 8.91570866e-01
7.04097569e-01 -7.21614584e-02 5.32220423e-01 -9.60425317e-01
-1.73562586e-01 6.19488895e-01 -5.70266008e-01 2.94242412e-01
5.24480224e-01 -2.60785997e-01 6.82594299e-01 -4.22291517e-01
1.55878738e-01 9.01252866e-01 8.00452948e-01 -3.74513805e-01
-8.43698025e-01 -7.65047610e-01 -4.06969547e-01 1.40483826e-01
-1.66326201e+00 -2.82262921e-01 9.35047984e-01 -2.93782413e-01
3.92489105e-01 6.61686420e-01 9.46233451e-01 8.61561000e-01
-3.10309287e-02 2.30849653e-01 1.23549247e+00 -9.49474573e-01
3.62354159e-01 -4.14355285e-02 -1.38343707e-01 5.60843110e-01
3.61508012e-01 3.83311570e-01 -3.66726145e-02 -5.27999640e-01
1.16441822e+00 -1.70935541e-01 -3.31064343e-01 -9.30763707e-02
-1.08142912e+00 6.39412403e-01 1.50125772e-01 7.12487996e-01
-8.88343275e-01 1.84265167e-01 -2.76390731e-01 5.03638983e-01
1.62436232e-01 3.87047172e-01 -3.30749899e-01 -3.55790891e-02
-1.18412948e+00 -1.82748362e-01 7.30858803e-01 8.66458833e-01
5.14575243e-01 6.25253916e-01 -2.57846236e-01 7.47590780e-01
6.91290319e-01 8.26270819e-01 6.53320134e-01 -6.11819863e-01
2.02317610e-01 -2.87508160e-01 4.16940391e-01 -7.02304125e-01
-8.90825629e-01 -1.68850899e+00 -8.38678479e-01 -2.71950155e-01
4.32967722e-01 -9.02752817e-01 -4.82518971e-01 1.52960169e+00
2.34750688e-01 4.14631605e-01 2.66724855e-01 8.22757840e-01
8.23363066e-02 7.41332054e-01 -6.63728178e-01 -9.12191153e-01
1.48652041e+00 -4.78542030e-01 -8.58376682e-01 -1.03970192e-01
1.04324155e-01 -8.77985299e-01 4.90323603e-01 8.40641856e-01
-7.00402319e-01 -7.11530328e-01 -1.42409050e+00 1.11117411e+00
1.16613872e-01 4.77284700e-01 5.96105635e-01 1.78618288e+00
-6.23996854e-01 -2.15420529e-01 -2.54262149e-01 -6.24366663e-02
2.26627246e-01 1.31017894e-01 2.77362645e-01 1.15035288e-01
-1.44958866e+00 3.77312988e-01 2.93565482e-01 -1.25416577e-01
-5.69219947e-01 -6.95626318e-01 -1.51251972e-01 1.77171171e-01
3.38335335e-01 -5.68673253e-01 1.16273832e+00 -1.02847660e+00
-1.88035429e+00 2.18859874e-02 4.39182907e-01 -7.32420504e-01
3.14638555e-01 8.13385025e-02 -1.33253038e+00 2.82026976e-01
-9.41260606e-02 -5.68126321e-01 8.43604505e-01 -8.08127701e-01
-8.88915181e-01 -2.87431866e-01 2.60673147e-02 1.25388443e-01
-4.82739359e-02 -5.89774430e-01 4.10038739e-01 -9.90813255e-01
7.27557421e-01 -1.04501700e+00 -1.27228364e-01 -6.83037877e-01
-3.18836093e-01 3.72181803e-01 4.99658674e-01 -4.53852475e-01
1.44577479e+00 -2.18865156e+00 -5.01788616e-01 7.03903973e-01
-5.33943236e-01 -1.08505823e-01 3.59413147e-01 7.51142383e-01
-2.65112877e-01 -3.50807458e-01 3.49529862e-01 3.70405138e-01
-3.61171998e-02 -4.18930203e-01 -3.67795229e-01 6.65665925e-01
-6.37150168e-01 1.82941064e-01 -4.42228645e-01 1.09325044e-01
1.71527177e-01 -5.40785538e-03 -5.12720644e-01 -2.13113204e-01
-1.67171936e-02 3.28737766e-01 -8.85789990e-01 1.00008810e+00
8.01246405e-01 -2.76822507e-01 3.95996273e-01 -6.70688808e-01
-3.93606722e-01 -3.80034566e-01 -1.74604225e+00 1.69629955e+00
-8.86974394e-01 1.69862479e-01 2.63935626e-01 -1.25923741e+00
8.91943514e-01 6.24785125e-01 7.02593207e-01 -6.64718747e-01
3.71262431e-01 4.83260423e-01 6.99257329e-02 -5.49066305e-01
-1.64601743e-01 -3.77203345e-01 -1.82590783e-01 6.74723089e-01
1.58018872e-01 2.41488428e-03 -1.96581855e-01 -5.13585508e-01
8.56849670e-01 -1.35697410e-01 1.07627702e+00 -5.65121472e-01
8.47548366e-01 -2.77514875e-01 3.01616788e-01 9.25798774e-01
2.70196646e-02 -9.12950933e-02 -2.88220108e-01 -6.52498826e-02
-5.21747291e-01 -1.02474260e+00 -2.85428971e-01 1.02522075e+00
1.82386667e-01 4.54279721e-01 -3.13811332e-01 3.51513848e-02
1.30486727e-01 9.16921437e-01 5.70977703e-02 2.02433899e-01
-6.36022463e-02 -7.72397876e-01 7.61375964e-01 -2.03880936e-01
8.25952351e-01 -1.70921415e-01 -8.32030416e-01 6.90343738e-01
-3.24258469e-02 -1.01074243e+00 1.67585596e-01 2.75580317e-01
-2.73838341e-01 -6.01196826e-01 -6.67932391e-01 -4.33083177e-01
-1.49326190e-01 3.36317241e-01 4.41302299e-01 -6.48331642e-01
-2.03078970e-01 6.99671388e-01 -5.04589021e-01 -3.81640553e-01
-5.24884388e-02 -4.53405418e-02 2.86964267e-01 7.65156567e-01
-3.96564633e-01 -1.13370490e+00 -6.57546699e-01 5.96666515e-01
-4.29908484e-01 -3.48677695e-01 1.05043244e+00 5.42796493e-01
3.50838929e-01 6.26060009e-01 1.29137909e+00 -4.70486790e-01
5.72353363e-01 -6.28518224e-01 -8.17750692e-01 3.77973169e-01
-2.07650930e-01 -3.71563494e-01 7.12566018e-01 -3.50085199e-01
-1.18607354e+00 1.48678038e-04 -2.12805182e-01 4.95978184e-02
6.61714524e-02 8.47836077e-01 -1.42883465e-01 -4.56772923e-01
1.01677978e+00 4.22034949e-01 -2.02467993e-01 -2.42995352e-01
2.85172313e-01 1.03618908e+00 2.99389452e-01 -5.02317369e-01
9.04658616e-01 5.66815019e-01 2.60779679e-01 -1.13727987e+00
-7.59965599e-01 -4.24587280e-01 1.36595860e-01 -4.56262141e-01
4.91739780e-01 -1.15224755e+00 -6.66940272e-01 6.77333549e-02
-7.10786402e-01 1.17084280e-01 9.44217220e-02 1.15183306e+00
-8.27392280e-01 2.33830422e-01 -1.50837645e-01 -1.49363708e+00
-1.88161075e-01 -7.75175989e-01 4.12634701e-01 5.48747592e-02
-6.99512735e-02 -3.94701391e-01 -1.66702971e-01 4.79950339e-01
8.79985273e-01 1.35831177e-01 7.13547528e-01 -4.58455414e-01
-6.44911528e-01 -2.04461798e-01 2.39284784e-01 -2.34674662e-02
2.57727802e-01 -7.49400020e-01 -7.80690908e-01 -2.75376350e-01
5.06586194e-01 -3.54830213e-02 6.96957782e-02 1.00119364e+00
9.72087324e-01 -3.10438305e-01 -4.34755564e-01 6.72855914e-01
1.67029047e+00 8.23984504e-01 4.29737836e-01 2.21262187e-01
-2.65820473e-01 -1.46397725e-01 9.13654506e-01 9.73380446e-01
-2.57170796e-01 6.69224143e-01 5.71635127e-01 2.29320660e-01
1.91852808e-01 3.69380534e-01 -1.47034675e-01 1.35138929e-01
-8.72918516e-02 -6.20572031e-01 -4.23810452e-01 -1.25032946e-01
-1.52603126e+00 -1.18470848e+00 2.54700303e-01 2.26260281e+00
3.99592966e-01 1.09031469e-01 1.46852687e-01 4.74060208e-01
7.13401318e-01 9.78260934e-02 -3.46784770e-01 -1.93722674e-03
-1.12102740e-01 2.20084414e-01 9.92936134e-01 4.62986112e-01
-1.03653765e+00 1.35933429e-01 5.05960035e+00 1.48187983e+00
-1.19568634e+00 3.83069158e-01 3.92930537e-01 -1.12767303e-02
-3.06553692e-01 -3.42058927e-01 -4.27280992e-01 3.99416625e-01
8.01832080e-01 -1.24652095e-01 7.59969294e-01 7.69047797e-01
1.97668746e-01 -1.34432629e-01 -3.60595286e-01 1.50631225e+00
-3.07262272e-01 -1.49147034e+00 -4.04398143e-01 1.70056105e-01
6.45204902e-01 -2.85294503e-01 1.15472823e-01 1.88792050e-01
-2.72734731e-01 -5.53278506e-01 8.50474298e-01 7.89804161e-01
9.93325531e-01 -8.77520740e-01 6.53668225e-01 6.33790195e-01
-1.29114163e+00 -9.74330127e-01 1.42175525e-01 -2.74610192e-01
3.38220775e-01 1.32061207e+00 -9.98473942e-01 1.26204479e+00
8.77142474e-02 -4.15960670e-01 3.64135265e-01 1.05582404e+00
1.82483748e-01 7.97644377e-01 -6.97011471e-01 -7.54553303e-02
2.09481359e-01 -2.37706363e-01 7.10269034e-01 8.51977408e-01
1.38250506e+00 3.98769498e-01 3.38917851e-01 2.91152984e-01
3.95322740e-01 5.04925922e-02 -1.91819429e-01 4.41290699e-02
9.20157790e-01 1.01031578e+00 -6.40229404e-01 -1.03579111e-01
-4.33972359e-01 3.95987093e-01 -8.22407365e-01 5.54346263e-01
-1.04832435e+00 -2.30772153e-01 2.35366210e-01 2.20097184e-01
4.60630655e-01 -3.54937643e-01 -1.45916626e-01 -5.70615351e-01
-4.31109369e-01 -8.55771303e-01 4.20738190e-01 -7.35364497e-01
-9.30129707e-01 6.12120748e-01 -1.36039019e-01 -1.73226583e+00
-5.13597846e-01 -7.84861147e-02 7.02704489e-02 7.64107823e-01
-1.34594405e+00 -1.10080147e+00 -2.05922380e-01 7.35248446e-01
5.16381860e-01 -7.55162239e-01 1.04666650e+00 5.24439752e-01
1.22894801e-01 4.96820211e-01 4.94577020e-01 -5.81188321e-01
1.93615437e-01 -5.75434864e-01 -5.27767360e-01 4.83034521e-01
-6.62574619e-02 2.22610384e-01 8.86912286e-01 -5.76573431e-01
-1.57817543e+00 -7.49695778e-01 -6.36837333e-02 7.07104206e-01
7.16445148e-01 -1.42858922e-01 2.78528184e-01 4.28045988e-01
4.72981110e-02 2.36997698e-02 1.11064637e+00 -8.28807876e-02
1.60507873e-01 -5.83932459e-01 -1.47431612e+00 3.51393819e-01
9.99280393e-01 -1.05493374e-01 -9.30787697e-02 4.84548211e-01
2.69001335e-01 -2.31803328e-01 -6.75396383e-01 4.56210643e-01
8.54239464e-01 -1.03851199e+00 1.26574492e+00 1.72998458e-01
-5.61221004e-01 -4.31968957e-01 -1.06444299e+00 -1.17441010e+00
-8.26698422e-01 -1.00203896e+00 2.67417636e-02 7.62221634e-01
5.13575196e-01 -1.02899396e+00 7.32841909e-01 -6.69719160e-01
-1.21747032e-01 -4.56198782e-01 -1.29905522e+00 -1.06007206e+00
-8.07510614e-01 -5.37373066e-01 8.32036376e-01 8.45553458e-01
-4.82805632e-03 1.50312975e-01 -5.22544026e-01 8.78043354e-01
7.48678863e-01 3.49111438e-01 4.32835281e-01 -1.34879386e+00
-1.03841257e+00 -2.09322616e-01 -3.53243291e-01 -1.09201288e+00
-5.17818093e-01 -5.53187132e-01 -5.96665621e-01 -1.19835162e+00
-7.77841389e-01 -6.45500243e-01 -2.90457368e-01 -1.37842357e-01
9.12931681e-01 1.80518925e-01 -2.37681627e-01 -1.01896547e-01
-2.18615681e-01 3.06534201e-01 1.05784369e+00 1.28951684e-01
-1.58840254e-01 9.41869736e-01 -4.98813093e-01 5.45418382e-01
6.62411392e-01 -1.60984024e-02 -8.68057787e-01 2.08025336e-01
3.14231485e-01 1.15646672e+00 4.08750353e-03 -1.70908177e+00
2.14165226e-01 -2.26644948e-01 4.67953920e-01 -6.44759715e-01
6.17720485e-01 -1.38970792e+00 9.40797746e-01 6.53304875e-01
2.81602770e-01 -5.66362619e-01 3.70091423e-02 7.71886706e-01
9.78236645e-02 -2.36883014e-01 7.42286265e-01 -2.63063852e-02
-3.46405059e-01 -9.86461490e-02 -8.03477824e-01 -5.50230443e-01
1.30793750e+00 -4.35538292e-01 -1.95266724e-01 -8.61837149e-01
-8.32890511e-01 -2.92190164e-01 -4.53446984e-01 -2.68641055e-01
5.44173131e-03 -1.31584859e+00 -4.53664601e-01 4.14691180e-01
-4.19310510e-01 -9.02610004e-01 8.80520999e-01 6.36454225e-01
-3.13503534e-01 8.12837303e-01 -3.74277413e-01 -5.27291119e-01
-8.38818669e-01 2.51152337e-01 5.27303636e-01 -1.94835246e-01
1.03100114e-01 6.29766226e-01 -2.77823865e-01 -2.92155948e-02
-1.26459509e-01 -1.27704829e-01 -2.90282071e-01 3.52769703e-01
3.24361861e-01 5.23207247e-01 2.37004995e-01 -7.71246627e-02
-3.52388054e-01 6.25900865e-01 7.02096105e-01 -4.42016363e-01
1.10829687e+00 -3.43444377e-01 2.00386018e-01 2.20729858e-01
8.65993977e-01 6.41869485e-01 -5.80357850e-01 -1.24422893e-01
-4.01307642e-01 -3.12943161e-01 2.48007998e-01 -1.13909686e+00
-7.69761086e-01 -9.88904387e-02 1.08344042e+00 1.07491422e+00
1.31855810e+00 -3.43406320e-01 4.81706530e-01 4.08840775e-01
1.04348779e+00 -9.69984114e-01 -9.39755440e-02 1.44292712e-01
8.44482422e-01 -4.06653255e-01 2.39847660e-01 -5.44715285e-01
2.14923732e-02 1.21113670e+00 -1.24877766e-01 8.23200792e-02
1.09484732e+00 3.68876487e-01 4.33123000e-02 1.76865067e-02
-9.44598764e-02 -1.87276348e-01 9.75502878e-02 4.77806717e-01
3.10184471e-02 4.41393971e-01 -5.10996699e-01 1.19951963e+00
-6.80357039e-01 2.22255632e-01 4.54772383e-01 7.62752593e-01
-9.38277423e-01 -7.53010333e-01 -9.98306692e-01 7.13531792e-01
-3.89638454e-01 1.25624657e-01 6.60113215e-01 6.69234455e-01
1.55255795e-01 1.30495119e+00 -3.59351069e-01 -2.90276110e-01
3.66411835e-01 1.96949765e-02 5.41165769e-01 -1.53244644e-01
-3.94942798e-02 6.18763804e-01 4.52417970e-01 -3.91065419e-01
-2.25359276e-01 -6.15622818e-01 -9.25780773e-01 2.77847439e-01
-5.62792480e-01 4.11658704e-01 8.91929150e-01 9.88678634e-01
3.47645998e-01 9.36474800e-01 1.04760337e+00 -6.70240641e-01
-8.53031993e-01 -9.14439559e-01 -1.21144271e+00 -5.11803985e-01
3.40076774e-01 -9.74269867e-01 -5.24234533e-01 -6.24755681e-01] | [6.394676685333252, 1.2147794961929321] |
9d308940-55d5-49f3-8dc8-681ce08be245 | unifying-cardiovascular-modelling-with-deep | 2101.08477 | null | https://arxiv.org/abs/2101.08477v3 | https://arxiv.org/pdf/2101.08477v3.pdf | Unifying Cardiovascular Modelling with Deep Reinforcement Learning for Uncertainty Aware Control of Sepsis Treatment | Sepsis is a potentially life threatening inflammatory response to infection or severe tissue damage. It has a highly variable clinical course, requiring constant monitoring of the patient's state to guide the management of intravenous fluids and vasopressors, among other interventions. Despite decades of research, there's still debate among experts on optimal treatment. Here, we combine for the first time, distributional deep reinforcement learning with mechanistic physiological models to find personalized sepsis treatment strategies. Our method handles partial observability by leveraging known cardiovascular physiology, introducing a novel physiology-driven recurrent autoencoder, and quantifies the uncertainty of its own results. Moreover, we introduce a framework for uncertainty aware decision support with humans in the loop. We show that our method learns physiologically explainable, robust policies that are consistent with clinical knowledge. Further our method consistently identifies high risk states that lead to death, which could potentially benefit from more frequent vasopressor administration, providing valuable guidance for future research | ['David Swigon', 'Christopher James Langmead', 'Gilles Clermont', 'Thesath Nanayakkara'] | 2021-01-21 | null | null | null | null | ['distributional-reinforcement-learning', 'clinical-knowledge'] | ['methodology', 'miscellaneous'] | [-4.63400222e-02 -1.92114115e-01 -9.39146504e-02 -6.10829815e-02
-1.84975177e-01 -4.46798444e-01 3.10422853e-02 7.95910537e-01
-4.15065259e-01 1.01665032e+00 5.31050980e-01 -5.41994750e-01
-3.94656539e-01 -6.14295781e-01 -5.43919742e-01 -9.27162051e-01
-3.22020859e-01 6.96192026e-01 -4.81889784e-01 -9.08059031e-02
-2.27129292e-02 6.06613874e-01 -8.64074528e-01 -5.02797589e-02
6.64159000e-01 9.45023000e-01 -1.47896826e-01 7.71445394e-01
3.51901501e-01 1.03358746e+00 -3.41628700e-01 1.92005053e-01
1.97946861e-01 -6.01782024e-01 -2.79293090e-01 -4.41690207e-01
-4.27587271e-01 -6.45196676e-01 -2.63213992e-01 5.35002470e-01
8.41104984e-01 3.67596179e-01 6.86653912e-01 -8.50847363e-01
-3.24374795e-01 6.90741956e-01 1.14404056e-02 2.04846919e-01
-1.71046481e-01 6.91036224e-01 4.70328629e-01 -1.86032712e-01
8.03753138e-02 1.01229382e+00 7.34886348e-01 9.12259996e-01
-1.20610988e+00 -3.31516087e-01 2.14950666e-01 -1.27829447e-01
-7.95692742e-01 -1.49948984e-01 3.64972323e-01 -7.28811443e-01
8.25221300e-01 -1.02712683e-01 9.09769297e-01 1.54026818e+00
7.48160720e-01 2.02287138e-01 9.61667001e-01 2.47792583e-02
6.44847512e-01 -5.81294522e-02 -1.71545550e-01 5.88710010e-01
3.82629991e-01 6.72027588e-01 -1.79287642e-01 -4.58805621e-01
9.85853910e-01 6.06891870e-01 -6.07770383e-01 -5.35425663e-01
-1.10303473e+00 8.04676831e-01 8.76371786e-02 -2.99054664e-02
-1.13113487e+00 4.56409663e-01 6.14506900e-01 -1.02953687e-01
-9.11988467e-02 9.23481107e-01 -1.03995359e+00 -2.03992531e-01
-4.07002240e-01 8.27597231e-02 8.36413920e-01 1.76195741e-01
1.98872194e-01 2.63280630e-01 -1.90588310e-01 4.32568341e-01
1.94261461e-01 6.69815719e-01 5.05152047e-01 -1.26507711e+00
-2.26338625e-01 3.07065487e-01 3.88305068e-01 -7.49792039e-01
-8.24398398e-01 -5.20205617e-01 -1.06448960e+00 1.18557826e-01
2.57888943e-01 -9.10882533e-01 -4.37256664e-01 1.81657887e+00
2.96454400e-01 3.84257674e-01 3.83079797e-01 9.48577821e-01
2.39424810e-01 3.00864071e-01 5.51617563e-01 -4.09025162e-01
1.22901571e+00 -3.36750537e-01 -4.75576103e-01 1.23423129e-01
3.70491147e-01 8.77941474e-02 3.96925360e-01 5.99811375e-01
-8.17724586e-01 6.53559789e-02 -6.40115976e-01 5.88593602e-01
-7.87425265e-02 -2.56580859e-01 6.48071468e-01 2.68280327e-01
-8.15404594e-01 1.07804096e+00 -1.26301563e+00 -3.45839232e-01
2.19174296e-01 3.00570607e-01 -6.79860115e-02 1.71548799e-01
-1.64825583e+00 1.11003625e+00 4.30692524e-01 1.71686560e-01
-1.28730989e+00 -1.20749009e+00 -9.16323602e-01 2.04287872e-01
4.40488368e-01 -1.48352146e+00 1.06989861e+00 -1.90594122e-01
-1.72479558e+00 1.52137265e-01 2.33668014e-01 -9.67653573e-01
3.76562864e-01 -4.20881122e-01 -5.36804311e-02 4.54955071e-01
-5.74588776e-01 3.31334144e-01 7.49080300e-01 -1.00290632e+00
-2.47654513e-01 -3.13367993e-01 -2.27024809e-01 1.74430579e-01
1.34791598e-01 -1.75395980e-01 5.96040010e-01 -4.17715192e-01
-5.12642264e-01 -8.39342237e-01 -9.15469646e-01 -1.98358923e-01
-1.73105717e-01 9.06783193e-02 -5.42849256e-03 -4.10844922e-01
1.02688277e+00 -1.83775091e+00 3.37816834e-01 2.31061503e-02
5.75962186e-01 1.49653897e-01 1.11555301e-01 6.35332346e-01
-2.19135452e-02 2.97187865e-01 -3.89723569e-01 1.53686672e-01
-1.24209095e-02 2.47397363e-01 -5.76064765e-01 3.75306964e-01
4.12228256e-01 8.79219174e-01 -1.23938751e+00 -3.04552056e-02
6.34869695e-01 7.27500975e-01 -4.91373509e-01 6.11706913e-01
-3.77523154e-01 8.90024483e-01 -6.96579218e-01 4.44302082e-01
6.96618706e-02 -3.52725148e-01 2.55086333e-01 1.19822539e-01
6.14164099e-02 -1.12262927e-01 -5.30653536e-01 9.96808231e-01
-4.15700644e-01 -1.64860152e-02 1.14910647e-01 -1.21547174e+00
7.05036461e-01 5.24576962e-01 9.68542993e-01 -2.38348216e-01
6.57133698e-01 1.77881774e-02 8.03726912e-02 -8.07348609e-01
-3.09400648e-01 -7.35089004e-01 1.20086566e-01 3.88927639e-01
-2.65195727e-01 -5.55471703e-02 -3.97087067e-01 -1.58689246e-01
1.29225707e+00 1.54118657e-01 5.68438888e-01 -3.04295987e-01
2.09453478e-01 -2.30252743e-01 9.24114227e-01 8.55122566e-01
-7.07832694e-01 3.51575911e-01 6.64704204e-01 -5.44539154e-01
-7.19922423e-01 -1.01404381e+00 -1.84584185e-01 5.59200883e-01
-1.49612144e-01 3.78197044e-01 -4.64728147e-01 -3.65570039e-01
4.49476570e-01 7.96095669e-01 -9.15260613e-01 -5.57585776e-01
-5.50501883e-01 -8.58516335e-01 5.60729980e-01 7.80026555e-01
-1.32166207e-01 -1.19508600e+00 -1.22539246e+00 7.54292786e-01
-2.67813820e-02 -7.31230378e-01 2.24746782e-02 6.24566615e-01
-9.31914330e-01 -1.43826616e+00 -9.97525811e-01 -7.23140985e-02
2.31184110e-01 -2.89540797e-01 1.00449967e+00 -6.18948862e-02
-5.05440891e-01 8.18430603e-01 -3.81124169e-02 -6.80046618e-01
-5.69517970e-01 -4.91014093e-01 5.99898696e-01 -1.75271109e-01
2.10415184e-01 -6.43318653e-01 -1.22048748e+00 -8.42023045e-02
-7.26824105e-01 -4.16880101e-01 3.77002299e-01 1.03351188e+00
8.11698377e-01 -2.61367887e-01 1.09749699e+00 -6.68469965e-01
9.28587079e-01 -9.66271281e-01 -4.03968245e-01 8.77578557e-02
-8.55985522e-01 2.74212837e-01 9.58107591e-01 -2.26049677e-01
-8.90181303e-01 -2.17354238e-01 2.00336576e-01 -7.74384439e-01
-4.19027537e-01 5.63164175e-01 4.04735148e-01 4.71704066e-01
6.64336324e-01 1.69717938e-01 2.83667296e-01 -1.84552655e-01
1.51086956e-01 2.30482236e-01 5.82765341e-01 -8.68844628e-01
4.90481667e-02 3.27235758e-01 3.25886041e-01 -4.49480921e-01
-7.00681627e-01 -2.00367108e-01 -1.59620970e-01 -1.53328171e-02
9.31008339e-01 -9.42367136e-01 -1.39934194e+00 2.52087474e-01
-8.02277446e-01 -6.93152845e-01 -3.15914661e-01 9.66279507e-01
-8.80975544e-01 2.57934034e-01 -9.07781363e-01 -9.78874803e-01
-6.21582687e-01 -9.97439265e-01 6.78951859e-01 1.84472963e-01
-3.50233257e-01 -1.36982059e+00 6.84763193e-01 -7.91122168e-02
5.99888980e-01 8.07864368e-01 1.15502727e+00 -8.97025466e-01
-1.91180676e-01 7.75831789e-02 1.56169847e-01 6.18631661e-01
2.50959039e-01 2.99248192e-02 -5.03254473e-01 -6.58086687e-02
2.21678793e-01 -4.32639629e-01 8.57620418e-01 8.38388503e-01
1.22843385e+00 -3.12198579e-01 -6.32191226e-02 5.72096109e-01
1.33182621e+00 3.78467917e-01 1.60640940e-01 5.46147600e-02
3.74574840e-01 6.73290014e-01 2.24910513e-01 1.18320990e+00
2.99196184e-01 -1.65032864e-01 6.81859910e-01 8.71279463e-02
4.89555955e-01 -9.27623957e-02 2.05015212e-01 5.54349005e-01
4.86795371e-03 -3.49659562e-01 -9.81037617e-01 3.83959115e-01
-1.73501396e+00 -9.39359605e-01 3.66973162e-01 2.29458022e+00
9.79291618e-01 -2.87774175e-01 4.53517539e-04 -4.07137275e-01
5.28670132e-01 -3.40287477e-01 -1.11327362e+00 -6.08585596e-01
-3.85041977e-03 3.28308642e-01 3.80347759e-01 3.58233809e-01
-8.68465543e-01 4.52102572e-01 6.82181215e+00 -2.97604322e-01
-1.38843644e+00 -5.55195749e-01 7.18379974e-01 -7.60768130e-02
-1.51627570e-01 -2.10080177e-01 -2.21361339e-01 3.71072888e-01
1.25937760e+00 -3.42312455e-01 6.52030051e-01 5.52710772e-01
7.38706529e-01 9.02025849e-02 -1.23507059e+00 6.92952693e-01
-2.85662979e-01 -1.00105083e+00 -2.96186864e-01 -3.30511659e-01
4.81244028e-01 1.61223292e-01 7.64837041e-02 3.54850560e-01
7.98248589e-01 -1.18178022e+00 6.02832101e-02 1.02645302e+00
5.48861563e-01 -8.07442784e-01 8.22620928e-01 3.36714089e-01
-4.31453764e-01 -3.62810165e-01 -2.32452512e-01 -6.20174455e-03
1.12952299e-01 7.38642871e-01 -9.63558316e-01 1.91460907e-01
2.79144645e-01 6.64968967e-01 1.75780848e-01 9.28879201e-01
-2.93323994e-01 7.84211636e-01 -3.16640913e-01 -3.99755687e-02
7.11720064e-03 -1.91819686e-02 5.24593711e-01 9.73431766e-01
1.75217971e-01 4.67652291e-01 3.40423018e-01 9.15019393e-01
1.23822652e-01 2.85199434e-02 -7.15318382e-01 -2.37923026e-01
3.47839832e-01 9.27475691e-01 -2.30374217e-01 -3.99433672e-01
2.16786072e-01 6.41464114e-01 1.00541309e-01 5.03538191e-01
-6.52585328e-01 -1.73997711e-02 8.48080158e-01 -2.35690385e-01
-4.73576747e-02 -8.13189521e-03 -2.36944914e-01 -1.23857403e+00
-4.58563745e-01 -9.05586600e-01 5.99717259e-01 -4.52357709e-01
-1.41038549e+00 2.70775884e-01 -1.76604256e-01 -8.14199448e-01
-5.89564025e-01 -5.11942804e-01 -4.95461613e-01 9.50328708e-01
-1.77549386e+00 -3.21201175e-01 5.46993576e-02 3.70962530e-01
9.75490436e-02 1.22625686e-01 1.20726550e+00 -2.70888209e-01
-9.16441679e-01 1.61537990e-01 1.64319724e-01 -8.88123289e-02
7.70700634e-01 -1.22583914e+00 -2.56997049e-01 3.19925696e-01
-8.93638551e-01 9.93592262e-01 8.87904108e-01 -8.10795188e-01
-1.50592446e+00 -1.25260425e+00 2.51037002e-01 -4.62930799e-01
8.18097174e-01 3.48155081e-01 -1.15788269e+00 3.79421026e-01
5.12475818e-02 -4.46376204e-03 9.84375954e-01 -2.22293988e-01
-1.01834632e-01 1.76586360e-01 -1.24382830e+00 4.70608920e-01
3.91582996e-01 -1.66649535e-01 -6.53531730e-01 2.34579787e-01
8.02302599e-01 -2.16618657e-01 -1.21049833e+00 7.60729730e-01
5.28877974e-01 -6.61279559e-01 7.41152346e-01 -1.24616241e+00
6.12419724e-01 1.77600645e-02 7.67676309e-02 -1.71024799e+00
-4.13592219e-01 -8.11065257e-01 -4.32143122e-01 4.53013748e-01
4.37449813e-02 -9.97359991e-01 3.70957226e-01 9.36239600e-01
-1.16960891e-02 -1.21148455e+00 -5.29207230e-01 -5.06789327e-01
4.87125307e-01 -5.78856915e-02 5.18831611e-01 9.45270121e-01
2.47484922e-01 -1.62486225e-01 -4.79016513e-01 1.82942569e-01
6.83894217e-01 -1.60899665e-02 2.10636005e-01 -1.14634919e+00
-5.65653086e-01 -6.04841948e-01 -1.55253697e-03 -3.52563202e-01
2.13892013e-01 -5.68098426e-01 2.05192849e-01 -1.35933137e+00
1.73287928e-01 -3.19425881e-01 -1.08167064e+00 5.47395825e-01
-3.88469636e-01 -5.88709831e-01 -1.68521449e-01 -3.75942320e-01
-2.11942777e-01 8.48234296e-01 9.87684727e-01 1.36141419e-01
-5.08848906e-01 -1.42621100e-01 -1.01373887e+00 6.32882178e-01
1.16510594e+00 -4.99627411e-01 -3.77700776e-01 4.26265821e-02
2.73323745e-01 7.41696656e-01 4.65829194e-01 -7.65066981e-01
-3.81597988e-02 -9.40335572e-01 5.37586927e-01 -1.20302714e-01
-1.80065826e-01 -8.49862337e-01 6.97238818e-02 1.06205380e+00
-6.36825025e-01 -3.43817733e-02 4.96026993e-01 9.52446103e-01
2.17522055e-01 8.84902477e-02 9.06435549e-01 -2.22723544e-01
-1.57799691e-01 6.78958297e-01 -7.65034914e-01 4.13467556e-01
1.02105820e+00 4.41844791e-01 -1.61457896e-01 -4.21772480e-01
-9.39366281e-01 7.51485169e-01 2.85423309e-01 1.89301997e-01
7.18745470e-01 -7.90455580e-01 -1.00042689e+00 -1.28724545e-01
-1.59596980e-01 -2.59784311e-02 6.01410627e-01 8.69308233e-01
-6.00817025e-01 4.45299178e-01 -7.21022859e-02 -3.03134173e-01
-4.72247660e-01 8.17336082e-01 8.25421035e-01 -1.73272789e-01
-6.96601033e-01 4.82278824e-01 3.22589755e-01 -2.80439198e-01
2.16709599e-01 -3.51358175e-01 -1.42726690e-01 -1.67558625e-01
5.62523186e-01 5.13325691e-01 -2.05001473e-01 1.36442557e-01
-4.25553828e-01 1.19208157e-01 1.38695240e-01 1.80826142e-01
1.42504108e+00 -8.91103223e-02 -2.65075713e-02 5.82426012e-01
7.87794828e-01 -3.47161442e-01 -1.50405514e+00 -6.02745377e-02
-3.64110380e-01 3.73900868e-02 -8.74203891e-02 -1.27894306e+00
-9.44492936e-01 1.08732927e+00 4.74440932e-01 -1.19741350e-01
9.99875665e-01 -3.93937618e-01 8.46087396e-01 6.67458892e-01
2.88240492e-01 -7.81237483e-01 -1.13955423e-01 4.62872624e-01
9.88595009e-01 -1.14078450e+00 -1.52841717e-01 4.06609416e-01
-8.40148449e-01 1.17378175e+00 3.85220081e-01 -2.49400869e-01
7.77495146e-01 2.88345993e-01 3.78845543e-01 -5.22184521e-02
-1.30438054e+00 1.32311925e-01 -2.82271087e-01 6.44512773e-01
1.91354215e-01 4.61582005e-01 -1.35153597e-02 8.74943018e-01
2.66260147e-01 2.63803422e-01 6.20518684e-01 6.88675761e-01
-5.95076680e-01 -7.82033443e-01 -1.86521515e-01 5.95985413e-01
-6.37934923e-01 -2.51997083e-01 -5.16936406e-02 3.18498552e-01
-2.62031317e-01 7.26183057e-01 -3.52870643e-01 9.82344989e-03
2.23116919e-01 4.64435548e-01 3.49395633e-01 -5.00743687e-01
-6.70747459e-01 -1.29492536e-01 -4.00781184e-01 -5.29376328e-01
1.01132229e-01 -7.50460804e-01 -1.68003178e+00 -1.79031231e-02
4.56956439e-02 8.52072686e-02 5.99921525e-01 7.33843505e-01
9.07422721e-01 7.99095333e-01 7.83627808e-01 -3.91824722e-01
-1.25258732e+00 -6.60010457e-01 -5.64672232e-01 1.96054816e-01
8.49890172e-01 -6.89299583e-01 -6.32785916e-01 -1.64450511e-01] | [4.011142253875732, 2.7374656200408936] |
fee78bbd-1f2b-48aa-987c-df963a371ab8 | debiased-learning-from-naturally-imbalanced | 2201.01490 | null | https://arxiv.org/abs/2201.01490v2 | https://arxiv.org/pdf/2201.01490v2.pdf | Debiased Learning from Naturally Imbalanced Pseudo-Labels | Pseudo-labels are confident predictions made on unlabeled target data by a classifier trained on labeled source data. They are widely used for adapting a model to unlabeled data, e.g., in a semi-supervised learning setting. Our key insight is that pseudo-labels are naturally imbalanced due to intrinsic data similarity, even when a model is trained on balanced source data and evaluated on balanced target data. If we address this previously unknown imbalanced classification problem arising from pseudo-labels instead of ground-truth training labels, we could remove model biases towards false majorities created by pseudo-labels. We propose a novel and effective debiased learning method with pseudo-labels, based on counterfactual reasoning and adaptive margins: The former removes the classifier response bias, whereas the latter adjusts the margin of each class according to the imbalance of pseudo-labels. Validated by extensive experimentation, our simple debiased learning delivers significant accuracy gains over the state-of-the-art on ImageNet-1K: 26% for semi-supervised learning with 0.2% annotations and 9% for zero-shot learning. Our code is available at: https://github.com/frank-xwang/debiased-pseudo-labeling. | ['Stella X. Yu', 'Long Lian', 'Zhirong Wu', 'Xudong Wang'] | 2022-01-05 | null | http://openaccess.thecvf.com//content/CVPR2022/html/Wang_Debiased_Learning_From_Naturally_Imbalanced_Pseudo-Labels_CVPR_2022_paper.html | http://openaccess.thecvf.com//content/CVPR2022/papers/Wang_Debiased_Learning_From_Naturally_Imbalanced_Pseudo-Labels_CVPR_2022_paper.pdf | cvpr-2022-1 | ['semi-supervised-image-classification'] | ['computer-vision'] | [ 4.20355469e-01 6.80236220e-01 -9.62696731e-01 -8.29918325e-01
-1.03658926e+00 -5.15333593e-01 4.88041729e-01 2.35132948e-01
-2.32551366e-01 1.02986383e+00 2.31162965e-01 -1.52906477e-01
2.89565772e-01 -4.45300788e-01 -9.37841356e-01 -7.33672082e-01
4.29634333e-01 7.26803184e-01 1.56837478e-02 8.19192603e-02
5.85286170e-02 -2.39667147e-01 -1.46523702e+00 4.35092986e-01
9.57693398e-01 1.16156554e+00 -6.31688595e-01 3.00345957e-01
4.54526618e-02 1.28554404e+00 -5.25150061e-01 -7.24286020e-01
5.01631677e-01 -5.36012292e-01 -8.13637257e-01 2.30601683e-01
5.27323604e-01 -2.47964039e-01 -1.53363690e-01 1.27609086e+00
4.04552996e-01 -3.03534597e-01 1.01606119e+00 -1.75353932e+00
-8.40448320e-01 9.72741008e-01 -8.09994996e-01 -6.68279901e-02
-2.87296891e-01 1.88042387e-01 1.08520412e+00 -8.79356503e-01
5.95187724e-01 1.01506948e+00 7.38032460e-01 8.74776006e-01
-1.54754782e+00 -1.17719471e+00 9.82222855e-02 5.03646612e-01
-1.20315230e+00 -6.91694379e-01 5.98089874e-01 -5.71806073e-01
2.74810731e-01 7.03550428e-02 2.11255744e-01 1.36442590e+00
3.26033905e-02 8.55932176e-01 1.25767064e+00 -5.77409565e-01
6.44799232e-01 4.31858122e-01 4.83851463e-01 3.70060712e-01
4.14427370e-01 3.11381876e-01 -6.26905859e-01 -2.50207573e-01
-1.29923284e-01 -8.13104510e-02 -1.42840043e-01 -6.38015151e-01
-1.12929213e+00 8.61938298e-01 5.14084399e-01 -2.46427715e-01
-9.92525145e-02 -1.53580233e-02 5.78075290e-01 3.60619187e-01
1.01804841e+00 3.35358262e-01 -7.54747808e-01 2.77780622e-01
-8.77757847e-01 -4.65445668e-02 7.09885776e-01 8.16699028e-01
8.21354330e-01 -1.92288220e-01 -4.12633330e-01 9.05576289e-01
1.45788968e-01 4.90588963e-01 8.40023637e-01 -8.06293547e-01
2.62673140e-01 5.57601869e-01 2.31079951e-01 -5.07194459e-01
-2.65026242e-01 -6.43638492e-01 -9.31828976e-01 2.18817443e-01
7.16452122e-01 -2.54907340e-01 -1.31245303e+00 1.95033348e+00
5.59345782e-01 1.93723813e-01 9.76250991e-02 8.53317320e-01
5.74583828e-01 2.67597705e-01 1.43158630e-01 -3.08458030e-01
1.04238558e+00 -1.22337091e+00 -7.50649869e-01 -4.92178679e-01
9.84862864e-01 -4.63090897e-01 9.56244349e-01 3.35154444e-01
-5.45943022e-01 -3.54388297e-01 -1.07725275e+00 2.76422620e-01
-3.02293181e-01 8.72586817e-02 2.20574737e-01 8.03624272e-01
-6.19736373e-01 5.53769767e-01 -5.26701212e-01 9.16265920e-02
8.77649188e-01 1.97496787e-01 -2.52178669e-01 -1.67395502e-01
-1.32145262e+00 9.43684578e-01 4.19421673e-01 -2.80895293e-01
-1.00529861e+00 -8.57497513e-01 -7.69834757e-01 -8.29642639e-02
6.03110492e-01 -1.20407045e-01 1.55286622e+00 -1.49473798e+00
-1.14478862e+00 1.35161340e+00 3.26477885e-02 -7.22461820e-01
9.34906483e-01 -2.41833068e-02 -3.62112731e-01 -3.32329333e-01
3.07861120e-01 8.10365081e-01 1.07465458e+00 -1.32491207e+00
-5.03874004e-01 -5.67036271e-01 -4.33631271e-01 5.57059273e-02
-2.45384052e-01 -5.34780443e-01 2.17953429e-01 -6.24892294e-01
1.22831091e-01 -1.19628358e+00 -1.65966362e-01 -3.66486609e-03
-8.70247781e-01 -1.18314959e-01 5.50332248e-01 -4.28777605e-01
1.01299214e+00 -2.02061796e+00 -3.73973519e-01 1.85593276e-03
3.94008934e-01 5.20840406e-01 -4.64331731e-02 -1.08625390e-01
-6.62338674e-01 2.44397387e-01 -3.87150735e-01 -2.23891437e-01
5.55924289e-02 -1.66271999e-01 -4.38111305e-01 7.89198577e-01
1.63039744e-01 8.85106206e-01 -9.98695552e-01 -3.70593965e-01
1.71545774e-01 -5.51770162e-03 -2.71303594e-01 2.39581242e-01
-1.45201027e-01 3.60235840e-01 6.63542375e-02 6.97273672e-01
9.03058529e-01 -4.92821485e-01 1.93306729e-01 -1.87098101e-01
5.35668135e-01 9.15947855e-02 -1.08353007e+00 1.14325356e+00
-2.49335498e-01 4.67556864e-01 -3.67917717e-01 -1.14115977e+00
9.25519884e-01 2.27279931e-01 2.03891739e-01 -6.00834787e-01
4.11893100e-01 4.68521178e-01 -1.10924229e-01 -2.27441832e-01
-4.50062267e-02 -4.13844049e-01 -1.03426076e-01 5.46213925e-01
1.56826884e-01 -5.42641245e-02 -8.97958055e-02 2.27218598e-01
9.48944807e-01 -3.16421948e-02 5.51498115e-01 -2.39125296e-01
2.49056369e-01 2.69326895e-01 8.26660275e-01 7.03647435e-01
-6.36364996e-01 5.91638684e-01 5.72739899e-01 -6.36060357e-01
-1.13286066e+00 -8.89348745e-01 -4.42602664e-01 1.14046109e+00
1.74561486e-01 7.05893785e-02 -6.66788757e-01 -1.30378187e+00
2.07819626e-01 9.45758224e-01 -9.84015346e-01 -6.74418211e-01
6.83718398e-02 -1.01694810e+00 4.40534294e-01 3.47675741e-01
2.85303771e-01 -7.16331601e-01 -3.12345028e-01 1.11166760e-01
-2.22394720e-01 -8.13068390e-01 -4.93718624e-01 7.46978641e-01
-6.50442064e-01 -1.29260731e+00 -6.12585306e-01 -4.86478508e-01
9.08265114e-01 1.49354205e-01 1.17549646e+00 -1.80163100e-01
-1.68346222e-02 -2.97012866e-01 -4.59262967e-01 -6.05021417e-01
-8.01222265e-01 1.26681894e-01 1.99780121e-01 2.19920158e-01
7.49838889e-01 -3.24991077e-01 -5.86185277e-01 6.32421970e-01
-8.93947363e-01 1.91943318e-01 4.41938192e-01 1.32039106e+00
6.09550953e-01 -2.86445826e-01 1.08624172e+00 -1.50862372e+00
1.11266419e-01 -8.25229466e-01 -4.62819934e-01 3.11423928e-01
-1.13187540e+00 2.98074335e-01 6.27109885e-01 -7.14951873e-01
-1.17413449e+00 1.91268891e-01 9.27472711e-02 -5.26680529e-01
-2.24254265e-01 -2.80672293e-02 -8.30153376e-02 1.54772744e-01
1.26663506e+00 -3.58384758e-01 -3.24377045e-02 -1.63246080e-01
5.26081622e-01 1.16557002e+00 4.74703431e-01 -2.85883427e-01
6.46438479e-01 6.37439072e-01 -2.29144856e-01 -2.00335886e-02
-1.76591778e+00 -4.32325363e-01 -5.61271608e-01 -1.67894959e-01
4.01249886e-01 -1.17219961e+00 -2.37262115e-01 8.07843864e-01
-6.15964770e-01 -7.27920473e-01 -5.81403792e-01 3.20456147e-01
-4.06491846e-01 -3.66861448e-02 -4.83906090e-01 -6.04174435e-01
-3.45478088e-01 -8.92343521e-01 8.79298449e-01 1.23843096e-01
-3.84820193e-01 -8.36148381e-01 1.55836701e-01 6.40250266e-01
2.20976517e-01 2.53464580e-01 6.90825880e-01 -1.29931378e+00
3.21444124e-02 -3.64074290e-01 -3.97349745e-01 6.44755542e-01
1.77855164e-01 -2.27756992e-01 -1.36978507e+00 -2.50804484e-01
-6.93577453e-02 -1.18095362e+00 9.72360551e-01 3.91336530e-01
1.21037817e+00 -5.34160554e-01 -2.42365688e-01 3.35777670e-01
1.36370397e+00 -1.88866988e-01 3.06052238e-01 2.12194741e-01
5.99327743e-01 6.66350186e-01 8.22229564e-01 5.22867739e-01
3.81320775e-01 4.92267907e-01 6.73936427e-01 -7.47811189e-03
-2.11432725e-01 -4.51081783e-01 4.88170190e-03 3.37573290e-01
7.74038196e-01 -1.68994918e-01 -1.06000590e+00 7.23334074e-01
-1.89414108e+00 -5.78530729e-01 -2.36238033e-01 2.49018431e+00
1.28491449e+00 3.55827451e-01 -1.37609795e-01 2.52395988e-01
1.15588272e+00 6.78827763e-02 -1.27227199e+00 -1.21088829e-02
-1.46795884e-01 -1.09380193e-01 9.18249726e-01 4.84677315e-01
-1.23388863e+00 8.02916944e-01 5.39431763e+00 1.09699059e+00
-1.08893621e+00 5.62699020e-01 1.59360003e+00 -2.74511725e-01
-1.68583542e-01 -9.71476361e-02 -8.09647202e-01 6.32148921e-01
9.18476284e-01 -2.65820086e-01 4.23369519e-02 1.09083283e+00
-1.93601683e-01 -2.35779300e-01 -1.29006636e+00 8.66979420e-01
2.62560159e-01 -1.14710617e+00 -2.52627790e-01 -1.42340124e-01
1.32471251e+00 3.28100473e-01 1.49748409e-02 5.21745503e-01
7.71018028e-01 -8.96438539e-01 1.04892778e+00 8.34866241e-02
1.08442307e+00 -4.71235633e-01 9.78374660e-01 5.22031188e-01
-4.41591680e-01 -1.45678028e-01 -2.85917759e-01 -1.35423154e-01
-1.97484925e-01 1.16167343e+00 -8.98806393e-01 -7.11718127e-02
4.73243833e-01 6.39931738e-01 -5.53578198e-01 7.49976039e-01
-5.17899394e-01 9.24452603e-01 -2.88674906e-02 2.62443155e-01
-1.31076112e-01 3.19936812e-01 1.46225646e-01 9.10862207e-01
-9.76208225e-02 -1.78051725e-01 -8.65328219e-03 5.86277604e-01
-4.86022949e-01 -6.95934473e-03 -3.46591145e-01 3.98902267e-01
5.95655560e-01 1.14060712e+00 -6.80652261e-01 -6.77546084e-01
8.35371315e-02 6.90084755e-01 5.26259363e-01 2.26534128e-01
-9.51165378e-01 -1.02027550e-01 3.56201768e-01 4.01483960e-02
-9.62984189e-03 7.92005122e-01 -6.90675259e-01 -1.40385294e+00
-3.25438827e-02 -9.21303630e-01 5.49644411e-01 -6.57923043e-01
-1.66474128e+00 3.91247272e-01 -1.59547418e-01 -1.37316442e+00
-1.98070258e-01 -4.01914060e-01 -2.44380996e-01 5.16764820e-01
-1.60525763e+00 -8.06809843e-01 -4.37355697e-01 1.74933583e-01
6.35318637e-01 1.08477876e-01 7.06113756e-01 6.32988140e-02
-6.20165646e-01 8.66901696e-01 3.49253744e-01 1.03397891e-01
1.35665810e+00 -1.29216528e+00 3.48552763e-01 7.29672194e-01
3.36616556e-03 -1.55156761e-01 8.04256916e-01 -5.89519858e-01
-5.18333554e-01 -1.34859383e+00 9.14278865e-01 -4.97940719e-01
5.29866874e-01 -3.11489791e-01 -9.66723144e-01 7.12975860e-01
-1.26297638e-01 5.96632719e-01 1.02485311e+00 -6.29561320e-02
-9.22961891e-01 -2.90436804e-01 -1.51312387e+00 3.17760527e-01
9.88313198e-01 -2.07927629e-01 -5.61713636e-01 6.82069659e-01
7.47783840e-01 -5.74627817e-01 -4.43400502e-01 5.89269996e-01
4.67093527e-01 -1.01185906e+00 5.79560816e-01 -6.98878109e-01
6.50324404e-01 -1.82907462e-01 -4.48932908e-02 -1.74796689e+00
-2.26426691e-01 -8.97864550e-02 -1.54342383e-01 1.16868901e+00
7.03214645e-01 -6.67092264e-01 1.03044367e+00 7.84138501e-01
2.75336474e-01 -7.60477841e-01 -9.21142578e-01 -6.64324284e-01
3.00197806e-02 -3.75352681e-01 5.46968281e-01 1.37198675e+00
7.27273822e-02 3.62096399e-01 -6.39314651e-01 -1.24428540e-01
9.65107858e-01 -1.69994924e-02 5.94518900e-01 -1.27036023e+00
-9.63907763e-02 -1.19862735e-01 -1.08443327e-01 -5.84017158e-01
5.43388665e-01 -9.42807913e-01 2.70700991e-01 -9.70461130e-01
3.73755783e-01 -6.97718918e-01 -4.36338305e-01 8.84988368e-01
-5.13313055e-01 8.10980856e-01 -9.16376524e-03 4.13943887e-01
-7.48551428e-01 5.79736590e-01 9.22480404e-01 -3.25266480e-01
-3.79758067e-02 1.23774290e-01 -9.78362441e-01 7.93793917e-01
1.02229488e+00 -1.05218101e+00 -3.19969594e-01 -1.06285304e-01
2.07230449e-01 -2.99726129e-01 1.93352833e-01 -7.98288167e-01
6.67991042e-02 -1.63279101e-01 3.54784727e-01 -1.74065799e-01
-9.83954296e-02 -6.61473989e-01 4.21596542e-02 6.12058520e-01
-8.73201132e-01 -6.53078556e-01 -1.88290074e-01 7.48243809e-01
-3.43516953e-02 -3.70836079e-01 1.21014380e+00 -1.00042947e-01
-4.63231295e-01 2.03042835e-01 -6.61938917e-03 5.57617545e-01
1.24325728e+00 1.93938181e-01 -7.17055142e-01 -4.95403022e-01
-7.24372745e-01 3.37392867e-01 5.29677272e-01 3.91869992e-01
8.14297870e-02 -1.41584766e+00 -8.79956067e-01 1.28763080e-01
6.49899662e-01 2.51639653e-02 3.43281835e-01 6.01708949e-01
-2.57138554e-02 1.63022354e-01 -2.33343571e-01 -6.34165823e-01
-1.03142333e+00 6.48685694e-01 4.28950995e-01 -3.87066007e-01
4.46062051e-02 9.34553206e-01 2.35569105e-01 -7.48908579e-01
3.64601403e-01 -4.27143089e-02 1.85877562e-01 3.84161144e-01
5.49490333e-01 4.83650416e-01 2.92247415e-01 -5.70703864e-01
-2.59581566e-01 1.74910828e-01 -2.30163962e-01 8.14861953e-02
1.05621243e+00 -1.92989096e-01 1.80212110e-01 7.24619567e-01
1.11945522e+00 -3.35997701e-01 -1.49068666e+00 -6.62651002e-01
1.16837136e-02 -5.14985561e-01 1.07343830e-02 -1.17729688e+00
-9.78969812e-01 6.17321789e-01 6.76183939e-01 1.97600685e-02
1.03409171e+00 2.04229355e-02 3.44424307e-01 1.37085706e-01
3.13159496e-01 -1.16698790e+00 2.48373449e-01 1.56828105e-01
4.66111213e-01 -1.92424250e+00 -2.06014872e-01 -2.84353882e-01
-9.27870452e-01 5.53964198e-01 8.73907566e-01 -1.54984836e-03
6.75295293e-01 5.52757159e-02 4.59861875e-01 1.71451941e-01
-9.37020361e-01 4.98400815e-02 3.12577281e-03 5.48518836e-01
1.70757577e-01 3.63886178e-01 -2.44712144e-01 5.62078416e-01
-2.88916193e-02 1.80275634e-01 7.03469813e-01 5.80155909e-01
-2.69942880e-01 -9.61907208e-01 -4.44531024e-01 9.25179005e-01
-5.00794590e-01 -7.96030238e-02 -2.82888085e-01 3.29747468e-01
3.53654653e-01 9.79824603e-01 -6.47747219e-02 -3.94171923e-01
8.24584886e-02 4.49543566e-01 -3.77944596e-02 -7.66499937e-01
-2.84220397e-01 -3.38976026e-01 9.16960649e-03 -3.63341153e-01
-5.43434322e-01 -4.76177126e-01 -8.57757926e-01 -1.73647553e-01
-7.04726160e-01 2.09058419e-01 5.42258084e-01 9.21731889e-01
3.95855367e-01 2.80366957e-01 9.32032228e-01 -6.48341060e-01
-1.09273469e+00 -1.22423565e+00 -6.05886877e-01 7.69761026e-01
4.74330664e-01 -6.71510994e-01 -9.03395474e-01 2.15314180e-01] | [9.41135311126709, 3.819347620010376] |
6f5fd993-d877-4205-a235-b8d51764ebab | may-the-force-be-with-your-copy-mechanism-1 | 2112.10360 | null | https://arxiv.org/abs/2112.10360v1 | https://arxiv.org/pdf/2112.10360v1.pdf | May the Force Be with Your Copy Mechanism: Enhanced Supervised-Copy Method for Natural Language Generation | Recent neural sequence-to-sequence models with a copy mechanism have achieved remarkable progress in various text generation tasks. These models addressed out-of-vocabulary problems and facilitated the generation of rare words. However, the identification of the word which needs to be copied is difficult, as observed by prior copy models, which suffer from incorrect generation and lacking abstractness. In this paper, we propose a novel supervised approach of a copy network that helps the model decide which words need to be copied and which need to be generated. Specifically, we re-define the objective function, which leverages source sequences and target vocabularies as guidance for copying. The experimental results on data-to-text generation and abstractive summarization tasks verify that our approach enhances the copying quality and improves the degree of abstractness. | ['Yeonsoo Lee', 'Hyungjong Noh', 'Jeong-in Hwang', 'Sanghyuk Choi'] | 2021-12-20 | may-the-force-be-with-your-copy-mechanism | https://arxiv.org/abs/2112.10360 | https://arxiv.org/pdf/2112.10360.pdf | arxiv-2021-12 | ['data-to-text-generation'] | ['natural-language-processing'] | [ 7.07693994e-01 2.39743322e-01 -3.65085602e-01 -2.11625323e-01
-6.15747809e-01 -5.09889960e-01 8.56546462e-01 1.80029646e-01
-2.40120023e-01 1.07763708e+00 8.21169257e-01 -9.22871009e-02
8.87894779e-02 -8.34888816e-01 -7.73647189e-01 -5.35359740e-01
5.49995899e-01 5.68925619e-01 -1.11308672e-01 -5.66128790e-01
6.49674118e-01 -8.92042965e-02 -1.43870616e+00 2.48668104e-01
1.37915492e+00 4.09488440e-01 5.74042320e-01 5.95742106e-01
-5.11139452e-01 5.51732838e-01 -1.08057547e+00 -3.74872237e-01
4.94295210e-02 -1.08315647e+00 -6.93059683e-01 -1.21430129e-01
4.90257829e-01 -6.03220701e-01 -4.03074622e-01 1.03502095e+00
6.90004349e-01 1.07178673e-01 1.00376904e+00 -1.05144787e+00
-1.14319682e+00 1.27366459e+00 -2.74355024e-01 2.01328412e-01
4.45611179e-01 1.72788426e-01 1.20422614e+00 -5.94633698e-01
7.72705019e-01 1.19693744e+00 2.32255533e-01 8.66789997e-01
-1.07776368e+00 -8.02423000e-01 1.90105885e-01 -1.20444886e-01
-1.13909709e+00 -6.23330712e-01 8.29545200e-01 -2.22388804e-01
1.14300418e+00 1.90701857e-01 7.79668808e-01 1.39183652e+00
1.86855569e-01 1.03969109e+00 5.20163476e-01 -5.64613342e-01
2.00438648e-01 -3.55427533e-01 -3.24207135e-02 4.98179197e-01
4.58552659e-01 -2.68028043e-02 -7.51230776e-01 -2.97513511e-02
6.97427630e-01 -2.62231469e-01 -4.81225103e-01 1.38534054e-01
-1.21606374e+00 9.14520800e-01 1.07649460e-01 2.48216704e-01
-4.54643428e-01 1.13143310e-01 4.38551158e-01 1.26180977e-01
4.72086221e-01 7.52877772e-01 -8.76724422e-02 -1.54463679e-01
-1.33045638e+00 5.22550106e-01 7.47694254e-01 1.37942135e+00
3.57581019e-01 1.35078058e-01 -7.29398072e-01 8.79196942e-01
1.43966317e-01 6.05261087e-01 9.38160062e-01 -5.93570232e-01
8.70533228e-01 7.20665097e-01 8.79828185e-02 -8.69655073e-01
3.19261616e-03 -4.19455409e-01 -1.23636377e+00 -4.52067912e-01
-4.71776985e-02 -1.01759531e-01 -8.62180948e-01 1.90058088e+00
-1.77327871e-01 2.62872428e-02 1.18884332e-01 7.36834824e-01
7.23570943e-01 8.80647063e-01 -9.59019810e-02 -3.89171094e-01
1.10424995e+00 -9.62521791e-01 -9.88278508e-01 -3.61375034e-01
6.12481475e-01 -6.74716353e-01 1.04982328e+00 8.49174857e-02
-1.32574165e+00 -5.68559170e-01 -1.21738541e+00 -5.91161288e-02
-9.00289491e-02 3.26438189e-01 1.93131983e-01 2.99407661e-01
-9.13207531e-01 7.43020773e-01 -3.75580519e-01 -1.19688906e-01
4.17950183e-01 -5.03993407e-03 2.01222580e-02 1.24609321e-01
-1.46608710e+00 6.52005911e-01 9.63815033e-01 -1.13871478e-01
-8.49937141e-01 -6.63358331e-01 -8.49274039e-01 3.13179076e-01
2.72046030e-01 -1.15075064e+00 1.30561018e+00 -1.06992352e+00
-1.45255637e+00 5.23867011e-01 -1.97060987e-01 -5.26915193e-01
4.50694382e-01 -2.27654874e-01 -1.95932105e-01 8.95362422e-02
2.42926463e-01 8.30171943e-01 1.04740059e+00 -9.36743557e-01
-5.89907587e-01 -6.27457798e-02 -1.25725448e-01 4.62245762e-01
-4.04004097e-01 -2.91811347e-01 -3.35144967e-01 -1.33294809e+00
-4.01594341e-01 -6.51835918e-01 6.73277080e-02 -3.25437367e-01
-6.65890515e-01 -5.23283958e-01 2.45493293e-01 -8.25534701e-01
1.80040920e+00 -1.70959151e+00 4.39111024e-01 -1.56429395e-01
2.24471241e-01 4.56538349e-01 -3.78080875e-01 9.09899414e-01
2.81811386e-01 4.55260813e-01 -3.96628588e-01 -2.08625704e-01
1.52107894e-01 -2.09469236e-02 -7.98375070e-01 -1.65649474e-01
3.12938988e-01 1.05830228e+00 -1.00026679e+00 -5.50575137e-01
-2.95292854e-01 1.71601400e-01 -5.86745381e-01 5.91246545e-01
-6.17762268e-01 -7.35916616e-03 -5.18482268e-01 1.75695822e-01
3.57230246e-01 -3.53624463e-01 -2.02299356e-02 1.04817070e-01
1.44743159e-01 6.21480763e-01 -8.67395580e-01 1.78984034e+00
-4.45582360e-01 4.66290355e-01 -3.00775826e-01 -6.31714642e-01
9.10985470e-01 2.81977654e-01 -1.00160435e-01 -6.19355559e-01
1.09605804e-01 2.81952173e-01 -8.18340108e-02 -4.41763192e-01
1.00409234e+00 -1.89590693e-01 -6.87823221e-02 8.39577675e-01
-6.94335923e-02 -4.28146362e-01 7.12057114e-01 6.07726455e-01
8.76464546e-01 2.31946871e-01 5.66628337e-01 -4.91934158e-02
4.98087525e-01 8.83211289e-03 3.30958933e-01 8.92244995e-01
3.62011224e-01 7.03482687e-01 5.08925438e-01 1.22754402e-01
-1.27114868e+00 -8.15202594e-01 3.90866250e-01 9.42617536e-01
1.35631278e-01 -6.03090465e-01 -1.13835883e+00 -5.17698467e-01
-2.42719978e-01 1.24167097e+00 -5.25697768e-01 -5.97180307e-01
-8.19660962e-01 -3.80216390e-01 9.46837425e-01 6.12294674e-01
1.86798513e-01 -1.38249195e+00 -4.04845059e-01 5.27046263e-01
-6.84286416e-01 -6.77231729e-01 -1.35881555e+00 -2.59458899e-01
-7.71044791e-01 -6.84935749e-01 -9.73388493e-01 -8.66809309e-01
7.43816614e-01 1.79861516e-01 1.14576244e+00 3.02285701e-01
-4.82983254e-02 -3.36961858e-02 -4.55469757e-01 -5.49462616e-01
-9.32707429e-01 5.74455917e-01 -5.70281930e-02 -1.58901498e-01
1.00105673e-01 -4.40694362e-01 -4.76744413e-01 -3.20150070e-02
-1.33933258e+00 4.05872762e-01 8.13118935e-01 1.05802786e+00
4.04900223e-01 -4.00356531e-01 1.10598147e+00 -6.69497550e-01
1.44572103e+00 -3.18121135e-01 -3.85262430e-01 4.83205259e-01
-8.20627451e-01 4.69511062e-01 9.34337378e-01 -5.06586909e-01
-1.14616418e+00 -3.05299371e-01 -1.12422310e-01 -1.31501228e-01
1.20184533e-01 5.17974377e-01 -1.20596498e-01 7.20409513e-01
4.45579708e-01 8.79664123e-01 1.30687952e-01 -3.58929306e-01
5.08649349e-01 8.98029447e-01 3.14195365e-01 -4.92203414e-01
5.58604121e-01 -4.17787135e-02 -4.84903216e-01 -7.17902601e-01
-7.87547052e-01 -2.32271835e-01 -5.18811643e-01 5.56357950e-02
7.01612294e-01 -9.25499976e-01 -2.44248047e-01 5.87762177e-01
-1.54597056e+00 -2.04595655e-01 -3.56744587e-01 1.67531800e-02
-6.16626620e-01 7.08567262e-01 -4.55551088e-01 -5.83815992e-01
-1.00641429e+00 -8.66938114e-01 1.25905037e+00 2.84754544e-01
-5.56411922e-01 -8.25800419e-01 1.98869303e-01 1.99081704e-01
5.00643671e-01 -2.14738473e-01 1.23319554e+00 -6.65349483e-01
-5.02552092e-01 -9.42557976e-02 -1.46267697e-01 2.78230071e-01
1.99057877e-01 -1.91589549e-01 -4.21674550e-01 -2.75644958e-01
-2.36274034e-01 -2.69392818e-01 9.97241914e-01 2.11815208e-01
1.04772878e+00 -7.14656234e-01 -3.07873398e-01 5.51700175e-01
1.05053508e+00 8.99992883e-03 7.26070285e-01 -6.90187439e-02
5.65330982e-01 4.57585007e-01 4.39089030e-01 5.36003888e-01
3.72577071e-01 6.67761087e-01 3.25686783e-01 2.26616666e-01
-4.26165164e-01 -8.91565084e-01 4.37433869e-01 1.26185441e+00
1.72260761e-01 -9.34773386e-01 -4.42555040e-01 6.84107721e-01
-1.74044013e+00 -1.14854014e+00 9.30393785e-02 1.90535522e+00
1.41187370e+00 5.11180386e-02 -2.05134973e-01 -1.80153698e-01
8.79189968e-01 4.34000790e-01 -5.34513354e-01 -2.32273579e-01
-2.53327012e-01 1.55130133e-01 2.03998849e-01 4.67530251e-01
-4.76706415e-01 1.14256346e+00 6.23279190e+00 1.10277343e+00
-8.93056214e-01 -1.41119927e-01 3.67864847e-01 -2.82103539e-01
-7.69845068e-01 -1.62696302e-01 -1.12776995e+00 7.90754557e-01
6.80171072e-01 -6.78868294e-01 5.87930560e-01 3.65971863e-01
2.81840861e-01 1.51944071e-01 -1.17695355e+00 7.00369358e-01
5.23490131e-01 -1.62515938e+00 9.61930275e-01 -1.56709760e-01
8.80383134e-01 -2.18394473e-01 -3.44571382e-01 3.09473574e-01
3.07981670e-01 -1.14241397e+00 8.80289078e-01 6.85045123e-01
9.71960485e-01 -5.56547821e-01 5.31682134e-01 7.45229125e-01
-9.58434284e-01 1.24341801e-01 -5.24313390e-01 -1.04711642e-02
4.99060392e-01 4.10088897e-01 -9.30523694e-01 5.07039785e-01
-6.62588626e-02 6.61034584e-01 -4.06314701e-01 6.66317284e-01
-5.89146972e-01 6.71982825e-01 -1.40916565e-02 -5.79291165e-01
2.61358321e-01 -2.63722658e-01 5.85736454e-01 1.22153497e+00
5.92183828e-01 1.77185476e-01 1.30286992e-01 1.05523574e+00
-6.17652118e-01 3.33661258e-01 -6.44008577e-01 -4.33906794e-01
6.91268265e-01 7.77888715e-01 -2.90904075e-01 -5.39259434e-01
5.71107231e-02 1.13262093e+00 4.47026491e-01 3.02385360e-01
-7.10204124e-01 -7.97988117e-01 3.11947823e-01 1.76370740e-01
4.41631645e-01 -1.48933744e-02 -1.57590389e-01 -1.18872070e+00
2.42109552e-01 -9.62535143e-01 4.52744700e-02 -8.92149210e-01
-1.17911100e+00 5.16160369e-01 1.12021223e-01 -1.07535493e+00
-4.96778786e-01 -8.91490951e-02 -8.58923256e-01 9.63716209e-01
-1.51098990e+00 -8.83970201e-01 -4.15792763e-02 1.17309935e-01
1.01135504e+00 -4.18480575e-01 5.83210766e-01 -7.41021931e-02
-4.74125236e-01 7.49720156e-01 2.41572186e-01 1.98060900e-01
6.93713665e-01 -1.00871086e+00 6.86836779e-01 8.32119524e-01
-6.23094477e-02 8.74574542e-01 6.66783810e-01 -1.09143806e+00
-1.20075250e+00 -1.16417074e+00 1.28929985e+00 -2.11786956e-01
4.43444103e-01 -2.77576119e-01 -7.55506158e-01 4.46637481e-01
6.47876799e-01 -8.04355860e-01 4.58361506e-01 -4.04731482e-01
-1.58076867e-01 2.59365261e-01 -7.32401431e-01 8.89747441e-01
1.34552944e+00 -2.70792544e-01 -9.87318337e-01 2.49622583e-01
1.05708563e+00 -2.49664396e-01 -5.06874442e-01 -1.10694602e-01
3.94088358e-01 -5.33392191e-01 6.59057081e-01 -7.51353979e-01
8.89084339e-01 -1.39623225e-01 1.52373344e-01 -1.79723477e+00
-2.66773850e-01 -7.94426084e-01 -3.41183215e-01 1.43493104e+00
5.08031845e-01 -4.72093940e-01 4.90104109e-01 4.09589708e-02
-3.38305026e-01 -6.25748217e-01 -7.84831524e-01 -8.17511976e-01
3.16987872e-01 1.75631374e-01 9.55981135e-01 5.78443825e-01
7.69401491e-02 8.34099293e-01 -5.60760677e-01 -4.96560693e-01
4.03995425e-01 1.33896485e-01 6.53843939e-01 -1.08715391e+00
-1.68486863e-01 -7.94233561e-01 2.73809910e-01 -1.65856028e+00
3.46799135e-01 -1.23013854e+00 3.16251367e-01 -1.75209403e+00
2.71552294e-01 -1.31342828e-01 2.10981280e-01 2.73265421e-01
-6.56474531e-01 -2.30985835e-01 2.66245812e-01 3.33486795e-01
-4.12205070e-01 1.12106407e+00 1.39861345e+00 -4.49568987e-01
-2.40867540e-01 -6.29347786e-02 -1.03794515e+00 2.10501537e-01
8.93477619e-01 -5.58600307e-01 -5.51602185e-01 -7.28699684e-01
4.23880726e-01 1.54813752e-01 -7.72723136e-03 -5.82864344e-01
2.53177553e-01 -2.43634328e-01 1.31497189e-01 -6.65745318e-01
4.47424315e-02 -2.21120074e-01 -3.89919654e-02 5.09680033e-01
-9.64928925e-01 3.02718341e-01 -1.35699391e-01 7.81893790e-01
-8.37930366e-02 -6.91019893e-01 4.62015420e-01 -2.86889583e-01
-1.77991793e-01 2.09601313e-01 -3.25365037e-01 5.40258408e-01
7.26362705e-01 -1.25031903e-01 -3.82324576e-01 -5.60407162e-01
-8.99440721e-02 3.47420335e-01 5.50047636e-01 6.87548935e-01
7.87754714e-01 -1.41388333e+00 -1.25033438e+00 1.35050416e-01
2.82767355e-01 1.59292258e-02 -3.52256037e-02 4.16254580e-01
-3.84284556e-01 5.96713066e-01 3.51254866e-02 -2.23018050e-01
-1.00914681e+00 4.57806051e-01 2.61191260e-02 -5.86621106e-01
-5.88717222e-01 5.95800638e-01 8.12037438e-02 -2.64680386e-01
2.80917406e-01 -3.45862627e-01 -1.69047266e-01 2.11317226e-01
7.51732409e-01 4.10808891e-01 -3.59364599e-02 -4.68835115e-01
1.42524481e-01 3.01756531e-01 -4.78109986e-01 -8.66182819e-02
1.11341178e+00 -2.37848610e-01 -1.33162215e-01 9.07639936e-02
9.65865254e-01 -1.53609887e-01 -1.12463462e+00 -3.70171815e-01
-9.32296515e-02 -1.53839871e-01 -1.14561990e-01 -9.14800763e-01
-8.00350964e-01 9.27633941e-01 -5.53939268e-02 4.28985693e-02
9.27973807e-01 -1.89586610e-01 1.28453577e+00 4.51940179e-01
1.39733404e-01 -1.35745037e+00 1.87498495e-01 7.65857399e-01
1.13708246e+00 -8.50859821e-01 -5.10675646e-02 -7.73832127e-02
-7.38353610e-01 1.11705148e+00 6.54903293e-01 8.43530819e-02
1.39877588e-01 9.68287811e-02 -2.54406482e-01 -2.74175163e-02
-9.85834777e-01 4.66943393e-03 2.58794576e-01 5.67793429e-01
4.21163201e-01 -2.43988689e-02 -6.82493091e-01 6.04539216e-01
-4.46174800e-01 -1.05038090e-02 7.82296896e-01 7.47836173e-01
-6.33575082e-01 -1.01742983e+00 -1.54602289e-01 7.54030466e-01
-1.89711183e-01 -5.53703785e-01 -6.90398574e-01 2.67871022e-01
-2.51342595e-01 8.68171871e-01 6.81784330e-03 2.08810512e-02
1.67665005e-01 2.47735292e-01 3.51835817e-01 -8.52267623e-01
-7.71673441e-01 -2.29914933e-02 8.26089531e-02 -5.90116344e-02
-9.77829620e-02 -4.50866312e-01 -1.27084744e+00 -1.08258486e-01
-6.39804125e-01 2.09492624e-01 4.42781240e-01 9.25353229e-01
6.26934886e-01 6.95868492e-01 4.68021303e-01 -7.22489417e-01
-1.08620727e+00 -1.28644061e+00 -3.54603469e-01 4.41186696e-01
3.16393763e-01 -1.69630453e-01 -2.09902167e-01 2.75905222e-01] | [11.980965614318848, 9.117383003234863] |
c2e94760-9a1e-4e0b-af5e-32d15d3b9005 | deception-detection-for-the-russian-language | null | null | https://aclanthology.org/W17-7701 | https://aclanthology.org/W17-7701.pdf | Deception Detection for the Russian Language: Lexical and Syntactic Parameters | The field of automated deception detection in written texts is methodologically challenging. Different linguistic levels (lexics, syntax and semantics) are basically used for different types of English texts to reveal if they are truthful or deceptive. Such parameters as POS tags and POS tags n-grams, punctuation marks, sentiment polarity of words, psycholinguistic features, fragments of synta�tic structures are taken into consideration. The importance of different types of parameters was not compared for the Russian language before and should be investigated before moving to complex models and higher levels of linguistic processing. On the example of the Russian Deception Bank Corpus we estimate the impact of three groups of features (POS features including bigrams, sentiment and psycholinguistic features, syntax and readability features) on the successful deception detection and find out that POS features can be used for binary text classification, but the results should be double-checked and, if possible, improved. | ['Olga Litvinova', 'Dina Pisarevskaya', 'Tatiana Litvinova'] | 2017-09-01 | null | null | null | ranlp-2017-9 | ['deception-detection'] | ['miscellaneous'] | [-1.24173567e-01 -1.47700921e-01 -1.00922897e-01 -6.20715916e-01
-3.11936855e-01 -8.75366986e-01 9.64465678e-01 7.54911304e-01
-8.31175804e-01 7.45318770e-01 5.70883930e-01 -7.39659011e-01
-1.40686601e-01 -4.07943815e-01 -1.78709358e-01 -5.35727561e-01
1.24094471e-01 2.93099046e-01 4.49031740e-02 -3.22664976e-01
1.17424512e+00 8.52398813e-01 -1.49389923e+00 4.05139893e-01
9.63124633e-01 6.78211570e-01 -1.62767991e-01 6.64190888e-01
-1.47982061e-01 9.96115208e-01 -9.87468541e-01 -8.69105279e-01
-1.90693259e-01 -5.49116015e-01 -9.63354826e-01 6.30924180e-02
7.58574456e-02 -4.69311699e-02 1.66114513e-02 1.42969072e+00
3.00319672e-01 -2.07386300e-01 1.09285188e+00 -6.87757492e-01
-6.81161821e-01 6.46594524e-01 -6.94416016e-02 5.97367346e-01
6.76790833e-01 9.54280868e-02 8.12917233e-01 -7.66580939e-01
5.55820644e-01 1.29362452e+00 4.22866344e-01 1.69845223e-01
-8.03367198e-01 -4.66578513e-01 -3.76466841e-01 5.83884716e-01
-1.04080069e+00 -5.15765369e-01 4.93224144e-01 -6.00996256e-01
7.99074113e-01 2.20369220e-01 4.85149860e-01 1.39937294e+00
6.09926224e-01 3.71161520e-01 1.73730135e+00 -8.47285569e-01
2.06219405e-01 7.66284168e-01 7.03287780e-01 5.52926838e-01
5.86668372e-01 3.62812765e-02 -5.54460287e-01 -3.14138889e-01
-8.79242569e-02 -6.86028421e-01 -3.25873196e-01 2.72584379e-01
-8.01170766e-01 1.18002880e+00 -2.94232428e-01 1.09394205e+00
-1.11408822e-01 -4.88277763e-01 8.27966928e-01 6.03195012e-01
2.91846216e-01 7.26897240e-01 -4.28953588e-01 -6.16627157e-01
-8.88556302e-01 2.08377242e-02 1.07379746e+00 4.16220903e-01
4.13865507e-01 -9.25388560e-02 -1.82471424e-01 8.83608699e-01
6.99518993e-02 4.07518476e-01 1.03615022e+00 -2.55560130e-01
4.79108483e-01 6.46445155e-01 1.27965122e-01 -1.31103802e+00
-5.36511481e-01 6.33757561e-02 -3.54104847e-01 1.06056876e-01
6.79933548e-01 -6.79181963e-02 -6.73864603e-01 1.13045311e+00
-7.75697380e-02 -8.50088894e-01 1.97091922e-01 9.04097080e-01
7.37867832e-01 6.34830475e-01 1.38631076e-01 -4.49445546e-01
1.74285114e+00 -3.59916806e-01 -7.10631013e-01 -2.99146444e-01
9.53587890e-01 -8.49888206e-01 1.10285103e+00 7.48676836e-01
-1.17777252e+00 -2.18037650e-01 -9.12343085e-01 -1.47752315e-01
-7.93596387e-01 2.05865696e-01 4.14797157e-01 1.24603236e+00
-5.54192722e-01 8.31639588e-01 -3.77085179e-01 -1.86825454e-01
7.59278908e-02 1.72608912e-01 -5.05473971e-01 2.14708716e-01
-1.40975070e+00 1.56211936e+00 5.30023754e-01 1.89764559e-01
-3.74948323e-01 1.23624012e-01 -9.69183028e-01 1.65664569e-01
-8.00530165e-02 -1.04967639e-01 5.67573965e-01 -1.42303848e+00
-1.49303174e+00 1.40319502e+00 4.75574844e-02 -1.64449021e-01
4.34275001e-01 2.79018402e-01 -6.63087308e-01 1.82562932e-01
-1.81479603e-01 -2.54828691e-01 1.09083283e+00 -7.45534062e-01
-4.08518016e-01 -7.95051873e-01 -8.73954594e-02 8.56587663e-02
-2.70676851e-01 9.90685821e-01 6.54237032e-01 -5.17015100e-01
-2.55040288e-01 -6.56155705e-01 3.96444470e-01 -6.93103969e-01
-1.49531975e-01 -4.57392454e-01 1.94371998e-01 -1.11204910e+00
1.15304244e+00 -2.16419721e+00 2.88621392e-02 2.52482831e-01
3.10231764e-02 5.37674129e-01 3.27678531e-01 4.00038511e-01
-1.41832024e-01 5.58006942e-01 2.09559053e-02 -1.01998793e-02
2.34755591e-01 1.53223455e-01 1.19989224e-01 7.88010955e-01
6.19318970e-02 7.38060653e-01 -5.32419801e-01 -5.23209929e-01
1.34118706e-01 1.90976515e-01 -1.61700219e-01 -2.27596045e-01
4.30229068e-01 -1.40875757e-01 -5.73196411e-01 5.68331718e-01
4.40304369e-01 4.53463823e-01 -1.10282078e-02 2.26643115e-01
-3.42077404e-01 1.07958508e+00 -7.24847913e-01 6.98266923e-01
-4.17082667e-01 8.09806585e-01 -6.90587834e-02 -1.02322817e+00
1.03386343e+00 2.05143914e-01 -6.22810960e-01 -8.73352468e-01
7.28863180e-01 5.37141502e-01 5.47506511e-01 -7.22732365e-01
9.25764441e-01 -5.55039108e-01 -3.69251609e-01 1.92225724e-01
1.55793680e-02 -1.29431233e-01 2.43027493e-01 -1.26011923e-01
7.06016481e-01 -2.73192525e-01 7.01971889e-01 -7.76173294e-01
9.96341288e-01 1.59776911e-01 2.73509443e-01 5.28146923e-01
-3.46744329e-01 2.90470034e-01 1.25669479e+00 -1.12559691e-01
-8.26014817e-01 -3.22257072e-01 -5.66030204e-01 8.21125329e-01
-1.19764678e-01 -1.49561360e-01 -7.49867082e-01 -8.99587452e-01
-8.12810585e-02 1.26528847e+00 -6.15597844e-01 -5.26113510e-01
-3.11855555e-01 -1.00467741e+00 8.18525374e-01 1.68733466e-02
-9.46873948e-02 -1.32840919e+00 -6.92285776e-01 -3.42483707e-02
1.19756795e-01 -9.34850931e-01 5.46516553e-02 3.99810642e-01
-8.25346291e-01 -8.75307918e-01 -1.00291632e-01 -5.20580113e-01
3.65553677e-01 -3.15167755e-01 9.73704398e-01 3.18946123e-01
8.04581717e-02 4.80351644e-03 -8.41469765e-01 -4.39671636e-01
-1.06410527e+00 -1.31250560e-01 -1.35222431e-02 -1.02295652e-01
6.02325857e-01 -3.94598722e-01 9.35497507e-03 -2.14478839e-03
-8.92817140e-01 -7.45486915e-01 5.60447514e-01 8.89689565e-01
-2.09243447e-01 -2.13943094e-01 3.95682901e-01 -1.08060217e+00
1.08431458e+00 -2.01753020e-01 -2.72350103e-01 1.76411435e-01
-4.67560202e-01 2.75154095e-02 7.74980426e-01 -3.63179743e-01
-7.23862648e-01 -7.94212878e-01 -4.49329346e-01 2.12570429e-01
-6.38729870e-01 6.55010879e-01 -2.27526098e-01 -3.18854809e-01
8.77626777e-01 4.41356868e-01 3.15634422e-02 -3.40606570e-01
-1.73392728e-01 9.97982442e-01 1.22206137e-02 -2.59780228e-01
5.97601712e-01 -1.45804852e-01 -9.69111994e-02 -1.04168940e+00
-6.89436734e-01 -3.63761544e-01 -7.74592161e-01 -1.34745827e-02
6.19625926e-01 -3.22466284e-01 -8.11733127e-01 4.91209745e-01
-1.19574630e+00 2.34831437e-01 -1.62840763e-03 6.03765607e-01
-3.19204509e-01 8.99425149e-01 -6.46186471e-01 -1.00298023e+00
-2.02716380e-01 -1.06363785e+00 5.40577292e-01 -2.91293096e-02
-4.11451280e-01 -1.19373131e+00 -1.43391237e-01 7.62238741e-01
2.34158561e-02 -1.83958914e-02 1.42543137e+00 -1.45539498e+00
4.62510645e-01 -5.03162801e-01 -1.63915064e-02 8.32627654e-01
-1.52890220e-01 4.40027490e-02 -6.46473348e-01 1.42129570e-01
5.94327629e-01 -6.14065886e-01 6.09868765e-01 -1.81370918e-02
5.91158926e-01 -6.83347344e-01 1.07394829e-01 -3.62687632e-02
1.19768393e+00 2.05115855e-01 9.93506491e-01 3.36113125e-01
3.75837773e-01 9.13419545e-01 5.78276217e-01 2.83415854e-01
1.41988367e-01 4.31911498e-01 1.67088121e-01 5.91755688e-01
3.43321741e-01 1.88812271e-01 9.36270297e-01 7.59419322e-01
2.32822844e-03 -5.13395250e-01 -9.32699740e-01 5.49717247e-01
-1.01669741e+00 -9.94135737e-01 -8.26594114e-01 2.23026371e+00
6.72299683e-01 4.33415532e-01 1.86310142e-01 6.26544535e-01
4.94162470e-01 1.60196140e-01 3.38640481e-01 -1.53665912e+00
-3.92597735e-01 7.40398839e-02 2.87312210e-01 7.03797698e-01
-5.77360272e-01 9.31945801e-01 5.70884800e+00 1.07369459e+00
-1.01289546e+00 -2.37738844e-02 6.00339472e-01 2.89542884e-01
-2.71342188e-01 -9.62692648e-02 -7.92345226e-01 7.16875970e-01
1.13473284e+00 -1.30554254e-04 1.89260542e-01 5.68583846e-01
3.80105197e-01 -7.89914906e-01 -8.63098443e-01 6.91600025e-01
7.48308539e-01 -6.59934998e-01 -4.65811566e-02 1.71571597e-01
1.27531618e-01 -3.91531378e-01 -9.15008560e-02 2.22169936e-01
-1.45963291e-02 -1.12568331e+00 1.11867905e+00 3.67510051e-01
4.69286516e-02 -8.96444380e-01 1.33773100e+00 5.42741954e-01
1.90712899e-01 3.05785351e-02 -6.15363002e-01 -3.72705847e-01
1.35351866e-01 5.24802089e-01 -6.44589007e-01 4.90908504e-01
2.15062335e-01 3.37278038e-01 -9.97031093e-01 6.07129872e-01
-4.09202576e-01 8.52812827e-01 -5.71149886e-02 -7.76357412e-01
5.52442193e-01 -3.39952618e-01 6.73000753e-01 1.41323721e+00
1.43246576e-01 9.10939276e-02 -4.93601918e-01 8.00410569e-01
2.62262762e-01 6.48872256e-01 -3.92396778e-01 -4.71556485e-01
8.22062939e-02 1.30097187e+00 -7.06263244e-01 -3.44401598e-01
-2.66235620e-01 9.93826449e-01 3.23013037e-01 -2.44840398e-01
-4.50226873e-01 -3.06160629e-01 5.38619936e-01 2.84058690e-01
1.47780776e-01 -3.66463587e-02 -6.00340128e-01 -1.15912008e+00
-2.04312179e-04 -1.11845160e+00 2.46093065e-01 -6.68087125e-01
-1.32275927e+00 5.13895273e-01 -1.75710618e-01 -6.68021739e-01
-2.50707567e-01 -1.20102012e+00 -4.27784324e-01 1.03870869e+00
-1.17214167e+00 -8.20513248e-01 2.74891704e-01 4.43493485e-01
2.48545974e-01 -1.87031552e-01 7.19535172e-01 -2.38621488e-01
-3.94085944e-01 5.14189959e-01 5.12059368e-02 2.60849565e-01
5.21610498e-01 -1.24040115e+00 -5.43717146e-02 6.88725352e-01
1.22411504e-01 4.68744069e-01 9.30769742e-01 -5.09153545e-01
-8.40940595e-01 -2.02711627e-01 1.98514616e+00 -7.46670187e-01
1.14424562e+00 -4.77763772e-01 -9.61737692e-01 1.65961251e-01
2.18694344e-01 -4.94555652e-01 6.61286056e-01 2.97693908e-01
-4.28753436e-01 3.54203552e-01 -1.31769598e+00 4.55256015e-01
6.27534032e-01 -5.19705296e-01 -1.30867243e+00 3.21913660e-01
-1.79739267e-01 -2.41322182e-02 -8.37428927e-01 -5.77158518e-02
5.19133329e-01 -1.31813943e+00 4.36746925e-01 -8.52895319e-01
6.14667475e-01 2.32246757e-01 2.44825870e-01 -1.37685835e+00
-3.15316409e-01 -1.71901807e-01 7.06216991e-01 1.17593908e+00
7.10616410e-01 -8.26786697e-01 4.44578379e-01 5.16079247e-01
-1.82368025e-01 -3.75399053e-01 -1.01936519e+00 -6.72006309e-01
5.34679472e-01 -2.45258987e-01 5.38872965e-02 1.18018210e+00
9.19586360e-01 6.04733288e-01 -3.98858875e-01 -1.64075226e-01
-2.21386235e-02 -8.03317502e-02 2.39775211e-01 -1.34763730e+00
-7.36054257e-02 -6.90405726e-01 -8.33318532e-01 -4.58723694e-01
5.62531471e-01 -8.47588301e-01 -2.79343545e-01 -9.89079773e-01
8.12674388e-02 -9.14928764e-02 2.50216842e-01 2.03166306e-01
-2.15393111e-01 1.67753190e-01 2.47312412e-01 -2.09071096e-02
-1.79642200e-01 4.02731478e-01 9.15049672e-01 8.32486376e-02
1.66039355e-02 -4.39471304e-02 -6.69700146e-01 9.14260566e-01
8.58865201e-01 -7.96168625e-01 1.75164118e-01 8.15979689e-02
5.78110814e-01 2.85140455e-01 3.97935480e-01 -4.90281910e-01
4.79851030e-02 -2.54851699e-01 3.56578380e-01 -2.22447440e-01
2.55568445e-01 -7.12203979e-01 -3.52521479e-01 4.56954062e-01
-1.70998320e-01 3.94329518e-01 1.41648371e-02 8.62079039e-02
-3.10272187e-01 -1.35909748e+00 7.79909849e-01 -2.46277720e-01
-1.23987317e-01 -5.47256887e-01 -1.23054790e+00 1.11751355e-01
7.87666321e-01 -6.73470318e-01 -1.30886182e-01 -3.64812344e-01
-6.19636178e-01 -3.72735828e-01 6.06353939e-01 2.69310087e-01
2.16239110e-01 -7.27831364e-01 -8.40168357e-01 4.01765890e-02
6.71988875e-02 -1.01750731e+00 1.18652284e-01 1.12590730e+00
-6.49142027e-01 6.18085861e-01 -4.43831563e-01 1.40214562e-01
-1.75996685e+00 7.28559077e-01 1.56330675e-01 -2.48970225e-01
-8.91307443e-02 3.98212403e-01 -2.80509472e-01 -3.34347263e-02
-2.40082949e-01 -2.69469500e-01 -6.94234908e-01 5.31455815e-01
3.90262514e-01 6.20565295e-01 5.19229412e-01 -1.24189627e+00
-3.48667681e-01 7.20127895e-02 -2.32923150e-01 -1.33528396e-01
1.09713066e+00 -1.40752390e-01 -4.87021714e-01 7.09948719e-01
1.00478065e+00 5.56826770e-01 -1.66080549e-01 4.17971909e-01
3.81376326e-01 -6.14431202e-01 -3.98153402e-02 -1.03437376e+00
-3.71274352e-01 8.14459980e-01 -1.21167131e-01 6.38782024e-01
6.61926150e-01 -1.22912660e-01 7.16196299e-02 1.47224233e-01
3.49813521e-01 -1.26003253e+00 -3.14637303e-01 7.35481560e-01
9.04811084e-01 -9.48478937e-01 -5.03103845e-02 -4.18756157e-01
-9.34498131e-01 1.33673620e+00 -3.63722518e-02 -1.10920936e-01
3.52337331e-01 1.00985840e-01 -9.13017392e-02 -2.57558882e-01
-3.40450495e-01 -2.80465279e-02 4.10222352e-01 4.57656384e-01
5.57902873e-01 3.34334485e-02 -1.56157696e+00 7.63830066e-01
-8.08619797e-01 -5.11332631e-01 1.02414346e+00 5.19799113e-01
-4.95023012e-01 -1.10649836e+00 -6.28502667e-01 6.49494112e-01
-1.09434986e+00 -4.06075001e-01 -1.14302695e+00 1.00437677e+00
2.29679838e-01 1.10337257e+00 -7.88473561e-02 -1.98839113e-01
2.17762113e-01 5.13357699e-01 6.11730874e-01 -6.16711855e-01
-1.37585807e+00 -4.41098511e-01 7.43067503e-01 -1.27171483e-02
-2.91426837e-01 -1.18542266e+00 -5.53284585e-01 -5.86048067e-01
-6.36326313e-01 4.79526758e-01 8.22700560e-01 1.46480250e+00
-1.27273262e-01 -1.62085041e-01 2.77080625e-01 -3.83410245e-01
-7.63898969e-01 -1.38006115e+00 -8.33470821e-01 3.13293070e-01
5.24928831e-02 -4.32658345e-01 -9.60503697e-01 -1.65093839e-01] | [8.273853302001953, 10.413647651672363] |
107b3508-27b9-4e63-a87b-edf72b73105f | towards-fully-automated-deep-learning-based | 2212.07497 | null | https://arxiv.org/abs/2212.07497v1 | https://arxiv.org/pdf/2212.07497v1.pdf | Towards fully automated deep-learning-based brain tumor segmentation: is brain extraction still necessary? | State-of-the-art brain tumor segmentation is based on deep learning models applied to multi-modal MRIs. Currently, these models are trained on images after a preprocessing stage that involves registration, interpolation, brain extraction (BE, also known as skull-stripping) and manual correction by an expert. However, for clinical practice, this last step is tedious and time-consuming and, therefore, not always feasible, resulting in skull-stripping faults that can negatively impact the tumor segmentation quality. Still, the extent of this impact has never been measured for any of the many different BE methods available. In this work, we propose an automatic brain tumor segmentation pipeline and evaluate its performance with multiple BE methods. Our experiments show that the choice of a BE method can compromise up to 15.7% of the tumor segmentation performance. Moreover, we propose training and testing tumor segmentation models on non-skull-stripped images, effectively discarding the BE step from the pipeline. Our results show that this approach leads to a competitive performance at a fraction of the time. We conclude that, in contrast to the current paradigm, training tumor segmentation models on non-skull-stripped images can be the best option when high performance in clinical practice is desired. | ['Danilo Silva', 'Guilherme de Souza e Cassia', 'Bruno Machado Pacheco'] | 2022-12-14 | null | null | null | null | ['tumor-segmentation', 'brain-tumor-segmentation', 'skull-stripping'] | ['computer-vision', 'medical', 'medical'] | [ 3.15623969e-01 2.74233311e-01 2.58535475e-01 -2.38422960e-01
-9.75581229e-01 -3.23219806e-01 5.15828788e-01 5.14665365e-01
-8.89169872e-01 6.04227185e-01 -1.96756229e-01 -5.11816204e-01
5.07506020e-02 -6.19108558e-01 -5.96606255e-01 -8.39473486e-01
2.09761679e-01 1.00212264e+00 6.92735195e-01 -4.24383953e-03
7.99169466e-02 8.46493185e-01 -1.22185147e+00 1.85069591e-01
9.02770400e-01 8.10546517e-01 2.79316485e-01 5.12250304e-01
-3.61277282e-01 3.23915064e-01 -4.95128542e-01 -3.60598177e-01
1.68134615e-01 -2.77328789e-01 -9.47607338e-01 1.41361237e-01
2.79426485e-01 -2.82047510e-01 2.08584890e-01 9.47820961e-01
3.34695399e-01 -3.63014638e-01 6.21613681e-01 -8.00819397e-01
1.67417765e-01 4.55052942e-01 -5.96276462e-01 1.64300531e-01
-1.49808750e-01 1.72727630e-01 2.61026233e-01 -7.27232456e-01
6.92709744e-01 4.36535925e-01 8.94033194e-01 4.47165966e-01
-1.33207023e+00 -4.80515301e-01 -2.82423198e-01 -3.77670191e-02
-1.26095450e+00 -3.56237590e-01 4.40313190e-01 -7.90366590e-01
7.40560353e-01 3.32203954e-01 9.54705358e-01 7.21358716e-01
4.00990993e-01 5.08395672e-01 1.37083948e+00 -4.32414025e-01
3.30004185e-01 7.65255690e-02 1.55513734e-01 7.32283831e-01
3.95687252e-01 -1.98099643e-01 3.01003270e-02 8.66275281e-02
5.14218688e-01 -3.65060478e-01 -3.20907444e-01 -3.58505070e-01
-1.12521493e+00 6.01157606e-01 5.02459526e-01 8.03366363e-01
-4.82837021e-01 5.71364872e-02 3.84977639e-01 7.02521298e-03
6.17846310e-01 2.80424297e-01 -9.09357816e-02 2.31376253e-02
-1.77685261e+00 5.04930168e-02 4.88362581e-01 3.80836666e-01
4.57777739e-01 -3.54438394e-01 -7.73173347e-02 6.40725851e-01
1.96193516e-01 2.42853947e-02 7.05453575e-01 -2.28401855e-01
-8.34556669e-02 5.63440979e-01 -8.75993818e-02 -5.18227398e-01
-9.78000700e-01 -6.64882600e-01 -7.35202432e-01 4.61818218e-01
1.02367210e+00 -3.20442766e-02 -1.39320183e+00 1.15031374e+00
3.85366231e-01 1.88354254e-01 -3.28206748e-01 8.03311765e-01
7.71787286e-01 -9.62890536e-02 2.20374435e-01 -2.60885984e-01
1.25608516e+00 -9.83109593e-01 -6.09505832e-01 -2.36697376e-01
8.77394199e-01 -9.00927961e-01 8.68184984e-01 4.42321002e-01
-1.16284966e+00 1.17119960e-01 -9.38454449e-01 1.54886395e-01
-3.90746713e-01 1.87050197e-02 5.93649387e-01 9.58158135e-01
-1.16763270e+00 6.73638403e-01 -1.46996331e+00 -5.37879705e-01
6.29981577e-01 7.36707985e-01 -5.28747380e-01 -3.64602357e-02
-7.28312254e-01 1.36522031e+00 2.99193174e-01 1.07722379e-01
-6.54846907e-01 -9.22394335e-01 -4.68786478e-01 -2.12477103e-01
2.47840017e-01 -5.50715923e-01 1.18154299e+00 -8.99417281e-01
-1.39995909e+00 1.13729715e+00 -2.00898901e-01 -6.65304542e-01
1.13993001e+00 1.88376963e-01 -9.81703177e-02 1.95163399e-01
-1.15148976e-01 6.25968754e-01 6.38693869e-01 -1.27822089e+00
-4.20901328e-01 -5.12555122e-01 -2.93673277e-01 -7.60924742e-02
-9.79555249e-02 6.45652413e-02 -5.92152417e-01 -2.79724598e-01
2.86192775e-01 -1.14295244e+00 -4.62730408e-01 -2.37640478e-02
-3.25358123e-01 2.94593513e-01 6.50092661e-01 -1.11457515e+00
9.59390938e-01 -1.88223529e+00 -5.59056439e-02 4.07973051e-01
3.33546191e-01 3.33146453e-01 2.88838148e-01 -3.25289443e-02
-1.36984393e-01 1.85299382e-01 -6.52837455e-01 -5.17893016e-01
-3.31965059e-01 6.68284521e-02 4.82708484e-01 8.12734425e-01
-9.92719531e-02 8.99201632e-01 -6.33344829e-01 -6.53202593e-01
4.52124000e-01 6.51969373e-01 -4.12228435e-01 -7.64948502e-02
8.34222138e-02 9.07806158e-01 4.25581849e-04 5.66401184e-01
6.46306932e-01 -9.02276188e-02 5.06297052e-02 -1.66711003e-01
-1.18433893e-01 4.60955016e-02 -7.99241662e-01 1.85684037e+00
-4.70052153e-01 5.12524962e-01 2.12825462e-01 -1.00893235e+00
5.69055140e-01 4.54605728e-01 8.95061076e-01 -5.34088612e-01
4.00485188e-01 7.54246771e-01 5.84396064e-01 -3.78284842e-01
1.75165668e-01 -4.29831833e-01 5.05493522e-01 2.29349121e-01
-6.32563680e-02 -4.56571311e-01 2.53117889e-01 -2.36548156e-01
1.15285861e+00 2.99763270e-02 2.19412550e-01 -5.08952260e-01
6.32077932e-01 2.81883061e-01 3.28580141e-01 3.32113922e-01
-4.12037224e-01 8.79451454e-01 4.55069900e-01 -2.64819592e-01
-8.65685821e-01 -8.30869913e-01 -5.10787189e-01 3.81813675e-01
-2.38117725e-01 -1.12372108e-01 -1.32667398e+00 -7.32588649e-01
-2.75159806e-01 7.37702012e-01 -7.30882943e-01 -2.34808456e-02
-6.27938449e-01 -1.13685024e+00 5.44792771e-01 2.30871215e-01
1.62743524e-01 -8.31692696e-01 -1.00806451e+00 3.40688795e-01
-5.79434857e-02 -1.01544678e+00 -2.06853956e-01 3.82513762e-01
-9.67459798e-01 -1.22351611e+00 -1.13944137e+00 -4.31508422e-01
9.38007176e-01 -1.80618525e-01 9.84894633e-01 4.57984746e-01
-3.90237689e-01 5.37218712e-02 -1.56769797e-01 -4.59810764e-01
-6.90408349e-01 2.25830674e-01 -3.60542119e-01 8.10980871e-02
2.49905378e-01 -4.45400864e-01 -5.88608801e-01 2.02629417e-01
-9.49717820e-01 3.22529227e-01 7.48368621e-01 7.07865298e-01
7.41348028e-01 -8.79098922e-02 2.26574808e-01 -1.02871513e+00
3.63817483e-01 -1.60651088e-01 -6.16936684e-01 2.44440868e-01
-5.75926065e-01 -2.00510010e-01 3.46538574e-01 -2.16314152e-01
-7.32426345e-01 3.83472651e-01 -5.27665973e-01 -3.24201494e-01
-4.32878256e-01 5.71448386e-01 1.53366536e-01 -5.84161341e-01
5.93023717e-01 3.06313839e-02 2.76104540e-01 -2.98151344e-01
-1.53546363e-01 3.30954522e-01 2.95359403e-01 -1.34078115e-01
6.40116870e-01 7.30390191e-01 3.19150805e-01 -8.22826087e-01
-5.32382011e-01 -3.52860451e-01 -1.09526789e+00 -4.25679356e-01
1.14635491e+00 -3.14220518e-01 -2.34963864e-01 5.58553874e-01
-9.82111871e-01 -5.43149114e-01 -1.37262255e-01 5.42020202e-01
-4.57861871e-01 2.90532202e-01 -5.96139729e-01 -5.14690280e-01
-4.66527671e-01 -1.89469504e+00 9.60212052e-01 -4.37496230e-03
-3.22422862e-01 -1.09039044e+00 -2.20163703e-01 5.82832634e-01
7.26830959e-01 5.47415078e-01 8.71277988e-01 -8.51888120e-01
-3.52018267e-01 -3.34753096e-01 -5.57939559e-02 -5.32130264e-02
9.26192030e-02 1.16817355e-01 -1.00256145e+00 -2.99490571e-01
-1.02343045e-01 6.40080124e-02 8.89526129e-01 6.81693137e-01
1.09370661e+00 3.66750568e-01 -4.99154806e-01 5.11692584e-01
1.38852477e+00 1.95013687e-01 6.09918892e-01 5.57154715e-01
6.20663524e-01 5.95961511e-01 3.38774025e-01 -7.04407543e-02
1.58743396e-01 6.75460100e-01 6.71575665e-01 -4.53995347e-01
-3.57567519e-01 2.83551484e-01 -1.28584698e-01 6.42385662e-01
-2.18509436e-01 1.20589666e-01 -1.45527411e+00 7.12462068e-01
-1.43529749e+00 -4.84610915e-01 -5.71872234e-01 2.43703246e+00
8.04878116e-01 3.16584378e-01 1.45167217e-01 3.50283235e-01
4.97116923e-01 -3.80100846e-01 -2.92495161e-01 -1.97566152e-01
1.63155586e-01 4.75370258e-01 7.59431481e-01 6.09759331e-01
-1.04060471e+00 8.16042781e-01 5.94413042e+00 6.84326231e-01
-1.67138851e+00 4.37938601e-01 6.69991851e-01 -4.50224765e-02
-8.13360214e-02 4.90598055e-03 -4.02275205e-01 4.53982025e-01
9.67104137e-01 1.60576701e-01 1.60120592e-01 4.51058269e-01
2.21760035e-01 -5.28955996e-01 -1.04999435e+00 8.12361002e-01
-9.19839926e-03 -1.21006167e+00 -3.70829284e-01 3.86249214e-01
3.23931009e-01 1.75720215e-01 -3.89188081e-01 1.21131223e-02
-1.24017581e-01 -1.19800782e+00 7.16232717e-01 3.97907406e-01
5.01760840e-01 -7.41435885e-01 9.51896727e-01 3.94009858e-01
-8.72457445e-01 4.02342558e-01 -1.58313997e-02 5.89173198e-01
4.10032153e-01 9.40778375e-01 -1.13579321e+00 7.57386804e-01
5.05929053e-01 1.27204269e-01 -7.89816141e-01 1.52963901e+00
3.44643146e-02 6.70090079e-01 -4.41556901e-01 4.12221223e-01
1.45118430e-01 -1.03301972e-01 3.97101223e-01 1.24086607e+00
4.20419484e-01 -1.91403046e-01 7.37827867e-02 6.79527342e-01
2.23603040e-01 3.67492229e-01 -1.60669997e-01 2.01550528e-01
-5.40160909e-02 1.52183712e+00 -1.47258008e+00 -2.22681955e-01
-4.41149712e-01 7.81030715e-01 2.37787113e-01 -1.22475378e-01
-8.86453867e-01 7.80056790e-02 1.37176082e-01 6.26805842e-01
2.85475273e-02 -1.02681309e-01 -5.65031767e-01 -7.79966772e-01
-1.34708941e-01 -6.44599974e-01 3.01525682e-01 -4.19040978e-01
-8.83739293e-01 7.22466469e-01 -2.41599455e-02 -8.46548259e-01
-7.15506673e-02 -6.31645977e-01 -6.30868614e-01 8.52498293e-01
-1.55391014e+00 -1.27932477e+00 -4.10466224e-01 4.46276337e-01
3.11878175e-01 2.41722554e-01 8.55648935e-01 5.72977841e-01
-5.34938157e-01 4.35548186e-01 -2.59474516e-01 -4.35779318e-02
6.10668302e-01 -1.35072291e+00 3.86889316e-02 7.80893207e-01
-7.16746971e-02 3.18426788e-01 7.84108222e-01 -6.02459013e-01
-9.61168945e-01 -9.18447912e-01 7.25651085e-01 -1.71153590e-01
6.99609160e-01 -7.27076828e-02 -1.13846791e+00 6.56821430e-01
2.96219260e-01 2.30756819e-01 7.22626328e-01 -1.87668875e-01
2.93276727e-01 1.81305557e-01 -1.30888832e+00 5.66601872e-01
5.28292537e-01 -3.01453676e-02 -4.97006625e-01 4.70637172e-01
7.53565207e-02 -7.46168435e-01 -1.02435911e+00 6.24301553e-01
4.12221760e-01 -1.08807373e+00 7.71462023e-01 -1.54021069e-01
2.91589171e-01 -2.55319983e-01 3.84745330e-01 -1.44171596e+00
-4.98544946e-02 -1.11949526e-01 3.17681432e-01 9.77006376e-01
5.66666484e-01 -6.32658839e-01 9.83204186e-01 9.01202083e-01
-4.45819646e-01 -9.11147714e-01 -1.19791102e+00 -6.37910187e-01
5.15277505e-01 -4.12982255e-01 4.42022026e-01 9.67526197e-01
-2.55027890e-01 -2.65648305e-01 2.09686428e-01 5.18597960e-02
4.93504018e-01 -1.65754199e-01 5.66982388e-01 -1.39796698e+00
-4.47287224e-02 -9.27467465e-01 -3.72034758e-01 -2.30668947e-01
1.09739803e-01 -1.07408679e+00 4.19520624e-02 -1.82626796e+00
-5.99626116e-02 -5.21970034e-01 -2.00837627e-01 5.19434035e-01
-2.67669628e-03 4.47461009e-01 3.33065018e-02 2.03152984e-01
6.35222197e-02 5.26415706e-02 1.38818550e+00 -1.54352292e-01
-5.29243983e-02 -4.44369353e-02 -1.36675164e-01 9.92975235e-01
8.58637571e-01 -5.08658767e-01 -1.31277606e-01 -3.03778589e-01
-4.06026572e-01 8.13224241e-02 3.81333828e-01 -1.20204198e+00
4.64490563e-01 3.33256908e-02 3.19191933e-01 -6.27700031e-01
2.69219130e-01 -1.13981736e+00 3.63224745e-01 7.92823136e-01
1.11141503e-01 -4.50050086e-02 3.97270471e-01 7.11870566e-02
-1.65758878e-01 -4.57770765e-01 1.19294775e+00 -2.74987340e-01
-1.56228259e-01 2.20755503e-01 -5.80404818e-01 -3.11886877e-01
1.29832113e+00 -3.90390605e-01 8.37691054e-02 5.03710210e-02
-9.51622725e-01 -1.43899679e-01 5.36763132e-01 -6.07104413e-02
1.63352787e-01 -7.63041079e-01 -6.81241751e-01 3.70735414e-02
-1.23621106e-01 2.29857162e-01 3.10110837e-01 1.72539365e+00
-9.49446440e-01 3.64554584e-01 -2.66442478e-01 -8.20345759e-01
-1.40956688e+00 4.07059997e-01 7.62380004e-01 -7.66871631e-01
-7.38860130e-01 7.34737754e-01 -8.82821679e-02 -1.97594181e-01
3.66872810e-02 -4.52804208e-01 -3.05397093e-01 1.15801610e-01
2.11895496e-01 1.39450520e-01 8.75926256e-01 -8.65063965e-01
-5.10641754e-01 4.55238402e-01 -2.42997870e-01 -2.58728445e-01
1.18012476e+00 2.14618176e-01 -3.64580750e-01 1.79893687e-01
8.80050719e-01 7.27600455e-02 -8.10023546e-01 1.53561085e-01
2.97897398e-01 -2.96412557e-01 4.81885344e-01 -8.93998206e-01
-1.49039900e+00 8.67097378e-01 7.91239142e-01 3.32761779e-02
1.12622285e+00 -2.89001822e-01 7.79993713e-01 -7.79831782e-02
4.83894557e-01 -9.66194332e-01 -6.36621296e-01 1.54460073e-01
8.01839769e-01 -1.35325992e+00 -7.17030931e-03 -6.47494435e-01
-2.51300782e-01 1.08063793e+00 4.57098901e-01 -4.09903377e-02
9.29324269e-01 6.81831896e-01 1.95091337e-01 -2.35043049e-01
-2.52919286e-01 -2.59294719e-01 3.01355690e-01 3.99095654e-01
7.42025793e-01 9.22232121e-02 -7.03039408e-01 3.93797785e-01
-3.03538769e-01 1.71275243e-01 5.52914619e-01 9.35326278e-01
-2.43084088e-01 -1.24925911e+00 -4.98639524e-01 6.69488728e-01
-7.95279562e-01 -1.26779348e-01 -3.21077973e-01 1.03083134e+00
1.78305194e-01 7.74656832e-01 -5.70773855e-02 6.89745545e-02
3.24162602e-01 1.99542031e-01 5.67363977e-01 -5.15692949e-01
-1.04267299e+00 2.93452173e-01 -3.09989918e-02 -3.60071629e-01
-3.60519022e-01 -7.36016095e-01 -1.44759774e+00 -1.68015048e-01
-4.04442966e-01 -2.11349502e-02 1.01307726e+00 1.21389174e+00
-4.42792661e-03 8.31430495e-01 -1.21248394e-01 -9.07479942e-01
-1.02037609e-01 -9.38257277e-01 -4.32936668e-01 4.35339332e-01
9.20565128e-02 -8.80083442e-01 -1.68781757e-01 -2.69825608e-02] | [14.445904731750488, -2.479663848876953] |
8e6d1063-228f-45b5-8c6c-9a750e2982a8 | unbiased-heterogeneous-scene-graph-generation | 2212.00443 | null | https://arxiv.org/abs/2212.00443v4 | https://arxiv.org/pdf/2212.00443v4.pdf | Unbiased Heterogeneous Scene Graph Generation with Relation-aware Message Passing Neural Network | Recent scene graph generation (SGG) frameworks have focused on learning complex relationships among multiple objects in an image. Thanks to the nature of the message passing neural network (MPNN) that models high-order interactions between objects and their neighboring objects, they are dominant representation learning modules for SGG. However, existing MPNN-based frameworks assume the scene graph as a homogeneous graph, which restricts the context-awareness of visual relations between objects. That is, they overlook the fact that the relations tend to be highly dependent on the objects with which the relations are associated. In this paper, we propose an unbiased heterogeneous scene graph generation (HetSGG) framework that captures relation-aware context using message passing neural networks. We devise a novel message passing layer, called relation-aware message passing neural network (RMP), that aggregates the contextual information of an image considering the predicate type between objects. Our extensive evaluations demonstrate that HetSGG outperforms state-of-the-art methods, especially outperforming on tail predicate classes. | ['Chanyoung Park', 'Jinyoung Moon', 'Kibum Kim', 'Kanghoon Yoon'] | 2022-12-01 | null | null | null | null | ['scene-graph-generation'] | ['computer-vision'] | [ 4.11666423e-01 2.36783594e-01 -3.02498806e-02 -4.32375371e-01
-1.45203024e-01 -8.11238308e-03 8.40404153e-01 4.36295569e-01
-6.70690686e-02 3.60875815e-01 2.22491547e-01 -1.59116462e-01
-2.04911739e-01 -1.40471244e+00 -9.70679164e-01 -5.66313028e-01
-2.79157132e-01 2.61105835e-01 5.35980165e-01 -2.02524304e-01
-3.48719805e-02 3.79273117e-01 -1.70940363e+00 7.25568175e-01
6.23757303e-01 1.05971205e+00 4.12965685e-01 6.65281534e-01
-2.81540036e-01 1.52495515e+00 -5.70556760e-01 -4.70175683e-01
-6.45539165e-02 -3.75913262e-01 -8.68772686e-01 2.25772321e-01
7.08737016e-01 -2.16044143e-01 -8.71363342e-01 1.08185565e+00
1.71899781e-01 2.57198453e-01 5.30464947e-01 -1.58398700e+00
-1.05598247e+00 8.63714337e-01 -2.83591926e-01 1.03062645e-01
2.16898024e-01 -4.81255539e-02 1.41945553e+00 -8.07920635e-01
8.87377858e-01 1.51094925e+00 2.66977400e-01 1.84412360e-01
-1.09208393e+00 -2.83029616e-01 8.50955307e-01 7.64337540e-01
-1.43435037e+00 -2.54381895e-02 1.04936934e+00 -4.44550693e-01
1.11478913e+00 2.79385656e-01 8.56212258e-01 8.66971672e-01
3.47929597e-01 1.01066756e+00 6.71869278e-01 -2.76855022e-01
2.24183127e-01 -2.28100047e-01 2.18243793e-01 7.48510599e-01
3.58409256e-01 -1.66261226e-01 -7.99181640e-01 4.25085127e-02
6.21766031e-01 1.53787762e-01 -2.13569999e-01 -7.25420356e-01
-1.24730754e+00 7.17128217e-01 9.99781251e-01 1.00459397e-01
-4.11479682e-01 4.34952945e-01 1.62322968e-01 -1.20049387e-01
3.34850669e-01 1.26486614e-01 -1.06851310e-01 6.17565811e-01
-2.65300155e-01 2.94687122e-01 8.07700753e-01 1.24562287e+00
1.05588865e+00 -2.36436710e-01 -5.22249162e-01 6.33838952e-01
5.38087785e-01 3.71299796e-02 -4.32157107e-02 -6.72385156e-01
5.42811334e-01 1.26419723e+00 -4.51039761e-01 -1.58370638e+00
-3.08798224e-01 -5.68245113e-01 -1.05876529e+00 -6.13589585e-02
-2.21341997e-02 2.08809376e-01 -8.19951177e-01 1.71719801e+00
4.87643510e-01 3.76188993e-01 1.24653883e-01 6.76127315e-01
1.42883587e+00 6.48004711e-01 5.32810926e-01 5.51346876e-02
1.28698599e+00 -1.15759194e+00 -5.12938917e-01 -4.00478065e-01
4.15451169e-01 -4.10302848e-01 9.61750209e-01 7.23467320e-02
-8.67027342e-01 -5.97865999e-01 -9.91079152e-01 -1.83476210e-01
-7.50413895e-01 -2.32376039e-01 1.13670433e+00 7.33336993e-03
-1.13376582e+00 4.08148795e-01 -4.75598872e-01 -5.15886664e-01
6.46355569e-01 2.00946063e-01 -2.51747251e-01 -2.72083372e-01
-1.18743968e+00 5.44294059e-01 7.92740464e-01 3.06284964e-01
-1.22364962e+00 -4.53301102e-01 -1.13355255e+00 3.22084576e-01
7.42623210e-01 -9.97557223e-01 8.77148330e-01 -8.51633370e-01
-8.59987199e-01 7.56339192e-01 -1.07353590e-01 -3.56472731e-01
2.10059300e-01 -8.56669396e-02 -3.88351232e-01 2.39264011e-01
2.57409047e-02 7.95859873e-01 7.29335487e-01 -1.77861226e+00
-9.17139649e-01 -1.69310734e-01 7.27150142e-01 5.42404592e-01
-7.66549259e-03 -2.38774166e-01 -6.76042616e-01 -5.21169841e-01
2.98989773e-01 -6.55073464e-01 -3.18933308e-01 -1.93769425e-01
-8.45148861e-01 -4.76323038e-01 1.14496875e+00 -1.06387742e-01
1.17793107e+00 -2.15573931e+00 -1.32132852e-02 8.60778764e-02
5.63536942e-01 -7.80308200e-03 -4.06725138e-01 6.53838873e-01
-8.98815840e-02 -2.40914553e-01 -6.01096228e-02 -1.68865368e-01
7.66817331e-02 5.51419437e-01 -3.42806667e-01 1.24452032e-01
2.39304811e-01 1.23370552e+00 -1.25655067e+00 -6.18597686e-01
2.91082293e-01 5.03136277e-01 -4.79576051e-01 3.13618422e-01
-6.44012511e-01 5.05814813e-02 -4.61702257e-01 5.38036823e-01
6.79045916e-01 -7.81640172e-01 3.26462120e-01 -5.81092775e-01
2.95199841e-01 1.81630626e-01 -1.12245905e+00 1.53352404e+00
-2.38333300e-01 5.59392095e-01 -3.62118870e-01 -9.61475551e-01
6.84128881e-01 5.63629307e-02 3.73702288e-01 -5.06495059e-01
-4.76202331e-02 -4.10349369e-01 -2.24467553e-02 -5.17628968e-01
6.13974333e-01 2.95530796e-01 2.42281228e-01 1.70286566e-01
2.19015643e-01 -4.11608554e-02 4.29757118e-01 8.64050686e-01
1.10149193e+00 9.87577513e-02 3.87108654e-01 -9.16598588e-02
5.74575841e-01 -2.12738514e-01 4.94499266e-01 1.04335237e+00
-9.28744450e-02 5.45634508e-01 7.23605156e-01 -4.67302024e-01
-4.74323481e-01 -1.20850945e+00 3.23474377e-01 1.24332392e+00
7.35710323e-01 -6.94252133e-01 -4.64067459e-01 -7.12903738e-01
-1.22626297e-01 6.32573843e-01 -8.11220586e-01 -2.87975609e-01
-4.54013139e-01 -7.58481264e-01 2.56626457e-02 4.86620337e-01
7.60276437e-01 -1.26528847e+00 -3.17276299e-01 2.44292706e-01
-1.92728177e-01 -1.43909550e+00 -1.17564343e-01 -7.60562718e-02
-6.12573385e-01 -1.41701353e+00 -1.54914364e-01 -9.13772345e-01
8.63752425e-01 4.63868439e-01 1.46681690e+00 2.53725797e-01
-1.75738633e-01 6.66890621e-01 -3.74860197e-01 -2.44986743e-01
-2.16800660e-01 7.79108033e-02 -5.11945248e-01 4.39402014e-01
2.93221205e-01 -6.21917844e-01 -7.43706822e-01 7.27041587e-02
-1.01336479e+00 5.87792158e-01 7.50149012e-01 5.86646497e-01
7.42224276e-01 3.99117142e-01 3.50127310e-01 -1.27490294e+00
3.79157811e-01 -5.23177028e-01 -4.28652525e-01 6.96733475e-01
-2.61557221e-01 -1.75485224e-01 4.81577098e-01 -3.13648194e-01
-1.28261292e+00 1.30018778e-02 1.99299335e-01 -1.55093685e-01
-3.34465742e-01 5.04219055e-01 -5.32083988e-01 -1.19340003e-01
4.88514394e-01 2.88428873e-01 -7.42322981e-01 9.04707760e-02
6.95743322e-01 -2.35727169e-02 5.71426034e-01 -6.05993271e-01
6.22043431e-01 7.29670048e-01 3.81209224e-01 -7.53060281e-01
-1.16555619e+00 -3.88110429e-01 -5.64624846e-01 -4.46793526e-01
1.01279891e+00 -9.04644370e-01 -8.00652742e-01 5.25357544e-01
-1.27037346e+00 -4.38717097e-01 -2.97339141e-01 3.59870583e-01
-4.60190415e-01 3.36197764e-01 -5.49340069e-01 -6.37292445e-01
6.08940944e-02 -8.81728828e-01 1.03164494e+00 2.40700424e-01
2.08379194e-01 -1.05655742e+00 -2.41807103e-01 2.64284790e-01
1.99645519e-01 4.10529554e-01 1.21714342e+00 -4.56708342e-01
-1.37551749e+00 4.46067797e-03 -7.30928540e-01 1.06444046e-01
2.20842391e-01 3.12785283e-02 -9.49779689e-01 -7.70613644e-03
-3.35356265e-01 -1.01978920e-01 9.33109820e-01 4.65019703e-01
1.28476727e+00 -4.22293335e-01 -4.71907407e-01 5.33616066e-01
1.52035856e+00 1.29324719e-01 5.96859157e-01 1.85768783e-01
1.28875268e+00 8.08903754e-01 3.54979604e-01 2.26066723e-01
8.78105402e-01 3.95902455e-01 9.00555611e-01 -2.18510538e-01
-5.03611803e-01 -4.93625075e-01 2.76716333e-02 6.49454534e-01
-4.33729813e-02 -6.39933825e-01 -7.72916079e-01 5.94418645e-01
-2.25970864e+00 -7.57259846e-01 -3.92975807e-01 1.76386535e+00
4.28444445e-01 8.45129937e-02 -4.07712191e-01 -3.37584287e-01
7.99409509e-01 6.10790253e-01 -4.83767778e-01 8.19417238e-02
-4.37982172e-01 -3.19555223e-01 2.19462439e-01 4.17831808e-01
-1.28002059e+00 1.10962319e+00 5.68052387e+00 7.39906847e-01
-6.30988181e-01 -5.16095087e-02 6.70879900e-01 2.77267814e-01
-3.79259348e-01 1.28098220e-01 -6.80699825e-01 1.62275601e-02
2.25672215e-01 -2.12978050e-01 2.62496442e-01 9.06829119e-01
-2.26488337e-01 -2.75304496e-01 -1.29262531e+00 9.24814463e-01
2.59392619e-01 -1.32433283e+00 7.25090444e-01 -8.85329172e-02
9.33070838e-01 3.01917847e-02 -6.33350760e-02 2.45779514e-01
6.88171268e-01 -8.39490652e-01 6.20946407e-01 5.88073909e-01
2.53050029e-01 -5.29104114e-01 6.03231728e-01 6.67220354e-02
-1.57757461e+00 1.79389372e-01 -5.17779529e-01 -1.13212995e-01
1.66102827e-01 7.32208133e-01 -7.92257488e-01 9.68463421e-01
6.46764219e-01 8.98040533e-01 -9.27464247e-01 8.76138568e-01
-6.67903602e-01 5.19252658e-01 -2.32982635e-02 3.49468440e-02
3.14396024e-01 -2.02976018e-02 4.65111583e-01 1.13787639e+00
-6.67370260e-02 1.64361730e-01 3.71050209e-01 9.86359358e-01
-1.93962917e-01 3.95309515e-02 -8.26557815e-01 7.99055845e-02
1.30579248e-01 1.45438945e+00 -8.90851259e-01 -5.68972051e-01
-6.74623609e-01 6.59800828e-01 5.42691112e-01 8.69574606e-01
-5.90965748e-01 -2.34601334e-01 5.65907538e-01 -1.48712695e-01
3.38516384e-01 -1.95922554e-01 -7.82217011e-02 -1.14494610e+00
3.63595001e-02 -4.58219677e-01 6.77336216e-01 -9.91293132e-01
-1.43801284e+00 6.60483301e-01 2.20523700e-01 -1.02069461e+00
8.45714584e-02 -6.11313462e-01 -5.94137371e-01 3.80233467e-01
-1.68275762e+00 -1.67111933e+00 -6.29505932e-01 8.07555854e-01
3.59780610e-01 1.53368607e-01 5.12724400e-01 1.44133762e-01
-3.70684236e-01 9.85496864e-02 -6.00146949e-01 2.98275560e-01
1.68516755e-01 -1.22037828e+00 3.62396240e-01 1.03258097e+00
4.41302091e-01 6.72768652e-01 3.48260820e-01 -8.00791919e-01
-1.29356050e+00 -1.54224408e+00 1.01881289e+00 -2.62095630e-01
6.92732751e-01 -6.26510739e-01 -9.13105369e-01 8.89826894e-01
3.04530710e-01 2.74760008e-01 4.89768952e-01 2.44009435e-01
-5.48067451e-01 -2.32070193e-01 -5.70296943e-01 9.62502778e-01
1.63504720e+00 -6.89648330e-01 -3.91907036e-01 4.19031799e-01
1.00684512e+00 -3.38491023e-01 -6.38566434e-01 6.13407612e-01
1.47329628e-01 -1.13594079e+00 1.14687967e+00 -6.04439139e-01
6.04915738e-01 -6.28588974e-01 -3.99535179e-01 -1.02464902e+00
-5.36270499e-01 -1.08667083e-01 -4.12426382e-01 1.24815929e+00
1.91876128e-01 -5.56278050e-01 7.46068180e-01 4.64296997e-01
-1.38832495e-01 -6.56008065e-01 -5.42741358e-01 -5.90600193e-01
-4.97092813e-01 -6.81595206e-01 8.01853061e-01 1.00992560e+00
-3.08563411e-01 5.88670731e-01 -1.49981782e-01 5.61588764e-01
7.47951806e-01 4.07468617e-01 7.88755715e-01 -1.10301542e+00
-3.66864473e-01 -2.51089811e-01 -7.83594310e-01 -9.49085116e-01
2.10846350e-01 -9.21097517e-01 1.29194781e-01 -2.12151885e+00
4.14007843e-01 -3.49651754e-01 -5.23473501e-01 5.04019797e-01
-5.43688059e-01 1.28454313e-01 3.25817674e-01 -1.02208391e-01
-1.26430511e+00 7.19306767e-01 1.44181859e+00 -5.41360617e-01
1.36437535e-01 -2.77164966e-01 -6.65516973e-01 8.77750754e-01
4.76072788e-01 -2.58899480e-01 -9.02543068e-01 -5.45507312e-01
6.28543615e-01 -3.46547097e-01 8.33936870e-01 -1.06369090e+00
5.47985435e-01 -3.03435892e-01 2.43424743e-01 -8.21815014e-01
2.44959518e-01 -8.38130534e-01 2.99907625e-01 1.35698676e-01
-4.76764560e-01 -2.94290036e-01 -9.25013199e-02 8.15593302e-01
-4.37429696e-01 1.74161330e-01 2.77417898e-01 -3.55253875e-01
-1.21001244e+00 7.26228416e-01 -2.23662272e-01 8.92016962e-02
9.24399614e-01 -6.13784231e-02 -6.78128839e-01 -4.78272200e-01
-6.72898412e-01 2.44251877e-01 2.01349571e-01 4.28512126e-01
8.55943084e-01 -1.44216442e+00 -5.38418531e-01 -1.36539787e-02
6.62919044e-01 5.33084571e-01 5.68964481e-01 4.33932722e-01
-2.94761360e-01 2.18857363e-01 1.18777134e-01 -7.00056434e-01
-1.19862151e+00 8.38334024e-01 1.72794729e-01 -2.99026549e-01
-8.02498639e-01 1.05134153e+00 1.15746284e+00 -3.15117329e-01
2.23759994e-01 -5.12481511e-01 -4.08795416e-01 -1.36421263e-01
3.45695764e-01 1.93547934e-01 -1.08344920e-01 -7.60616958e-01
-2.15566605e-01 3.21686596e-01 -1.22573942e-01 3.00865650e-01
1.08313525e+00 -1.77085251e-01 -4.35365707e-01 4.68520820e-01
9.55828965e-01 -3.97833705e-01 -1.36771226e+00 -4.82408077e-01
-2.56521255e-02 -4.99219000e-01 -1.32349402e-01 -5.53035378e-01
-1.22427976e+00 6.39666498e-01 1.95534155e-01 4.58603770e-01
1.17107046e+00 4.01717603e-01 4.84592557e-01 6.30003452e-01
4.33296263e-01 -8.14245224e-01 1.38092294e-01 4.99830395e-01
8.79005671e-01 -1.09460711e+00 6.27913177e-02 -9.84224916e-01
-5.20325780e-01 8.87380123e-01 9.36679244e-01 -1.38853535e-01
7.20442355e-01 -9.46035087e-02 -5.77572361e-02 -6.40952528e-01
-9.00181353e-01 -5.56276560e-01 5.34730911e-01 8.23942065e-01
2.00167209e-01 1.77825570e-01 4.83146980e-02 1.60578892e-01
3.50513384e-02 -7.21913278e-02 2.70149738e-01 7.98095644e-01
-2.16260403e-01 -8.94582927e-01 2.07369849e-02 4.29141790e-01
-1.01129897e-02 -3.19564670e-01 -4.48871225e-01 7.53102422e-01
4.27510321e-01 1.02220082e+00 1.35401592e-01 -2.88931876e-01
2.74143308e-01 -3.61434937e-01 4.14781988e-01 -7.96458781e-01
-3.55725765e-01 -2.44629085e-01 8.59244838e-02 -9.06345189e-01
-8.12316895e-01 -2.23421931e-01 -1.20884430e+00 -1.24021051e-02
-1.49969563e-01 -1.32032484e-01 1.91471994e-01 9.60037887e-01
4.30795074e-01 1.00656009e+00 3.39035839e-01 -6.52968645e-01
3.83318156e-01 -6.06884360e-01 -7.64876783e-01 7.14728177e-01
1.91839561e-01 -6.55012488e-01 -5.44283364e-04 1.77689731e-01] | [10.297904014587402, 1.6214174032211304] |
65a61b2e-4c84-401b-b1cf-8249a743eda8 | pointclimb-an-exemplar-free-point-cloud-class | 2304.06775 | null | https://arxiv.org/abs/2304.06775v1 | https://arxiv.org/pdf/2304.06775v1.pdf | PointCLIMB: An Exemplar-Free Point Cloud Class Incremental Benchmark | Point clouds offer comprehensive and precise data regarding the contour and configuration of objects. Employing such geometric and topological 3D information of objects in class incremental learning can aid endless application in 3D-computer vision. Well known 3D-point cloud class incremental learning methods for addressing catastrophic forgetting generally entail the usage of previously encountered data, which can present difficulties in situations where there are restrictions on memory or when there are concerns about the legality of the data. Towards this we pioneer to leverage exemplar free class incremental learning on Point Clouds. In this paper we propose PointCLIMB: An exemplar Free Class Incremental Learning Benchmark. We focus on a pragmatic perspective to consider novel classes for class incremental learning on 3D point clouds. We setup a benchmark for 3D Exemplar free class incremental learning. We investigate performance of various backbones on 3D-Exemplar Free Class Incremental Learning framework. We demonstrate our results on ModelNet40 dataset. | ['Uma Mudenagudi', 'Ramesh Ashok Tabib', 'Tejas Anvekar', 'Shivanand Kundargi'] | 2023-04-13 | null | null | null | null | ['class-incremental-learning'] | ['computer-vision'] | [-6.22804761e-02 -1.30080134e-01 -1.89372495e-01 -2.33686835e-01
-4.80876744e-01 -8.20908129e-01 9.07493055e-01 6.35206163e-01
-3.91627580e-01 5.62449396e-01 -6.43483341e-01 -5.30979097e-01
-3.62220734e-01 -6.70568168e-01 -1.21017301e+00 -3.81309122e-01
-6.17450953e-01 9.84636903e-01 6.80469453e-01 -1.00193426e-01
6.56397223e-01 1.36597323e+00 -2.06581640e+00 3.75251025e-01
6.70617044e-01 6.78656280e-01 1.32617176e-01 6.73531413e-01
-6.23261631e-01 1.15235522e-01 -4.66833770e-01 -1.56722069e-01
7.05835462e-01 4.94944304e-01 -6.10771775e-01 3.14999670e-02
1.04797149e+00 -1.70686379e-01 1.35043368e-01 7.25334585e-01
4.86020565e-01 1.07791379e-01 6.31557107e-01 -1.72017670e+00
-2.24301323e-01 2.10373461e-01 -4.58478987e-01 3.22272778e-01
2.73937017e-01 3.43687773e-01 4.81307626e-01 -1.45084167e+00
9.51989353e-01 1.05271065e+00 1.31407285e+00 1.95461154e-01
-1.13880706e+00 -5.19611597e-01 5.55383563e-01 5.58297038e-01
-1.45855772e+00 -2.80333906e-01 1.05139434e+00 -4.17138219e-01
1.26821744e+00 3.19178402e-01 1.09179986e+00 8.33805740e-01
-4.87007014e-02 8.12397480e-01 9.23679769e-01 -4.27641273e-01
5.73409557e-01 1.34159848e-01 3.63142401e-01 6.26263857e-01
3.21279287e-01 4.45996583e-01 -4.25479263e-01 -2.97853291e-01
5.46880901e-01 4.04242307e-01 2.15639144e-01 -1.20865309e+00
-1.00916362e+00 4.95113820e-01 6.64152145e-01 -5.40175922e-02
-1.51344761e-01 1.82107799e-02 4.71947908e-01 7.12634981e-01
6.20985448e-01 2.39817679e-01 -9.75901961e-01 2.14209389e-02
-8.86521041e-01 4.94584680e-01 6.35937870e-01 1.39192843e+00
1.03966498e+00 -9.71314609e-02 2.05343038e-01 6.34075046e-01
-1.21828817e-01 4.70016867e-01 -3.68021280e-02 -1.00087082e+00
4.19856161e-02 8.07169795e-01 6.46193251e-02 -5.32021761e-01
-3.86975586e-01 -4.75323021e-01 -5.27363658e-01 8.78075898e-01
-4.63993065e-02 5.13985336e-01 -1.29638267e+00 8.71594727e-01
8.64568114e-01 8.04039061e-01 -2.35261887e-01 3.41085017e-01
6.12205625e-01 5.26230395e-01 -7.09458888e-02 -4.26134944e-01
4.06215757e-01 -6.71346128e-01 1.53317183e-01 2.02454805e-01
5.15989184e-01 -5.04130244e-01 1.26147616e+00 6.40032232e-01
-8.32326412e-01 -7.84718156e-01 -9.75383818e-01 3.99957299e-02
-6.99888229e-01 -5.84232688e-01 6.13628149e-01 3.74333978e-01
-9.62158203e-01 9.16710496e-01 -1.00406027e+00 -2.49608740e-01
6.74488425e-01 4.33847547e-01 -2.73297101e-01 -2.52811939e-01
-4.34879124e-01 8.74234021e-01 5.63128948e-01 -1.71958119e-01
-9.75646675e-01 -1.46815526e+00 -3.39726865e-01 -3.70693654e-01
3.61222625e-01 -8.04302752e-01 1.31089604e+00 -4.13881242e-01
-9.29297805e-01 9.67980027e-01 1.20161466e-01 -7.10071743e-01
8.32006216e-01 -4.51998293e-01 -5.77651374e-02 -1.26803413e-01
2.25746538e-02 7.87982702e-01 1.17828023e+00 -1.52541327e+00
-9.08682048e-01 -3.78290623e-01 1.22904390e-01 1.80173531e-01
8.12665895e-02 -8.95152628e-01 -7.67009333e-02 -2.50227600e-01
4.20503229e-01 -1.10732365e+00 -2.55200505e-01 5.72756290e-01
7.89304897e-02 -6.56870961e-01 1.39780188e+00 9.05525982e-02
5.89103043e-01 -1.87352586e+00 -1.87822148e-01 -3.12923491e-02
-2.65866122e-03 4.45265532e-01 1.02427259e-01 1.50428936e-01
-2.79845893e-01 1.22097917e-01 -1.82772353e-01 -3.35705787e-01
-1.70078859e-01 4.76202667e-01 -7.34034538e-01 3.74613613e-01
9.78057235e-02 8.94680381e-01 -9.93932903e-01 -5.67202032e-01
7.42118657e-01 3.71227324e-01 -8.14595878e-01 -1.00944139e-01
-6.47949159e-01 8.01061764e-02 -1.75949335e-01 1.11318433e+00
1.12406301e+00 2.59196274e-02 -5.66327453e-01 -5.96332848e-02
-3.23992461e-01 -8.50827172e-02 -1.04745352e+00 2.10351014e+00
-3.79595220e-01 3.10701847e-01 -6.16457820e-01 -8.39143097e-01
7.56445467e-01 -8.27860907e-02 6.14447534e-01 -3.79350990e-01
-6.36775076e-01 1.74135894e-01 -3.95576835e-01 -2.82545865e-01
4.93515283e-01 -1.79296836e-01 6.29507452e-02 2.11395189e-01
1.76040217e-01 -8.14512432e-01 -1.35273561e-01 2.00970933e-01
9.65710402e-01 5.48134625e-01 3.53943259e-01 -4.02541691e-03
2.08855316e-01 4.88443315e-01 1.72713801e-01 1.12924862e+00
-1.48087963e-01 5.10945678e-01 -2.08548624e-02 -1.24960148e+00
-1.21865761e+00 -1.65233219e+00 -5.22252798e-01 9.70473826e-01
8.58582109e-02 -3.22904646e-01 1.92719743e-01 -9.89420772e-01
4.70750570e-01 1.12050533e+00 -5.46094894e-01 -9.78865176e-02
-6.73556983e-01 -3.83126378e-01 -5.34930788e-02 3.05905223e-01
-9.97614488e-03 -9.39755261e-01 -9.39703763e-01 2.20933810e-01
6.22467458e-01 -6.11625135e-01 1.78920850e-01 3.83898467e-01
-1.60481048e+00 -1.17543185e+00 -2.81977862e-01 -5.31342149e-01
6.10081673e-01 5.82346022e-01 1.34691036e+00 1.45454600e-01
-5.04100502e-01 1.06242144e+00 -5.05516589e-01 -1.02338958e+00
-2.54390538e-01 3.76437277e-01 3.45670372e-01 -7.40631104e-01
3.72570336e-01 -1.03523386e+00 -4.51401472e-01 -2.11161957e-03
-6.43157780e-01 -7.82837868e-02 4.36782688e-01 4.67534423e-01
9.72647011e-01 1.03292577e-01 5.46391129e-01 -9.86659527e-01
4.62798886e-02 -3.71572375e-01 -7.46720254e-01 4.08830285e-01
-7.32454121e-01 -1.72348946e-01 2.73801684e-01 -6.82377517e-01
-7.27763414e-01 4.63847488e-01 -8.89579803e-02 -1.15217674e+00
-2.49147192e-01 1.48412623e-02 2.23082095e-01 -4.94096845e-01
1.02199268e+00 2.74947286e-01 -3.20078433e-01 -6.05288804e-01
6.94266498e-01 1.77866727e-01 4.96369153e-01 -8.48415971e-01
1.08137631e+00 6.56709969e-01 2.99350858e-01 -1.01741207e+00
-6.52388632e-01 -5.34836292e-01 -1.28043902e+00 -3.09584200e-01
-1.22430436e-02 -7.61231422e-01 -3.79387736e-01 2.71248698e-01
-1.13727951e+00 -2.97830939e-01 -8.81869733e-01 -6.54424727e-02
-8.29658628e-01 2.50789195e-01 1.05369709e-01 -8.35596561e-01
-2.26004899e-01 -6.98521078e-01 1.12073779e+00 -2.31478661e-01
1.82086691e-01 -8.61825585e-01 1.52745798e-01 -3.43488365e-01
2.22497106e-01 5.32771468e-01 1.01887023e+00 -5.87953269e-01
-1.08444595e+00 -2.16499567e-01 1.80841058e-01 -2.97298422e-03
2.06880778e-01 3.18603180e-02 -1.04047525e+00 -6.46340430e-01
-1.11580677e-01 -2.34619856e-01 8.69325161e-01 5.58901913e-02
1.37587845e+00 -1.26186118e-01 -7.03154266e-01 7.63679206e-01
1.57976532e+00 1.84953753e-02 3.03222537e-01 2.96401769e-01
7.23943889e-01 1.47677541e-01 8.66107404e-01 5.26361704e-01
1.32217348e-01 2.64001667e-01 7.63419449e-01 3.66661191e-01
-2.79936969e-01 -3.99127871e-01 -3.41080576e-01 6.43866479e-01
-8.18578750e-02 2.93795437e-01 -1.30546045e+00 7.67618001e-01
-1.56919312e+00 -7.69847393e-01 -4.67291623e-02 2.34435868e+00
8.00041139e-01 6.78468168e-01 -9.34747234e-02 2.64714092e-01
4.37117964e-01 -2.55486429e-01 -1.07744205e+00 -4.63739671e-02
1.30161926e-01 4.01208639e-01 3.04366022e-01 5.09432256e-01
-1.07331228e+00 9.70943272e-01 5.82217598e+00 5.85458279e-01
-1.09199858e+00 1.34713441e-01 2.54154682e-01 -5.01159906e-01
-2.42643431e-01 2.22669035e-01 -8.51989806e-01 2.22062454e-01
5.66496909e-01 -3.55787098e-01 1.22591987e-01 1.21304476e+00
-3.99977118e-01 3.51531431e-02 -1.46495259e+00 1.26800585e+00
-4.27860655e-02 -1.68117666e+00 3.86973232e-01 -3.40178251e-01
7.73561180e-01 4.73378956e-01 1.71281487e-01 6.88844204e-01
1.66849032e-01 -5.49127638e-01 6.01043224e-01 6.43527806e-01
9.32789981e-01 -8.43901813e-01 1.45528600e-01 6.67879164e-01
-1.03612804e+00 -5.75848818e-02 -5.91897190e-01 -2.96784025e-02
-6.12459145e-02 6.09583139e-01 -1.51575351e+00 5.04720867e-01
1.12350786e+00 7.93424428e-01 -9.68468249e-01 1.74823129e+00
1.04077324e-01 2.25360170e-01 -8.45891178e-01 3.08154970e-01
1.65108740e-02 1.64260045e-01 8.90529931e-01 9.72502708e-01
3.42190534e-01 4.44437601e-02 2.18164399e-01 4.40442801e-01
1.32271007e-01 -1.92898303e-01 -1.10705936e+00 4.86478001e-01
7.56407559e-01 8.48742962e-01 -9.04003024e-01 -3.55266422e-01
-2.81150341e-01 8.02753568e-01 5.47256529e-01 6.02918193e-02
-4.46790397e-01 4.61062118e-02 5.27317286e-01 3.69878232e-01
6.74896717e-01 -5.41908324e-01 -3.24437112e-01 -9.24172103e-01
-2.98215915e-02 -3.56211483e-01 4.27061319e-01 -9.07261550e-01
-1.40964127e+00 2.81950921e-01 4.59593773e-01 -1.43681490e+00
-1.59324259e-01 -6.38932526e-01 -4.68960583e-01 1.62225977e-01
-1.69561529e+00 -1.36414945e+00 -3.53316545e-01 5.99687397e-01
9.76586282e-01 -9.24055204e-02 7.20901549e-01 6.57883286e-02
3.31762075e-01 3.54390413e-01 -1.21361934e-01 -8.02376628e-01
6.57602131e-01 -1.30303824e+00 8.17847133e-01 4.08595890e-01
5.02061903e-01 6.85529113e-01 6.80126786e-01 -9.22024488e-01
-1.45441127e+00 -1.38718879e+00 3.97802055e-01 -1.06083369e+00
3.00471157e-01 -5.92951357e-01 -1.24078441e+00 9.47746098e-01
-3.90045524e-01 4.79862124e-01 3.11328262e-01 2.18253866e-01
-4.08112586e-01 -2.91725606e-01 -1.31202030e+00 3.31593931e-01
1.68823421e+00 -4.08918858e-01 -1.01337886e+00 6.45634592e-01
1.17155433e+00 -5.34348190e-01 -5.81535041e-01 7.80996084e-01
4.39795494e-01 -9.39839125e-01 1.44988024e+00 -8.15434158e-01
-3.36589128e-01 -4.83286083e-01 -6.51322603e-02 -1.25282562e+00
-2.89982349e-01 -4.41932708e-01 -5.35817146e-01 7.58324921e-01
1.24046646e-01 -3.34114790e-01 1.00245035e+00 9.19488445e-02
-5.30225277e-01 -6.97700858e-01 -1.24657106e+00 -9.81749475e-01
4.08241481e-01 -7.57464349e-01 8.12434018e-01 1.03206491e+00
-7.63816416e-01 1.48806609e-02 1.59284517e-01 3.04123282e-01
1.01743019e+00 5.19492567e-01 1.01244617e+00 -1.86777830e+00
2.26038262e-01 -2.24153683e-01 -5.27369022e-01 -7.77483165e-01
7.80402943e-02 -1.04689336e+00 -4.12084728e-01 -1.20609415e+00
-1.67209163e-01 -1.14481819e+00 -4.39201444e-01 5.47876894e-01
3.32294218e-02 4.31423821e-02 2.67718583e-01 5.53644538e-01
-8.35947573e-01 4.21694517e-01 9.23609734e-01 -3.06861073e-01
-5.51720560e-01 3.20539951e-01 -3.91496979e-02 7.22258866e-01
6.01528227e-01 -5.11013746e-01 -7.68650651e-01 -5.66756189e-01
3.77287060e-01 -3.62333059e-01 6.02203786e-01 -1.22396851e+00
6.53567791e-01 -2.05435425e-01 6.00411236e-01 -1.66278017e+00
4.71596509e-01 -1.26691568e+00 1.56145722e-01 5.03220558e-01
1.62434623e-01 4.20995466e-02 5.28573811e-01 7.49105573e-01
4.08333898e-01 -1.23278275e-01 5.80152273e-01 -6.45092249e-01
-1.22209108e+00 7.28971124e-01 3.82154375e-01 -2.06282407e-01
1.31616175e+00 -6.15080655e-01 -2.94263624e-02 2.55518675e-01
-9.59346294e-01 1.30577028e-01 9.92522538e-01 6.27859771e-01
1.10860491e+00 -1.25735068e+00 -5.20739317e-01 4.95889395e-01
3.52513492e-01 6.21663928e-01 2.42369846e-01 1.57647505e-01
-6.48657441e-01 2.17044830e-01 -3.60036254e-01 -1.30669379e+00
-1.09082425e+00 1.30603218e+00 4.07388985e-01 4.05675709e-01
-8.85298789e-01 8.54717791e-01 -1.72930658e-01 -9.01797295e-01
2.29970858e-01 -4.09775823e-01 3.04796755e-01 1.24321811e-01
1.43748626e-01 5.32368064e-01 4.71287072e-01 -1.68410372e-02
-4.96771038e-01 7.37479806e-01 -4.18840468e-01 3.35642517e-01
1.59823012e+00 4.58642468e-02 8.89733210e-02 1.11390507e+00
9.43360627e-01 -3.18369389e-01 -1.61493897e+00 -3.55264246e-01
3.53062898e-01 -6.69968605e-01 -1.75139815e-01 -7.95372903e-01
-3.64222616e-01 8.52568567e-01 1.08302510e+00 -1.64928325e-02
7.00930119e-01 1.43001452e-01 3.78810734e-01 9.79695678e-01
1.14920413e+00 -8.57465804e-01 1.15122750e-01 6.17013097e-01
1.06921494e+00 -1.30812001e+00 5.61181486e-01 -1.39850602e-01
6.98328242e-02 1.20594656e+00 5.76789916e-01 -3.20209175e-01
1.02869201e+00 1.34865433e-01 -1.73455641e-01 -2.28229463e-01
-1.00799060e+00 -1.45315304e-02 2.14652300e-01 9.80128586e-01
-2.68496603e-01 -1.45698071e-01 2.50348687e-01 -8.71277452e-02
-3.92216235e-01 1.35320827e-01 3.20249259e-01 1.35304618e+00
-6.80914104e-01 -1.02354538e+00 -3.69735807e-01 4.17337745e-01
2.82745481e-01 8.96850973e-02 -3.36481303e-01 1.06996524e+00
5.32226980e-01 7.65989497e-02 3.96138966e-01 -1.10810585e-01
6.16404533e-01 3.72771889e-01 9.68266368e-01 -8.76990020e-01
-1.10668004e-01 -4.37589288e-01 -4.09229577e-01 -3.12768787e-01
-3.17363620e-01 -1.02106988e+00 -1.09090495e+00 -1.97950155e-01
-2.31822968e-01 -6.31110817e-02 1.00130975e+00 5.06464720e-01
4.97522086e-01 1.71022743e-01 5.95622480e-01 -1.18425024e+00
-4.74807143e-01 -6.60263360e-01 -1.23888396e-01 2.74904430e-01
6.35972083e-01 -8.83311331e-01 -4.18880850e-01 8.01692531e-02] | [8.00820541381836, -3.1840646266937256] |
e7735b9e-8136-4893-968c-f92d727dc182 | conversational-search-with-mixed-initiative | 2112.07308 | null | https://arxiv.org/abs/2112.07308v2 | https://arxiv.org/pdf/2112.07308v2.pdf | Conversational Search with Mixed-Initiative -- Asking Good Clarification Questions backed-up by Passage Retrieval | We deal with the scenario of conversational search, where user queries are under-specified or ambiguous. This calls for a mixed-initiative setup. User-asks (queries) and system-answers, as well as system-asks (clarification questions) and user response, in order to clarify her information needs. We focus on the task of selecting the next clarification question, given the conversation context. Our method leverages passage retrieval from a background content to fine-tune two deep-learning models for ranking candidate clarification questions. We evaluated our method on two different use-cases. The first is an open domain conversational search in a large web collection. The second is a task-oriented customer-support setup. We show that our method performs well on both use-cases. | ['David Konopnicki', 'Asaf Yehudai', 'Doron Cohen', 'Yosi Mass'] | 2021-12-14 | null | null | null | null | ['conversational-search'] | ['natural-language-processing'] | [ 2.86104202e-01 2.45348126e-01 -7.65507594e-02 -4.38275337e-01
-1.52952170e+00 -7.98799753e-01 9.25914168e-01 4.17055130e-01
-5.42740166e-01 7.24385619e-01 8.00774574e-01 -6.00188851e-01
-2.37633273e-01 -3.72107267e-01 -7.42561966e-02 5.38908057e-02
4.07324791e-01 1.16097438e+00 2.06448004e-01 -6.36813283e-01
5.52522361e-01 -1.28164124e-02 -1.24725783e+00 1.02902031e+00
8.70810151e-01 7.25709498e-01 6.23831153e-01 1.15255046e+00
-5.56098998e-01 7.78383553e-01 -4.76734221e-01 -4.53339964e-01
-1.28273368e-01 -3.22286934e-01 -1.80684018e+00 9.88717899e-02
3.94471288e-01 -5.23708940e-01 -2.29719821e-02 4.27301109e-01
6.50424182e-01 3.93392771e-01 3.65643591e-01 -1.02091062e+00
-3.52044851e-01 8.45947742e-01 1.58261448e-01 4.21335131e-01
8.29617500e-01 1.69993564e-01 1.61345136e+00 -6.88373566e-01
5.55964112e-01 1.33069229e+00 4.34511125e-01 5.82301557e-01
-1.15803719e+00 -1.02013446e-01 1.24589778e-01 2.13043258e-01
-5.94106853e-01 -6.47783518e-01 5.65911889e-01 -3.63637388e-01
1.25392318e+00 5.80361366e-01 4.04470451e-02 1.20704055e+00
-4.11789566e-01 1.21525466e+00 6.90902114e-01 -5.03854752e-01
1.51210114e-01 3.51073951e-01 8.50693405e-01 -3.27702761e-02
-5.00582039e-01 -4.25604165e-01 -4.36352253e-01 -5.93155563e-01
3.70610133e-02 -2.78957840e-02 -4.54106957e-01 2.71622948e-02
-9.51677620e-01 9.19938207e-01 -7.85338059e-02 6.22407436e-01
-4.46359634e-01 -2.03777432e-01 4.83088315e-01 6.27869070e-01
1.78647622e-01 1.11485481e+00 -9.16159332e-01 -6.94243073e-01
-5.93147516e-01 6.01729274e-01 1.79140317e+00 8.34281564e-01
5.91413140e-01 -9.22563076e-01 -6.90749764e-01 1.39890599e+00
8.08130801e-02 1.51495654e-02 3.56760651e-01 -1.23537993e+00
8.09258580e-01 3.80669743e-01 6.41692519e-01 -5.98373771e-01
-4.55141544e-01 -4.25221622e-01 -3.09511218e-02 -7.07767308e-01
5.16512454e-01 -3.13384920e-01 -2.48991773e-01 1.52987695e+00
3.54832709e-02 -2.32066482e-01 1.65271759e-01 7.69140601e-01
1.15442848e+00 5.12273371e-01 2.69931406e-02 -2.77356207e-01
1.66058123e+00 -1.29861283e+00 -7.62248039e-01 -2.97814846e-01
7.15519309e-01 -1.10272753e+00 1.45339704e+00 1.11889318e-01
-1.34189868e+00 -3.29790652e-01 -5.82470715e-01 -3.94987732e-01
-1.86979085e-01 1.48579210e-01 1.69636503e-01 1.07669011e-01
-1.08609986e+00 3.89455318e-01 -3.30670685e-01 -7.74319172e-01
-3.88938606e-01 5.74658215e-02 1.96066782e-01 -6.05113134e-02
-1.45250225e+00 8.67778957e-01 -2.19855905e-01 -8.12019482e-02
-4.52431500e-01 -7.80015409e-01 -4.46142137e-01 6.57264888e-01
5.17973065e-01 -7.60978699e-01 2.42006612e+00 -6.44195974e-01
-1.57439423e+00 9.47935760e-01 -2.17016906e-01 -2.90841699e-01
5.07799149e-01 -5.35354912e-01 -3.22529465e-01 1.16410375e-01
2.74152130e-01 3.20026398e-01 2.73652524e-01 -1.17327881e+00
-9.25110221e-01 -1.81552455e-01 5.69833159e-01 4.87146556e-01
-3.51936370e-02 1.44491583e-01 -5.27767479e-01 -4.23212871e-02
-2.10560083e-01 -8.38445663e-01 -2.73790322e-02 -7.54673302e-01
-6.01627350e-01 -6.65070713e-01 6.95442677e-01 -7.25026608e-01
1.44338250e+00 -1.74306262e+00 -2.67766178e-01 -1.38643906e-01
1.95408940e-01 2.12551832e-01 -4.10627455e-01 1.21440673e+00
1.12069443e-01 2.75289476e-01 5.48732504e-02 -4.03583050e-01
1.81530207e-01 -1.52344510e-01 -5.16156554e-01 -4.67426479e-01
1.79743282e-02 9.24481511e-01 -9.69228745e-01 -3.82952541e-01
-4.24075544e-01 -6.94484934e-02 -7.20430017e-01 6.01189017e-01
-7.15845883e-01 3.78443539e-01 -8.26929867e-01 2.94814080e-01
2.97756702e-01 -5.49519479e-01 2.38004968e-01 -8.01308304e-02
3.85956354e-02 1.09266639e+00 -6.81379020e-01 1.64144993e+00
-1.01297510e+00 6.34878278e-01 5.91408551e-01 -6.79478407e-01
5.26453674e-01 4.99822527e-01 4.23817217e-01 -7.56644428e-01
-5.72773702e-02 2.09870011e-01 -1.66284367e-01 -9.74032521e-01
7.27860749e-01 3.78708065e-01 -1.55348256e-01 1.27922964e+00
-6.84870258e-02 -2.67268598e-01 1.05032220e-01 6.20308042e-01
1.45379961e+00 -2.40688324e-01 1.85685486e-01 -2.38634303e-01
5.86479545e-01 -1.82159245e-02 -3.18976641e-02 1.32505143e+00
-9.95875597e-02 4.27011192e-01 5.47115505e-01 -1.76945597e-01
-5.72974443e-01 -6.45302117e-01 3.05732369e-01 1.66311455e+00
-2.77723260e-02 -5.64579010e-01 -7.03208923e-01 -9.45710182e-01
-5.90855777e-02 1.08456492e+00 -1.40957192e-01 1.68414310e-01
-6.60261631e-01 1.11803170e-02 1.11679852e-01 2.54710019e-02
3.72669399e-01 -1.39008498e+00 -5.57537079e-01 4.31126207e-01
-8.86279583e-01 -1.14029443e+00 -9.29602325e-01 3.97259705e-02
-4.78133619e-01 -1.27248037e+00 -5.56427598e-01 -9.26197827e-01
-1.21148847e-01 4.52743441e-01 1.81446075e+00 4.47625220e-01
-4.82144393e-02 1.25916028e+00 -4.19771522e-01 1.13950800e-02
-5.94599426e-01 6.09496474e-01 -5.03829539e-01 -1.07439294e-01
5.77437520e-01 -5.59737444e-01 -8.07063282e-01 5.86727142e-01
-7.45899558e-01 -1.47030190e-01 3.08861852e-01 9.28734779e-01
-7.46398270e-02 -6.95689619e-01 1.02250636e+00 -9.75056291e-01
1.69254720e+00 -7.15439439e-01 -2.11210012e-01 6.27124190e-01
-6.30019486e-01 1.61154971e-01 1.50774330e-01 -3.40532362e-01
-1.23943365e+00 -2.40395755e-01 -4.26651388e-01 3.13360929e-01
-2.32625201e-01 7.40551829e-01 5.90880290e-02 6.89634681e-01
7.45758176e-01 -7.65684694e-02 -2.45721579e-01 -8.56228471e-01
4.49700594e-01 1.17121601e+00 5.98003507e-01 -8.07655156e-01
1.98704317e-01 -1.59368873e-01 -9.75449860e-01 -7.11571038e-01
-9.19041634e-01 -1.08809161e+00 -3.54907840e-01 -2.62333155e-02
7.72962213e-01 -5.82014680e-01 -1.07890201e+00 -1.52746424e-01
-1.54420722e+00 -5.21196961e-01 -7.64873177e-02 9.42892581e-02
-7.10672021e-01 3.02223742e-01 -8.10944855e-01 -9.45066571e-01
-7.02020824e-01 -1.03861833e+00 1.16216671e+00 2.20038086e-01
-7.19414175e-01 -9.05024648e-01 3.69386524e-01 9.22850966e-01
7.62248039e-01 -5.48381388e-01 1.11807942e+00 -1.69606936e+00
-5.64422488e-01 -1.77463815e-01 -1.74728721e-01 -1.70048848e-01
1.09497234e-01 -4.36096370e-01 -1.10274160e+00 -1.66632816e-01
6.12218753e-02 -8.65087807e-01 7.06451774e-01 -2.34733857e-02
1.11682725e+00 -6.88163400e-01 -4.46455777e-01 -3.00230443e-01
6.06539309e-01 1.29481882e-01 3.58184159e-01 2.44013503e-01
-2.06180513e-02 9.13015842e-01 5.32920539e-01 4.05248553e-01
7.50326276e-01 8.93146336e-01 7.38207549e-02 3.15870553e-01
1.45171240e-01 -3.35547507e-01 -7.63992146e-02 6.15760684e-01
6.17599845e-01 -6.09569967e-01 -9.29025650e-01 6.95152879e-01
-2.13713646e+00 -1.09230566e+00 1.52720094e-01 1.78021777e+00
1.20353830e+00 5.67317382e-02 8.90574828e-02 -3.85612816e-01
5.47363341e-01 8.45157877e-02 -6.76641285e-01 -5.02223670e-01
4.01235968e-01 1.13218650e-01 -4.50933546e-01 1.00136590e+00
-9.71904933e-01 6.11967385e-01 6.01934147e+00 4.30616856e-01
-7.19322205e-01 2.30410099e-01 6.32152557e-01 -4.27158251e-02
-6.80907130e-01 1.07524201e-01 -8.60659599e-01 3.72643292e-01
9.71594632e-01 -1.64958462e-01 4.94158506e-01 7.14067101e-01
2.30283976e-01 -1.11643933e-01 -1.76137865e+00 8.85754764e-01
7.04509299e-03 -1.53008962e+00 -2.12683946e-01 -3.50097507e-01
2.48123378e-01 3.44618782e-02 -2.98151672e-01 1.07392669e+00
5.72754025e-01 -6.73030198e-01 -4.49007004e-03 4.07578379e-01
2.84014046e-01 -1.78247362e-01 7.35937774e-01 8.29479992e-01
-6.29654288e-01 -1.05413005e-01 2.95768201e-01 3.40085775e-02
4.55298036e-01 1.86908409e-01 -1.53231275e+00 2.63182111e-02
5.57802320e-01 1.98276833e-01 -2.29213908e-01 9.10956383e-01
2.20916662e-02 5.49157023e-01 -2.59395063e-01 -3.42639387e-01
2.79942125e-01 6.93030506e-02 6.46698177e-01 1.51620245e+00
-5.54401651e-02 4.20048237e-01 4.80597317e-01 8.65940869e-01
-3.89815181e-01 1.63778171e-01 -1.92481026e-01 -1.43204659e-01
7.17559516e-01 1.38019967e+00 -2.63669252e-01 -3.15616906e-01
-2.91824579e-01 9.29662108e-01 3.17009509e-01 5.80983162e-01
-1.83239549e-01 -4.42690939e-01 4.70056057e-01 2.66392410e-01
1.86702326e-01 1.08950743e-02 2.02988863e-01 -1.04845822e+00
1.33539945e-01 -1.27480161e+00 7.52627492e-01 -8.82904232e-01
-1.43469274e+00 5.70400894e-01 -6.38265014e-02 -6.82870507e-01
-9.02252197e-01 -1.95370410e-02 -1.02015710e+00 9.99535084e-01
-1.58255172e+00 -7.45116115e-01 -3.64831299e-01 2.95974165e-01
1.27640522e+00 6.38741106e-02 8.87740791e-01 4.30124044e-01
-2.89820611e-01 4.03542995e-01 -5.66464886e-02 -1.84232946e-02
9.75526333e-01 -1.17180133e+00 3.53386492e-01 1.20343968e-01
5.19017801e-02 8.62602890e-01 8.23448777e-01 -4.14822400e-01
-1.28034472e+00 -3.79614443e-01 1.52166605e+00 -6.97051287e-01
7.46416450e-01 -4.43321228e-01 -1.01407254e+00 6.06956601e-01
8.21426213e-01 -6.67189419e-01 8.60857606e-01 5.98339677e-01
-1.06644347e-01 1.75656065e-01 -9.24464226e-01 6.82352841e-01
7.26159871e-01 -9.56354797e-01 -9.99699116e-01 9.12791431e-01
1.29621303e+00 -4.74592149e-01 -6.16402745e-01 2.65660882e-02
4.37174946e-01 -7.10003257e-01 8.74734044e-01 -1.18051136e+00
4.54819590e-01 3.33348334e-01 -1.87551156e-01 -1.29922843e+00
-9.97477472e-02 -1.27751064e+00 4.83495779e-02 1.27945614e+00
9.57337677e-01 -4.03802782e-01 4.45915222e-01 1.24060929e+00
-1.14420913e-01 -7.48467088e-01 -5.75868785e-01 -6.47798926e-02
-2.60143578e-01 -2.01380536e-01 6.09191120e-01 7.95063019e-01
6.13185048e-01 1.25993633e+00 8.29758868e-02 -3.37534845e-01
-2.12733507e-01 5.59041321e-01 8.96416485e-01 -1.25672090e+00
-4.05314028e-01 -6.76106513e-01 7.53833175e-01 -1.78542519e+00
1.70024142e-01 -6.25023484e-01 1.46343827e-01 -1.72655272e+00
2.21204713e-01 -4.31619644e-01 -2.87780799e-02 2.61828750e-01
-1.70057386e-01 -6.38030231e-01 9.01008919e-02 3.45565259e-01
-9.50428009e-01 4.21577364e-01 8.57415020e-01 -4.08684164e-01
-6.78889155e-01 7.50716031e-01 -1.01928806e+00 3.54110718e-01
6.64269626e-01 -1.25951558e-01 -5.29340208e-01 -4.32397455e-01
4.33995485e-01 7.56432533e-01 5.25247818e-03 -3.20523977e-01
5.43558717e-01 -1.98037937e-01 -4.01631117e-01 -8.42661023e-01
4.00386244e-01 -6.14882112e-01 -6.52087033e-01 -3.36239040e-02
-1.58813119e+00 2.76104748e-01 -9.89519898e-03 4.49319124e-01
-3.05809677e-01 -5.87251067e-01 2.03653961e-01 -3.13575417e-01
-3.77734423e-01 1.63898140e-01 -5.55666804e-01 4.84777689e-01
2.45781779e-01 2.04065964e-01 -5.91670096e-01 -1.33688259e+00
-9.67860341e-01 8.67051959e-01 -1.30533367e-01 7.54967213e-01
3.87804180e-01 -9.40110207e-01 -8.83919537e-01 -2.59353787e-01
2.54903704e-01 -2.42127627e-01 -5.97422644e-02 6.32430792e-01
1.03470758e-01 9.00501370e-01 3.19443285e-01 -5.30282199e-01
-1.10384333e+00 2.33444378e-01 3.02920848e-01 -7.30306268e-01
-2.68608660e-01 7.45707512e-01 7.58434534e-02 -8.48533154e-01
6.86006427e-01 -4.03142214e-01 -6.48922801e-01 1.74367353e-01
6.97484612e-01 2.27266386e-01 2.93723077e-01 1.68651901e-02
-1.08550631e-01 -1.32338718e-01 -3.53888601e-01 -4.49508131e-01
1.09024811e+00 -6.93205595e-01 -5.70897460e-02 3.41179371e-01
1.36527658e+00 1.35938376e-01 -6.06640220e-01 -7.17795193e-01
6.88864887e-01 -1.71197444e-01 -3.38167965e-01 -1.40328193e+00
-3.17768961e-01 7.83342838e-01 1.70740217e-01 8.58032346e-01
7.10160851e-01 2.57503927e-01 1.11907542e+00 1.25251925e+00
-4.34404910e-02 -1.27399123e+00 4.74918753e-01 1.07172489e+00
1.34390640e+00 -1.46025383e+00 -2.98293293e-01 -1.80617236e-02
-7.73249328e-01 1.19411373e+00 8.24202716e-01 5.25453806e-01
5.06420374e-01 -2.04796597e-01 2.47984082e-01 -4.06528473e-01
-1.36777425e+00 -1.79865882e-01 2.29421332e-01 1.00413397e-01
7.79064476e-01 -2.35946730e-01 -2.11848587e-01 8.92328620e-01
-3.16397041e-01 -8.78898352e-02 4.14250463e-01 9.06745136e-01
-5.04076481e-01 -9.19489563e-01 -1.33799892e-02 4.79424864e-01
-3.57565224e-01 -2.32650399e-01 -8.52745056e-01 4.08213228e-01
-7.76189804e-01 1.58541775e+00 9.42551792e-02 -1.69040829e-01
5.02364337e-01 5.06758332e-01 -1.41765282e-01 -8.14420521e-01
-1.09067822e+00 -6.33576736e-02 9.64851737e-01 -7.16209710e-01
-1.75233603e-01 -5.25711298e-01 -9.59263623e-01 2.16294169e-01
-4.24147308e-01 8.84757817e-01 6.16353631e-01 1.10409153e+00
7.47738183e-01 2.15728968e-01 6.66303754e-01 -3.69657874e-01
-1.01494575e+00 -1.28902400e+00 1.25065655e-01 5.21824718e-01
6.68603480e-01 -1.77273810e-01 -3.41125637e-01 -1.66763589e-01] | [12.13261604309082, 7.817619323730469] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.